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Abstract

Variable selection is the statistical problem of identifying predictors that explain the vari-

ation in a response, which is challenging when the number of candidate predictors is large.

Several existing frequentist and Bayesian methods can perform variable selection in high-

dimensional settings with reasonable computation times. Modern Bayesian methods focus

on sampling models from the posterior distribution on the model space while neglecting

the estimation of model coefficients. Annealed sequential Monte Carlo (SMC) sampling is

an appealing method that provides a weighted sample of models and model parameters

simultaneously, thus simultaneously performing selection and estimation without further

computational effort. We examine the selection and estimation performance of annealed

SMC sampling for linear regression and mixed-effects models under different conditions to

determine factors that impact its efficacy. We demonstrate that sample size, signal-to-noise

ratio, the proportion of important predictors, the correlation of predictors, and the inclusion

of a random effect appreciably impact the performance of annealed SMC sampling.

Keywords: variable selection; parameter estimation; Bayesian model averaging; annealed

SMC
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Chapter 1

Introduction

Variable selection is the statistical problem of identifying an active subset of predictors of

a set of candidate predictors that explain the variation of a response variable. Variable se-

lection methods have been developed and studied for decades and continue to be an active

Ąeld of research, especially in modern, high-dimensional contexts. Stepwise selection is a

conceptually straightforward method that is often used in scientiĄc contexts, but it can be

highly unstable with respect to the dataset and requires data splitting to provide coeffi-

cient estimates with known theoretical distributions, effectively reducing the sample size.

Simultaneous variable selection and coefficient estimation can be done using LASSO, and

much work has been dedicated to developing conĄdence intervals for model coefficients [10].

Inference about model coefficients using this method is conditional on the selection of the

corresponding predictors. We are interested in Bayesian analogues of these methods that al-

low us to simultaneously identify important predictors that explain a response variable and

provide interval estimates with good marginal coverage properties for model coefficients,

i.e., that do not require data splitting.

Bayesian model averaging (BMA) is an approach for incorporating uncertainty in sta-

tistical modelling that introduces a prior distribution on the space of possible models and

derives the posterior distribution on this space using BayesŠ rule. BMA is an intuitive

method for averaging posterior distributions of quantities of interest over a range of plausi-

ble models, which is useful in situations where there is considerable model uncertainty. In

addition, BMA usually leads to improved predictive performance over Ątted models that

have not been subjected to variable selection [9]. More formally, let M denote the (possibly

countably inĄnite) set of possible models ¶Mk♢, where k is an arbitrary index and a prior

distribution π(Mk) is given over M. For each model Mk, there are parameters θk and the

likelihood f(D ♣Mk, θk) of the data D under Mk. If ∆ is a quantity of interest, then we can

average its posterior distribution across models in M as follows [9]:

π(∆ ♣D) =
∑

Mk∈M

π(∆ ♣Mk, D)π(Mk ♣D),
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where

π(Mk ♣D) =
π(D ♣Mk)π(Mk)

∑

Mj∈M π(D ♣Mj)π(Mj)

and

π(D ♣Mk) =

∫

π(D ♣ θk,Mk)π(θk ♣Mk) dθk.

In the context of variable selection, the space of possible models typically consists of a fam-

ily of models deĄned by considering all possible subsets of candidate predictors that may

explain the response variable. SpeciĄc predictors can be selected by imposing criteria on the

posterior model probabilities π(Mk ♣D), such as the predictors in the model with maximum

a posteriori probability or predictors whose posterior inclusion probabilities, which are de-

Ąned as the sum of posterior probabilities of models containing the predictor, are above

some threshold. Model coefficients are interpreted as per their usual meaning for models

that include the associated predictors and as degenerate point masses at 0 for models that

exclude them. Their posterior distributions account for the possibility of including other

predictors in the model. From each posterior distribution, both point estimates (the pos-

terior mean) and interval estimates (credible intervals) are available for model coefficients,

making BMA an attractive framework for the current problem.

For a simple family of models for the data, the posterior model probabilities may be

calculated directly for all possible models. But this approach becomes infeasible when more

complicated models and more candidate predictors are involved. SpeciĄcally, the quantity

P (D ♣Mk), often called the evidence for the model Mk, can be difficult to calculate when

θk is high-dimensional (which is often the case in regression contexts), and the number of

posterior model probabilities to calculate grows exponentially with the number of candi-

date predictors. Early methods for overcoming these issues are unsatisfactory for various

reasons. For example, leaps-and-bounds and OccamŠs window [9, 17, 13] involve excluding

ill-Ątting models from the model space, thus failing to fully account for model uncertainty.

MCMC methods (MC3, SSVS [6]), an alternative approach, often have poor convergence

and/or mixing properties [3]. Therefore, a variety of modern approaches have been devel-

oped to address the limitations of these early methods. This project speciĄcally focuses

on the application of one of these modern approaches, annealed sequential Monte Carlo

(SMC) sampling, as a variable selection and parameter-estimation method in the context

of linear models. We investigate the application of annealed SMC sampling to both Ąxed-

effects and mixed-effects models. The latter are more appropriate for longitudinal data,

which frequently occur in disciplines such as health and medical research. By studying the

performance of the method for mixed-effects models as well, our project gives insight about

the performance of the method for longitudinal models. We consider the selection only of

predictors with Ąxed, not random, effects because in practice, variable selection questions
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of interest primarily focus on predictors with Ąxed effects.

We justify our choice to use annealed SMC sampling for our project as follows. Initially,

we explored the use of reversible jump Markov chain Monte Carlo to obtain draws of the

parameters and the model jointly from the posterior distribution, using a formulation that

makes the algorithm equivalent to a Gibbs sampler [2]. However, in our preliminary investi-

gations, we found that this method has poor convergence and is computationally inefficient,

in part because the joint posterior of the parameters given the model does not have a simple

form. Next, we attempted the direct calculation of the evidence of individual models using

Monte Carlo integration, but we quickly found that the selection performance of this method

is very sensitive to prior hyperparameter selection. Therefore, we sought more sophisticated

posterior sampling methods in the literature. There are a variety of methods that efficiently

sample from the posterior distribution on only the model space, but methods that draw

models and parameters jointly are lacking. One example is EM-based variable selection,

which applies the EM algorithm to the likelihood of the joint posterior distribution of the

model and the parameters primarily to identify models with high posterior probability [15].

Another example is Bayesian adaptive sampling, which draws a sample without replacement

from the model space so that the sample marginal inclusion probabilities of the predictors

are close to their true posterior marginal inclusion probabilities [4]. Split-and-merge vari-

able selection partitions the set of candidate predictors, individually selects for predictors

within each partition, and then selects predictors from the pool of these previously selected

predictors, which allows consistent selection of predictors even with multicollinearity [16].

Population MCMC methods, which have improved mixing properties compared to simpler

MCMC methods, are also used; evolutionary Monte Carlo uses a parallel tempering ap-

proach with multiple chainsŠ targeting different temperatures and global exchange moves

between chains [3]. These methods mostly provide a sample of models from the posterior

distribution on the model space, from which posterior model probabilities may be esti-

mated. These probabilities may be paired with samples from the posterior distribution of

parameters for each model in order to obtain averaged posteriors of the model coefficients.

However, this approach is sub-optimal because the posterior distributions of model param-

eters for all sampled models must be computed, which is again prohibitive when a large

number of iterations is used. Annealed SMC sampling is an alternative that permits the

joint sampling of models and parameters from the posterior distribution, thereby reducing

the computational demand.

Annealed SMC sampling is a modiĄcation of (regular) SMC sampling, which is a method

based on repeated importance sampling that is used to draw samples from a sequence of

distributions [18, 14]. It is used in settings where the joint distribution of a sequence of

random variables is of interest but may be intractable or known only up to a constant. It
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is a preferable alternative to MCMC when the latter produces chains with poor conver-

gence. SMC sampling can be adapted to sampling a single target distribution π, leading to

annealed SMC. Annealed SMC is simple to implement and does not rely on convergence

arguments in the same sense as do MCMC methods, which tends to reduce computation

time while still maintaining accuracy of the posterior distribution. By sampling both mod-

els and parameters, the need to compute the evidence for all possible models is avoided,

thereby enabling the use of annealed SMC for more complicated models and more candidate

predictors. However, its theoretical justiĄcation still depends on a convergence argument as

the number of observations sampled, called particles, increases [14]. Ideally, a larger num-

ber of particles is used for more complex distributions, such as those induced by complex

models or large model spaces, but too many particles may pose a computational burden

that negates the potential time-savings of annealed SMC compared to competing methods.

