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Abstract

We develop a self-supervised learning method that can predict the decision boundary
between safe and unsafe high-level waypoints for robot navigation given the first-person
view in the form of an RGB image, and the current speed of the robot, without knowledge
of the map of the environment. To provide the theoretical basis for such predictions, we
use Hamilton-Jacobi reachability analysis, a formal verification method, as the oracle for
labeling training datasets. Given the labeled data, our neural network learns the coefficients
of a decision boundary via a soft-margin Support Vector Machine loss function to classify
safe and unsafe system states. We experimentally show that our method is generalizable to
the real world and generates safety decision boundaries in unseen indoor environments. Our
method’s advantages are its explainability, robustness, data efficiency, and accurate safety
prediction. Finally, we demonstrate our method via real-world experiments.

Keywords: Self-supervised learning, Decision boundary, Robot navigation, Hamilton-Jacobi
reachability analysis, Soft-margin Support Vector Machine, Explainability
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Chapter 1

Introduction

Navigating robots through intricate and confined environments poses considerable challenges.
Robots can be classified into three main categories concerning navigation: fully autonomous,
semi-autonomous, and tele-operated. Despite advancements, fully autonomous vehicles have
not yet attained the required sophistication to navigate our complex world independently
while ensuring the safety of both the vehicle and humans [25], most notably in challenging
environments with clutter, poor illumination, and narrow paths [6]. Consequently, human
involvement remains indispensable for the operation of such vehicles. Semi-autonomous
robots have found applications in myriad scenarios, from search and rescue [12] to assistive
robots [33] and flight control [13]. Such robots allow humans and robots to cooperate to
achieve a desired goal within a shared autonomy framework. Alternatively, tele-operated
robots require one or more human operators to pilot them [9, 8]. This requires the operators
to react swiftly to audio-visual or haptic feedback and can be physically and mentally taxing,
especially in mission-critical scenarios, increasing the possibility of failure.

Visual navigation boasts advantages such as affordability, lightweight hardware, and
ubiquity. Within the research community focused on learning, robot navigation is typically
studied in the context of an unknown agent exploring an environment that is also deemed
unknown. End-to-end (E2E) learning approach a system is designed to avoid explicit map
estimation and acquire policies that directly correlate onboard sensor readings with control
commands. Such methodologies offer various advantages, enabling the learning of policies
without a prior understanding of the specific system or environment the robot will navigate
but they lack data efficiency, robustness, safety, and explainability. The hybrid approach
combines both trajectory planning and learning, our method belongs to this category.

The fundamental concept involves training convolutional neural networks (CNNs) using
high-level policies. These policies leverage current RGB image observations to generate a
sequence of intermediate states, referred to as "waypoints". A waypoint is a set of intermediate
state variables. It serves as a link between perception and control. Ultimately, these waypoints
guide the robot along a collision-free path to its desired destination in environments that
were previously unexplored. Waypoints define the path that a robotic system follows on
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a map, marking each step of its trajectory. Using waypoints offers better stability and
intuitiveness compared to traditional controls.

In this thesis, we propose a deep learning-based method to identify sets of safe and unsafe
waypoints, instead of just outputting where the robot should go next. Our system provides
the users with a safe set of waypoints to aid their decision-making process in achieving their
goals. This approach offers flexibility in determining the robot’s next destination. Our work
can act as a safety layer for any controller, waypoint-based navigation systems, or human
controllers. More specifically, we can envision our approach benefits in three scenarios:
enhancing mobile robot operation for novice robot operators in crowded environments
through co-navigation; facilitating teleoperation in remote environments with limited human
peripheral vision, where an interface aids in collision avoidance and provides guidance; and
filtering for more generalizable waypoint-based policies such as [20].

