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Abstract 

This thesis explores the correlation between mechanical impact and neurological damage 

in spinal cord injury (SCI) through computational modeling and machine learning (ML). It 

emphasizes on the role of the cerebrospinal fluid (CSF) boundary conditions and 

morphology in SCI models and the classification of injured elements using ML algorithms. 

Findings reveal the major influence of CSF boundary conditions and morphology on the 

predicted mechanical outcomes, highlighting the importance of proper modelling choices 

for enhancing the models’ biofidelity. Furthermore, the integration of supervised ML 

techniques facilitates the classification of injured elements based on FE model results, 

providing valuable insights into specific damage mechanisms. Additionally, the feature 

importance analysis and injury threshold estimation reveal distinct susceptibility patterns 

in gray and white matter tissues. This work contributes to the development of more reliable 

computational models and innovative approaches for SCI prevention and treatment, 

addressing a critical need in the field of SCI research. 

Keywords:  Spinal cord injury; Finite element analysis; CSF representation; 

Supervised machine learning; Injury identification 
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Chapter 1.   
 
Introduction 

1.1. Motivation 

Spinal cord injury (SCI) is a global health concern, affecting between 250,000 and 

500,000 individuals worldwide every year [1]. According to the Rick Hansen Spinal Cord 

Injury Registry: A look at traumatic SCI in Canada in 2019 [2], SCI affects over 86,000 

individuals in Canada, from which more than half of the cases are the result of a traumatic 

event, such as transportation accidents or falls. There is currently no cure for SCI, although 

promising treatments have emerged, demonstrating potential for enhancing the quality of 

life in affected patients [1]. 

Given the traumatic nature of most cases of SCI [3], one of the keys to preventing 

SCI or effectively diagnosing injury lies in understanding the correlation between the 

mechanics of the impact on spinal cord and the resulting injury [4], [5]. Animal models 

have proven to be invaluable tools for advancing our knowledge of SCI [3], [6], [7] and 

unraveling the underlying correlation between injury biomechanics and neurological 

damage [4], [5]. Nonetheless, employing animal models presents challenges and ethical 

concerns, which can be partially mitigated by using computational or finite element (FE) 

models of SCI [5]. 

Computational models offer a complementary and non-invasive approach for 

investigating SCI phenomenon [5]. They can provide a detailed approximation of the 

distribution of loads resulting from the mechanical impact on the spinal cord [5]. In 

combination with experimental tissue damage data, FE outcomes have been used to  

study the impact-to-injury link [8], [9], [10]. However, the correlation between these two 

variables has not been conclusively defined. Properly defining the impact-to-injury link 

could help quantify the tolerance of the spinal cord tissues to mechanical loading using 

computational and experimental data [8], [9], [10]. These findings would be a relevant 

contribution to the field that could allow for the development of better prevention strategies 

or technologies, improvements of animal injury protocols, and even the creation of new 

methods for injury prevention. 
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The correlation between mechanics and tissue damage has been difficult to define. 

One of the reasons for this are the computational challenges involved in characterizing 

and modelling the related tissues and structures during a SCI [4], [5]. The effectiveness of 

FE models of SCI lies in their ability to accurately recreate the experimental behavior and 

interactions of the spinal cord and surrounding tissues during an injury [4], [5]. 

Computational models need to recreate these behaviors and interactions, because 

experimental studies have shown how these interactions influence SCI distribution or 

severity [4], [5], [11]. If the computational models cannot capture those mechanisms or 

interactions, it is not possible to rely on the obtained mechanical results. Consequently, it 

would be difficult to use them in combination with experimental tissue damage data to 

study the tolerance of the spinal cord tissue to forces and deformations.  

One of the interactions that has shown high importance during the SCI process is 

the protective role of the cerebrospinal fluid (CSF) [12]. Experimental findings on animal 

models highlighted the contribution of this fluid mitigating spinal cord’s compression and 

damping the impact forces during injury [11], [13], [14]. These findings motivated the study 

of the importance of including the CSF in computational models of SCI [15], and the 

biofidelity of different methods to represent it [16]. As a result, more recent FE studies of 

SCI have included the CSF in their models [9], [17], and implemented new techniques to 

better capture the biomechanics and fluid behavior of the CSF during SCI, such as 

smoothed particle hydrodynamics (SPH) [8], [18], [19]. 

SPH is a method useful for representing solids under large deformations and 

interactions between solids and fluids [20], [21]. It showed promising results representing 

the CSF in computational models of brain traumatic injury [22], and it has also been used 

in FE models of rat [8], non-human primate [18], [19], and human SCI [23]. However, its 

effectiveness capturing all the reported experimental behaviors of the CSF that contribute 

to injury has not been explored. For instance, it is known from experimental work that the 

pressure distribution in the CSF during SCI can influence the severity and distribution of 

the damage in the spinal cord [13], however it has not been validated if the SPH technique 

can replicate this behavior. Moreover, the different strategies and boundary conditions 

used by different researchers to contain the CSF represented with SPH inside their SCI 

models can also influence the calculated pressure distribution, yet their effect has not been 

evaluated. 
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These validations are important since most computational studies of SCI that use 

the SPH method for modelling the CSF have not reported the pressure in the fluid. 

Although those FE models successfully predict other mechanical parameters within the 

experimental observations [8], [18], [19], these models need to be revisited since CSF 

pressure distribution might affect the predicted tissue-level distribution of loads in the 

spinal cord [13], [15]. It is important to validate that the SPH implementation and the 

strategies to contain the CSF in FE models of SCI are not increasing the variability of the 

mechanical predictions. That could further complicate the validity of the use of FE models 

to understand the relationship between mechanics and tissue damage. 

Motivated by the need to contribute to this growing body of knowledge, this work 

aims to enhance FE models of SCI by examining the SPH implementation to represent 

the CSF. The present work will evaluate the biomechanical effect of different CSF 

containment strategies in FE models of cervical contusion SCI with a preload phase in 

non-human primates (NHP). Large animal models of SCI, such as NHPs, are more 

representative of human injuries. As such, achieving a more accurate representation of 

the complex CSF dynamics within the spinal cord can lead to more accurate predictions 

of injury patterns and severity. Furthermore, the use of supervised machine learning (ML) 

techniques will enable the classification of injured elements based on the results obtained 

from FE models of SCI, providing valuable insights into the identification and 

characterization of specific damage mechanisms.  

1.2. Anatomy of the spinal cord 

The spinal cord is a vital structure that runs through the center of the spine, 

connecting the brain to the rest of the body, and serves as a communication pathway for 

the transmission of motor and sensory messages [24], [25], [26]. Together, the brain and 

spinal cord make up the central nervous system (CNS) [27]. The CNS works together with 

the nerves of the peripheral nervous system to receive, process, and respond to sensory 

information acquired from the body [26], [28]. The spinal cord is about 43 to 45 cm long 

[30], and it has a diameter of 1.27 – 1.33 cm in the cervical and lumbar sections [30], and 

0.64 – 0.83 cm in the thoracic regions [30] (Figure 1-1). It is encased within approximately 

two-thirds of the spinal column [31], which provides structure and protection against 

trauma [25], [26]. The spinal cord extends down the spinal column through the vertebral 

foramen or spinal canal [25], [28], (Figure 1-1). 
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Figure 1-1. Location and organization of the spinal column regions (left), and top 
view of a vertebrae with its corresponding parts (right). A spinal cord 
cross section is included to visualize its location with respect to the 
spinal column vertebras.   

The boney spinal column has 33 vertebrae that are divided into five regions (Figure 

1-1) cervical (7), thoracic (12), lumbar (5), sacral (5), and coccyx (4) [28]. Each one of the 

vertebrae are labeled with an initial letter or letters of the spinal region they belong and a 

number (e.g., C1-C7 for the cervical vertebrae, T1-T12 for the thoracic ones, etc.) [27], 

[29].  The spinal cord is also divided into levels that are named after the corresponding 

spinal column sections that house them [31]: cervical, thoracic, lumbar, and sacral. Along 

the sides of the spinal cord originate 31 consecutive pairs of spinal nerves, that exit the 

spinal canal in between the vertebrae (Figure 1-2) [27], [28], [31]. These nerves carry 

motor and sensory information back and forth between the spinal cord and the body [24], 

[26], [27]. Like the vertebrae, the spinal nerves are also labeled with the initial letter of the 

spinal cord region they belong to and a number (Figure 1-2) [31]. 

Each spinal cord level and the corresponding set of nerves control the functions of 

specific parts of the body [31]. The cervical region controls the upper limbs, head, and 

neck [32]. The thoracic region governs the chest, abdomen, and back [32]. The lumbar 

region manages the lower limbs, while the sacral region handles bladder, bowel, and 
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sexual functions [32]. This division of roles ensures the precise coordination of bodily 

processes. 

 

Figure 1-2. Representation of the spinal cord levels and their corresponding 
pairs of nerves (adapted from [7] - Fig. 3). The spinal cord is located 
inside the spinal column, and extends along the vertebral foramen or 
spinal canal. 

The spinal cord by itself can be divided into two fundamental tissue types [26], [27], 

[31]: the inner gray matter (GM), which exhibits a distinctive butterfly or 'H' shape, and the 

outer white matter (WM) (Figure 1-3). The GM houses neuronal cell bodies responsible 

for generating motor and sensory signals [27], [33]; additionally, depending on the spinal 

cord level they are located (i.e., cervical, thoracic, lumbar, or sacral), they also control 

specific functions for the corresponding parts of the body [31]. Meanwhile, the WM is a 

tissue that includes ascending and descending axons that run longitudinally along the 

spinal cord [27], [31], [33]. Depending on the WM area, these can have different densities 

of axonal fibers, and the axons can also exhibit different diameters that vary between 0.3-

20 𝜇𝑚 [34]. In combination with the alignment of the axons, the location and different 

diameters of these fibers provide the WM with a mechanically anisotropic structure [10]. 

The axonal fibres also facilitate the transmission of signals between neurons located in 
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the brain or brainstem and those residing within the GM, or between different spinal levels 

[33]. 

 

Figure 1-3. Constituent tissues of the spinal cord (left) and individual 
organization of the gray and white matters at the cervical level (right 
- adapted from [33] – Fig. 1.11). 

Specific functions are carried in different locations of the spinal cord, which can 

affect the nature of injury. In the case of the GM, the dorsal horns house neurons in charge 

of receiving and processing sensory information transmitted from the spinal nerves [31], 

[33], while the ventral horns include motor neurons that connect through the spinal nerves 

to different muscles [33]. The lateral horns or intermediate column are mostly present in 

the thoracic region of the spinal cord, and regulate neurons connected to visceral and 

pelvic organs [31].  

The WM is also organized into three columns [33]: dorsal, lateral, and ventral 

(Figure 1-3). The dorsal column carries sensory information directed to the brain, while 

the lateral columns may carry both sensory and motor information [33]. Meanwhile, the 

ventral columns transmit descending motor signals from the brain to the spinal cord [33]. 

The columns are further subdivided into sets or bundles of axons called tracts (Figure 1-4) 

[33]. The nerve fibers associated with a tract will usually share characteristics, such as 

function, origin, and destination in the spinal cord [31]. Tracts are subdivided into two 

categories: ascending and descending [26], [33]. Ascending tracts are associated with 

sensory information collected about the external environment through sensory receptors 

[26], [31], [33], such as temperature, pain, and touch. Descending tracts involve motor 

neurons that enable voluntary and involuntary movements in muscles, as well as some 

other autonomic functions [26], [31], [33]. 
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Figure 1-4. Location of the ascending and descending tracts of the WM at the 
cervical level (figure adapted from [34] – Fig. 1). 

Even though each set of tracts covers specific functions, only the functions of the 

more relevant tracts for this work will be described. The ascending nerve fibers located in 

the dorsal spinocerebellar fasciculus send signals related to unconscious proprioception; 

proprioception refers to the perception of joint position, movement, and carried load [35]. 

Meanwhile, the ventral spinocerebellar fasciculus sends signals on fine and gross 

movements [36]. The spinoreticular fasciculus controls some motor responses to pain [37]. 

Finally, the axonal fibers in the spino-olivary fasciculus carry proprioceptive information 

from tendons and muscles [38], contributing to the control of the body and movement of 

limbs [37]. For the descending tracts, the lateral corticospinal tracts control voluntary 

movement of skeletal muscles [36]. Reticulospinal tracts, such as the lateral, ventrolateral, 

and ventral fasciculus play an important role in posture, balance, and starting limb 

movements [37]. In the case of the rubrospinal fasciculus, it controls flexor and extensor 

muscles [36]. Lastly, the lateral vestibulospinal fasciculus conducts signals for controlling 

movement in the libs and trunk related to posture and balance [37]. As a result of the 

organization of both ascending and descending tracts in the spinal cord, any medical 

condition that affects or damages the spinal cord tissue will represent a threat to the body’s 

functions. Depending on the location of the sustained damage, it could interfere with one 

or more of the sensory and motor functions of a patient. 

The spinal cord is surrounded by different layers of tissues called the spinal 

meninges (Figure 1-5) [28], [31], [39], [40]. The spinal meninges are the pia mater (inner 

most layer), arachnoid matter (middle layer), and dura mater (outer most layer). The pia 

mater is a resilient, thin, transparent, and impermeable layer of fibrous tissue that 
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intimately envelops the spinal cord [40]. The arachnoid mater is a thin intermediary layer, 

devoid of blood vessels and nerves [41], that lies directly below the dura mater. The outer 

most meninge, the dura mater, is a robust and thick membrane comprised of a dense 

matrix of collagen fibres [40]. The dura mater possesses significant strength that helps 

protect the underlying spinal cord [26], [40], [41]. It also consists of two layers of connective 

tissue [40], [41]: one of them is attached to the spinal column, while the other adheres to 

the arachnoid mater. Since both the dura and arachnoid maters are closely attached to 

each other, the two membranes are often referred to simply as dura [12]. 

 

Figure 1-5. Cross-section view of a vetebrae, the spinal cord, and the 
surrounding meninges. The three spaces (i.e., epidural, subdural, and 
subarachnoid) are also included, with the epidural space 
representing the fat deposits that separate the dura mater from the 
vertebrae bone, and the subarachnoid space containing the CSF.  

In between the layers of spinal meninges three potential spaces or cavities can 

also be found [40], [41]. These spaces, from inner to outer most, are the subarachnoid, 

subdural, and epidural space [40], [41]. The subarachnoid space, located between the pia 

and the arachnoid mater, is a continuous cavity that extends along both the brain and the 

spinal cord [40], [41], and it contains the CSF [39], [40], [41]. The CSF is a clear and 

colorless fluid that surrounds the brain and spinal cord within the subarachnoid space [42]. 

It plays an essential role in different physiological functions, such as waste clearance and 

homeostasis of the CNS environment [43], [44], while also providing buoyancy and 
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protection [43]. The potential gap or separation between the arachnoid and dura maters 

is known as the subdural space [40], [41]. Lastly, the space in between the dura mater 

and the boney surface of the spinal canal is the epidural space [40], [41] . The epidural 

space contains deposits of fat, blood vessels, and nerve roots [40]. The fat deposits in the 

epidural space also contribute to protect the spinal cord by acting as a shock absorber 

[23]. It is important to mention that the subdural space is reported to exist only due to 

pathological conditions, since otherwise the arachnoid and dura maters are closely 

attached to each other [40], and it is why this is denominated as a potential space. 

1.3. Spinal cord injury 

Given the vital and numerous motor and sensory functions carried out by the spinal 

cord, a SCI represents a complex and often life-altering condition with profound 

implications for the affected individuals [3]. SCI is defined as a damage to the spinal cord 

tissue that causes impairment to spinal cord function [6]. Depending on the severity and 

location of the lesion, SCI may cause partial or complete loss of motor and sensory 

function below the injury level [3]. This type of injury can be caused by traumatic or non-

traumatic incidents [6]. Traumatic SCI arises from external physical impact [3], [6], such 

as the one caused by a vehicle crash, sport, or a fall. Non-traumatic SCI results from acute 

or chronic pathological processes [6], such as tumors pressing against the spinal cord, or 

degenerative diseases such as multiple sclerosis. 

SCI encompasses primary injury resulting from mechanical trauma to the spinal 

cord, followed by secondary injury, which involves a cascade of biological events, such as 

cellular death and structural alterations within the spinal cord, evolving over minutes to 

weeks after the injury [3], [6], [7]. Primary injury mechanisms include impact plus persistent 

compression, impact alone with transient compression, distraction, and 

laceration/transection, all culminating in neurological damage [3]. The secondary injury 

exacerbates the initial damage, leading to the chronic phase characterized by persistent 

neurological impairments [3], [6], [7]. 

