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Abstract 

Immersive virtual reality offers category learning researchers the ability to present a 

wider variety of interactable and maneuverable 3D stimuli which more closely resemble 

scenarios encountered in the real world. In this study, information access costs, either 

requiring increased motor movement or time-based delays, are implemented into a VR-

based category learning experiment to see whether the predicted impacts of information 

access costs on learning and attention-related behaviour are contingent on the type and 

intensity of the cost. Possible predictors at the individual level that might explain 

differences in learning outcomes between participants are also investigated. Delay costs 

impacted attention-related behaviours more than motor costs, causing participants to be 

more economical in their use of attentional resources. Frequency of video game play 

had a small impact on learning outcomes. This work concludes with a discussion of the 

limitations, future directions, and possible applications of the results.  

Keywords:  Categorization; Virtual Reality; Access Cost; Individual Differences; 

Attention 
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Chapter 1. Introduction 

The process of categorization is commonly encountered throughout daily life. 

Learning our left hand from our right, the letter ‘b’ from the letter ‘d’, and several other 

mundane tasks depend on categorization. Even navigating our environment requires 

being able to categorize the sorts of mediums we can traverse from the ones we cannot. 

Although differentiating a wall from an empty doorway seems trivial, the processes 

involved in doing this are in fact complex acts of categorization. Because the study of 

categorization provides insights into such a wide variety of cognitive phenomena, it is a 

rich field for researchers to engage with a variety of topics. 

1.1. Category Learning Research 

Categorization research has been an active field in psychological research for 

over a century (Ashby & Maddox, 2005; Fisher, 1916; Hughes & Thomas, 2021; Hull, 

1920; Medin & Schaffer, 1978; Trabasso & Bower, 1964), but the study of attentional 

processes in use during these tasks is still relatively new, with less than 20 years of 

research actually measuring the eye movements of participants while learning to 

categorize stimuli (Rehder & Hoffman, 2005a, 2005b). Although the definition of 

attention as being selectivity in perception is not limited to the use of eye movements, 

several studies have found that eye movements are a strong indicator of overt visual 

attention (Deubel & Schneider, 1996; Hoffman & Subramaniam, 1995; Kowler et al., 

1995). While covert attention is possible, it is not the default state, and while attention 

can be shifted without an eye movement, it is not possible to make an eye movement 

without also moving attention to that location at the same time (Rayner et al., 1978; 

Shepherd et al., 1986). Studies like these allow for researchers to generate useful 

insights into how our attention changes as a function of learning, as well as how 

changes in the environment can influence our learning related behaviours. Generally, 

these studies have observed fairly reliable trends in attention related behaviours over the 

course of learning, with the transition from novice to expert being fairly predictable 

across experiments (Ashby & Maddox, 2005; Kruschke, 1992; McColeman et al., 2014). 

Specifically, in addition to getting faster and more accurate in their responses (Rehder & 

Hoffman, 2005a, 2005b), learners tend to spend less time examining irrelevant 

information (Rehder & Hoffman, 2005a), make fewer eye movements to irrelevant 
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information (McColeman et al., 2014), and rely less on corrective feedback as learning 

progresses (Dolguikh et al., 2021; Watson & Blair, 2008). With eye movements being 

closely tied to decision making (Orquin & Mueller Loose, 2013), explaining and 

predicting changes in eye movements can, consequently, be useful in differentiating 

experts from novices in their fields and help to better understand how people at different 

levels of skill make decisions during complex tasks. 

1.1.1. Information Access Costs 

Previous categorization research has observed that making information difficult 

to access can sometimes encourage more efficient learning related behaviours. For 

example, one experiment reported in Meier and Blair (2013) covered each stimulus 

feature with masks which were only removed after a participant had fixated their eyes on 

the feature for a certain duration. Participants faced with longer delays were quicker to 

determine which features offered the highest utility in determining the stimulus category, 

avoiding less useful features. Rajsic et al. (2018) found similar results, as participants 

tended to use more efficient visual search strategies when the cost of accessing 

information was increased by using gaze-contingent feature masks. In a follow-up 

experiment, Rajsic et al. (2018) required participants to make mouse movements to the 

stimulus features to reveal information, resulting in even more efficient patterns of 

information access behaviours. The authors argued that this change in efficiency was 

due to the increased number of muscle movements involved in moving the mouse 

compared to moving one’s eyes. Lastly, Morgan et al. (2010) combined mouse 

movements with a delay cost and found that longer information access costs made 

learners more resilient to interruptions during the learning task. Taken together, these 

findings demonstrate that information access costs often encourage more efficient 

allocation of attentional resources. 

Not every study has reported benefits; Yang et al. (2013; 2015) both used a 2x2 

design to explore how information access costs and test expectations might interact 

during a junior doctor’s patient assessments. In both experiments, Junior medical 

residents were given 4 different case files to study and assess. The doctors were either 

told that their assessments would remain confidential or that they would be evaluated by 

another professional on their choices. Each doctor was tested on their recognition and 

recall of the case and their confidence in their answers. Afterwards, a second test was 
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administered where they were told they could refer to the patient record to refresh their 

memory as needed. Information access cost was manipulated here by the positioning of 

the computer with the patient record on it. Either the computer was immediately 

available next to the participant, or the computer was at another desk 5 meters away, 

requiring the participant to physically walk across the room to access the information. 

When the computer was farther away, participants referred to the patient record less 

than when it was immediately available and answered the test questions much more 

quickly. However, having a higher information access cost also resulted in a greater 

number of errors in assessment overall. These studies suggest there is a point at which 

increasing the cost of accessing information by too much may have an inverse effect on 

learning. As this study used real doctors being asked to provide medical examinations, 

this shows that the impact of information access costs could have drastic effects on 

health-related outcomes. As such, investigations are needed to better understand what 

kinds and intensities of information access cost will lead to the best outcomes during 

training and practice. 

In reviewing these studies, two distinct forms of information access cost seem to 

be apparent: motor costs and delay costs. Motor costs involve situations where a 

physical action is required to access information, with studies using low motor costs 

such as eye movements (Meier & Blair, 2013), medium costs like hand movements with 

a computer mouse (Rajsic et al., 2018), and high costs such as walking across a room 

(Yang et al., 2013, 2015). Delay costs involve some kind of timed delay, whether it be a 

loading screen on a webpage, or a 3-second stimulus mask (Meier & Blair, 2013). 

Waiting for a delay and activating muscle movements are qualitatively different activities, 

yet attention and learning research has not distinguished them explicitly to determine if 

implementing these different kinds of costs would be more or less likely to produce the 

increased learning efficiency observed. Certainly, any additional movement will likely 

require additional time to perform, and so the two costs might sometimes be conflated in 

terms of time spent accessing information. However, these costs are strongly 

differentiated in how motor costs require additional muscle movement to navigate, 

whereas delay costs are navigated simply by waiting. Studies have also neglected to 

explore the point at which the intensity of these costs becomes a detriment to learning 

instead of a benefit. 
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1.1.2. Non-Learners in Category Learning Experiments 

While category learning experiments attempt to describe how people make 

category judgements, a common feature of these kinds of experiments is that many 

participants are unable to reach high levels of accuracy over the course of the study. 

Participants that do not reach a certain criterion point are typically excluded from the 

final analysis and labelled as “non-learners”. This can result in studies being 

underpowered, as it is common to throw out close to 25-50% of sample data for not 

reaching the learning criterion (Feldman, 2021; Medin & Schaffer, 1978; Pérez-Gay 

Juárez et al., 2017). Knowing they may lose up to half their data, some researchers may 

opt to run twice as many participants to offset the expected exclusion rate. This impact 

on wasted time and resources is undesirable enough on its own, but excluding so many 

participants from analysis brings forward a key theoretical implication for the field in that 

models of learning based on these studies are based only on the subset of participants 

who managed to reach the criterion, limiting the generalizability of their findings. 

Although some researchers have argued that the category structures are simply difficult 

to learn (Medin & Schaffer, 1978; D. J. Smith & Minda, 2000), this ignores a vast 

multitude of possible explanations as to why a particular individual struggle with category 

structure while other participants have no issue with it. This explanation also seems to 

overlook the fact that participants who do reach the criterion points typically reach peak 

accuracy quite quickly (Barrett et al., 2022; McColeman et al., 2014). If the task were 

difficult, one would not expect such fast-rising learning curves. Of course, some 

participants may simply not be trying their best, while others misunderstand the task 

completely, but it is unlikely that this explanation accounts for all the so-called “non-

learners” in these studies.  

Some researchers have used non-learner rates as a way to study strategy 

selection among participants. In work by Mathews et al. (1984), participants engaged in 

a simplified form of the Bouthilet keyword matching task. In this task, participants are 

shown a keyword such as “heroism”, and two words to pick from such as “moss” and 

“help”. In one condition the correct word would contain only letters that were also present 

in the key word (“moss” in this example). In another condition, the correct word 

contained none of the letters from the keyword (“help” in this example), and in the last 

condition, the rule alternated between the “all” and “none” conditions after every two 

errors made by the participant. After reaching a criterion of 10 correct trials in a row or 
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going through all 200 trials, participants were given a number of test trials with no 

feedback, and then asked how they decided on what word to select next, with their 

response being used to indicate whether the participant had figured out the rule or not. 

Based on their descriptions, participants were separated into three groups: ones that 

had reached the criterion and could state the rule, ones that had reached criterion but 

could not state the rule, and those that did not reach criterion. Their findings suggest that 

participants who had reached criterion but could not state the rule tended to use 

memory-based strategies, simply memorizing the previously presented stimuli. This 

strategy often worked to achieve criterion but did not extend perfectly to novel stimuli 

used in the post-criterion training. This strategy was especially ineffective in the 

condition with a fluctuating rule, with almost half the participants being non-learners in 

this group while the proportion of learners who could state the rule remained the same 

across the conditions (Mathews et al., 1984). Rehder & Hoffman (2005a) also reported 

that different participants appeared to employ different strategies in their learning, and 

that the choice to use a different strategy could severely affect the rate of learning 

depending on the complexity of the category structure used. While these studies 

describe differences in how learners perform during the experiment, none of the 

literature reviewed attempted to understand why these differences in strategy use exist. 

Examining individual differences between learners and non-learners is therefore 

necessary to determine if the high levels of attrition in category learning experiments can 

perhaps be explained by different traits, attributes, or beliefs each participant may bring 

to the study. 

1.1.3. Possible Individual Factors Influencing Learning Outcomes in 
Categorization Research 

Although the question of non-learner rates in category learning studies has not 

yet been explicitly addressed, there are several individual differences that could 

plausibly act as predictive factors in this context due to their associations with learning 

outcomes in other fields of research. These include a participants age, sex, their working 

memory, self-efficacy, whether they have ADHD, and their tendency to adopt a growth 

mindset when faced with difficulties. 