Our model is trained using data generated through optimal control and a support vector
machine (SVM) loss function. Our primary contributions are as follows:

1) A reachability-based framework for aiding navigation in unknown static environments
and, 2) An explainable algorithm for computing an explicit decision boundary in the robot‘s
state space to obtain a safe set of waypoints online based only on sensor measurements
without an a priori map as the robot navigates, learned through minimizing the soft-margin
support vector machine loss during training, this approach aims to improve interpretability
in classifying safe and unsafe waypoints, and 3) A hardware demonstration of our approach,
showcasing a learning-based safe decision boundary estimation by employing monocular
RGB images and current linear speed.
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Chapter 2

Background

Safely navigating robots using visual navigation in cluttered areas is complex. The map-based
approach involves metric maps and classical path planning. The modular approach uses
perception information to construct a geometric map, enabling the planning of collision-free
trajectories. Creating a detailed and accurate map in environments with challenging elements
like transparent objects, or with strong ambient light is difficult, even with a depth camera.

Numerous research endeavors have explored deep learning-based monocular vision-based
solutions to tackle autonomous robot navigation without using metric maps [20, 4, 18,
14, 17, 29]. The direct perception approach, as outlined by Chen et al. ([11]), involves
translating input images into key indicators, such as the robot’s angle relative to the route,
distance from lane markings, and proximity to surrounding robots. After direct perception,
end-to-end learning (E2E) approaches, exemplified by Rill et al. ([28]), directly map input
images to actuator actions.

Despite significant achievements in autonomous navigation through monocular vision,
these approaches suffer from data efficiency and robustness. The focus often lies on training
networks to learn steering angles, with the occasional inclusion of speed as an input, and
evaluations commonly take place in simulated environments, neglecting real-world driving
complexities. This raises concerns, especially for collision avoidance in everyday traffic
scenarios ([1, 26, 32]), making the application of learning-based approaches impractical
in such situations.

While some systems can identify critical situations using GPS/motion sensor data along
with a priori maps ([1]), an effective safety system should engage in real-time environmental
monitoring, issuing warnings or taking preemptive actions. Hence, a subset of research
leverages monocular vision for collision avoidance. Studies focusing on collision avoidance
through single-camera images often estimate time-to-collision (TTC) as a risk metric ([28]).
While previous studies focus on implementing collision avoidance policies through lower-level
control, our research examines learning higher-level actions (waypoints). Our approach
introduces a novel perspective, considering a Hamilton-Jacobi (HJ) reachability-based value
function that directly defines safety.
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While end-to-end deep learning-based approaches have achieved impressive results in
limited scenarios, they lack data efficiency and robustness in wide-ranging conditions. Similar
to our method, a hybrid of deep learning and optimal control/path planning ([30, 20, 27,
5, 16, 21, 24, 23, 4, 3]) also seek to address these challenges.
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Chapter 3

Problem Setup

3.1 Problem Setup

Our goal is to create a perception module that can predict decision boundaries that using
first-person view images. We aim to learn a holistic decision boundary for the entire area
rather than just labeling waypoints. The hardware configuration of our robot includes a
monocular RGB camera mounted at a fixed height, with a fixed pitch and forward-facing
orientation. The overview of our system is shown in Fig. 3.1. At each time step t, our learning
architecture takes in an RGB image It representing the first-person view of the robot, along
with the robot velocity vt as input, generates a decision boundary that separates safe and
unsafe waypoints in the robot’s ego frame. The robot state and decision boundary are in a
4-dimensional (4D) space (x(t), y(t), ϕ(t), v(t)) where (x(t), y(t)) is the robot position and
θ(t) is the robot orientation at time t. A projection of this decision boundary overlaid on
the first-person view of a robot is shown in the right photo of Fig. 3.1.

Figure 3.1: Overview of the system components
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3.1.1 Dynamics Modeling

We model our ground robot as a 4D extended Dubins car system with the following dynamics
that can approximately describe many systems that must travel in the direction of their
heading in a curvature-constrained motion, such as differential drive robots, autonomous
cars, fixed-wing drones, and aircraft.