Thus, this project seeks to investigate the ability of a minimally tuned annealed SMC sam-

pling scheme to select important predictors and produce valid interval estimates of model

coefficients under different conditions. Using a comprehensive simulation study, our main

purpose is to provide analysts with insight into of the performance of the method in practice.

The remainder of this report is organized as follows. In chapter 2, we describe the

CAYACS dataset that motivates the project. In chapter 3, we describe the model of interest

and the annealed SMC sampling algorithm we use. In chapter 4, we describe and present the

results of the simulation studies that examine the performance of the described annealed

SMC sampling algorithm, and we provide a discussion of our work in chapter 5.
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Chapter 2

Motivating example

This project is motivated by the BC Cancer Childhood, Adolescent, and Young Adult Can-

cer Survivors (CAYACS) research program. As cancer treatment continues to improve, an

increasing number of cancer survivors may have special healthcare needs [5]. As part of

this program, clinical and demographic data of survivors of cancer occurring at a relatively

young age in British Columbia, Canada were collected in order to examine late health effects

and health-services-utilization patterns. Such information is critical for health care planning

purposes.

The collected data are longitudinal and contain at least 30 variables, so questions about

which variables have important effects on late health effects and utilization of health services

are naturally of interest. For example, one question is which variables (cancer type, treat-

ment, age at diagnosis, sex, etc.) impact the levels of prognostic, cancer-related metabolites

measured on survivors over time. Such questions motivate the investigation of the per-

formance of methods that can simultaneously do both variable selection and parameter

estimation in the longitudinal data setting.

Unfortunately, the release of the CAYACS data to researchers was delayed for reasons

beyond the control of BC Cancer. We therefore were unable to apply our proposed methods

to real data. However, the context remains one important motivation for our work.
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Chapter 3

Methods

In this chapter, we describe the annealed SMC sampling algorithm applied to a family

of linear mixed models indexed by candidate predictors that are not identically zero. We

describe the models Ąrst and then the algorithm.

3.1 Linear Mixed Model

We restrict attention to the random-intercept model for simplicity. Let Yij and (xij1, ..., xijp)

denote the response and vector of predictor variables, respectively, observed on the ith

individual at time point j, i = 1, . . . , n, j = 1, . . . , ni. We proceed with a joint model-

parameter space in the sense of Barker & Link (2013) [2]. Let β = (β0, ..., βp) be a column

vector of regression coefficients. We identify a model by ζ = (ζ1, ..., ζp), where ζj ∈ ¶0, 1♢
for j = 1, ..., p as follows. Let m1, ...,m♣ζ♣ be the indices for which ζj is 1 (listed in increasing

order), where ♣ζ♣ indicates the L1-norm of ζ, and let ψ = (ψ0, ..., ψp) be an auxiliary

parameter that is common across all models. We introduce ψ because in the annealed SMC

sampling algorithm, we draw ψ as well as the model and other parameters. Consequently,

we sample from a model-parameter space with constant dimension, which facilitates the

construction of simple MCMC moves to be used in the algorithm. We then deĄne

xij = (1, xij1, ..., xijp),

Xi =











xi1

...

xini











,

βζ =















β0

βm1

...

βm|ζ|















,
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ψζ =















ψ0

ψm1

...

ψm|ζ|















,

and

Y i =











yi1

...

yini











.

Let β−ζ and ψ−ζ be the vectors containing the remaining β and ψ parameters not in βζ and

ψζ , respectively, in increasing order of the index. We use a Gaussian linear mixed effects

model for Yij , i.e.

Y i = Xiβ + bi1ni
+ εi.

We use ζ to identify the models in the model space by setting βζ = ψζ and β−ζ = 0

conditional on ζ. Here bi ∼ N(0, σ2
b ), and 1ni

is the ni-dimensional column vector of ones.

The errors, εi, i = 1, ..., n, are assumed to be distributed as MVN(0ni
, σ2Ini

), where 0m

denotes the m-dimensional column vector of zeroes and Im denotes the m × m identity

matrix. In addition, b1, . . . , bn, ε1, . . . , εn are assumed independent. Crucially, given ζ, ψ

completely determines β. We focus on ψ instead of β to facilitate the construction of the

chosen forward kernels in section 3.2.2.

Let Ω = ¶(ζ1, .., ζp) ♣ ζj ∈ ¶0, 1♢ for all j♢ represent the model space. We use a uniform

prior on the model space, i.e., P (ζ) = 1
2p for all ζ ∈ Ω. This choice is appealing because it

does not require prior elicitation from domain-knowledge experts and because all predictors

are given equal a priori importance, i.e., no predictors are preferred over others. Other

priors on the model space can be used; the choice has minimal impact on the details of the

model selection algorithm. Given each ζ, we use the priors

ψζ ∼ MVN

(

0♣ζ♣+1, τ

(

v 0

0 I ♣ζ♣

))

,

ψ−ζ ∼ MVN
(

0p−(♣ζ♣+1), σ
2
uIp−(♣ζ♣+1)



,

σ2 ∼ InvGamma(α, ν),

and

σ2
b ∼ InvGamma(αb, νb),

where v, τ, α, ν, αb, and νb are hyperparameters to be set according to the problem.

Here, v should be set to be large in order to allow a large range of plausible values for the

intercept coefficient. We standardize predictors and set τ = 1 for this project; standardizing
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predictors addresses scaling concerns, and the choice of τ is at the discretion of the analyst

[8]. We comment on this issue further in section 5.

The interpretation of the model coefficients, the βj Šs, when averaged across models is an

important consideration when their estimates are of interest. In a single model that contains

a continuous predictor xj , βj is the change in the mean response when xj increases by one

unit and other predictors are held constant. Given a prior distribution on the parameters

of this model, the posterior distribution of βj represents the effect of xj after having ad-

justed for other predictors in the model. When the posterior distributions of βj are averaged

across models containing βj , the mode of the averaged distribution may be understood as

the change in mean response when xj increases by one unit adjusted by the remaining can-

didate predictors, which possibly have coefficients of zero. For models not containing xj , βj

is set to be zero, meaning xj has no effect on the mean response. Hence when the posterior

distribution of βj is averaged over all models, it has two components: one that describes

the effect of xj on the response adjusted for other candidate predictors with possibly zero

effect, and a point mass at zero. Averaging over all possible models gives a non-zero value

to the probability P (βj = 0), which is useful for variable selection, whereas Ątting only

the full model would make this probability 0 no matter the importance of xj (because the

posterior distribution in this case would be continuous). When a predictor is selected, the

credible interval for the corresponding coefficient is largely determined by the distribution

describing the effect adjusted for other predictors, but when it is not, the credible interval

will be concentrated around 0, which is the desired behavior.

3.2 Annealed SMC

3.2.1 Construction

Denote Θ = (ψT , b1, ..., bn, σ
2, σ2

b ). We seek to sample (Θ, ζ) from the posterior distribution

deĄned by

π(Θ, ζ ♣y) ∝ f(y ♣ Θ, ζ)π(Θ ♣ ζ)π(ζ).

Here, f(y ♣ Θ, ζ) denotes the likelihood of data given (Θ, ζ), π(Θ ♣ ζ) denotes the prior on

Θ given the model ζ, and π(ζ) is the prior on ζ. The random effects, bi, are sampled for

computational ease, since it avoids the integration of the likelihood over the random effects.

Set π0(Θ, ζ) ≡ π(Θ ♣ ζ)π(ζ) and

πt(Θ, ζ ♣y) ∝ f(y ♣ Θ, ζ)αtπ(Θ ♣ ζ)π(ζ) ≡ γt(Θ, ζ)

for a strictly increasing sequence α1, ..., αT ∈ (0, 1] with αT = 1, so that πT (Θ, ζ ♣y) =

π(Θ, ζ ♣y) is the target distribution from which we wish to draw. Despite the notation

8



suggesting otherwise, π1, ..., πT −1 are not true posterior distributions of (Θ, ζ) conditioned

on y. But they are proper densities that depend on y.

The main idea is to use the intermediate distributions πt to facilitate the sampling of

πT starting with draws from π0 in the following way. Let ωt ≡ (Θt, ζt), t = 0, ..., T . At the

t-th step, we obtain weighted samples that approximate the following joint distribution of

ω0:t = (ω0, ..., ωt):

π̃t(ω1:t) ≡ πt(ωt)
t
∏

s=1

Ls−1(ωs, ωs−1).