Self-Efficacy is the idea that achieving desired outcomes in learning situations 

are, in part, contingent on the learner’s beliefs and expectations about their ability to 
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achieve that outcome (Bandura, 1977, 1986). Someone who believes themselves to be 

capable of achieving a certain goal will be more likely to take actions which support the 

attainment of that goal. Applied to learning scenarios, it has been found that higher self-

efficacy results in better learning outcomes (Makransky & Petersen, 2021; Pajares & 

Schunk, 2002; Usher & Pajares, 2008), especially in cases where learning is self-

regulated (Panadero et al., 2017; Wang et al., 2013). In the context of category learning, 

this suggests that if a learner feels that they are incapable of learning the categories, 

then they will be more likely to resort to random guessing, whereas learners with higher 

self-efficacy ought to persist in applying different strategies until they find the correct one 

over the course of the experiment. 

Related to the idea of Self Efficacy is the work of Dr. Carol Dweck on the Growth 

Mindset (Blackwell et al., 2007; Dweck & Leggett, 1988) which has been explicitly 

connected to learning outcomes at a classroom level. The central claim of this theory is 

that there are two main implicit mindsets which guide task-oriented behaviour during skill 

acquisition in a given domain. Someone with a fixed mindset believes that their ability to 

perform certain tasks is non-alterable and unchanging, while those with growth mindsets 

believe that their abilities are not innate, and that with practice, they can improve in that 

domain. A meta-analysis examining this theory (Burnette et al., 2023) finds that the 

presence of a growth mindset has been highly predictive of how people engage with 

training tasks and subsequently, how well they perform on final tests. They also found 

that this effect was stronger when learners were faced with feedback pointing out their 

failures. In category learning, this variable may influence learning outcomes as the 

stimulus sets are novel to participants, and so it is expected that a lot of mistakes will be 

made during earlier trials. Participants with fixed mindsets may interpret these initial 

failures as being reflective of a personal inability to learn the categories and give up, 

while those with a growth mindset may interpret the situation positively, putting more 

effort into the learning of stimulus categories. 

Smith and Minda (2000), using a 5-4 category structure like the one used in 

Medin & Schaffer (1978), point out that when the number of possible exemplars in a 

category is small, or when the categories are poorly structured, learners will avoid 

specific rule-based strategies in favour of just memorizing the features of each exemplar. 

Blair and Homa (2003), also using the 5-4 category structure, likewise found that when 

the categories only had a few exemplars each, participants often relied on memorization 
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strategies as the small number of exemplars made memorization just as efficient as 

learning the rule. Additionally, studies which directly asked participants to state their 

categorization strategy have found that memorization is often used in combination with 

other strategies (Gouravajhala et al., 2020; Wahlheim et al., 2016). Subsequently, 

participants found to have a larger working memory capacity may be expected to have a 

better likelihood of achieving higher levels of accuracy during a category learning task. 

Much work has been done to investigate the impact of aging on categorization 

(Bowman et al., 2022, 2023; Filoteo & Maddox, 2004; Gouravajhala et al., 2020; 

Wahlheim et al., 2016). Participants in these studies tend to be either in their 20’s and 

70’s, reflecting that these researchers are mainly concerned with comparing younger 

adults to much older adults. Very few studies have explored whether there are any 

differences that appear at younger age groups (Casadevante et al., 2019; Reetzke et al., 

2016). Reetzke et al. (2016), using an auditory category learning task, found that adults 

aged 20-23 years old outperformed children aged 13-19 years old both in terms of rate 

of learning and overall accuracy in category learning. The uneven age interval sizes 

make it difficult to know if this difference would apply to a university aged population of 

18-25 years old however, and so it is worth exploring if this effect would be observed 

while treating age as a continuous variable instead. Work by Thompson et al. (2014) 

suggests that cognitive decline may begin at 24, but it is unclear whether this decline, 

observed in a complex esports environment, would apply to much simpler category 

learning tasks. 

Lastly, Attention deficit disorders impact approximately 2-7% of adults in Canada 

(Espinet et al., 2022), and can have small to large impacts on decision-making, learning, 

inhibitory control, self-esteem, and working memory, in addition to the typical attention-

related impairments that define the disorder (For a comprehensive review, see Faraone 

et al., 2021). In category learning tasks, participants with ADHD have been observed to 

have slower learning rates and spend more time engaging with irrelevant stimulus 

features than non-ADHD controls (Huang-Pollock et al., 2014). These effects are 

exacerbated by the presence of corrective feedback as, when using trial-by-trial 

corrective feedback, participants with ADHD reliably underperformed neurotypical 

participants on various category learning tasks (Gabay & Goldfarb, 2017). Knowing that 

around 1 in every twenty participants are likely to have ADHD, and that this population 

has been found to underperform on category learning tasks in the past, it is worthwhile 
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to explore whether prevalence of ADHD, so rarely recorded in category learning 

research, may account for some of the non-learner rates across these experiments. 

1.2. Virtual Reality as a new Medium for Research 

Immersive Virtual Reality (VR) has become increasingly affordable and high 

fidelity in the last decade, resulting in this technology getting a lot of attention by both 

industry and academic professionals alike who are interested in harnessing the potential 

for this technology to improve workplace training and educational programming. Many 

companies have already started using VR to train employees (Hou et al., 2017; Likens & 

Mower, n.d.), and educators at all levels have been beginning to try and leverage the 

presumed impacts of this new technology in their classrooms (“Fisk University, HTC 

VIVE, T-Mobile and VictoryXR Launch 5G-Powered VR Human Cadaver Lab,” 2021; 

Virtual Reality for Schools, n.d.; Makransky et al., 2021; Meyer et al., 2019). While the 

enthusiasm is certainly worth celebrating, there is much debate about the measurable 

impact this technology has had so far on actual learning outcomes. Reviews and meta-

analyses have been largely positive towards virtual reality (Angel-Urdinola et al., 2021; 

Di Natale et al., 2020; Jensen & Konradsen, 2017; Muller Queiroz et al., 2018), but even 

within these reviews, reported effect sizes for learning outcomes are highly variable. In 

Angel-Urdinola et al. (2020), more than half of the studies considered in their meta-

analysis reported a neutral-positive finding; that is to say, VR had no advantage over 

traditional non-immersive modalities such as pen-and-paper or 2D Desktop screens. 

Similarly, Barrett et al. (2022) found only a few meaningful differences in performance 

outcomes between participants learning to categorize stimuli, regardless of whether they 

were working on a 2D flat-screen or rotating the stimulus with their arms in VR. Work by 

other labs has corroborated these findings in other learning tasks, finding no substantial 

differences between immersive VR and video-based teaching (Oser & Fraser, 2015; 

Parong & Mayer, 2018).  

Rather than discourage the use of VR in an educational setting, these findings 

only reinforce the need for research that identifies the key design factors that contribute 

to improved learning outcomes. In Richard Clark’s (1994) commentary, boldly titled 

“Media will never influence learning outcomes”, he points to how studies exploring the 

impact of computer-based instruction on learning outcomes often failed to find any 

meaningful impact of the technology tested. Furthermore, those studies that did find 
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positive impacts were often confounded by the fact that the computer-based instruction 

was qualitatively different from the control conditions. Clark points out that not all 

teachers use the same pedagogical approach within traditional classroom environments. 

Likewise, computer programs are each embedded with their own instructional design 

process and pedagogical foundation. It is reductionist to say that computers have an 

impact on learning outcomes when it is the instructional methods embedded in those 

programs that make the difference. Yet, it is rare that studies on the use of computer-

based instructional methods report their theoretical underpinnings (Mikropoulos & 

Natsis, 2011). Some programs and modalities may make it easier to implement certain 

teaching strategies, but again, it is the instructional strategy that matters, and not the 

technology itself (Clark, 1994). The same argument applies to designing VR programs to 

deliver instructional materials where critical reviews have also found that well-designed 

content is the primary driver of learning outcomes, and not the technology alone (Di 

Natale et al., 2020; Jensen & Konradsen, 2017; Radianti et al., 2020). Research in this 

area should instead focus on these design factors, and work to identify which of these 

provide the most meaningful impacts on student learning. 

Some work has already been done to identify which design affordances, unique 

to VR would be worthwhile exploring (Radianti et al., 2020), with recent reviews pointing 

also to design factors that have already been shown to influence learning in VR more 

than others (Jensen & Konradsen, 2017; Pellas et al., 2020). Makransky and colleagues, 

cited commonly in these reviews, have conducted studies showing how learning 

outcomes within the VR modality can be improved through the integration of evidence-

based pedagogical practices such as those recommended by Mayer (2014). Among 

these practices, they have explored techniques such as generative learning 

(Klingenberg et al., 2020; Petersen et al., 2023), enactment (Andreasen et al., 2019), 

retrieval practice (Parong & Mayer, 2018), and pre-training (Petersen et al., 2020). 

These researchers are optimistic about the future of immersive technology in the 

classroom but emphasize that the question must shift from simplistic inquiries as “Is 

learning possible in VR?” to more nuanced problems like “When is VR best suited for 

specific learning outcomes?” and  “What features must be present for a VR-based 

training program to be most effective?”. The findings from these researchers point to 

several guidelines for designing VR learning environments, but their work has so far 

been restricted to testing the recommendations that come from educational research. In 
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this work, we opt to focus on exploring the findings from the category learning research 

discussed above as a source of additional guidelines for the design of virtual reality 

learning environments. 

1.2.1. Prior Use of VR in Cognitive Psychology 

Within academic research, VR technology also offers up the opportunity to 

conduct increasingly ecologically valid research through convincing simulated 

environments, while allowing the researcher to maintain experimental control over the 

stimuli presented. Much research has already been done to transpose standard 

research methods into VR, with the hopes that findings from the lab would be 

generalizable to the virtual world. Some examples of this include replicating Milgram’s 

obedience to authority experiment (Slater et al., 2006), the Trolley Problem (McDonald 

et al., 2017), and tests for a wide variety of cognitive phenomena (Corriveau Lecavalier 

et al., 2018; Li et al., 2020; S. A. Smith, 2019; Soranzo et al., 2013; Soranzo & Wilson, 

2014). Within neurological research, researchers are also optimistic about using VR to 

present more convincing stimuli than are currently possible with the 2D screens used in 

most brain-imaging experiments (Bohil et al., 2011; Kourtesis et al., 2020; Parsons, 

2015). Many of these studies report that participants in VR respond similarly to stimuli 

while immersed in the virtual environment as when using a 2D screen. This is desirable 

because it means that predictions of behavioural patterns emerging from studies of 

participants interacting with flat screens are roughly generalizable to how people interact 

with stimuli in a 3D environment as well. However, there are still a large variety of stimuli 

and scenarios that cannot be represented well on flat screens that would benefit from a 

more immersive presentation format, such as social situations and scenarios involving 

more complex motor movements. 