ż = f(z, u, d) (3.1)

ẋ = v cos(ϕ) + dx

ẏ = v sin(ϕ) + dy

ϕ̇ = ω + dϕ

v̇ = a

(3.2)

v ∈ [0, v̄] is the linear velocity, a is the linear acceleration, and ω is the angular velocity.
z := (x, y, ϕ, v) is the system‘s state, and the system input (control) u is represented as
u := (a, ω) . Let d := (dx, dy, dϕ) be the disturbance that accounts for the error in the
system modeling. In addition, we impose constraints on our control inputs and disturbances
as follows:

a ∈ [−ā, ā], ω ∈ [−ω̄, ω̄],

d2
x + d2

y ≤ d̄2
xy, dϕ ∈ [−d̄ϕ, d̄ϕ]

(3.3)

3.1.2 Differential Flatness

Assume we are interested in moving between two states sinit and sfinal in time T for our
robot as an extended Dubins 4D car. Dynamics display a property called differential flatness
which simplifies real-time feasibility analysis in trajectory planning [19, 22, 31]. Based on
Eq. (3.6)-(3.16), one can follow to compute a trajectory s(·) given initial state sinit, final
state sfinal, and trajectory duration T .

In general form, we can write the solutions of the nonlinear flat system as functions of z
and their q derivatives which completely determine the whole state and the inputs without
the need to integrate the system. More formally, a system with state s ∈ Rn and inputs in
u ∈ Rm is differentially flat if one can find outputs z ∈ Rm of the form

z = α
(
s, u, u̇, . . . , u(p)

)
, (3.4)

such that
s = β

(
z, ż, . . . , z(q)

)
,

u = γ
(
z, ż, . . . , z(q)

)
.

(3.5)
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The coordinates z are called flat outputs.
For extended Dubins car model, we know θ = arctan

(
ẏ
ẋ

)
and v =

√
ẋ2 + ẏ2, thus:


x

y

θ

v

 =


x

y

arctan
(
ẏ
ẋ

)
√
ẋ2 + ẏ2

 (3.6)

From our dynamics, we have

ω = θ̇ = d

dt
arctan

(
ẏ

ẋ

)
= ÿẋ− ẍẏ
ẏ2 + ẋ2 (3.7)

and

a = v̇ = d

dt

√
ẋ2 + ẏ2 = 1

2v (2ÿẏ + 2ẍẋ) (3.8)

here flat output z is
z = (x, y) (3.9)

as a result q = 2 and we have (v is not expanded for readability):

[
ω

a

]
= γ(z, ż, z̈) =

 ÿẋ−ẍẏ
ẏ2+ẋ2

1
2v (2ÿẏ + 2ẍẋ)

 (3.10)

The boundary conditions of differentially flat systems are expressed as:

s(0) = β
(
z(0), ż(0), . . . , z(q)(0)

)
= sinit,

s(T ) = β
(
z(T ), ż(T ), . . . , z(q)(T )

)
= sfinal

(3.11)

they are specified entirely using the flat outputs. Thus, it is possible to perform trajectory
generation in the flat output space.

Trajectories can be represented in simple functional forms such as splines. The general
strategy is to assume a parametric form. Let

z(t) =
N∑
i=1

biψi(t)⇒ ż(t) =
N∑
i=1

biψ̇i(t)

...

z(q)(t) =
N∑
i=1

biψ
(q)
i (t)

(3.12)

where ψ(t) ∈ RN are basis functions.

7



Now from 3.12, we have:


ψ1(0) ψ2(0) · · · ψN (0)
ψ̇1(0) ψ̇2(0) · · · ψ̇N (0)

...
... . . . ...

ψ
(q)
1 (0) ψ2(0)(q) · · · ψ

(q)
N (0)

ψ1(T ) ψ2(T ) · · · ψN (T )
ψ̇1(T ) ψ̇2(T ) · · · ψ̇N (T )

...
... . . . ...

ψ
(q)
1 (T ) ψ

(q)
2 (T ) · · · ψ

(q)
N (T )




b1

b2
...
bN

 =



z1(0)
...

z
(q)
1 (0)
z1(T )
ż1(T )

...
z

(q)
1 (T )


(3.13)

In compact form:
Z = BΛ (3.14)

where
B = [b1, b2, ..., bN ]T (3.15)

To satisfy these boundary conditions, it is necessary that N ≥ 2(q + 1). In particular,
for N = 2(q + 1), the matrix is full-rank and one can directly compute B. As a result, we
choose basis functions as follows to have a polynomial equation of the fifth-degree (quintic)
spline trajectories:

ψ(t) =
[
t5, t4, t3, t2, t1, 1

]T
(3.16)

Given B, in each time step z(t) is specified and we can find x(t) and u(t) as described by
Eq. (3.6)-(3.9), so the states and controls over the trajectory can be computed. Abstracting
away this process into a function S, we write s(·) = S(sinit, sfinal, T ).