Ls−1 is called a backward kernel and is an arbitrary distribution of ωs−1 given ωs. The joint

distribution π̃t has the property that the marginal distribution of ωt at the t-th step is πt;

in other words, the marginal distribution of ωT at the last step is πT , which is our target

distribution. We discuss the choice of Ls in section 3.2.2.

This construction permits the usage of the following SMC algorithm, which provides a

collection of weighted samples of ω1:t at the t-th step that can be used to form a Monte

Carlo approximation of π̃t:

1. Let t = 1 and draw ωi
0 = (Θi

0, ζ
i
0) ∼ π0 independently for i = 1, ..., P , where P is a

pre-determined positive integer. The draw ωi
0 is called the ith particle obtained at step

0, so P is the number of particles sampled. Let W 1
0 = ... = WP

0 = 1
P

be the initial

importance weights of the particles.

2. At step t:

(a) Draw ωi
t = (Θi

t, ζ
i
t) ∼ Kt((Θ

i
t−1, ζ

i
t−1), ·) = Kt(ω

i
t−1, ·) independently for i =

1, ..., P for some distribution Kt(ω
i
t−1, ·) dependent on ωi

t−1. Kt is called a forward

kernel; we discuss possible choices in section 3.2.2.

(b) Let

wi
t =

γt(ωi
t)Lt−1(ωi

t, ω
i
t−1)

γt−1(ωi
t−1)Kt(ωi

t−1, ω
i
t)

be the incremental weight at step t of particle i, and let

W i
t =

W i
t−1w

i
t

∑P
j=1W

j
t−1w

j
t

,

be the (normalized) importance weight of particle i at step t.

(c) Let

ESS =

(

∑P
j=1W

j
t−1w

j
t

2

∑P
j=1(W j

t−1)2(wj
t )2

be the effective sample size at step t. If ESS < P
2 , resample the particles accord-

ing to probabilities W i
t . Then let W i

t = 1
P

for all i = 1, ..., P .

9



(d) Increment t by 1.

3. Repeat step 2 until t = T + 1.

To see how this algorithm provides a Monte Carlo approximation to π̃t at step t, ignoring

for the moment the resampling in step 2(c), note that step t provides particles ωi
1:t with

weights

W i
t =

γt(ωi
t)
∏t

s=1 Ls−1(ωi
s, ω

i
s−1)

γ0(ωi
0)
∏t

s=1Ks(ωi
s−1, ω

i
s)

∝ π̃t(ω1:t)

η̃t(ω1:t)

where η̃t(ω1:t) denotes the distribution of ω1:t as drawn in the above algorithm. Then the

above algorithm is equivalent to importance sampling targeting π̃t with the proposal η̃t at

step t. Accordingly, the Monte Carlo approximations to π̃t and πt at step t are given by

ˆ̃πt =
P
∑

i=1

W i
t δωi

1:t

and

π̂t =
P
∑

i=1

W i
t δωi

t
,

respectively, where δa denotes the Dirac delta measure supported on a. It can be shown

that these approximations still behave well when resampling occurs as per step 2(c) [14].

3.2.2 Selection of Lt−1 and Kt

Theoretically, the backward kernels Lt−1 are arbitrary, but selecting them optimally ac-

cording to Kt will lead to importance weights with lower variance; see the discussion in Del

Moral, Doucet & Jasra (2006) [14]. A convenient choice for Kt is a πt-invariant kernel, i.e.,

a one-step transition density whose stationary distribution is πt. Then let

Lt−1(ωt, ωt−1) =
πt(ωt−1)Kt(ωt−1, ωt)

πt(ωt)
,

which will produce good Monte Carlo approximations of the target distribution if the αtŠs

are close to each other. The number and values of the αtŠs are tuning parameters that

are chosen manually according to the model being Ątted. Often, more complicated models

require higher T and more closely spaced αtŠs, and the αtŠs may be spaced in many different

ways (linearly, quadratically, exponentially, etc.). The αtŠs may also be chosen adaptively

[18], but this option is not pursued in this project due to time constraints. The incremental

weights become

wi
t =

γt(ωi
t−1)

γt−1(ωi
t−1)

= f(y ♣ Θ, ζ)αt−αt−1 ,

with α0 = 0.
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For this project, Kt is constructed to be a symmetric random walk Metropolis kernel

that is πt-invariant. Recall that in section 3.2.1, we draw samples ωt = (Θt, ζt) from the

distribution πt at step t. Since Θ is deĄned using ψ instead of β, the joint model-parameter

space ¶ω♢ has Ąxed dimension. Therefore, Metropolis-Hastings (MH) kernels used in MCMC

can be used on ¶ωt♢ and may be constructed to be πt-invariant. An MH kernel that is πt-

invariant draws a proposal for the next sample ω∗ ∼ q(ω, ·) conditional on the previous

sample ω and moves from ω to ω∗ with probability

min

{

1,
πt(ω∗)q(ω∗, ω)

πt(ω)q(ω, ω∗)

}

,

staying at ω otherwise. If q is symmetric, i.e. q(ω∗, ω) = q(ω, ω∗), then the acceptance

probability involves only the ratio of target densities at ω∗ and ω. For this project, the

proposal adds or removes a predictor from Mt−1 with uniform probability and samples

1. ψt ∼ MVN(ψt−1, σ
2
1Ip+1), where ψt is the value of ψ sampled at step t,

2. bt,i ∼ N(bt−1,i, σ
2
2), where bt,i is the random effect for subject i sampled at step t,

3. σ2
t = σ2

t−1e
A1 ,where A1 ∼ N(0, σ2

3), where σ2
t is the value of σ2 sampled at step t,

and

4. σ2
t,b = σ2

t−1,be
A2 ,where A2 ∼ N(0, σ2

4), where σ2
t,b is the value of σ2

b sampled at step t.

Here, σ2
1, σ

2
2, σ

2
3, and σ2

4 are step-size parameters and are subject to tuning. If this set

of forward and backward kernels is used, the incremental weights at step t are known be-

fore propagating the particles at step t − 1, and so step 2(a) in the algorithm should be

executed after steps 2(b) and (c) to allow more diversity of proposals propagated from

highly-weighted particles [14]. To see the beneĄt of changing the order of steps in this way,

when resampling is done before propagation, the collection of particles is repopulated with

highly-weighted particles, which are those in high-probability regions of πt. The propagation

of these particles then efficiently explores the joint model-parameter space according to the

distribution of πt. When resampling is done after propagation, some low-weighted particles

are propagated and then discarded by resampling, and there is some redundancy among re-

sampled particles that are propagated previously. Therefore, performing resampling before

propagation when possible allows more efficient exploration of the joint model-parameter

space and leads to better approximations of the target distribution.
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Chapter 4

Simulation studies

The aim of our simulation studies is to examine the behaviour of the posterior distribution

of the model parameters obtained using the annealed SMC method under different data

generating mechanisms. In particular, we investigate the marginal posterior inclusion prob-

abilities of candidate predictors, the coverage probabilities of 95% credible intervals for the

regression coefficients, and the bias of the posterior means of the model coefficients using

the Monte Carlo approximation π̂T from the last iteration of the annealed SMC algorithm.

We describe the data generating mechanisms and the results of each simulation study in

the following subsections. We Ąrst perform a simulation study in a simple setting to conĄrm

that the method can perform well. We then conduct a full factorial experiment in a more

realistic linear regression setting to explore factors that inĆuence the performance of the

method. Finally, we test the method using a mixed-effects model with a random intercept.

In all simulation studies, the marginal posterior inclusion probabilities of each candidate

predictor and the 95% credible intervals for the model coefficients are calculated using the

Monte Carlo approximation π̂T i.e. the last distribution targeted by the annealed SMC

sampling algorithm. For this project, a predictor is selected if its marginal posterior inclusion

probability is at least 0.5. Other thresholds can be used, but our choice is inspired by the

theoretical result that says the model with the best predictive probability is the one with

predictors with marginal posterior inclusion probabilities of at least 0.5 [1]. We summarize

our results by computing performance measures such as estimates of the marginal selection

rate of each predictor, the false selection rate (the proportion of selected predictors that

are not important), the negative selection rate (proportion of important predictors that are

not selected), and the coverage probabilities of the credible intervals. We note that these

measures are estimates of the marginal probabilities of interest (averaged across all possible

datasets) and therefore depend on the joint distribution of the response and the predictors.

The algorithm is parallelized to speed up computation in all simulation studies.

