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Abstract

Data depth has emerged as an invaluable nonparametric measure for the ranking of mul-
tivariate samples. The main contribution of depth-based two-sample comparisons is the
introduction of the Q statistic [31], a quality index. Unlike traditional methods, data depth
does not require the assumption of normality distributions and adheres to four fundamental
properties: affine invariance, maximality at the center, monotonicity relative to the deepest
point, and vanishing at infinity [40, 31]. Many existing two-sample homogeneity tests, which
assess mean and/or scale changes in distributions often suffer from low statistical power or
indeterminate asymptotic distributions. To overcome these challenges, we have introduced
three innovative depth-based test statistics. Notably, two of these statistics share a ‘com-
mon attractor’ and are applicable across all depth functions. Our approach extends the
concept of same attractive depth functions, rooted in Q statistics, to include both sum and
product statistics. We further proved the asymptotic distribution of these statistics for one-
dimensional cases under Euclidean depth, in addition to the minimum statistics valid for
all depths. Our proof has been extended to the multidimensional case for all depths. These
proposed statistics use three depth functions: Mahalanobis depth [31], Spatial depth [7, 20],
and Projection depth [29]. all of which are implemented in the R package ddalpha. Through
two-sample simulations, we have demonstrated that our sum and product statistics exhibit
superior power performance, utilizing a strategized permutation algorithm and standing up
to comparison with popular methods in literature. Our tests are further validated through

analysis on spectrum data, highlighting the effectiveness of the proposed tests.

Keywords: Non-parametric tests; data depth; two-sample test; hypothesis test
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Chapter 1

Introduction to Data Depth

1.1 Study Background

In recent years, multivariate statistical analysis has been widely applied in many fields.
One significant application is the discrimination between two groups of spectra with po-
tential tumor samples, a topic extensively covered in Chapter 4. As we encounter diverse
types of data, these analytical challenges are often formulated as homogeneity tests for two

multivariate samples with distributions F' and G, i.e. testing
Hy:F=Gvs H :F#G. (1.1)

The homogeneity tests determine whether the two samples or distributions are sta-
tistically the same with some essential parameters. Among the well-known homogeneity
tests is Multivariate Analysis of Variance (MANOVA) [17], a parametric test that extends
the univariate ANOVA for multivariate sample comparison. Initially introduced by Fisher,
MANOVA requires prior assumptions of normality, which often do not hold in real-world
data scenarios where distributions may not be well-defined. This limitation underscores
the importance of non-parametric tests, such as the Cramér test [1], Wilcoxon Rank-Sum
test [47], and Energy Distance test [43], which are not constrained by the assumption of
normality.

The detailed formulations of homogeneity test including MANOVA will be elaborated

upon subsequently.

Multivariate analysis of variance (MANOVA)

Consider a MANOVA model in a two-sample case structured as follows:
XiJ' :Mi+€’i7j7i =1,2, and j=1,2,...,n;,

where p; is the mean of i-th population, and e;; are independent p-dimensional normal

variables with mean 0 and covariance matrix denoted as X, i.e. e; ; ~ N,(0,X).



In MANOVA, the total sum of squares (St) is decomposed into the between-group
sum squares (Sp) and within-group sum of squares (Sy ) such that Sp = Sp + Sy . Here
St is total variability around the overall mean, calculated as Sp = 12:1 Z?;l(XM —
X (X — X)T, where X is the overall sample mean. The between-group sum of squares,
Sp measures the variability of the group means around the overall mean and is given by
Sp=%%, Z;L;I(X} — X)(X;—X)T, with X; denoting mean of the i-th sample. The within-
group sum of squares, Sy, quantifies the variability within each group and is defined as
Sw o= i X (X — Xi) (X — Xi)T.

Upon calculating the eigenvalues of SngW, denoted as A1,...,\,, and with a common
covariance matrix, several test statistics can be derived for the MANOVA homogeneity test,
ie.,

Ho :pyp = p2

o Hotelling’s test statistic [23, 39], denoted as H, is the sum of these eigenvalues, H =

Z?:l Ai. The scaled version of H follows an F-distribution:

<n1+n2—p—

1
» ) H ~ Fynitny—p-1-

o Wilks’ test statistic [48, 39], W, is the product of the reciprocal of each eigenvalue
plus one, W = T¥_, 1/(1 + \;). A lower value of W suggests disparity between the

groups. The statistic follows an F-distribution:

1-W /ni+ny—p—1

W » ~ Fp,nl-l—ng—p—l-

o Pillai’s trace [38, 39|, T', is the sum of the ratios of each eigenvalue to one plus that
eigenvalue, T'= Y7 | \;/(1 + \;), which also adheres to an F distribution:

T (n1+n2—p—1

1_T D ) ~ Fpni4ng—p—1-

Cramér test

First introduced by [1], the Cramér test is a non-parametric method for assessing the dis-
parity between two continuous distributions, F’ and G, without reliance on any presumptive
distributional forms. This test is grounded in the comparison of theoretical and empirical
distributions, specifically evaluating the integral [ [F,(z) — F(z)]?dF(z) for a sample of
size n with observations x; from distribution F, where i = 1,...,n. here, F},(x) denotes the
empirical distribution, and F'(z) is the corresponding theoretical distribution.

Consider two univariate independent samples X = {z1,...,zn} and Y = {y1,...,yn},

with X containing m independent and identically distributed (i.i.d.) random variables from



distribution F', and Y comprising n i.i.d. variables from distribution G, we define their
empirical distributions as Fy,,(t) and G, (t), respectively.
To test whether these two samples are drawn from the same distribution, i.e. Hy : F' = G,

the Cramér test statistic, T, is formulated as

mn

7= [ (Flt) - Gal0)? d1(1),

m+n.J_—o

where H(t) = (mFp,(t)) +nGyn(t))/(m + n).
With a significance level «, the decision criterion is based on the upper « quantile of T',
denoted by T,. If the calculated T statistic is greater than or equal to T, i.e. T' > T,, the

null hypothesis is rejected, suggesting a significant difference between the two distributions.

Wilcoxon Rank-Sum test

The Wilcoxon Rank-Sum test, also known as the Mann-Whitney U test, was originally
proposed by Wilcoxon [47]. It is a popular non-parametric test for univariate data. The test
evaluates the difference between two samples by collectively ranking all data points and
then comparing these ranks between the groups.

Given two univariate independent distributions F' and G, from which the random sam-
ples z1,x2,...,z, and y1,¥y2,...,Yn are drawn, the Wilcoxon Rank-Sum test can be ex-
pressed as the sum of indicator functions:

1 m n

U:%ZZI(%<9J)> (1.2)
i=1 j=1

where I(-) is an indicator function that takes 1 if the condition within is true, and 0 other-
wise. Under null hypothesis that two samples are from the same distribution, the expected
value of U is %

A comparative analysis of statistical power between our proposed test statistics and
the univariate Wilcoxon Rank-Sum test is presented in Chapter 3. Additionally, a recent

extension of Wilcoxon Rank-Sum test to multivariate data is introduced by [28].

Energy Distance test

The energy distance test [43, 42] quantifies the statistical distances between two distribu-
tions. Consider two independent random variables X = {z1,...,2n} and Y = {y1,...,yn},
with cumulative distribution functions F' and G respectively, and let X’ and Y’ be inde-
pendent and identically distributed (i.i.d.) copies of X and Y. Within a Euclidean space,
the energy distance [25, 43] can be written as the mean of the pairwise distances between

two samples, i.e.,

D? =2E||X -Y|| - E||X - X'|| - E|]Y =Y||.



The energy-statistic is defined as

m+n =11 i=1j=1 i=1j=1

Enm(X,Y) = 2— > D M —yill = —5 > D Ml =zl = —5 > > lyi =yl
mn m n
The generalized form of the energy distance for any metric space is expressed as:
D? = 2E[d(X,Y)] - Bld(X,X")] - Eld(Y,Y")],

where d(X,Y) represents the distance in a metric space.
When assessing whether two random variables X and Y are from the same distribution,
the hypothesis test is framed as Hy : F = G versus H; : F # G. Under Hy, the -2 )2

m+n
will converge to zero, while under Hy, it tends towards infinity. Thus, the coefficient H is

formulated as
2Bl X Y| - EIX - X'|[ - E|lY - Y|

H
2E||X = Y]| ’

with 0 < H <1.
With H = 0 when F' and G are identical, the test is performed by determining the upper
a quantile ¢, as the critical value [42], where P(E, n(X,Y) <c¢y) =1— .

1.2 Types of Data Depth

Traditional non-parametric methods are mostly suitable for univariate data, posing chal-
lenges when extended to multivariate contexts. Data depth is a method that addresses this
by determining differences between two samples without prior normality assumptions of
distributions and by providing data rankings. It adheres to four fundamental properties
outlined by Serfling [40]: affine invariance, maximality at the center, monotonicity relative
to the deepest point, and vanishing at infinity. Data depth D(z; F') measures the centrality
of the z point in the distribution F(z) in d-dimensional space, mapping z from R? to the

interval [0, 1]. These four properties in detail are:

1. Affine invariance: Depth is invariant to coordinate system or scale transformations.

2. Maximality at the center: The center of a distribution has the highest depth value,
denoted as D(u, F'), where p is the center.

3. Monotonicity relative to the deepest point: For any 0 < a < 1, the depth decreases
as a point x moves away from the center y, i.e. D(z, F) < D(u+ a(x — p), F).

4. Vanishing at infinity: The depth function approaches zero as the ||z|| goes to infinity.



Various data depth functions can be used, including Euclidean depth [31, 26|, Maha-
lanobis depth [31], L, depth [40], Spatial depth [7, 20], Projection depth [29], and Tukey
depth [44].

Euclidean Depth

The most simplest depth function is the Euclidean depth for a point x in a one-

dimensional distribution F', defined as

D(w; F) = 1+($1—M)2 (1.3)

where p is mean of distribution F' [31, 26]. This computation is implemented in R package
DepthProc using depthEuclid ().

Mahalanobis Depth
For any point x in R-dimensional distribution F', Mahalanobis depth [31] is :

. 1
D F) = TS T )

with © as the mean and ¥ as the covariance matrix. Note that (z — p)TS 71 (z — p) is
Mahalanobis distance. The computation of Mahalanobis depth [31] is available in the R
package ddalpha with depth.Mahalanobis().

L, Depth
Consider a random variable X from distribution F', the L, depth [40] for a point z with

respect to distribution F' is:

~ 1
D(x: F) =
@) = T B %1,

where ||z — X||, is the L, norm, encompassing cases like the Manhattan distance with p =1

and Euclidean distance with p = 2.

Spatial Depth
Consider a random variable X from distribution F', the Spatial depth , also known as
L1 depth, for a point x with respect to distribution F is:

R 1
D) = g ==

The computation of spatial depth is available in R package ddalpha with depth.spatial().

Projection Depth



For a random variable X from distribution F', the projection depth is defined as

1
Dx; F)= ——,
(z; F) 14+ 0(x; F)
where O(z; F) = SUP||y||=1 mLZﬁZ?:?ifS(ﬁf?L)\’ with < y,z > denoting the dot product

of x and y, and med the median. The projection depth calculation is available in R package

ddalpha with depth.projection().

Tukey Depth
For any points z in a R-dimensional distribution F', the Tukey depth [44], also known

as halfspace depth, measures the minimum fraction of points in a halfspace,
D(z; F) = inf{P(H) : H is a closed halfspace, = € H},

where P(H) is probability measure in a closed halfspace H. For a given point x, P(H)
usually represents the number of observations in H that contains point x.

In one-dimension, the Tukey depth simplifies significantly. For any point x, it is given
by D(z; F') = min{F(z),1 — F(z)}. The calculation of Tukey depth is implemented in the
R package ddalpha with depth.halfspace() function.

Considering the above depth functions, we can now visualize the depth values of each
depth function through contour plots. A unique type of data is banana shape data, which
has a crescent-like shape; see the scatter plot of 100 random simulations in Figure 1.1. I
simulated banana shape data for 100 generations.

The contour plots using Tukey depth, Mahalanobis depth, projection depth, and spatial
depth are presented in Figure 1.2a, 1.2b, 1.2¢, and 1.2d, respectively. The shape of contour
plots is similar to that of the data simulated with a bivariate normal distribution.

In Chapter 2, we study a case using univariate Euclidean depth for our proposed test
statistics with its asymptotic null distribution. The test statistics proposed could also be ap-
plied to multivariate data for various depth functions. In the simulation study to compare
the statistical power, we consider Euclidean depth for univariate data and apply Maha-
lanobis depth, Spatial depth, and Projection depth for multivariate data; for more details,
refer to Chapter 3.

1.3 Depth-based tests

Depth-based tests have been increasingly developed in recent years. A popular method is
the Depth-based Rank Statistic (DbR), proposed by [10], which generalizes the Kruskal-
Wallis test. More recently, [3] have enhanced the DbR test to improve its statistical power,
introducing the Modified Depth-based Rank Test (BDbR).
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Figure 1.1: Scatter plot of banana shape data

Depth-based Rank Statistic (DbR)

The DbR test, as outlined by Small [10], arranges data into ranks. For a univariate
sample X = {z1,...,z,} from distribution F', the rank of each point x; is determined by
its order in the data sequence, defined as R(x;) = #{x; : ; > x;}, where # denotes the
set cardinality. In the case of multivariate data, ranking is based on the data depth D(x, F')
of each data point x; with respect to distribution F, defined as R(z;) = #{j : D(zj, F) >
D(z;, F)}.

Consider two independent samples X; and X5 from empirical distributions Fy and F)
with sample size n; and ng, respectively. The rank R; ;j(k) of point X;; with respect to
distribution E}, (where & = 1,2) is calculated. The null hypothesis is Hy : Fy = F, and
alternative hypothesis is H,, : F1 # F5. The test statistics H is defined as

—-3(n+1),

where t = 2 (the number of distributions), n = n +no with j = 1,2 (the number of samples
X;j), and Rj(k) = 3332; Rij.
The test statistic rejects at significance level &« when H > T, where T represents the

upper « quantile of the distribution for H.
Modified Depth-based Rank Test (BDbR)
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Figure 1.2: Contour plots of Banana shape data



Barale and Shirke [3] modified the two-sample homogeneity depth-based tests for scale-
location problems. Consider two independent samples X = {zi,z9,..,z,} and ¥ =
{y1,92, .., ym } from distributions F' and G, respectively, the goal is to test whether these
two samples are from the same distribution, i.e. Hy : F' = G vs. H; : F' # G. The Baumgart-
ner statistic, as proposed by Baumgartner [4], is utilized for univariate data ranking. This
combines samples X and Y into a single set of size N = n+m, with ranks R(j) < ... < Ry,
and Q) < ... < Q) corresponding to each sample. The test statistics is computed by

taking average of individual test statistic values for each sample, i.e., B = %(Bl + Bs),

where ( )2
1 n R i) — WZ
By =~ Z i 2 i N’
i (U= )
and

L& Q) — i)
B= oY gy
7=1 m+1 m+1/ m

Denote the upper a quantile as 7', the test can be performed by P(B < T) =1 — «. That
is, a larger value of B will result in the rejection of the null hypothesis.

However, the Baumgartner statistic is not invariant when transforming all data into
negative values in the case of unequal sample sizes. A modified test is proposed by Murakami
[37], which considers taking average of the squared standardized linear ranks. The modified
test statistics B* is:

B = (B + B3),
where
1 & (R — BE(Rpy))?

B =— ,

3

.15 (@Qp — E@Qy))*
By = m; Var(Qgy)

with E(R ;) = %i, E(Q(j)) = T]X—ﬁj, Var(R(i)) = ”%‘1<1_ni1)m5l]\.$1)’ and Var(Q(j)) =

mﬁrl (1 — mil)nsing). Similarly, we reject the test statistic with B* > T at significance
level «, where T denotes the upper a quantile for this distribution, and large test statistic
values B* will result in the rejection of the null hypothesis.

In the multivariate case [3], for X;; € RP, let X; = {Xi1,..., X1p,} and Xp =
{Xo1, ..., Xon, } be two independent samples from distribution F; and Fb, respectively. Let
Fy and F5 be the corresponding empirical distributions. To test the homogeneity of two
distributions for both location vector u and scale matrix X, we have Hy : F; = Fy vs.
Hy: F # F5.

The proposed procedure for this test statistic is summarized below:



(1) Combine the two samples X; and X with total size N, i.e. N = nj + ng, denote
the combined samples as Z = X;|J X2, and Z; stands for an observation in Z for
t=1,...,N.

(2) Compute the depth of all Z; with respect to Fy and Fy, and denote them as D(Z, F’l)
and D(Zy, Fz) respectively.

(3) Rank all observations based on depth values D(Z;, F1) and record them as Rf . Sim-

ilarly, rank all observations based on D(Z;, Fy) and record them as R!2.

(4) Rearrange these ranks in increasing order, select those ranks corresponding to sample

X5 and record as Rﬂl) < ... < Rf;;), select those ranks corresponding to sample X3

and record as Rf2 < ... < R2 .
(1) (n1)

(5) The test statistics is defined as B = maX(Bﬁl,BFQ), with

. L2
F 3
| o (RE) - B(R()))

B = — .
n2 Jz:; Var(Rf;?))
. N
n Fy yz
ni j=1 VCLT‘(R(FJ-Q))
where
: N+1, 2 j jyrV+1)
E El e El = 1 -
(R(J)) n2—|—1‘]’ VaT(R(J)) n2+1( n2+1) n2+2 ’
and

sy N+1 A . ‘ o
o) - ”111], Var(R(j) = mj+ 71 m]+ 1)n27(L1 ++2 !

We reject this test when B > T at significance level «, where T' denotes the upper «

quantile for this distribution.

For the statistical power comparison study of DbR and BDbR with our proposed test

statistics, we elaborate it with great details in Chapter 3.

1.4 (@ Statistics

The previous methods, such as Cramér test [1], Wilcoxon Rank-Sum test [47], and En-
ergy Distance test [43], are regarded as point-to-point (PtP) distance by measuring the
relative distance between pairs of data points. These point-to-point (PtP) distances may

encounter the problem of large variance, resulting in a less accurate comparison between two
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distributions and potentially reducing the test’s power, especially in scenarios with finite
dimensions. Tests based on point-to-sample (PtS) central-outward ranking could perform
better than PtP distances with less variance, such as Depth-based Rank Statistic (DbR)
[10] and Modified Depth-based Rank Test (BDbR) [3], with a comparison of a point to a
sample distribution. Despite this advancement, the Depth-based Rank Statistic (DbR) [10],
which is based on the PtS central-outward ranking, still incorporates further PtP compar-
isons through univariate Kruskal-Wallis type tests. This addition can increase variance and
subsequently decrease the test’s power, as evidenced in simulations discussed in Chapter 3.

In this regard, we explore the depth-based quality index Q(F, G), measuring the relative

“outlyingness” of distribution F' in comparison to distribution G, which is defined as
Q(F,G) = P{D(X;F) < D(Y;F)|X ~ F,Y ~ G},

where F' is the reference distribution. When the two distributions, F' and G, are unknown,
the empirical distributions of F},, and G,, can be employed, assuming sample sizes of X and

Y are m and n, respectively. The ) can be estimated by the statistic
Q(Fm, Gn)

where the sample proportion R(y;; Frn) = = S I(D(w;, Frn) < D(y;, Fin)) and I(-) is an
indicator function.

The Q(Fy,,G,) statistic serves as a sample-to-sample (StS) central-outward ranking,
averaging the depth-based PtS central-outward ranking R(y;; F},,). The method provides a
more accurate comparison than the PtP distance, as it encompasses broader information
about the distribution rather than focusing on single points. In addition to its enhanced
power, the depth-based StS central-outward ranking benefits from the free distribution
assumption and adheres to four fundamental properties of data depth: affine invariance,
centroid maximality, monotonicity about the deepest point, and vanishing at infinity [40].

With different reference distributions F, and Gy, usually Q(Fy,,Gn) # Q(Gn, Fp).
Under null hypothesis, i.e., Hy : F = G, the Q(F,G) = % Under alternative hypothesis,
a large difference from Q(F,,Gr), or Q(Gy, Fy), to 3 indicates a significant difference
between these two distributions F},, and G,,.

While the depth-based StS central-outward ranking effectively handles multivariate data
comparisons, it may lose certain information, such as data direction, by the one-dimensional
projection of the data depth. This loss can be critical in achieving higher statistical power.
Addressing this, a recent advancement by [41] suggests preserving power by considering the
maximum of two @ statistics Q(Fy,, G,) and Q(Gy, Fyy,). This insight has led us to explore
a new approach to pairwise StS central-outward ranking, derived from @ statistics. Our

method maintains the direction of the StS central-outward ranking by analyzing the sign

11



of the partial derivatives of the () statistics. () statistics sharing the same sign indicate
a unified direction of change under the alternative hypothesis. By considering making a
combination of two () Statistics with the property of “same-attraction”, where the two @)
Statistics have the same limit under the null hypothesis and approach to the same value
under the alternative hypothesis, we can enhance the power of a test based on the derived )
statistic. In physics, an attractor refers to a set of numerical values toward which a system
tends to evolve, regardless of its starting conditions. This can present the long-term behavior
of the system. For example, consider all objects near a black hole; they are attracted in the
same direction. In this thesis, we apply this concept of attractors, with the “same attractor”
referring to the convergence of distributions over time toward a specific limit. Specifically, the
statistic Q(F,, Gy,) is attracted to % under Hg, while under H,, it is attracted to the limit
of 0 or 1. Here, the term “attraction” denotes the direction of movement. While considering
the maximum of Q(F),,G,) and Q(Gy, F),) is one such combination, it is not the most
efficient one because their partial derivatives with respect to each @) statistic are not strictly
positive or negative, and may be zero. Our two new combinations, Q(F,,, G,) + Q(Gy, Fin)
and Q(Fy,,Gpn) X Q(Gp, Fp,), promise a greater improvement in power since their partial
derivatives have the same sign and are almost never zero; for more details, see Definition 1 in
Chapter 2.1. We have named our proposed technique DEEPEAST, short for depth-explored

same-attraction StS central-outward ranking.

1.5 U-Statistics
1.5.1 U-Statistics

Wassily Hoeffding first introduced U-Statistics, dates backs to 1948 [22, 21]. More general-
izations and properties of U-Statistics can be found in [27] by A. J. Lee.

Consider a function f(z1,x2, ..., z)) with k variables, we can take average of all f values
over the set of all k! permutations, denoted as ™ = (m(y), ..., T(x)), where 7;) € {1,...,k}

without replacements, that is

1

fz1,20,...,2) = o Z @y Trigy o0 Ty
Call w
In this way, the function f(z1,z2,...,2)) is symmetric as it takes average of all possible

permutations.
Then U-Statistics [22], with “U” stands for “unbiased”, is defined as

1
Un = N Z f('xlaan"ka)a
(k) (n,k)

where f is called symmetric kernel and (n, k) is the set of all combinations (}). The number
k < n is the degree of U-Statistics.
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Example 1.5.1. A simple example is sample mean. Suppose f(z) = z, then the corre-

sponding U-Statistics is

The degree of this U-Statistics is 1.

Example 1.5.2. Consider a more complex situation with degree 2. Let f(z1,z2) = %(xl -

x2)2. Then the corresponding U-Statistics for this symmetric kernel is

1
Un = @Zf(xl>$j)

1<j
2 1
T n(n-1) ; 5o~ 75)"
1 1
= ol Y a?) - (na )
=1
= () -]
=1
= ()~ 22(nm) + ]
=1
= Y-
i=1

Note that this is sample variance.

For two-sample cases, the idea is similar to one-sample case [16]. Consider two distri-
butions F' and G, independent samples X1, Xo,..., X, and Y1, Ys,...,Y,, are from F' and
G respectively. Then denote f(x1,...,Zk,Y1,-..,Yk,) as a symmetric kernel with degree
(k1, k2), contains elements from both samples, and k; < nq, ka < ng. The U-Statistics for

two-sample problem is

1
UnLnQ:W Z Z f(xlw"axklaylw"’ykg)a
k1 (

k27 (n1,k1) (n2,kz2)
n1

where (n1, k1) is the set of all combinations (}!), same to (na, k).

Example 1.5.3. A popular example of two-sample U-Statistics is Wilcoxon Rank-Sum test
with Equation (1.2). In this case, the kernel is f(z,y) = I(z < y).
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1.5.2 V-Statistics

V-Statistics is closely related to U-Statistics, which is first proposed by von Mises in [45].
For a symmetric kernel f(z;,,%i,,. .., i, ), the V-Statistic with degree k is defined as [27]

n

Vi=n"" Z Z f(iy, @iy, - xi).

i1=1 =1

Example 1.5.4. With the same kernel f(x1,x9) = %(xl — 29)? in Example 1.5.2, the

V-Statistic with degree 2 can be written as

i=17=1
=n"2 Z Z %(:1:? + zj — 2x;75)
i=1j=1
=n?[(n)_a}) - (nz)%)]
i=1
= (S —na?
i=1
= %[(Z x?) — 2Z(nZ) + nz’]
i=1
= > (@ -2
i=1

There are some difference between V-Statistics and U-Statistics, as the U-Statistic with the

same kernel is - S (27 — 7)2.

V-Statistics can also be written in the form of a combination of U-Statistics [27], with

g e

(4)

where Uy(lj ) are U-Statistics with degree j and S}’ represents the Stirling numbers of the

second kind. The kernel h;)(z1,. .., ;) of each UT(L] ) will be determined by

h(j)(xl,...,:): 'SJ) Zf le,l‘m,...,xik),
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with 37 ;) denoting taking the summation of all possible permutations for the set (i1, ..., ).

The Stirling numbers of second kind S,ij ) can be determined by [27]

k
ok = ZS,(Cj)x(:U— ND(x—=2)...(z—j+1).
j=1

The proof of transforming V-Statistics into U-Statistics can be found in Section 4.2 in
[27].

Example 1.5.5. Consider a simple case k = 3, define V-Statistic as
n n n
-3
Z Z Z f(xilywigaxig)-
i1=11i2=1i3=1

Then we have 2° = S,gl)x+S,(€2)x($—1)+S,(€3)x(x—1)(33—2) = S,gl)x+S,(€2) (332_33)"‘51(@3) (23—
322+22) = SPa3 4+ (8P — 35224 (S~ 5®) 12530 then §P) = 1,5% = 3,5V =1

The V-Statistics can be written as

n3V, = 1S9 (") o
> ;

j=1

— 115 (”f) UM 42152 (g) U® 4315 (g) U
™M\ 6™ u@ e[\ p®
(1>Un +6<2>Un +6<3>Un

The kernels of U-Statistics will be as follows:

h(l)(xl) 1'3(1) Zf $Z17x227x13) :f(xlaxlaxl)
(@)
h(z)(xl,xQ) :(2!522))71 Zf(ﬂfil,ﬂ’?izaxig)
(4)

:é[f(fﬂlal”l,ﬂfz) + f(x1, 22, 21) + f(22, 21, 21)

+ f(z2, x2,21) + f(x2, 21, 22) + f(21, 22, 22)]

:%(f(:z:l,xl, x2) + f(x1, 22, 22))

hesy (1, 72, 73) :(3!55’))’1 > @iy, wiy, wi)
(7)
1
Zg[f(fb“l,m,xs) + f(x1, 23, 22) + f(x2, 21, 23)
+ f(zo, x3,21) + f(x3, 21, 22) + f(23, 2, 21)]

=f(x1, 22, x3),
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where hy(71), ho)(z1,72), and h(z)(z1, 72, 73) are kernels of Uél),U@), and U\ respec-
tively.