In North America, traffic accidents represent the primary cause of traumatic SCI, 

followed by falls, and sports-related injuries [6]. SCI resulting from high-energy impacts 

predominate in younger individuals, while low-energy impacts disproportionately affect 

those over 60 years of age [6]. Injuries at the cervical spine level constitute the majority 
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(~60%) of traumatic SCIs, followed by thoracic (32%) and lumbo-sacral (9%) injuries [3], 

[6]. Cervical injuries are also considered the most disruptive type of injury since lesions at 

this level are often associated with higher mortality rates than thoracic or lumbar injuries 

[6] and can cause quadriplegia [3]. 

Despite advances in medical care, individuals with SCI continue to experience 

neurological deficits and high mortality rates [6]. As a result, SCI inflicts profound physical, 

social, and professional repercussions on patients and their families [6]. Independence 

loss and elevated lifelong mortality rates are key consequences of SCI [3], [6]. Additionally, 

the direct costs associated with SCI care are staggering, reaching up to several million 

dollars per patient [3], [6], underscoring the urgent need for preventive measures and 

effective therapeutic interventions [3], [6], [7]. 

Currently, there are no effective clinical treatments for SCI [7]. This is primarily due 

to the lack of comprehensive understanding of both the cellular and molecular 

mechanisms underlying SCI, as well as the biomechanical aspects of the primary injury 

[4]. Since more than 90% of SCI cases are of traumatic origin [3], unraveling the impact-

to-injury link could be paramount for designing prevention strategies that can reduce the 

impact of SCI on patients and the significant healthcare costs involved [4], [5]. 

1.3.1. Spinal injury patterns and mechanisms of SCI  

 Traumatic SCI predominantly arises from interactions between the spinal cord and 

the vertebral column [4]. When the forces generated by the initial trauma exceed the 

structural integrity of the hard and soft tissues, their protective capacity for the spinal cord 

is compromised and can lead to injury [4]. The spine can play a significant role in this 

process, since structural damage to the vertebrae or to the intervertebral discs can result 

in different SCI patterns [4]. Experimental and computational injury models to study SCI 

are often designed to recreate the mechanical conditions of these patterns.  

Spinal injury patterns are influenced by several factors. Depending on the impact 

conditions and the patient’s body position before impact, the loading exerted by the 

traumatic event will transfer specific forces to the vertebrae [4]. These conditions can 

result in distinct spine/vertebrae damage patterns, which are generally classified as: 

compression fracture, dislocation (with or without associated fractures), burst fracture, or 
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distraction [4]. Among these, dislocations and burst fractures are the most common 

injuries, occurring in 45–58% and 9–35% of cases, respectively [3], [4]. Dislocations 

typically result from a force inflicted on the spine that generates a transverse displacement 

of a vertebrae, and results in multiaxial loading on the spinal cord [4] (Figure 1-6 B). Most 

dislocation cases can be related to a fracture in the vertebrae, which often result in the 

most severe neurological impairments [4]. Meanwhile, burst fractures are caused by axial 

loading of a vertebral segment that results in bone fragments being propelled into the 

spinal canal after an impact (Figure 1-6 C).  

 

Figure 1-6. Transver plane figure of a section of the cervical spine and spinal 
cord (A).  Representation of the two most common types of spinal 
injury patterns: dislocation (B) and burst fracture (C). 

From these spinal injury patterns, it is possible to define three main mechanisms 

responsible for SCI [4], [12]: blunt or contusive, stretch or distractive, and laceration-type 

injuries. Contusion injuries often stemmed from burst fractures and fracture dislocations 

[12]. On the other hand, distractive injuries are related to less common injury patterns [12], 

such as axial distraction, or SCIs without apparent radiographic abnormalities or trauma 

evidence, also known as SCIWORA-ET. Lastly, laceration-type injuries are related to 

penetrating SCI caused by foreign objects or projectiles [4], [12]. 
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1.4. Models of SCI 

There are two main approaches for modeling SCI: 1) animal models of SCI, that 

offer insights into the physiological and biomechanical responses to injury within living 

systems, as well as a platform for testing potential treatments, and 2) computational 

models, which serve as non-invasive tools for simulating and analyzing the complex 

mechanics of SCI. These models have contributed to the foundation of the current 

knowledge of SCI and have propelled the development of potential therapeutic strategies 

[4], [5]. 

1.4.1. Animal models of SCI 

SCI research heavily relies on animal models. These models have significantly 

contributed to our understanding of physiological and biological responses to SCI and 

have facilitated preclinical testing of potential therapies [3], [6], [7]. Animal models have 

also greatly contributed to the study of SCI biomechanics, since they provide an 

experimental platform where it is possible to control the input parameters leading to injury 

[4]. In such models, characteristics of a SCI and the potential treatment strategies are 

examined by generating a controlled injury in the animals. Generating repeatable and 

consistent injury that results in consistent neurological and functional deficits in the spinal 

cord is vital to further study SCI pathophysiology [4] or the effectiveness of potential 

treatments [6]. 

Currently, there are many different animal models available. However, given the 

reported heterogeneity of SCI in the human population [3], there is no single animal model 

that can address all the specific questions in SCI research [4]. Therefore, there are 

different considerations that need to be included when selecting an animal model. These 

considerations include the type and location of the SCI, anatomical and pathophysiological 

differences in comparison with humans, possible outcome measurements, and the animal 

species [3]. In addition, researchers suggest that the animal model should require minimal 

animal training, be cost-effective, and provide consistent results [6]. Among animal 

models, rats are the most widely used for SCI research, since they provide important 

advantages, such as cost-effectiveness, reduced ethical implications, accessibility, ease 

of care, and the availability of well-established functional analysis techniques [3], [6], [7]. 

Studies on rats have shown they closely mimic several pathophysiological, 



13 

electrophysiological, and functional features of human SCI [3], [6]. Moreover, histological 

assessments in rats have shown a strong correlation between spared WM and functional 

preservation following injury, indicating their suitability for evaluating the benefits of 

therapeutic strategies for SCI [3].  

While all these characteristics have made rat models widely used in SCI research, 

direct translation of their findings to human SCI has been challenging due to the inherent 

anatomical and morphological differences [3], [6]. As a result, there has been an increase 

in the use of large animal models, such as pigs and NHPs, that offer a closer resemblance 

in terms of size, neuroanatomy, and physiology to humans [3], [7]. These models are 

particularly important for intermediate-stage research, where it is possible to confirm 

results obtained from rodents and provide relevant safety, biodistribution, and technical 

feasibility data before transitioning to human trials [3], [6], [7]. Despite their advantages, 

limitations such as higher costs, ethical concerns, smaller sample sizes, and the need for 

specialized facilities limits the use of large animal models in SCI research [3], [6], [7]. 

Some of the most common large animal models use a controlled impact to the 

dorsal surface of the spinal cord, after the vertebral lamina is removed, to generate an 

injury [45], [46], [47]. There are two different approaches for controlling the impact 1) a 

“weight-drop” device, that generates an injury by dropping a weight from a specific height 

on the spinal cord [4], and, 2) a contusion model that uses a displacement controlled linear 

actuator to prescribe the impact. Two examples of large animal models with these 

approaches are particularly important for the work presented in this document. The first 

one is a porcine model of thoracic SCI, developed by Lee and colleagues [45], and the 

second one is a model of unilateral cervical spinal cord contusion injury in NHP developed 

by Salegio and coworkers [47]. The porcine model by Lee et al. was proposed as an 

alternative to small animal models, such as rodent, where the considerable difference in 

spinal cord size with respect to humans could affect the outcomes after the distribution of 

pharmacological, structural, or cellular-based treatments. At the same time, this model 

was also presented as a suitable alternative for other large animal models, such as primate 

models, that are closer anatomically to humans, but involve greater costs, and ethical, and 

logistical complications [45]. This weight-drop model was fundamental for the work of 

Jones et al. [12] assessing CSF mechanics during SCI. On the other hand, the contusion 

model described in [47] by Salegio et al. was proposed for the study of the impact-to-injury 

link, and behavioral outcomes on NHPs. NHPs are one of the closest representations to 
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humans available in SCI research [47], [48], so it was expected to use this model as a 

platform to test the efficacy and safety of potential treatments before moving into human 

trials. 

1.4.2. Computational models of SCI 

Quantifying the internal distribution of forces and deformations could be key for 

understanding the mechanisms that lead to SCIs and developing effective diagnosis and 

treatment [4], [8], [18]. As a result, computational models, specifically FE models, have 

emerged as powerful tools for understanding the mechanics of injury in SCI research. FE 

models offer a novel approach to investigating the mechanical intricacies of spinal injuries 

and their consequences [4], [5]. Validated computational models grant researchers the 

ability to manipulate critical variables such as impact conditions, geometry, and tissue 

properties, allowing for a detailed examination of their impact-to-injury link [4], [5], [18]. 

This versatility is particularly advantageous, as it circumvents the ethical and logistical 

challenges associated with animal studies while saving time and resources [4], [5]. 

Computational models need to be properly validated against experimental data to 

ensure they provide accurate information regarding the SCI process [4], [5], [49]. The 

validation, however, rely heavily on experimental data to define the mechanical properties 

of each tissue in the structure involved [4], [5]. This validation has been particularly 

challenging when building human FE models of SCI, where the lack of in vivo data 

prevents researchers from defining biofidelic material properties [5]. As a result, 

experimental data from animal models is often used to develop the material models that 

are included in FE models of SCI [5], [49]. 

There are different types of FE models of SCI. Some models are based on humans  

and try to recreate clinical injury scenarios [50], [51], [52], [53], while others are based on 

animal models and try to recreate controlled injury experiments [8], [9], [17], [18], [54], 

[55]. For the scope of this thesis, we will focus on FE models of SCI that recreate controlled 

experiments on animals, since these experimental results make it possible to validate the 

accuracy of the FE model. In exchange, FE models provide a non-invasive platform to test 

potential changes to the injury protocol executed in animal subjects, or the opportunity for 

additional analysis of the experiments without the need for additional animals. 
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FE models have captured in vivo animal experiments and in vitro benchtop studies. 

For example, Maikos and colleagues [9] built an FE model to simulate a weight-drop 

experiment in rat spinal cord and found that changes in the defined instantaneous shear 

modulus for the spinal cord had affected the impactor’s predicted displacement. 

Additionally, they found that using different mechanical properties for the gray and white 

matter significantly changed the stress and strain patters in their model, while predicting 

similar weight-drop displacements. Persson et al. [15], [56] also created a computational 

model of SCI based on in vitro transverse impacts on bovine spinal cords to first 

investigate the importance of including the CSF in computational models of SCI [15], and 

then to study the effect of CSF thickness on the spinal cord’s deformation during in ury 

[56]. Their findings pointed out that it was important to include both the CSF and dura 

mater in FE models of SCI, since both structures play an important role in reducing strains 

in the cord [15]. In addition, they reported that thicker layers of CSF resulted in lower levels 

of spinal cord compression, and reduced levels of stresses and strains in the tissue [56]. 

Russel et al. [8] also presented the results from a contusion and dislocation FE model of 

rat cervical SCI, where they looked at the impact-to-injuy link in the spinal cord. Based on 

the maximum principal strain values of the FE model, their analysis suggested a lower 

tolerance in the GM to strain than in the WM.  

Using experimental data from in vivo cervical contusion experiments in non-human 

primates, Sparrey et al. [17] built an FE model to investigate and refine the impact 

parameters of the contusion experiments. The data presented in their paper indicated the 

importance of defining the impactor’s alignment with respect to the midline of the spinal 

cord, as well as the pre-load exerted to the it before impact, so it is possible to generate 

mild injuries in the subjects. Fournely and colleagues [55] developed an FE model to 

investigate the effect of morphological and mechanical factors in a mouse contusion 

model, where they concluded that the assigned material properties to the spinal cord and 

the impactor’s alignment were the most influential variables in the predicted strain 

outcomes. Later, Jannesar and co-workers [18] created both simplified and subject-

specific FE models of cervical contusion in NHPs and used the results to assess the 

impact-to-injury link in NHP spinal cord. They concluded that certain mechanical measures 

including, maximum and minimum principal strains, Von Mises stress and Tresca stress, 

strongly correlate with tissue damage in the gray and white matters. Their data also 

showed the subject-specificity of the predicted damage thresholds. More recently, Obaid 
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et al. [19] presented a study where simplified FE models of cervical contusion in NHPs 

were used to explore the effect of intersubject variability in the mechanical outcomes of 

the experiments. The findings reported in their paper showed that variability in the reaction 

force outcomes of the simulations and the spinal cord slippage during the impact were 

reduced by tuning the impactor diameter and mediolateral alignment of the impactor.  

Despite the described progress, there are several different challenges that persist 

in the development of more reliable FE models of SCI. For example, the level of detail in 

the geometries and structures included in computational models of SCI ranges greatly 

between studies. Some studies have used a combination of imaging technologies, such 

as magnetic resonance imaging (MRI) or CT scans, and software packages to generate 

specific geometries [8], [9], [18], [55], while other studies have approximated their models 

using experimental measurements [15], [17], [19], [57]. Moreover, depending on the 

computational resources available, it has not always been possible for researchers to 

include all the relevant tissues, nor to use the best methods to represent some of these 

anatomical structures, such as the CSF that was often omitted or simplified [9], [17], [55]. 

Additionally, for some of the spinal tissues there is a wide range of material properties 

available, and there has not been a consensus on which ones are more suitable for 

recreating certain experiments [5]. At the same time, there are other tissues that have 

been difficult to characterize, so there is limited information regarding their mechanical 

properties [5], [49]. These challenges complicate the interpretation and comparison of 

results in this emerging field of research; however, they also open the door for new 

research avenues to address these challenges. 

1.5.                    ’            I 

1.5.1. Characteristics and functions of the CSF 

The CSF is composed of 99% water, and 1% of proteins, ions, and 

neurotransmitters [58]. Being a water-based fluid, the CSF is a Newtonian fluid [59], [60], 

[61], meaning that its viscosity will remain constant regardless of the shear forces acting 

upon it. It has a similar density to water (~1000  𝑘𝑔 𝑚3⁄ ) and a viscosity of approximately 

0.7 to 1 𝑚𝑃𝑎 × 𝑠 [61], [62]. The CSF circulates through the subarachnoid space, providing 

essential nutrients and removing waste from the CNS [43]. CSF circulation is facilitated by 

the constant production and absorption of this fluid [43], which helps maintaining 
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homeostasis for the CNS environment. On average, an adult man will have a CSF 

circulating volume of approximately 150 mL [43], [44], [63]. 

Normal values of CSF pressure range between 1 - 2 kPa (10-15 mmHg) for human 

adults, with lower values for children and infants [44], [63]. The CSF pressure is in constant 

fluctuation, meaning that the usual reported CSF pressure is the mean value of those 

fluctuations [12]. The fluctuations are derived from a constantly shifting balance between 

the production, absorption, and flow resistance of CSF in the body. The fluctuations are 

also related to factors such as vascular pressures, activity of the sympathetic nervous 

system, elasticity of the dura-arachnoid complex, etc. [12], [44], [64]. These factors make 

the CSF pressure susceptible to changes related to everyday activities, such as breath 

holding or coughing, or clinical procedures that change intra-abdominal pressure [12]. 

Among its functions, the CSF offers mechanical protection, nourishment, and 

waste elimination to the spinal cord and the rest of the CNS [43], [44], [63]. The CSF 

manages to protect the brain and spinal cord through two mechanisms: firstly, it acts as a 

shock absorber, preventing direct contact between these structures and the skull or the 

spinal column [43], [63]; and secondly, the CSF provides buoyancy for the brain and spinal 

cord, helping reduce the forces exerted on them during mechanical impacts [43], [63]. 

1.5.2. Biomechanical effect of the CSF during SCI 

The biomechanical effects of the CSF during SCI are a subject of increasing 

interest in the SCI scientific community. One of the principal functions of the CSF is to act 

as a shock absorber for mechanical forces directed to the spinal cord [43], [63], and 

studies such as those conducted by Jones et al. [11], [13] and Persson et al. [15], [56], 

have delved into the effect of this CSF function during SCI. Their findings suggested that 

the CSF, along with other surrounding tissues that envelop the spinal cord, plays a pivotal 

role in mitigating the impact forces associated with SCI. Altogether, they reduce the 

compression exerted on the cord’s tissue.  hese findings indicate that the CSF influences 

the severity and extent of SCI. 

The CSF, and the neighboring tissues, provide a damping effect for the spinal cord 

[26], [40], [43]. The CSF is capable of dissipating or attenuating the forces and the 

pressure wave generated by the mechanical impact experienced during an injury [12], 
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[13], [65] by absorbing some of the impact’s energy and spreading it out over a larger 

area. With this attenuation of the impact forces, the CSF also contributes to reducing the 

spinal cord’s compression during in ury, which can result in lesser damage to the 

neurological tissue [11], [14], [56]. 