3.1.3 Hamilton-Jacobi Reachability Analysis

A natural question to ask is how to decide when the planning is safe and what learning
objective can be used so that safe learning of high-level planning is encouraged during
training. To answer those, we utilize a powerful theoretical tool used in the formal verification
of dynamic systems, Hamilton-Jacobi (HJ) reachability analysis.

Given the system dynamics and a target set T ⊆ R4, we compute a set of states where
collision is inevitable, called Backward Reachable Tube (BRT) which is defined as follows:

Ā = {z : ∃d(·) ∈ D, ∀u(·) ∈ U,∃s ∈ [t, 0], ζ(s; z, t, u(·), d(·)) ∈ T } (3.17)

where ζ(s; z, t, u(·), d(·)) is the system trajectory over time. Set of states where no matter
what the control function is there exists a disturbance function that leads the system to
collision. Typically, the target set can be represented by an implicit surface function V0(z)
as T = {z : V0(z) ≤ 0}. Then the BRT is the zero sublevel set of a value function V (z, t)
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defined as follows:

V (z, t) = max
u(·)∈U

min
d(·)∈D

min
s∈[t,0]

V0(ζ(s; z, t, u(·), d(·))) (3.18)

Given the system dynamics and target set T representing an obstacle map in the system’s
state space, computes BRTs and value functions V (z, t). As the viscosity solution to the
following HJ PDE ([10]):

min{DsV (z, s) +H(z, ∂V (z, s)
∂z

), V (z, 0)− V (z, s)} = 0

V (z, 0) = V0(z), s ∈ [t, 0]

H(z, ∂V (z, s)
∂z

) = min
d

max
u

∂V (z, s)
∂z

⊤
f(z, u, d)

(3.19)

where f(z, u, d) is the system dynamics. In addition, we also define Forward Reachable
Tubes (FRTs) as the set of dynamically feasible states the robot can arrive within time H
seconds starting at a state z0 under zero disturbance.

F(T, z0) = {z : ∃u(·), such that z(·) satisfies f(z, u, d), z(0) = z0; z(T ) = z} (3.20)
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Chapter 4

Method

4.1 Method

We employ a HJ Reachability-based framework, described in Section 4.1.2, to generate
data. To train our model, described in section 4.1.3, the inputs are RGB image and current
robot velocity, and outputs are decision boundary coefficients to classify safe and unsafe
waypoints.

For data generation, we begin by rendering first-person view images based on the current
state of the robot. Feasible waypoints are then identified, and trajectories are computed
accordingly. We have a method based on HJ value functions to evaluate these trajectories
and label the waypoints accordingly. We will delve into the specifics of each step in the
subsequent sections.

4.1.1 BRT and FRT Computation

Forward reachability methods are employed to project potential future states. The HJ
backward reachability analysis is utilized to determine the optimal safety value function and
its corresponding safety controller for the robot. Drawing inspiration from prior research
[20], the value function can be leveraged to assess the quality of waypoints and facilitate the
learning of a safety layer for the agent. We will be using reachability analysis to compute
both a backward reachable tube (BRT) and a forward reachable tube (FRT), given their
target set T , and the Hamiltonian H which captures the system dynamics as well as the
roles of the control and disturbance.

The BRT is computed backward in time over an interval [−T, 0]. By setting a sufficiently
large value for T, we can ensure the value function converges at the end. The initial condition
for Eq. 3.19 is initialized by the obstacle set O of a map in the environment as follow:

V BRT (z, t = 0) =

-1 if z ∈ O

1 if z /∈ O
(4.1)
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Figure 4.1: Overview of training data generation pipeline. Given a map and simulator, we
first capture an RGB image at the camera pose, which is determined by the robot’s position
and heading (pose). Then, using our precomputed FRT, we sample possible waypoints the
robot can arrive at the next H sections. For each waypoint, we can compute the trajectory
toward that waypoint. Any trajectories that pass by the precomputed BRT will be labeled
as unsafe and safe otherwise.