1.5.3 Hoeffding decomposition

Hoeffding decomposition [22] decomposes unbiased U-Statistics of degree k into a range of
uncorrelated U-Statistics with degree 1,2,... k.
For kernel f(z1,z2,...,z)), denote 6§ = E[f(x1,x2,...,x%)], the U-Statistics can be

written in the form
( ) H(J

T,L h] 951,1,...793%.),
=000 5

where H}lj ) is the degenerated U-Statistics with degree j and kernel h(9) [27].

0+

Example 1.5.6. Continue the example above 1.5.3 on Wilcoxon Rank-Sum test, we can
apply Hoeffding decomposition to derive the asymptotic null distribution. Let the test statis-

tics be
1 m n

1
Up=—3> > @ <y) -3

i=1j=1
the kernel is f(z,y) = I(z; < y;j) — % By Hoeffding decomposition, f(z,y) = 0 + fi(z) +
fo(y) + o(z,y), where 0 = E[f(x,y)], fi(z) = E[f(x,Y)] =0, f2(y) = E[f(X,y)] — 0, and
qb(x,y) - f(xvy) - fl(x) - fQ(y) -

Suppose z1,...,Ty and y1,..., Yy, are from normal distributions F' and G respectively,

and under null hypothesis F' = G, we have

0 = E[f(z,y)]
y oo 1
= / f(x)f(y) dx dy — 27Where f is PDF of normal distribution
o0 1
= F(y)f(y)dy — 2 where F' is CDF of normal distribution
11
2 2
=0
filz) = E[f(2,Y)] -0
1
= BylI(zs < y5) = 5] - 0
1
=1—-F(x;) — =
()~ 5
1
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f2(y) = EIf(X,y)] — 0

= E,[I(z; <yj) — %] -0
= Fly) - 5

Hence, it can be written as

Uum oSSt <)~
i=1j=1
131 " R I
=0+ 3 [5 = Pl + -3 [Fly) =51+ —> > é@y)
i=1 J=1 =1 j=1
= LS Fla)] + - Y )~ 5+ Oyl )
i=1 J=1

Then we can have F'(x;) and F(y;) follows uniform distribution ¢/(0,1) as P(F(z;) <
r) = P(z; < F~Y(2)) = F(F~}(z)) = . Then E[F(x;)] = E[F(y;)] = % and Var[F(z;)] =
Var[F(y;)] = % Hence, % — F(x;) ~ N(0, %) and F(y;) — % ~ N(0, %)

Then the normalized asymptotic distribution of U, is

1
TR 2 N0

m4+n 12

).

While U, is recognized as a V-statistic with an asymptotic normal distribution, the same
cannot be straightforwardly inferred for our proposed Sum Statistic .Sy, ,, which takes the
summation of two Q Statistics, Q(F,, Gr) + Q(Gr, Fr,), and Product Statistic Py, 5, which
takes the product of two Q Statistics, Q(Fy,, Gn) X Q(Gn, Fp,). Through a higher-order ap-
proximation based on the Hoeffding decomposition, we can approach a more accurate deter-
mination of their asymptotic distributions under univariate Euclidean depth and extended
to multidimensional case for all depths, leading to the formulation of relevant theorems in
Chapter 2.3.

17



Chapter 2

DEEPEAST Technique

2.1 Same-attraction Function

The use of @) Statistics as StS central-outward ranking leads to a natural question: How can
we ensure functional consistency across all () Statistics to enhance power? This section is
dedicated to address this question. Let us consider the scenario where we aim to combine L
@ Statistics, denoted as Q1,...,Qr. We present the combined function as G(Q1,...,Qr) .
To optimally gauge similarity within the same distribution and dissimilarity across different
distributions, the combined function G should ideally satisfy two properties: selfsame and
coordinate, which are crucial for ensuring both the efficacy and reliability of the function in
different statistical context. We have formalized and detailed these properties in Definition
1, providing a framework for evaluating and applying the combined @) Statistics function in

practical scenarios.

Definition 1 (Optimal same-attraction function). Assume the following properties for

Q17"'7QL:

(i) P1. Selfsame: Q1,...,Qy share the asymptotic “same” null distribution.

ii) P2. Coordinate: The partial derivative 99(Q,.,Q1) is non-negative (> 0) or non-
0Qy
positive (< 0) almost surely for all £ = 1,..., L under the alternative hypothesis.

(iii) P3. Optimum: Consider G* a set of all possible combinations of function G(Q1, ..., QL)
, the most powerful test statistics G° can be selected according to taking the maximum

of equations below:
G(Qq,...,
argmax S\@L QL) _ o
GeG* Ca,G
where the ¢, ¢ are defined as Pp,[G > co,¢] = a with type I error probability o under

null hypothesis.

18



Any function G(Q1,...,Qr) that satisfy P1 and P2 are same-attraction function, and
among a family of same-attraction functions, the optimal same-attraction function can be
found through P3.

Note that a same-attraction function G(Q1,...,Qr) is strictly same-attraction if the

inequalities in P2 are strict almost surely, meaning;:

8g(Q17 ) QL)
>0 or <O0.
0Qy
It can be shown that a collection of same-attraction functions G(Q1,...,Qr), 1 <s < S

is closed under countable additions. This means that the sum of a number of same-attraction
functions remains to be a same-attraction function. However, it is important to note that
this closure may not apply to subtraction.

There will be some examples of same-attraction functions.

Example 2.1.1 (Maximum statistic [41]). Consider the maximum statistic

Mm,n = maX(Ql,QQ), (21)
where - R .
Q1= |5+ )| (@Fn ) - 3P
and 1,1 1371t 1
Q=50+ 2)| @G F) - 3P

Both @ Statistics @1 and @2 are selfsame (P1), as they follow the same asymptotic null

chi-squared distribution [50]. The coordinate (P2) is also met under H; since for r = 1, 2,

Q.

8Mm’n . 1 if Mm,n = Qr
0 otherwise .

It is worth noting that M,, , is non-differentiable at ()1 = Q2 with zero probability almost

surely. Thus, by Definition 1, M,,, qualifies as a same-attraction function.

Example 2.1.2 (Weighted average statistic [41]). The weighted average statistic,

Wi n(w1,w2), is defined as
Winn (w1, w2) = w1Q1 + w2Q2, (2.2)

where wy,ws > 0, w1 +wy =1, and Q1, Q2 are defined in (2.1).

Contrasting with the maximum statistic in Example 2.1.1, for r = 1,2 we observe:

8I/Vm,n (wl s w2)
o}

=w, > 0.
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Thus, Wy, (w1, w2) qualifies as a strictly same-attraction function.

Example 2.1.3 (Minimum statistic [8]). The minimum statistic My, ,, is defined as

My, , = —min(Q1, Q2), (2.3)
where - | -1 1
Q=] @Fn G - 3)
and s
1,1 1.1 1
@ =560 QG Fa) = )

Both Q-statistics @1 and Q2 fulfill the selfsame property (P1). The coordinate (P2) is

also met under the alternative hypothesis Hy, as for r =1, 2,

0Qy

0 otherwise .

oMy, ., {—1 if min(Q1,Q2) = Q1

Thus, M, ,, is classified as a same-attraction.
bl

Example 2.1.4 (Sum statistic [8, 19]). The sum statistic Sy, , was firstly proposed by [8]
and later studied by [19] and is defined as

mn

S = — F,, G, Gn, Fpp) — 1 2.4

0= = (@ ) + QG F) — 1) (2.4
asm,n _ aS’m,n _ mn

The Q(Fn, Gp) and Q(Gy, Fy,) are selfsame and DO G = 90CA T = “man < 0.

Hence, S, n, qualifies as a strictly same-attraction function.

Example 2.1.5 (Product statistic [8]). The product statistic P,y is defined as

1

mn
Pm,n — _m+n(Q(FmaGn)Q(GnaFm> - Z) (2'5)
Consider the partial derivatives of P, ,, we have
0P, mn
mn = — G, Fin 0
B0Fm. Gy~ “ma @G Fm) <
and oP
el = mn Q(Fma Gn) <0

0Q(Gn, Fn) ~— m+n
almost surely as Q(F,, Gy,) and Q(Gy,, Fy,) are almost surely positive. Hence, Py, , is strictly

same-attraction.
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2.2 Power Analysis

As indicated above, the definition of a strictly same-attraction function imposes a constraint
on the sign of the partial derivatives. They must be consistently positive or negative and
cannot equal zero. This characteristic potentially makes a strictly same-attraction function
more effective than a non-strict same-attraction function in most cases, as zeros do not
maintain the directionality of the StS central-outward ranking. Nevertheless, there are ex-
ceptions to this generalization, as illustrated in Example 2.1.2, which is less powerful than
M, , in practice; see simulation results in [41]. Therefore, a more strong criterion is needed
to determine the benefit in power of one same-attraction function to another. This criterion

is elaborated in Proposition 1.

Proposition 1. Suppose there are two same-attraction functions, Gi(Q1,...,Qr) and
Ga(Q1,...,Qr). Given a type I error probability «, there are two decision rules:
G1(Q1,-..,QL) > can and Go(Q1,...,QL) > ca2 s0 that Py, [Gr(Q1,...,QL) > cay] = @
for r = 1,2. If % > E‘:—; under Hi, then Gi(Q1,...,Qr) is more powerful than
gZ(Qlu .. 7QL)'

The proof of Proposition 1 hinges on the fact that Py, [Gi1(Q1,...,QL) > ca1] >
Py, [G2(Q1, ..., QL) > cazl

This criterion provides a framework for comparing the efficacy of various same-attraction
functions. The following examples demonstrate its application in evaluating the power of

different types of same-attraction functions.

The following examples will apply the criterion to compare the power of many different

types of same-attraction functions.

Example 2.2.1 (Maximum statistic [41]). Continued the Example 2.1.1, the maximum
statistic My, is more powerful than either )1 or (2, which can be further verified by
the Proposition 1. Let Gi = My, , G2 = @1 or Q2. We observed that G; > Ga. Moreover,
both M,,, and Go converge in distribution to X% under Hy, leading co,1 = cq,2, Where
P(x? > Ca,1) = . Therefore, % > EZ—; = 1, indicating that G; is asymptotically more

powerful than Gs.

Example 2.2.2 (Weighted average statistic [41]). Although W, (w1, w2) is strictly same-

attraction, it is less powerful than M, ,,. From definition, My, , > Wy, (w1, w2). Moreover,
both My, n, Wiy n (w1, w2) 4 x? [41]. Therefore, ca1 = ca2, Where P(x3 > ca1) = o

Therefore, % >1= EZ—:;, indicating that M,,, is asymptotically more powerful

than W, » (w1, wa).
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Example 2.2.3 (Minimum statistic [8]) My, ,, have the same asymptotic power with M, .
This equivalence is demonstrated by M, —> |/\/ (0,1)| and (M, ,)? 4 x3. Detailed expla-

nations and proofs can be found in Theorem 3 in Chapter 2.3.3.

Example 2.2.4 (Sum statistic [8, 19]). We note that the rate of convergence of S, ,, is
very different from that of @1 or Q2. Determining the asymptotic distribution of S, ,
poses a challenge. [19] derived an asymptotic approximation of x? for the Tukey depth in
one-dimensional Euclidean space. Using an alternative method based on the second-order
approximation of the V-statistic and Hoeffding decomposition [27], we derive an asymptotic
Craig distribution for univariate Euclidean depths; details are in Chapter 2.3.1 and 2.3.4.
Consequently, we set co,1 = 1.6566, where P(Sy,,, > cq,1) = 0.05.

This leads to the conclusion that the sum statistic .S, ,, is asymptotically more powerful

than the maximum statistic M,, , in certain scenarios. For instance, consider the condition:
Q(Fin,Gn) + Q(Gn, Fy) < ¢*, (0< g™ <1). (2.6)
This condition often applies in cases of mean shifts (see Chapter 3.1). Then,

Smn  —(E+1)75(Q <Fm,G> Q(Gr, Fn) — 1
Vv Mm,n ﬁmaXOQ(Fm’G ‘7 ’Q(GnaFm) - %
L2 -+ )
> Vi ,
S 1.6566 n )_
> e

suggesting that S, , is asymptotically more powerful than M,,, under the specified con-
dition in (2.6).

D=

as ( — 00,

1 1
mon

Example 2.2.5 (Product statistic [8]). The asymptotic distribution of P, ,, for univariate
Euclidean depth can be obtained in a manner similar to that of S, ,,; detailed explanations
are provided in Chapter 2.3.2. Setting ov = 0.05 and c,,1 = 0.9384, we find P(Pp, 5, > cq,1) =

0.05; see Chapter 2.3.4. Additionally, under the condition specified in (2.6), the inequality
Q(Fm, Gr) X Q(Gn, Fy) < (¢7)%/4 < 1/4 holds, which indicates that P, , can capture

more mean change than S, ,,. Consequently, we derive

Pm,n o _(Q(meGn)Q(GmFm) - i)(%
My V12max(|Q(Fin, Gn) — 3|
2(1/4 - <q+>2/4><% +3)”
V12

0.9384 1 1
> ,as (—+ —
3.84 mon



indicating that P, , is asymptotically more powerful than M,, , under condition in (2.6).
It is also noteworthy that S,,, and P, , are comparable, as they have similar asymptotic

distributions.

Moreover, we could visualize the rejection region through figures.

The Figure 2.1 below illustrates the rejection region of Sy, n, Pmns Mmn, Q(Fm,Gr),
and Q(Gy, Fy,) under univariate Euclidean depth. The simulations are conducted for 1000
simulations with m = n = 100. Blue triangles are the @) Statistic values under the alternative
hypothesis with F = N(0,1), G = N (0.8,1.2); and the purple dots are the @ Statistic values
under null hypothesis with F = A (0,1), G = N(0, 1). The rejection regions are shaded with
colored lines.

As shown from the figure, almost all the Q Statistic values are covered by rejection
region of Sy, n, Prm.n; the majority of the Q Statistic values are covered by rejection region
of My, . The rejection region of My, , is the union of the rejection region of Q(F,,Gy)
and Q(Gyp, Fy,), which means M,, ,, is a more powerful test than considering only one of
Q(F, Gy) or Q(Gy, Fipn).

In the subsequent section, we will show the asymptotic distributions of S, , and Py, ,
for univariate Euclidean depths and provide an extension to the multidimensional case for
all depths.

2.3 Asymptotic null distribution
2.3.1 Sum Statistic

The asymptotic distribution of S,,, when common distributions are normal is shown in

following theorem, the proof is based on Hoeffding decomposition and V-Statistics.

Theorem 1. Consider two independent and identical (iid) samples of the random variables
T1,22, ..., Tm and y1,ya, ..., Yy, from the normal distributions F' and G, and denote the
corresponding empirical distributions as F},, and G,,, respectively. Under the null hypothesis
F = G, the asymptotic distribution of S, ,, follows the related Craig distribution [14] in

one-dimensional Euclidean depth (1.3):
Sm,n i> —2122, (27)

where Z; ~ N(0,1), Zo ~ N (0 Cov(Zy1,Zy) = —L.

A,

Proof. Under one-dimensional Euclidean depth,

Gn) +Q(Gn, Fin) —

Q(Fn
1o 1
_nTZlZI 1+az—x)2§1+(yj—i)2)
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Q(Gn,Fm)

Q(Gn,Fm)

Q(Gn,Fm)

£
g
i<}
0'0 DI2 DI4 DIG OTB 1'0 0‘0 0‘2 0‘4 0‘6 0‘3 1 ‘D
Q(Fm,Gn) Q(Fm,Gn)
(a) Rejection region of Q(F,,,G,) (b) Rejection region of Q(F,,, Gy)
3 Eo
H
<]
0'0 DIZ 0'4 0'5 OTB |I0 0‘0 0‘2 0‘4 D‘G 0‘6 1 ‘D
Q(Fm,Gn) Q(Fm,Gn)
(c) Rejection region of M, ,, (d) Rejection region of Sy, ,
DIO DIZ D; DIS OIB 1 IO

(e) Rejection region of P, ,,
Figure 2.1: Rejection region of Syrn, Pmn, Mmn, Q(Fm,Gr), and Q(Gy, Fy,) under uni-

variate Euclidean depth. Blue triangles (F = N(0,1),G = N(0.8,1.2)); purple dots
(F =N(0,1),G =N(0,1)) .
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1 & 1 1
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D B DR L B U REEE o b (U e R D
i=1j=1 =15=1
=SS M- >y~ 7))~ I~ 5 2 (35— 5))
i=1j=1

Denote V(\) = % Yoty Z?Zl I((z; — N\)? > (y; — A)2) — %, and V(A1,A2) = V(A1) —
V(A2) = 7= SO S0 I (2 — M) = (y5 — M)?) — T((wi — X2)? > (5 — A2)?).

By Hoeffding decomposition, V() can be decomposed to

vy = %iZI((mz—A)Q > (y; —)\)2)—%
i=1j=1
1 & 1
= g;EyI(m — NP2 (=N -5
+o S Bul((@i = NP> (5~ M) — 5 + Op(--)
7=1

V(A1) = ;iEyI«xz — )22 (g5 — M) = I((@i = X2)? > (y — M2)?)
=1
S B M 2 (- M) I 202 (- M) +opl )
j=1

By Taylor expansion and approximations to non-central chi-squared distribution [13],

EyI (i — M)* > (y; — M)%) = I((zi — A2)® = (y; — A2)?)
(i — >\1)2) B F((ﬂﬁi —Xo)?

1+ A2 14 A3
by approximations to non-central chi-squared distribution [13]
=F((zi = M)*) = F((@i = 22)") + Op(A %) + 0p (A7) + Op(AT%) + 0p(A;)
=F(a}) = 2w f(27) = F(2]) + 2007, (27) + 0Op(A*) + Op(A57) + Op(A ) + 0p (A7),
by Taylor expansion
= — 20@if(2f) + 200 f () + Op (A7)
= — 22 f(27) (M — X2) + Op(A7?)

=F( )+ 0,(A\?) + 0p(\y?), where F is CDF of 3,

25



and

EpI((xi = M)% > (g5 — M)?) = (@i = X2)? > (y5 — M2)?)

== -

=—F((y; — M)*) + F((y;
== F(y7) + 2y, f(y7) + F(y;

=2M1y; £ (y7) — 2Xay; f(y3) + O
=2y;f(y}) (M1 — A2) + Op(A\1?)

( Yj )‘2)2 -3 -3
1+ F( +)\% )"'Op()w )+Op()‘2 )

1
22)%) + Op(AT%) + 0p(A2°) + Op(AT?) + 0p(A37)
) — 2oy, f (?Jg) + Op()‘1_2) + Op()‘2_2) + Op()‘l_Q) + Op()‘Q_Q)
p(Ar%)

As A, Ao = 0, V(AL A2) = = 3070 =22 f (27) (A1 — Xo) + 5 X000 205/ (7)) (A — Aa) +
[Op(;5) + Op(;)]IA = Aal-

Therefore, V(Z,§) = 5 X%y =2 f(x7)(T — §) + 5 71 20:f (v7) (& — §) + [Op(5;) +
Op()]E — 7l

In order to find the distribution of V(Z, y), we need to find the expectation and variance
of —2x;f(z?) and 2y, f(y; 2), with details:

E[—Qiﬁif(l‘?)]
—/ 2nf et dowre Si) = o) b gt = et
n T
—00 27‘(‘
=0
and
E[(=2;f(x7))]
=E[4a} f*(x 2)]
/ 4zf2 z) dz, where z = xz,f( ) =g(z) = \/1272—56—;
T
—/ 42’ ,z 2@ 37de
\fw

Hence, Var[—2z;f(a7)] = E[(=22;f(27))?] — E[-22:f(27)]* = 2~
In a similar way, E[2y; f(y )] =0 and Var[Qyjf(y]Z)] = ﬁ
Therefore,

N +nmz 2wi f(22) + ZQy] (42)) ~ N“)’?m)

] 1
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Since (z — ) ~ N(0, = 4+ 1), then /- (& — ) ~ N(0,1).

We can get the normalized S, ,, specifically

mn _ . d
Smn - —m+nV($7y) — —21Z2,

where Z; ~ N(0,1), and Zy ~ N (0, ﬁ), with Cov(Zy, Zs) = — 1.
The covariance between Z; and Z5 can be computed as:

First, we have

B[-2a7 f (a7)]

o0 1 1 x4
= 222 (12 2y dx: . wh N = (g 2e N = -
/—oo xzf(mz)g(xz) Zi, where f(xz) \/%(372) € 7g(x2) me
oo 1 zZ z
:/ —222 — 2" YeT2e72 duy, with z = 27
0 27

1
T
Then, Cov(z;, —2x; f(2?)) = E[—2z2 f(2?)] — E[z;)E[—27;f(z?)] = —% —0= _%'
Similarly, Cov(y;, 2y, f(y3)) = 1

Therefore,
Cov(Z1, Za) = Cov(y| ———(z — §), | —— (ii—zx f(x2)+12nj2 Fw2)
17 2) — m+n y7 m+an:1 3 7 n]:1 y] yj
" Con(s - 5y 3 ~2wif(a) + 32, (4)
= ov(ZT —y,— Y —2x;f(x; — f(ys
m+n y’mi:1 HAT n = Y3IY;
mn 1 & 1 &
_ - (2 - g2
Tt n[COU(l‘, E;—Qfﬁzf(f’fi)) — Cou(y, n]z::lzy]f(yjm
mn 1 1
= [ Cov(ai, =2wi f(x7)) = —Covly;, 2y;.f ()]
__mn [i 1 l(l)]
Cm4n'm W n-mw
1
oo
O
Remark 1. The convergence rate "% in Sy, , apply to other multivariate distributions

F and G and to all depths, which provides a further theoretical support for broader appli-
cations. Under regular conditions, we can obtain a form similar to that shown in Theorem
1.
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Sm,n% { Z nyF xlv ))[D(xl’Fm)_D(xlan)}
Tllz yJ’F))[D(yj;Fm)_D(yj;Gn)]}7

where Fp ) () and fp(y,r)(-) are the distribution function and density of D(z; F) respec-
tively. For one-dimensional Euclidean depth (1.3), the extension is consistent with the result

of the theorem.

Proof.
mn
mmn — Fman naFm_l
S =~ QU C) + QG i) 1)
= I zam<D i Fm
e S 0 (5 )

+—ZZI y], n) < D(xi;Gp)) — 1]

i=17=1

_ L S S (D@ F) < D(ys: F)) — I(D(a: G) < Dy G))]}
15=1

m+n mn =

By Hoeffding decomposition,

1

gmn:_ern{mZE[xz,yj,Fm,G +— ;Elxz,y],Fm,G)—i—O(mn)}a

where I(xi,yj; Fin, Gn) = I(D(xi; Fn) < D(y;j; Fn)) — 1(D(xi; Grn) < D(y;5Gr)).
By the following two assumptions,

(1) Under null hypothesis Hy, F' =G

(2) The limit of empirical distribution F, is F.

According to above two assumptions and using Taylor expansions, we have

E,I(D(z; Fr) < D(yj; Fn))
~EI(D(zi; Fin) < D(y;; F))
=1 — Fp(y;r)(D(xi; F)), where Fp(,.r) denotes distribution of D(y; F)
=1 — Fpy,r)(D(xs; Frn) — D(; F) + D(x; F))
~1 = Fp(yr)(D(i; F)) = fp;r) (D(2s; F))[D (i Fn) — D(wi; F)]
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and

EyI(.D($'L,Gn) < (y]7Gn))
EyI(D(QTan) < (yJ7G )
~E,1(D(zi; Gp)

=1 — Fp(y;r)(D(4; n) where Fp(,.r) denotes distribution of D(y; F")
=1 — Fp(y,r)(D(2:;Gpn) — D(x3; F) + D(zi; F))
~1 = Fpyp)(D(wi; F)) = fpy;r) (D(@s; F))[D(2i; Gn) — D(wi; F)].

D

D )
< D(y;; F))

.G

G

Therefore, we have 1 57 Fy (1, 53; Fon, Gn) = & 531 — iy (D (s F)) (D (s i)~
Similarly,

ExI(D(xi§ Fm) < D(yj; Fm))
~E.I(D(zi; F) < D(yj; Fn))
=Fp(e,r)(D(Yj; Fim))
~ED(e,r) (DY F)) + [p(a,r)(D(y;5 F))[D(ys; Fim) — D(y;; F)],

and
E.I(D(z;;Gy) < D(y;; Gn))
~E,1(D(z;; G) < D(y;;Gn))
=Fp(z,r)(D(y5; Gn))
~Fp(a,r) (DY ) + (ar) (D(ys; ) [D(y; Gn) = D(yj; F)];
Therefore, 37 Exl(zi,yj; Fn,Gn) = 5 X5t fo(er) (D(yss F)ID(y;: Fn) —
D(yJ7Gn)]

Then, S, can be written as

Z nyF HJZ, ))[D(mvam)_D(qun)]

Smn%_
’ m+n m

+ Z f(@ir)y (D55 F)[D (5 Fin) = D(ys; Gn)l}-
j=1
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For S;,, under one-dimensional Euclidean depth, we can use Euclidean distance to

replace the depth functions. Therefore,

Sm, d(wi; F))[d(wi; Fin) — d(i; Gn))

m +

12 Futer @z F) [y F) — dlyss G}

where d() represents Euclidean distance, and Fy,.py and fy,,r) are CDF and PDF of
distribution d(zx; F).

Then we have d(z;;Fy) = (v; — )2 Jdyp Fr) = (y; — )2, d(z; Gn) = (2 —
9)?,d(y;; Gn) = (yj — 9)* d(zi; F) = 2f,d(y;; F) = y3. Then, fyq.m(d(zi; F)) = f(z3)
and fy(pp)(d(y;; F)) = f(yjz), where f is density of x?.