In categorization research, stimulus have typically been simple flat objects, 

presented on a flat screen or on paper. While exceptions to this exist with the use of 3D 

stimuli (Barnhart et al., 2018; Gauthier & Tarr, 1997; Hammer et al., 2012), even these 

exceptions present the stimuli to participants on a flat computer screen, with no option to 

rotate the object. Transfer of learning from one task to another is notoriously difficult to 

predict (Blume et al., 2010; Thompson et al., 2023), with recent research finding that 

switching from 2D to 3D stimuli can sometimes lead to different learning outcomes on 

tasks designed to measure core cognitive abilities (Alvarez & Cavanagh, 2004; Nejati, 
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2021; Neuburger et al., 2015). These findings give us reason to infer that models of 

categorization which can successfully predict information access behaviours for 3D 

stimuli will be better suited for generalization to the real world than those which only 

successfully predict information access behaviours for 2D stimuli. Consequently, 

conducting categorization research in VR is desirable to ensure that findings from prior 

categorization studies can be scaled up to 3D objects and more immersive scenarios. 

1.2.2. Category-VR: Transposing Category Learning Experiments into 
VR 

Prior work by our lab (Barrett et al., 2022) transposed a category learning task 

into both VR, and into a desktop-based implementation using 3D stimuli. In both 

conditions, participants rotated a 3D virtual cube, either while using hand-controllers in 

immersive VR, or with a standard gaming controller on a desktop computer. Data from 

these conditions was compared to results from a conceptually equivalent experiment 

using a 2D categorization task on a flat computer screen where only eye movements 

were necessary to access stimulus features. Trends for measures of Accuracy, 

Optimization, Fixation Durations and Counts, as well as response times all followed the 

anticipated qualitative changes as predicted by general trends from previous category 

learning research (McColeman et al., 2014, 2020). Some important differences did arise 

however, as although the direction of change was identical across all groups, the degree 

of change was different. Specifically, it was thought that because making arm 

movements to access stimulus features takes more metabolic effort, the associated 

information access cost would have elicited the types of learning patterns seen in Meier 

and Blair (2012). However, by the end of the trials, participants in the VR group still 

made more fixations per trial than participants in other conditions with less information 

access cost. In many ways, this was contrary to expectations, as higher costs had been 

previously associated with improvements to learning. Consequently, it is unclear under 

what conditions the benefits of information access costs may appear. 

1.2.3. Possible Individual Factors Influencing Learning in VR 
Research 

Spatial ability, as described by Carroll (1993), is defined as “an ability in 

manipulating visual patterns, as indicated by the level of difficulty and complexity in 
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visual stimulus material that can be handled successfully without regard to the speed of 

task solution” (p.362). Because VR programs often involve the manipulation of 3D stimuli 

with one’s hands, it is unsurprising that spatial ability should be a relevant individual 

factor here that could determine performance. In line with this idea, there is an ongoing 

debate between two hypotheses introduced by Mayer and Sims (1994), predicting who 

would benefit more from digital learning environments: people with lower spatial ability 

(referred to as the ability-as-compensator hypothesis), or whether people with higher 

spatial ability should receive the highest benefit from using digital environments (referred 

to as the ability-as-enhancer hypothesis). In support of the ability-as-compensator 

hypothesis, some studies have found that learners with low spatial ability benefit more 

from operating 3D learning materials than students with high spatial ability (Höffler & 

Leutner, 2011; Lee & Wong, 2014; Weng et al., 2019). These studies argue that the 

affordances of the 3D environment allow the learner to manipulate the stimulus in the 

same way that a learner with higher spatial ability would manipulate the object using 

mental visualization techniques. In contrast, studies supporting the ability-as-enhancer 

hypothesis have also shown that people with higher spatial ability do better in learning 

situations with animated features because of their superior ability to make better use of 

these visual cues (Chikha et al., 2021; Duffy et al., 2018; Epler-Ruths et al., 2020). 

Although these hypotheses have been treated as mutually exclusive, some researchers 

have begun to explore the interaction effects that may allow for both approaches to be 

applicable depending on the situation (Gittinger & Wiesche, 2023; Kühl et al., 2022). 

Applied to VR Learning simulations and information access costs, it is unclear if people 

with low spatial ability will be better catered to or if their low spatial ability will hinder their 

ability to learn to identify 3D stimuli. Additionally, it is unknown if these learners will be 

disproportionally impacted by information access costs, as while the ability to freely 

rotate a stimulus to see its features might be helpful to some degree, higher information 

access costs might nullify any benefits this group may get from VR-based learning. 

1.3. The Current Project 

Using the same category learning stimuli as Barrett et al. (2022), the current 

project aims to explore whether the way information costs are implemented can change 

how people learn to categorize stimuli, and whether any individual differences between 

participants might predict performance on this task.  
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There was an information access cost present in Barrett et al. (2022), but this 

cost took the form of a small “motor cost” rather than a “delay cost”. While needing to 

rotate the stimulus cube did take more time than moving one’s eyes, with fixations in VR 

lasting a full second longer on average compared to the eyetracking condition, no mask 

was present on the stimulus features, so the participants were only delayed by their own 

physical ability to rotate the cube. In the VR-based version of the experiment, the 

predicted finding that information access cost would have an impact on learning 

behaviours was not observed, as learning and attention-related behaviours in all 

conditions mostly followed the same patterns, despite there being different motor costs 

to access the stimulus features. It is unknown if the cause for these conflicting findings 

has to do with the use of VR, or the type of information access cost incurred: delay cost 

vs motor cost.  

To investigate the discrepancy between Barrett et al (2022) and other papers, the 

current project reused the stimulus from Barrett et al. (2022) using only the VR-based 

implementation to focus on the type of information access cost used in the experiment. 

By separating the impact of motor costs from the impact of increased delay costs, their 

potentially unique contributions to information access behaviours and learning outcomes 

can be more directly observed. The current project aims to resolve two main issues in 

this line of inquiry. Using an immersive VR-based category learning experiment, delay 

and motor costs are tested to try and replicate the previously observed benefits of 

information access costs. Uncovering these effects may help to explain why Barrett et al. 

(2022) and others did not observe these benefits. Lastly, I explore possible reasons as 

to why some participants do better on categorization tasks than others. Exploring 

whether certain individual differences predict rates of learning in this type of experiment 

may have important implications for designing and implementing more accessible 

learning environments. 

As such, this project has two main research questions: 

1. How do different types and intensities of information access cost influence changes 

in learning outcomes and attention-related behaviours inside a VR learning 

environment? 
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2. Which individual differences, if any, predict the likelihood of a participant being able 

to successfully learn to categorize stimuli during training in a VR environment? 
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Chapter 2. Methods 

2.1. Participants 

130 undergraduate students were recruited from Simon Fraser University in 

Canada. Each participant received course credit for their participation. The study was 

approved by the Simon Fraser University Office of Research Ethics and was deemed to 

be minimal risk (Study Number: 30000750). All participants gave written informed 

consent prior to completing the survey. Each participant was given instruction on how to 

withdraw from the experiment if they experienced any discomfort or sickness at any 

point during the experiment.  

2.2. Exclusions 

2 participants withdrew from the study, both giving no reason for their withdrawal. 

1 participant withdrew after just a few trials citing that they felt dizzy. 4 participants 

reported mild discomfort at the end of the experiment, though none of these chose to 

withdraw. Since their data does not appear to be impacted by this experience, their data 

was retained for analysis. All the same, this indicates that roughly one out of every 

twenty participants experienced some symptoms of VR related sickness despite it being 

a relatively low-intensity, seated experience. Moreover, not all participants completed all 

96 trials of the experiment. Any participant who had less than 2 bins of trials (24 trials 

per bin) was excluded from all analyses. In total, 11 participants were excluded for this 

reason, resulting in a sample of 119 viable participants (30 males; 87 females; 1 

intersex; 1 prefer not to say) with sufficient data to include in the analyses. Ages of these 

participants ranged from 17 to 32. 61 reported that they wore glasses or corrective 

lenses, though very few wore their glasses during the VR program. 

For the first research question, as in Barrett et al. (2022), participants who did not 

reach a threshold of 24 trials in a row were excluded from the analysis of learning and 

attention-related behaviours, excluding an additional 72 participants. After accounting for 

these exclusions, the final sample size for this research question was 47 participants. 

Research question two was designed to investigate possible reasons for most 
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participants not reaching the criterion point, and so analyses of this research question 

will include all 119 viable participants. 

2.3. Design 

The experiment followed a 2x2 design with four conditions (Table 2.1.). 

Conditions varied to what degree participants would experience delay and/or motor 

costs when attempting to access the stimulus features on each side of the cube. A video 

showcasing each of the four conditions can be found at the following link: 

https://summit.sfu.ca/item/38111 

Table 2.1.  The 2x2 structure of the experiment, demonstrating all possible 
conditions. 

 Motor Costs 

Delay 
Costs 

Low Motor Cost 
1 Second Delay Cost 

High Motor Cost 
1 Second Delay Cost 

Low Motor Cost 
5 Second Delay Cost 

High Motor Cost 
5 Second Delay Cost 

To increase the motor cost while in VR, the rotational-drag of the virtual object 

was adjusted. In the low motor cost condition, participants could use their hands to 

quickly rotate the cube and see its different sides, while in the high motor cost group, the 

cube moved much more slowly, forcing the participant to move their arms much more 

slowly and sometimes make multiple adjustments to bring each side of the cube into 

view. This slowness would require the participant to spend more effort moving their arms 

through the air, activating more of their muscles over the course of the 100 trials. 

To increase delay costs, timed masks similar to the ones used in previous 

research (McColeman et al., 2014; Meier & Blair, 2013) were used to cover stimulus 

features. When the participant rotated the cube to view a particular side, they would 

have to stare at the mask for a set amount of time before the feature beneath was made 

visible to them. Each mask used a visual countdown to indicate how much longer a 

participant would have to wait for the information to be visible. In the present project, a 

one-second delay was used for the low delay cost group, and a five-second delay was 

used in the high delay cost group. 

https://summit.sfu.ca/item/38111
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2.4. Stimuli and Materials 

The stimuli in this experiment were nearly identical to the stimuli used in Barrett 

et al. (2022), with the only modifications being the addition of the delay and motor costs 

described above. Consequently, this stimulus set is functionally identical to the stimuli 

used in previous research as well (Meier & Blair, 2012). See Figure 2.1. for an example 

of how to identify a category under this system. 