At the same time, studies have found that the biomechanical effects of the CSF 

are closely related to the thickness of the CSF layer around the spinal cord [56]. Increasing 

dimensions of the CSF layer tend to decrease the peak impact load and the cord’s 

compression during injury [56]. These findings highlight the importance of incorporating 

the CSF into both computational and experimental models used for studying SCI 

biomechanics and validating the size of the included CSF layer. Moreover, these 

observations provide a plausible explanation for the variability found in the biomechanical 

results of different animal models. Significant interspecies variability of the morphology 

and dimensions of the spinal cord and CSF layer thickness has been reported in large 

animal models [57], [66], [67], and these variations can significantly affect their 

biomechanical response to a similar impact [9], [12], [56], [65]. 

Alternatively, researchers also have discovered that the CSF may play a negative 

role in extending the damage near the injury site [13]. There is a possibility that the 

resulting pressure transient in the CSF contributes to further damage in the cord’s tissue, 

primarily due to an increase in CSF pressure in the vicinity of the impact location [13]. This 

effect appears to diminish in spinal cord sections further away from the injury epicenter 

[13]; still, it should be taken into consideration for the development of more biofidelic 

computational and experimental models of SCI [12]. 

1.5.3. Representations of CSF in computational models 

One of the principal challenges in the development of accurate FE models of SCI 

has been the inclusion of the CSF. Different experimental models have shown the effect 

of CSF in the severity and distribution of SCI [11], [65]. They have also highlighted the 

importance of including it in FE models to improve the biofidelity of their results [15], [56]. 

Still, due to limitations in computational resources, previous FE studies of SCI have not 

included the CSF [52], [55], [68] or have used solid elements with elastic or hyperelastic 

material properties to represent the CSF [9], [17]. While these are valid approaches, 

studies on head impact FE models, such as Duckworth et al. [22] and Chafi et al. [69] 
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found that elastic or hyperelastic solid representations of the CSF were not able to properly 

capture the strain distribution and relative displacement of the brain observed during 

experiments. The limitations of the solid CSF representations found by Duckworth et al. 

and Chafi et al. could have similar effects in computational models of SCI. Motivated by 

these observations, more detailed FE models of SCI have been developed using fluid-

structure interactions (FSI) to model the CSF [8], [15], [16], [18], [23]. 

FSI are computational methods used to simulate scenarios where there is an 

interaction between different structures and a fluid [70], [71]. FSI help to couple both the 

solid mechanics and fluid dynamics in the analysis [70], [71], which makes them a suitable 

tool for SCI models involving CSF. Persson and colleagues [15] were one of the first 

groups to highlight the importance of implementing an FSI method for representing the 

CSF in FE simulations of SCI. In Persson’s work [15], they followed a FSI approach by 

Zhang et al. [72] where the fluid was modelled using an arbitrary Lagrangian-Eulerian 

(ALE) mesh. An ALE mesh combines aspects of two common types of meshes used in 

FE models [73], [74]: Lagrangian and Eulerian. In general terms, a Lagrangian mesh is 

attached to a body or geometry and will move or deform with the body [73], [74]. The 

previously mentioned elastic and hyperelastic solid representations of the CSF [9], [17] 

would be implementation examples of a Lagrangian mesh. In contrast, an Eulerian mesh 

is fixed in space, and the body or geometry moves through the mesh as it deforms [73], 

[74]. An ALE mesh integrates aspects of both Lagrangian and Eulerian meshes, which 

allows for the mesh to move and deform with the evaluated body, while also providing a 

fixed reference frame for the analysis [73]. These characteristics of an ALE mesh make it 

a suitable approach for modelling fluids [73], [75], [76], and it helps circumvent some of 

the individual limitations of Lagrangian and Eulerian meshes [73], [74], such as excessive 

mesh distortion, limited accuracy, and computational cost. 

Later FE models of SCI continued to use FSI methods to model the CSF in their 

simulations [8], [18], [19]. For instance, in their model of rat cervical SCI to study the 

correlation between strain and tissue damage, Russell and colleagues [8] proposed the 

use of SPH for representing the CSF. SPH is a Lagrangian method characteristic for 

representing a continuum body as a set of particles [21]. Unlike regular Lagrangian or 

Eulerian approaches, SPH is a mesh-free method, which means that it does not rely on a 

fixed mesh in the evaluated body or in the simulation space to compute the displacement 

or deformations of a body [20], [21]. Instead, SPH calculates the displacement or 
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deformations using the particles’ location, which allows it to efficiently simulate scenarios 

with large deformations and fluid-like behaviors [20], [21]. As a result of the favorable 

outcomes acquired by Russell and coworkers using SPH in their simulations, they 

suggested that this method could be further applied in SCI models of large animals or 

humans, where the CSF represents a larger volume than in rats [8]. Accordingly, Jannesar 

et al. [18] and Obaid et al. [19] would later use SPH for modeling the CSF in their FE 

models of SCI in NHPs, while researchers such as Arhiptsov et al. [23] would include it in 

their models of human SCI. 

More recently, noting the implementation of different FSI in FE models of SCI, 

Rycman and collegues [16] undertook the task of comparing the accuracy and efficiency 

of different representations of the CSF. Rycman et al. [16] compared four FSI methods 

reported in the literature to have been included in FE models of SCI, starting with: 

pressurized volume. This method was reported in an FE model of human cervical spinal 

cord [77], and it works by modelling a fluid’s volume as a pressurized cavity that exerts 

the pressure on the surrounding instances of the model [77]. The other three methods 

were: traditional Lagrangian mesh, ALE mesh, and SPH, that have been previously 

explained in this section. Each FSI technique was tested in an FE model of spinal cord 

transverse impact and compared against ex vivo data from bovine experiments. The 

assessment indicated that, within the four evaluated approaches, SPH was the most 

computationally efficient, and suitable method for capturing CSF behavior in FE models 

of spinal cord transverse impact. The promising results and relative consensus of different 

researchers on the implementation of SPH to represent the CSF in FE models of SCI 

further motivates its exploration in this document.  

Overview of the SPH method  

SPH is a meshless or mesh-free FE implementation method [20], [21]. Contrary to 

traditional FE analysis, where Lagrangian or Eulerian approaches are used to represent 

a continuum body, in SPH modelling, the body is represented by a collection of points or 

particles that are not fixed in space [20], [21] (Figure 1-7). The method has been broadly 

used for different engineering applications, particularly the ones involving extreme 

deformations [78], [79], fractures [80], [81], and fluid motion. This last characteristic makes 

SPH an option for addressing problems involving fluid-structure interactions, which has 

researchers implementing it for the study of human injuries. Particularly in the case of 
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traumatic brain injury or SCI, where the impact-to-injury link involves interactions between 

tissues and CSF [8], [16], [18], [22]. 

              

Figure 1-7. Example of a continuum body and its equivalent representation 
using SPH. 

It is important to understand the underlying mathematical principles behind the 

SPH method to properly implement it in commercial FE software. SPH works by 

approximating the particle’s value of an estimated property (e.g., displacement, velocity, 

etc.) by considering the estimated values of the same property in the surrounding particles 

[20], [21]. The surrounding or neighbor particles to be considered are defined by a kernel 

function, that assigns a contribution weight to each particle, based on distance with 

respect to the particle of interest. Mathematically, this is represented with the following 

equation [20], [21], [82]: 

𝐴(𝑟) = Σ𝑗
𝑚𝑗

𝜌𝑗
𝐴𝑗𝑊(|𝑟 − 𝑟𝑗|, ℎ)  (1)  

Where 𝐴(𝑟) represents the smoothed estimate or the property being estimated, 𝑟 

is the position of the particle of interest, and 𝑗 is the subscript for neighbor particles. 

Meanwhile, 𝑚 and 𝜌 are the mass and density, respectively, 𝐴𝑗 represents the estimate 

function at particle 𝑗, 𝑊 denotes the kernel function that depends on the relative position 

|𝑟 − 𝑟𝑗| and the ℎ parameter, also know as the smoothing length. The smoothing length 

Continuum body SP  representation of 

the body
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defines the radius of the kernel function, helping determine how many particles participate 

in the interpolation [21], [82]. 

In other words, Eq. 1 states that the estimated value of the property 𝐴 at the particle 

𝑟 will be equal to the sum of the contributions from all the nearby particles, indexed by the 

𝑗 subscript, and resulting from the product of their volume, 𝑉𝑗, since we know that 𝑉𝑗 =
𝑚𝑗

𝜌𝑗
, 

the property 𝐴𝑗 of each particle, and a weighting factor. The weighting factor is determined 

by the kernel function 𝑊, that depends on the relative position between the particle of 

interest and the neighbouring ones (|𝑟 − 𝑟𝑗|), and the smoothing length.  

Currently, different FE software packages allow for the implementation of SPH. 

Although they followed similar principles for calculating the particles’ values during a 

mechanical simulation, the requested parameters, and the procedure to implement the 

method might defer between software [20], [21], [86]. In this thesis the relevant aspects of 

the implementation of SPH in ABAQUS will be described. 

SPH implementation in ABAQUS 

ABAQUS, from Dassault Systemés, is one of the commercially available software 

for performing FE analysis. It provides different capabilities [87], such as an extensive 

material’s library, coupled stress analysis, simulation of non-linear responses, and efficient 

use of computational resources. Those capabilities have shown potential to solve 

engineering problems related to mechanics and biomedical problems. Given the non-

linear nature of the tissues and structures involved in SCI and the complex set of 

interactions between them, ABAQUS is a suitable tool for building and simulating models 

of SCI. FE models of SCI inspired in both animals and humans have already been 

developed and studied using this software [8], [9], [17], [18], [19], and their results have 

shown strong capabilities at recreating in vitro and in vivo SCI experiments. 

ABAQUS also allows for the implementation of SPH [21], method that has shown 

promise to represent the CSF in computational models of SCI [8], [16], [18], through two 

different workflows that will be briefly discussed. In previous versions of ABAQUS, SPH 

could only be defined manually through the modification of the input file from the model of 

interest [21]. An input file is a script file generated by FE software to include the commands 

associated with the model and analysis defined in the computer interface. This input file 
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method requires the user to manually define the elements to be converted into particles, 

and the value of some important parameters for calculating the particles’ volume, such as 

the characteristic length [21]. Other SPH settings, such as the artificial viscosity, tensile 

instability control, smoothing length calculation, SPH kernel and formulation, and analyzed 

domains can also be changed through the input file modification. In newer versions of the 

ABAQUS software (2020 and on), the computer-aided environment (CAE) allows for the 

definition of SP  without having to modify the simulations’ input file [21], [88]. In this 

workflow, the user can activate the “particle conversion” option during the meshing of a 

part, which allows the solid mesh to convert into SPH particles during the analysis. 

Contrary to the input file method, this approach does not request for a manual definition 

of parameters, such as the characteristic length or a surface for the particles, since 

ABAQUS will automatically calculate or define them. However, this approach asks for the 

definition of other parameters, such as the interpolation kernel for computing the particles’ 

outcomes, the number of particles per element, and to define a time, stress, or strain 

threshold that will trigger the particle conversion. More explicit details and resources on 

the two SPH implementation methods in FE analysis can be found in the ABAQUS 

documentation manual [21], [88]. 

It is important to consider the differences between the requested parameters in 

these two approaches, particularly when recreating earlier work involving SPH in more 

recent versions of ABAQUS. Properly translating the parameters from the input method to 

the CAE one or the other way around would allow to replicate the results, since regardless 

of the SPH workflow, the calculation of the mechanical values in the particles is the same 

[21]. The CAE method to define SPH in ABAQUS facilitates the calculation of the 

characteristic length of the particles, and the reduced number of steps needed to define it 

minimizes the possible sources of mistakes in comparison with the input file modification. 

Accordingly, SPH was implemented in the FE models of this thesis using the CAE 

approach, and more details of the defined values for the requested parameters are 

included in following sections. 

1.6. Impact-to-injury link in SCI 

It is well-established that the primary injury mechanisms are closely linked to the 

damage inflicted on spinal cord tissue [3], [4], [5]. To explore these mechanisms and the 

impact-to-injury link, animal models have proven invaluable under controlled conditions 
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[3], [4], [5]. However, relying exclusively on animal models poses limitations, since they 

cannot provide insights into the tissue-level distribution of forces and deformations within 

the spinal cord [4], [8], [18]. In addressing this gap, computational models emerge as 

complementary tools that can enhance our understanding of the intricate impact-to-injury 

link [4], [5], [49]. This not only allows for discerning the correlations between variables, it 

also provides some of the means to quantify them and define mechanical failure 

thresholds for spinal cord tissues [8], [9], [18]. Such advancements would represent 

significant progress towards developing more effective injury protocols, designing better 

protective equipment, and using SCI FE outcomes to predict injury severity and pinpoint 

injury locations [8], [17], [18], [19], [49]. To this end, supervised ML algorithms could be 

an important complementary tool for FE models of SCI, since recent studies have shown 

their suitability for using FE data for different mechanical applications, such as prediction 

of material properties [89], identification of damage in structures [90], vibration modal 

analysis [91], and prediction of bone fracture [92]. These implementations of ML 

algorithms motivate its integration to SCI workflow, as this tool could potentially help to 

better understand the impact-to-injury link in SCI.  

1.6.1. Relevant findings from SCI studies 

Both animal and computational models come with specific constraints that limit the 

information they can provide to researchers. Combining the findings from both approaches 

could contribute to a wider overview of the problem. Computational models of SCI can 

provide detailed information about the loading distribution in the spinal cord tissues and 

meninges [4], [5], [8], [9]. However, they lack the means to define the level of damage 

sustained by the tissues or the effect it will have in their functional outcomes. Experimental 

data from animal models can provide this information, and using the appropriate data 

processing tools, it could be possible to combine both sources of information for 

correlating the tissue-level mechanical outcomes with the observed tissue damage. 

Previous studies have already used this approach to complement the results from 

computational models with histopathology data [93] from SCI experiments [8], [9], [18]. 

Maikos et al. [9], simulated a weight-drop SCI experiment in rats, they used a 

logistic regression analysis to match the maximum principal strain distributions found in 

the computational models with tissue damage patterns in the gray and white matter 

collected from parallel in vivo studies. They did this by generating images of horizontal 
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slices of the spinal cord and identifying the injured areas and overlapping them against 

corresponding slices of the FE model. The elements located inside injured areas were 

labeled and their values of maximum principal strain calculated by the FE model were 

identified. Using logistic regression, their analysis showed that maximum principal strain 

was correlated to damage in both constituent tissues of the spinal cord, with a stronger 

level of correlation with the GM than the WM. 

A similar approach was presented by Russell et al. [8], by investigating the 

correlation between maximum principal strain and tissue damage in FE models of 

contusion and dislocation SCI. Tissue damage data were collected from the experimental 

procedures they were trying to recreate, and the strain values of the elements in the 

computational models that matched the injured areas were identified. Their correlation 

analysis was performed with a linear regression model, with the outcomes suggesting a 

stronger correlation between strain and tissue damage in the contusion scenario. In this 

study, GM sections also showed a stronger correlation with strain values. However, those 

results could have been affected by the limited injury data available from the GM due to 

technical challenges. 

Even though their methodology did not include the use of FE models, the study 

presented by Bhatnagar and coworkers [94] also correlated tissue-level strains with 

damage exclusively in the GM in an in vivo rat contusion model. The strain measurements 

were collected using a combination of magnetic resonance technology and image 

registration methods during the injury experiments, and the tissue damage data originated 

from a histological analysis done to spinal cord samples collected post-injury. The 

observations from their linear regression analysis pointed out that different injured regions 

of the gray matter were correlated with different types of strain. However, the strongest 

correlation found was between minimum principal strain and the damage located in the 

ventral horns of the GM. 

Jannesar and colleagues [18] built subject-specific FE models from MRI scans 

taken from non-human primate subjects and used them to recreate the contusion SCI 

experiments done in the animals. One-element thick cross-section of the FE models were 

overlapped against images of the histological results taken from spinal cord tissue 

samples, and the elements were labeled depending on their location with respect to the 

injured areas. Using logistic regression, the correlation between the mechanical 
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parameters and the damage in the spinal cord were studied. Jannesar et al. [18], also 

found a stronger correlation between the mechanical parameters and the damage in the 

GM than in the WM, particularly for strain values. They also calculated injury threshold 

values for the mechanical measures using the inverse prediction method, which allowed 

them to report the threshold values of stress and strain after which the spinal cord tissues 

would be injured. 