Sm,n ~ = m+ n m Zfd(y, lila ))[(:CZ - j)Q - (:El - g)2]
+ - Z Fager) (dCyzs F))(y; — 2)* = (y; — 9)°]}
1 n
= me )(2z; — T — 7)] ﬁz:: -2)(2y; —z—y)]}
- ;zf g - 2] + jlg )@ - 72051}
= [ G-a) mmfn[;;ﬂx?)zmn;—f@?ﬂyﬂ

Since /(5 — @) ~ N(0,1) and /e [L ST f(af)22; + 5 3y —f(7)2y,] ~

(0, ﬁ), S L — 7175, where Z; ~ N'(0,1) and Zy ~ N(0, f ), with Cov(Zy, Zo) =
_1

Properties of S5, .,

PDF and CDF
The probability density functions Sy, , can be written as fg(x):

fs(ﬂﬂ):ﬂr - f/
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fs(z) is derived in the following way:

First, the correlation coefficient p = Cov(Z1,22) _ —4/ %, where o0, ,0,, are standard

0'210'22

3=

1 —
deviation of Z7, Zy respectively. The covariance matrix is: X = ( 1 9 ) .
T Br

The density of S, , is:

1 - 1@ [Z%+\/§Z122+7\/§ﬂzg]
T

f(a1,22) = ——=—==¢ *~

To find P(—Z1Z> < x), there are two cases: > 0 and x < 0.
e x>0

1. z1 > 0, then zo > —%,
00 00
P(—Z122 < $) = P(leg > —l‘) :/ le/ f(zl,ZQ) dzs.
0 _x
21
2. z1 <0, then 25 < —%,
0 e
P(—21Z2 < $) = P(leg > —$) = / le/ f(Zl,ZQ) dzs.
—0c0 —0c0

e <0

1. z1 > 0, then 2z, > —%,
00 00
P(—Z1Z2 < ZL') = P(21Z2 > —l’) :/ dzl/ f(zl,ZQ) dzs.
0 _x
z1
2. z1 <0, then 29 < —Z%,
0 e
P(—21Z2 < SU) = P(lez > —SC) = / dzl/ f(zl,ZQ) dzs.
) —0c0

Both > 0 and z < 0 will have

o0 o0 0 -z
x) :/ dzl/ f(z1,29) d22—|—/ dzl/ ! f(z1,292) dz
0 -z _ _
/ 217_7 dZ1+/ f( 21,—f _7)d21

—2/ f 21, — le
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Sum Statistics density plot
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Figure 2.2: The true (blue) probability density functions vs. the estimated (red) density
function for fg(x)

Z%-f— \fwa: )
1 d2‘1

1\3
ﬂ\a

_ frarc /
Ty /
We plot fs(x) in Fig. 2.2, compared with simulated density with m = n = 1000 and
10,000 repetitions. It can be seen that the densities are skewed to the right and the peaks

are sharp.

The cumulative distribution function of S, ;, is:

lﬁ (224V/3z120+ Y37 22)
—¢ 2*7 dz1 dzs.
—21z2<m

2r—+/3
V312

Expectation and Variance
Since Sy,n 4, — 717y, and Cov(Zl, Zy) = —l we can write Zs as a variable related to
71, which is Z5 = —fZl + .,/ \f WQ 20, Where Zy ~ N(0,1).

Therefore, the expectation is E[—Z1Zs] = —(—1) = 1
The variance is calculated as
1 2 1 1 2 1
E[(—=2%122)*] = E[Zl( 523+ (= — )20 — 2= | —=— — = Z17Z)]
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= E[— 1+(E 5)212y — 2 P 1 Zo]
= B2+ (= ) B2 ~ 2| — L2z
B+ (=)0
v V3r w2
22
= =t
Var(—Z12y) = E[(-=Z17)% — E|—Z1%5)?
2 2 1,
=T (-)
2 1

2.3.2 Product Statistic

The asymptotic distribution of P, , with common normal distributions is similar to Sy, .,

shown in following theorem.

Theorem 2. Consider two independent and identical (iid) samples of the random variables
T1,22,...,Tm and y1,yo,...,y, from the normal distributions F' and G, and denote the
corresponding empirical distributions as F},, and Gy, respectively. Under the null hypothesis

F = G, the asymptotic distribution of P, ,, follows the related Craig distribution [14] in
one-dimensional Euclidean depth (1.3):

d 1
Pon = 72 — 52122, (2.8)

where Z; ~ N(0,1), Zy ~ N(0
pendent of Z; and Zs.

’ﬁ% Z3 ~ N( a12) COU(ZlaZ2) - —%, and Z3 is inde-

Proof. For Py, ,, under one-dimensional Euclidean depth,

QFn ) % QG Fin) —
1 m n 1
_%Z ]221 T 33)2S1+(yj*53)2)
mn;;:ll )2§1+(xi—zj)2)_1
nini 1 <w—w>2>><niniif<<y] 9> -5 -
i=1j=1 i=1j=1
- %ZZM o - ) - N LSS Ky -9 2 (- ) -
i=1j=1 i=1j=1
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PSS S T =) > (g~ )~ I~ 9)° > (g~ 9)°)]
i=1j=1
Y M- 2 (= D) gl x [y~ T~ 9)° > (g5~ 9)°)
i=1j=1 i=1j=1
* %[% YD (@i =2 2 (y; —2)°) — I((2i — §)* = (y; — 9)°)]
i=1j5=1

By Hoeffding decomposition, we have

VO = 353 = 0 2 ) -
i=1j=1
= % > EyI((z; — N> (y; — N)?) — %
=1
1y 2 2 1 1
+ =D EuI((w = )= (g = N)) = 5+ O0p(—),
j=1

and

=1 j5=1
Y ((C I L D
2 m = Y ’ -\
+1—liE (25— A2 > (g — A)2) + Op(—)
B = x i = \Yj pmn'

By Taylor expansion and approximations to non-central chi-squared distribution [13],

EyI((zi = A)? > (y; = A)?)

(zi — A)?

—F( )+ 0,(A%), by [13

=F((2;i = N)?) + 0p(A7°) + 0p(A7%)
=F(z2) — 2z M f(z2) + Op(A73) + O, (A7) + O, (A7?), Taylor expansion

and

ol (i = 2 > (55 = V)°)
)2
=1- F(m) +0,(A7®), by [13]
=1 = F((y; = M) + 0p(A°) + 0p(A7?)
=1- F(y?) + 2)\yjf(y]2») +0p(A7%) + 0p(A72) + 0,(A2), Taylor expansion
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Therefore,

S F(a) — 2 f(a) — 5

3"~ F?) + 2235 6) + 5 + Opl(—-)

“ 1
> F(@}) = 22Mf(2]) — 5

1 2 g2y L B
njzl F(yj) + 2y () + 5 + Op(-—)

As 7 = 0, Vi(2) = ;5 I [F(27) — 2232 f (27) — 5] + 3 i [=F (y3) + 22y, f (43) + 5).
As § = 0, Va(y) = —5 S [F(2]) — 2239f (27) — 3] = 5 X7 [= F(yj)+2yygf(y)+%

V(@Vala)

L D) 2 )~ )4 S Pl + 28010 0) + )

g SAP(E) ~ 203 ) - 51 - ig[ F(2) + 200, 02) + 1]

= [y AP -2 a]) - 5]+ ijf:l[—F(yj) 422, £ + 2]

<l U ~2rinfad) g1+ S + 2050 + )

= (6 3 2D + ]212% W)+ 3 PG = )+ iji(—”y?) )
iy 32+ zzy] )+ L) - ) + ,}é<—F<y§> + )

From the proof of Theorem 1, we have the following distributions,

mn _ _
Zy = m+n(:r—y)~/\f(0,1),

and

Zo =/ +nmz 2x; f (x7) + — Z2y] F3) ~ N(o,\/;r).

j 1

The distribution of n(Lsm (F?) -4+ 1 Z 1(=F(y 2) + 1)) is as follows:

m+n
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Both F(x?) and F(yJQ) follows uniform distribution U(0,1) as P(F(2?) < z) =
P(z? < F~(z)) = F(F~Y(z)) = =. Then E[F(z})] = E[F(y3)] = 5 and Var[F(z})] =
Var[F(y3)] = 1. Therefore, E[F(2}) — 3] = E[-F(y}) + 3] = 3 —3 = 0, and
Var(F(e) - §) = Var(-F(3) + ) =

Hence, F(z}) — 5 ~ N(0,5) and —F(y3) + 5 ~ N(0, 1)

Therefore,

L
2

1

1 & 1 1
Zo= [ G S njz_jleF(y?) +3) ~ N, 5.

Then, the normalized form of V;(z)Va(y) can be written as

— fnvl(:z)vg(g) = (222 + Z3)(§ 22 + Z3)

= 2yZ3 + (T +§)Z2Z5 + Z3

1 1 1
_ 72 = _
_ZB+OP(W)+OP(\/R)+OP(\/E)7
From Sy, —ZLV(3,5) 5 —Z17, where V(z,5) = 3L Sm, Sr I((ws —
2?2 > (g — %) = (@ —9)? > (g — 92, %21 = /722 (z - ¢), and Zp =
(LS =2 f (xF) + 5 0 25 (43))-
Therefore,
___mn 1 mn _ovd oo 1
Pm,n— m+n Vl( )‘/2( ) 2m+nv( ) )_>Z3 Z1Z2a

where Z1 ~ N(0,1), Zz ~ N(0, 2-), and Z3 ~ N(0, 13), with Cov(Z1, Z2) = —5. Zs is
independent of Z; and Z,.
The following calculation will show independence of Z3 with Z; and Zs.

First, we have

Then, Cov(z;, F(2?) — &) = Elz(F(2?) — 3)] — E[z]E[F(2?) — 4] = 0. Similarly,

Cov(—F(yjz) + %, yj) = 0.
In the same way,

B[22 (s3)(F(23) - 3)
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ohse

= [T 2 @)(F) = o). where g(a,) = —=e”

—00 2

Then, COU(F(HE?)*%»*Q%JC( D) = E[=2w:f («})(F(27) - 5)] - E[F (27) = 3] B[~ 2x: f (27)] =
0. Similarly, Cov(—F (y?) +1 5,2y f(y3)) = 0.

Cov(Zs, Z1)
oo, [ (LS ey - Y L re) 4 by, e - g
m+n m = ¢ 2 n = J 27"Vm+n
=™ oo LS (PE) - Y+ LS e+ L)
m-+n m v 2 n = J 277
= Con( SR - 1).8) - Con(E SRR + 1.9
m-—+n m = g 27 n J 27
= Con(F () - 5,0 — Cou(—F () + 3,0
=0
and
CO’U(Zg,ZQ)
mn 1 & oy 1. 1 oy 1. 1 &
:m+nCOU(E Z(F(%‘) - 5) + - Z(—F(?/j) + 5)» - Z 2z f(z7) + — ZQQJ y] )
i=1 j=1 i=1
= Con(F () — 5,20 (4) + 1 Con(—F () + é,zyjﬂyj))}
=0.

Since all Z1, Z3, and Z3 are normal distribution and Cov(Z3, Z;) = 0 and Cov(Z3, Z3) =
0, Z3 is independent of Z; and Zs.
O

mn
m—+n

Remark 2. The convergence rate in P, , apply to other multivariate distributions
F and G and to all depths, which provides a further theoretical support for broader appli-
cations. Under regular conditions, we can obtain a form similar to that shown in Theorem

2.

Pmn

)

m-+n

2
{;L Z % Py (D(zi; F))] + % Z[FD(:c;F)(D(yj; F)) - ;]} + %Sm,m

J=1

where Fp(,.p(+) is the distribution function of D(z; F') and S, , is Sum Statistic.
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For one-dimensional Euclidean depth (1.3), the extension is consistent with the result

of the theorem.

Proof.
mn 1
Pmn:* me n naFm**
== T [Q(FinsG) + QG Fin) — ]
mn 1 <N
—— - L. < L.
el e ;; I(D(wi; Fn) < D(y;5 )
1 & 1
x 33 1(D(y;;Gn) < D(xi;Gn)) = 4]
i=1j=1
mn 1

and

We have same two assumptions,
(1) Under Hy, F =G
(2) The limit of empirical distribution F, is F.
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According to above two assumptions and using Taylor expansions, we have

EyI(D(zi; Frn) < D(yj5 Fim))

~1 = Fp(,.r)(D(zi; F)) = [pyr)(D(@i; F))[D(@; Fin) — D(@i; F)]
EyI(D(yj; Gn) < D(zi; Gn))

~Fp(y.r) (D@3 F)) + [py.r) (D(wi; F))[D (235 Gn) — D(2i; F)]
EyI(D(zi; Fip) < D(yj; Fin))

~Fp(a;r) (D (Y3 F)) + fD(2;7) (D (y5; F)[D(yj; Fin) — D(y; F)]
E,I(D(yj; Gn) < D(2i;Gn)

~1 — Fp(a;r) (D(yj5 F) = fp(e;r) (D(yj5 F))[D(y;; Gn) — D(y;; F)]

(
)

Therefore, we have

1 m n

= > 2 Fogue(D(@i F)) — S (Dl F))[D(es ) — Diass F)]
=1

S Fia (D )+ F (Dl P05 F) — Dl F)] — 5+ 0y )
j=1

mn

mlngz D(y;; Gn )<D(xZ,Gn))_%
:% Y Fowr)(D(xi; F)) + fp(y.r) (D (@i F)[D(24;Gn) — D(@i; F)] — %
i=1

1_ FD(x,F)(D(ijF)) - fD(x,F)(D(ijF))[D(ijGn) - D(ijF)] +OP(%)

1 n
_i_i

[\

By Assumption (2) the limiting distribution of empirical distribution F, is F', we have

the following approximation
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[% > Fp.r (D@ F)) + fper)(D(@i; F)[D(2s; Gn) — D(xi; F)] — %
=1
¥ 2 Fon (Dl F)) — fogem (Dl F)[D(y: Go) — Dlys: F)]
=1
~- [% > % — Fpy,r)(D(wi; F)) + — ZFD (@) (D(y;; F)) — %]2
=1 j 1

Therefore, P, , can be written in the form

Fmn 2 = mmfn{ B [;i; ~ Fogsm (D(wss F ZFD 5P (D(y;: F)) — %]2
3= Z ity (D F)) D (s F) — D(ais G
;an D{ys: F)[D(w;: F) ~ Dy G}
= {; i[i — Fgun(D(a )]+ = P (Dl ) - ;} 15,

j=1

For P, , under one-dimensional Euclidean depth, we can use Euclidean distance to

replace the depth functions. Therefore,

mn 1 &1 14
Pm,n%_m+n{_[m;2_Fd(y;F) xz: + ZFsz y]aF» 2]

+i[= Zfdy, d(zs; F))d(zs; F) — d(:; G)]

l\.')\r—l

3\'—‘

i s (4055 F) A0 Fr) — (5G]}

where d() represents Euclidean distance, and Fy,.py and fy(,,p) are CDF and PDF of
distribution d(z; F).

Then we have d(z;; Fy,) = — 2)%d(yj; F) = (yj — 2)%,d(z;Gn) = (25 —
9% d(ys: G) = (v — 9)% d(as: > — o2, d(y;; F) = y] Then, Fyy,)(d(zs; F)) = F(a?)
s Fagesry(d(yss F)) = F(y3), fawr)(d ( F)) = f(x7), and fa;r)(d(y;; F)) = f(y3), where
F is CDF of x? and f is dens1ty of x2.

mn 1 e=1 1 1
- ;mm—fn {% Z fad)(@i —2)* = (2 - 9)°] + % Z —fyily; —2)" = (y; — 37)2]}
=1 j=1



Since we have n’;"fn[% St —F(z?) + %2?21 F(y3) — 5] ~ N(0, 75), and Sy =
[ ) (o - 2 (- 9P+ LS —F D) — 2 — (g — 9], then
Popn > 23 — 32175, where Zi ~ N(0,1), Zo ~ N(0,2-), and Z3 ~ N(0, 1), with
Cov(Zy, Zs) = —%. Z3 is independent of Z; and Zs.

O]

Properties of P, ,

PDF and CDF

The cumulative distribution function of P, , is:

\/571' 2
122+621 29 1 . 1 — 1\[ (szr\/gzlngrTzz)
/ / / —t 2e” 2 di] 2- 2 dz1 dzs.

—F—————¢€
271'7\/5
214/ NG

It is derived as:

1
FP(ZE) = P(Zg — 52122 < :L')

1 1 2
o - (122%)
= e 2 3 f(zl, ZQ) le dZQ ng
///zg_;zm<x NorNe

o0 oo
:/ / F(12z + 62z1292) f (21, 22) dz1 dza, where F is X%

122462122 Lt 1 -1 (z%—&-\/gzlzg—l—@z;)
/ / / —t 2¢ 2 dt] ———=e 7 dz1 dzs

27r—\/§
2T Jan?

Al

The F(12z + 6z122) is obtained by E[I(25 — 32120 < 2) = E[I(23 < 2120 + 7) =
F(12x + 62129), as Z3 ~ N(0, 112)

The probability density function of P, ,, can be written as fp(z), which is the derivative
of Fp(x) with respect to x:

00 00 1 f(21+f2122+fﬂ )

:/ / 12fx2(12$+62’122)76 -7 ledZQ,
—0 /00 At 2r—/3

V312

where f,2(122 + 62122) is probability density of X3 at 12z + 621 2.
We plot fp(x) in Fig. 2.3, compared with simulated density with m = n = 1000 and
10,000 repetitions. It can be seen that the densities are skewed to the right and the peaks

are sharp.

Expectation and Variance

41



Product Statistics density plot

25

2.0
|

15
|

1.0

0.5

Figure 2.3: The true (blue) probability density functions vs. the estimated (red) density
function for fp(z).

Since Ppn % 72 — 37175, the expectation is E[Z% — 12,25] = E[Z3] — E[$2125] =

z2
. 3L
Since B[Z3) = El2§] - E[Z3* = [ e *Fatdr — (h) = f — (4)* = 4, the
variance can be computed as Var(Z3—121Zs) = Var(Z3)—3Var(Z12Z,) = %+i(%+#)
Note that we show Sy, , and P, , are related to each other, we can also calculate their

covariance, which is

1
Cov(Pmp, Smn) = Cov(Z3 — 52122, SAVL)
1
= ZCOU(ZlZQ,ZlZQ)

1
= ZVGT(ZlZQ)

1, 2 1
Sl )
2.3.3 Minimum Statistic

Theorem 3. Consider two independent and identical (iid) samples of the random vari-
ables x1,%0,...,2ym and y1,y2,...,Yy, from the normal distributions F' and G, and de-

note the corresponding empirical distributions as F,, and G, respectively. Under the
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1
2
m n

min(Q(Fp, Gn), Q(Gr, F1n))) is as follows, applicable for all depth functions:

null hypothesis F' = G, the asymptotic distribution of My, , = {%( L4 l)}i

M, 5 IN(0, 1)
Proof. By [31, 50, 41], we have the property of Q statistics:
Q(Gn, Frn) —1/2 = 1/2 = Q(Fyn, Gn) + 0p(n~ /%) + 0,(m~1/?),

and [50] showed that under null hypothesis

11 173 1, 4

We have
min(Q(Fn, Grn), Q(Grn, Fin))
1 1 1

=— ’Q(ijGn) — ;‘ + %,under Hy

Hence,
i} 1 1 1173 1 1 1
1.1 1773 1
=[] et e -5 S woa

We could also show that (M, ) LN X3

~1 2
From previous part, we have (M,’;n)2 = [%(% + %)} (Q(Fm, Gn) — %) )
By [50], we have

which means

Therefore, (M, ,)? LN X3
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o 100 200 300 400 500 600 700 800 900 1000 | oo

0.2 | 0.6500| 0.6525| 0.6567| 0.6200{ 0.6352| 0.6425| 0.6521| 0.6650| 0.6261| 0.6561| 0.6417
0.1 | 1.1150| 1.1128| 1.1483| 1.1051| 1.1021] 1.1393| 1.1301| 1.1600| 1.1253| 1.1390| 1.1312
0.05| 1.6150| 1.6100| 1.6601| 1.6350| 1.6171] 1.6959| 1.6237| 1.7025| 1.6250| 1.6523| 1.6566
0.01| 2.8052| 2.7803| 2.8767| 2.9901| 2.8530] 2.9526| 2.8629| 2.9463| 2.9372| 2.9671| 2.9608

Table 2.1: Table of empirical quantiles vs. theoretical quantiles of Sy, ,, for different o with
m =n = 100, ...,1000

o 100 200 300 400 500 600 700 800 900 1000 | oo

0.2 | 0.6533| 0.6433| 0.6467| 0.6517| 0.6547| 0.6289| 0.6514| 0.6392| 0.6639| 0.6453| 0.6417
0.1 | 1.1007| 1.1467| 1.1378| 1.1383| 1.1293| 1.0812| 1.1391| 1.1283| 1.1661| 1.1367| 1.1312
0.05| 1.6203| 1.6533| 1.6313| 1.6650 1.5947| 1.5867| 1.6286| 1.6578| 1.6853| 1.6093| 1.6566
0.01| 2.7733| 2.8501| 2.8089| 2.9218| 2.9653| 2.8023| 2.8420| 2.8934| 2.9459| 2.9187| 2.9608

Table 2.2: Table of empirical quantiles vs. theoretical quantiles of Sy, ,, for different o with
m = 2n = 100, ...,1000

2.3.4 Convergence rate

Sum Statistic

To further demonstrate the rate of convergence for distributions of Sy, ,, we conduct a
simulation study. Assume there are two equal distributions F' = G = N(0,1) with mean
0 and variance 1, with sample size m and n respectively. Consider sample size m varying
from 100 to 1000, i.e., m = 100, 200, ...,1000, and two cases of sample size n with either
n = m or n = m/2. As we proved the asymptotic distribution of S, ,, under Euclidean
depth, we repeat the generation 10,000 times and compute empirical o quantiles, with
a = 0.2,0.1,0.05,0.01. The empirical quantiles are then compared with the theoretical
quantiles by assuming m,n — oo, based on the asymptotic distribution of S, ,, specified
in (2.7). This comparison is intended to quantitatively assess how well the finite sample
distributions of Sy, , match their respective asymptotic behaviors, concluded in Table 2.1,
2.2 and Figure 2.4.

The plot of the comparison of empirical quantiles of Sy, ,, for different 1 — o quantiles:
80% (Row 1), 90% (Row 2), 95% (Row 3), 99% (Row 4) are shown in Figure 2.4, comparing
with theoretical quantiles (in red). The detailed values of empirical quantiles vs. theoretical
quantiles are also summarized in Table 2.1 and 2.2.

As shown in Tables 2.1 and 2.2, there is significant agreement between empirical and
theoretical quantiles at different « levels. For all evaluated values, the empirical quantiles
are very close to the theoretical quantiles, except for o = 0.01 which requires a larger sample
size. This observation holds true even with relatively small sample sizes, thus demonstrating
the fast convergence rate of the asymptotic distribution of \S,, , and in approximating the

behavior of their finite sample counterparts.
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Figure 2.4: Comparison of empirical quantiles of sum statistic under one dimensional Fu-
clidean depth for m = 100, ...,1000 with n = m(1st column) or n = m/2(2nd column) for
different 1 — o quantiles: 80% (Row 1), 90% (Row 2), 95% (Row 3), 99% (Row 4). The red
line denotes the theoretical quantile.
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o 100 200 300 400 500 600 700 800 900 1000 | oo

0.2 | 0.4342| 0.4372| 0.4471| 0.4331] 0.4324| 0.4400| 0.4470| 0.4528| 0.4234| 0.4457| 0.4379
0.1 | 0.6656| 0.6729| 0.6869| 0.6714| 0.6701| 0.6775| 0.6763| 0.7014| 0.6794| 0.6840| 0.6818
0.05| 0.9008| 0.9187| 0.9402| 0.9232| 0.9337| 0.9532| 0.9204| 0.9606| 0.9357| 0.9452| 0.9384
0.01| 1.4527| 1.5048| 1.5473| 1.5930] 1.5522| 1.5883| 1.5222| 1.5673| 1.5816| 1.5739| 1.5706

Table 2.3: Table of empirical quantiles vs. theoretical quantiles of Product Statistics for
different o with m = n = 100, ...,1000

o 100 200 300 400 500 600 700 800 900 1000 | oo

0.2 | 0.4398| 0.4308| 0.4234| 0.4540| 0.4289| 0.4432| 0.4358| 0.4432| 0.4373| 0.4360| 0.4379
0.1 | 0.6568| 0.6651| 0.6746| 0.6992| 0.6703| 0.6988| 0.6795 0.6828| 0.6827| 0.6821| 0.6818
0.05| 0.8674| 0.9008| 0.9156| 0.9493| 0.9115| 0.9355| 0.9195| 0.9301| 0.9370| 0.9401| 0.9384
0.01| 1.391 | 1.4810| 1.5149| 1.5050] 1.5231] 1.5659| 1.5666| 1.5227| 1.6081| 1.6014| 1.5706

Table 2.4: Table of empirical quantiles vs. theoretical quantiles of Product Statistics for
different o with m = 2n = 100, ...,1000

Product Statistic

Similar to Sy, ., the same procedure is applied on F,,, to show its convergence rate.
With the same condition of distributions and sample sizes, we generated 10,000 rep-
etitions to compute the empirical quantiles of Product Statistic for different o values
(o = 0.2,0.1,0.05,0.01) and different sample sizes (n = m and n = m/2), comparing
with theoretical quantiles (when assuming m,n — o). The plot of empirical quantiles is
presented in Figure 2.5, comparing with theoretical quantile (in red line). The detailed
values are also summarized in Tables 2.3 and 2.4.

For all evaluated values, the empirical quantiles of P, , are close to the theoretical
quantiles even when sample size is small for all « values, except for @ = 0.01, which requires
a larger sample size. The conclusion is same as Sy, , that the convergence rate of asymptotic

distribution of P, , is fast.

Minimum Statistic

Since we proved the asymptotic distribution of M}, ,,, which is applicable for all depth

o
functions, we make comparisons of convergence rate of My, , for multivariate cases with
these three depth functions: Mahalanobis depth [31], Spatial depth [7, 20], and Projection
depth [29].

We considered random samples x1,x9,...,2yn and y1,yo,...,y, from distributions F
and G, respectively, with sample sizes m and n. Assume we have two equal distributions
F = G = N(0,I2x2), where N(0, I5x2) represents the bivariate normal distribution with
mean vector 0 and two-by-two identity covariance matrix. We varied the sample size m
from 100 to 1000, with n set as either m or m/2. Since we proved that the minimum

statistic My, ,, follows a half-normal asymptotic null distribution, we used the upper 95%
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Figure 2.5: Comparison of empirical quantiles of product statistic under one dimensional
Euclidean depth for m = 100, ...,1000 with n = m(1st column) or n = m/2(2nd column)
for different 1 — v quantiles: 80% (Row 1), 90% (Row 2), 95% (Row 3), 99% (Row 4). The
red line denotes the theoretical quantile
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Figure 2.6: Comparison of empirical 95% quantiles of minimum statistic M, for m =
100, 200, . .., 1000 and n = m (1st column) or n = m/2 (2nd column).

quantile (1.96) as the theoretical quantile in this case. We conducted simulations with 10,000
repetitions and plotted the empirical quantiles of the Minimum Statistic in Figure 2.6. The
empirical quantiles based on different values of m, n, and different depth functions were
compared with theoretical quantiles. From the results, we observed that the Mahalanobis
depth function had the fastest convergence rate compared to the Spatial and Projection

depth functions.

2.4 Permutation Algorithm

The previous subsection introduces the asymptotic distributions Sy, , and P, . This sub-
section extends the discussion to the power of these statistics under permutation testing
approach, which does not require the estimation of parameters in the asymptotic distribu-
tion and can be applied to other depth measures such as Mahalanobis depth [31], Spatial
depth [7, 20], and Projection depth [29], with further simulation studies detailed in Chapter
3.