 

Figure 2.1.  An example of the category structure used in Barrett et al. (2022) 
and the current experiment. Note how only two features are 
necessary to correctly identify the category group, while the third 
feature provides no relevant information. 

Using an immersive virtual reality program built using Unity (Unity Technologies, 

2020), participants in all conditions were shown 3D cubes belonging to one of four 

categories which could be identified by the markings on the sides of the cube. An 

example stimulus can be seen in Figure 2.2. below. The sides of each cube were 

indented with deep wells, so that only one marking could be visible at one time. To view 

the feature in each well, the cube would have to be rotated to at least 56 degrees 
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relative to the plane of the participant’s field of view as measured from the centre of the 

VR headset. Each cube had three unique markings that could be used to identify what 

category it belonged to. As can be seen in Figure 2.2., on initial presentation, the cube 

was positioned on its corner so that no side was visible to the participants at the 

beginning of each trial. Markings were repeated on the opposite side of the cube to fill up 

all 6 sides of the cube. Referring back to Figure 2.1., the 3 markings were binary coded 

to only appear in one of two possible states. This allows for a total of 8 unique cubes for 

each participant. 

 

Figure 2.2.  Screenshots from the experiment showing the stimulus cube. On 
the left, the trial begins with the cube positioned with its corner 
facing the participant so that no side is immediately visible to them. 
On the right, the cube has been rotated so that the participant can 
see the feature on that side. 

After examining the cube, participants reached out to one of four choice buttons 

appearing as floating letters around the cube, and feedback was presented by changing 

the colour of the letters to indicate the correct choice (Figure 2.3.). 
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Figure 2.3.  A screenshot showing the participant view after they have made a 
choice of category. The participant’s choice (B) is highlighted in red, 
indicating that this choice was incorrect. The correct choice for this 
trial (C) is highlighted in green. The participant can spend as much 
time as they like during this phase looking over the cube again 
before moving to the next trial. 

All possible cube sets were featured across the four conditions, shuffling what 

features would be irrelevant or relevant, for a total of 6 cube sets, as well as what 

position on the cube each feature would inhabit when the cube was displayed (top, left, 

right) for a total of 24 possible arrangements per cube set. Counterbalancing was used 

to ensure that nearly every possible arrangement of stimulus features in each cube set 

was used with at least one participant, and that a roughly equal number of the six cube 

sets were distributed across the conditions. 

2.5. Variables Used to Study Information Access Costs 

There are a variety of variables typically measured in category learning 

experiments. Each one offers a different perspective on the way in which different 

conditions impact learning related behaviours. Refer to Table 2.2. for a summary of 

these measures. 
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Accuracy is the percentage of correct responses scored in each trial block. This 

is expected to improve for all groups over the course of the experiment, but by 

examining the rate at which it increases, it can be seen if any groups reach peak 

accuracy faster or slower than the others. 

Response Time is the time it takes to make a response during each trial and 

represents how quickly participants identify stimuli. This will be analyzed to indicate any 

differences in speed across the experimental conditions. However, response times in 

this experiment are confounded by the fact that participants face different levels and 

combinations of an information access cost. For example, each fixation in the high delay 

cost condition adds an additional 5 seconds to the trial that is uncontrolled by the 

participant, and those with higher motor costs can be expected to have longer response 

times simply because the stimulus cube is rotated more slowly. To evaluate the impact 

of each condition on response times while controlling for the actual conditions 

themselves, an adjusted response time is calculated for each trial. The adjusted 

response time removes all time spent looking at the countdown timer, as well as all time 

spent on the corners of the cubes, leaving us with just the total time spent actually 

looking at the stimulus features themselves before making a choice.  

Attentional Optimization gives us a ratio of how much time a participant spends 

looking at relevant information vs irrelevant information in each trial for the current block. 

This is used to track how participants learn to prioritize important information over time 

during learning, ranging from -1 (only looking at irrelevant information) to 1 (only looking 

at relevant information). This measure is calculated using only the time in which a 

feature is actually visible to the participant and does not include time spent waiting for 

the feature cover to disappear. 

Following Dolguikh et al. (2021), studying the amount of time spent on 

feedback after each guess by participants can help to see if information access costs 

incurred during the trial influence how long participants engage with feedback before 

choosing to continue to the next trial. 

The average fixation duration for each time participants spend fixating on the 

sides of the cube, as well as the number of fixations per trial, when measured together, 

provide a more nuanced picture of how efficient learners become over time under 
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different conditions (Chen et al., 2013; McColeman et al., 2014). Fixation Durations in 

this case only includes the amount of time looking at the feature information itself and 

does not include time spent looking at the feature masks during the delay period. They 

are calculated in-game using C# code to track when the features were visible and save 

fixation information to a file as each fixation took place, including what features were 

being looked at. Likewise, a fixation is only counted in each trial if the participant meets a 

minimum threshold of 75ms after the stimulus mask is lifted, similar to the Area of 

Interest based fixation detection algorithm described in Salvucci & Goldberg (2000). This 

approach has drawbacks when working with eye movements and can sometimes 

overestimate fixation durations. However, having predetermined areas of interest, and 

feature masks that ensure the participant is actually looking in the direction of the 

stimulus feature for it to become visible makes this a reasonable way to predict attention 

without actually having eyetracking equipment built into the headset. It is possible that a 

participant makes multiple eye movements while examining a stimulus feature, but the 

purpose of these fixations will be generally the same: to examine the stimulus feature in 

view. The direction of attention towards each feature is of more importance to the 

research question than the actual eye movements themselves, and so this approach is 

ideal for our goals. 
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Table 2.2.  A summary of the variables of interest measured in the category 
learning task. 

Categorization Task: Variables of Interest 

Variable Definition 

Accuracy Proportion of correct trials in each block 

Response Time 
Average time between pressing the “start trial” button and making a category 
choice for each block 

Adjusted 
Response Time 

Average time between pressing the “start trial” button and making a category 
choice for each block, subtracted by the amount of time where stimulus 
features were not visible 

Attentional 
Optimization 

The average ratio of relevant to irrelevant feature viewing time during the 
response phase of a trial for that block. Ranges from -1 (only looking at 
irrelevant features) to 1 (only looking at relevant features). 

Time Spent 
Viewing Feedback 

The average amount of time a participant spends during the feedback phase of 
a trial before pressing the “Next Trial” button for each block. 

Fixation Duration 
Time spent on individual feature fixations during the response phase of a trial 
on average 

Fixation Count The average number of fixations made within the response phase of a trial 

2.6. Variables Used to Study Individual Differences and 
Non-Learners 

To measure learning, we used a learning criterion of 24 correct trials in a row to 

define learners and non-learners, as well as overall accuracy in the experiment for all 

participants. The criterion point was used to better compare the results to previous 

categorization research, using the same criterion of 24 correct trials in a row which was 

used in Barrett et al. (2022). According to the discussion in Smith and Minda (2000), this 

criterion is greater than the 9 errorless trials used by Medin and Schaffer (1978), but is 

fewer than the criterion of 36, 70, and 90 correct trials used in other studies (Hartley & 

Homa, 1981; Homa et al., 1979, 1981). Fundamentally, the arbitrary nature of these 

learning thresholds results in a biased estimate of learning and reduces learning to a 

binary true/false indicator, which fails to credit learners for partial successes. To avoid 

this issue, we will use overall accuracy of the experiment as our outcome measure for all 

participants when considering how their individual differences impact learning outcomes. 
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In this way, we can better differentiate between participants who reached high accuracy, 

those who were maybe close to reaching criteria but gave up, slow learners, and those 

who simply guessed randomly. A variety of attributes and participant traits have been 

proposed as being potentially relevant to category learning, summarized in Table 2.3., 

and the full text and protocol for each measure can be found in Appendix A. 

Table 2.3.  A summary of the variables to be used in investigating the individual 
differences possibly correlated with performance in category 
learning 

Individual Differences: Variables of Interest 

Variable Definition 

Self-Efficacy Score 
A continuous scale reporting the degree to which a participant 

reports feeling capable in their ability to learn new skills. 

Growth/Fixed Mindset 

A semi-continuous scale reporting the degree to which 

participants report attitudes which correlate with responses 

congruent with a growth or fixed mindset approaches to problem 

solving. 

Mental Rotation Ability 

A continuous scale reporting a participant’s achieved score on a 

test of their ability to mentally rotate objects in mental rotation 

task. 

Working Memory 
Ability 

How many items a participant can hold in short term memory. 

Measured with the Complex Span Task. 

Demographics 
Age, sex, frequency of video game play, frequency of VR use, and 

ADHD or other attention-related neurodivergence. 

 

Participants had their spatial ability measured using redrawn version of the 

Vandenberg & Kuse Mental Rotation Task (Peters et al., 1995; Vandenberg & Kuse, 

1978). For each problem in the test, participants were shown a set of four 3D Tetris 

block-like images and asked to compare these to a target image. Two images in each 

set of four could be mentally rotated to match the target image, and participants had to 

get both correct to get a point for that problem. The structure of the test begins with a 

brief tutorial, followed by two sets of 12 problems, with 4-minutes to go through each set, 

separated by a small break in between. 
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The Corsi block-tapping Task as described by Corsi (1972) and Kessels et al. 

(2000) was used to measure how much information participants could hold in working 

memory during a visuo-spatial task. In this task, participants were shown a set of blocks 

which light up in sequence. Participants were then asked to repeat the sequence. After 

every correct sequence, the next trial increases the sequence length by one until a 

mistake is made. If two mistakes are made in a row, the test ends, and the maximum 

sequence length completed successfully is recorded as their Corsi Span. Kessels et al. 

(2000) reports a span of 5-6 being considered average for “normal” human subjects. 

To measure self-efficacy, we used the short form of Bandura’s General Self-

Efficacy Scale developed by Romppel et al. (2013), and a person’s alignment with the 

Growth and Fixed mindset tendencies was determined using the adjusted Growth 

Mindset Scale validated by Midkiff et al. (2018). Due to a technical error, one of the 

growth mindset questions was excluded from the survey, and so the score here is based 

on seven questions instead of eight. 

Additional information about the participants was collected as well, including their 

sex, age, experience with VR and video games. Based on feedback from participants 

during the first round of data collection, an amendment to the running procedures was 

made to add a question asking if participants had ADHD or any other attention related 

neurodivergence. 

As discussed already, each of these variables has some plausible linkage to 

learning outcomes in categorization tasks as well as in virtual reality learning tasks. 

Using the ‘lme4’ R package developed by Bates et al. (2014), we performed linear 

modeling to identify which of the variables in Table 2.3. were predictive of a participant’s 

accuracy. 