These studies showed the utility of computational models along with histological 

data to determine how the mechanical parameters are relevant indicators of injury in the 

spinal cord tissue. Moreover, their results also suggest the potential of these approaches 

for the definition of injury thresholds, as proposed in [18], which would allow for the 

development and validation of prevention or protective technologies that can help 

minimize the mechanical forces under the defined thresholds. 

1.6.2. Machine learning applications in FE studies 

In recent years, artificial intelligence (AI) and its corresponding subcategories, 

such as ML, have become increasingly employed in different research and engineering 

fields [89], [90], [95], [96], [97], including biomedicine [95], [96], [97], [98], [99], [100], [101]. 

In areas such as mechanical or materials engineering, where there are available tools for 

studying complex systems or simulating physical phenomena, such as FE models, ML 

has opened the possibilities for either substituting [89], [102] or complementing [90], [91], 

[92] these tools in certain scenarios. The surging interest of the research community to 

implement ML algorithms alongside FE analysis originates from the capabilities shown by 

ML in problems involving large amounts of variables, uncertainty, and inconsistent 

behaviors [103], [104]. It is expected that these capabilities could circumvent some of the 

limitations of traditional FE analysis, such as the computational costs or the interpretation 

of results. 

ML covers a large spectrum of methods and techniques. For the scope of this work, 

only the integration of supervised ML algorithms with FE models are investigated. 

Supervised ML models learn and generalize from existing information, making them 

particularly well-suited for tasks such as classification, regression, and pattern recognition 

[103]. The main difference between supervised ML algorithms and other branches of ML, 

such as unsupervised ML, resides in the use of previously labeled data for its training 
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process [103]. A relevant example of the applications of supervised ML algorithms and FE 

models is the work by Pathan and colleagues [89]. Pathan et al. [89] presented a study 

where a supervised ML algorithm was used to predict the mechanical properties of fibre 

composites and the predictions were compared against the FE models of the composites 

microstructure under loading. The training data for algorithm were generated by running 

FE simulations of different composite microstructures under three loading cases. After 

training, the prediction capabilities of the algorithm were tested and compared against 

additional FE simulations, where the results showed that the ML algorithm had a margin 

of error no greater than 5% in predicting the mechanical properties of the composite 

structures. Based on their findings, Pathan et al. [89] concluded that combining FE models 

and ML algorithms provided a reliable and inexpensive procedure for estimating the 

mechanical properties of composite microstructures. 

Other examples are Abedin et al. [90] and Castro et al. [91] work using ML 

algorithms for damage detection in bridges and structural vibration problems in ships. 

Abedin and coworkers [90] performed a series of static and dynamic loading tests on a 

bridge with some level of damage and measured the deflections in different sections of 

the bridge. Then, built a detailed FE model of the bridge and simulated different damage 

scenarios. Three ML models were trained using the experimental and computational 

deflection measurements and used to predict the damage in a separate bridge scenario, 

also simulated using FE. The results indicated that the algorithms were capable of 

accurately finding the location and amount of damage of the bridge. Meanwhile, Castro et 

al. [91] proposed the use of supervised ML to correlate the experimental and 

computational modal shapes of a catamaran ship. This approach proved to be effective 

for correlating the modal shapes of the ship, and Castro and colleagues also reported that 

including ML provided the advantage of identifying the most relevant input parameters of 

this vibration problem. 

In the field of biomedicine, the work done by Villamor et al. [92] exploited the two 

computational tools (i.e., FE models and ML algorithms) for the prediction of osteoporotic 

hip fracture in women. They generated patient-specific FE models based on scans of 

patients with and without hip fracture and used them to simulate a sideways-fall. The 

mechanical outcomes of the FE simulations were used in combination with clinical data of 

the patients to create a dataset. This dataset was used for training four supervised ML 

algorithms to identify hip fracture in patients based on the provided mechanical and clinical 
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attributes. Their results showed that using this combined approach provided better results 

at identifying hip fracture than the usual gold-standard, and that including the FE-related 

attributes improve the fracture identification. 

The previously described findings suggest that combining the capabilities of FE 

analysis and supervised ML algorithms can be beneficial for the study of complex 

problems in different fields. The work by Villamor et al. [92] showcases the use of these 

two tools, FE and ML, for a problem similar in nature to the study of the correlation between 

mechanical outcomes of FE models and tissue damage in the spinal cord. In both cases, 

FE models are generated to recreate an injury process, from where it is possible to request 

the values of different mechanical attributes, and it is also possible to assign the generated 

samples into injured and non-injured classes, thanks to clinical or experimental data 

available. Consequently, the results by Villamor et al. motivate the exploration of including 

supervised ML algorithm for the study of impact-to-injury link in SCI, and it will be 

discussed further in later sections of this document. 

1.6.3. Supervised ML algorithms 

As discussed in previous sections, the analysis of complex mechanical data 

derived from FE models of SCI presents challenges, particularly when complemented with 

experimental injury data. In this context, supervised ML algorithms emerge as valuable 

tools, offering a systematic and data-driven approach to discern subtle patterns and 

relationships [103] between the mechanical outcomes of FE models and experimental 

injury data [105]. The following sections explore the general aspects of four supervised 

ML algorithms: logistic regression, decision trees, support vector machines, and k-nearest 

neighbors, that were selected to explore their classification capabilities to enhance our 

understanding of impact-to-injury link in SCI. 

Logistic regression 

Logistic regression (LR) is a statistical and supervised ML algorithm that is 

particularly well-suited for scenarios where the goal is to predict a binary outcome [98], 

[99], [103], [106]. This method specializes in binary classification tasks, where the 

dependent variable, usually denoted as 𝑌, can only assume binary values that correspond 

to the absence (0) or presence (1) of a particular event or attribute [98], [99]. For example, 

in an email filter, 𝑌 might represent whether an email is spam (1) or not (0).  
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Logistic regression uses of a logistic function, often referred to as the sigmoid 

function [106], for the prediction or classification tasks: 

𝑃(𝑌 = 1 | 𝑋) =  
1

1+𝑒−𝑍  (2) 

In the previous equation, 𝑃(𝑌 = 1|𝑋) represents the probability of the dependent variable 

𝑌 to be a positive case (1) of the event or attribute that it’s been studied [106]. The term 𝑍 

denotes a linear combination of the input features, or independent variables, and their 

corresponding weights [106]. The weights, or coefficients, of each feature are determined 

using the maximum likelihood estimation, that contributes to find the optimal values for 

these coefficients. 

In other words, this function maps a set of input features to a probability value, 

ensuring that the outcome lies within the range of 0 to 1 [106]. To achieve this, LR defines 

a decision boundary, traditionally set at 0.5, which helps determine the classification 

outcome [98]. For instance, a probability exceeding 0.5 will be classified as a positive 

case, while values below 0.5 will be classified as a non-positive case. LR can also perform 

multiclass classification by employing techniques such as one-vs-all or softmax regression 

[107]. Additionally, it includes regularization methods, such as L1 and L2 regularization, 

that can be applied to enhance the model’s generalization to new data and mitigate 

overfitting [107]. Reducing overfitting is an ideal practice in ML applications, since this 

issue can make ML algorithms excessively tuned to training data, preventing them from 

making accurate predictions or classifications based on new inputs [108]. 

Decision trees 

Decision Trees (DT) are a widely used class of ML algorithms, known for their 

effectiveness in data classification and predictive modeling [91], [103]. They work by 

simplifying or breaking down complex problems into progressively manageable sub-

problems or tasks [91], [103]. This logic unfolds in the form of a tree structure, 

characterized by multiple levels of nodes [91], [95], [98], [103]. The evaluation process 

starts at the top-level node, referred to as the root or parent node. Internal nodes, which 

contain at least one child node, represent the assessment of input variables or features, 

that is often performed by DT using criteria such as entropy and the Gini index [91], [103]. 

Depending on the outcome of this evaluation, the classification process branches to the 

appropriate child node, and this process is repeated until a stopping criterion, such as a 
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maximum tree depth, or a leaf node, the endpoint of decision-making, is reached [95], 

[98], [103]. These leaf or terminal nodes provide the final classification results [95], [98], 

[103]. 

One of the key advantages of decision trees is their interpretability and ease of 

learning, making them particularly valuable in fields like medical diagnosis [95], [98]. Their 

straightforward structure and transparent decision-making process contribute to their 

widespread use in various protocols for diagnostic applications [103]. Nonetheless, DTs 

can be prone to overfitting, particularly in DTs with large depths or multiple levels [109]. 

Still, there are techniques like pruning and setting appropriate hyperparameters that can 

help mitigate the overfitting issue in DT models [109]. 

Support vector machines 

Support vector machines (SVMs) are versatile ML tools well suited for 

classification tasks [103]. SVMs work by identifying a hyperplane that can help segregate 

data points of distinct classes within a high-dimensional feature space [95], [96], [103]. In 

binary classification scenarios, SVMs try to identify an optimal hyperplane that can better 

separate data points into two categories. This hyperplane is meticulously selected to 

maximize the margin [95], [99], [103], term that refers to the spatial distance between the 

hyperplane and the nearest data points from each class [103]. 

SVMs employ kernel functions, such as linear, polynomial, and radial basis 

function (RBF) kernels, to evaluate the data in a higher-dimensional space where 

classification of samples can be more feasible than in its original feature space [96], [110]. 

A key concept in SVM is that of support vectors, which are the data points that reside 

closest to the hyperplane. They hold great importance for this algorithm since they 

influence the margin and the overall performance of the SVM model [110]. 

One main advantage of SVMs is their robustness in dealing with noisy data and 

outliers, as they prioritize the maximization of the margin [110]. For SVMs, the 

regularization parameter, C, plays a crucial role in adjusting the trade-off between 

achieving a wide margin and minimizing classification errors [96], [110]. SVMs can handle 

multiclass classification tasks through methods like one-vs-all or one-vs-one [110]. SVMs 

are implemented for applications in different areas, including image and text classification, 
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face recognition, bioinformatics, and more [96]. Their ability to effectively handle complex 

classification tasks and outliers underscores its status as a versatile and powerful ML tool. 

K-nearest neighbors 

In the supervised ML context, the k-nearest neighbors (KNN) method is known for 

its simplicity and applicability to both classification and regression tasks [95]. This 

algorithm relies on the concept of similarity [95], [103], [111]: when presented with a new 

data point, it identifies the k-nearest data points from the training dataset based on a 

chosen distance metric, such as Euclidean distance. These neighboring data points then 

play a pivotal role in determining the class label or value of the new data point. The 

selection of k significantly impacts the algorithm's behavior [95], [98], [111], with smaller k 

potentially leading to overfitting, while larger k values could result in smoother decision 

boundaries at the cost of overlooking local patterns. 

One of the distinctive features of KNN is its flexibility in choosing distance metrics, 

allowing adaptability to different data types and problem domains [103], [111]. Common 

distance metrics include Euclidean, Manhattan, or Minkowski distances, depending on the 

specific characteristics of the data [111]. KNN is also often referred to as a "lazy learner" 

because it does not construct an explicit model during training; instead, it memorizes the 

training data and dynamically generates predictions during inference [99]. In practice, KNN 

finds applications in various domains, including recommendation systems, image 

recognition, and anomaly detection, where the notion of similarity plays a pivotal role [111]. 

It remains an attractive choice due to its ease of implementation and analytical tractability. 

1.7. Thesis objectives and scope 

The primary objective of this thesis is to enhance the reliability and clinical 

relevance of computational models for simulating SCI in NHPs. It has already been 

established that NHP models of SCI are one of the closest representations to human injury 

and could be an ideal intermediate platform for treatment testing before human trials. 

However, due to the difficult ethical, cost, and logistical challenges, their use in SCI 

research was limited, which reduces the information available to directly compare the 

findings or improve the experimental protocols. Computational or FE models can help 

circumvent some of these limitations only if they are a biofidelic representation of the 

mechanical interactions that occur during the experiments. Granted this, they can also 
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contribute to better understanding and even quantifying the correlation between the 

magnitude of those mechanical interactions and the spinal cord tissue damage that results 

in functional impairments.  

In summary, this thesis endeavors to evaluate and enhance the reliability of 

computational models of SCI, with a focus on the CSF representation using SPH in a 

contusion model with preload, and the integration of supervised ML techniques for tissue 

damage identification. By addressing these critical aspects, the author aspires to 

contribute to advancing the clinical relevance of computational models, thereby 

accelerating the study and comprehension of spinal cord injury for potential clinical 

applications. The work presented in this document intends to bring computational models 

one step closer to this state through the methodologies of the following chapters. 

Chapter 2: Methods for containing the cerebrospinal fluid in a computer simulation 

of large animal cervical spinal cord injury using smoothed particle hydrodynamics. 

In this chapter, it is intended to refine the CSF boundary conditions in a 

computational model of NHP cervical SCI with preload. Previous studies have highlighted 

the pivotal role of CSF in spinal cord protection, and SPH method has demonstrated 

potential for accurately modeling its biomechanical effects in models of SCI. However, an 

important consideration arises from the different combinations of boundary conditions that 

have been used in previous studies to capture CSF’s behavior during injury. The effect of 

these CSF boundary conditions on the mechanical outcomes of an FE model of SCI with 

preload has not been explored. Therefore, this chapter investigated the effect of four 

different boundary conditions for the SPH representation of the CSF in an NHP model of 

SCI. The influence of each boundary condition on the impact biomechanics, CSF 

pressure, stress and strain distribution, and computational cost in different spinal cord 

morphology scenarios was compared using FE models. The results can help guide the 

choice of CSF boundary conditions to improve the efficiency and biofidelity of 

computational models of SCI. 

Chapter 3: Identification of injured elements in computational models of spinal 

cord injury using machine learning. 

Chapter 3 aims to improve the predictive capabilities of computational models of 

SCI by integrating supervised ML algorithms. Our approach combined experimental data 
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of tissue damage from SCI experiments and computational mechanical outcomes, to train 

four supervised ML algorithms to identify injured elements based on the mechanical 

predictions of FE models of SCI. The injury classification performance of the ML 

algorithms was compared on three different datasets of elements representing the 

individual and combined sets of spinal cord tissues (i.e., GM, WM, and GM+WM) using 

different metric scores, such as the area under the ROC curve. This chapter extended the 

analysis to investigate the mechanical feature importance assigned by the best ML 

classifiers, and the range of mechanical values reported for classified samples with an 

injury probability above 50% on each dataset. This study provided useful data regarding 

the suitability of ML algorithms for injury identification based on FE mechanical predictions, 

and the different tissue damage susceptibility of the spinal cord tissues to stress and strain 

magnitudes. These findings could deepen our understanding of the impact-to-injury link in 

SCI, ultimately contributing to improved diagnostic and therapeutic strategies. 
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Chapter 2.  
 
Methods for containing the cerebrospinal fluid in a 
computer simulation of large animal cervical spinal 
cord injury using smoothed particle hydrodynamics 

Experimental animal models of SCI have proven the importance of including the 

CSF in physical and computational in ury models.  owever, representing the CSF’s 

biomechanical interactions during SCI simulations increases their computational cost and 

complexity. Computational techniques, such as SPH, have been successful in simulating 

the CSF in brain and spinal cord injury studies. However, different boundary conditions 

have been used to capture CSF’s behavior during injury without properly assessing their 

effect in the mechanical outcomes of the models. Therefore, in this study we examined 

the implementation of four different methods to bound the CSF representation with SPH 

and their effect on the mechanical results of a computational model of SCI. An FE model 

of a NHP unilateral cervical contusion SCI experiment involving two phases: preload and 

impact phases was developed. Across three different spinal cord and column 

morphologies, the impactor’s displacement, reaction forces, CSF pressures, stress/strain 

distribution, and computational times were compared between the evaluated CSF 

containment methods. It was observed that the implemented CSF constrains had a large 

effect in the calculated impactor displacement, and preload reaction forces. During impact, 

the models predicted reaction forces in the range of 18.25 - 28.61 N, with lower 

magnitudes and different force profiles in the small morphology resulting from the lateral 

shift of the spinal cord. The boundary conditions that allowed for more CSF displacement 

during the simulations resulted in CSF pressure values (0.07 – 0.14 MPa) within or close 

to those reported in other SCI experiments in large animals and showed minor influence 

from the morphology of the model. Lastly, the choice of CSF boundary conditions proved 

to affect the magnitudes of stresses and strains at the injury epicenter of the spinal cord. 

The distribution of these mechanical values, particularly of stress, shifted dorso-laterally 

as the spinal cord and dura mater sizes increased. The results of this study offer valuable 

insights regarding the effects of CSF boundary conditions in the biomechanical outcomes 

of FE models of SCI with preload and different cord morphologies. These results can serve 

as general guidelines for defining the CSF boundary conditions that better suit different 

SCI scenarios, enhancing the utility of computational models for studying SCI. 