Acknowledging the permutation tests are inherently time-intensive, we employ the
Strategic Block Permutation Algorithm [46, 11]. Initially, the raw test statistic 7' such
as Sm,n and Py, , is calculated from the empirical distributions F},, and G,. We divide all
samples in Fy, into by blocks of size s, i.e., by = ", and all samples in G, into by blocks,
i.e., by = 7. Assume that the total number of blocks for all samples z1,...,Zm, Y1, .-, ¥n
is N = by + by. Combining all NV sample blocks together denotes all sample blocks as
Z = (Z1,..., 2y, Zty4+1s- - -y Zby+by), Where the first b; sample blocks come from F, and
the second by sample blocks come from G,,. Then, by randomizing all the blocks, there is
a total of N! permutations, denoting the set of all permutations as (mw(1),...,7(N)). After
randomizing all blocks, we have Z = (Zz(1)»- - > Zr(n))- Considering the first by blocks as
F,, and the next by blocks as the G,,, we derive the new test statistic 7* from the F,, and
G,,. By calculating all T* values, in a one-sided test, the p-value is calculated based on the
proportion of all 7% for which T* > T.

The pseudo-code for the Strategic Block Permutation Algorithm to compute the p-value

is as follows:
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Algorithm 1 Pseudo-code for the Strategic Block Permutation Algorithm

Determine S?nm and P,%,n test statistic values from Fy,, and G,,.
Set block size s and number of repetitions C.
Calculate the total number of blocks B = (m +n)/s.
for i =1to C do
Permute all B blocks,
Produce F}, from the first b; permuted blocks,
Produce G,, from remaining blocks,
Calculate new Py, . Sy, ,, values from F,, and G,.
end for
Let p-valueg=>_[1(Ss, . > S5,..)]/C.
Let p-valuep=3_[I(P},,, > PJ ,)]/C.
Output p-valueg and p-valuep.

At a predetermined significance level of «, for the Sum statistic, we reject the null
hypothesis if p-valueg < a. As with the Product statistic, we reject the null hypothesis if
p-valuep < a.

To discuss the power of permutation test, we make the following mild condition.

Assumption A. Under alternative hypothesis, F' # G, such that ||@(F) — 8(G)|| # 0,
with @(F) and 6(G) are the parameters of the distributions F' and G, respectively, we
further suppose —[Q(Fn,Grn) + Q(Gr, F) — 1] and —[Q(Fr, Gr)Q(Gy, Fr) — 1/4] can
be approximated by ¢(||0(F) — 6(G)||) + 0p(1), where ¢(z) is a monotonically increasing
function of x.

To justify this assumption, consider Assumption A, where 8(F) = E(X) = 1 # 0(G) =
E(Y) = peo, with X and Y adhering to normal distributions F' and G, respectively, each
with a variance of 1. By Taylor expansions of X and Y around their expectation E(X) = uy
and E(Y') = ug respectively, we have

P = = [B {1 = Fly = i)} = B{[Eal(X — )]} +0p(1),
= —1+2F2[(p2 — 11)*] + 0p(1),
P D = = [B{1 = Fal(Y — )} B {1 = FIX — )]} — 1/4

- {1 — Fe[(p2 — M1)2]}2 +1/4+0p(1),

where F,2 denotes the distribution function of x3. It is evident that both —1 + 262 [(p2 —
p1)?] and — {1 — F\2[(p2 — ,ul)Q]}2 + 1/4 are monotonically increasing functions of (ug —
p1)?.

For multivariate distributions, we draw upon Theorem 6.1 in [31] to extend our analysis.
The statistics —[Q(EFy,, Gpn) + Q(Gr, Fi) — 1] and —[Q(Fin, Gr)Q(Gy, Fy,) — 1/4] can be
represented as 1 —Q(F,G) —Q(G, F)+o,(1) and 1/4—Q(F, G)Q(G, F)+o0p(1), respectively.
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The focus then shifts to demonstrating that

QI =p)F+ G, (1-B)G+pF|+Q[(1 - B)G+pF,(1-B)F + 5G] > Q(F,G) + Q(G, F)

and

Q1 =p)F + G, (1= B)G + BFIQ[(1 = B)G + BF, (1 = B)F + BG] > Q(F, G)Q(G, F)

for 0 < B < 1. As argued by [31], @ decreases if there is a location shift or a scale increase,

or both in terms of contamination:

Q(F’G) <Q[F7(1_/8)G+/8F]
< QM1 =7)F+{(1 =pP)G+pF}, (1 - 5)G + BF]
=Q[(1 - B)F + BG, (1 - B)G + BF],

where v = /(1 — ). A similar argument holds for G(G, F'), leading to

Q(G,F) <Q[G, (1 = B)F + BG] < Q[(1 - B)G + BF, (1 = B)F + BG].
Therefore, the following Theorem 4 follows too.

Theorem 4. Assume Assumption A holds, under the alternative hypothesis, the power of
the permuted Sum or Product tests at the significance level o approaches 1 as both the
block size s and the number of repetitions C in the Strategic Block Permutation Algorithm

go to infinity.

Proof. As each block from the same distribution are the same, we can express ||0(F)—0(G)||
as || 0L, 0(F;) /by — 2, 0(Gy,45)/b2||, where F; and Gy, 1; are distributions of i—th
block and b; 4+ j—th block in combined samples x1,...,ZTm, Y1, - - -, Yn, respectively. For the
permutation (7(1),...,7(N)), we have || 20, O(Fr)) /b1 — 222:1 0(Gr(b,+j))/b2||, which
can be expressed as

| PR TR o = BE B o) - oyt - & - 2,
1 2 1 2

where 0 < ¢ < min(by, ba).
‘We note that

b by
HZ@ i)/b1 — ZO(GbIH)/%H:ge( ) /b1 — 26’ Gr(br+5))/b2l|

2mln!
+n)!

probability ( ) for ¢ = 0 or two samples are exchanged when m = n with probability

with probablhty less than Tmen)D i.e., the permutations occur only within each sample with
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E”'";' for ¢ = by = by. Except these case, for 0 < ¢ < min(by, by). we have

bz bl
HZ@ D/b1 = > 0(Gyg5) /b2l > (1> 0(Frg)) /b1 — Ze (br+5))/b2]l-
j=1 i=1

That’s because —1 < 1 — Rinuba)=l  min(brbo)=l 4 e e cq 1 1 L <1
b1 b2 b1 b2 b1

As s — oo, under Assumption Al, the permuted new S,,, and P, , are less than
their original ones in probability. In addition, the p-valueg and p-valuep converge to the

probabilities of permuted new S,,, and P, greater than their original ones as C — oo,

which is zero and less than «. So, Theorem 4 follows.
O
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Chapter 3

Power Comparisons

In this Chapter, we compare the power of our proposed test statistics, Sum statistic .Sy, ,
(2.5) and the Product statistic P, , (2.4), with other existing methods to show their power
performance for two cases: univariate distribution, and multivariate distribution. For uni-
variate cases, we also compare with a popular test statistics, Wilcoxon rank sum test
(Wilcoxon) [47], which we introduced its property and asymptotic distribution on Chapter
1.

3.1 Univariate distribution

We conducted power comparisons between the Sum statistic Sy, , (2.5) and the Product
statistic Py, (2.4) alongside of other existing methods: M, (2.1), My, ,, (2.3), Depth-
Based Rank Statistics (DbR) [10], Modified Depth-Based Rank Statistics (BDbR) [3], and
the Wilcoxon rank sum test (Wilcoxon) [47]. These comparisons were made within the
framework of one-dimensional Euclidean depth.

We set the significance level at a = 0.05. For M, ,, My, ,, DbR and BDbR, critical
values were determined as the upper 95% quantiles from 1000 replications under the null
hypothesis (F = G = N(0,1)). Power was then calculated as the proportion of instances
across 1000 repetitions where the test statistic exceeded these critical values. For permu-
tation tests based on P, , and S, , using the Strategic Block Permutation algorithm, we
set the threshold for the p-value to be the lower 5% quantile of the simulated 1000 p-values
under the null hypotheses, with the number of repetitions C = 200 and block size s = 25.
The power of the permutation test is then calculated using the proportion of times in 1000
repetitions that the statistic is less than the lower 5% quantile.

We consider three distinct scenarios: change in scale, change in mean, and change in
both scale and mean. The results of these power comparisons are depicted in Figure 3.1,
where rows in a column correspond to the three scenarios, while columns in the same row
representing varying sample sizes, specifically, m = n = 50,---,500 (left) and n = m/2
(right).
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50,...,500 with n = m (1st column) or n = m/2 (2nd column) for change in scale (1st
row), change in mean (2nd row), and change in both mean and scale (3rd row).
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For change in scale, we consider distributions F' = N(0.25,1) and G = N(0.25,1.15).
The results in first row indicate that the product statistic P, ; is more sensitive to variations
in variance compared to the sum statistic S, ,, which shows comparable sensitivity to the

Wilcoxon statistic. The maximum statistic M,, ,,, minimum statistic M}, ,,, DbR, and BDbR

myns
exhibit similar performance levels but outperform P, ,.

For change in mean, with F' = A(0,1) and G = N(0.25,1). The Wilcoxon statistic is
the best. The P, , and S, statistics show comparable effectiveness and outperform the
other considered statistics.

Upon introducing both mean and scale changes, by setting F = N(0.25,1) and
G = N(0,1.15), all tested statistics demonstrate improved performance over the first two
scenarios. The Wilcoxon, P, and S, , statistics notably exhibit the highest levels of
effectiveness.

In summary, within a one-dimensional Euclidean depth framework, the P, ,, can capture
variations in either mean or scale. The S,, ,, and Wilcoxon can only capture mean variations,
whereas the M, n, My, ,, DbR and BDbR statistics are more suited for identifying scale

variations.

3.2 Multivariate distribution

In this subsection, we consider power comparisons within the context of multivariate data,
focusing on multivariate distributions and employing various depth functions. Under the
null hypothesis, we assume F' = G = N(0, I2x2), where N (0, I5x2) denotes the bivariate
normal distribution with a mean vector 0 and a two-by-two identity covariance matrix Ioxo.
Our objective is to assess the power of different test statistics under three distinct scenarios:
changes in scale, mean, and both scale and mean.

Similarly, we set the significance level at a = 0.05. Critical values for My, n, My, ,,
DbR and BDbR are upper 95% quantiles based on the null hypothesis (F = G) of 1000
replications. The power is calculated by the proportion of times in 1000 repetitions that the
statistic is greater than the upper 95% quantile. For the permutations test based on Py, ,
and Sy, , in the strategic block permutation algorithm, we set the threshold for the p-value
to be the lower 5% quantile of the simulated 1000 p-values under the null hypotheses of
number of repetitions C = 200 and block size s = 25. The power of the permutation test
is then calculated using the proportion of times in 1000 repetitions that the statistic is less

than the lower 5% quantile.

(1) Change in scale

For the case of scale change, we consider the distributions F' = N(0,I2x2) and G =
N(0, I5x2 +O.5fgxg), where Ipyo = ((0,1)T,(1,0)"). Power comparisons, depicted in Figure
3.2, are based on Mahalanobis depth, spatial depth and projection depth, for each scenario.
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Figure 3.2: Power comparison under alternative hypothesis F' = N (0, I5x2) against G =
N(0, Iox2 + 0.512x2) for m=50, 100, ..., 500 and n = m (1st column) or n = m/2 (2nd
column) for Mahalanobis depth (Row 1), Spatial depth (Row 2), and Projection depth (Row
3).

It is evident from the Figure 3.2 that all three depth functions exhibit similar trends in the
power of the various test statistics under examination. Notably, P, , and Sy, , are com-
parable and outperform all other tested statistics across all depth functions, attributed to
their efficacy in detecting scale changes. Additionally, My, ,, My, ,,, and BDbR test statistics

show similar levels of performance.

(2) Change in mean

For change in mean, we consider F = N(0,Iox2) and G = N((0.3,0.3)", Iox2). Figure
3.3 demonstrates the power comparison, where the P, , and S,,, not only demonstrate
comparable performance to each other but also consistently outperform the other tested
statistics. In this case, other statistics show relatively low power, and the Maximum Statistic,
Minimum Statistic, and BDbR follow a similar trend and visually fall on the same line in

terms of power.
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Figure 3.3: Power comparison under alternative hypothesis F' = N (0, [2x2) against G =
N((0.3,0.3)7, Iyx2) for m=50, 100, ..., 500 and n = m (Ist column) or n = m/2 (2nd
column) for Mahalanobis depth (Row 1), Spatial depth (Row 2), and Projection depth

(Row 3).
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Figure 3.4: Power comparison under alternative hypothesis F' = N (0, I5x2) against G =
N((0.2,0.2)7, Inxa + 0.41542) for m = 50, 100,...,500 and n = m (1st column) or n = m/2
(2nd column) for Mahalanobis depth (Row 1), Spatial depth (Row 2), and Projection depth
(Row 3).

(3) Change in both mean and scale

We investigated the scenario where both scale and mean change occur. We consider
the distributions F©' = N(0,I5x2), and the other sample was generated from G =
N((0.2,0.2)7, Inxo + 0.4f2><2). The power comparisons, as shown in Figure 3.4, further vali-
date the superior performance of the P, , and S, ,, statistics, while the Minimum Statistic
shows comparable performance to the BDbR.

In conclusion, both P, , and S, , demonstrate comparable and notably high efficacy
across various multivariate depth functions. These statistics have proven to be promising
tools, particularly in scenarios involving changes in mean, scale, or both, within multivari-
ate distributions. Their consistent performance across different scenarios highlights their

potential as versatile and robust choices for statistical testing in multivariate analyses.
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Chapter 4

Real Data Analysis

Our proposed test statistics P, , and Sy, can be applied in real data sets. A significant
contribution is the detection of different types of peaks in spectra data. The same method
is also applied to two data sets: Sloan digital sky survey data and skull data to show
its performance, presenting both estimated p-values and asymptotic p-values, and verified

through scale curves [30].

4.1 Raman Spectrum

Prostate cancer is one of the most common diseases in Canada and the second most common
in the world. Its potential to be fatal underscores the critical importances of early diagnosis
[5]. Additionally, a significant challenge in optimizing treatment protocols is the lack of
consideration for individual patient radiosensitivity when prescribing radiation doses. Con-
sequently, there is a pressing need to develop methods for monitoring radiation response
in individuals undergoing radiation therapy. Various techniques have been explored for this
purpose [24, 15]. In recent years, Raman spectroscopy (RS) has been investigated as a
potential augmentative tool for biochemical analysis of tumour response [15, 2, 12]. RS pro-
vides detailed ‘fingerprint’ biochemical information on various biomolecules (e.g., protein,
lipid, DNA, etc.) through a vibrational inelastic light scattering process [36]. Recent studies
have indicated that RS can offer predictive capabilities regarding tumour proliferation sta-
tus [35, 18]. Moreover, when RS is combined with group and basis-restricted non-negative
matrix factorization along with random forest strategies, this enhanced technique can yield
valuable ranked information about the biochemical dynamics within irradiated tumours
[34]. Raman spectroscopy (RS) works by shining a monochromatic laser beam onto a sam-
ple and directing the incident light to collide with molecules, resulting in a change in fre-
quency between the scattered and incident photons. Raman spectroscopy plots this change
and measures the frequency shift in units of the reciprocal of the wavelength (cm™!). The
change in frequency caused by the vibration of chemical bonds produces peaks in the spec-

trum that are specific to different molecules [36]. This characteristic of peaks with different
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frequency shifts can be used to localize specific biological tissues. An important finding
was that the spectral peak appearing at 1523.71 em ™! was associated with the presence of
carotenoids, which are absent from normal tissues but present in the spectra of neuromas
[33]. This has inspired further experimental studies of Raman spectroscopy. Recently, this
Raman spectroscopy technique was applied to patient samples collected at the Kelowna
Cancer Center in British Columbia.

Despite the potential of Raman Spectroscopy (RS) in cancer diagnosis, several system-
atic issues in data processing need to be addressed. These include data interference and
subjective determination errors [6]. Challenges such as baseline variability between sample
acquisitions are prevalent. Notably, approximately 10% of Raman spectra suffer interference
from cosmic rays, leading to spikes and potential false peaks in the spectra. Furthermore,
the analysis of most Raman spectra relies on manual evaluation, resulting in subjective
determination errors due to the lack of a uniform and efficient automated method. Our goal
is to identify statistically whether there is a significant abnormal peak at 1523.71 em ™1,
which may become a new diagnostic criterion for spectroscopically assisted diagnosis and
prognosis of prostate cancer.

With a range of spectra data of patient samples, the classification of different shapes
in a range of spectra is crucial in the context of prostate cancer. Our dataset comprises 48
spectra, each containing 1019 wavenumbers, totaling 48912 wavenumbers. Spectra 17 and
18 were not included in the analysis because of the predominance of zero observations due to
detector saturation, so data from 46 spectra were considered. The dataset includes a column
of wavenumber values, ranging from 147 em™! to 1870 ¢m ™!, alongside a corresponding
column of intensity values measured in counts. Our primary focus is on the spectral shapes
that exhibit a peak at 1523.71 em ™!, a wavenumber indicative of carotenoids presence — a
crucial biomarker in the diagnosis and prognosis of prostate cancer [36].

For the analysis, we concentrated on the wavenumber range from 1503.539 em ™! to
1543.807 cm ™!, centered at 1523.71 e¢m~!. This range encompasses 27 wavenumber values,
referred to as the data dimension d. Our approach involved a two-stage classification process.
In the first stage, we employed a linear regression model to fit the quadratic values to the
spectral intensities, using the R-squared value as a measure of fit. A spectrum with a peak
should resemble a quadratic curve, as illustrated in Figure 4.1. Spectra were then categorized
into two groups based on an R-squared threshold of 0.5. Specifically, the quadratic function
used was (r — x()?/272, where 2 ranges from 1 to 27 and zg is the central point at 14. The
R-squared value determines the fit of this quadratic model to the index values of z, with
a threshold of 0.5 employed to distinguish between two possible peak types. Spectra with
R-squared values below 0.5 were classified into Group 1, while those with higher values were
categorized into Group 2. In total, 35 spectra were assigned to Group 1 and 11 spectra to

Group 2.
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Figure 4.1: Initial screening plots of some of the spectra in Group 1 (left) and Group 2
(right) with a possible peak at 1523.71 em™!.

In the second stage of our analysis, aimed at more accurately distinguishing between
the two spectral shapes, we conducted a two-sample test considering various dimensions.
Initially, based on the classifications from the first stage, we focused on the central 27 points
around 1523.71 em ™!, denoted as 27M. To assess the impact of smaller dimensions on test
power, we also considered 15 points in the middle (15M), 5 points to the left of the center
(5L), and 5 points to the right of the center (5R).

For each dimension, we computed the p-values for S,, ,, and Py, , with a block size s = 2
and repetition number C = 1000 , and compared these with M, », My, ,, DbR, and BDbR
as shown in the Table 4.1. It is important to note that in larger dimensions such 27M and
15M, Mahalanobis and spatial depths were not applicable due to the non-invertibility of
the sample covariance matrix, and thus are omitted from these comparisons.

Additionally, we investigated the effects of logarithmic transformation on the depth
measures. To distinguish between the original and log-transformed depths, we added an “O”
suffix for the original depths and an “L” suffix for log-transformed depths in our notation.
For example, “MO” signifies Mahalanobis depth applied to the original counts, while “ML”
refers to Mahalanobis depth on log-transformed counts. Using significance level a = 0.1
and comparing the resulting p-values, we observed that P, ,,, Smn, and BDbR consistently
ranked among the top three, with projected depths showing greater dominance in higher

dimensions. Conversely, Mahalanobis depths were more influential in lower dimensions.
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Table 4.1: p-values of Py, n, Smns Mmpn, M, ,,, DbR, BDbR under different depth, d, and

m,n>
data transformation of counts.

d 27TM 15M 5L 5R

Depth PO PL PO PL MO ML SO SL PO PL MO ML SO SL PO PL
Pan 0.006 0 0.004 0.010 0.079 0.087 0.086 0.129 0.054 0.293 0.051 0.051 0.037 0.057 0.045 0.221
Smon 0.006 0 0.004 0.006 0.018 0.086 0.023 0.109 0.028 0.240 0.051 0.246 0.070 0.345 0.027 0.224
My, 0.008 0.045 0.021 0.031 0.569 0.145 0.558 0.149 0.298 0.767 0.199 0.029 0.101 0.034 0.417 0.071
My, ., 0.008 0.045 0.02 0.031 0.569 0.145 0.558 0.149 0.294 0.759 0.199 0.029 0.101 0.034 0.411 0.07
DbR  0.006 0.004 0.036 0.185 0.384 0.148 0.325 0.133 0.263 0.68 0.244 0.044 0.145 0.067 0.256 0.096

BDbR 0.004 0.013 0.027 0.04 0.613 0.149 0.595 0.137 0.23 0.541 0.163 0.03 0.077 0.038 0.145 0.015

le+14

names names

Volume

1.0e-07 — Groupz

0.00 025 050 0.75 100 0.00 025 050 0.75 1.00
1-alpha 1- alpha

Figure 4.2: Scale curves for 5L derived from Mahalanobis depth to the original intensity
values (left) and log-transformed intensity values (right).

We also noted that logarithmic transformations tended to slightly improve consistency in
inference.

In addition to the methods previously discussed, we employed the concept of a scale
curve, introduced by [30], to compare the dispersion or scale of two samples. The scale
curve quantifies the volume of the a-trimmed region of distribution F', denoted as D, (F),
which is defined as

Do(F) = {z € R?: D(x; F) > a}.

Consequently, we plotted the volume of this convex region V' («a; F),,) against the 1 — « scale.
Figure 4.2 displays the scale curves derived from the Mahalanobis depth, illustrating both
the raw (left) and log-transformed (right) intensity values for the 5L spectral dimension.
This analysis further validates the differences between the two samples.

Additionally, adjusting the R-squared threshold in the initial spectral classification step
results in varying compositions of spectra in each group, as detailed in Table 4.2. It is
noteworthy that the spectra in Group 2 exhibit more complexity compared to those in
Group 1, as depicted in Figure 4.1. For instance, setting the R-squared threshold at 0.4

yields small p-values for all test statistics (as seen in Table 4.3), suggesting a significant
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Table 4.2: Classification of 46 spectra into 2 groups with different R-squared threshold values
(1: Group 1; and 2: Group 2)

Table 4.3: p-values of P, ny Sy Mmom, M;‘%n, DbR, BDbR under different depth, d, and

data transformation of counts with R-squared threshold 0.4.

d 27T™M 15M 5L 5R

Depth PO PL PO PL MO ML SO SL PO PL MO ML SO SL PO PL
Pon 0 0 0 0.001  0.01 0.001 0.009 0.007 0.001 0.004 0.008 0.002 0.01 0 0.003  0.006
Sm.n 0 0 0 0.001 0.012 0 0.005 0.005 0 0.002  0.003 0 0.004 0.002 0.004 0.003
M 0 0 0.001 0 0.052 0.022 0.064 0.037 0 0 0.106 0 0.19 0 0.005 0.001
My 0 0 0.001 0 0.052 0.022 0.064 0.037 0 0 0.106 0 0.19 0 0.005 0.001
DbR  0.003 0.001 0.002 0.001 0.084 0.004 0.082 0.002 0.002 0 0.098 0 0.089 0 0.012  0.002
BDbR 0 0 0 0.001 0.053 0.025 0.066 0.034 0 0.001 0.116 0 0.199 0.001 0.009 0.006

difference between the two groups. This significance is attributed to the reclassification of
some spectra from Group 1 into Group 2, leading to a smaller yet still discernible difference.
Conversely, when the threshold is increased to 0.6, most p-values become larger (refer to
Table 4.4), indicating that the differences between the groups are not statistically significant.
This shift results from some spectra originally in Group 2 being categorized into Group 1,
further narrowing the differences.

The comprehensive analysis conducted on various spectral shapes firmly establishes the
efficacy of our proposed statistical method. This method not only effectively differentiates

Table 4.4: p-values of Py, n, Smns Mmn, My, ,, DbR, BDbR under different depth, d, and

data transformation of counts with R-squared threshold 0.6.

d 27TM 15M 5L 5R

Depth PO PL PO PL MO ML SO SL PO PL MO ML SO SL PO PL
Pon 0.009 0.001 0.017 0.106 0.533 0.286 0.469 0.218 0.060 0.525 0.050 0.304 0.048 0.372 0.292 0.193
Smon 0.005 0 0.003 0.124 0.311 0.171 0.246 0.136 0.035 0.421 0.211 0.732 0.322 0.814 0.351 0.273
Mp, 0.055 0.11 0.167 0.054 0.783 0.462 0.842 0.456 0.754 0.397 0.081 0.217 0.104 0.29 0.429 0.009
My, 0.055 0.11 0.167 0.054 0.783 0.462 0.842 0.456 0.754 0.397 0.081 0.217 0.104 0.29 0.427 0.009
DbR 0.014 0.004 0.094 0.332 0.809 0.456 0.859 0.433 0.292 0.071 0.137 0.25 0.208 0.352 0.606 0.014
BDbR 0.013 0.002 0.013 0.061 0.77 0.477 0.847 0.459 0.28 0.69 0.082 0.207 0.104 0.277 0.351 0.008
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between distinct types of tumor samples but also demonstrates superior performance com-
pared to other competing methodologies. The ability to discern subtle variations in spectral
data is crucial in the context of tumor sample classification, and our approach has proven
to be a robust tool in this regard.

Through the use of scale curves, depth functions, and strategic permutation testing,
our method offers a reasonable and precise means of detecting and categorizing spectral
differences. This is particularly vital in the diagnosis and prognosis of conditions like prostate
cancer, where accurate identification of biomarkers such as carotenoids is essential. The
success of this method in outperforming other statistical techniques underscores its potential

as a valuable asset in medical spectral analysis and related fields.

4.2 Sloan Digital Sky Survey Data

The Sloan Digital Sky Survey (SDSS) data dataset, available in the astrodatR package in
R, consisting of three classes of point source with measurements on four color indices (u-g,
g-1, 1-i, i-z). The three classes are categorized as quasars (Class 1), main sequence and giant
stars (Class 2), and giant stars (Class 3), with sample sizes 2000, 5000, and 2000 respectively.
We conducted two-sample tests and three-sample tests on this data set to investigate any
correlation between the distribution of four color indices among these classes.

To compare the dispersion or scale of multiple distributions, we used scale curves. For
two-sample tests, we consider the pairwise comparisons between samples, i.e., Class 1 vs.
Class 2, Class 1 vs. Class 3, and Class 2 vs. Class 3. We plotted the scale curve in a
logarithmic scale in order to enhance the visualization of dispersion, the scale curves of
three cases under Mahalanobis depth are shown in Figure 4.3. As observed from the figure,
there is a large dispersion between Class 1 and Class 2, and Class 2 and Class 3, while Class
1 and Class 3 have some overlap in the scale curve. The non-overlapping curves represent
the potential differences between the two classes, while some overlap may indicate some
similarity between the two samples.

To quantify the result from scale curves, we calculated estimated p-values and asymptotic
p-values; see equations (4.1) and (4.2).