12



4.1 Fixed-effects benchmark case

We Ąrst generate data according to a Gaussian linear model (i.e., no random effects) for

n = 1000 subjects and p = 3 candidate Ąxed-effect predictors. Although variable selection

methods are typically not applied in a three-predictor setting, this simple case allows us

to evaluate the correctness of our annealed SMC implementation. The predictors are i.i.d.

generated according to the distribution









xi1

xi2

xi3









∼ MVN(03, σ
2
XI3),

with σ2
X = 0.01. The responses are generated as

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi,

where β0 = 2, β1 = −10, β2 = 10, and β3 = 0 so that x1 and x2 are the important pre-

dictors in explaining Y . Here εi ∼ N(0, σ2) are i.i.d. with σ2 = 15. With reference to the

model and algorithm speciĄcation in sections 3.1 and 3.2.2, we also set v = 100, τ = 1,

α = 2.1, ν = 100, αb = 0, νb = 0, σ2
u = 5, σ2

1 = σ2
2 = σ2

3 = 0.25, and σ2
4 = 0. We generate

500 datasets from this model, each time applying annealed SMC as described in section

3.2 with 1000 particles and αt = t
10 for t = 1, ..., 10. The parameters in the simulation

and for the algorithm are initially chosen arbitrarily and then slightly modiĄed in order to

produce a case under which the algorithm performs well. In particular, σ2
X is chosen to be

different from 1 so that the candidate predictors are non-trivially standardized (i.e., scaled

by a factor substantially different from 1) as part of the simulation, and the true model

coefficients βi are chosen in conjunction with σ2
X so that the coefficients on the standard-

ized scale are not too large. We also set v to be an arbitrary large value and select α and

ν so that an uninformative prior for σ2 is obtained. The step size parameters and number

of particles are chosen mostly arbitrarily. The αtŠs are selected with two considerations.

First, the αtŠs should be sufficiently numerous and close to each other so that draws in

each step provide decent approximations to the target distribution in the next step. Sec-

ond, the αtŠs should not be so numerous that computing time is prohibitive. We determine

that using only ten intermediate distributions is sufficient for an initial exploration of the

performance of the method while remaining computationally feasible. Tables 4.1Ű4.3 show

the performance metrics of interest. The computing time for this study was about Ąve hours.

The important predictors, x1 and x2, are selected with high probability, whereas x3 is

selected with low probability. The estimated false and negative selection rates are also low (at

most 0.05). The estimated coverage probabilities of the credible intervals are approximately

13



Table 4.1: Estimated marginal selection probabilities of candidate predictors in Ąxed-effects
benchmark case.

Candidate predictor Estimated marginal
selection probability

Standard error

x1 0.962 0.009

x2 0.938 0.011

x3 0.072 0.012

Table 4.2: Estimated false and negative selection rates for the Ąxed-effects benchmark case.

Selection error metric Estimated mean Estimated standard deviation

False selection rate 0.036 0.129

Negative selection rate 0.050 0.150

Table 4.3: Estimated coverage probabilities of 95% credible intervals of model coefficients
for Ąxed-effects benchmark case.

Model coefficient Estimated coverage probability Standard error

β1 0.970 0.008

β2 0.944 0.010

β3 1.000 0.000

equal to the nominal level of 95% except in the case of β3. These statistics suggest that our

implementation of annealed SMC is correct and is effective at selecting important predictors

and estimating the coefficients of important predictors in a simple context.

4.2 Factors that affect the performance of annealed SMC in
the Ąxed-effects case

To assess the selection and estimation performance of annealed SMC under different variants

of the Ąxed-effects case, we consider the following model. DeĄne

xi =











xi1

...

xi6











∼ MVN(06,Σ),
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where 06 is the zero vector in R
6 and

Σ = σ2
X















1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1















∈ R
6×6.

Let

Yi = β0 + xi
Tβ + εi,

where βT =
(

β1 · · · β6



, εi ∼ N(0, σ2), i = 1, ..., n, and the ϵiŠs are independent. Here,

we incorporate six candidate predictors to test the method in a more realistic case (i.e., a

case where variable selection might realistically be of interest) while avoiding a prohibitive

computational demand.

We use a full factorial experiment to investigate the effect of various factors on the

performance of the method. The factors and their levels are as follows:

• Sample size (SS): low (n = 500) and high (n = 1000)

• Signal-to-noise ratio (SNR): low (SNR = 0.02) and high (SNR = 2), where

SNR ≡ σ2
X∥β∥2

2

σ2

• Proportion of important variables (Prop): few (βT = (−10, 10, 0, 0, 0, 0)) and many

(βT = (−10, 10, 10,−10, 0, 0))

• Pairwise correlation of predictors (Cor): low (ρ = 0) and high (ρ = 0.5).

The signal-to-noise ratio is important to investigate because preliminary simulations

suggest that the relative sizes of β and σ2 inĆuence the performance of the algorithm. The

factor levels are chosen to be similar to section 4.1; recall that in the benchmark case,

n = 1000 and SNR = 0.133. A smaller sample size is chosen for the low level of SS to reduce

the computational burden. On the other hand, we are not limited by computation time

when exploring the effect of SNR because changing SNR changes only the variance of the

responses while keeping the number of intermediate distributions, the number of particles,

and the dimensions of the dataset the same. Therefore, we choose two well-separated levels

to make the effect of SNR clearer. The levels of Prop are chosen so that situations where

most variables are important and where most variables are unimportant are simulated. The

levels of Cor are chosen to simulate uncorrelated predictors and moderately correlated pre-

dictors, as the algorithm is almost certain to have poorer performance when predictors are

highly correlated. The parameters β0 and σ2
X are set to be 2 and 0.01, respectively, for all
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datasets. The parameters σ2
X and β are chosen to be similar to those in section 4.1.

For each run (combination of factor levels), 200 datasets (replicates) are generated, and

the annealed SMC algorithm is applied using the same priors and tuning parameters as in

section 4.1. The same performance measures are recorded for each replicate as well: cov-

erage of the 95% credible interval (yes/no), marginal posterior inclusion probabilities of

each candidate predictor, and the estimated false and negative selection rates. As before, a

predictor is considered selected if its marginal posterior inclusion probability is at least 0.5.

The time needed to complete this simulation study was about 16 hours.

To determine factors that impact the estimation performance of the annealed SMC

algorithm, we deĄne two response variables of interest. For the i-th dataset, let Y
(1)

i be the

binary indicator for the coverage of the 95% credible interval for a chosen model coefficient

and Y
(2)

i be the estimated bias of the posterior mean of the model coefficient. For the i-th

dataset and the k-th response, we also deĄne the linear predictor

η
(k)
i = α

(k)
0 + (1 − 2I(SSi = low))α

(k)
1

+ (1 − 2I(SNRi = low))α
(k)
2

+ (1 − 2I(Propi = low))α
(k)
3

+ (1 − 2I(Cori = low))α
(k)
4

+ (1 − 2I(SSi = low)I(SNRi = low))α
(k)
5

+ (1 − 2I(SSi = low)I(Propi = low))α
(k)
6

+ (1 − 2I(SSi = low)I(Cori = low))α
(k)
7

+ (1 − 2I(SNRi = low)I(Propi = low))α
(k)
8

+ (1 − 2I(SNRi = low)I(Cori = low))α
(k)
9

+ (1 − 2I(Propi = low)I(Cori = low))α
(k)
10 .

We model our Ąrst response, Y
(1)

i , using a binary generalized linear model (GLM) with

sum contrasts for the factors:

Y
(1)

i ∼ Bern(p
(1)
i ),

where

logit(p
(1)
i ) = η

(1)
i

and the Y
(1)

i Šs are independent. In this model, p
(1)
i represents the probability that the 95%

credible interval for a particular model coefficient constructed using the ith dataset contains

the true value of the model coefficient. We then construct an analysis of deviance table

using type III changes of deviance. By looking at the magnitude of the change of deviance
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for each main and interaction effect, we can informally determine which factors have the

most impact on coverage probability. We analyze the coverage probabilities of 95% credible

intervals of β1 and β2 in this way. We perform a similar analysis for β3 and β4 but using

only observations generated at the high level of Prop (removing the effects involving Prop

from the linear predictor). The reason is that all credible intervals for β3 and β4 calculated

for datasets with low Prop contain zero, the true value of these coefficients when Prop is

low. Therefore, we canŠt estimate interaction effects involving Prop. We do not analyze the

coverage probabilities of the credible intervals for β5 and β6 because they all contain zero,

their true values.

Our analysis suggests that, for important variables, SNR has by far the most impact on

the coverage probability of credible intervals for their coefficients; see tables A.1 and A.2.