35 

2.1. Introduction  

Scientists and engineers continue working on new ways to understand spinal cord 

injury (SCI) and translate the findings from animal SCI models into effective treatments  

[3], [4], [5]. Finite element (FE) models of SCI have  emerged as a complimentary tool to 

refine in vivo animal experiments without needing to include additional subjects; reducing 

some of the cost, ethical, and logistical challenges of SCI research [5], [17], [54]. This is 

particularly relevant in large animal models, which display greater intersubject variability 

and greater proportions of cerebral spinal fluid (CSF) than small animal models [47], [66]. 

Recent work in large animal SCI has emphasized the significant influence of the CSF in 

contributing to variability in injury outcomes [13], [56], [65], [66]. FE models can provide 

detailed mechanical data to study the correlation between mechanical loading and tissue 

damage after SCI [8], [9], [18]. However for FE models of SCI to be relevant, they need to 

accurately capture the experimental injury [5]. There has been substantial work developing 

and validating FE models of SCI including focus on material properties [9], [18], [112], 

morphology [18], [19], [57], and impact mechanisms [8], [17], [19] for both animal and 

human models. However, while there has been increasing focus on the contributions of 

CSF in large animal SCI experiments, there has been limited consideration or validation 

of FE modeling approaches for CSF in large animal SCI models.  

The material representation of the CSF in FE models of SCI and traumatic brain 

injury (TBI) has evolved over several decades of research. In most recent FE models such 

as the ones proposed in [18], [57] and [19], the CSF is represented using SPH. This 

particle-based method has been successfully used in FE models of SCI to represent the 

CSF [8], [18], [19], [23]. Moreover, in a recent comparison by Rycman et al. [16] in an FE 

model of SCI based on ex vivo bovine experiments, SPH reported a better accuracy-to-

efficiency ratio than previous methods to represent the CSF, such as traditional 

Lagrangian mesh, arbitrary Lagrangian-Eulerian mesh, and pressure cavity. However, the 

implementation of SPH for representing the CSF has not been validated against 

experimental data or explored in different SCI scenarios. For instance, the models in [18], 

[57] and [19], recreate injury experiments in NHPs that include a preliminary phase, called 

the preload [47]. Experimentally, this phase was meant to displace the CSF from the 

impact site and trap the spinal cord at the ventral section of the spinal column prior to the 

impact, helping deliver more consistent injuries in the NHP subjects. As such, the SPH 
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method needs to capture the preload CSF displacement, without neglecting its 

biomechanical effect during the impact phase.  

Researchers have used different CSF boundary conditions to simulate the SCI 

experiments [8], [18], [19], [23], [57]. However, the biofidelity of these CSF boundary 

conditions or their effect on the mechanical outcomes of the models have not been 

explored. This is an important consideration since some of these boundary conditions 

significantly restrict the displacement of the SPH particles inside the FE model [18], [23], 

[57], while others allow the particles to free flow during the entire simulation [8], or only  

allow during a specific phase of the analysis [19]. These differences could influence the 

spinal cord’s trapping during the preload phase, or they could under or overestimate the 

pressure exerted by the CSF on the spinal cord during impact. Jones et al. [13] SCI work 

in large animals has shown that the changes in CSF pressure during impact contributes 

to extend the damage in spinal cord sections close to the injury epicenter, meaning that 

properly capturing this pressure can provide more realistic outcomes in the FE models. 

However, overestimating the CSF pressure could result in larger peak stress and strain 

values in the spinal cord, as it was found by Arhiptsov et al. [23] in their work with an FE 

model of human SCI where the CSF pressure was increased to represent the effect of a 

pre-existing medical condition in patients. It is then important to properly capture the CSF 

pressure in FE models of SCI, so they can be a more reliable tool for understanding and 

refining in vivo experiments and provide accurate tissue-level mechanical data. 

The primary objective of this study was to compare the effect of different CSF 

boundary conditions on impact biomechanics, tissue stresses and strains, and CSF 

pressure in a simplified unilateral cervical contusion injury model based on NHP 

experiments. NHPs are one of the closest representations to human injury available [17], 

[47], which makes FE models relevant, as their contributions can have a stronger impact 

in humans. However, there is large variability in the spinal cord and dural space 

morphologies of NHPs that has been found to affect the outcomes of experimental [47], 

[48] and computational [19], [57] studies of SCI. Moreover, these morphological variations 

define the CSF volume and the thickness of the CSF layer that surrounds the spinal cord, 

which has shown to affect the mechanical outcomes of injury experiments in other SCI 

studies in large animals [66]. Since different morphological cases can affect the CSF 

presence in the FE models, a secondary objective of this study was to compare the 

suitability of the CSF boundary conditions to capture the general and tissue-level SCI 
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mechanics of the experiments under different spinal cord and column morphologies. The 

results of this work will inform researchers on the appropriateness of different CSF 

boundary conditions to capture the behaviour of the CSF more accurately in computational 

models of SCI based on animal experiments. However, understanding how these different 

boundary conditions change the CSF behavior during the simulations can also have 

applications in the modelling of human SCI cases. As it has been done previously, FE 

models can simulate human SCI cases influenced by preexisting medical conditions [23] 

that change the CSF pressure. The boundary conditions evaluated in this study could 

provide an additional approach to study the effect of CSF changes related to neurological 

disorders or degenerative spinal changes, extending the clinical usability of FE models of 

SCI. 

2.2. Methods  

Different methods to contain the CSF inside a simplified FE model of unilateral 

cervical contusion SCI in NHPs were compared. Although previous work has shown that 

subject-specific FE models of SCI provide more biofidelic and detailed data [18], simplified 

models provide a more computationally efficient platform to compare these different CSF 

boundary conditions. Mechanical outcomes including the impactor’s displacement, 

reaction forces, CSF pressure, and stress/strain distribution were compared against 

available experimental data [47]. This assessment helped to define the generalizability of 

each set of boundary conditions to capture the CSF’s biomechanical effect during SCI 

experiments with preload. The CSF boundary conditions were also compared in FE 

models with different spinal cord and dural space (also referred to as subarachnoid space) 

dimensions, taken from experimental NHP subjects. This comparison assessed the 

suitability of the CSF boundary conditions to simulate FE models of SCI with different 

morphologies, which is a common source of variability in NHP subjects.  

2.2.1. Unilateral cervical contusion FE model  

A simplified NHP unilateral cervical contusion SCI model (Figure 2-1) was 

implemented in ABAQUS (Dassault Systèmes 2021) following the approach, materials, 

and dimensions detailed in Jannesar et al. [57]. Briefly, the model included the dura and 

pia maters, spinal cord’s gray and white matters, and the CSF (Figure 2-1 A). The parts 
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representing these tissues were contained inside a spinal column segment representing 

three-vertebrae (Figure 2-1 B) [57]. The spinal column segment included a partial 

laminectomy of 8.5 x 8.5 mm in the dorsal surface, and the rostral and caudal ends were 

closed with a rigid surface (Figure 2-1 B). A 4 mm diameter rigid impactor impacted the 

cord on one side to simulate a unilateral impact (Figure 2-1 C). A 4 mm diameter rigid 

impactor impacted the cord on one side to simulate a unilateral impact (Figure 2-1 C). In 

the experiments [47], there was variance in defined mediolateral alignment of the impactor 

with respect to the spinal cord’s midline, reporting values of 0-, 0.5-, and 1-mm. To account 

for this variance, preliminary FE modelling recreating the NHP experiments [17], [18] 

tunned the impactor’s alignment to capture the experimental biomechanical outcomes 

more closely. The same approach was followed in our FE model, resulting in 0 mm 

alignment of the impactor with respect to spinal cord’s midline in our simulations. Contact 

interactions were defined using the general contact algorithm instead of with the surface-

to-surface approach used in [18] and [57] to minimize penetration between components. 

The friction coefficients reported in [18] were used for defining the interaction properties. 

The impact simulations were submitted and run using supercomputer cluster nodes with 

a CPU Intel E5-2683 v4 running at 2.1 GHz (Digital Research Alliance of Canada). 
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Figure 2-1. Cut view of generated FE model of cervical SCI and its constituent 
tissues (A), and spinal column closed ends (B). The closed ends work 
as a physical barrier to keep the SPH particles represeting the CSF 
between the dura and pia maters. Cross-section view of the 
        ’                  g         h             h              (C). 

Model’s mesh details 

The mesh pitch sizes for the white and gray matter solids were defined after a 

mesh convergence analysis. The quality of the mesh was also validated to facilitate the 

computation and accuracy of results [113]. The CSF solid was partitioned prior to meshing, 

to improve the homogeneity of the mesh elements, and the mesh pitch was also defined 

after a convergence analysis. The values for the specific meshes of each component in 

the model are included in Table 2-1. 
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Table 2-1. Mesh parameters and characteristics for the FE model. 

Part Part type Element type Mesh pitch 
Number of 
elements 

White matter Deformable solid 
Hexahedral 

(C3D8R) 
0.45 mm 12320 

Gray matter Deformable solid 
Hexahedral 

(C3D8R) 
0.45 mm 4536 

Pia mater Skin 
Quadrilateral shell 

(S4R) 
0.45 mm 2912 

Dura mater Deformable shell 
Quadrilateral shell 

(S4R) 
0.45 mm 3762 

CSF 
Solid converted to 

particles 
Particle element 

(PC3D) 
0.35 mm 16188 

Spinal column Discrete rigid shell 
Quadrilateral 

(R3D4) 
0.65 mm 1990 

Impactor Discrete rigid shell 
Quadrilateral 

(R3D4) 
0.5 mm 648 

 

To apply the SPH method to the CSF, the CSF was modeled first as a deformable 

solid filling the space located between the dura mater, pia mater, and the rigid column 

ends (Figure 2-2). In contrast to Jannesar et al. [18] and [57], the SPH method was defined 

using the CAE, which allowed the conversion of solid elements representing the CSF into 

SPH particles (Figure 2-2 C&D). The default values for the requested fields were defined 

for the SPH conversion: criterion - Time, threshold – 0 (i.e., the particle conversion will 

trigger at the beginning of the simulation), number of parts per local direction - 1, and 

kernel - cubic.  
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Figure 2-2. Diagram of the process to model the CSF using the SPH approach. A) 
Solid geometries defined for each instance of the model. B) Isolated 
solid elements representing the CSF. C) Conversion to particles of the 
solid CSF mesh. D) Final model with solid sections and CSF 
represented with SPH.  

Model’s material properties 

The material properties included in all the FE models followed the reported values 

and constitutive material models by Jannesar et al. [18]. The constitutive models used for 

representing the material properties will be briefly discussed and the values of its constant 

will be included in Table 2-2. The pia mater was defined in ABAQUS as a linear isotropic 

elastic material. The required parameters for defining this material were the Young’s 

modulus, 𝐸, the Poisson’s ratio, 𝜐 [114]. The gray matter and dura mater material 

properties were defined as hyperelastic with quasi-linear viscoelastic (QLV) behavior. The 

hyperelastic properties of these two tissues were defined in ABAQUS with an Ogden 

model, whose equation is described next [115]: 

𝑈 = ∑
2𝜇𝑖

𝛼𝑖
2 (𝜆̅1

  𝛼𝑖 + 𝜆̅2
  𝛼𝑖 + 𝜆̅3

  𝛼𝑖 − 3)
𝑁

𝑖=1
+ ∑

1

𝐷𝑖
(𝐽𝑒𝑙 − 1)

2𝑖𝑁

𝑖=1
 (3) 

In Eq. 3,  𝑈 represents the strain energy per unit volume, 𝜇𝑖 , 𝛼𝑖, and 𝐷𝑖 are material 

parameters dependent on temperature, and 𝑁 is a material parameter. 𝜆̅𝑖 are the 

deviatoric principal stretches, and 𝐽𝑒𝑙 is the elastic volume ratio. For the QLV behavior, a 

three and four-term Prony series were used for the gray matter and dura mater, 

respectively. The Prony series were included as a time-domain table with 𝑔𝑖 being the 

shear relaxation modulus ratio, and 𝜏𝑖 being the relaxation time [116]. 
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 For the CSF, its material properties were defined in ABAQUS using an equation 

of state. The implemented formulation was the linear Hugoniot form of the Mie-Grüneisen 

equation of state, that describes the relationship between pressure and density in solids 

and fluids [117], [118]. 

𝑝 =
𝜌0𝑐0

2𝜂

(1−𝑠𝜂)2 (1 −
𝛤0𝜂

2
) + 𝛤0𝜌0𝐸𝑚  (4) 

For this equation, 𝑝 is pressure, 𝜌0 is the reference density, 𝑐0 is the bulk speed 

of sound, 𝜂 is the nominal volumetric compressive strain, 𝑠 is the linear Hugoniot slope 

coefficient, Γ0 is the Grüneisen parameter at the reference state, and 𝐸𝑚 is the internal 

energy per unit mass. 

Finally, the white matter properties were set as a user-defined material with QLV 

behavior and conditional hyperelasticity [10]. The conditional model was used to capture 

the transverse isotropy of this tissue resulting from the set of aligned axonal fibers across 

the spinal cord’s white matter. When there are not stretches in the fibers’ direction, white 

matter’s hyperelastic behavior can be described using a Mooney-Rivlin model [115] 

(𝑈𝑊𝑀), and if there are stretches in the fiber’s directions, the 𝑈𝑊𝑀 equation is combined 

with the reinforcing function 𝑈𝐹𝑖𝑏𝑒𝑟𝑠 : 

𝑈𝑊𝑀 = 𝐶10(𝐼1̅ − 3) + 𝐶01(𝐼2̅ − 3) +
1

𝐷1
(𝐽𝑒𝑙 − 1)

2
;  (5) 

𝑈𝐹𝑖𝑏𝑒𝑟𝑠 =
𝛾

2
(𝐼5̅ − 1)2 (6) 

In these equations, 𝑈 represents the strain energy per unit volume, 𝑐10, 𝑐01, 𝛾, and 

𝐷1 are specific parameters of the material, 𝐽𝑒𝑙 is the elastic volume ratio, and 𝐼1̅, 𝐼2̅  and 𝐼5̅ 

are deviatoric strain invariants. The conditional material model was implemented in 

ABAQUS using the user subroutine previously developed in [10], [18], and the QLV 

behavior was defined using a four-term Prony series. These material properties were 

assigned to all the elements corresponding to the WM part in our FE models, and the 

material orientation for considering the reinforcing function was defined along the rostral-

caudal direction for the WM elements. 
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Table 2-2. Material specifications used in the FE models taken from [18]. 

Tissue Required constants Viscoelastic constants Density 

White matter 

𝐶10 =3.27E-3 [MPa] 

𝐶01 =0.91E-3 [MPa] 

𝐷 =0.2393 [MPa] 

𝛾 =6.172E-03 [MPa] 

𝜐 =0.4995 

𝑔1 =0.5256 

𝑔2 =0.3163 

𝑔3 =0.1250 

𝑔4 =0.0071 

 

𝜏1 =0.01 s 

𝜏2 =0.02 s 

𝜏3 =0.2 s 

𝜏4 =2.0 s 

𝜌 =1041[
kg

m3] 

Gray matter 

𝜇0 =4.454E-2 [MPa] 

𝛼 =10.57 

𝐷 =0.045 [MPa] 

𝜐 =0.49 

𝑔1 =0.4793 

𝑔2 =0.2854 

𝑔3 =0.0732 

 

𝜏1 =0.64 s 

𝜏2 =6.40 s 

𝜏3 =64.0 s 

𝜌 =1045[
kg

m3] 

Dura mater 

𝜇0 =1.2 [MPa] 

𝛼 =16.2 

𝜐 =0.45 

𝑔1 =0.329 

𝑔2 =0.128 

𝑔3 =0.086 

𝑔4 =0.086 

 

𝜏1 =0.009 s 

𝜏2 =0.081 s 

𝜏3 =0.564 s 

𝜏4 = 4.69 s 

𝜌 =1174[
kg

m3] 

Pia mater 
𝐸 =39.3 MPa 

𝜐 =0.3 
- 𝜌 =1075[

kg

m3] 

CSF 

𝑐0 =1381.7 
𝒎

𝒔
 

𝑠 =1.979 

Γ0 =0.11 

- 𝜌 =1007[
kg

m3] 

 

Loading and boundary conditions 

Following the NHP cervical unilateral contusion injury experimental protocol [47], 

each simulation was divided into two steps: preload and impact (Figure 2-3). During the 

experiments, the impactor descends towards the dura mater at a rate of ~0.33 mm/s to 

trap the spinal cord against the ventral portion of the spinal canal. In our simulations, 

replicating the experimental preload displacement rate was not computationally feasible, 

since it exceeded the allowed run time in the computer cluster the simulations were 



44 

submitted to. As such, the preload rate was adjusted to a rate 40 mm/s, which allowed us 

to run the simulations within the allowable time. The preload step was defined to stop once 

the reaction force reached the threshold value of 0.36 N, following the experimental mean 

of the data available [47]. After reaching the threshold, the impactor position was held 

constant for 0.2 s to allow the viscoelastic materials to relax, similar to the experimental 

protocol. The impact step was then triggered. The impactor’s impact displacement was 

defined using tabular data from one NHP experiment. This experiment was selected to 

match the displacement magnitude closest to the overall mean displacement value 

observed in the injury experiments. The experimental displacement curve showed a closer 

behavior to the predefined displacement curve. The impact displacement was then defined 

as 3.6 mm with a speed of 0.4 m/s. 