The asymptotic p-value for Maximum Statistic M,,, ,,, with sample size ni,no respec-

tively, in two-sample cases can be written in this form [41]:

P(Mp, , < @) = P{(c1271 +¢1272)° < a}, (4.1)
where Z1,Z, are independent from N(0,1), ¢;; = limni_lm(ni_l + nj_l)_l/Q, and ¢ ; =
s T 1/20 -1 “1\=1/2 (it -2 =2 _
limn; "“(n; " +mn;") /2 with cijt+é; =1

Similarly, the asymptotic p-value for Minimum Statistic My, ,,,, with sample size n1,ny

respectively, in two-sample cases can be written in this form, based on the proof of its

asymptotic distribution:
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Figure 4.3: Scale curves for three classes under Mahalanobis depth in log scale in Sloan
Digital Sky Survey data: Class 1 vs. Class 2 (first row), Class 1 vs. Class 3 (second row),

and Class 2 vs. Class 3 (third row) 61



ID(Z\4>k < l’) — P{—x < (017221 + 617222) < aj‘}, (42)

ni,n2 —

n;

+ n»_l)fl/Q, and Ei,j =

where Zi,Z, are independent from N(0,1), ¢;; = limn, 7

s T 1/20 1 —1\=1/2 i 2 =2 _
limn; "“(n; " +mn;") /2 with cij =
1. Class 1 vs. Class 2

DbR, and BDbR, we simulated the
data set with 1000 repetitions for each depth function with sample sizes: m = 2000,

To obtain the estimated p-values for My, n, My, ,,,
n = 5000. The p-values for P, , and S, , are calculated through block permutation
with block size s = 100 and repetition number C' = 200. We compare all these p-values
for different test statistics. In addition, we also calculated the asymptotic p-value for

My, n and My, |, to further make comparisons.

The results show that all estimated p-values with different test statistics are zero
for all depth functions, which is the same as the asymptotic p-values for M,,,, and
My, - These findings suggest a significant relationship between the combined four
color indices between Class 1 (quasars) and Class 2 (main sequence and giant stars)
in the SDSS data.

2. Class 1 vs. Class 3

Since the scale curves show a possible similarity between Class 1 and Class 3, we

further calculated estimated p-values and asymptotic p-values to verify the result.

Similarly, we simulated the data set with 1000 repetitions for each depth function with
sample sizes (m = 2000, n = 2000) to obtain estimated p-values for My, », My, ,, DbR,

and BDbR. The p-values for P, , and S, , are calculated through block permutation
with block size s = 100 and repetition number C' = 200.

The estimated p-values and asymptotic p-values are all zero, which is the same as the
result when comparing Class 1 and Class 2. This represents that there is a significant

difference between Class 1 and Class 3, although the scale curve shows some similarity.

3. Class 2 vs. Class 3

Lastly, we make comparisons between Class 2 vs. Class 3. Under the same method and
settings, we computed estimated p-values and asymptotic p-values, which are all zeros
for all depth functions. This result indicates significant differences in color indices
between Class 2 and Class 3, which validates the dispersion of curves of two classes

in scale curve in Figure 4.3.

All two-sample tests revealed a strong correlation between the four color indices and

the three classes of point sources. We could further conduct three-sample tests on all three
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Figure 4.4: Scale curves for three classes under Mahalanobis depth in log scale

classes and find p-values for My, ,, My, ,, and DbR tests. The detailed three-sample test
statistics for M, , and My, ,, and their asymptotic p-values are presented in Chapter 5.1.

Similarly, the scale curve for three samples in Figure 4.4 presented non-overlapping
curves, indicating that these three classes are significantly different.

Furthermore, the estimated p-values are all zeros for M, n, My, ,, and DbR for all
Mahalanobis depth, spatial depth, and projection depth; same for asymptotic p-values for
My, and My, |, for all depth functions. These values align with the results from scale curve
in Figure 4.4.

In summary, the analysis of the SDSS data using both our proposed test statistics and
existing methods revealed a strong correlation between the four color indices and the three

classes of point sources for all pairwise comparison and three-sample comparison.

4.3 Skull Data

In addition, we can apply our proposed test statistic to Egyptian skull data to examine
changes in skull size over time. The Egyptian skulls were obtained from the R package
HSAUR, consisting of four measurements of skulls (maximum breaths, basibregmatic heights,
basialiveolar length, and nasal heights of the skull) ranging from five epochs (4000 B.C.,
3300 B.C., 1850 B.C., 200 B.C., and 150 A.D.). Each epochs contain 30 samples. We could
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Figure 4.5: Scale curves of skull data for epochs: 1850 B.C. and 200 B.C. under Mahalanobis
depth

perform two-sample and three-sample tests to investigate whether skull size changes over
time during interbreeding with immigrants.

The analysis of this skull data set contains five comparisons of epochs. For two-sample
tests, we mainly focus on three pairwise comparisons between (1) 1850 B.C. vs. 200 B.C.,
(2) 3300 B.C. vs. 150 A.D., (3) 200 B.C. vs. 150 A.D. For three-sample tests, we could make
comparisons on (4) 1850 B.C., 200 B.C., and 150 A.D., and (5) 3300 B.C., 200 B.C., and
150 A.D.

1. 1850 B.C. and 200 B.C.

First, we made the scale curve to visualize the differences in skull sizes between 1850
B.C. and 200 B.C., shown in Figure 4.5. As observed from the scale curve, these two
curves illustrate a small difference between 1850 B.C. and 200 B.C., suggesting no

significant changes in skull sizes during these two periods.

Therefore, we present the estimated p-values for M, ,,, M, .., Pmn, Smn, DR, and

m,n’

in Table 4.5. For My, ,,, M}

m,n’

BDdR, and asymptotic p-values for M, , and My, ,
DbR, and BDdR, the estimated p-values are conducted through 1000 iterations; and
the estimated p-values for P, , and S,,, are computed through block permutation

algorithm with block size s = 5 and repetition number C = 1000.

The results in the table show that all the estimated p-values are greater than the sig-

nificance level of 0.05, indicating that there is no strong correlation between skull sizes
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My | My | Prn | Smn | DbR | BDbR | Asy My, | Asy M,
Mahalanobis| 0.312 | 0.312 | 0.177 | 0.127 | 0.351 | 0.379 | 0.051 0.051
Spatial 0.396 | 0.396 | 0.249 | 0.180 | 0.411 | 0.447 | 0.038 0.038
Projection | 0.369 | 0.365 | 0.163 | 0.137 | 0.145 | 0.212 | 0.124 0.124

Table 4.5: Estimated p-values for My, , My, 1\, Pmny Smon, DPR, and BDbR, and asymptotic
p-values for M, , and My, ,, for 1850 B.C. vs. 200 B.C. under Mahalanobis depth, Spatial
depth, and Projection depth (Asy: asymptotic)
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Figure 4.6: Scale curves of skull data for epochs: 3300 B.C. and 150 A.D. under Mahalanobis
depth

and interbreeding with immigrations for these two epochs. Moreover, the asymptotic
p-values under Mahalanobis depth, Spatial depth, and Projection depth are smaller
than all estimated p-values; this may be due to the effect of a small sample size of 30

for each epoch.

2. 3300 B.C. and 150 A.D.
We focus on these two epochs, 3300 B.C. and 150 A.D., as these two epochs are far

apart in time. To examine if there are differences in skull size distributions between the
two time epochs across 3300 B.C. and 150 A.D., the scale curve is shown in Figure 4.6.
The two curves are noticeably separated, suggesting a significant difference in skull

sizes as time changes.
To further support this observation, we calculated the estimated p-values for My, ,,

My, s Pmn, Sman, DbR, and BDdR, and asymptotic p-values for My, ,, and My, ,,,

m,n’
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My | My | Prn | Smn | DbR | BDbR | Asy My, | Asy M,
Mahalanobis| 0.014 | 0.014 | 0.007 | 0.014 | 0.017 | 0.015 | 0.000 0.000
Spatial 0.014 | 0.014 | 0.010 | 0.018 | 0.011 | 0.013 | 0.000 0.000
Projection | 0.006 | 0.006 | 0.024 | 0.048 | 0.013 | 0.010 | 0.001 0.001

Table 4.6: Estimated p-values for My, n, My, 1, Pmny Smon, DPR, and BDbR, and asymptotic

p-values for M, , and M}, ,, for 3300 B.C. vs. 150 A.D. under Mahalanobis depth, Spatial
depth, and Projection depth (Asy: asymptotic)

My | My | Prn | Smn | DbR | BDBR [ Asy My, | Asy My,
Mahalanobis| 0.108 | 0.108 | 0.424 | 0.694 | 0.094 | 0.109 | 0.010 0.010
Spatial 0.128 | 0.128 | 0.362 | 0.600 | 0.136 | 0.143 | 0.005 0.005
Projection | 0.068 | 0.065 | 0.200 | 0.293 | 0.097 | 0.128 | 0.013 0.013

Table 4.7: Estimated p-values for M, ,, M, ., Pmn, Smn, DPR, and BDbR, and asymptotic

m,n’
p-values for My, , and My, , for 200 B.C. vs. 150 A.D. under Mahalanobis depth, Spatial
depth, and Projection depth (Asy: asymptotic)

summarized them in Table 4.6. Similarly, we performed simulations for 1000 repeti-
tions to calculate estimated p-values for My, ,, My, ,, DbR, and BDdR; and using

block permutation algorithm with block size s = 5 and repetition number C = 1000

for P, and Sy, .

Notably, all these estimated p-values are smaller than the significance level o = 0.05
and are close to zero. This leads us to the conclusion that there is a significant differ-
ence in skulls between these two epochs. The small asymptotic p-values for all depth
functions also align with the earlier conclusion, supporting the presence of substantial
differences in skull sizes across 3300 B.C. and 150 A.D.

3. 200 B.C. and 150 A.D.

In this part, we compare the difference in skull size between 200 B.C. and 150 A.D.,
which are relatively close in time span. Figure 4.7 shows the scale curves revealing the
difference between these two epochs. These two curves are still relatively far apart,
while their dispersion is observed to be larger than the case of 3300 B.C. vs. 150 A.D.

Therefore, we need to calculate the estimated p-values and asymptotic p-values to
verify the result in the scale curve. The estimated p-values are calculated with sim-
ilar settings as before. As shown in Table 4.7, all estimated p-values are larger than
significance level o = 0.05, indicating no strong correlation between skull sizes and
interbreeding with immigrations for these two epochs. Notice that the estimated p-
values for P, , and S, , are larger than all other test statistics, revealing that P, ,
and Sy, », have more potential to capture the difference between samples. Moreover, the
asymptotic p-values are small due to small sample sizes, which is not very informative

in our data analysis on skull data.
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Figure 4.7: Scale curves of skull data for epochs: 200 B.C. and 150 A.D. under Mahalanobis
depth

My, | My, | DbR | Asy My, | Asy My,
Mahalanobis| 0.2612 | 0.2612 | 0.1422 | 0.0269 0.0269
Spatial 0.2740 | 0.2740 | 0.1428 | 0.0152 0.0152
Projection | 0.2468 | 0.2446 | 0.1136 | 0.0314 0.0314

Table 4.8: Estimated p-values for M,, ,,, M, ,,, and DbR, and asymptotic p-values for M,, ,

m,n’

and My, ,, for 1850 B.C., 200 B.C. and 150 A.D. under Mahalanobis depth, Spatial depth,
and Projection depth (Asy: asymptotic)

4. 1850 B.C., 200 B.C., and 150 A.D.
For three-sample tests with epochs: 1850 B.C., 200 B.C., and 150 A.D., the scale curves

are shown in Figure 4.8, illustrating a small difference between the epochs 1850 B.C.
and 200 B.C., and large difference between 1850 B.C. and other two epochs.

Therefore, we present the estimated p-values for M, 5, My, ,,, and DbR in Table 4.8,

based on 5000 iterations; and asymptotic p-values for My, n, My, .

All the estimated p-values are greater than the significance level of 0.05, indicating that
there is no strong correlation between skull sizes and interbreeding with immigrations
for these three epochs. However, the asymptotic p-values are all very small because of

a small sample size.

5. 3300 B.C., 200 B.C., and 150 A.D.
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Figure 4.8: Scale curves of skull data for epochs: 1850 B.C., 200 B.C., and 150 A.D. under
Mahalanobis depth

My, | M;,, | DbR | Asy My, | Asy M,
Mahalanobis| 0.0378 | 0.0378 | 0.0120 | 0.0012 0.0012
Spatial 0.0328 | 0.0328 | 0.0094 | 0.0005 0.0005
Projection | 0.0264 | 0.0260 | 0.0100 | 0.0043 0.0043

Table 4.9: Estimated p-values for My, ,,, My, ,,, and DbR, and asymptotic p-values for M, ,,

and My, ,, for 3300 B.C., 200 B.C. and 150 A.D. under Mahalanobis depth, Spatial depth,
and Projection depth (Asy: asymptotic)

In a similar way, the scale curves for 3300 B.C., 200 B.C., and 150 A.D. are shown in
Figure 4.9, the three curves are noticeably separated, suggesting a significant difference
in skull sizes as time changes. To further support this observation, we calculated the

estimated p-values for M,, ,,, M, ,,, and DbR based on 5000 iterations, and asymptotic

m,n’
p-values for M, n, and My, ,,, summarized them in Table 4.9.

Notably, all these p-values are smaller than the significance level of 0.05 and are close
to zero. This leads us to the conclusion that there is a significant difference in skulls
between these three epochs. The computed asymptotic p-values align with the earlier
conclusion, supporting the presence of substantial differences in skull sizes across the

specified epochs.

By using scale curves and computing estimated p-values to compare the change of skull
sizes on different epochs in skull data, we could make summaries on whether there exist

significant changes in skull sizes statistically. We can visually illustrate the differences be-
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Figure 4.9: Scale curves of skull data for epochs: 3300 B.C., 200 B.C., and 150 A.D. under
Mahalanobis depth

tween groups with scale curves and compute estimated p-values with different test statistics
to further support the findings. Moreover, this method can be applied to more data to solve

practical problems.
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Chapter 5

Discussion and Conclusions

5.1 Multi-sample Test

The two-sample test statistics can be extended to perform homogeneity tests on multi-
samples. This section will specifically discuss extended maximum statistic M, , and min-
imum statistic My, ,, in multi-sample tests. Furthermore, similar technique could apply on
sum statistic Sy, , and product statistic Py, .

Consider there are k samples, each drawn from distribution F¢) with sample size nj,
with j = 1,2,..., k. The corresponding empirical distribution is F,gz ),
Maximum statistic

The generalized maximum statistic for & sample [41] is:

M,

—1 9
ey = ”1+1ﬂ pmﬁﬂﬁ—ﬂ. (5.1)

max
1<ij<k,i#j |12 ' n;  ny

Based on the asymptotic null distribution of maximum statistic [41], we can write

< 7. s 7\ <
P(My, . . pn, <z)—P {1<r£1<ajx<k(cz7jZl +¢,725)° < JJ} , (5.2)

where Z1,Zs, ..., Z), are independent from N(0,1), ¢;; = limn, 1/2( ;1 + n}l)_l/z, and
Gy =limn; P(nyt 4 02 with 2, + &, = 1.

A simple example is three-sample maximum statistic,

_ Ll b oagpm pey_Le Lo oo ma) pey e
Mnlan27n3 - max{[12(n1 + N9 )] [Q(Fnl 7Fn2 ) 2] [( 2 n + ng)] [Q(Fnl 7F7’L3 ) 2]
L Yo, mmy - e, iql L1y r@ me)y _ 1

I B T Te ) s ) ®) p( L

and
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P(]Wnlm%n3 < Jf) — P{(61,2Z1 + 517222)2 <z, (017321 + 51,3Z3)2 <uz, (5.3)
(c2372 + E2373)* < x}, (5.4)

where Z1, Z3, Z3 are independent from N (0, 1), ¢; j = lim ni_l/z(ni_1 + nj_l)*l/z, and ¢; ; =

s —L/20 -1 —1\—1/2 - 2 =2

limn; "“(n; " +mn;") /2 with ci;+¢,;=1
Minimum statistic

Similarly, the minimum statistic for k£ samples can be written in the following form:

M =, [+ )]G - R 55)

= aX —(— . .
R 1<i,j<k,i¢j[12 n; - ny e

Based on the proof of asymptotic distribution of minimum statistic, we can write:

P(My, n, <x) = P {nglg?;k(cz;jzi + i) < fv} : (5.6)
where 71,25, ..., 7 are independent from N(0,1), ¢;; = lirnni_lm(n;1 + n;l)_l/Q, and
Gy =limn; P(n;t 4 02 with 2, + &, = 1.

For example, when k = 3, the Minimum Statistic can be expanded as

My = (55 o+ )] 2 = QUL FD)L (55 + 20145~ QUYL FD)L,
(G5 + 704G — QR PO g5 (oo + 21 H 5 — QER, FO)
(G5 + 704G - QR FON g5 + 21 H; - QES. FO)
and
P(Mpy, pyns <) = P{—2 < (1221 +¢1222) < w,—x < (1321 + E1323) < w,  (5.7)
—x < (c2322 + C2373) < x}, (5.8)

-1

—1\—1/2 5
o+ n) /,andcw—

where Z1, Zy, Z3 are independent from N(0,1), ¢; j = lim ni_l/Q(n 7

limn}lﬂ(n;l + 71;1)—1/2 with c%’j + E?’j =1.

More properties of multi-sample minimum statistic are left to further research.

In addition, we can also find the generalized product and sum statistics and study their
asymptotic properties. For product and sum statistics, denote as Py, n,.... n, and Sp; ny....n
for k£ samples, their k-sample comparisons can be written as
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Pnl,...,nk = H Pnil"“’nik71 (59)

1<t eip—1<Kyigy #i0g, 1<l L2 <k—1

and
th-..,nk — Z Sni1""7”ik—1’ (510)
1< i1 ki, Figy , 1<01 Lo <k—1
where P, and S are product and sum statistics for k — 1 samples.

iy seensTig Ty oMy

For three-sample cases k = 3, the product and sum statistics are

Pn1,n27n3 = Pn17n2Pn17n3Pn27n3

and
Sn17n2,n3 - Sm,m + thn:s + Sn27n3

5.2 High-dimensional Data

For high-dimensional data, with a large number of dimension p and small sample size n,
homogeneity tests on these type of data are challenging. As seen from data analysis on
Ramen spectrum, with a large dimension such as 27M and 15M, the inverse of covariance
matrix is not available, leading to invalid calculation on Mahalanobis depth and Spatial
depth. This section will focus on how to solve this issue.

The original Mahalanobis depth [31] for any point z is defined as:

1
L+ (- )= —p)’

D(x; F) =

where u represents the mean of distribution F', and ¥ is the covariance matrix.
A modified version of Mahalanobis depth is proposed by [9] to improve the estimation
of covariance matrix through oracle approximating shrinkage estimator, which wrote the

modified covariance matrix as

where p is a control parameter, with range p € (0,1); F' is target matrix with F =
Tr(X/p)Ipxp, where Ipy, is p-dimensional identity matrix [49)].

Based on the code by [9] and [49], p is calculated through the following steps:

(1) First, calculate the two values A and B, with

2
1-2

A=( p)Tr(ZZ) +Tr(%)?,
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Tr(%)?
p

a1 B
B=(n+1 p)(T(Z) ),

(2) p is based on the value of A and B,
A
= in(—=,1),0).
p = max(min(%,1),0)

By this modification, the extended Mahalanobis depth can have more robust depth
values. This modified Mahalanobis depth can be applied to @) Statistics and have the corre-
sponding Product and Sum Statistics under Mahalanobis depth. Through this modification,
the proposed Product and Sum Statistics can be applied on high-dimensional data.

For power comparison, we can also use modified band depth (MBD) statistics [32],
designed for high-dimensional data. Let fi,..., f,, be a set of continuous function on interval
I, the MBD on any f is defined as

-1
MBD(f)z(Z) A(lj.) Yo AMA; furs fi2)),
1<i1<ia<n

where A(f; fi17 fm) = {t €rl: minr:ilﬂ’z fr(t) < f(t) S MaXp—i i, fr(t)} and A is the
Lebesgue measure in R.
For a d-dimensional point y in sample y1, . .., Yn, the finite-dimensional MBD is defined

as:

-1 d
n -1
MBDq(y) = <2> D A7 XD Tmingyi, (k)iy (00} <u(h) Smax (0.9 ()33

1<i1<2<n k=1
5.3 Conclusion

This thesis aims to propose a novel DEEPEAST technique to retain the power when com-
bining two or more () Statistics and introduce two new test statistics P, , and Sy, to
test the homogeneity of two samples. To explain how to enhance statistical power without
losing information when projection multivariate data to one-dimensional data, we define the
same-attraction function. Our new test statistics P, , and Sy, , share a ‘common attractor’
and are applicable across all depth functions. In addition, we propose a proposition to com-
pare the asymptotic power of test statistics. By introducing several examples, our proposed
test statistic are asymptotically more powerful than some existing statistics. The asymp-
totic distributions of P, , and Sy, , under one-dimensional Euclidean depth were derived
and substantiated through extensive simulations, involving comparisons of density profiles
and tail probabilities. Our derivation utilizes Hoeffding decomposition of V-Statistics, our
technique could be further extended to multidimensional case for all depths. The strategic
block permutation algorithm was developed to facilitate the comprehensive application of

the DEEPEAST technique across various depth functions. Our extensive simulated power
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comparisons reveal that P, and S, , exhibit superior performance in multivariate distri-
butions and are competitive in one-dimensional Euclidean depth.

In addition, we apply the DEEPEAST technique for comparing different spectral sam-
ples and conclude that our proposed P, , and Sy, , have superior performance in discerning
the difference between two samples of varying dimensions, outperforming other test statis-
tics in this regard. Moreover, we conducted more real data analyses on sloan digital sky
survey data and skull data through detailed two-sample and three-sample comparisons in
Chapter 4. By finding the estimated p-values and asymptotic p-values, we can test if two
or more groups of data are statistically the same through our proposed test statistics and
existing methods.

Although our research provides significant contributions to two-sample tests, there is
an opportunity to extend this methodology to multi-sample tests. In line with approaches
similar to [41], a generalized version of P, ,, and S, ,, could be developed. More simulations
could be performed to shows its statistical power. This extension represents an intriguing
and challenging avenue for future theoretical research, promising to further enhance the
use and applicability of our findings in broader statistical contexts. More applications and

extensions of data depth on high-dimensional data is also a future work.
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Appendix A

Code

A.1 Chapter 2

A.1.1 Density Plot of Sum Statistic

1 mu=0

2 sd=1

3 library (MASS)

4

5 Sum_stat=function(a,b){
6 x=rnorm(a,mu, sd)

7 y=rnorm(b,mu, sd)
8

9 D_xf=1/(1+(x-mean(x)) ~2)
10 D_yf=1/(1+(y-mean(x))"2)
11 D_xg=1/(1+(x-mean(y)) ~2)
12 D_yg=1/(1+(y-mean(y)) ~2)

14 si=c()

15 for (i in 1:a){

16 s1[i]l=sum(D_xf[i]1<=D_yf)
17 }

18 #sum(s1)

19

20 s2=c ()

21 for (i in 1:b){

22 s2[i]=sum(D_yg[il<=D_xg)
23 }

24 #sum (s2)

25

26 S=-a*b*(sum(sl1)/a/b + sum(s2)/a/b -1)/(a+b)
27

28 return(S)

29 }

30

31 set.seed (1)
32 1oop=10000
33 table=matrix(NA,10,loop)
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35 #m,n same size

36 m=n=c(1:10) *100

37 for (i in 1:length(m)){

38 for (j in 1:loop){

39 table[i,jl=Sum_stat(m[i],n[i])

40 }

41 }

42

43 library(calculus)

44 library(mvtnorm)

45 x=seq(-2, 4, 0.01)

46 x=x[!(x==0)]

47 fi1=function(z){

48 exp(-(z"2+sqrt (3) *pi*x"2/2/2z"2)/(2-sqrt(3)/pi))/z

49 }

50 y=integral (f1,bounds=1ist(z=c(0,Inf)), method=’hcubature’)$value *exp(sqrt
(3)*x/(2-sqrt(3)/pi))/pi/sqrt ((2*pi-sqrt (3))/(sqrt (3)*pi~2))

51 plot(x,y, type=’1l’,ylab=’’,main=’Sum Statistics density plot’,col=’blue’)

52 lines(density(table[10,]) ,col="red’)

A.1.2 Density Plot of Product Statistic

1 Prod_stat=function(a,b){

2 x=rnorm(a,mu, sd)

3 y=rnorm(b,mu, sd)

4

5 D_xf=1/(1+(x-mean(x))~2)

6 D_yf=1/(1+(y-mean(x)) ~2)

7 D_xg=1/(1+(x-mean(y))~2)

8 D_yg=1/(1+(y-mean(y)) ~2)

9

10 s1=c()

11 for (i in 1:a){

12 s1[i]l=sum(D_xf [i]l<=D_yf)
13 }

14 #sum(s1)

15

16 s2=c ()

17 for (i in 1:b){

18 s2[i]l=sum(D_ygl[il<=D_xg)
19 }

20 #sum(s2)

21

22 P=-a*b*( (sum(sl)/a/b) * (sum(s2)/a/b) -1/4)/(a+b)
23

24 return (P)

25 }

26

27 set.seed (1)

28 1loop=10000

29 table=matrix(NA,10,loop)
30

31 #m,n same size

32 m=n=c(1:10) *100

33

34 for (i in 1:length(m)){
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for (j in 1:1loop){
table[i,jl=Prod_stat(m[i],n[il])
}
}

x=seq (-2, 4, 0.01)
x=x[!(x==0)]

fi=function(z1,z2){
12*dchisq (12*xx+6*z1%z2,1) *exp(-(z1~2+sqrt (3)*zl*z2+sqrt (3) *pi*z2-2/2)/(2-

sqrt (3) /pi))/2/pi/sqrt ((2*pi-sqrt (3))/(sqrt (3)*pi~2))

}

y=integral (f1,bounds=1ist(zl=c(-Inf,Inf),z2=c(-Inf,Inf)), method=’hcubature
’)$value

plot(x[-c(151,250)],y[-c(151,250)],type=’1’,xlab="x’, ylab=’’,main=’Product
Statistics density plot’, col=’blue’)

lines(density(table[10,]), col=’red’,xlim=c(-2, 4))

A.1.3 Empirical quantiles of Sum Statistic

set.seed (1)
loop=10000
table=matrix (NA,10,loop)