Computing the BRT requires access to the obstacle map. Also, since we only need one map
to generate the training data, BRT only needs to be computed once.

The FRT is computed over a time interval [0, H]. Since the speed of the system is not
included in the car’s ego coordinate frame, we have to compute FRT for different starting
speed. Due to the infinite number of speeds, pre-computing the FRT for each initial speed
is impractical. Instead we discretize the speed range into bins vi and set each of the bins as
the initial state. To identify dynamically-feasible waypoints, FRTi must be calculated for
initial speed offline, vi, considering a horizon H, 6 seconds in our case. The sub-zero level
set consists of reachable states.

Initial value function input to FRT computation is defined as follows:

V FRT (z, t = 0)

≤ 0 if z = (0, 0, 0, vi)

> 0 otherwise
(4.2)

A small size 4D grid where is negative at the state of robot otherwise is positive. Notably,
the dynamics remaining invariant under translation and rotation allow for a convenient
transformation of the value function from the robot starting at the origin to a robot starting
at any position and heading. More conveniently, we can assume the robot begins at the
coordinates (0, 0, 0, vi). Initially, the value function is negative only at (0, 0, 0, vi) when t =
0. Subsequently, we calculate the FRTs and map them to the original pose and heading of
the robot. The time horizon is set sufficiently long (10 seconds); we compute long enough
for the BRT to converge so that we get the infinite time horizon BRT, T = ∞. BRT is
computed for a whole map once and a portion of that is cropped and loaded based on the
current state of the robot.
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Both BRT and FRT are computed using the OptimizedDP toolbox [7]. The OptimizedDP
toolbox encompasses implementations of dynamic programming-based algorithms in optimal
control. Implemented on a multidimensional grid, computational complexities increase
exponentially as the dimensionality increases. The toolbox facilitates the creation of a
Cartesian grid, implemented as a Python object, through specifications such as the number
of grid nodes, upper and lower bounds for each dimension, and periodic dimension.

4.1.2 Data Generation

As shown in Fig. 4.1, we spawn a robot at a random state in simulation and collect training
data. We follow Alg. 1 to generate data, where we randomly choose the starting state and
sample sets of waypoints from the forward reachable tube (FRT) for the state (Line 2-4).
For each waypoint, the system’s dynamics, as outlined in Eq. (3.2) is used to compute
dynamically feasible trajectories as third-order spline using z(·) = S(zinit, zfinal, H). This
leads to a smooth, dynamically feasible, and computationally efficient trajectory to the
waypoint. We evaluate each of these trajectories on the value function representing the
BRT, by taking the minimum over time of its value function (Line 6-8).

Algorithm 1 Data Generation for Learning Vision-based Decision Boundary Estimation
Require: System dynamics: Eq. (3.2)
Require: FRT and value function representing BRT corresponding to given map
Require: t current time and H time horizon

1: for i = 1 to N do
2: Sample an initial state zi : (xi, yi, θi, vi)
3: Render current image Ii
4: Sample K waypoints using relative FRT Ŵi := (xri,k, yri,k, θri,k, vri,k){k=1:K}

5: Convert the relative waypoints Ŵi into absolute states
6: for ŵi,k ∈ Ŵi do
7: {z, u}t:t+H = S(zi, ŵk, H)

8: Vmin ← min
(
V (z(t)), . . . , V (z(t+H))

)
9: if Vmin > ϵ then

10: li,k ← 1
11: else
12: li,k ← −1
13: end if
14: D ← D ∪ {(Ii, vi,k, ŵi,k), li,k}
15: end for
16: end for

We consider the values over the trajectory instead of just the waypoint’s value because it
is safer to plan short-term with a lower time horizon (H) as we have a limited camera Field
of View (FoV) and do not have depth information. A positive minimum value signifies a safe
waypoint (lk = 1), indicating that the trajectory from the present state will avoid collisions.
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Conversely, a minimum value that drops below zero implies an unsafe waypoint (lk = −1),
suggesting that the trajectory might lead to collisions ((Line 9-12). We repeat the above
procedure for different initial states until sufficient data-label pairs are obtained for the
training dataset represented as D, where K is the number of waypoints per image/initial
state (Line 14). The entire data set is written as: {qi}i∈{1,...,M} and qi = (Ii, vi, {wi,k}, {li,k}),
where k ∈ {1, . . . ,K} for each i. Thus, each data point qi, qi, includes for each image i, some
corresponding speed, and a collection of K waypoints with their corresponding labels.