Figure 4.1 shows the effect of the interaction between SNR and SS, the (distant) second-most

important factor, on the coverage probability of the 95% credible interval for β1. This inter-

action plot and the others that follow are constructed using the emmeans::emmip function

[11], which estimates marginal mean responses at speciĄed levels of a subset of factors by

averaging the predicted response on the scale of the link function over all combinations

of levels of other factors and then back-transforming using the inverse link function. (The

plots for β2, β3, and β4 look similar and are thus omitted.) The coverage probability of the

credible intervals exceeds the nominal level of 95% when SNR is low, which indicates that

the intervals are valid but conservative in this setting. However, the coverage probability is

much lower than 95% when SNR is high.

We model our second response, the estimated bias of the posterior mean of a model

coefficient, using a linear regression model:

Y
(2)

i = η
(2)
i + εi,

where εi ∼ N(0, (σ′)2) and the εiŠs are independent. We use ANOVA tables with type III

errors as above to analyze the bias of the estimators of β1 and β2. We analyze β3 and β4

using only observations generated at the high level of Prop (removing the effects with Prop

from the model). The reason is that the estimated biases of the posterior means of β3 and

β4 are all very close to zero when Prop is low, while the importance of x3 and x4 changes

with Prop. Therefore, the analysis for β3 and β4 using all datasets would Ąnd that Prop has

a very strong impact on the bias of the posterior means, which is already explained by the

fact that x3 and x4 are unimportant when Prop is low and important when Prop is high.

This effect could mask insights about the effects of other factors on the bias of the posterior

means of these coefficients. We also omit the analyses for β5 and β6 because the biases of

the estimated posterior means for these coefficients are all very close to zero. The analyses
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Figure 4.1: Interaction plot showing the effects of SNR and SS on the coverage probability
of the 95% credible interval for β1.

suggest that SNR and Cor have the most impact on the bias of the posterior means of the

coefficients. Prop may have some effect, but the size of the impact of this factor differs for

β1 and β2, so evidence for its impact is less conclusive. Figure 4.2 shows the effects of SNR

and Cor on the bias of the posterior mean of β1. The plot for β4 is similar. The plots for β2

and β3 are also similar but are reĆected about the line y = 0, which may be explained by

the fact that the true values of β1 and β4 are set to be negative, while those of β2 and β3

are set to be positive. The plots then indicate that the posterior means are biased towards

zero, which is expected because the prior mean of β is set to be zero in the algorithm. In

general, higher SNR is associated with less bias (particularly when Cor is low), and higher

Cor is associated with more bias.

We now determine factors that impact the selection performance of the annealed SMC

algorithm. To this end, we deĄne the following three responses of interest. For the i-th

dataset, let Y
(3)

i be the binary selection indicator for a chosen candidate predictor, Fi be

the number of selected predictors that are not important, and Mi be the number of impor-

tant predictors that are not selected. Additionally, let Si be the number of predictors that

are selected, and let ti be the number of important predictors (so that ti = 2 when Prop is

low and ti = 4 when Prop is high).

We model the binary indicator for the selection of an individual predictor Y
(3)

i using a

GLM:

Y
(3)

i ∼ Bern(p
(3)
i ),
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Figure 4.2: Interaction plot showing the effects of SNR and Cor on the bias of the posterior
mean of β1 as an estimator for β1.

where

logit(p
(3)
i ) = η

(3)
i

and the Y
(3)

i Šs are independent. We use analysis of deviance tables as before. We stratify

analyses of x3 and x4 by Prop because the importance of x3 and x4 differs by Prop. The

analysis over all datasets for these predictors would Ąnd that Prop has an outsized impact

on the selection probabilities of x3 and x4, which is expected because x3 and x4 should have

high selection probabilities when Prop is high and low selection probabilities when Prop is

low. This effect could swamp the effects of other factors on the selection probability of these

predictors.

We Ąrst describe the results for x1 and x2, which are important in all datasets. SNR and

Cor have the most impact on the selection probabilities of x1 and x2. Figure 4.3 shows the

effects of SNR and Cor on the selection probability of x1. The corresponding plot for x2

is similar. Higher SNR is associated with higher selection probability for these predictors,

especially when Cor is low. Higher Cor is associated with lower selection probability for

these predictors, particularly when SNR is high.

Next, we describe the results for x3 and x4, which are unimportant when Prop is low and

important when Prop is high. The results suggest that SNR and Cor have the most impact

on the selection probabilities of x3 and x4 both when Prop is low and when Prop is high.

Figure 4.4 depicts the interaction plot showing the effects of these factors on the selection
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probability of x3 when Prop is low; the corresponding plot for x4 is similar. When Prop

is low, higher SNR is associated with lower selection probability of these predictors, with

the difference more pronounced when Cor is high. The interaction plots showing the effects

of SNR and Cor on the selection probabilities of x3 and x4 when Prop is high are similar

to the corresponding plot for x1. SpeciĄcally, when Prop is high, higher SNR is associated

with higher selection probabilities for x3 and x4 with the difference being more pronounced

when Cor is low, and higher Cor is associated with lower selection probabilities for these

predictors, more so when SNR is high.

Finally, we describe the results for x5 and x6, which are unimportant in all datasets. The

analysis suggests that SNR and Prop have the most impact on the selection probabilities of

x5 and x6. Figure 4.5 shows the effects of SNR and Prop on the selection probability of x5;

the corresponding plot for x6 is similar. We note that due to the fact that the coefficients

are of the same size for both levels of Prop and to the deĄnition of SNR, the true value

of σ2 is larger when Prop is higher (for a Ąxed level of SNR). Therefore, the effect of Prop

is confounded with the effect of a larger value of σ2. Generally, higher SNR is associated

with lower selection probabilities of these predictors, where the effect is more pronounced

when Prop is high. Higher Prop is associated with higher selection probabilities of these

predictors, especially when SNR is low.

Figure 4.3: Interaction plot showing the effects of SNR and Cor on the selection probability
of x1.
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Figure 4.4: Interaction plot showing the effects of SNR and Cor on the selection probability
of x3 when Prop is low.

Figure 4.5: Interaction plot showing the effects of SNR and Prop on the selection probability
of x5.

We model the number of selected predictors that are not important, Fi, conditional on

the total number of selected predictors, Si, using a quasi-binomial regression approach with

E[Fi ♣Si] = Sip
(4)
i
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and

Var(Fi ♣Si) = ϕSip
(4)
i (1 − p

(4)
i ),

where

logit(p
(4)
i ) = η

(4)
i

and the FiŠs are independent. In this model, p
(4)
i represents the false selection rate of the

annealed SMC algorithm when applied to the ith dataset. A quasi-binomial regression model

is used because a binomial GLM is inappropriate: the outcomes associated with different

predictors (important/unimportant) conditional on selection are not independent and do

not have a common binary distribution. Note that the false selection rate will tend to be

lower when a greater percentage of variables are important because the chance of selecting

an unimportant variable is inherently lower. Therefore, this analysis is stratiĄed by Prop

with the effects including Prop removed from the linear predictor. Analysis of deviance

tables are used in a similar manner as before; SNR and Cor have the most impact on false

selection rate. Figures 4.6 and 4.7 show the effects of these factors on the logit of the false

selection rate when Prop is low and high, respectively. Higher SNR is associated with lower

false selection rate, with the difference being more pronounced when Cor is low, and higher

Cor is associated with higher false selection rate, especially when SNR is high.

Figure 4.6: Interaction plot showing the effects of SNR and Cor on the logit false selection
rate when Prop is low.

We similarly model the number of important predictors that are not selected, Mi, using

a quasi-binomial regression approach:

EMi = tip
(5)
i
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Figure 4.7: Interaction plot showing the effects of SNR and Cor on the logit false selection
rate when Prop is high.

and

V ar(Mi) = ϕ′tip
(5)
i (1 − p

(5)
i ),

where

logit(p
(5)
i ) = η

(5)
i

and the M ′
is are independent. In this model, p

(5)
i represents the negative selection rate of

the annealed SMC algorithm when applied to the ith dataset. For the same reasons as given

in the context of the false selection rate, a quasi-binomial regression approach is used, but

this time incorporating Prop in the model. The analysis of deviance table shows that SNR

and Cor have the most impact on negative selection rate. Figure 4.8 shows the effects of

SNR and Cor on the logit of the negative selection rate. Higher SNR is associated with lower

negative selection rate, with the effect more pronounced when Cor is low. Higher Cor is

associated with higher negative selection rate, with the effect more pronounced when SNR

is high.