 

Figure 2-3. Representation of the SCI experiment phases in NHPs recreated in 
the computational model (adapted from [47] - Fig. 1D). During the 
preload, the spinal cord and dura mater ends are allowed to displace 
    h          ’           , and they are pinned during the impact to 
minimize lateral shift of the spinal cord. 

The boundary conditions for the spinal cord and dura matter were defined in two 

stages [18], [57]. During the preload phase, the rostral and caudal ends of the dura mater 

and the spinal cord had a symmetric condition along the rostral-caudal direction allowing 

movement of the spinal cord and dura in the dorso-ventral and mediolateral directions. At 

the impact phase, the condition was changed to restrict only the dorso-ventral 

displacement of both the dura and spinal cord sections. During both phases, the spinal 

column was fixed at its reference point using the encastre condition. Finally, for the 

impactor, a dorso-ventral displacement was defined for each step. During the preload 

       

I     
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phase, it was defined as a conditional displacement interrupted once the impactor’s 

reaction force reached the force threshold, and for the impact it was defined using tabular 

data from the actuator during the SCI experiments. 

2.2.2. Boundary conditions for the CSF 

We assessed four boundary condition approaches (Figure 2-4) in FE models of 

SCI in NHP with preload while representing the CSF using the SPH method. For this study, 

the boundary conditions were assigned the following names: 1) closed-boundary, 2) open-

boundary, 3) alternating-boundary, and 4) volume reduction. Each one is explained more 

in detail in the following sections. 

 

Figure 2-4. Diagrams of the evaluated approaches to constrain the SPH particles 
representing the CSF in computational models of cervical SCI 
throughout the different phases of the injury experiment. The blue 
arrows indicate the expected direction of CSF displacement, and the 
black lines with an ‘X’ sign at the end, represent the column edns 
preventing the CSF particles from leaving the dural space. 

I                   I     
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Closed-boundary (CB) approach 

One of the most common modeling approaches is to constrain CSF inside the 

subarachnoid space. It was used in previous FE models of SCI based on NHPs [18], [57] 

and humans [23]. In this model, the interactions between the column ends and the CSF 

particles represented with SPH were defined using general contact, so that no fluid 

particles could exit the system. 

Open-boundary (OB) approach 

As the name suggests, this approach consists of having an open SCI model at the 

rostral and caudal ends, that allows for the CSF particles to leave the subarachnoid space 

during the impact. This approach has been reported in studies of rat cervical SCI by 

Russell et al. [8] and computational models recreating in-vitro experiments on bovine 

spinal cords [15].  

 

Alternating-boundary (AB) approach 

Following the procedure described in [19], the interactions between the column 

ends and the CSF particles were excluded from the general contact definition in the 

preload step, so that the particles could pass through the column rostral and caudal ends, 

similar to an open-boundary. During the impact step, the contact definition was changed 

so the column ends would interact again with the particles representing the CSF, similar 

to the closed-boundary. As a result, the particles displaced during the preload step 

remained outside of the dural cavity, effectively reducing the volume that would pressurize 

the spinal cord during the impact phase (Figure 2-4).  

Volume reduction (VR) approach 

This approach reduced the volume of CSF within a closed-boundary model by 

removing an equivalent volume of solid elements from the mesh before conversion to fluid 

particles (Figure 2-5 A & B). The initial CSF volume was reduced by approximately 86 

mm3, which corresponded to the equivalent volume the cylindrical impactor would occupy 

inside the model at the impact time. This equivalent volume was calculated using the 

impactor’s displacement information from the NHP experiments of SCI, and its reported 

dimensions. The VR approach was proposed as an alternative to the OB and AB boundary 

conditions, where the CSF particles that leave the dural space still must be considered 
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during the entire simulation. By reducing the initial CSF volume, it was expected to provide 

additional space to capture the CSF preload displacement without discarding its 

mechanical effect during impact. Moreover, the lower number of particles in the model 

was expected to increase the computational efficiency of the simulations. 

 

Figure 2-5. Visual examples of the VR apporach implemented in the FE model of 
SCI. A) Cut side-view of the FE model with the CB approach, as 
reference, and B) of the FE model with the VR approach. Elipsoidal 
figures highlight the differences in the amoun of SPH particles 
representing the CSF in the CB and VR methods. C) Isometric view of 
the FE model using the VR method as the CSF boundary conditions. 
The closed column end was hidden for better visualization of the 
empty space at the rostral end of the model. 

2.2.3. Case study models 

To determine the interaction of the different CSF modeling approaches and 

different cord and column morphologies on resulting injury mechanics, two additional 

models with different spinal cord and subarachnoid space dimensions were included. The 

dimensions for the models defined based on Jannesar et al. [57] combinations of minimum 

and maximum dorso-ventral and mediolateral dimensions measured from the spinal cord 

and dural space of NHP subjects (Figure 2-6). 

   approach
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reduction (  ) 
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Figure 2-6. Small, average, and large FE models dimensions for the spinal cord, 
dural space, and CSF layer area. All the cross-sections are on the 
same scale.  

For the smaller and larger spinal cord and dural space morphologies, the mesh 

pitch used for the average model resulted in reduced mesh quality, particularly at the 

Gray matter

White matter
Cerebrospinal fluid

Pia mater

Dura mater
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interface between the gray and white matter sections. To maintain an optimal aspect ratio 

and geometric deviation factor in the spinal cord meshes of the small and large models, 

their mesh pitches were refined, resulting in an increased number of elements 

representing these tissues. The mesh parameters and number of elements are reported 

in the Appendix A. 

2.2.4. Reported output parameters 

The evaluated outputs from the models included the impactor’s displacement and 

reaction forces during both preload and impact. Each simulation was also checked for 

particle penetration, and their computational times were reported. The individual pressure 

values experienced by the SPH particles in the simulation were averaged through the 

entire CSF volume at every time increment to make the pressure readings comparable to 

experimental data. The results were used to evaluate the behavior of the entire particle 

cluster in the different simulated scenarios during the impact phase. In [19], lateral shift of 

the spinal cord at the time of impact was shown to affect the force outcomes in FE models 

of SCI. Following [19] procedure, the spinal cord’s lateral shift was calculated by 

determining the change in the vertical position of the center of the spinal cord relative to 

the impactor (Figure 2-7). This measurement was taken vertically, since the lateral shift 

induces rotation of the spinal cord, translating its midpoint to a higher vertical position 

relative to the starting point at the end of the preload [19]. Lastly, the distribution of Tresca 

stress, and strains (maximum & minimum logarithmic strain) in the spinal cord cross-

section located at the epicenter of the impact was assessed to determine the effect of CSF 

modeling approaches on tissue level mechanics. These mechanical parameters have 

been used in previous studies to correlate mechanics to tissue damage [8], [9], [18], 

making it relevant for FE models to appropriate approximations of these values. 
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Figure 2-7. Diagram of the lateral shift measurement taken following [19] 
methods. 

2.3. Results 

2.3.1. I       ’                                   

Overall, all computational simulations behaved in a similar way. The impact forces 

followed similar profiles, while the preloads showed small variability in preload 

displacement associated with the preload force condition and the displacement of SPH 

particles representing the CSF. In all simulations the spinal cord showed limited 

deformation during the preload stage where CSF movement predominated. In the impact 

phase, there was large deformation of the spinal cord as well as lateral displacement of 

the cord due to the unilateral impact. No overlapping or penetration between structures in 

the model or instances or leaking of SPH particles through the dura mater or the spinal 

column was observed in the simulations, confirming the suitability of the contact 

definitions.  

During the preload and impact phases, the VR approach predicted the largest 

impactor displacements, followed by the OB and AB methods (Table 2-3). These two 

methods reported identical impactor displacements, which were shorter than the VR ones 

by 30%, 6%, and 6.1% in the small, average, and large models respectively. The CB 

method reported the shortest displacement values. These observations were consistent 

throughout all three morphologies. On preload reaction forces, there was no observable 

trend between the results on different morphologies, other than the estimated values with 

the CB approach were among the lowest ones in all cases. Regarding peak impact forces, 

         h    

       

                  

I          
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the VR method predicted the highest values in the three morphological cases, while the 

lowest values were calculated by different approaches depending on the morphology. On 

average, largest preload and impact displacements were observed in the large model, 

followed by the average, and then the small morphologies. Meanwhile, for the preload and 

impact reaction forces, the average model reported higher mean values than the large 

and small morphologies, in that order.  

 Table 2-3.                       h          ’                      k          
forces during preload and impact phases for each evaluated CSF 
approach and morphology scenario.  

Morphology 
CSF 

containment 
approach 

Impactor’s displacement Impactor’s peak reaction force 

Preload (mm) Total (mm) Preload (N) Impact (N) 

Small 

CB 1.31 4.95 0.30 22.11  

OB 1.49 5.13 0.35 18.25 

AB 1.49 5.13 0.30 20.17 

VR 2.13 5.77 0.33 22.80 

Average 

CB 1.43 5.07 0.32 24.89 

OB 1.86 5.49 0.35 27.29 

AB 1.86 5.49 0.35 28.17 

VR 1.98 5.62 0.34 28.35 

Large 

CB 1.57 5.20 0.33 25.47 

OB 2.00 5.64 0.33 22.46 

AB 2.00 5.64 0.33 24.60 

VR 2.13 5.78 0.36 28.61 

 

The impact force profiles of the CB, OB, AB, and VR approaches were similar in 

shape between morphologies and with respect to experimental data (Figure 2-8). In the 

small model, all the CSF containment methods predicted reaction forces with similar or 

lower peak values than the experimental sample; the largest percentage error between 

predicted and experimental force was observed with the OB method (21.7%). In the 

average and large morphologies, all three methods reported higher peak force values than 

the experiment, particularly with the VR approach. In those cases, the largest error 

percentage also corresponded to the VR predicted forces, with values of 21.7 and 22.8% 

for the average and large morphologies, respectively. The peak impact forces in the small 

model showed the lowest range of reaction forces among the evaluated morphologies, 

and different force profile shapes in comparison with the other models (Figure 2-8). 
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Figure 2-8. Impact reaction forces for each evaluated CSF containment approach 
and morphology scenarion. The three graphs include the reaction 
force profiles of the same NHP experiment that reported the highest 
peak force value (23.2 N) among five experiments following the same 
impact protocol as in the simulations. 

At the time of maximum compression, more spinal cord lateral shift was observed 

in the small morphology, regardless of the CSF containment technique (Table 2-4). For 

each morphology, the largest lateral shifts were measured using the VR method, and the 

smallest with the CB approach. The largest percentage difference between the largest 

and smallest lateral shift values due to different boundary conditions was observed in the 

small model (~194%). The OB and AB techniques reported lateral shift values lower than 

the mean in each morphological case. Additionally, it was observed that for all the CSF 

boundary conditions, the spinal cord’s lateral shift decreased as the model’s dimensions 

increased. Cut-view images at the time of maximum compression for all the simulations 

are included in the Appendix B, where it is possible to observe the lateral shift of the spinal 

cord. 
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Table 2-4.            ’           h                      h     h   g           
compared between CSF containment techniques. Positive values 
indicate larger lateral shifts, while negative values indicate less lateral 
shift and more spinal cord tissue engaged under the impactor. 

Magnitude Morphology 
CSF containment approach 

CB OB AB VR 

Spinal cord 
midpoint’s vertical 

position with 
respect to the 
impactor (mm) 

Small 0.02 0.22 0.25 1.28 

Average -0.91 -0.30 -0.29 -0.06 

Large -1.50 -0.92 -1.00 -0.76 

 

Variability in the preload reaction force profiles between the different CSF 

boundary conditions and morphologies was also found (Figure 2-9). The preload force 

curves of the CB method were consistent in their shape between morphologies. The OB 

and AB approaches showed an identical preloading behavior in the average and large 

models, however in the small morphology the similarities stopped after the transition to 

the relaxation part. The VR method showed more inconsistent curves across models, yet 

it was consistently the approach that took the longest to finish the preloading phase due 

to a lower system stiffness. 
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Figure 2-9. Preload reaction forces for each evaluated CSF containment 
approach and morphology scenarion. The OB line was dashed since 
it overlapped to the AB method’  results. After reaching forces close 
to the predefined threshold (0.36 N) there were oscilations in the 
measurements during the relaxation time for most of the approaches 
and morphology models resulting from the re-arrangement of the SPH 
particles around the spinal cord. 

Magnitude-wise, the largest percentage error between the peak preload force and 

the predefined threshold value was around 17%, and it was observed in the small model 

using the CB and AB approaches. After that, for the other CSF constrain techniques and 

morphology dimensions, the error ranged between 0 and 11%. To further study the effect 

of these preload force magnitude differences in the subsequent steps, the deformation of 

the spinal cord cross-section at the end of the preload was also compared between model 

scales and boundary conditions (Table 2-5). 

Table 2-5. Percental change in dorso-ventral diameter of the spinal cord cross-
section during impact for each evaluated CSF approach and 
morphology scenario. 

Magnitude Morphology 
CSF containment approach 

CB OB AB VR 

Dorso-ventral 
spinal cord 

diameter change 
after preload (%) 

Small -6.10 -5.58 -5.17 -9.49 

Average -6.92 -7.74 -7.74 -7.95 

Large -6.01 -6.72 -6.72 -7.34 
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By comparing the dorso-ventral diameter of the spinal cord cross-sections on each 

model before and after the preload, it was possible to identify the level of spinal cord 

compression before the impact. The percentages in Table 2-5 show that the largest spinal 

cord compression after the preload resulted from using the VR method, regardless of the 

morphological case. The differences between the largest and smallest dorso-ventral 

compression change were approximately 59%, 14%, and 20% for the small, average, and 

large models, respectively. In the small model, both the CB and AB reported similar 

preload force magnitudes, with larger levels of compression observed for the CB 

approach. In the average and large morphologies, the OB and AB maintained the 

similarities observed in the preload forces curves on Figure 2-9. Figures of the deformed 

shapes of the spinal cord cross-section at the end of the preload can be found in Appendix 

C. 

2.3.2. CSF pressure distribution  

The peak CSF pressure values calculated with each CSF constraint approach 

ranged between 0.07 and 0.21 MPa across the three morphologies (Table 2-6).  

Table 2-6. Predicted peak CSF pressures during impact for each evaluated CSF 
approach and morphology scenario.  

Magnitude Morphology 
CSF containment approach 

CB OB AB VR 

Peak CSF 
pressure 

(MPa) 

Small 0.21 0.07 0.12 0.12 

Average 0.17 0.09 0.13 0.14 

Large 0.13 0.07 0.10 0.14 

 

The lowest pressures were predicted by the OB method in all the models, while 

the highest values belonged to the CB method in the small and average models, and to 

the VR in the large morphology. The CB approach also showed a clear trend of calculating 

lower peak CSF pressures as the dimensions of the model increased (Figure 2-10). As 

such, the percentage difference between the maximum and minimum peak pressures 
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predicted by the CB approach was larger (47%) than the observed ones for the OB (25%), 

AB (26%), and VR (15%) approaches across morphological models. These variations and 

trends between peak pressures can be visually observed in Figure 2-10.   

 

Figure 2-10. Mean pressure values in the SPH particles for each evaluated CSF 
containment approach and morphology scenarion during the impact 
phase of the simulations. 