4.1.3 Training

As shown in Fig. 3.1, we use ResNet-50 as our CNN backbone for the perception module.
Our system is agnostic to the choice of the backbone network. We choose ResNet-50 because
of its reasonable size and faster training time. The 50-layer ResNet uses a bottleneck design
for the building block. A bottleneck residual block uses 1×1 convolutions, which reduces
the number of parameters and matrix multiplications to enable faster training of each layer.
The image features obtained at the last convolution layer are concatenated with the current
linear speed before passing them to the fully connected layers, which generates the weights
for degree 3 polynomial kernel ŷψ. The dot product of ŷψ and polynomial mapping of a
waypoint ϕ(wk) where ϕ is the polynomial kernel function. This gives the logit (log-odds)
scores of the waypoint being unsafe, which are used to calculate the SVM-based hinge loss
on a set of waypoints. Here k ∈ {1 . . .K} is the waypoint index. Applying sigmoid on the
logit scores gives us the probabilities in the range [0, 1], and by applying a threshold on the
probabilities, we can classify waypoints into safe and unsafe classes.

For every set of waypoints, the decision boundary calculated by SVM based on ground
truth labels (without considering the image itself ) is represented by ysvmi . The loss function
Eq. (4.3), combines three terms: hinge loss, which maximizes the margin between decision
boundary and waypoint classes and is less sensitive to outliers; cosine distance loss to
maximize the proximity between ŷψi

and ysvmi ; and the SVM weights regularization term
to prevent overfitting. Note that cosine distance loss is a number between 0 and 1, where
values closer to 0 indicate greater similarity. Once trained, the neural network can robustly
transfer to novel and unknown environments.

L = Lhinge + λ1Lreg + λ2Lcosine distance (4.3)

Where Lhinge = ∑K
k=1 max (0, 1− lkŷ⊤

ψϕ(wk)) , Lreg = 1
2(ŷψ)2, and Lcosine distance = (1 −

ŷψ · ysvm
∥ŷψ∥2 ∥ysvm∥2

)
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Chapter 5

Simulation Results

Dataset: We use the photorealistic Stanford’s large-scale 3D Indoor Spaces Dataset as
described in [2]. This dataset consists of a large-scale indoor environment including six
indoor areas with 271 rooms for a total of 695 million points. These rooms cover office
areas, educational and exhibition spaces, conference rooms, personal offices, restrooms,
open spaces, lobbies, stairways, and hallways. S3DIS dataset contains mesh scans of several
Stanford buildings. By rendering this mesh at any state, we can obtain the image observed
by the camera as well as the occupancy information within the robot’s FoV. As described in
Sec. 4.1.2, we spawn a robot at many different random states, whereby the robot’s onboard
camera captures a 224 × 224 pixel RGB image, denoted as It. We set v̄ = 0.6 m/s, ω̄ = 1.1
rad/s, and ā = 0.4 m/s2 to align with the specifications of the Turtlebot 2 employed in the
hardware experiments (Sec. 6.1). We choose d̄xy = 0.05 m/s and d̄ϕ = 0.15 rad/s. The FoV
of the camera is set to 62.1° and the time horizon H for trajectory generation is 6 seconds.
The perception module takes It and the linear speed vt as input and outputs the parameters
for the decision boundary. We train on the generated dataset from Area 3 and Area 5 and
test our model on Area 4 in simulation and real-world without an a priori known map.