2.7. Procedures 

Participants filled out a computer-based questionnaire built using the PsyToolkit 

software package (Stoet, 2010, 2017). In this survey, participants provided basic 

information about themselves, including age, sex, whether they had ADHD or any other 

attention related neurodivergence, how often they play video games or use virtual reality, 

as well as any vision differences such as whether they have colour blindness, glasses, 
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or contact lenses. This was followed by the General Self Efficacy Assessment Tool, the 

Growth Mindset Questionnaire, and finally the visual Corsi task to assess working 

memory. When this part of the experiment was finished, the experimenter administered 

the paper-based Vanderburg Mental Rotation Test, using the 4-minute variation 

described by Peters et al. (1995). 

After these measures were collected, the participant was introduced to the VR 

headset, given a brief tutorial on how to use the controllers, and shown how to adjust the 

headset for optimal visibility. They were warned that some people experience discomfort 

or sickness while in VR and were instructed to withdraw by notifying the experimenter if 

they experienced any of these feelings. Following this, the researcher opened the Unity 

program to begin the experiment, giving the participant a chance to ask any remaining 

questions they might have before starting the program. 

The experimental program consisted of two main sections: a tutorial, and the 

main experimental trials. During the tutorial, the participant was taught to rotate a 

stimulus cube and make guesses as to its category. They were then shown an example 

of trial feedback where they could compare the stimulus cube to the feedback presented. 

Transitioning into the experimental trials, each participant underwent at least 96 trials. 96 

trials were chosen based on the fact that in Barrett et al. (2022), all participants who 

reached the criterion point reached it prior to the midpoint of the experiment. After 96 

trials, or approximately 40 minutes of experiment runtime, the experiment ended, and 

the participant was asked briefly about their experience by the experimenter as they 

cleaned up the equipment. This conversation was aimed at probing for possible bugs or 

other issues with the experiment to address. The participant was then given a debrief 

slip with information about the study and the researcher’s contact information in case 

they had additional questions about the research.  
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Chapter 3. Results 

3.1. Analysis of Learning Outcomes and Attention Related 
Behaviours 

Using R Statistical Software (v4.0.0; R Core Team, 2020), and the linear mixed 

effects regression package developed by Bates et al. (2014), we investigated how each 

of the different experimental factors contributed to changes on the outcome variables for 

all participants included in this analysis (N=47). Initially, the base models used trail bin 

(bins 1-4) as a fixed effect, and Participant ID as a random intercept to account for 

individual variation in the data. Each factor was introduced as a fixed effect individual 

before introducing the interaction of both terms. Inspection of histograms of residuals 

and qq-plots for each dependent variable indicated that normality was generally 

observed, with LMERs being robust to most deviations from normality. As well, there 

were no visible indicators that homoscedasticity was greatly violated in any of the 

variables. Likelihood ratio tests were then used to compare models with and without the 

individual factors to see if adding that term would result in better model predictions. 

Modelling factors in this way allows us to see if they have an effect on the outcome 

variable, while also allowing us to look for interaction effects between them. The largest 

model we explored for each dependent variable can be denoted through the formula: DV 

~ Bin + Bin2 + MotorCost + DelayCost + MotorCost:DelayCost. 

For every outcome variable, a practice effect was obvious, with participant scores 

changing across the training period as they learned to categorize the stimulus groups. 

Visual inspection of the graphs in Figure 3.1. indicates more of a curvilinear progression 

for each outcome variable across the training period. Testing this, a quadratic term was 

added to each base model and was found to be significant for all variables: accuracy 

(χ2(1) = 36.99, p<0.001), response time (χ2(1) = 54.81, p<0.001), adjusted response time 

(χ2(1) = 58.54, p<0.001), optimization (χ2(1) = 6.12, p=0.013), feedback duration (χ2(1) = 

41.65, p<0.001), fixation duration (χ2(1) = 39.689, p<0.001), and fixation count (χ2(1) = 

35.387, p<0.001). Every dependent variable having a significant improvement in model 

fit after the inclusion of a quadratic effect indicates that in addition to there being an 

effect of practice on scores, that relationship is curvilinear nature, showing that the 

largest changes in learning occurred earlier in the experiment. 
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Next, each group was examined to see how many participants reached the 

learning criterion (N=47) and how many failed to reach the criterion required to be 

included as a “learner” (N=72). Using Pearson’s Chi-squared Goodness of Fit test, 

counts of learners were compared first along each of the main groups, motor and delay 

costs, and then with all four conditions treated separately to detect any interaction 

effects. Starting with the impact of delays, we observed that having an increased delay 

cost did not change the likelihood that participant would succeed in learning the 

categories (χ2(1, N=119) = 2.604, p=0.107). Likewise, an increased motor cost did not 

change the likelihood of reaching the criterion point (χ2(1, N=119) = 0.11, p=0.740). 

Treating each condition individually also yielded no differences in the proportions of 

participants who reached criterion in this experiment. (χ2(1, N=119) = 2.773, p=0.428). 

All groups had a roughly equal ratio of learners to non-learners, and no single condition 

produced a disproportionate number of non-learners. 

 

Figure 3.1.  Means and standard deviations for all learning outcomes and 
attention-related behaviours, plotted by bin for each condition. In the 
legend in the bottom right corner, D and M refer to the delay and 
motor costs respectively, with the subscript indicating whether the 
cost was low (0) or high (1). 

3.1.1. Learning Outcomes 

For each analysis, Figure 3.1. showcases the data for each of the four conditions 

individually, while Figure 3.2. and Figure 3.4. display the main of effects for delay and 
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motor costs, respectively. Starting with accuracy, there was no effect of motor cost (χ2(1) 

= 0.176, p=0.675), or of delay cost (χ2(1) = 2.058, p=0.151). No interaction was found 

between the two factors either (χ2(2) = 2.195, p=0.533). All participants who reached the 

learning criterion point were able to reach that point at relatively the same trial number 

no matter their condition. 

Response time for each group, as pictured in Figure 3.1., was also relatively 

uneventful. Motor cost was found to have no effect on response times (χ2(1) = 

3.321, p=0.068). As can be seen in Figure 3.2. however, delay cost impacted response 

times (χ2(1) = 27.601, p<0.001), as the higher delay conditions forced participants to wait 

5 seconds on each fixation before they continue on. Modelling the interaction effect was 

found to improve the model fit compared to the delay cost on its own (χ2(2) = 

9.182, p=0.007), showing again that design of the conditions had forced participants to 

go slower on each trial, whether they are slowed by how much effort it takes to access 

information, or how long they have to wait for access to it. While this finding is somewhat 

confounded by the nature of the experimental manipulation, on its own, this reminds us 

that any potential benefits of information access costs must be weighed against the 

trade-off of longer response times. 

Using the adjusted response times which control for the delays imposed by the 

experimental manipulations, I examined how removing the time added by the conditions 

themselves could potentially isolate any difference in time on task by the participant 

spent in addition to the time necessary to navigate the information access costs. Looking 

at both costs through this perspective finds no impact of motor (χ2(1) = 3.587, p=0.058) 

or delay (χ2(1) = 1.313, p=0.252) costs. Testing for a possible interaction between these 

effects also yielded no results (χ2(1) = 3.782, p=0.151). These analyses show that 

although participants did take longer to navigate each trial overall, no additional time per 

trial was added beyond that which resulted from the nature of the conditions themselves. 
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Figure 3.2.  Means and standard deviations for each learning outcome and 
attention-related behaviour, grouped by Delay Cost. 

In a more applied setting, such as in education, time to learn is not measured in 

trials, but in the actual time spent on task. It is plausible that accuracy may have 

increased at the same rate across groups in terms of trials, but the longer response 

times may indicate that the accuracy over time might progress faster for groups with 

lower information access costs who can go through more trials per minute. To see if 

learning outcomes over time might be impacted by this, the trials were binned into five-

minute chunks and the analyses of accuracy were redone using the new, time-based 

bins. Modeling the trials in this way produced the same results. Again, adding a 

quadratic model to the base model was found to be a better fit than the base linear 

model (χ2(1) = 36.999, p<0.001). For each condition, neither the motor cost (χ2(1) = 

0.176, p=0.675) nor the delay cost (χ2(1) = 2.058, p=0.151) improved the model fit, 

indicating that neither condition reliably impacted the overall rate of learning in 

participants. A visual inspection of the graph for this analysis (Figure 3.3.) indicates that 

the group with no delay cost and no motor cost may appear to be improving slightly 

more quickly at first, but that this advantage disappears after the first twenty minutes of 

learning.  
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Figure 3.3.  Accuracy scores, binned into five-minute chunks. The far left graph 
shows accuracy over time for all four groups, while the two figures 
to the right show accuracy over time for each of the main effects. 

3.1.2. Information Access Behaviours 

After making their choice for each trial, participants had the option to review the 

cube and feedback together so as to examine the stimulus features with the correct 

answer in view. Neither motor cost (χ2(1) = 2.897, p=0.089) nor delay cost (χ2(1) = 

0.031, p=0.861) were found to have any impact on how long people viewed the 

feedback for. There was no interaction between the two factors either (χ2(2) = 

5.493, p=0.139). Participants examine the feedback for 5-15 seconds during the first bin 

but spend less than 5 seconds by bins two and onward. 

Participants learned to prioritize important information and ignore irrelevant 

features as they examined the stimulus cubes, with all learners improving their 

optimization gradually over the course of the experiment. However, increased motor 

costs did not impact the how quickly participants learned to prioritize important 

information (χ2(1) = 0.036, p=0.85). Increasing the delay costs did result in higher 

optimization scores (χ2(1) = 4.115, p=0.043), showing that increased delay costs 

motivated participants to avoid irrelevant information more quickly. There was no 

interaction effect between the motor and delay costs (χ2(2) = 0.442, p=0.802), showing 

that the impact of the delay cost was not impacted by increases in motor cost. 



31 

Focusing only on the response times fails to account for time spent looking at 

objects other than the stimulus and is unable to tell us about the attentional patterns of 

the learner. By examining the number of fixations and their respective durations, we can 

work to see how each condition may have influenced the way participants viewed task 

relevant information. Starting with fixation durations, motor cost (χ2(1) = 4.821, p=0.028) 

and delay costs (χ2(1) = 26.806, p<0.001) were both found to have a significant impact 

on the model, as participants facing a higher information cost tended to spend more time 

looking at each feature, regardless of the type of cost they experienced. Modeling an 

interaction effect between these factors and comparing it to the impact of the delay cost 

on its own was also found to be significant (χ2(2) = 14.013, p<0.001), showing how the 

delay cost, when combined with the motor cost was more impactful on how long 

participants fixated on each feature. 