In summary, under our experimental conditions, higher SNR is associated with better

point estimation performance but worse interval estimation performance, while higher Cor is

associated with worse point and interval estimation performance. In particular, the posterior

means of the model coefficients have larger biases when SNR is low and Cor is high, while the

credible intervals are invalid when SNR is high. Additionally, higher SNR is associated with

improved individual and joint selection performance (i.e., higher probabilities of selecting

important predictors, lower probabilities of selecting unimportant predictors, lower false

selection rate, and lower negative selection rate), while higher Cor is associated with worse
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Figure 4.8: Interaction plot showing the effects of SNR and Cor on the logit negative selection
rate.

individual and joint selection performance. Although higher Prop is associated with higher

selection probabilities of x5 and x6, this effect is confounded with the effect of σ2, so the

direct effect of Prop is unclear. Overall, the annealed SMC sampling algorithm has good

performance when SNR is high and Cor is low.

4.3 Mixed-effects case

We originally planned to conduct a comprehensive simulation study with a design similar

to that used in section 4.2 in the linear mixed-effects model setting, but preliminary studies

showed that the annealed SMC method struggles, in general, to have good selection and

estimation performance in this context, which suggests that such a study would not be in-

formative. Instead, we consider only the setting described in section 4.1, modiĄed to include

a random intercept. The purpose is simply to demonstrate the extent of the deterioration

of the methodŠs performance when it is applied in the mixed-effects context (relative to the

benchmark established in the Ąxed-effects context).

More speciĄcally, we generate the responses from the model

Yij = β0 + β1xi1 + β2xi2 + β3xi3 + bi + εij ,

j = 1, ..., 4, i = 1, ..., n, where εij ∼ N(0, σ2) and bi ∼ N(0, σ2
b ) with σ2 = σ2

b = 5 and

n = 1000. The εij Šs and biŠs are generated independently. A smaller σ2 compared to that

used in section 4.1 is chosen to keep the signal-to-noise ratio the same. The annealed SMC
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algorithm is applied as in section 4.1 but with αb = 200, νb = 2.1 and σ2
4 = 0.25. We

repeated the procedure only 100 times due to time constraints. The computation time was

3.5 hours. In contrast, the time taken to conduct the analogous simulation study for Ąxed-

effects models was about 70 minutes.

Table 4.4: Estimated marginal selection probabilities of candidate predictors in the mixed-
effects case.

Candidate predictor Estimated marginal
selection probability

Standard error

x1 0.830 0.038

x2 0.810 0.039

x3 0.230 0.042

Table 4.5: Estimated false and negative selection rates for the mixed-effects case.

Selection error metric Estimate Estimated standard deviation

False selection rate 0.121 0.227

Negative selection rate 0.180 0.261

Table 4.6: Estimated coverage probabilities of 95% credible intervals of model coefficients
for the mixed-effects case.

Model coefficient Estimated coverage probability Standard error

β1 0.840 0.037

β2 0.800 0.040

β3 1.000 0.000

The estimated marginal selection probabilities, coverage probabilities, and false and

negative selection rates are lower than those in section 4.1, indicating that the annealed SMC

algorithm with similar settings to section 4.1 has deteriorated performance when applied

to a linear mixed-effects model. Although the estimated marginal selection probabilities,

false selection rate, and negative select rate might be acceptable in some applications,

credible intervals for the effects of the important predictors are not even close to valid. In

other words, as a parameter estimation method, annealed SMC is unreliable even in this

very simple longitudinal setting. Exploring its performance in more complex longitudinal

settings therefore seemed unnecessary, and we abandoned our original goal of conducting a

comprehensive exploration in this context.
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4.4 Effect of the number of particles

Although the annealed SMC algorithm performs very well in our simple benchmark setting

(section 4.1), its performance is poorer when there are more candidate predictors (sec-

tion 4.2) and when there is a random intercept (section 4.3). However, the algorithm may

require more particles in these more complex settings to achieve excellent performance.

Hence a small, additional simulation study is conducted where 200 datasets are generated

according to the model described in section 4.2 for high levels of SS and SNR and low levels

of Prop and Cor (the combination of levels of the factors that led to the best selection and

estimation performance). The annealed SMC algorithm is applied to the datasets with the

same settings as in sections 4.1 and 4.2, but with 6000 particles instead. The computing

time was about Ąve hours for 200 datasets Ű the same amount of time required to analyze

500 datasets using only 1000 particles.

Tables 4.7Ű4.9 show the resulting summary statistics of the variable selection and pa-

rameter estimation measures. For one replicate, no variables are selected, in which case

the estimated false selection rate is undeĄned. We omit this replicate for the purpose of

estimating the false selection rate.

The estimated selection probabilities for the important predictors, x1 and x2, and the

estimated negative selection rate improved compared to those reported in section 4.2. Most

importantly, the coverage probabilities of the credible intervals for the important predictors

are much closer to the nominal 95% level. On the other hand, the selection performance for

the unimportant predictors is worse, as reĆected by the higher selection probabilities of the

unimportant predictors, x3, x4, x5, and x6, and the higher estimated false selection rate;

the reason for these results are unclear. This Ąnding shows that the coverage probability of

credible intervals produced by the annealed SMC method may be improved via tuning. We

note that if 6000 particles were to be used in the mixed-effects case, the computation time

would increase immensely because (1) the random intercepts need to be sampled as part of

the algorithm, therefore increasing the time required to propagate a particle, and (2) the

time complexity of the algorithm scales linearly with the number of particles.
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Table 4.7: Estimated marginal selection probabilities of candidate predictors using 6000 and
1000 particles.

Estimated marginal selection probability
(Standard error)

Candidate predictor 6000 particles 1000 particles

x1 0.910 (0.020) 0.860 (0.025)

x2 0.945 (0.016) 0.855 (0.025)

x3 0.170 (0.027) 0.115 (0.023)

x4 0.140 (0.025) 0.085 (0.020)

x5 0.190 (0.028) 0.160 (0.026)

x6 0.155 (0.026) 0.145 (0.025)

Table 4.8: Estimated false and negative selection rates using 6000 and 1000 particles.

Estimated mean (Estimated SD)

Selection error metric 6000 particles 1000 particles

False selection rate 0.215 (0.206) 0.186 (0.227)

Negative selection rate 0.073 (0.190) 0.1425 (0.242)

Table 4.9: Estimated coverage probabilities of 95% credible intervals of model coefficients
using 6000 and 1000 particles.

Estimated coverage probability (Standard error)

Model coefficient 6000 particles 1000 particles

β1 0.910 (0.020) 0.900 (0.021)

β2 0.960 (0.014) 0.895 (0.022)

β3 1.000 (0.000) 1.000 (0.000)

β3 1.000 (0.000) 1.000 (0.000)

β3 1.000 (0.000) 1.000 (0.000)

β3 1.000 (0.000) 1.000 (0.000)
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Chapter 5

Discussion

The benchmark case indicates that annealed SMC can have satisfactory selection and es-

timation performance in simple cases. However, its performance deteriorates when more

candidate predictors are added and a random intercept is introduced, as evidenced by the

lower selection probabilities for important predictors, the higher selection probabilities for

unimportant predictors, and the lower coverage probabilities of the 95% credible intervals

for the model coefficients.

In practical applications, the number of candidate predictors will likely far exceed six

(the maximum number we considered in our simulation study)Ůfor example, the CAYACS

data may have at least 30 candidate predictors. Although the number of candidate predic-

tors in our simulation studies does not accurately reĆect the size of the motivating problem,

our work was constrained by available computing time. Moreover, the nature of this project

is primarily exploratory with respect to the performance of the annealed SMC algorithm

and the factors affecting it. Future work should include comprehensive simulation studies

similar to those done for this project but with a larger number of candidate predictors,

larger sample sizes, and data generated using mixed effects models (so that the generated

datasets are more similar to the CAYACS data). In addition, the number of intermediate

distributions and the number of particles should be considered as factors in the studies.

The main challenge of such work is that signiĄcantly more computational resources will be

required.