Implementation details: Our implementation utilizes a pre-trained ResNet-50 model,
specifically trained for ImageNet Classification, to encode the input image. We remove
the final fully-connected layer and instead add six fully-connected layers to regress to the
parameters of the decision boundary. We train the ResNet-50 network [15] withN = 175, 000
data points from the reachability expert. The inference time for one image is, on average,
0.1 seconds. To optimize the loss function, we employ the Adaptive Moment Estimation
(ADAM) algorithm with a learning rate of 10−5 and loss weights λ1 = λ2 = 10−2 for cosine
distance loss and SVM regularization loss.

Experimental results: In Fig. 5.1, the initial plot on the top left plot illustrates
a top-down view of the map, with obstacles and free areas depicted in yellow and blue,
respectively. The robot is positioned at the bottom center, with the forward direction
pointing upwards (↑). A subset of trajectories leading to waypoints is then overlaid onto the
scene. Note that the sets of waypoints are different in the two rows because they are sampled
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from FRT for each initial speed. A slice of the sub-zero level set of the value function V

representing the BRT Ā taking at the current robot heading and speed are displayed as
the dashed cyan line. The BRT is computed using the obstacles, shown as the solid black
lines as the target set T . The waypoints depicted as red crosses are unsafe, while green
ones are safe, plus headings are shown with the arrows. We can discern differences between
obstacles and the sub-zero level set, especially at higher speeds (bottom left), because the
BRT considers both robot dynamics and disturbance to determine the waypoints’ labels.
By comparing these trajectories with the BRT, especially at higher speeds, we highlight
how our model accounts for dynamics and disturbances.

The second column of plots shows the projection of viewpoints onto first-person view
images at the ground plane. Safe and unsafe waypoints are again differentiated by green
and red colors, respectively. The third column of the plot delineates the decision boundary
generated by our model, highlighting safe and unsafe areas. Our model reveals larger unsafe
regions at higher speeds which is depicted in the bottom row, aligning with our expectations
based on system dynamics: it is harder to avoid nearby obstacles at a higher speed. Fig. 5.2
depicts a similar concept at a different position. This shows our model accounts for the
robot velocity, unlike object segmentation methods. The labels of waypoints stem from
trajectories rooted in dynamic equations, an attribute unattainable by image segmentation
models.

Figure 5.1: Plots for different speeds. From left to right: top-down view, first-person view,
and decision boundary from our model
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Figure 5.2: Plots for different speeds. From left to right: top-down view, first-person view,
and decision boundary from our model

Metrics: For quantitative evaluation, we use accuracy, precision, recall, and F1-score
as our metrics, with the unsafe label being the positive class.

Baseline: We compare our approach against a straightforward classification model
with hinge loss. The model takes image, velocity, and waypoint as input and predicts
corresponding labels as output. A ResNet-50 is used to extract a feature vector from the
image, which is concatenated with the velocity and waypoint and fed to an MLP to obtain
the label for the waypoint. This baseline does not predict the explicit decision boundary.

Outputting decision boundary parameters offers advantages over solely focusing on the
safety of individual waypoints: having the parameters makes the decision boundary easier
to visualize, and decision boundaries span the entire feature space of waypoints, enabling
the model to predict values for any input combination. Comprehending these boundaries
yields valuable insights into the decision-making process and facilitates diagnostic analysis.
Visualizing decision boundaries showcases the model’s sensitivity to data points. SVMs
typically exhibit smooth boundaries and demonstrate lower sensitivity to dataset variations
compared to other models.

In order to deal with an imbalanced dataset we use various classification metrics, focusing
on F-1 scores. Our goal is to accurately classify unsafe labels as the positive class. Table 5.1
illustrates a comparative analysis of metrics between learning the decision boundary through
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our model (with and without the cosine distance loss as our ablation study) and the more
straightforward classification model as our baseline. The lack of improvement in performance
with cosine distance loss can be attributed to the fact that the SVM decision boundary is
based on a limited number of waypoints and does not take into account the characteristics
of the images, making it prone to misclassification. Our model demonstrates comparable
metrics, with fewer parameters but with enhanced user interpretability compared to the
baseline.