The number of fixations per trial was not impacted by having a higher motor cost 

in this experiment (χ2(1) = 0.056, p<0.814). However, an increased delay cost did make 

a significant impact on the model (χ2(1) = 17.477, p<0.001), showing that when faced 

with a higher delay cost, participants made fewer fixations per trial on average across all 

bins. No interaction effect was found between the two factors (χ2(2) = 1.052, p<0.591), 

suggesting that the combination of motor and delay costs had no impact on the number 

of fixations for participants who reached the criterion point. 

Across these analyses, the findings can be summarized as follows: All groups 

learned at roughly the same rate, and a proportionally equivalent number of participants 

reached criterion in all four conditions, showing that our manipulations did not impact the 

essential learning outcomes of this task, reaching criterion, and the rate at which 

participants learned to identify the stimuli. Although a statistical impact of condition was 

observed in participant response times, this is accounted for by the additional time 

required to access information in those conditions and cannot be easily attributed to the 

experimental manipulations. Information access patterns were also impacted by the 

conditions in this experiment. During trials, the effect of having a higher delay cost was 

seen on three measures, improving how participants chose to prioritize relevant 

information over irrelevant information, increasing the amount of time they linger on each 

feature before moving to the next fixation – especially when combined with increased 

motor costs – and lastly, participants facing higher delay costs made much fewer 

fixations per trial on average. 
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Figure 3.4.  Mean and Standard Deviation across the four bins for each 
attention-related behaviour and learning outcome, grouped by 
whether they faced a high or low motor cost when manipulating the 
stimulus cube. 

3.1.3. Replicating Barrett et al. 2022 

In many ways, the group with the low motor cost and low delay cost was 

intended to act as a pseudo-replication of the VR group from Barrett et al. (2022). To 

determine whether this group successfully replicated the findings of Barrett et al. (2022), 

additional analyses were made using just the first four bins of the VR group in Barrett et 

al. (2022) and the Low Motor Low Delay group from the current experiment. Initially, the 

base models used trial bin (bins 1-4) as a fixed effect, and Participant ID as a random 

intercept to account for individual variation in the data. Each factor was introduced as a 

fixed effect individually before introducing the interaction of both terms. The largest 

model explored for each outcome can be described with the formula: DV ~ Bin + Bin2 + 

Experiment + Bin2:Experiment. 

As before, each outcome variable was found to improve with practice. A 

quadratic term was added to each base model and was found to be significant for all 

variables: accuracy (χ2(1) = 19.291, p<0.001), response time (χ2(1) = 17.695, p<0.001), 

adjusted response time (χ2(1) = 17.70, p<0.001), optimization (χ2(1) = 4.930, p=0.026), 
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feedback duration (χ2(1) = 27.628, p<0.001), fixation duration (χ2(1) = 12.62, p<0.001), 

and fixation count (χ2(1) = 5.30, p<0.021). This shows that learning occurred in both 

experiments and that most learning occurred in the earlier parts of the experiment. 

Starting again with accuracy, Figure 8 shows that there was no substantial 

difference across the experiments in how quickly each grouped learned to categorize the 

stimuli in this experiment (χ2(1) = 3.158, p=0.076). No interaction was found between the 

experiment and bin either (χ2(2) = 3.111, p=0.211), showing that participants in both 

experiments learned at roughly the same rate. 

Response times were found to be different between the two experiments (χ2(1) = 

12.522, p<0.001), suggesting that the 1 second delay used in the current experiment 

may have resulted in much slower response times by participants. As can be seen in 

Figure 3.5., an interaction effect was observed between the conditions and the bin 

number (χ2(2) = 17.5, p<0.001), showing that the shape of the curve for reaction times 

was different as the group from the current experiment started with much slower 

response times, but had mostly caught up with the other experiment by bin 3. 

The adjusted response times in this case only control for the impact of the 1 

second delay cost, leaving in the time between fixations as the motor cost across these 

experiments was identical and therefore unnecessary to factor out. After controlling for 

the delay cost, response times were no longer found to be different across the 

experiments (χ2(1) = 1.75, p=0.187), suggesting that the increased reaction times 

observed in later trials was an artefact of the changes made to the current iteration of the 

experiment. However, an interaction effect was still observed between experiment and 

bin (χ2(2) = 9.094, p=0.011), showing how although the response times were generally 

similar across the experiments, participants in the current study still started with slower 

response times, again catching up completely by bin 3. 

Optimization scores across the two experiments were also found to be different 

(χ2(1) = 4.529, p=0.033), with participants in the current experiment starting with higher 

optimization scores and maintaining that advantage. No interaction effect was found 

(χ2(2) = 5.700, p=0.127), showing that the advantage for participants with the 1 second 

delay was consistent across the bins. 



34 

Participants in both experiments spent roughly the same amount of time on 

feedback across the four bins (χ2(1) = 2.209, p=0.137), but an interaction effect was 

observed (χ2(2) = 11.253, p=0.01), as the shape of the corresponding curve in Figure 

3.5. shows that participants in the current experiment spent slightly more time on 

feedback in the first bin compared to the participants in Barrett et al. (2022), but that this 

difference was not observed for the rest of the experiment. 

For fixation durations, it is clear that participants in the present experiment spent 

much more time looking at each stimulus feature (χ2(1) = 16.532, p<0.001). An 

interaction effect was also observed (χ2(2) = 19.136, p<0.001), showing that while 

participants in Barrett et al. (2022) started with shorter fixations and stayed relatively 

short, participants in the current experiment started off spending much more time per 

fixation and improving over the course of the experiment, though not as quick as the 

subjects in Barrett et al. (2022).  

Lastly, participants in the current experiment made much fewer fixations 

compared to the participants in the previous experiment (χ2(1) = 12.344, p<0.001), and 

inspection of the associated graph in Figure 8 suggests that subjects in the current 

experiment were much more predictable in how many fixations they would make while 

those in Barrett et al. (2022) were much more unpredictable in addition to having more 

fixations overall in their first four bins. No interaction effect was observed (χ2(2) = 

2.024, p=0.363), suggesting that this difference was consistent across all four bins.  

In summary, the present experiment was often a good comparison to the 

previous experiments in terms of learning outcomes. Several important differences in 

optimization, time spent on feedback, fixation durations and number of fixations per trial 

were observed however, suggesting that even a one second delay cost was enough to 

trigger several important shifts towards more economical use of attentional resources. 
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Figure 3.5.  Means and standard deviations for all learning outcomes and 
attention-related behaviours, plotted by bin for both the Low Motor 
Low Delay Group from the current experiment and the first 4 bins 
from the VR group documented in Barrett et al. (2022). 

3.2. Exploration of Individual Differences  

To explore the impact of individual differences on overall accuracy, a forward 

stepwise linear regression was used to ascertain which survey instruments would be 

potential predictors of accuracy in the experiment. Sex, age, video games per week, VR 

usage level, self-efficacy, fixed mindset tendencies, growth mindset tendencies, working 

memory, and mental rotation scores were all included in the stepwise regression as 

possible candidates as predictors of accuracy. Missing data in any variable was dealt 

with by excluding that participant, resulting in a total sample size of 106 participants for 

this analysis. ADHD was excluded from the regression model building to be examined 

independently for this reason, so as not to diminish the statistical power by removing an 

additional 32 participants. For each part of the process, variables were evaluated 

according to their p-values in conjunction with the AIC to narrow down a list of 

recommended variables to use in the final model. Of the ten variables included in the 

model, age, video games per week, and mental rotation were found to be possible 
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predictors of accuracy. Coefficients for these variables suggest that each increase in the 

level of video games played per week should be associated with a 4.8% increase in 

accuracy, each point earned in the mental rotation test is predictive of a 0.9% increase in 

accuracy, and each year of age should predict a -2% drop in accuracy. In all cases, 

these effect sizes are small, and should be explored more thoroughly to confirm whether 

they are reliably predictive of performance. 

Fitting a linear model to predict accuracy with age, video games per week, and 

mental rotation. The model was able to explain 11.3% of the variance in accuracy and 

was statistically significant, F(3, 105) = 4.461, p = .005). Though the model itself was 

found to be significant, none of the individual predictors had statistical significance with 

alpha set to the .05 level. The effect of Age was statistically non-significant (beta = -0.02, 

95% CI [-0.04, 1.50e-03], t(105) = -1.85, p = 0.068; Std. beta = -0.17, 95% CI [-0.36, 

0.01]). Next, the effect of video games per week was statistically non-significant (beta = 

0.05, 95% CI [-4.35e-03, 0.10], t(105) = 1.82, p = 0.072; Std. beta = 0.18, 95% CI [-0.02, 

0.37]). The effect of mental rotation score was also statistically non-significant (beta = 

9.11e-03, 95% CI [-5.51e-04, 0.02], t(105) = 1.87, p = 0.064; Std. beta = 0.18, 95% CI [-

0.01, 0.37]). Given this information, any relationship suggested between these predictors 

and the outcome variable must be interpreted cautiously as the model itself not a reliable 

predictor of the data. Standardized parameters were obtained by fitting the model on a 

standardized version of the dataset. 95% Confidence Intervals (CIs) and p-values were 

computed using a Wald t-distribution approximation. 

Since the predictors identified by the stepwise linear regression were found to be 

nonsignificant when combined into a model featuring all three predictors, the effects of 

each predictor were explored individualy, as combining the predictors into a larger model 

may have reduced sensitivity to the effects of each predictor. A baseline model was built 

using just accuracy as an outcome variable, again using the ‘lme4’ package in R (Bates 

et al., 2015), with each factor introduced as a fixed effect one at a time to identify which 

predictor variables seemed to have the most impact on accuracy. Each model described 

in table 3.1. was constructed as a linear model predicting Accuracy as a function of the 

survey outcome being examined. With the exception of the ADHD model, which was 

built with only 74 data points, each model in this analysis includes the data of 108 

subjects. 
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Table 3.1.  A summary of the statistical analyses performed for each of the 
individual differences investigated in the survey. 