#m,n same size
m=n=c(1:10) *100

for (i in 1:length(m)){
for (j in 1:loop)d{
table[i,jl=Sum_stat(m[i],n[il])
}

#quantile 0.20 0.1 0.05 0.01
vi=v2=v3=vd=c ()
for (i in 1:length(m)){

vi[i]l=quantile (table[i,], 0.8)
v2[i]=quantile(table[i,], 0.9)
v3[il=quantile (table[i,], 0.95)
v4d[i]=quantile (table[i,], 0.99)
}
#m,n different

m=c(1:10) %100
n=m/2
for (i in 1:length(m)){
for (j in 1:1loop){
table[i,jl=Sum_stat(m[i]l,n[il)
}
}

v12=v22=v32=v42=c ()

for (i in 1:length(m)){
vi2[il=quantile(table[i,], 0.8)
v22[i]l=quantile (table[i,], 0.9)
v32[i]l=quantile(table[i,], 0.95)
v42[il=quantile(table[i,], 0.99)
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#find critical value c¢ for each quantile
#0.8
f=function(x){integral (function(z1l,2z2){
exp(-(z2172+sqrt (3) *z1*z2+sqrt (3) *pi*xz272/2) /(2-sqrt (3) /pi) )/ (2xpixsqrt ((2*
pi-sqrt(3))/sqrt (3)/pi~2))*as.numeric(-z1*z2<x)},bounds=1list (zl=c(-Inf,
Inf) ,z2=c(-Inf,Inf)), method=’hcubature’)$value-0.8%}
uniroot (f, lower=-2,upper=4) $root #0.6416644

#0.9
f=function(x){integral (function(zl,z2){
exp (-(2172+sqrt (3) *z1*z2+sqrt (3) *pi*z272/2) /(2-sqrt (3) /pi)) /(2*%pi*sqrt ((2*
pi-sqrt(3))/sqrt(3)/pi~2))*as.numeric(-z1*z2<x)},bounds=1list(zl=c(-Inf,
Inf) ,z2=c(-Inf,Inf)), method=’hcubature’)$value-0.9%}
uniroot (f, lower=-2,upper=4)$root #1.131159

#0.95
f=function(x){integral (function(z1,2z2){
exp(-(z2172+sqrt (3) *z1*z2+sqrt (3) *pi*z2-2/2) /(2-sqrt (3) /pi) )/ (2xpixsqrt ((2*
pi-sqrt(3))/sqrt(3)/pi~2))*as.numeric(-z1*z2<x)},bounds=1list(zl=c(-Inf,
Inf),z2=c(-Inf,Inf)), method=’hcubature’)$value-0.95%}
uniroot (f, lower=-2,upper=4)$root #1.656609

#0.99
f=function(x){integral (function(zl,z2){
exp(-(z172+sqrt (3) *z1*z2+sqrt (3) *pi*xz272/2) /(2-sqrt (3) /pi)) /(2xpixsqrt ((2*
pi-sqrt(3))/sqrt(3)/pi~2))*as.numeric (-z1*z2<x)},bounds=1ist (zl=c(-Inf,
Inf) ,z2=c(-Inf,Inf)), method=’hcubature’) $value-0.99}
uniroot (f, lower=-2,upper=4)$root #2.960827

#plot

par (mfrow = c(2, 2))

plot(m, vl,type=’1’, ylim=c(0.5,0.7) ,xlab="m(n=m)’,ylab=’Sum Statistics’)
abline (h=0.6416644, col=’red’)

plot(m, v12,type=’1’, ylim=c(0.5,0.7) ,xlab="m(n=m/2)’,ylab=’Sum Statistics’)
abline(h=0.6416644, col=’red’)

plot(m, v2,type=’1’, ylim=c(1,1.2),xlab="m(n=m)’,ylab=’Sum Statistics’)
abline(h=1.131159, col=’red’)

plot(m, v22,type=’1’, ylim=c(1,1.2),xlab="m(n=m/2)’,ylab=’Sum Statistics’)
abline(h=1.131159, col=’red’)

par (mfrow = c(2, 2))

plot(m, v3,type=’1’, ylim=c(1.5,1.8) ,xlab="m(n=m)’,ylab=’Sum Statistics’)
abline (h=1.656609, col=’red’)

plot(m, v32,type=’1’, ylim=c(1.5,1.8) ,xlab="m(n=m/2)’,ylab=’Sum Statistics’)
abline (h=1.656609, col=’red’)

plot(m, v4,type=’1’, ylim=c(2.7,3.1),xlab="m(n=m)’,ylab=’Sum Statistics’)
abline (h=2.960827, col=’red’)

plot(m, v42,type=’1’, ylim=c(2.7,3.1),xlab="m(n=m/2)’,ylab=’>Sum Statistics’)
abline (h=2.960827, col=’red’)
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A.1.4 Empirical quantiles of Product Statistic

set.seed (1)
loop=10000
table=matrix (NA,10,loop)

#m,n same size
m=n=c(1:10) *100

for (i in 1:length(m)){
for (j in 1:1loop){
table[i,jl=Prod_stat(m([i],n[i])
}

#quantile 0.20 0.1 0.05 0.01
vi=v2=v3=vd=c()
for (i in 1:1length(m)){

vi[il=quantile (table[i,], 0.8)
v2[i]=quantile (table[i,], 0.9)
v3[i]l=quantile(table[i,], 0.95)
v4[i]l=quantile (table[i,], 0.99)
}
#m,n different

set.seed (1)

m=c(1:10) *100

n=m/2

for (i in 1:1length(m)){
for (j in 1:1loop){

table[i,jl=Prod_stat(m[i],n[il)

}

}

v12=v22=v32=v42=c ()
for (i in 1:length(m)){

vi2[i]l=quantile (table[i,], 0.8)
v22[i]l=quantile (table[i,], 0.9)
v32[il=quantile(table[i,], 0.95)
v42[i]l=quantile (table[i,], 0.99)

}

#find critical value c¢ for each quantile

#0.8
f=function(x){integral (function(z1l,z2){

pchisq (12*x+6*z1%22,1) *exp(-(z172+sqrt(3)*zl*xz2+sqrt (3)*pi*xz27-2/2)/(2-

sqrt (3) /pi)) /2/pi/sqrt ((2*xpi-sqrt (3))/(sqrt (3)*pi~2))},bounds=1list (zl=c
(-Inf,Inf),z2=c(-Inf,Inf)), method=’hcubature’)$value-0.8}
uniroot (f, lower=-2,upper=4) $root #0.4379003

47
48
49

#0.9
f=function(x){integral (function(zl,z2){

pchisq (12*xx+6*2z1%22,1) *exp(-(z172+sqrt (3) *xz1*z2+sqrt (3) *xpi*xz27-2/2)/(2-
sqrt (3) /pi)) /2/pi/sqrt ((2*pi-sqrt(3))/(sqrt (3)*pi~2))},bounds=1list(zl=c
(-Inf,Inf),z2=c(-Inf,Inf)), method=’hcubature’)$value-0.9%}
uniroot (f, lower=-2,upper=4) $root #0.6818296
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#0.95
f=function(x){integral (function(zl,z2){
pchisq (12*x+6*z1%2z2,1) *exp(-(z172+sqrt(3)*zl*xz2+sqrt (3)*xpi*xz272/2)/(2-
sqrt (3) /pi))/2/pi/sqrt ((2*pi-sqrt(3))/(sqrt (3)*pi~2))},bounds=1list(zl=c
(-Inf,Inf),z2=c(-Inf,Inf)), method=’hcubature’)$value-0.95}
uniroot (f, lower=-2,upper=4) $root #0.9383627

#0.99
f=function(x){integral (function(z1l,2z2){
pchisq (12*x+6*z1%22,1) *exp(-(z172+sqrt(3)*zl1*xz2+sqrt (3)*pi*xz27-2/2)/(2-
sqrt (3) /pi)) /2/pi/sqrt ((2*xpi-sqrt (3))/(sqrt (3)*pi~2))},bounds=1list (zl=c
(-Inf,Inf),z2=c(-Inf,Inf)), method=’hcubature’)$value-0.99}
uniroot (f, lower=-2,upper=4)$root #1.570562

#plot

par (mfrow = c(2, 2))

plot(m, vil,type=’1’, ylim=c(0.3,0.5) ,xlab="m(n=m)’,ylab=’Product Statistics
)

abline (h=0.4379003, col=’red’)

plot(m, v12,type=’1’, ylim=c(0.3,0.5) ,xlab="m(n=m/2)’,ylab=’Product
Statistics ’)

abline (h=0.4379003, col=’red’)

plot(m, v2,type=’1’, ylim=c(0.6,0.8) ,xlab="m(n=m)’,ylab=’Product Statistics
)

abline(h=0.6818296, col=’red’)

plot(m, v22,type=’1’, ylim=c(0.6,0.8) ,xlab="m(n=m/2)’,ylab=’Product
Statistics’)

abline(h=0.6818296, col=’red’)

par (mfrow = c(2, 2))

plot(m, v3,type=’1’, ylim=c(0.8,1),xlab="m(n=m)’,ylab=’Product Statistics’)

abline (h=0.9383627, col=’red’)

plot(m, v32,type=’1’, ylim=c(0.8,1),xlab="m(n=m/2)’,ylab=’Product Statistics
)

abline (h=0.9383627, col=’red’)

plot(m, v4,type=’1’, ylim=c(1.35,1.65) ,xlab="m(n=m)’,ylab=’Product
Statistics’)

abline(h=1.570562, col=’red’)

plot(m, v42,type=’1’, ylim=c(1.35,1.65) ,xlab="m(n=m/2)’,ylab=’Product
Statistics’)

abline(h=1.570562, col=’red’)

A.1.5 Functions and null hypothesis

library (ddalpha)
library (MASS)
library (matrixStats)
library (mvtnorm)

# Five stats
QQ_test=function(Fm,Gn,type.depth){
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if (type.depth==1){
depth_Fm_F=depth.Mahalanobis (x=Fm,data=Fm) # ddalpha
depth_Gn_F=depth.Mahalanobis (x=Gn,data=Fm)
depth_Fm_G=depth.Mahalanobis (x=Fm,data=Gn)
depth_Gn_G=depth.Mahalanobis (x=Gn,data=Gn)
}
if (type.depth==2){
depth_Fm_F=depth.spatial (x=Fm,data=Fm) # ddalpha
depth_Gn_F=depth.spatial (x=Gn,data=Fm)
depth_Fm_G=depth.spatial (x=Fm,data=Gn)
depth_Gn_G=depth.spatial (x=Gn,data=Gn)
}
if (type.depth==3){
depth_Fm_F=depth.projection(x=Fm,data=Fm) # ddalpha
depth_Gn_F=depth.projection(x=Gn,data=Fm)
depth_Fm_G=depth.projection(x=Fm,data=Gn)
depth_Gn_G=depth.projection(x=Gn,data=Gn)
}

if (type.depth==4){
depth_Fm_F=depth.Mahalanobis (x=Fm,data=Fm, mah.estimate =
depth_Gn_F=depth.Mahalanobis (x=Gn,data=Fm, mah.estimate =
depth_Fm_G=depth.Mahalanobis (x=Fm,data=Gn, mah.estimate =
depth_Gn_G=depth.Mahalanobis (x=Gn,data=Gn, mah.estimate =
}

V_g=c()
for (i in 1:length(depth_Gn_F)) {

V_qlil=(sum(depth_Gn_F[i]>=depth_Fm_F))/length(depth_Fm_

}
Q_test_rF=mean(V_q)

V_g=c()
for (i in 1:length(depth_Fm_G)) {

V_qlil=(sum(depth_Fm_G[i]>=depth_Gn_G))/length(depth_Gn_

}

Q_test_rG=mean(V_q)

return(c(Q_test_rF,Q_test_rG))
}

# Compute Q_F_Chi,Q_G_Chi,A,M,W
# compute D (difference), Min stat, absolute value
five_in_all=function(Fm,Gn,type.depth){
m=dim(Fm) [1]
n=dim (Gn) [1]
wn=n/(n+m)
wn=m/(n+m)
QQ=QQ_test (Fm,Gn, type.depth)
Q_F=QQI[1]
Q_G=QQ [2]
Q_F_Chi=((1/n+1/m)*(1/12)) " (-1) *(Q_F-1/2) "2 ####
Q_G_Chi=((1/n+1/m)*(1/12) )" (-1)*(Q_G-1/2) "2
A=0.5%(((1/n+1/m)*(1/12)) " (-1))*((Q_G-0.5) "2+(Q_F-0.5) "2)

"MCD" )
"MCD" )
n MCD n )
"MCD" )

F)

G)

M=(((1/n+1/m)*(1/12))"(-1))*max ((Q_G-0.5) "2, (Q_F-0.5) "2) #max
W=(1/Cwn+wm) ) *(((1/n+1/m) *(1/12)) " (-1) ) *(wn*(Q_G-0.5) "2+wm*(Q_F-0.5) ~2)

Mn=((1/n+1/m)*(1/12))"(-1/2)*(1/2-min(Q_G,Q_F)) #min
P=-m*n*(Q_F*Q_G-1/4) /(m+n) #Product
S=-m*n*(Q_F+Q_G-1)/(m+n) #sum
return(c(Q_F_Chi,Q_G_Chi ,A,M,W,Mn,P,S))
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66

67

68

69 ### H stat

70 rtable=function(datal,data2,ref,type.depth){

71 data_all=rbind(datal,data2)

72 if (type.depth==1){

73 depth_datal=depth.Mahalanobis (x=datal,data=ref)
74 depth_data2=depth.Mahalanobis (x=data2,data=ref)
75 depth_all=depth.Mahalanobis (x=data_all,data=ref)
76 }

77 if (type.depth==2){

78 depth_datal=depth.spatial (x=datal,data=ref)

79 depth_data2=depth.spatial (x=data2,data=ref)

80 depth_all=depth.spatial (x=data_all ,data=ref)

81 }

82 if (type.depth==3){

83 depth_datal=depth.projection(x=datal,data=ref)
84 depth_data2=depth.projection(x=data2,data=ref)
85 depth_all=depth.projection(x=data_all,data=ref)
86 }

87 col_1=c()

88 for (i in 1:length(depth_datal)) {

89 col_1[i]l=sum(depth_datal[i]>=depth_all)

90 }

91 col_2=c()

92 for (i in 1:length(depth_data2)) {

93 col_2[i]=sum(depth_data2[i]>=depth_all)

94 }

95 v_length <- max(length(col_1), length(col_2))
96 length(col_1)=v_length

97 length(col_2)=v_length

98 output=cbind(col_1,col_2)

99 return (output)

100 %

101

102

103 H_test<-function(datal,data2,type.depth){

104 table_Rij=rtable(datal,data2,ref=datal,type.depth)
105 R_3=sum(table_Rij[,1],na.rm=TRUE)

106 R_4=sum(table_Rij[,2],na.rm=TRUE)

107

108 n_3=sum('is.na(table_Rij[,1]))

109 n_4=sum(!is.na(table_Rij[,2]1))

110

111 table_Rij=rtable(datal,data2,ref=data2,type.depth)
112 table_Rij

113 R_5=sum(table_Rij[,1] ,na.rm=TRUE)

114 R_6=sum(table_Rij[,2],na.rm=TRUE)

115

116 n_5=sum(!is.na(table_Rij[,1]))

117 n_6=sum('is.na(table_Rij[,2]))

118 n=n_5+n_6

119 H=12/(n*(n+1) *2) *(R_3"2/n_3+R_4"2/n_4+R_5"2/n_5+R_6"2/n_6) -3*x(n+1)
120 return (H)

121 }

122

123

89



124 BDBR=function(datal, data2, type.depth){
table_Rijl=rtable(datal, data2, ref=datal, type.depth)
table_Rij2=rtable(datal, data2, ref=data2, type.depth)
nl=sum(!is.na(table_Rij1[,1]))
n2=sum(!is.na(table_Rij21[,2]))

N=nl1+n2

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

21
22
23
24
25

R_Fl=sort(table_Rij1[,2]1)
R_F2=sort(table_Rij2[,1])

B_Fl=rep(0,n2)
B_F2=rep(0,nl)

for (i in 1:n2){

}

E=(N+1)*i/(n2+1)
V=i*(1-i/(n2+1) ) *n1*(N+1) /(n2+1) /(n2+2)
B_F1[i]l=(R_F1[i]-E)"2/V

BF1=sum (B_F1)/n2

for (j in 1:n1){

}

E=(N+1)*j/(n1+1)
V=j*(1-j/(n1+1))*n2*(N+1) /(n1+1) /(n1+2)
B_F2[jl=(R_F2[jl1-E)"2/V

BF2=sum (B_F2)/n1

B=max (BF1, BF2)

return (B)

# Empirical Distribution

set
mul
mu2

sigmal <- matrix(c(1,0,0,1), nc

.seed (1)
<- ¢(0,0)
<- ¢(0,0)

2)

sigma2 <- matrix(c(1,0,0,1), nc = 2)

Loop=10000

m=n=c (1:10) *50

Type.Depth=c(1,2,3)

for (iT in 1:length(Type.Depth)){
for(im in 1:1length(m)){

}

five_table=c()
for (i in 1:Loop) {

Fm <- rbind(mvrnorm(m[im], mul ,sigmal))

Gn <- rbind(mvrnorm(n[im], mu2 ,sigma2))

five_table=rbind(five_table,five_in_all (Fm,Gn,Type.Depth[iT]))
}
colnames (five_table)=c(’Q_F_Chi’,’Q_G_Chi’,’A”,’M’,’W’>,’Mn’,’P’,’S’)
# Save an object to a file
my_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/five_in_all/null",

Type.Depth[iT] ,m[im] ,n[im], ".rds",sep = "-")

saveRDS (five_table, file = my_data)
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
T
78
79
80
81

# Empirical Distribution

set.seed (1)

mul <- c(0,0)

mu2 <- c(0,0)

sigmal <- matrix(c(1,0,0,1), nc 2)
sigma2 <- matrix(c(1,0,0,1), nc = 2)
Loop=10000

m=c(1:10) *100

n=m/2

Type .Depth=c(1,2,3)

for(iT in 1:length(Type.Depth)){

for(im in 1:length(m)){
five_table=c()
for (i in 1:Loop) {
Fm <- rbind(mvrnorm(m([im], mul ,sigmal))
Gn <- rbind(mvrnorm(n[im], mu2 ,sigma2))
five_table=rbind(five_table,five_in_all(Fm,Gn,Type.Depth[iT]))
}
colnames (five_table)=c(’Q_F_Chi’,’Q_G_Chi’,’A’>,’M’,’W’,’Mn’,’P’,’8’)
# Save an object to a file
my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/five_in_all/null",
Type.Depth[iT] ,m[im] ,n[im], ".rds",sep = "-")
saveRDS (five_table, file = my_data)
}
}
# Empirical Distribution

set.seed (1)

mul <- ¢ (0,0)

mu2 <- c¢(0,0)

sigmal <- matrix(c(1,0,0,1), nc

sigma2 <- matrix(c(1,0,0,1), nc

Loop=10000

m=n=c (1:10) *100

Type .Depth=c(1,2,3)

for(iT in 1:length(Type.Depth)){
for(im in 1:length(m)){

2)
2)

h=c ()
for (i in 1:Loop) {

Fm <- rbind(mvrnorm(m[im], mul ,sigmal))

Gn <- rbind(mvrnorm(n[im], mu2 ,sigma2))

h=rbind(h,H_test (Fm,Gn,Type.Depth[iT]))
}
colnames (h)=c(’DbR’)
# Save an object to a file
my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/dbr/null",

Type.Depth[iT] ,m[im],n[im], "DbR.rds",sep = "-")
saveRDS (h, file = my_data)
}
}
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82 # Empirical Distribution

83 set.seed (1)

84 mul <- c(0,0)

85 mu2 <- c(0,0)

86 sigmal <- matrix(c(1,0,0,1), nc = 2)

87 sigma2 <- matrix(c(1,0,0,1), nc = 2)

88 Loop=10000

89 m=c(1:10) *50

90 n=m/2

91 Type.Depth=c(1,2,3)

92 for (iT in 1:length(Type.Depth)){

93 for(im in 1:length(m)){

94 h=c ()

95 for (i in 1:Loop) {

96 Fm <- rbind(mvrnorm(m[im], mul ,sigmal))

97 Gn <- rbind(mvrnorm(n[im], mu2 ,sigma2))

98 h=rbind(h,H_test (Fm,Gn, Type.Depth[iT]))

99 }

100 colnames (h)=c(’DbR’)

101 # Save an object to a file

102 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/dbr/null",

103 Type.Depth[iT] ,m[im] ,n[im], "DbR.rds",sep = "-")

104 saveRDS (h, file = my_data)

105 }

106

107

108 # Empirical Distribution

109 #n=m

110 set.seed (1)

111 mul <- c(0,0)

112 mu2 <- ¢(0,0)

113 sigmal <- matrix(c(1,0,0,1), nc = 2)

114 sigma2 <- matrix(c(1,0,0,1), nc = 2)

115 Loop=10000

116 m=n=c (1:10) *50

117 Type.Depth=c(1,2,3)

118 for (iT in 1:1length(Type.Depth)){

119 for(im in 1:length(m)){

120 h=c ()

121 for (i in 1:Loop) {

122 Fm <- rbind(mvrnorm(m[im], mul ,sigmal))

123 Gn <- rbind(mvrnorm(n[im], mu2 ,sigma2))

124 h=rbind (h,BDBR(Fm,Gn,Type.Depth[iT]))

125 }

126 colnames (h)=c(’BDbR’)

127 # Save an object to a file

128 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/bdbr/null",

129 Type.Depth[iT] ,m[im] ,n[im], "BDbR.rds",sep = "-")

130 saveRDS(h, file = my_data)

131 }

132 }

133

134 #n=m/2

135 set.seed (1)
136 mul <- c(0,0)
137 mu2 <- c(0,0)
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29

sigmal <- matrix(c(1,0,0,1), nc 2)
sigma2 <- matrix(c(1,0,0,1), nc = 2)
Loop=10000
m=c (1:10) *50
n=m/2
Type .Depth=c(1,2,3)
for(iT in 1:length(Type.Depth)){
for(im in 1:length(m)){
h=c ()
for (i in 1:Loop) {
Fm <- rbind(mvrnorm(m([im], mul ,sigmal))
Gn <- rbind(mvrnorm(n([im], mu2 ,sigma2))
h=rbind (h,BDBR(Fm,Gn,Type.Depth[iT]))
}
colnames (h)=c(’BDbR’)
# Save an object to a file
my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/bdbr/null",
Type.Depth[iT],m[im],n[im], "BDbR.rds",sep = "-")
saveRDS (h, file = my_data)
}

A.1.6 Empirical quantiles of Minimum Statistic

m=n=c (1:10) *100

Type .Depth=c(1,2,3)

Q=array (NA,dim=c(length(Type.Depth),length(m) ,8))
for (iT in 1:length(Type.Depth)){

for(im in 1:1length(m)){

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/five_in_all/null",
Type .Depth [iT] ,m[im] ,n[im], ".rds",sep = "-")

five_table=readRDS(file =my_data)

five_table=five_table[1:10000,]

Q[iT,im,] <- apply(five_table,2,function (x) quantile(x,probs = 0.95))
}

}

par (mar=c(4,4,0,0)+0.1,fig=c(0,0.5,1/4,2/4) , new=TRUE)
library ("fdrtool")
plot(m,Q[1,,7],ylim=c(1.95, 2.55) ,type=’1’,col=’black’,lwd=2,
#main="Log of Normalizing Constant Approximation",
ylab="Minimum Statistics",
xlab="m (n=m)",cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5)
abline (h=qhalfnorm(0.95) ,col="red",1lwd=2)

lines(m,Q[2,,7],1ty=2,col="blue",lwd=2)
lines(m,Q[3,,7],1ty=3,col="purple",lwd=2)
legend ("topright",
c("Mahalanobis","Spatial","Projection"),
lty=c(1,2,3),col=c("black","blue","purple") ,bty="n’,lwd=2,cex=1.5,x.
intersp=2)
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m=n=c (1:10) *100

n=m/2

Type .Depth=c(1,2,3)

Q=array (NA,dim=c(length(Type.Depth),length(m) ,8))
for (iT in 1:length(Type.Depth)){

for(im in 1:length(m)){

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/five_in_all/null",
Type.Depth[iT] ,m[im] ,n[im], ".rds",sep = "-")

five_table=readRDS(file =my_data)

five_table=five_table[1:10000,]

Q[iT,im,] <- apply(five_table,2,function (x) quantile(x,probs = 0.95))
}

}

par (mar=c(4,4,0,0)+0.1,fig=c(0.5,1,1/4,2/4), new=TRUE)
library ("fdrtool")
plot(m,Q[1,,7],ylim=c(1.95,2.55) ,type=’1’,col="black’,lwd=2,
#main="Log of Normalizing Constant Approximation",
ylab="Minimum Statistics",
xlab="m (n=m/2)",cex.lab=1.5, cex.axis=1.5, cex.main=1.5, cex.sub=1.5)
abline (h=qhalfnorm(0.95) ,col="red",lwd=2)

lines(m,Q[2,,7],1ty=2,col="blue",lwd=2)
lines(m,Q[3,,7],1ty=3,col="purple",lwd=2)
legend ("topright",
c("Mahalanobis","Spatial","Projection"),
lty=c(1,2,3),col=c("black","blue","purple") ,bty="n’,lwd=2,cex=1.5,x.
intersp=2)

A.2 Chapter 3

A.2.1 Univariate distribution

library (MASS)

QQ_test=function (Fm,Gn){
depth_Fm_F=1/(1+(Fm-mean(Fm)) ~2)
depth_Gn_F=1/(1+(Gn-mean (Fm)) ~2)
depth_Fm_G=1/(1+(Fm-mean(Gn)) ~2)
depth_Gn_G=1/(1+(Gn-mean(Gn)) ~2)

V_q=c()

for (i in 1:length(depth_Gn_F)) {
V_ql[il=(sum(depth_Gn_F[i]>=depth_Fm_F))/length(depth_Fm_F)

}

Q_test_rF=mean(V_q)

V_q=c(

for (i in 1:length(depth_Fm_G)) {
V_ql[il=(sum(depth_Fm_G[i]>=depth_Gn_G))/length(depth_Gn_G)

}

Q_test_rG=mean(V_q)

return(c(Q_test_rF,Q_test_rG))
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20 }

21

22 five_in_all=function(Fm,Gn){

23 m=length (Fm)

24  n=length(Gn)

25

26 QQ=QQ_test (Fm,Gn)

27 Q_F=QQ[1]

28 Q_G=QQ [2]

29

30 M=(((1/n+1/m)*(1/12)) " (-1))*max ((Q_G-0.5)"2,(Q_F-0.5) "2) #max
31 Mn=((1/n+1/m)*(1/12))"(-1/2)*(1/2-nin(Q_G,Q_F)) #min
32 P=-m*n*(Q_F*Q_G-1/4) /(m+n) #Product

33 S=-m*n*(Q_F+Q_G-1) /(m+n) #sum

34 return(c(M,Mn,P,S))

35 }

36

37

38 rtable=function(datal,data2,ref){

39 data_all=c(datal,data?2)

40 depth_datal=1/(1+(datal-mean(ref))~2)

41 depth_data2=1/(1+(data2-mean(ref)) ~2)

42 depth_all=1/(1+(data_all-mean(ref)) ~2)

43

44 col_1=c()

45 for (i in 1:length(depth_datal)) {

46 col_1[i]l=sum(depth_datal[i]>=depth_all)
47 }

48 col_2=c()

49 for (i in 1:length(depth_data2)) {

50 col_2[i]=sum(depth_data2[i]>=depth_all)
51 }

52 v_length <- max(length(col_1), length(col_2))
53 length(col_1)=v_length

54 length(col_2)=v_length

55 output=cbind(col_1,co0l_2)