Metrics
Model Accuracy precision recall F1-score
Ours 85.7 86.7 91.2 88.9

Ours w/o cosine distance loss 85.5 87.6 89.4 88.5
Baseline 86.0 85.8 93.8 89.6

Table 5.1: Quantitative Comparison of Classification Metrics for Our Method and Baseline
in Simulation
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Chapter 6

Hardware Experiments

We evaluated the model on the Turtlebot 2 robot without undergoing additional training
or fine-tuning. The experiments were conducted in various locations within Simon Fraser
University’s Technology Science Complex 1 (TASC1) building, specifically in room 9204.
None of these locations were part of the original training set. The threshold is set higher than
0.5, considering the importance of accurately detecting unsafe labels rather than potentially
mislabeling safe waypoints, reflecting a cautious approach.

6.1 Hardware Experiments

We conducted tests on our framework using a Turtlebot 2 hardware testbed, as shown in the
left images of Fig. 6.1a and Fig. 6.1b. The tests utilize an onboard StereoLabs ZED2 camera
to capture RGB images and wheel encoders to obtain robot velocity to support navigation.
We crop 224x224 images with a FoV of 62.1°, consistent with the simulated images.

For these experiments, we teleoperate the robot and compute decision boundaries for
each image frame, shown in the right images of Fig. 6.1a and Fig. 6.1b. The decision
boundary is expressed in a closed form, therefore determining the sign value of the dot
product between decision boundary parameters and a data point, allows us to identify the
positive and negative sides of the contour. This visualization is done using SVM decision
boundary which is faster compared to the baseline method because we evaluate against the
polynomial instead of running neural network inference on each point.
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Figure 6.1: We present two scenarios: a and b. In each pair, left image is the snapshots of
the real robot in third-person view and the right is the decision boundary in first-person
view

We choose the threshold for classification of 0.5 on the probabilities to classify safe
waypoints from unsafe. Depending on our safety criteria, we have the flexibility to modify the
threshold for classification, allowing us to control the proximity of the decision boundary to
obstacles. The images showcase tests conducted in both simulation and real-world environments,
providing quantitative evaluations for the former and qualitative assessments for the latter.
Video footage of all experiments can be found at: https://www.youtube.com/watch?v=

3ySt0V79FYE&list=PLUBop1d3Zm2sdaiYb0Gme9PxJGqpKvVPB
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Chapter 7

Conclusion

In conclusion, our research tries to address the robot safety challenge as they traverse
through unfamiliar environments. The cornerstone of our approach lies in the development
of a novel perception model designed to improve the safety of navigation tasks. Our study
harnesses the capabilities of visual sensors to proactively predict safe and unsafe high-level
actions via Hamilton-Jacobi reachability analysis. Notably, the model is trained using data
derived from optimal control techniques, incorporating a loss function based on support
vector machines.

This work involves the development of a self-supervised learning method aimed at
predicting the decision boundary between safe and unsafe waypoints. By leveraging HJ
reachability analysis, a theoretical basis is established to label training datasets. Neural
networks are then empowered to learn the coefficients of the decision boundary through
the application of a soft-margin SVM loss function. Notably, the method’s versatility and
effectiveness are demonstrated through its successful application to real-world scenarios,
showcasing its generalizability.

In future endeavors, we will explore concrete downstream applications stemming from
this work. For instance, showcasing real-world applications to illustrate the practicality
of this method, such as a semi-autonomous navigation system featuring a graphical user
interface (GUI) that suggests safe waypoint commands for controlling ground robots. Further,
integrating this method as a safety layer for waypoint-based policies to improve their metrics
and delving into more advanced architectures like transformers to enhance the results can
serve as promising next steps.
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Appendix A

Code

Codes of all experiments can be found at this repository:

https://github.com/SFU-MARS/Safety-reachability

24

https://github.com/SFU-MARS/Safety-reachability

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Problem Setup
	Problem Setup
	Dynamics Modeling
	Differential Flatness
	Hamilton-Jacobi Reachability Analysis


	Method
	Method
	BRT and FRT Computation
	Data Generation
	Training


	Simulation Results
	Hardware Experiments
	Hardware Experiments

	Conclusion
	Bibliography
	Appendix Code