The predicted CSF pressures were compared against the CSF data from weight-

drop experiments performed by Jones et al. [13] in a porcine model of thoracic SCI. This 

comparison was possible since morphology studies performed have shown that porcine 

thoracic and NHP cervical regions can exhibit similar CSF-to-spinal cord ratios regardless 

of their differences in size [57], [66]. Jones and colleagues [13] reported CSF peak 

pressures ranging from 0.07 to 0.12 MPa. The predicted pressures from the OB and AB 

approaches in all three morphologies fell within or close to this experimental range, while 

for the VR method only the peak pressure in the small model was found between the range 

proposed by Jones et al. [13]. In the other two morphologies (i.e., average, and large), the 

VR peak pressures were close to the upper limit of the experimental range, showing only 

a 15% difference. For the CB approach, the only peak CSF pressure close to the 

experimental range was reported in the large model (0.13 MPa). For the small and average 

models, this approach overestimated the pressure magnitude in comparison with the 

experimental observations by 75 and 42%, respectively.  



57 

2.3.3. Stress and strain distribution in the spinal cord 

The predicted tissue-level stresses and strains were influenced by the choice of 

CSF boundary conditions and the cord and column size. In Table 2-7, the 95th percentile 

values of stress and strain observed in the elements of the spinal cord cross-section at 

the impact epicenter for the average model were included. 

Table 2-7. 95th percentile value and standard deviation (SD) for each mechanical 
parameters at the time of maximum compression in the small model 
for each evaluated CSF approach.  

Magnitude 
CSF containment approach 

CB OB AB VR 

Tresca stress (MPa) 0.50 [0.17] 0.62 [0.21] 0.59 [0.20] 0.93 [0.29] 

Max principal strain 0.65 [0.14] 0.72 [0.15] 0.70 [0.14] 0.75 [0.16] 

Min principal strain -1.15 [0.26] -1.22 [0.29] -1.19 [0.28] -1.30 [0.30] 

 

The 95th percentile values were used instead of the mean values since the mean 

values were similar between CSF boundary conditions and did not properly capture their 

effect in the tissue-level mechanics. Largest 95th percentile Tresca stress and principal 

strains (maximum and minimum) were predicted by the VR approach in the small 

morphology, followed by the OB, AB, and CB methods, respectively. For these mechanical 

features: Tresca stress, maximum and minimum principal strain, the percentage difference 

between the VR predicted values and the CB values were 60%, 14%, and 12%, 

respectively. The distribution of stress and strain values was relatively consistent among 

the CB, OB, AB, and VR approaches in the small morphology (Figure 2-11). 
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Figure 2-11. Stress and strain distribution at injury epicenter for each evaluated 
CSF boundary conditions in the small morphology model. Areas in 
blue experienced low magnitudes of stress or strain, while colored 
regions reported higher magnitudes. Tresca stresses were 
concentrated in specific regions: dorsal and ventral horns in GM, and 
ventral and lateral columns in WM. Higher max and min strain values 
were particularly observed in the lateral WM column, and in small 
ventral WM sections on the contralateral impact side. 

In the average model, once again the largest 95th percentile Tresca, max and min 

principal strain were predicted by VR method (Table 2-8), with the OB values as a close 

second (percentage differences between 0.9 - 12%). The CB also reported the lowest 

values in all three mechanical parameters. The percentage difference between the CB 

and VR predicted Tresca, max and min principal strain values were 46, 15, and 14%, 

respectively. 

Table 2-8. 95th percentile value and SD for each mechanical parameters at the 
time of maximum compression in the average model for each 
evaluated CSF approach. 

Magnitude 
CSF containment approach 

CB OB AB VR 

Tresca stress (MPa) 0.45 [0.20]  0.64 [0.23] 0.62 [0.22] 0.72 [0.25] 

Max principal strain 0.60 [0.12] 0.69 [0.14] 0.69 [0.14] 0.70 [0.14] 

Min principal strain -1.02 [0.23] -1.16 [0.28] -1.15 [0.27] -1.17 [0.29] 
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Like the small morphology results, the distribution of stresses and strains at the 

impact epicenter in the average model was similar between CSF approaches (Figure 

2-12). 

 

Figure 2-12. Stress and strain distribution at injury epicenter for each evaluated 
CSF boundary conditions in the average morphology model. Areas in 
blue experienced low magnitudes of stress or strain, while colored 
regions reported higher magnitudes. Larger stress values were 
observed in the dorsal and ventral GM horns, and in the lateral WM 
column. Higher max and min strains were mostly located in the lateral 
WM column, adjacent to the dorsal GM horn. 

Following the trend of the previous models, the highest and lowest 95th percentile 

values of stresses and strains were found with the VR and CB approaches (Table 2-9), 

respectively. In the large morphology, the AB approach showed higher values in all four 

mechanical parameters than the OB technique, with the percentage differences between 

their values ranging from 2 to 17%; the greatest difference found in the Tresca stress 

values, and the smallest in the minimum principal strains. The percentage difference 

between the highest (VR results) and lowest (OB results) were 28, 12, and 14% for the 

Tresca stress, max and min principal strain, in that order.  
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Table 2-9. 95th percentile value and SD for each mechanical parameters at the 
time of maximum compression in the large model for each evaluated 
CSF approach. 

Magnitude 
CSF containment approach 

CB OB AB VR 

Tresca stress (MPa) 0.40 [0.19] 0.42 [0.20] 0.50 [0.25] 0.53 [0.24] 

Max principal strain 0.55 [0.12] 0.58 [0.13] 0.60 [0.13] 0.62 [0.13] 

Min principal strain -0.94 [0.22] -1.01 [0.25] -1.03 [0.24] -1.08 [0.25] 

 

Some of the stress and strain distribution trends identified in the small and average 

cases where also observed in the large morphology model (Figure 2-13).  

 

Figure 2-13. Stress and strain distribution at injury epicenter for each evaluated 
CSF boundary conditions in the large morphology model. Areas in 
blue experienced low magnitudes of stress or strain, while colored 
regions reported higher magnitudes. Highest stresses were observed 
   G ’         h   ,    h    g                                  g     
of the ventral GM horn and the lateral WM column. Most large 
maximum and minimum strains were located in lateral WM sections 
                  G ’         h   .  

The mean 95th percentile values predicted by the CSF containment approaches 

were also compared across morphologies (Table 2-10). On average, the highest Tresca, 

maximum and minimum principal strain values were found in the small model, followed by 
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the average and large morphologies. The standard deviation in mean 95th percentile stress 

values decreased as the column and spinal cord morphologies increased in size, while 

the SD values in the evaluated strains showed low variation across morphologies. 

Moreover, the percentage difference between mean values in the small and large models, 

which predicted the highest and lowest magnitudes on every parameter, were larger for 

the Tresca stress (36%) and lower for the maximum principal strain (18%).  

Table 2-10. Mean 95th percentile values and SD for each mechanical parameter 
across morphologies. 

Magnitude 
Morphology 

Small Average Large 

Tresca stress (MPa) 0.66 [0.19] 0.61 [0.11] 0.46 [0.06] 

Max principal strain 0.71 [0.04] 0.67 [0.05] 0.59 [0.03] 

Min principal strain -1.22 [0.06] -1.12 [0.07] -1.01 [0.06] 

  

2.3.4. Computational times and efficiency 

 There was substantial variability in computational times for each of the evaluated 

CSF boundary methods with no consistent trend (Table 2-11). The shortest computational 

time in the small morphology was obtained with the OB methods, while for the average 

and large models, the CB provided the shortest computational times. The OB method 

reported both the shortest (47.9 hrs) and longest (127 hrs) run times across all simulations 

in the small model and large models, respectively. Meanwhile, the VR method took longer 

to finish computing than the other approaches in the small (102 hrs) morphology scenario, 

except in the average model, where the AB method took longer to compute (101.8 hrs). 

Still, the AB approach showed similar computational times to the CB method in the small 

(61.1 hrs) and large (71.5 hrs) cases, with a percentage increase in the number of hours 

no greater than 12.5% between morphologies. Looking at the individual times for each 

simulation step, it was noticed that preload’s computational times comprised between 48 

- 59% of the total simulation time for all the models. No other trend was identified. 
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Table 2-11. Computational times of the FE simulations ran for this study. The 
percent change between the open-boundary (OB), alternating-
boundary (AB), and volume-reduction (VR) approaches was 
calculated with respect to the close-boundary (CB) method. 

Morphology 
CSF containment 

approach 

Preload 
computational 
time (hours) 

Impact 
computational 
time (hours) 

Total 
computational 
time (hours) 

Small 

CB 27.9 29.7 57.6 

OB 24.0 23.9 47.9 

AB 30.3 30.8 61.1 

VR 55.2 47.1 102.3 

Average 

CB 27.3 27.2 54.5 

OB 54.0 38.3 92.4 

AB 55.2 46.6 101.8 

VR 44.7 38.5 83.2 

Large 

CB 32.9 30.7 63.6 

OB 72.6 54.3 127.0 

AB 40.4 31.1 71.5 

VR 62.9 46.1 109.1 

 

2.4. Discussion 

FE models are useful tools for understanding SCI biomechanics and recreating 

injury experiments without running into different logistical and ethical challenges [5], [17], 

[18], [52], [68]. Based on previous studies [11], [15], for FE models of SCI to be biofidelic 

and provide more accurate results they should include the CSF. Moreover, the outcomes 

of other studies have proposed that SPH is an appropriate method for representing the 

CSF in computational models of SCI [8], [16], [23]. In the literature, SPH has been 

implemented under different boundary conditions meant to capture the CSF’s behavior 

during impact and its influence in the distribution of forces in the spinal cord [8], [18], [19]; 

however, the effects of these CSF boundary conditions on the mechanical outcomes of 

the FE models have not been analyzed. Since FE models are a complementary tool for 

studying the correlation between tissue-level mechanics and damage after SCI [8], [9], 

[18], it is critical to understand if modelling choices, such as the definition of boundary 

conditions to constrain the CSF, are affecting the predicted results. Motivated by this need, 

and the observations from [57] and [66] in their large animal studies regarding the effect 

of morphology on SCI injury outcomes, in this work we compared both the effect of 
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different CSF boundary conditions and spinal cord and column morphology on the 

mechanical outcomes of FE models of SCI based on NHP experiments.  

2.4.1. I       ’                                 s 

In the NHP contusion experiments [47] with similar impact parameters as the 

simulations, the reported mean preload and total displacements were 2.8 and 6.4 mm. 

Comparing these values with the calculated displacements in the FE models, it is 

observed that the simulations underestimated the impactor’s displacement. Among the 

evaluated approaches and morphologies, VR showed the largest preload displacements, 

which were still between 24-29% shorter than the experimental mean. Since the preload 

step defines the starting point for the impact, and the results indicated that it stops at 

shorter displacements than the experimental mean, this difference is carried on to the 

calculated total displacement too. One possible explanation for these variations is that the 

actual preload step in the experiments occurs at a slower rate than in the simulated 

preload step [47]. The same rate was not implemented in the models, as it significantly 

increased the computational time (>350 hrs). Given the viscoelastic nature of most 

included materials, this is a likely that increasing the preload rate will affect the behavior 

and response of the model. Another reason, perhaps related to the previous point, could 

be that the material properties included in the FE models predict a stiffer response from 

the spinal cord and meninges system during the preload phase. The stiffer response 

makes the FE models reach the preload force threshold sooner, which triggers the impact 

step from a higher location.  

The difference in results could also be related to the experimental variability 

observed during the injury procedures. In [47] and previous computational studies 

recreating the NHP experiments [18], [19], [57], it has been suggested that the variability 

in the acquired results during the injury process can be related to both the morphological 

differences in the subjects, and the impact protocol choices. Although these experiments 

are performed by carefully following the established protocol, the surgeons and 

technicians involved still need to make some manual decisions, such as visually defining 

the spinal cord midline, or stopping the impactor after reaching the preload force threshold. 

These manual parts of the procedure can introduce variability in the experimental results 

that may not be captured by the FE model. Moreover, some observations from the surgical 

procedures of the NHP experiments indicate that there could be a small degree of 
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displacement of the animal sub ect’s body during the impact experiments due to issues 

with the clamping mechanism that holds their spinal column. This displacement would 

prevent the impactor from reaching the preload force threshold sooner, since it would 

move the spinal cord and column in the same direction and would affect the displacement 

reported after the impact. 

The variability in the displacement and force results (Table 2-3) reflected the 

adaptability of each CSF constraint method to the morphology scenario. For example, 

while the CB and VR approaches have fixed amounts of particles representing the CSF 

that do not change throughout the phases of the simulations, the number of particles that 

leave the subarachnoid space during the preload phase in the OB and AB approaches 

was different depending on the morphology and specific mesh size. Based on the acquired 

results, the OB and AB methods allowed for a faster preload step than the VR method, 

yet they predicted shorter impactor’s displacements during this phase of the simulations. 

Despite the  R method calculating impactor’s displacements closer to the experimental 

data, it was noticed that the fixed amount of CSF volume reduction of 86 mm3 had a 

particularly large effect in the small morphology compared to the larger morphology 

models. Even though this volume reduction only represented the 17% of the original CSF 

volume in the small morphology, the overall behavior of the model was significantly less 

stiff. This resulted in additional spinal cord compression during the preload and lateral shift 

during the impact, suggesting that to improve the implementation of the VR approach it 

would be necessary to adjust the CSF volume reduction to the morphological case, 

particularly with smaller cord and column dimensions. It was observed at least one layer 

of SPH particles under the spinal cord before the impact, which could have contributed to 

increasing the reported peak impact forces. For the OB, AB, and VR methods, this is an 

area of future improvement since a better displacement of these particles could help better 

recreate the preload and impact phases of the experiments. 

Our calculated force values were also compared against other computational 

studies that have recreated the NHP experiments proposed by Salegio et al. [47] using 

FE models. For instance, in Jannesar et al. [18], the range of impact reaction forces 

calculated by their generic models were found approximately between 12 and 18 N. It is 

likely that the modifications explained in the methods section are the cause of the variance 

in results. For example, the location of the spinal cord with respect to the subarachnoid 

space, that in [18] was defined at the bottom of this area in order to facilitate the preload 
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step, in the present work it was defined at the middle of the subarachnoid space, since it 

was a more biofidelic choice. Still, this choice implies more movement for both the SPH 

particles and spinal cord, which would be different depending on the CSF containment 

approaches and would affect the preload and impact results and as a result, increased 

computational time. Additionally, Jannesar and colleagues [18] used the input file 

methodology to define the SPH conversion for the CSF solid, which could introduce some 

variability in the calculation of the volume of the SPH particles. For SPH, it is 

recommended to have a uniform mesh, since the characteristic length used to calculate 

the particle’s volume is constant for all the elements. Having the spinal cord at the bottom 

of the dura mater would result in a moon-shape solid for the CSF, where it could be difficult 

to have a uniform mesh, resulting in disproportionate particle volume depending on the 

characteristic length used for the analysis. 

In Obaid et al. [19], the reported peak forces for their FE models using impactors 

of 4 and 5 mm, and with a mediolateral alignment of 0.5 and -1 mm, ranged from 15 to 23 

N. Although there were some overlapping values between Obaid and colleagues results 

with the range of predicted forces from the FE models of this study (20.17 - 28.61 N), it 

was noticed that our models showed overall larger peak forces. However, it is important 

to point out that the models in [19] included a homogenous cord, which means that the 

same material properties, taken from Maikos et al. [9] experiments in rats, were assigned 

to the entire cord. Meanwhile, the models described in this study included individual 

material properties and mesh elements for the GM, WM, and pia mater. Based on the 

findings of previous studies, these differences in material properties and mesh elements 

are likely responsible for the differences in peak reaction force values. For example, the 

research in [112] highlighted that including the pia mater around the spinal cord on FE 

models recreating bovine SCI experiments resulted in a maximum compression reduction 

of 9% on average during impact. Moreover, the material model used for the WM in this 

study was developed in [10] to capture the transverse anisotropy observed in this spinal 

cord tissue because of the aligned set of axons. It is possible that the two combined effects 

had an influence on predicting higher reaction forces than the results in [19]. 

It was also noticed that preload peak forces influenced the level of dorso-ventral 

compression in the spinal cord before the impact (Table 2-5). The VR and CB methods, 

which reported the highest and lowest preload forces respectively, also predicted the 

largest and lowest amounts of dorso-ventral compression for the spinal cord. This is a 
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relevant observation, since subjecting the spinal cord to different amounts of preload 

dorso-ventral compression, implies that the final compression results will also vary and 

will influence the magnitudes of strains in the spinal cord tissue. These variations in 

preload forces seemed to be mostly related to the CSF containment method employed, 

which highlights the relevance of evaluating and carefully choosing the boundary 

conditions defined for the CSF to improve the accuracy of the FE results. Still, morphology 

also plays a role in these outcomes. For instance, the results in the small morphology 

showed that the CSF containment approaches stopped at lower preload force magnitudes 

before transitioning to the relaxation time than in the other two morphologies. It is possible 

that the smaller dimensions in the spinal cord and meninges of this model, in combination 

with the smaller thickness of the CSF layer, contribute to have a faster force increase that 

was not captured with the sampling rate defined. Oscillations were also observed in the 

preload force profiles and were found to be caused mostly by the movement of SPH 

particles, which was influenced by the reshaping of the spinal cord during the relaxation 

phase, and the degree of lateral displacement in the spinal cord experienced as the 

impactor moved towards it. 