Variable Estimate Std. Error R^2 t-value df p-value 

Sex (male) 0.031 0.057 -0.006 0.552 1,107 0.582 

Age -0.023 0.011 0.023 -1.884 1,107 0.06 

Age (<25) 0.073 0.081 -0.003 0.901 1,105 0.37 

Video Games Played 
Per Week 

0.067 0.025 0.052 2.636 1,107 0.01* 

VR Usage 0.027 0.032 -0.003 0.836 1,107 0.405 

ADHD 0.073 0.081 -0.002 0.301 1,73 0.371 

General Self Efficacy -0.003 0.006 -0.008 -0.420 1,107 0.675 

Fixed Mindset 0.024 0.032 -0.004 0.741 1,107 0.405 

Growth Mindset -0.047 0.036 0.007 -1.307 1,107 0.194 

Working Memory 
(Corsi Span) 

0.019 0.020 -0.001 0.957 1,107 0.351 

Spatial Ability (Mental 
Rotation Score) 

0.011 0.005 0.037 2.278 1,107 0.025* 

Note: * p<0.05 

Examining each of the factors recommended by the stepwise regression in turn, 

age was found to have a statistically non-significant effect on accuracy (F(1,107) = 

3.548, p=0.062). Had this effect been found to be statistically significant, it would have 

indicated only a small 2.3% drop in accuracy for every year of age. In addition to this 

effect being quite small, it is apparent that this effect seems to be driven by the inclusion 

of two participants over the age of 25 who had particularly low accuracy scores. Further 

analysis does show that these participants were in fact outliers, and rerunning the 

analysis without these two participants reduced the effect to below threshold to be 

considered reliable (F(1,105) = 0.985, p=0.323). The difference in outcome here based 

on the removal of just two participants demonstrates that the effect suggested in the 

stepwise regression was not a stable relationship and should be disregarded until further 

evidence with more subjects in the higher age categories can be collected. 

ADHD was not found to have any impact on accuracy (F(1,73)=0.812, p=0.371). 

Of the models which exceeded a threshold of statistical significance of alpha = 0.05, 
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experience with video games was found to be associated with an improvement in 

accuracy (F(1,107)=6.949, p=0.009). Each level of weekly use in the survey was 

associated with an approximate 6.7% increase in accuracy in the experiment. Adjusted 

R-squared was only 0.052 however, indicating that this effect is highly volatile, only 

accounting for 5.2% of variability in accuracy scores overall. As well, mental rotation 

ability was found to have a slight effect on overall accuracy (F(1,107)=5.191, p=0.025). 

This effect was extremely minor however, with each point of mental rotational ability only 

be associated with a 1.1% increase in accuracy, and a R-squared of only 0.037 

indicating that this predictor accounts for only 3.7% of variability in accuracy scores. 

Taken together, this information shows us that these individual differences have very low 

predictive power on accuracy. 

Not all participants reached the final trial however, as several ran out of time 

despite having learned the categories. In cases, it can be assumed that they would have 

gotten 100% accuracy on subsequent trials had they been allowed to continue, resulting 

in a higher overall accuracy score than observed. To counteract this artificial deflation of 

scores, just the first two bins were modelled with each predictor again, as all participants 

have data for these bins. By using just the first two bins, all participants have an equal 

number of trials in the analysis. The impact of video game experience was retained in 

this analysis (F(1,107)=7.331, p=0.008), with an expected increase of 6.8% in accuracy 

for each level of weekly video game play. However, the effect of mental rotation was not 

observed in this sub-setting of the data (F(1.107)=3.2, p=0.076), now predicting only an 

0.8% increase in accuracy for each point of increase in mental rotation scores, giving 

further evidence to the unreliability of this factor. 

In summary, only weekly video game usage seemed to have any impact on how 

well participants did during the experiment, suggesting that playing more video games 

per week was associated with slightly better learning outcomes. A small effect of mental 

rotation score was observed, but it was small and unstable, being completely 

undetectable when examining just the first two bins of data. Age was suggested as an 

important predictor early in the analysis, but further investigation found this to be 

unreliable as well, likely driven by outlier data points. In short, almost no individual 

differences measured had any impact on accuracy scores in this experiment, indicating 

that other factors must contribute to non-learner rates in these kinds of experiments. 
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Chapter 4. Discussion 

In the first research question, the impacts of different information access costs 

were tracked across different learning outcomes and attention related behaviours as 

participants learned to categorize stimuli into different groups. It was found that 

participants faced with increased delay costs would prioritize important information more 

than participants with no delay cost, spending less time on irrelevant features over the 

course of the experiment. As well, both information access costs – delay and motor – 

were found to increase the amount of time each participant would spend looking at 

individual features. Having both costs present increased that time even further, showing 

that participants seemed to be more cautious when examining each feature. Having 

increased delay costs also led to participants making fewer fixations per trial over the 

course of the experiment. 

Comparing data from the control group of the current experiment to the data from 

Barrett et al. (2022) revealed that while this data was generally able to replicate the 

learning outcome trends of that previous work, the one-second delay used in this 

experiment was enough to trigger the type of changes in attention predicted by previous 

work on information access costs (Morgan et al., 2010; Rajsic et al., 2018). That even a 

one second delay could make such a difference is surprising as this group had been 

intended as a pseudo-replication of the previous study. Some differences exist between 

the studies, with the current project having the addition of surveys and other pre-

measures and an updated game program, but the cube stimulus was directly transferred 

from the previous project into this one, making the stimuli mostly identical at minimum. A 

follow-up experiment explicitly comparing these delays would be ideal to confirm this 

finding. 

Higher delay costs did seem to make participants more economical in their 

information access behaviours, making fewer fixations as they went through the trials 

and spending more time on each fixation. This was found both in the current experiment 

where the difference in delay was a lengthy 4 seconds, and in the comparison between 

the control group of this study and the VR group from Barrett et al. (2022) where there 

was no delay experienced when accessing stimulus features. Even the one second 

difference introduced in the current experiment seemed to be enough to impact 
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information access patterns, showing that even small differences in the design of 

experimental and educational environments can make significant impacts on how people 

allocate their attention. Lingering on each fixation for a longer period of time could be 

motivated by a desire to further encode the stimulus feature into memory, as forgetting 

the feature would result in needing to return to that side of the stimulus, wasting 

additional time. In contrast, participants with shorter or no delays are not impeded as 

much if an additional fixation is needed to refresh their memory, so less importance is 

given to each fixation. This finding bears some resemblance to research investigating 

the impact of delays on temporal discounting in pigeons (Grace et al., 2012), where it 

was found that small differences in delay closer to 0 had much more impact on temporal 

discounting compared to proportional differences that were not close to zero. Likewise, 

the impact of the 1 second delay compared to the 0 second delay was far greater than 

the difference between the 1 and 5 second delay groups, despite being a larger 

difference in delay. This suggests that the impacts of information access costs on 

attention related behaviour may be tightly linked with the impact of temporal discounting 

on decision making. Experimenting with a variety of delay costs may be useful to further 

define the nature of this relationship. 

It is also possible that participants experiencing longer delays would be more 

inclined to learn the categorization rules while those with less delay may opt to make a 

third fixation because they are using a memorization strategy. The number of fixations 

on each trial gives us some indication that this is the case, as participants with higher 

delays tended to make fewer fixations on average, with most participants in the 5 second 

delay group only needing two fixations to correctly identify the stimulus; the minimum 

needed to do so. In contrast, those with lower or no delay cost as in Barrett et al. (2022), 

are still found to make more than two fixations, suggesting that participants with lower 

delay costs still examine all the features before making a category choice, even after 

reaching criterion, relying on a memorization strategy rather than learning the 

categorization rule. Blair and Homa (2003) found that when a small number of unique 

stimuli were available, participants would often use memorization rather than learn the 

categorization rule, and that this strategy was often just as effective as rule-based 

approaches. As such, given that there were only 8 unique stimuli used in this 

experiment, memorization is just as easy as learning the rule, but having a higher delay 

cost motivates the learner to seek out the more efficient rule-based strategy. 



41 

Memorization strategies can produce successful results, but it’s been observed that 

when this approach is used during training, learners have difficulty transferring their 

knowledge to novel cases (Little & McDaniel, 2015). When the goal is to teach learners 

to generalize knowledge using more rule-based features, adding sufficient information 

access cost seems to be a viable way to ensure that attention is paid to the actual 

pattern instead of undermining the transferability of their learning by relying on 

memorization. 

Motor costs did not seem to have a great effect in this experiment compared to 

prior work (Yang et al., 2013, 2015). While some effects were observed, such as longer 

fixation times, these effects were not as pronounced when compared to the impact of the 

delay cost. A possible explanation for this is that the motor cost was too small to be of 

much impact here. Despite the rotational drag of the stimulus requiring participants to 

make slower arm movements to rotate the cube, still only a single arm movement was 

necessary to change to a different side of the cube. In contrast, participants in Yang 

(2015) were required to walk across a room to access information, a much greater cost 

than a simple arm movement. Potentially, had the rotational drag of the cube in this 

experiment required multiple arm movements to access each side, or participants 

required to walk around the virtual space more, an observable effect might have been 

elicited. As well, the doctor’s who participated in Yang et al (2013, 2015) were not given 

a lot of opportunity to improve their performance over time, while participants in this 

experiment were given nearly a hundred trials. Perhaps training doctors with a higher 

information access cost would reduce initial training performance but improve later 

patient care following training. Future research should investigate at what scale motor 

costs need to be to produce an observable impact on information access patterns. At 

minimum, it is clear that delay costs are far more potent than motor costs, with only a 

second’s difference being sufficient to produce reliable differences in attentional 

patterns. 

Lastly, when the delay cost was implemented, this resulted in consistently longer 

fixation durations. Although the presumed time it would take to perceive the stimulus 

feature would be the same, participants still spend longer looking at it, proportional to the 

delay cost used in that condition. Participants with a 1 second delay spent longer than 

those with no delay, and those with a five second delay spent even longer on each 

fixation. One explanation has already been discussed, suggesting that this is to ensure 
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deeper encoding of the information being presented, but another explanation is that the 

delay itself slows down the speed of thought in the participant. Esports athletes often 

engage in seemingly useless actions during performance (“Actions per Minute,” 2024). 

At higher levels of skill, these actions help players maintain speed so that they can react 

quickly to the situation as it unfolds. In esports, this has led to a differentiation between 

“Actions per Minute”, and “Effective Actions Per Minute” which filters out redundant 

actions taken to maintain a higher APM. In this task, participants were forced to engage 

in slower actions by the delay cost, limiting their ability to build up any speed during 

performance. It is possible that being forced to go slower also reduced the rate of 

processing and thought, leading to longer fixations. 

In my second research question, I explored possible reasons as to why so many 

people failed to reach the criterion point to be considered learners in these kinds of 

experiments. Nothing substantial was found, with only people’s level of weekly video 

game play being found to predict only a slight increase in accuracy. Although seemingly 

uneventful, these findings have some important implications for thinking about category 

learning research.  