In the meantime, we have several ideas about how the performance of annealed SMC

sampling could be improved for larger, more complicated problems. In our simulation stud-

ies, the algorithm is tuned minimally; it is not tuned for optimal performance for each

setting due to time constraints. For example, it is common to use hundreds or thousands of

values αt, chosen non-linearly or adaptively, for more complicated models [18], whereas we

used only ten evenly spaced values for our simulation studies. Furthermore, suppose that

we wish to estimate the expectation of φ(ω), ψ = E[φ(ω)] where ω ∼ πT and φ is a function
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of interest, using P particles ωT
1 , ..., ω

T
P produced by the annealed SMC algorithm, with the

estimator ψ̂ =
∑P

i=1W
i
Tφ(ωT

i ). Then one can show that

1√
N

(ψ̂ − ψ) →d N(0, (σ∗)2)

for some asymptotic variance (σ∗)2 in the limit of the number of particles [14]. By choos-

ing ϕA(x) = I(x ∈ A) for (measurable) subsets A of the sample space, this result may

be interpreted as demonstrating the pointwise convergence of the distribution of weighted

observations to the target distribution as the number of particles increases. Therefore, using

more particles may improve performance up to a certain point, after which we would expect

performance gains to be minimal. The simulation study of the six candidate predictor case

using 6000 particles described in section 4.4 led to estimated coverage probabilities of the

credible intervals that are considerably closer to the nominal 95% level, suggesting that

the performance of the method may be improved via tuning. Note that despite the parallel

structure of the annealed SMC algorithm, its time complexity is linear in the number of par-

ticles. For example, the computation time would increase six-fold for the simulation studies

described in sections 4.1Ű4.3 had 6000 particles been used. Again, we limit the number of

particles used in this project due to the sheer number of simulated datasets analyzed.

Another potential avenue for improvement is the choice of the πt-invariant forward ker-

nel Kt. The particular kernel described in section 3.2.2 has step-size parameters that are

subject to tuning. Furthermore, the kernels may be constructed using a different formulation

entirely (the kernels in section 3.2.2 are essentially RJMCMC kernels, which may perform

poorly when between-model moves are not carefully constructed [18]). While the perfor-

mance of annealed SMC is robust to the choice of forward kernels, choosing well-mixing

forward kernels will optimize the performance of the method [18].

The choice of prior distributions also impacts the performance of the annealed SMC

algorithm. Selecting uninformative priors for the intercept and variance parameters is fairly

uncontroversial. However, selecting τ , the prior variance of β, is more delicate. For this

project, τ is set to be 1 following recommendations in the literature [8]. This prior distribu-

tion may be too informative and may lead to poor estimation performance when the true

model coefficients are large on the scale of the standardized predictors. However, setting τ

to be large also presents some issues. In particular, BartlettŠs paradox refers to the phe-

nomenon when setting τ to be large causes the posterior probability of the empty model

to dominate the posterior distribution on the model space [12]. An alternative is to impose

a hyperprior on τ [3]. Preliminary testing of this method shows that this approach may

have good selection performance while maintaining good estimation performance, but the

prior on τ makes interpreting the prior distribution of the model coefficients challenging.
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Therefore, setting τ remains at the discretion of the analyst.

The results of the experiment we described in section 4.2 are mostly as expected. Specif-

ically, the selection and estimation performances of annealed SMC generally improve with

larger SNR, and they generally worsen when the predictors are correlated. These associations

are demonstrated by the predictor selection probabilities, the false and negative selection

rates, and the bias of the estimated posterior mean across levels of these factors. A notable

exception is the coverage probabilities of the credible intervals, which drop below the nom-

inal level when SNR is high. We note that these results should be interpreted with some

caution. As demonstrated previously, the estimation performance of the method may be

improved via tuning, so the unexpected association between SNR and coverage probability

may occur because the method is not optimally tuned when SNR is high.

Also, the analysis Ąnds that Prop has a strong impact on some selection and estimation

performance metrics. We note that σ2 is larger for models with more important predictors

at the same SNR due to how SNR is deĄned and how the true coefficients are set. There-

fore, the apparent effect of the proportion of important predictors might, in fact, be due

to the effect of a larger σ2. For this project, we decided to set levels of SNR instead of σ2

because preliminary testing showed that the relative sizes of the coefficients and σ2 impact

the performance of the algorithm, and SNR is a useful summary of the relative sizes of these

parameters. Further studies that examine the effects of particular values of σ2 and the true

coefficients would advance understanding of this observation.

Since SNR has such a pronounced impact on the performance of annealed SMC, in prac-

tice, determining the approximate value of SNR (by Ątting the full model) may be useful

before attempting variable selection. In particular, knowledge of SNR will provide informa-

tion about the likely performance of the method. Further study of variable selection and

estimation methods that work well regardless of the magnitude of SNR are also of interest.

The relative impact of the factors may depend on the levels at which the factors are set,

which may result in unfair comparisons of the impact of different factors. For example, the

large sample size level is merely double that of the small sample size level, while the large

SNR level is 100 times larger than the small SNR level. A future simulation study may choose

more levels to study the impacts of these factors in more depth.

We remark here that in the simulation studies, the computed credible intervals for the

coefficients of selected predictors are rather wide. For example, for the datasets generated

using the settings described in section 4.4, we Ąt the model containing only the important

predictors using a Bayesian approach, with similar priors for the coefficients as described in
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section 4.2 and a half-Cauchy prior for the variance, via the rstanarm::stan_glm function

[7]. The resulting credible intervals are more than 30 times shorter than those computed

using annealed SMC sampling applied to Bayesian model averaging. Hence we Ąnd that the

credible intervals computed by annealed SMC in our simulations are useful in determining

the direction of the effect of the predictors, but are not as useful in determining the size of

the effect. The relatively larger width of the credible intervals is expected because the pos-

terior distributions of coefficients are averaged across different models, while the posterior

distributions of coefficients given each model are concentrated around different peaks. But

the degree of discrepancy in widths is perhaps surprising.

Annealed SMC sampling targets the posterior distribution of models and parameters.

In other words, annealed SMC sampling can perform no better than the direct (if practi-

cally infeasible) method of explicitly computing the posterior model probabilities and the

averaged posterior distributions of the model coefficients, selecting predictors with marginal

inclusion probability exceeding some threshold, and then computing 95% credible intervals

for the model coefficients. However, not all variable selection methods solely target the

posterior distribution of models and parameters. For example, the split-and-merge method

does not directly use the posterior model probabilities to select predictors; its performance

may exceed that of methods that explicitly compute posterior model probabilities. On the

other hand, without posterior model probabilities, credible intervals for the model coeffi-

cients cannot be constructed using the original dataset; new data are required to Ąt the

model that includes only the selected predictors. Therefore, a future research direction of

interest would be extensions of methods such as split-and-merge that provide both good

selection performance and valid interval estimates of the model coefficients.

We recommend that this method be used to analyze real data when the signal-to-noise

ratio is high and the correlation of predictors is low. The simulation studies in this project

suggest that the method can reliably select important predictors and produce valid (if not

very informative) credible intervals for model coefficients under these conditions. (Under

other conditions, the performance of the method may be poor.) The signal-to-noise ratio

may be estimated by Ątting the model with all candidate predictors to the data. The pairwise

correlation of predictors may be estimated by calculating the empirical variance-covariance

matrix of the candidate predictors.

When analyzing a single dataset, we encourage practitioners to use much larger numbers

of intermediate distributions and particles than we considered in our work. To determine

reasonable choices for these numbers, a simulation study could be done akin to that in

section 4.1. First, a preliminary analysis of the real dataset should be done using annealed

SMC sampling with arbitrary tuning parameters to obtain a preliminary set of selected

predictors. Then, the model containing only the preliminary selected predictors should be
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Ąt to the real dataset, and simulated datasets should be generated using this Ątted model.

Finally, the method should be applied to the simulated datasets to examine its selection and

estimation performance. The factors of interest in this study would be the number (and/or

spacing) of intermediate distributions and the number of particles. While the performance

of the method generally improves with more intermediate distributions and particles, it

should stabilize when sufficiently many intermediate distributions and particles are used.

The practitioner should Ąnd the smallest number of intermediate distributions and the

smallest number of particles such that the performance of the method does not improve

signiĄcantly beyond them and use this combination for the Ąnal analysis of the real dataset.
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Appendix A

Analysis of deviance tables

Table A.1: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β1.

Effect Change in deviance d.f. p-value

SS 6.29 1.00 0.01

SNR 167.20 1.00 0.00

Prop 3.13 1.00 0.08

Cor 9.76 1.00 0.00

SS:SNR 6.84 1.00 0.01

SS:Prop 3.71 1.00 0.05

SS:Cor 1.01 1.00 0.32

SNR:Prop 0.23 1.00 0.63

SNR:Cor 0.01 1.00 0.91

Prop:Cor 0.47 1.00 0.50
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Table A.2: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β2.

Effect Change in deviance d.f. p-value

SS 12.52 1.00 0.00

SNR 176.24 1.00 0.00

Prop 2.19 1.00 0.14

Cor 1.36 1.00 0.24

SS:SNR 11.46 1.00 0.00

SS:Prop 4.74 1.00 0.03

SS:Cor 0.00 1.00 0.99

SNR:Prop 0.80 1.00 0.37

SNR:Cor 1.83 1.00 0.18

Prop:Cor 0.31 1.00 0.58

Table A.3: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β3 when Prop is high.