56 return (output)

57 }

58

59 H_test<-function (datal,data2){

60 table_Rij=rtable(datal ,data2,ref=datal)
61 R_3=sum(table_Rij[,1] ,na.rm=TRUE)

62 R_4=sum(table_Rij[,2],na.rm=TRUE)

63

64 n_3=sum(!is.na(table_Rij[,1]))

65 n_4=sum('!is.na(table_Rij[,2]1))

66

67 table_Rij=rtable(datal,data2,ref=data2)
68 table_Rij

69 R_5=sum(table_Rij[,1] ,na.rm=TRUE)

70 R_6=sum(table_Rij[,2] ,na.rm=TRUE)

71

72 n_5=sum(!is.na(table_Rij[,1]1))

73 n_6=sum(!is.na(table_Rij[,2]))

74 n=n_5+n_6

75 H=12/(n*(n+1) *2) *(R_3"2/n_3+R_4"2/n_4+R_5"2/n_5+R_6"2/n_6) -3*x(n+1)
76 return (H)

77}
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BDBR=function(datal, data2){

table_Rijl=rtable(datal, data2, ref=datal)
table_Rij2=rtable(datal, data2, ref=data2)
nl=sum(!is.na(table_Rij1[,1]1))
n2=sum(!is.na(table_Rij2[,2]))

N=n1+n2

R_Fl=sort(table_Rij1[,2])
R_F2=sort(table_Rij2[,1])

B_Fl=rep(0,n2)
B_F2=rep(0,nl)

for (i in 1:n2){
E=(N+1)*i/(n2+1)
V=i*(1-i/(n2+1) ) *n1*(N+1) /(n2+1) /(n2+2)
B_F1[il=(R_F1[i]l-E)"2/V

}

BFi=sum(B_F1)/n2

for (j in 1:n1){
E=(N+1)*j/(n1+1)
V=j*x(1-j/(n1+1))*n2*(N+1) /(n1+1) /(n1+2)
B_F2[jl1=(R_F2[jl1-E)"2/V

}

BF2=sum (B_F2)/n1

B=max (BF1, BF2)

return (B)

#two sample wilcoxon mann whitney
Wilcoxon=function(Fm,Gn){

m=length (Fm)
n=length(Gn)

u=c ()

for (i in 1:m){
ulil=sum(Fm[i]<Gn)/n

}

U=mean (u)

return (U)

Permu=function(Fm,Gn,m,n,size){

T_star=five_in_all(Fm, Gn)
B=(m+n)/size

Loop=200

T_b=matrix (NA,Loop,4)
pvalue=c ()

for(loop in 1:Loop){

ind=sample( B, m/size)
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137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

ind=sort (ind)

Fm.ind=NULL
for(i in 1:length(ind))
Fm.ind=c(Fm.ind, ((ind[i]l-1)*size+1): (ind[il*size) )

Fm.b=c(Fm,Gn) [Fm.ind]

Gn.b=c(Fm,Gn) [-Fm.ind]

T_bl[loop,l=five_in_all(Fm.b, Gn.b)
}

# pvalue=sum(T_b>T_star)/Loop
pvalue [1]=sum(T_b[,3]>T_star [3])/Loop #prod
pvalue [2]=sum(T_b[,4]1>T_star [4])/Loop #sum

return(pvalue)

}

rept=1000
m=c (1:10) *50
n=m

p_quantile_sum=p_quantile_prod=c()
for (im in 1:10){
p_matrix=matrix (NA,rept,2)
for (loop in 1:rept){
Fm=rnorm(m[im],0,1)
Gn=rnorm(n[im] ,0,1)
p_matrix[loop,]l=Permu(Fm,Gn,m[im], n[im], 25)
}
p_quantile_prod[im]=quantile(p_matrix[,1],0.05)
p_quantile_sum[im]=quantile(p_matrix[,2],0.05)
}
p_quantile_sum
p_quantile_prod
saveRDS (p_quantile_sum ,"C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-sum-samesize.rds")
saveRDS (p_quantile_prod ,"C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-prod-samesize.rds")

rept=1000
m=c (1:10) *50
n=m/2
p_quantile_sum=p_quantile_prod=c()
for (im in 1:10){
p_matrix=matrix (NA,rept,2)
for (loop in 1l:rept){
Fm=rnorm(m[im],0,1)
Gn=rnorm(n[im],0,1)
p_matrix[loop,]=Permu(Fm,Gn,m[im], n[im], 25)
}
p_quantile_prod[im]l=quantile (p_matrix[,1],0.05)
p_quantile_sum[im]=quantile(p_matrix[,2],0.05)
}
p_quantile_sum
p_quantile_prod
saveRDS (p_quantile_sum ,"C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-sum-diffsize.rds")
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191 saveRDS(p_quantile_prod ,"C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-prod-diffsize.rds")

Scale change

set.seed (1)

#set m,n values, mu and sigma
m=c (1:10) *50

n=m

mul <- 0.25

mu2 <- 0.25

sigmal <- 1

sigma2 <- 1.15

O~ O T Wi+

©

10 rept=1000 #number of repetitions
11 Q=matrix(NA, length(m) ,6 )

12 powers=matrix(NA, length(m),7 )
13

14

15 for (im in 1:10){

16  for (loop in 1:rept){

17 Fn=rnorm(m[im] ,mul, sigmal)

18 Gn=rnorm(n[im] ,mu2, sigma2)

19

20 Fm_data=paste("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
Permutation/Fm Gni-1/",

21 m[im] ,n[im],loop, "Fm.rds",sep = "-")

22 Gn_data=paste("C:/Users/ychend4d62/Desktop/Data depth new/1 dim Euclidean/
Permutation/Fm Gni-1/",

23 mlim] ,n[im],lo0op, "Gn.rds",sep = "-")

24 saveRDS (Fm, file=Fm_data)

25 saveRDS(Gn, file=Gn_data)

26 }

27

28 #read data from null hypothesis
29 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/five_in_all/null",

30 m[im] ,n[im],".rds",sep = "-")
31 five_table=readRDS(file =my_data)
32

33 my_data=paste("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/dbr/null",

34 m[im] ,n[im] ,"DbR.rds",sep = "-")
35 DbR_table=readRDS(file =my_data)
36

37 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/bdbr/null",

38 m[im] ,n[im] ,"BDbR.rds",sep = "-")
39 BDbR_table=readRDS(file =my_data)
40

41 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/Wilcoxon/null",

42 m[im] ,n[im] ,"Wilcoxon.rds",sep = "-")
43 Wilcoxon_table=readRDS(file =my_data)

44

45
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46

47
48
49
50
51
52
53
54
55
56

57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

74

75
76
7
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97

Q[im, J=c(apply(five_table,2,function (x) quantile(x,probs = 0.95))[c(1,2)
] 5

quantile (DbR_table ,probs = 0.95),
quantile (BDbR_table ,prob=0.95),
quantile (Wilcoxon_table ,prob=c(0.025,0.975)))
#powers
h=c ()
temp=matrix (NA,rept,2)
for (loop in 1:rept){
Fm=readRDS (paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/Fm Gni-1/",
m[im] ,n[im],loop, "Fm.rds",sep = "-"))
Gn=readRDS (paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/Fm Gni-1/",
m[im] ,n[im],loop, "Gn.rds",sep = "-"))
h=rbind(h,c(five_in_all (Fm,Gn) [c(1,2)],
H_test(Fm,Gn),
BDBR (Fm, Gn) ,
Wilcoxon (Fm,Gn)))
temp [loop,]=Permu(Fm,Gn,m[im], n[im], 25)
}
for(j in 1:4){
powers [im, jl=mean(h[,jl>=Q[im,j])
}
powers [im,5]=mean((h[,5]1<=Q[im,5])+(h([,5]>=Q[im,6]))
p_quantile_sum=readRDS("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-sum-samesize.rds")
p_quantile_prod=readRDS("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-prod-samesize.rds")
#powers for prod, sum
powers [im,6]=sum(temp[,1]<p_quantile_prod[im])/rept
powers [im,7]=sum(temp[,2]<p_quantile_sum[im])/rept
}
powers
my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
Permutation/powerl-1.rds",sep = "-")
saveRDS (powers, file = my_data)
####n=m/2
set.seed (1)

#set m,n values, mu and sigma
m=c (1:10) *50

n=m/2

mul <- 0.25

mu2 <- 0.25

sigmal <- 1

sigma2 <- 1.15
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98

99 rept=1000 #number of repetitions
100 Q=matrix(NA, length(m),6 )

101 powers=matrix(NA, length(m),7 )
102

103 for (im in 1:10){

104 for (loop in 1l:rept){

105 Fm=rnorm(m[im] ,mul, sigmal)

106 Gn=rnorm(n[im] ,mu2, sigma2)

107

108 Fm_data=paste("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
Permutation/Fm Gni1-2/",

109 m[im] ,n[im],lo0p, "Fm.rds",sep = "-")

110 Gn_data=paste("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
Permutation/Fm Gni1-2/",

111 m[im] ,n[im],lo0p, "Gn.rds",sep = "-")

112 saveRDS (Fm, file=Fm_data)

113 saveRDS(Gn, file=Gn_data)

114 }

115

116

117 #read data from null hypothesis
118 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/five_in_all/null",

119 m[im] ,n[im],".rds",sep = "-")
120 five_table=readRDS(file =my_data)
121

122 my_data=paste("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/dbr/null",

123 m[im] ,n[im] ,"DbR.rds",sep = "-")
124 DbR_table=readRDS(file =my_data)
125

126 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/bdbr/null",

127 m[im] ,n[im] ,"BDbR.rds",sep = "-")
128 BDbR_table=readRDS(file =my_data)
129

130 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
null hypothesis/Wilcoxon/null",

131 m[im] ,n[im] ,"Wilcoxon.rds",sep = "-")

132 Wilcoxon_table=readRDS(file =my_data)

133

134

135

136 Q[im, J=c(apply(five_table,2,function (x) quantile(x,probs = 0.95))[c(1,2)
1,

137 quantile (DbR_table ,probs = 0.95),

138 quantile (BDbR_table ,prob=0.95),

139 quantile(Wilcoxon_table ,prob=c(0.025,0.975)))

140

141

142 #powers

143 h=c ()

144 temp=matrix (NA,rept,2)
145 for (loop in 1l:rept){

146 Fm=readRDS (paste("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/Fm Gni-2/",
147 m[im] ,n[im],loop, "Fm.rds",sep = "-"))
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148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

165
166
167
168
169
170
171
172

173

W N = =W N =

U W N =

Gn=readRDS (paste ("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/Fm Gni-2/",
m[im] ,n[im] ,lo0p, "Gn.rds",sep = "-"))

h=rbind(h,c(five_in_all (Fm,Gn) [c(1,2)],

H_test (Fm,Gn),

BDBR (Fm,Gn) ,

Wilcoxon(Fm,Gn)))
temp[loop,]=Permu(Fm,Gn,m[im], n[im], 25)

}

for(j in 1:4){
powers [im, jl=mean(h[,jl>=Q[im,j])
}
powers [im,5]=mean ((h[,5]1<=Q[im,5]1)+(h([,5]1>=Q[im,6]))

p_quantile_sum=readRDS("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-sum-diffsize.rds")

p_quantile_prod=readRDS("C:/Users/ychen462/Desktop/Data depth new/1 dim
Euclidean/Permutation/p-value-prod-diffsize.rds")

#powers for prod, sum
powers [im,6]=sum(temp[,1]<p_quantile_prod[im])/rept
powers [im,7]=sum(temp[,2]<p_quantile_sum[im])/rept

powers

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/1 dim Euclidean/
permutation/powerl-2.rds",sep = "-")

saveRDS (powers, file = my_data)

Mean change

mul <- 0

mu2 <- 0.25
sigmal <- 1
sigma2 <- 1

Both change

mul <- 0.25
mu2 <- 0
sigmal <- 1
sigma2 <- 1.15

A.2.2 Multivariate distribution

Permu=function(Fm,Gn,m,n,size,type.depth){
T_star=five_in_all(Fm, Gn,type.depth)
B=(m+n)/size
Loop=200
T_b=matrix (NA,Loop,8)
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7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53

54
55
56
57
58
59
60
61

pvalue=c ()
for(loop in 1:Loop){

ind=sample( B, m/size)
ind=sort (ind)

Fm.ind=NULL
for(i in 1:1length(ind))
Fm.ind=c(Fm.ind, ((ind[i]-1)*size+1): (ind[il*size) )

Fm.b=rbind (Fm,Gn) [Fm.ind,]

Gn.b=rbind (Fm,Gn) [-Fm.ind,]

T_bl[loop,]=five_in_all(Fm.b, Gn.b,type.depth)
}

# pvalue=sum(T_b>T_star)/Loop
pvalue [1]=sum(T_b[,7]1>T_star [7])/Loop #prod
pvalue [2]=sum(T_b[,8]>T_star [8])/Loop #sum

return(pvalue)

}

mu <- c(0,0)
sigma <- matrix(c(1,0,0,1), nc = 2)

rept=1000

m=c (1:10) *50

type.depth=c(1,2,3)

n=m
p_quantile_sum=p_quantile_prod=matrix(NA,10,3)

for (iT in type.depth){
for (im in 1:10){
p_matrix=matrix (NA,rept,2)
for (loop in 1l:rept){
Fm=mvrnorm(m[im] ,mu, sigma)
Gn=mvrnorm(n[im] ,mu, sigma)
p_matrix[loop,]=Permu(Fm,Gn,m[im], n[im], 25,iT)
}
p_quantile_prod[im,iT]=quantile(p_matrix[,1],0.05)
p_quantile_sum[im,iT]=quantile (p_matrix[,2],0.05)
}
}
p_quantile_sum
p_quantile_prod
saveRDS (p_quantile_sum,"C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/p-value-sum-samesize.rds")
saveRDS (p_quantile_prod ,"C:/Users/ychen462/Desktop/Data depth new/two sample
/Permutation/p-value-prod-samesize.rds")

rept=1000

m=c (1:10) *50

type.depth=c(1,2,3)

n=m/2
p_quantile_sum=p_quantile_prod=matrix(NA,10,3)
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62 for (iT in type.depth){
63 for (im in 1:10){

64 p_matrix=matrix (NA,rept,2)

65 for (loop in 1:rept){

66 Fm=mvrnorm(m[im] ,mu, sigma)

67 Gn=mvrnorm(n[im] ,mu, sigma)

68 p_matrix[loop,]=Permu(Fm,Gn,m[im], n[im], 25,iT)
69 }

70 p_quantile_prod[im,iT]=quantile(p_matrix[,1],0.05)
71 p_quantile_sum[im,iT]=quantile (p_matrix[,2],0.05)
72 }

73}

74 p_quantile_sum

75 p_quantile_prod

76 saveRDS(p_quantile_sum,"C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/p-value-sum-diffsize.rds")

77 saveRDS(p_quantile_prod,"C:/Users/ychen462/Desktop/Data depth new/two sample
/Permutation/p-value-prod-diffsize.rds")

Scale change

1 set.seed (1)

2 #set m,n values, mu and sigma

3 m=c(1:10) %50

4 n=m

5 type.depth=c(1,2,3)

6 mul <- c(0,0)

7 mu2 <- c(0,0)

8 sigmal <- matrix(c(1,0,0,1), nc = 2)

9 sigma2 <- matrix(c(1,0.5,0.5,1), nc = 2)

10

11

12

13 rept=1000 #number of repetitions

14

15 Q=array (NA,dim=c(length(type.depth),length(m) ,4))
16 powers=array(NA,dim=c(length(type.depth),length(m) ,6))
17

18 for (iT in type.depth){

19 for (im in 1:10){

20 for (loop in 1l:rept){

21 Fm=mvrnorm(m[im] ,mul, sigmal)

22 Gn=mvrnorm(n[im] ,mu2, sigma2)

23

24 Fm_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gni-1/",

25 iT,m[im] ,n[im] ,lo0op, "Fm.rds",sep = "-")

26 Gn_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gni-1/",

27 iT,m[im] ,n[im],lo0p, "Gn.rds",sep = "-")

28 saveRDS (Fm, file=Fm_data)

29 saveRDS(Gn, file=Gn_data)

30 }

31

32

33 #read data from null hypothesis
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34

35
36
37
38

39
40
41
42

43
44
45
46

47

48
49
50
51
52
53
54
55
56

57
58

59
60
61
62
63
64
65
66

67
68
69

70
71
72
73
74
75
76
7
78
79

80

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/five_in_all/null",

iT,m[im] ,n[im] ,".rds",sep = "-")
five_table=readRDS(file =my_data)

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/dbr/null",

iT,m[im] ,n[im] ,"DbR.rds",sep = "-")
DbR_table=readRDS(file =my_data)

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/bdbr/null",

iT,m[im] ,n[im] ,"BDbR.rds",sep = "-")
BDbR_table=readRDS(file =my_data)

Q[iT, im, 1]=apply(five_table,2,function (x) quantile(x,probs = 0.95))
[4] #max
Q[iT, im, 2]=apply(five_table ,2,function (x) quantile(x,probs = 0.95))

[6] #min
Q[iT, im, 3]=quantile (DbR_table,probs = 0.95)
Q[iT, im, 4]=quantile (BDbR_table,probs = 0.95)

#powers for max, min, dbr, bdbr
h=c (O
temp=matrix (NA,rept,2)
for (loop in 1l:rept){
Fm=readRDS (paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gni-1/",
iT,m[im] ,n[im],lo0p, "Fm.rds",sep = "-") )
Gn=readRDS (paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gni-1/",
iT,m[im] ,n[im],lo0p, "Gn.rds",sep = "-"))
h=rbind(h,c(five_in_all(Fm,Gn,iT) [c(4,6)],
H_test(Fm,Gn,iT),
BDBR (Fm,Gn,iT)))
temp [loop,]=Permu(Fm,Gn,m[im], n[im], 25 ,iT)
}

temp_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Permu temp/Scale change/",
iT,m[im] ,n[im], "PS.rds",sep = "-")

saveRDS (temp, file=temp_data)
h_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Permu temp/Scale change/",

iT,m[im] ,n[im], "MaxDbr.rds",sep = "-")
saveRDS (h, file=h_data)

#powers for max, min, dbr, bdbr
for(j in 1:4){

powers [iT,im, jl=mean(h[,j]l>=Q[iT,im, jI)
¥

p_quantile_sum=readRDS ("C:/Users/ychen462/Desktop/Data depth new/two
sample/Permutation/p-value-sum-samesize.rds")
p_quantile_prod=readRDS("C:/Users/ychen462/Desktop/Data depth new/two
sample/Permutation/p-value-prod-samesize.rds")
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81

82 #powers for prod, sum

83 powers [iT,im ,5]=sum(temp[,1]< p_quantile_prod[im,iT])/rept

84

85 powers [iT,im,6]=sum(temp[,2]< p_quantile_sum[im,iT])/rept

86

87

88 }

89

90

91 my_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/new powerl-1.rds",sep = "-")

92 saveRDS (powers, file = my_data)

93

94

95

96 ####n=m/2

97 set.seed (1)

98 #set m,n values, mu and sigma

99 m=c(1:10) *50

100 n=m/2

101 type.depth=c(1,2,3)

102 mul <- ¢ (0,0)

103 mu2 <- c(0,0)

104 sigmal <- matrix(c(1,0,0,1), nc = 2)

105 sigma2 <- matrix(c(1,0.5,0.5,1), nc = 2)

106

107

108

109 rept=1000 #number of repetitions

110

111 Q=array(NA,dim=c(length(type.depth),length(m) ,4))

112 powers=array (NA,dim=c(length(type.depth),length(m) ,6))

113

114 for (iT in type.depth){

115 for (im in 1:10){

116 for (loop in 1l:rept){

117 Fm=mvrnorm(m[im] ,mul, sigmal)

118 Gn=mvrnorm(n[im] ,mu2, sigma2)

119

120 Fm_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gn1-2/",

121 iT,m[im] ,n[im],lo0p, "Fm.rds",sep = "-")

122 Gn_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gn1-2/",

123 iT,m[im] ,n[im],lo0op, "Gn.rds",sep = "-")

124 saveRDS (Fm, file=Fm_data)

125 saveRDS(Gn, file=Gn_data)

126 }

127

128

129 #read data from null hypothesis

130 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/five_in_all/null",

131 iT,m[im] ,n[im],".rds",sep = "-")

132 five_table=readRDS(file =my_data)

133
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134

135
136
137
138

139
140
141
142

143

144
145
146
147
148
149
150
151
152

153
154

155
156
157
158
159
160
161
162

163
164
165

166
167
168
169
170
171
172
173
174
175
176

177

178
179
180
181

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/dbr/null",

iT,m[im] ,n[im] ,"DbR.rds",sep = "-")
DbR_table=readRDS(file =my_data)

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/null
hypothesis/bdbr/null",

iT,m[im] ,n[im] ,"BDbR.rds",sep = "-")
BDbR_table=readRDS(file =my_data)

QLiT, im, 1]l=apply(five_table,2,function (x) quantile(x,probs = 0.95))
[4] #max
Q[iT, im, 2]=apply(five_table,2,function (x) quantile(x,probs = 0.95))

[6] #min
Q[iT, im, 3]=quantile (DbR_table,probs = 0.95)
Q[iT, im, 4]=quantile (BDbR_table,probs = 0.95)

#powers for max, min, dbr, bdbr
h=c ()
temp=matrix (NA,rept,2)
for (loop in 1l:rept){
Fm=readRDS (paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gn1-2/",
iT,m[im] ,n[im],lo0p, "Fm.rds",sep = "-") )
Gn=readRDS (paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Fm Gni1-2/",
iT,m[im] ,n[im] ,lo0p, "Gn.rds",sep = "-"))
h=rbind(h,c(five_in_all (Fm,Gn,iT) [c(4,6)],
H_test(Fm,Gn,iT),
BDBR (Fm,Gn,iT)))
temp [loop,]=Permu(Fm,Gn,m[im], n[im], 25 ,iT)
}

temp_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Permu temp/Scale change/",
iT,m[im] ,n[im], "PS.rds",sep = "-")

saveRDS (temp, file=temp_data)
h_data=paste("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/Permu temp/Scale change/",

iT,m[im] ,n[im], "MaxDbr.rds",sep = "-")
saveRDS (h, file=h_data)

#powers for max, min, dbr, bdbr
for(j in 1:4){

powers [iT,im, jl=mean(h[,jl>=Q[iT,im, jI)
}

p_quantile_sum=readRDS("C:/Users/ychen462/Desktop/Data depth new/two
sample/Permutation/p-value-sum-diffsize.rds")
p_quantile_prod=readRDS("C:/Users/ychen462/Desktop/Data depth new/two
sample/Permutation/p-value-prod-diffsize.rds")

#powers for prod, sum

powers [iT,im,5]=sum(temp[,1]1< p_quantile_prod[im,iT])/rept
powers [iT,im,6]=sum(temp[,2]< p_quantile_sum([im,iT])/rept
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183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234
235

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/
Permutation/new powerl-2.rds",sep = "-")
saveRDS (powers, file = my_data)

HEn#HHHHHHHH BB ###EDlOT
add_legend <- function(...) {
opar <- par(fig=c(0, 1, 0, 1), oma=c(0, 0, 0, 0),
mar=c(0, 0, 0, 0), new=TRUE)
on.exit (par (opar))
plot (0, O, type=’n’, bty=’n’, xaxt=’n’, yaxt=’n’)
legend (...)
}
m=n=c (1:10) *50
my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/

Permutation/new powerl-1.rds",sep = "-")
six_table=readRDS(file =my_data)
a=0.06

plotchar=c(8,18,4,5,3,12,6,7)

COL=c( "black", "red", ’darkgreen’,’orange’, "blue", "purple","brown")
par (mfrow=c(3,2) )

par(mar=c(4,4,4,0)+0.1,fig=c(0,0.5,2/3-a,1) )

yrange=c(0,1)
plot(m,six_table[1,,1],ylim=yrange ,type=’b’,pch=plotchar[1],col=COL[1],1lwd
=2,
#main="Log of Normalizing Constant Approximation",
ylab="Power (Mahalanobis)",
xlab="m (n=m)") #max

lines(m,six_table[1,,2],type="b’,pch=plotchar[2],co0l=COL[2],1lwd=2) #min
lines(m,six_table[1,,3],type="b’,pch=plotchar [3],co0l=COL[3],1lwd=2) #dbr
lines(m,six_table[1l,,4],type="b’,pch=plotchar[4],co0l=COL[4],1wd=2) #bdbr
lines(m,six_table[1,,5],type=’b’,pch=plotchar [6],col=COL[5],1lwd=2) #prod
lines(m,six_table[1,,6],type="b’,pch=plotchar [6],col=COL[6],1lwd=2) #sum

par(mar=c(4,4,0,0)+0.1,fig=c(0,0.5,1/3-a/2,2/3-a) , new=TRUE)
plot(m,six_table[2,,1],ylim=yrange,type=’b’,pch=plotchar[1],col=COL[1],1lwd
=2,
#main="Log of Normalizing Constant Approximation",

ylab="Power (Spatial)",
xlab="m (n=m)") #max

lines(m,six_table[2,,2],type="b’,pch=plotchar [2],c0l=COL[2],1lwd=2) #min
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236 lines(m,six_table[2,,3],type="b’,pch=plotchar [3],col=COL[3],1lwd=2)
237 lines(m,six_table[2,,4],type="b’,pch=plotchar [4],col=COL[4],1lwd=2)
238 lines(m,six_table[2,,5],type="b’,pch=plotchar [5],co0l=COL[5],1lwd=2)
239 lines(m,six_table[2,,6],type="b’,pch=plotchar [6],col=COL[6],1lwd=2)
240

241

242 par (mar=c(4,4,0,0)+0.1,fig=c(0,0.5,0,1/3-a/2) , new=TRUE)

243

244

245 plot(m,six_table[3,,1] ,ylim=yrange,type=’b’,pch=plotchar[1],co0l=COL[1],1lwd
=2,

246 #main="Log of Normalizing Constant Approximation",

247 ylab="Power (Projection)",

248 xlab="m (n=m)")

249

250 lines(m,six_table[3,,2],type=’b’,pch=plotchar[2],co0l=COL[2],1wd=2) #min
251 lines(m,six_table[3,,3],type="b’,pch=plotchar [3],col=COL[3],1lwd=2)

252 lines(m,six_table[3,,4],type="b’,pch=plotchar [4],col=COL[4],1lwd=2)

253 lines(m,six_table[3,,5],type="b’,pch=plotchar [5],col=COL[5],1lwd=2)

254 lines(m,six_table[3,,6],type="b’,pch=plotchar [6],col=COL[6],1lwd=2)

255

256 #####

257 m=c (1:10) *50

258 my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/two sample/

Permutation/new powerl-2.rds",sep = "-")
259 six_table=readRDS(file =my_data)
260
261

262 par (mar=c(4,4,4,0)+0.1,fig=c(0.5,1,2/3-a,1) , new=TRUE)

263

264 yrange=c(0,1)