The effect of weekly video game usage observed here makes sense through the 

lens of cognitive load theory (Sweller, 1988, 1994; Sweller et al., 2011). This theory 

suggests that each person possesses a certain capacity for how much task complexity 

they can handle at any given moment. As well, each learning environment has multiple 

aspects of difficulty that add to that complexity. There is the intrinsic difficulty inherent to 

the material to be learned, as well as extrinsic difficulties which, while irrelevant to the 

actual material being learned, still make learning that material more difficult. For 

example, a loud room may make it more difficult to concentrate on learning math 

problems. In this experiment, participants not only needed to learn to identify the 

categories of the stimuli presented, but to do this, they also needed to learn to navigate 

a novel immersive virtual reality user interface. Consequently, participants with more 

experience playing video games are likely to have some knowledge of the mechanics of 

digital games that would transfer to the VR game, allowing them to focus more on 

learning the categories. Experience with VR was not found to have a significant effect, 

which is somewhat contradictory to this claim, but so few people reported having more 

experience with VR games that it is difficult to say if this effect was missed due to not 

having many people with more experience in VR or not. To verify this claim, 
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measurement of cognitive load during the experiment would be necessary to confirm 

whether those with less experience were in fact more heavily burdened by the additional 

challenge of learning to use the VR interface compared to those with some familiarity 

with video games. As well, future research should be more specific about what kinds of 

video games are played by participants, as different kinds of games may have different 

impacts on attention and learning (Bediou et al., 2018). 

The fact that, for the most part, no main effects of individual differences were 

found raises the question that, if the attributes of the participants themselves could not 

predict whether participants reached learner status or not, then what is driving this high 

frequency of non-learners across these experiments? One other source of information 

comes from the notes made by the researcher while observing participants and in 

conversation with them after each appointment.  When asked what they thought the 

pattern might have been, some participants describe thinking there was some sequential 

pattern to the stimulus categories, among other suggestions. They would suggest “if the 

last trial was an A with a green spiral, then it seemed like the next trial would always be 

B”. On the surface, these suggestions seem strange, but they may actually indicate that 

participants had picked up a subtle regularity to how stimuli were presented. When 

presenting stimuli, each of the 8 possible cubes was selected in random order without 

replacement until all 8 cubes were presented before starting again every 8 trials, like 

drawing cards from a small deck. In this way, the randomness of the presentation order 

was still within some limits. For example, if the first 2 trials happened to be from group A, 

then the next 6 trials must be either B, C, or D. If the third trial we’re to be group B, then 

there would only be a 1/5 chance that trial 4 would also be group B, while groups C and 

D would now have a 2/5 chance of being next. Participants may have picked up on this 

sampling pattern without realizing it, leading them to believe that some explicit ordering 

pattern existed where there was none.  

Another insight from the running log notes reports that some participants 

described trying to see if the rotation of the feature mattered, while others did not realize 

one of the features had an alternate form at all. Participants with these kinds of 

responses were all non-learners for the most part, suggesting that their confusion as to 

what to look for may have impeded them from focusing on the important feature 

characteristics. Misunderstandings of the experiment protocols such as these directed 

me to examine the design of the experiments themselves. Going back through the 
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literature, a number of papers provided possible leads for future investigation. Although 

their methods section makes no reference to this, Rehder & Hoffman (2005b) reveal in 

their discussion that participants were explicitly made aware of the fact that each 

stimulus feature possessed binary characteristics and were shown all possible symbols 

for each feature. Following the experimenter scripts of previous research (Barrett et al., 

2022; McColeman et al., 2014; D. J. Smith & Minda, 2000), we did not show participants 

examples of each stimulus feature during the tutorial. 

In both of these cases, not knowing the possible feature states or believing there 

was a sequence to the features, indicates that the participant might be unable to learn 

the categories not for any lack of intelligence, but because they have misidentified the 

parameters of the task. Future research should take additional steps to ensure that 

understanding of experiment protocols is confirmed, potentially by having participants 

write out the instructions of the task to confirm their understanding prior to being shown 

the first trials so the researcher can correct any misunderstandings. As well, it would be 

interesting to follow the example of older works and record participants as they talk out 

loud during trials (Fisher, 1916; Williams, 1971). In using talk-aloud methods, 

researchers can confirm whether the participants fully understand the task and 

affordances of the stimuli provided. Future research using talk-aloud methods would 

allow researchers to better record novel hypotheses used by participants, and in the 

case of those who report thinking there was some sequence to the data, talk-aloud 

methods could also gather participant reasonings midtrial to see if there is any 

connection between the sequences guessed at and the probability of the sequences 

presented to the participant. Following Wahlheim et al. (2016), future research might get 

participants to write out what they think the best strategy is after each trial bin, which 

might avoid the positive but confounding impact of concurrent self-explanation on 

performance in problem-solving (Berry, 1983). Explicit ordering could even be used as 

an experimental manipulation to investigate this ability more thoroughly, testing whether 

pseudo-random trends in stimulus presentation order can impact performance. 

Instructional design is an expansive field of research, with several findings 

demonstrating that even the slightest change to instructional materials can make a large 

difference in student understanding of content (Khalil & Elkhider, 2016; Massen et al., 

2009; Mayer, 2014; Sweller, 1994). Because of this, researchers should be aware that 

their instructional methods follow evidence-based practices to avoid causing impacts to 
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their results that are due to differences in protocol rather than experimental 

manipulations. 

With respect to industry application, a few key insights are offered by this work. 

First, the implementation of an information access cost during learning in virtual reality 

was generally ineffective at impacting learning outcomes. Yes, participants were more 

economical in their use of fixations, but whether evaluated in terms of the number of 

trials completed or the amount of time spent during training regardless of trial number, 

information access costs made no impact on how quickly people learned to categorize 

stimuli. While information access costs do not appear to be a useful tool in reducing the 

amount if time it takes to learn, these findings do demonstrate that even a small delay 

cost may be useful during training to encourage the adoption of more efficient and 

transferable information gathering strategies. In this way, learners will be more prepared 

to apply their training to novel situations that are not identical to the examples presented 

during their training.  



46 

Chapter 5. Conclusions 

This study adds further fuel to the growing body of literature showing that choice 

of media and modality does not greatly impact learning outcomes. To improve learning 

outcomes, more direct intervention may be necessary on the part of the educational 

designer to ensure that instructional materials take advantage of the best practices in 

educational design. In this experiment, two kinds of information access cost were 

implemented to explore whether learning outcomes and changes in patterns of attention 

could be influenced by increasing the amount of time or physical effort it takes to access 

information. Although learning outcomes were unaffected by these changes, increased 

costs, especially delay costs, had a substantial impact on learning-related changes to 

patterns of attentional allocation. Even a small delay cost of a second was enough to 

produce a substantial change in participant behaviour, showing how even the smallest 

alterations to the design of digital learning objects can change how learners engage with 

the material.  
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Appendix. Survey Presented to Participants 

This appendix contains all questions and instruments that were administered throughout the 

course of this experiment. The order of the instruments is as follows: 

A. Demographics Survey 

B. Spatial Ability Measurement 

C. Working Memory Measurement 

D. Self Efficacy Measurement 

E. Achievement Mindset Preferences 

A. Demographics Survey 

1. What is your age? [Numeric Value: Years] 

2. How would you describe your sex? 

a. Male 

b. Female 

c. Intersex 

d. Prefer not to answer 

3. How often do you play video games per week (console, PC, handheld, mobile, etc.)? 

a. 0-3 hours 

b. 3-6 hours 

c. 7-10 hours  

d. 10-15 hours 

e. 16+ hours  

4. How often do you use immersive virtual reality technology (HTC Vive, Oculus Rift, Valve 

Index, Samsung VR, etc.)? 

a. I have never tried it before 

b. I’ve tried it once or a few times before 

c. repeatedly, but less than once a month 

d. monthly 

e. weekly 
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f. daily 

5. Do any of the following eye conditions apply to you [check all that apply]? 

a. I wear glasses to see 

b. I wear contact lenses 

c. I have some form of colour-blindness 

d. Other condition not listed here 

6. Have you ever received a diagnosis for ADHD, or any other attention-related disorder or 

neurodiversity? 

a. No 

b. Yes – ADHD 

c. Yes – Other [Please Describe] 

d. Prefer not to answer 

B. Spatial Ability Measurement 

To assess spatial ability, the Vandenberg & Kuse Mental Rotation Test (1978) as redrawn by 

Peters et al. (1995) is used to capture a participant’s ability to do mental rotation. For each trial 

of this task, a 2D representation of 3D shape is presented to the participant to be compared 

against 4 other shapes on the same page. One of these shapes is a rotated version of the first 

shape, and it is up to the participant to correctly identify this shape. An example problem from 

the full set appears below, with the target shape on the far left. The participant must choose 

which 1 of the 4 shapes on the right is a rotated version of the first shape. All other questions on 

this test use similar stimuli. 

 

C. Working Memory / Attention Measurement 

Using the Corsi Block-Tapping Task (a visual spatial version of digit span task as described in 

Wilhelm et al. (2013)), participants are asked to observe a series of lights presented one at a 

time at various locations on a screen and recall the sequence in exact order immediately 

afterwards. Starting with just 2 lights in a sequence, each time the participant remembers the 

sequence correctly, an additional light is added until the participant makes a mistake. When a 

mistake is made, the current length is repeated, and if a second mistake is made, this triggers 
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the end of the task. The person’s working memory span is defined as the maximum length 

correctly recalled. 

D. Self Efficacy Measurement 

The following Generalized Self-Efficacy scale comes from Schwarzer & Jerusalem (1995), as 

adapted by Romppel et al. (2013): 

Indicate for each statement below how true it is for you. 

1. If someone opposes me, I can find the means and ways to get what I want. 

2. I am certain that I can accomplish my goals. 

3. I am confident that I could deal efficiently with unexpected events. 

4. Thanks to my resourcefulness, I can handle unforeseen situations. 

5. I can remain calm when facing difficulties because I can rely on my coping abilities. 

6. I can handle whatever comes my way. 

Responses to all prompts are made using the following scale: 

not at all true 

hardly true 

moderately true 

exactly true 

E. Achievement Mindset Preferences 

The following scale of the Growth Mindset was adapted and validated by Midkiff et al. (2018), 

based on the work of Dweck & Leggett (1988). 

How much do you personally agree or disagree with the following statements? 

1. You have a certain amount of intelligence, and you can’t really do much to change it. 

2. Your intelligence is something about you that you can’t change very much. 

3. No matter who you are, you can significantly change your intelligence level. 

4. To be honest, you can’t really change how intelligent you are. 

5. You can always substantially change how intelligent you are. 

6. You can learn new things, but you can’t really change your basic intelligence. 

7. No matter how much intelligence you have, you can always change it quite a bit. 

8. You can change even your basic intelligence level considerably. 

Responses to all prompts are made using the following scale: 
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strongly disagree 

somewhat disagree 

neither agree or disagree 

somewhat agree 

strongly agree 

 

 