Effect Change in deviance d.f. p-value

SS 6.50 1.00 0.01

SNR 55.33 1.00 0.00

Cor 1.58 1.00 0.21

SS:SNR 0.52 1.00 0.47

SS:Cor 0.78 1.00 0.38

SNR:Cor 1.39 1.00 0.24

Table A.4: Analysis of deviance table for the estimated coverage probability of 95% credible
intervals for β4 when Prop is high.

Effect Change in deviance d.f. p-value

SS 11.63 1.00 0.00

SNR 102.71 1.00 0.00

Cor 0.14 1.00 0.71

SS:SNR 13.79 1.00 0.00

SS:Cor 1.02 1.00 0.31

SNR:Cor 2.55 1.00 0.11
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Table A.5: Analysis of variance table for the estimated bias of the estimated posterior mean
of β1.

Effect Sum of squares d.f. F p-value

SS 0.13 1.00 0.61 0.43

SNR 2.18 1.00 10.38 0.00

Prop 2.33 1.00 11.08 0.00

Cor 11.77 1.00 55.90 0.00

SS:SNR 0.60 1.00 2.84 0.09

SS:Prop 0.46 1.00 2.16 0.14

SS:Cor 0.00 1.00 0.00 1.00

SNR:Prop 0.48 1.00 2.30 0.13

SNR:Cor 0.40 1.00 1.90 0.17

Prop:Cor 0.11 1.00 0.53 0.46

Residual 671.29 3189.00

Table A.6: Analysis of variance table for the estimated bias of the estimated posterior mean
of β2.

Effect Sum of squares d.f. F p-value

SS 1.03 1.00 4.73 0.03

SNR 2.85 1.00 13.03 0.00

Prop 0.32 1.00 1.47 0.22

Cor 7.49 1.00 34.32 0.00

SS:SNR 1.05 1.00 4.81 0.03

SS:Prop 0.92 1.00 4.22 0.04

SS:Cor 0.11 1.00 0.52 0.47

SNR:Prop 0.64 1.00 2.91 0.09

SNR:Cor 1.11 1.00 5.08 0.02

Prop:Cor 0.27 1.00 1.25 0.26

Residual 696.06 3189.00
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Table A.7: Analysis of variance table for the estimated bias of the estimated posterior mean
of β3 when Prop is high.

Effect Sum of squares d.f. F p-value

SS 0.00 1.00 0.00 1.00

SNR 4.46 1.00 20.16 0.00

Cor 6.36 1.00 28.74 0.00

SS:SNR 0.72 1.00 3.26 0.07

SS:Cor 0.08 1.00 0.36 0.55

SNR:Cor 0.63 1.00 2.85 0.09

Residual 352.42 1593.00

Table A.8: Analysis of variance table for the estimated bias of the estimated posterior mean
of β4 when Prop is high.

Effect Sum of squares d.f. F p-value

SS 0.18 1.00 0.78 0.38

SNR 2.43 1.00 10.51 0.00

Cor 6.00 1.00 25.94 0.00

SS:SNR 0.01 1.00 0.05 0.82

SS:Cor 0.00 1.00 0.00 0.97

SNR:Cor 0.04 1.00 0.19 0.66

Residual 368.65 1593.00
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Table A.9: Analysis of deviance table for the estimated selection probability of x1.

Effect Change in deviance d.f. p-value

SS 1.63 1.00 0.20

SNR 24.16 1.00 0.00

Prop 9.19 1.00 0.00

Cor 10.50 1.00 0.00

SS:SNR 3.37 1.00 0.07

SS:Prop 0.67 1.00 0.41

SS:Cor 0.02 1.00 0.88

SNR:Prop 0.69 1.00 0.41

SNR:Cor 10.93 1.00 0.00

Prop:Cor 0.36 1.00 0.55

Table A.10: Analysis of deviance table for the estimated selection probability of x2.

Effect Change in deviance d.f. p-value

SS 3.19 1.00 0.07

SNR 28.89 1.00 0.00

Prop 4.57 1.00 0.03

Cor 11.95 1.00 0.00

SS:SNR 7.67 1.00 0.01

SS:Prop 9.75 1.00 0.00

SS:Cor 0.43 1.00 0.51

SNR:Prop 5.14 1.00 0.02

SNR:Cor 2.65 1.00 0.10

Prop:Cor 0.15 1.00 0.70
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Table A.11: Analysis of deviance table for the estimated selection probability of x3 when
Prop is low.

Effect Change in deviance d.f. p-value

SS 3.94 1.00 0.05

SNR 39.87 1.00 0.00

Cor 10.33 1.00 0.00

SS:SNR 2.03 1.00 0.15

SS:Cor 1.23 1.00 0.27

SNR:Cor 0.15 1.00 0.70

Table A.12: Analysis of deviance table for the estimated selection probability of x3 when
Prop is high.

Effect Change in deviance d.f. p-value

SS 0.38 1.00 0.54

SNR 47.02 1.00 0.00

Cor 18.24 1.00 0.00

SS:SNR 6.68 1.00 0.01

SS:Cor 0.84 1.00 0.36

SNR:Cor 4.41 1.00 0.04

Table A.13: Analysis of deviance table for the estimated selection probability of x4 when
Prop is low.

Change in deviance d.f. p-value

SS 1.03 1.00 0.31

SNR 89.69 1.00 0.00

Cor 10.55 1.00 0.00

SS:SNR 0.94 1.00 0.33

SS:Cor 1.75 1.00 0.19

SNR:Cor 2.62 1.00 0.11
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Table A.14: Analysis of deviance table for the estimated selection probability of x4 when
Prop is high.

Effect Change in deviance d.f. p-value

SS 1.27 1.00 0.26

SNR 17.97 1.00 0.00

Cor 17.77 1.00 0.00

SS:SNR 0.07 1.00 0.79

SS:Cor 0.85 1.00 0.36

SNR:Cor 3.88 1.00 0.05

Table A.15: Analysis of deviance table for the estimated selection probability of x5.

Effect Change in deviance d.f. p-value

SS 2.89 1.00 0.09

SNR 142.50 1.00 0.00

Prop 23.85 1.00 0.00

Cor 0.85 1.00 0.36

SS:SNR 2.33 1.00 0.13

SS:Prop 1.48 1.00 0.22

SS:Cor 0.00 1.00 0.98

SNR:Prop 4.71 1.00 0.03

SNR:Cor 1.94 1.00 0.16

Prop:Cor 0.78 1.00 0.38
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Table A.16: Analysis of deviance table for the estimated selection probability of x6.

Change in deviance d.f. p-value

SS 2.04 1.00 0.15

SNR 150.08 1.00 0.00

Prop 32.23 1.00 0.00

Cor 9.97 1.00 0.00

SS:SNR 1.61 1.00 0.20

SS:Prop 0.08 1.00 0.78

SS:Cor 0.15 1.00 0.70

SNR:Prop 0.53 1.00 0.47

SNR:Cor 0.00 1.00 0.97

Prop:Cor 0.00 1.00 0.96

Table A.17: Analysis of deviance table for the estimated false selection rate when Prop is
low.

Effect Change in deviance d.f. p-value

SS 12.38 1.00 0.00

SNR 195.13 1.00 0.00

Cor 25.98 1.00 0.00

SS:SNR 6.03 1.00 0.01

SS:Cor 0.05 1.00 0.82

SNR:Cor 2.53 1.00 0.11

Table A.18: Analysis of deviance table for the estimated false selection rate when Prop is
high.

Effect Change in deviance d.f. p-value

SS 1.11 1.00 0.29

SNR 276.74 1.00 0.00

Cor 11.28 1.00 0.00

SS:SNR 2.35 1.00 0.13

SS:Cor 0.18 1.00 0.68

SNR:Cor 3.75 1.00 0.05
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Table A.19: Analysis of deviance table for the estimated negative selection rate.

Effect Change in deviance d.f. p-value

SS 7.22 1.00 0.01

SNR 68.13 1.00 0.00

Prop 12.48 1.00 0.00

Cor 36.34 1.00 0.00

SS:SNR 12.67 1.00 0.00

SS:Prop 6.98 1.00 0.01

SS:Cor 0.22 1.00 0.64

SNR:Prop 7.27 1.00 0.01

SNR:Cor 18.23 1.00 0.00

Prop:Cor 1.31 1.00 0.25
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