265 plot(m,six_table[1l,,1],ylim=yrange,type=’b’,pch=plotchar[1],col=COL[1],1lwd

=2,
266 #main="Log of Normalizing Constant Approximation",
267 ylab="Power (Mahalanobis)",

268 xlab="m (n=m/2)") #max

269

270 lines(m,six_table[1,,2],type="b’,pch=plotchar [2],col=COL[2],1wd=2) #min
271 lines(m,six_table([1,,3],type=’b’,pch=plotchar[3],co0l=COL[3],1lwd=2) #dbr
272 lines(m,six_table[1,,4],type="b’,pch=plotchar [4],col=COL[4],1wd=2) #bdbr
273 lines(m,six_table[1,,5],type="b’,pch=plotchar [6],col=COL[5],1wd=2) #prod
274 lines(m,six_table[1,,6],type=’b’,pch=plotchar[6],c0l=COL[6],1lwd=2) #sum
275

276 par (mar=c(4,4,0,0)+0.1,fig=c(0.5,1,1/3-a/2,2/3-a) , new=TRUE)

277

278 plot(m,six_table[2,,1] ,ylim=yrange,type=’b’,pch=plotchar [1],col=COL[1],1lwd

=2,
279 #main="Log of Normalizing Constant Approximation",
280 ylab="Power (Spatial)",

281 xlab="m (n=m/2)") #max

282

283

284 lines(m,six_table[2,,2],type="b’,pch=plotchar [2],col=COL[2],1lwd=2) #min
285 lines(m,six_table[2,,3],type="b’,pch=plotchar [3],co0l=COL[3],1lwd=2)

286 lines(m,six_table[2,,4],type="b’,pch=plotchar [4],col=COL[4],1lwd=2)

287 lines(m,six_table[2,,5],type="b’,pch=plotchar [56],col=COL[5],1lwd=2)

288 lines(m,six_table[2,,6],type="b’,pch=plotchar [6],col=COL[6],1lwd=2)

289
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290
291
292
293
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

313
314

W N

W N =

par (mar=c(4,4,0,0)+0.1,fig=c(0.5,1,0,1/3-a/2) , new=TRUE)

plot(m,six_table[3,,1] ,ylim=yrange,type=’b’,pch=plotchar [1],col=COL[1],1lwd
=2,
#main="Log of Normalizing Constant Approximation",
ylab="Power (Projection)",
xlab="m (n=m/2)")

lines(m,six_table[3,,2],type="b’,pch=plotchar [2],co0l=COL[2],1lwd=2) #min
lines(m,six_table[3,,3],type="b’,pch=plotchar [3],co0l=COL[3],1lwd=2)
lines(m,six_table[3,,4],type="b’,pch=plotchar [4],col=COL[4],1lwd=2)
lines(m,six_table[3,,5],type="b’,pch=plotchar [6],col=COL[5],1lwd=2)
lines(m,six_table[3,,6],type="b’,pch=plotchar [6],col=COL[6],1lwd=2)

add_legend ("top",
legend=c(expression(M["m,n"]),
expression(M["m,n"]"’%’) ,"DbR", ’BDbR’,expression(P["m,n
"1,
expression(S["m,n"]1)),
pch=plotchar[c(1:6)],c0l=C0L[c(1:6)],bty=’n’, horiz=TRUE,lwd=2)

Mean change

mul <- c(0,0)
mu2 <- c(0.3,0.3)

sigmal <- matrix(c(1,0,0,1), nc = 2)
sigma2 <- matrix(c(1,0,0,1), nc = 2)
Both change

mul <- c(0,0)

mu2 <- c(0.2,0.2)

sigmal <- matrix(c(1,0,0,1), nc = 2)

sigma2 <- matrix(c(1,0.4,0.4,1), nc = 2)

A.3 Chapter 4

A.3.1 Ramen spectrum
name="xxx/Data depth/785_830_100%
_30s_Renishaw_1070centre_15stepsize_8x6_Slicel_Region3_KirstySlice_KirstyZfirst

.txt!"

data <- read.delim(name)
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

wave=datal[,4]
intens=datal,5]

plot (wave)
plot (intens)

table (wave)
N=48
wavel=as.numeric (names (table (wave)))
T=length(wavel)
wavel=wavel [T:1]
samples=NULL
for(i in 1:48)
samples=rbind (samples,intens [((i-1)*T+1) : (i*T)])

samples=samples[-c(17,18),]

x=c(1l:length(wavel [219:245]))
x0=14
newx=(x-x0)"2/(length(x)) "2
ind1=ind2=NULL
Res=matrix (NA, 46,27)
for(i in 1:46){
#Sys.sleep (1)
y=log(samples[i,219:245])
fit=1lm(y~newx)
Res[i,]=summary (fit) $res
rs=summary (fit) $r.squared
if(rs>0.5) {plot(wavel[219:245] ,y,ylab=i,xlab="Group 2",type="1");ind2=c(
ind2,1i)}
else {plot(wavel[219:245],y,xlab="Group 1",ylab=i,type="1");indl=c(indl,i)
}
abline(v=1524,col="red")

Fm=samples [ind1l ,219:245]
Gn=samples [ind2,219:245]

#plot

add_legend <- function(...) {
opar <- par(fig=c(0, 1, 0, 1), oma=c(0, 0, O, 0),

mar=c(0, 0, 0, 0), new=TRUE)

on.exit (par (opar))
plot (0, O, type=’mn’, bty=’n’, xaxt=’n’, yaxt=’n’)
legend (...)

}

xx=wavel [219:245]

par (mfrow=c(4,2) )

a=0.01;b=(1-3*a)/2;c0=0.017

par (mar=c(-0.1,4,0.2,0)+0.1,fig=c(0+a,0+a+b,3/4+c0,1) )
plot(xx,Fm[1,],type="1",ylab="Counts",xlab="",xaxt = ’n’)

abline(v=1523.71,1ty=2)
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60
61 par (mar=c(-0.1,4,0.2,0)+0.1,fig=c(0+2%a+b,0+2*%a+2%b,3/4+c0,1), new=TRUE)

62 plot(xx,Gn[1,],type="1",ylab="Counts",xlab="",xaxt = ’n’)

63 abline (v=1523.71,1ty=2)

64

65 par (mar=c(-0.1,4,-0.1,0)+0.1,fig=c(0+a,0+a+b,2/4+2%c0,3/4+c0), new=TRUE)

66 plot(xx,Fm[2,],type="1",ylab="Counts",xlab="",xaxt = ’n’)

67 abline (v=1523.71,1ty=2)

68

69 par (mar=c(-0.1,4,-0.1,0)+0.1,fig=c(0+2*a+b,0+2*xa+2xb,2/4+2%c0,3/4+c0), new=
TRUE)

70 plot(xx,Gn[2,],type="1",ylab="Counts",xlab="",xaxt = ’n’)

71 abline(v=1523.71,1ty=2)

72

73 par(mar=c(-0.1,4,-0.1,0)+0.1,fig=c(0+a,0+a+b,1/4+3%c0,2/4+2xc0), new=TRUE)

74 plot(xx,Fm[3,],type="1",ylab="Counts",xlab="",xaxt = ’n’)

75 abline (v=1523.71,1ty=2)

76

77 par (mar=c(-0.1,4,-0.1,0)+0.1,fig=c(0+2*a+b,0+2*a+2*b,1/4+3%c0,2/4+2xc0), new
=TRUE)

78 plot(xx,Gn[3,],type="1",ylab="Counts",xlab="",xaxt = ’n’)

79 abline(v=1523.71,1lty=2)

80

81 par (mar=c(4,4,-0.1,0)+0.1,fig=c(0+a,0+a+b,0,1/4+3%c0), new=TRUE)

82 plot(xx,Fm[4,],type="1",ylab="Counts",xlab=expression("cm"~"-1") )

83 abline(v=1523.71,1ty=2)

84

85 par (mar=c(4,4,-0.1,0)+0.1,fig=c(0+2*xa+b,0+2*xa+2%b,0,1/4+3*xc0), new=TRUE)

86 plot(xx,Gn[4,],type="1",ylab="Counts",xlab=expression("cm"~"-1") )

87 abline(v=1523.71,1ty=2)

88

89

90

91 #27M

92 #p-value: prod, sum

93 size=2

94 Fm=samples[indl,219:245]

95 Gn=samples[ind2,219:245]

96 Permu(Fm,Gn,m,size ,1,1000) #NA
97 Permu(Fm,Gn,m,size ,2,1000) #NA
98 Permu(Fm,Gn,m,size,3,1000) #0.006 0.006
99 #take log

100 Fm=log(samples[indl,219:245])
101 Gn=log(samples[ind2,219:245])
102 Permu(Fm,Gn,m,size,1,1000) #NA
103 Permu(Fm,Gn,m,size ,2,1000) #NA
104 Permu(Fm,Gn,m,size ,3,1000) #0 O
105

106 #p-value: max,min,dbr,bdbr

107 Fm=samples [ind1l ,219:245]

108 Gn=samples [ind2,219:245]

109 all_data=samples[,219:245]

110

111 mean_Fm=colMeans (Fm)

112 v_Fm=cov (Fm)

113 mean_Gn=colMeans (Gn)

114 v_Gn=cov (Gn)

115 mean_all=colMeans(all_data)
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116 v_all=cov(all_data)

117

118 #max min

119 Mi=five_in_all(Fm,Gn,1) [c(4,6)] #NA
120 M2=five_in_all(Fm,Gn,2) [c(4,6)] #NA
121 M3=five_in_all(Fm,Gn,3) [c(4,6)] #10.167984 3.188728
122 #dbr

123 H1=H_test (Fm,Gn,1) #NA

124 H2=H_test(Fm,Gn,2) #NA

125 H3=H_test(Fm,Gn,3) #6.190163

126 #bdbr

127 B1=BDBR(Fm,Gn,1) #NA

128 B2=BDBR(Fm,Gn,2) #NA

129 B3=BDBR(Fm,Gn,3) #8.645859

130

131 #Simulation

132 set.seed (123)

133 Type.Depth=c(3)

134 n=1000

135 for (iT in 1:1length(Type.Depth)){

136 MV=c ()

137 for (i in 1:n) {

138 Fm <- rbind(mvrnorm (35, mean_all, v_all))

139 Gn <- rbind(mvrnorm(11, mean_all, v_all))

140 MV=rbind (MV,c(five_in_all (Fm,Gn,Type.Depth[iT]) [c(4,6)] ,
141 H_test (Fm,Gn,Type.Depth[iT]),

142 BDBR (Fm,Gn, Type.Depth[iT1)))

143 }

144 # Save an object to a file
145 my_data=paste ("xxx/Data depth/spectra/Data/",

146 Type.Depth[iT],27,".rds",sep = "-")
147 saveRDS(MV, file = my_data)

148 }

149

150 #projection

151 my_data=paste ("xxx/Data depth/spectra/Data/",
152 3,27,".rds",sep = "-")
153 Ql=readRDS(file = my_data)

154 mean(Q1[,1]1>=M3[1]) #0.008

155 mean(Q1[,2]>=M3[2]) #0.008

156 mean(Q1[,3]>=H3) #0.006

157 mean(Q1[,4]>=B3) #0.004

158

159

160 #15M

161 Fm=samples[indl,225:239]

162 Gn=samples [ind2,225:239]

163

164

165 #5L

166 Fm=samples [indl,c(228,229,230,231,232)]
167 Gn=samples[ind2,c(228,229,230,231,232)]
168

169 #5R

170 Fm=samples [indl ,232:236]

171 Gn=samples[ind2,232:236]

172

173
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#Scale curve
Fm=samples[indl,c (228,229,230,231,232)]
Gn=samples[ind2,c (228,229,230,231,232)]

Fm=log(samples [ind1l,c(228,229,230,231,232)1])
Gn=log(samples[ind2,c(228,229,230,231,232)])

sl<-scaleCurve (Fm, depth_params = list(method = "Mahalanobis"), name = "
Group 1",title="")
s2<-scaleCurve(Gn, depth_params = list(method = "Mahalanobis"), name = "
Group 2")
sc_list <- combineDepthCurves (.list=1list(sl, s2))
plot(sc_list)
sl<-scaleCurve (Fm, depth_params = list(method = "Projection"), name = "Group
1|| s title=" ||)
s2<-scaleCurve (Gn, depth_params = list(method = "Projection"), name = "Group
2")
sc_list <- combineDepthCurves (.list=1list(sl, s2))
plot (sc_list)
A.3.2 Sloan Digital Sky Survey Data
library(ddalpha)
library (MASS)
library (matrixStats)
library (openxlsx)
library (mvtnorm)
library (palmerpenguins)
library (DepthProc)
library (astrodatR)
data ("SDSS_ptsrc_train")
df=SDSS_ptsrc_train
my_tab=table (df [,5])
df _name=names (my_tab)
df _classi<-which(df[,5]==df _name [1])
df _class2<-which(df[,5]==df_name [2])
df _class3<-which(df[,5]==df _name [3])
df _classl_num<-df [df_class1l,1:4]
df _class2_num<-df [df _class2,1:4]
df _class3_num<-df [df _class3,1:4]
length(df_classl_num[,1]) #2000
length(df _class2_num[,1]) #5000
length (df_class3_num[,1]) #2000
scaleCurvel=function (x, y = NULL, alpha = seq(0, 1, 0.01), name = "X",
name_y = "Y",
title = "Scale Curve", depth_params = list(method = "Projection"))
{

113



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
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57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76

7

78

79
80
81
82
83
84
85

X <- na.omit(x)
if (is.data.frame(x)) {
x <- as.matrix(x)
}
if (!is.matrix(x)) {
stop("x must be a matrix or data frame!")
}
if ('is.null(y)) {
if (is.data.frame(y)) {
y <- as.matrix(y)
}
if (!is.matrix(y)) {
stop("y must be a matrix or data frame!")
}
}
dim_x <- dim(x) [2]
uxname_list <- list(u = x, X = x)
depth_est <- do.call(depth, c(uxname_list, depth_params))
k <- length(alpha)
vol <- 1:k
alpha_border <- ecdf(depth_est) (depth_est)
for (i in 1:k) {
tmp_x <- x[alpha_border >= alphalil, ]
np <- nrow(unique(as.matrix(tmp_x)))
if (np > dim_x) {
vol[i] <- convhulln(tmp_x, optiomns = "FA")$vol
}
else {
vol[i] <- 0
}
}
vol=log (1+vol)
scale_curve <- new("ScaleCurve", rev(vol), alpha = alpha,
depth = depth_est, name = name, title = title)
if (!is.null(y)) {
name <- name_y
sc_tmp <- scaleCurve(x = y, y = NULL, alpha = alpha,
name = name, name_y = "Y", depth_params =
depth_params)
scale_curve <- combineDepthCurves(scale_curve, sc_tmp)
}

return(scale_curve)

#Mahalanobis ScaleCurve

sl<-scaleCurvel (df _classl_num,depth_params = list(method = "Mahalanobis"),
name="Class1",title="",name_y =’log(1+Volume) ’)

s2<-scaleCurvel (df _class2_num,depth_params = list(method = "Mahalanobis"),
name = "Class2")

s3<-scaleCurvel (df _class3_num, depth_params = list(method = "Mahalanobis"),
name = "Class3")

sc_list <- combineDepthCurves (.list=1list(sl, s2))

plot(sc_list)

sc_list <- combineDepthCurves(.list=1list(sl, s3))
plot(sc_list)
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114
115
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122
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124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139

140
141

sc_list <- combineDepthCurves (.list=1list(s2, s3))
plot(sc_list)

#functions
percentile<-function(x,v){
g=0
for (i in v){
if (i>=x){
g=g+1
}
}
return(g/length(v))
}

#class 1, class 2

Mi=five_in_all (df_classl_num,df_class2_num,1)[c(4,6)] #4078.73497
M2=five_in_all (df_classl_num,df_class2_num,2) [c(4,6)] #4123.11283
M3=five_in_all (df class!_num,df class2 _num,3) [c(4,6)] #3847.57551

Hi=H_test(df_classl_num,df_class2_num,1) #2186.856
H2=H_test (df _classl_num,df_class2_num,2) #2275.329
H3=H_test (df_classl_num,df_class2_num,3) #3489.914

B1=BDBR(df_classl_num,df_class2 num,l) #8148.935
B2=BDBR(df _classl_num,df_class2_num,2) #8580.996
B3=BDBR(df_classl_num,df_class2_num,3) #8021.614

m=colMeans (rbind (df _classl_num,df_class2_num))
v=cov(rbind (df_classl_num,df_class2_num))

#simulated data
set.seed (123)
MV=c ()
Type.Depth=c(1,2,3)
n=1000
for(iT in 1:length(Type.Depth)){
for (i in 1:n) {
Fm <- rbind (mvrnorm (2000, m ,v))
Gn <- rbind (mvrnorm (5000, m ,v))

MV=rbind (MV,c(five_in_all (Fm,Gn,Type.Depth[iT]) [c (4,601,

H_test(Fm,Gn,Type.Depth[iT]),
BDBR(Fm,Gn,Type.Depth[iT1)))
}

# Save an object to a file

63.86497
64.21147
62.02883

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data

/")
Type .Depth[iT] ,2000,5000,".rds",sep = "-")
saveRDS(MV, file = my_data)
}
#maha

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data

/"’
1,2000,5000,".rds",sep = "-")
Ql=readRDS(file = my_data)
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142 #simulated quant

143 quantile(Q1[,1],0.95) #max

144 quantile(Q1[,2],0.95) #min

145 quantile(Q1[,3],0.95) #dbr

146 quantile(Q1[,4],0.95) #bdbr

147 #percentile

148 percentile (M1[1],Q1[,1]1) #0

149 percentile(M1[2],Q1[,2]1) #0O

150 percentile (H1,Q1[,3]) #0

151 percentile (B1,Q1[,4]) #0

152

153

154 #Spatial

155 my_data=paste("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data
/",

156 2,2000,5000,".rds",sep = "-")

157 Q2=readRDS(file = my_data)

158 #percentile

159 percentile(M2[1],Q2[,11) #0

160 percentile(M2[2],Q2[,2]1) #0O

161 percentile (H2,Q2[,3]) #0

162 percentile (B2,Q2[,4]) #0

163

164

165 #Projection

166 my_data=paste("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data
/",

167 3,2000,5000,".rds",sep = "-")

168 Q3=readRDS(file = my_data)

169 #percentile

170 percentile(M3[1]1,Q3[,1]1) #0

171 percentile (M3[2],Q3[,2]1) #0O

172 percentile (H3,Q3[,3]) #0

173 percentile (B3,Q3[,4]) #0

174

175 ####p-value prod sum

176 Permu=function(Fm,Gn,m,n,size,type.depth){

177 T_star=five_in_all(Fm, Gn,type.depth)

178 B=(m+n)/size

179 Loop=200

180 T_b=matrix (NA,Loop,8)

181 pvalue=c ()

182 for (loop in 1:Loop){

183

184 ind=sample( B, m/size)

185

186 ind=sort (ind)

187

188 Fm.ind=NULL

189 for(i in 1:1length(ind))

190 Fm.ind=c(Fm.ind, ((ind[i]-1)*size+1): (ind[i]*size) )
191

192 Fm.b=rbind (Fm,Gn) [Fm. ind,]

193 Gn.b=rbind (Fm,Gn) [-Fm.ind,]

194 T_b[loop,]l=five_in_all(Fm.b, Gn.b,type.depth)
195 }

196

197 # pvalue=sum(T_b>T_star)/Loop
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198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

241
242
243
244
245

=W N

pvalue [1]=sum(T_b[,7]1>T_star [7])/Loop #prod
pvalue [2]=sum(T_b[,8]>T_star [8])/Loop #sum

return(pvalue)
}
size=100
Permu(df_classl_num,df_class2_num,2000,5000,size,1) #0 O
Permu(df_classil_num,df_class2_num,2000,5000,size,2) #0 O
Permu(df_classil_num,df_class2_num,2000,5000,size,3) #0 O

##asymptotical p value
library (cubature)

c12=2000"(-1/2) *(2000~(-1) +5000°(-1)) "~ (-1/2)
c12t=5000"(-1/2) *(2000°(-1) +5000"(-1))~(-1/2)

#max

x0=M1[1]

#M2[1], M3[1]

lower <- rep(-Inf,b2)
upper <- rep(Inf,2)

# First implementation (modified)
fxyz <- function(w) {

x <- wl[1]

y <- w[2]

(2xpi) " (-2/2) *exp (-(x"2+y~2) /2) *as.numeric ((cl12*xx+cl2t*y) "2 <=x0)
}

adaptIntegrate (f=fxyz,lowerLimit=lower ,upperlLimit=upper ,doChecking=TRUE,
maxEval=2000000, absError=10e-10,tol=1e-10)
1-1

#min

x0=M1 [2]

lower <- rep(-Inf,2)
upper <- rep(Inf,2)

# First implementation (modified)
fxyz <- function(w) {
x <- w[1]
y <- w[2]
(2xpi) " (-2/2) *exp (-(x"2+y~2) /2) *as.numeric ((cl1l2*x+cl2t*y) <=x0) *as.
numeric ((cl2*x+cl2t*y) >=-x0)

}

adaptIntegrate (f=fxyz,lowerLimit=lower ,upperLimit=upper ,doChecking=TRUE,
maxEval=2000000, absError=10e-10,tol=1e-10)
1-1

A.3.3 Skull Data

library (HSAUR)

data("skulls", package = "HSAUR")
levels (skulls$epoch)
skull=scale(skulls[c(1:150) ,2:5])
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© 0 OO

10

12
13

14

15

16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

11=skull[c(1:30),]
12=skull[c(31:60),]
13=skull[c(61:90),]
1l4=skull[c(91:120),]
15=skull[c(121:150),]

sl<-scaleCurve (skulls[c(1:30) ,2:5], depth_params =
Mahalanobis") ,name="4000 B.C.",title="")
s2<-scaleCurve (skulls[c(31:60) ,2:5], depth_params

Mahalanobis"), name = "3300 B.C.",title="")
s3<-scaleCurve (skulls[c(61:90) ,2:5], depth_params
Mahalanobis"), name = "1850 B.C.",title="")
s4<-scaleCurve (skulls[c(91:120) ,2:5], depth_params
Mahalanobis"), name = "200 B.C.",title="")
sb<-scaleCurve (skulls[c(121:150) ,2:5], depth_param
Mahalanobis"), name = "150 A.D.",title="")

###1850 200
sc_list <- combineDepthCurves (.list=1list(s3, s4))
plot(sc_list)

###150 3300
sc_list <- combineDepthCurves (.list=1list(s2,s5))
plot(sc_list)

###150 200
sc_list <- combineDepthCurves (.list=1list(s4,s5))
plot(sc_list)

###1850 200
m=colMeans (skull[c(61:120),])
v=cov(skull[c(61:120),])

Mi=five_in_all(13,14,1)[c(4,6)] #3.813556 1.952833
M2=five_in_all(13,14,2)[c(4,6)] #4.293556 2.072090
M3=five_in_all(13,14,3)[c(4,6)] #2.357556 1.535433

Hi=H_test(13,14,1) #1.961202
H2=H_test (13,14,2) #2.304372
H3=H_test(13,14,3) #2.665464

B1=BDBR(13,14,1) #2.189558
B2=BDBR(13,14,2) #2.492129
B3=BDBR(13,14,3) #2.515559

#simulated data

set.seed (123)

Type .Depth=c(1,2,3)

n=1000

for(iT in 1:length(Type.Depth)){
MV=c ()
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58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73

74
75
76
7
78
79
80
81
82

83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

for (i in 1:mn) {
Fm <- rbind (mvrnorm (30, m, v))
Gn <- rbind(mvrnorm (30, m, v))
MV=rbind (MV,c(five_in_all(Fm,Gn,Type.Depth[iT]) [c(4,6)],
H_test(Fm,Gn,Type.Depth[iT]),
BDBR (Fm,Gn, Type.Depth[iT])))
}
# Save an object to a file
my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data
/",
Type.Depth[iT] ,"3-4.rds",sep = "-")
saveRDS(MV, file = my_data)

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data
/",
1,"3-4.rds",sep = "-")

Ql=readRDS(file = my_data)

mean(Q1[,1]1>=M1[1]) #0.312

mean(Q1[,2]>=M1[2]) #0.312

mean(Q1[,3]>=H1) #0.351

mean(Q1[,4]>=B1) #0.379

my_data=paste("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data
/",
2,"3-4.rds",sep = "-")

Q2=readRDS(file = my_data)

mean(Q2[,1]1>=M2[1]) #0.396

mean (Q2[,2]1>=M2[2]) #0.396

mean(Q2[,3]>=H2) #0.411

mean (Q2[,4]>=B2) #0.447

my_data=paste ("C:/Users/ychen462/Desktop/Data depth new/data analysis/Data
/",
3,"3-4.rds",sep = "-")

Q3=readRDS(file = my_data)

mean(Q3[,1]1>=M3[1]) #0.369

mean (Q3[,2]>=M3[2]) #0.365

mean (Q3[,3]>=H3) #0.145

mean(Q3[,4]>=B3) #0.212

size=5 #s=5,c=1000

Permu(13,14,30,30,size,1) #0.177 0.127
Permu(13,14,30,30,size,2) #0.249 0.180
Permu(13,14,30,30,size,3) #0.163 0.137

##asymptotical p value
library (cubature)

€12=30"(-1/2) *(307(-1)+307(-1)) ~(-1/2)
€12t=30"(-1/2)*(307(-1)+307(-1)) " (-1/2)
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112 #max

113 x0=M1[1]

114 #x0=M2[1], x0=M3[1]

115 lower <- rep(-Inf,2)

116 upper <- rep(Inf,b2)

117

118 # First implementation (modified)
119 fxyz <- function(w) {

120 x <- wl[1]

121 y <- w[2]

122 (2%pi) " (-2/2) *exp (-(x"2+y~2) /2) *as.numeric ((cl12*x+cl2t*y) "2 <=x0)
123 }

124
125 adaptIntegrate (f=fxyz,lowerLimit=lower ,upperLimit=upper,doChecking=TRUE,
126 maxEval=2000000, absError=10e-10,tol=1e-10)

127 1-0.9491544

128 0.0508456 #maha

129 1-0.9617267

130 0.0382733 #spatial

131 1-0.8753175

132 0.1246825 #proj

133

134

135 #min

136 x0=M1[2]

137 #x0=M2[2], x0=M3[2]

138 lower <- rep(-Inf,2)

139 upper <- rep(Inf,2)

140

141 # First implementation (modified)

142 fxyz <- function(w) {

143 x <- w[1]

144 y <- w[2]

145 (2xpi) " (-2/2) *xexp (-(x"2+y~2) /2) *as.numeric ((cl1l2*xx+cl2t*y) <=x0) =*as.
numeric ((cl2*x+cl2t*y) >=-x0)

146 }

147

148 adaptIntegrate (f=fxyz,lowerLimit=lower ,upperLimit=upper,doChecking=TRUE,
149 maxEval=2000000, absError=10e-10,tol=1e-10)

150 1-0.9491544

151 0.0508456 #maha
152 1-0.9617267

153 0.0382733 #spatial
154 1-0.8753175

155 0.1246825 #proj
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