2.4.2. CSF pressure distribution 

The implemented CSF boundary conditions and the spinal cord and dural space 

morphology had influence in the predicted CSF pressure in the FE models. For example, 

the CB approach reported the highest peak pressure values in two out of the three 

morphologies studied. This was expected since the CB approach limited the displacement 

of the CSF particles during the preload, which resulted in additional pressure during the 

impact. However, the effect of this accumulated pressure was reduced as the spinal cord 

and dural space dimensions increased. A possible explanation for this trend is the effect 

of using the same impact parameters for each morphology case. In a model with a smaller 

cord and dural space, the impactor will occupy a larger proportion of space in the model 

after its final displacement than it would in a larger morphology, contributing to a larger 

accumulation of pressure. Meanwhile, the OB method predicted the lowest CSF peak 

pressures in all three morphologies. It was expected this boundary condition would predict 

lower CSF pressure values than other methods, since the OB approach allows the free 

flow of the particles representing the CSF during both preload and impact phases. The 
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results were consistent across morphologies, showing that this boundary condition was 

not highly affected by the dimensions of the spinal cord or dural spaces. 

Regarding the AB and VR methods, they predicted similar CSF peak pressures in 

the small and average morphologies. In the large model, the VR method calculated a 

larger peak CSF pressure than the AB approach. Even though these two methods account 

for the CSF displacement during the preload while still considering its mechanical effect 

during the impact, the CSF pressure results highlight important differences between the 

two. For instance, it was observed that the VR pressure predictions between the average 

and large models were almost identical, despite their differences in cord and subarachnoid 

space sizes. This similarity in pressure outcomes can be related to having reduced the 

same amount of CSF volume for all the models. For the small, average, and large models, 

the volume reduction of ~86 mm3 represented only a 17, 15, and 12% of the starting CSF 

amount, respectively. Since in an FE model with larger morphological dimensions the 

number of particles will be larger, it is possible that the 15 and 12% volume reduction in 

the average and large models lead to equivalent amounts of CSF, resulting in similar 

pressure outcomes. This observation suggests that more accurate CSF pressure results 

can be obtained with the VR approach if the CSF volume reduction is tunned to the 

morphological dimensions prior to the simulation. Although, it is possible that similar 

outcomes can be accomplished by implementing the AB method instead. This method is 

strongly influenced by the preload step, that can behave differently depending on the 

morphology of the FE model and the rate of preload application. As such, the number of 

particles that will get displaced outside of the dural space will change depending on the 

morphology, without the need of additional adjustment prior to submitting a simulation.  

Depending on the morphology of the model, different boundary conditions 

predicted CSF peak pressures close or within the experimental observations in large 

animal SCI by Jones et al. [13]. In the small morphology, none of the boundary conditions 

predicted CSF peak pressures within the experimental range, although the AB & VR, and 

the OB pressures were close to the upper and lower limit of the range, respectively. These 

discrepancies can be linked to the use of the same impact parameters regardless of the 

morphology. They might be too severe for a small morphology, resulting in overestimation 

in the CSF pressure even with the boundary conditions that allow for the CSF 

displacement during the preload. In the average model, the predicted CSF pressure by 

the OB approach was found between the range, while for the large model it was the CSF 
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pressure predicted by the AB method. The capabilities of the evaluated boundary 

conditions to predict CSF pressures within the experimental data available can be a key 

criterion for selecting the CSF boundary conditions to implement in FE models of SCI. 

Even though not all the different CSF containment approaches captured its 

biomechanical pressure effect during the simulated SCI scenario, more exploration could 

be done to validate if they could be useful for recreating other clinical conditions related to 

SCI. For example, research has found that after the age of 60, there is a significant 

reduction of CSF pressure in humans [119], while at the same time there has been an 

increase in the proportion of SCI patients above 50 years of age [6]. Based on the lower 

predicted CSF pressures, boundary conditions such as the ones defined for the OB or AB 

approaches could help better recreate SCI in older adults, where the CSF pressure would 

be lower. On the other side, medical conditions like degenerative cervical myelopathy, can 

induce an increase in patients the intracranial pressure exerted by the CSF to the CNS 

[120], making them predisposed to SCI resulting from low-energy impacts [121]. The 

resulting increase in CSF pressure resulting from this condition could be represented with 

the CB approach or with an adapted version of the VR approach, given that these two 

methods showed to overestimate the CSF pressure during SCI depending on the 

morphological dimensions. 

2.4.3. Stress and strain distribution in the spinal cord 

The predicted tissue-level stresses and strains of our FE models based on NHP 

experiments were compared against other computational SCI studies. Maikos and 

coworkers [9] simulated a weight-drop injury on the thoracic spinal cord of rats and 

predicted maximum principal strains below 0.28. These strain values were lower than the 

predicted values of our FE model based on NHPs. Russell and colleagues [8] reported 

values of maximum principal strain no greater than 0.6 in their rat cervical contusion FE 

models. These strain values were closer to the findings of this study, although their 

predicted magnitudes were still lower than the peak values in our FE model based on NHP 

experiments. Other FE studies of SCI in rats also reported stress values [9],[122], however 

it was not possible to compare against their findings, since they only reported Von Mises 

stress values. In our FE models the Von Mises stress was not evaluated, since the material 

properties for the WM capture the non-linearity and anisotropy of this tissue [10], and the 
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Von Mises is meant only for linear isotropic materials [123], and has shown limited 

capabilities to capture the anisotropic nature of other biological tissues [123]. 

Comparing against FE models based on NHP experiments, it was also observed 

that our simulations predicted stress and strain values in similar orders of magnitude. 

Sparrey et al. [17] model of cervical SCI on NHPs reported peak maximum principal strains 

above 0.2 on the ipsilateral impact side at similar locations as our FE models. In these 

areas, it was observed that the predicted strains in our models ranged between 0.23-0.3, 

close to the results in [17]. Jannesar et al. [18], using their subject-specific FE models of 

SCI in NHPs, reported similar values for the minimum (0 to -1.5) and maximum logarithmic 

strain (0 – 0.8). However, their values for Tresca stresses (0 – 1.0 MPa) were lower than 

the predicted ones in this document. The differences in the tissue-level mechanical 

outcomes between our study and [17] or [18] are related to the differences in material 

properties, the definitions of contact properties, the method for representing the CSF, the 

complexity of the models’ geometries (i.e., simplified vs sub ect-specific), and the CSF 

boundary conditions. 

 It was observed that the CSF boundary conditions had limited effect in the 

magnitude or location of the stresses and strains in the spinal cord. Still, the VR method 

predicted the largest peak values for all the evaluated mechanical parameters in every 

morphology scenario. These outcomes were most likely linked to the larger impactor 

displacement that was predicted by this boundary condition across all morphologies. The 

impactor’s displacement during the impact step was the same for all the models, however, 

the preload displacement varied for each morphology as it took different amounts of 

displacement to reach the force threshold. Using the VR approach in the small model, 

resulted in more spinal cord lateral shift during the impact, which changed the location of 

stresses and strains in comparison with the other boundary conditions. These 

discrepancies were not observed in the average or large models. 

The morphology of the FE models affected the location and magnitude of stress 

and strain values in the spinal cord cross-section. These results were influenced by the 

impact parameters, since depending on the morphology, the spinal cord was subjected to 

different amounts of compression. For the same impact parameters, more compression 

was observed in the spinal cord cross-section of the small model (Appendix B). This 

amount of compression decreased as the cord dimensions grew larger and resulted in 
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lower strain values. These differences in compression, as well as the lateral shift of the 

spinal cord, contribute to the dorso-lateral change in the location of stress values 

depending on the evaluated morphology. Dorso-lateral shift in the strain values was 

observed between the small and average models, but it was less evident between the 

average and large morphologies. 

The changes in the location of higher stress and strain values through the spinal 

cord cross-section between morphologies is an important point of discussion. It is known 

that the location of the tissue damage in the spinal cord would determine the functional 

impairments [3], [36]; additionally, previous research has suggested the correlation 

between high levels of stress/strain and tissue damage after SCI [4], [5], [8], [9], [18], [94]. 

Based on that information, the different locations of high stress and strain values in the 

spinal cord cross-section suggest that using the same impact parameters could result in 

different functional outcomes for NHP subjects with different morphologies. Previous 

studies have already pointed out that there is large variability in spinal cord morphology 

across NHPs [47], [48]. As such, our results suggest that accounting for the morphology 

of the subjects in the SCI experiments could help to improve the consistency of the injury 

and functional outcomes in the animals, so it can be possible to better assess the efficacy 

of potential treatments. One possible way to address this variability can be to define 

subject-specific impact parameters, which has been previously proposed by other 

researchers doing FE models to recreate SCI experiments in animals [49]. Subject-

specific impact parameters could allow scientist to generate injuries located in the desired 

spinal cord sections regardless of the spinal cord and subarachnoid space dimensions of 

the NHP subject. 

2.4.4. Computational time and efficiency 

The observed differences in computational times between the simulated models 

can be linked to both the implemented CSF boundary condition and the evaluated 

morphologies. For instance, the CB, OB, and AB approaches include the same amount of 

SPH particles representing the CSF in the FE models. However, the number of 

interactions or the amount of displacement the particles experienced was different 

depending on the boundary condition. In contrast, the VR approach always started with a 

lower number of particles representing the CSF, which was expected to make this method 

more efficient than the PB approach. The results showed that this was only achieved for 
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the average morphology, since in the small and large models, the PB was more 

computationally efficient. These observations suggest that in most of the morphological 

cases, it was more computationally efficient to account for the set of particles that left the 

subarachnoid space of the FE model, than to compute the additional displacements and 

interactions of the particles resulting from the VR method. 

The effect of morphology in the computational times was most likely associated 

with its influence in the number of CSF particles and the changes in mesh pitch size in the 

FE models. For instance, it was observed that the number of particles needed for 

representing the CSF increased as the spinal cord dimensions grew larger. This had a 

particular effect in the computational time of the models using the OB approach, where it 

was observed that the computational time increased as the number of CSF particles 

increased. In the small and large models, the spinal cord meshes were refined in 

comparison to the average model to avoid some mesh quality issues reported by 

ABAQUS. However, a finer mesh in these models resulted in an increased number of 

elements, which could have further influenced the time required for computing. Although, 

it appeared like the increased number of elements in the spinal cord had limited influence 

in FE models using the CB approach, as the computational times were similar across 

morphological cases. 

Based on the acquired results, it was noticed that the SPH mechanisms have a 

strong influence in the computational times of the simulations. The analyzed mechanical 

outcomes and the previous observations of the SPH performance in other FE models [8], 

[18], [19] highlight that this method can accurately capture CSF behavior in computational 

models of SCI. Still, the accuracy of this method showed to come at a computational 

efficiency cost. Unlike other FE methods, SPH cannot be readily parallelized in ABAQUS 

[21], resulting in considerable computational costs. This reduces its current suitability for 

conducting large, parameterized simulations of SCI, such as subject-specific models, or 

its implementation in a more clinical setting, where outcomes would be expected in a 

shorter period. Although computational time should not be the only factor to consider, it 

can be a useful metric to account for when selecting the CSF boundary conditions to 

implement in a FE model of SCI with preload. 
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2.5. Conclusions 

The findings of this work provide useful information regarding the choice of CSF 

boundary conditions and its effect on the biomechanical response of FE models of SCI 

with preload using SPH to represent the CSF. The acquired results showed that the CSF 

pressure and computational times were closely influenced by the choice of boundary 

conditions. The morphological dimensions of the model had a strong effect in the impact 

reaction forces, and the magnitude and location of tissue-level stresses and strains in the 

spinal cord.  Overall, the AB boundary condition proved to be a better option for capturing 

the CSF biomechanical effect in FE models of SCI with preload based on NHP 

experiments. Even though this approach did not provide the best results in all the 

evaluated scenarios, its adaptability to the morphological dimensions of the models 

without the need for changes in FE model prior to simulation is a great advantage. The 

VR method also showed promising results in some scenarios, however, it was usually 

more computationally expensive than the AB method. Using the same impact parameters 

for different morphological scenarios resulted in variance in the general and tissue-level 

mechanical outcomes of the models. These variations in the results suggest that more 

consistent injury outcomes could be acquired by defining subject-specific impact 

parameters, that could be defined with the help of FE models of SCI. These advances will 

contribute to making computational models a better tool for assisting in the development 

or improvement of injury protocols in animals, and helping to the study of SCI. 
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Chapter 3.  
 
Identification of injured elements in computational 
models of spinal cord injury using machine learning 

Effective SCI prevention design requires knowledge of the magnitudes of 

mechanical loading that result in tissue damage. FE models of SCI provide detailed 

information of tissue-level mechanics and can be used in combination with 

histopathological data to define the link between load and injury. As such, the purpose of 

this study was to correlate tissue mechanics and damage in a computational model of 

NHP SCI. Three datasets corresponding to GM, WM, and the combination of gray and 

white matter tissues were used to train ML algorithms to identify tissue damage based on 

the mechanical outputs of FE models. The datasets were built from the comparison of 

histological images from SCI experiments in NHPs and subject-specific FE models. The 

classification performance of four ML algorithms (logistic regression, decision trees, 

support vector machines, and k-nearest neighbours) were evaluated and compared using 

cross-validation and the area under the receiver operating characteristic curve (AUC). 

After hyperparameter tuning, the AUC mean values for the algorithms ranged between 

0.79 and 0.82, with a standard deviation no greater than 0.02. K-nearest neighbors and 

logistic regression algorithms were better at identifying injured elements based on FE 

mechanical predictions than support vector machines and decision trees. The outcomes 

suggest that the ML algorithms have different sensitivity to the skewed distribution of 

classes in the studied datasets, and that identifying damage simultaneously in the gray 

and white matter tissues showed no advantages over studying each dataset separately. 

Minimum principal strain and logarithmic strain in the axonal direction had the strongest 

influence on tissue damage identification for the GM and WM, respectively. Correctly 

classified healthy and injured elements in both GM and WM sets showed wide and 

overlapping ranges of mechanical values, yet it was possible to identify mechanical values 

corresponding only to injured samples that could work as ‘thresholds’ for identifying tissue 

damage after SCI. These thresholds indicated that the GM tissue is more susceptible to 

minimum and maximum principal strain values than the WM, while the last one has a lower 

tolerance to Tresca stress and logarithmic strains in the axonal direction than the GM. 

These approaches will contribute to improving the current understanding of the 
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relationship between mechanical loading and tissue damage during SCI and will have 

implications for the development of prevention strategies for this condition. 

3.1. Introduction 

SCI is triggered by mechanical loading, which causes a series of biological 

responses resulting in irreversible functional damage to the neurological system [4]. 

Understanding the relationship between mechanical loading and tissue damage would 

help to establish design criteria for protective equipment, and for clinicians to select the 

most appropriate treatment to implement [8], [17], [18]. In addition, the relationship 

between tissue mechanics and injury can inform the design of animal model systems and 

improve the consistency in injury outcomes for variable animals [17], [18]. Having a 

preliminary insight into the mechanical loading distribution in the spinal cord and the 

subsequent injury outcomes could provide useful information to define mechanical 

threshold values that will result in tissue damage.[8], [17], [18] For these reasons, several 

studies have looked to establish the relationship between mechanical loading and tissue 

damage in the spinal cord [8], [9], [18], [94]. However this relationship is not yet well 

defined, particularly in large animal models, that are more representative of human injury 

[3], [6], [47]. 

Integrating computational FE models with histopathological findings from SCI 

experiments provides the opportunity to correlate mechanical loading and tissue damage 

[9], [17], [18], [54]. Previous studies, using rat [8], [9] and NHP [18] models, utilized 

statistical methods such as linear and logistic regression to establish correlations between 

mechanical features — such as maximum principal strain [8], [9], [94], and Von Mises and 

Tresca stresses [18] — and biological damage in the spinal cord tissue. Notably, these 

endeavors underscored the association between these mechanical features and damage 

in the GM and WM tissues of the spinal cord. However, establishing clear injury thresholds 

has proven challenging, since research findings have indicated different levels of 

correlation and tolerance between each spinal cord tissue and different mechanical 

features [8], [9], [18]. Moreover, threshold values reported from animal models have varied 

across species [8], [18] or the results have not suggested a clear value after which it is 

possible to identify tissue damage [8].  
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Current applications of artificial intelligence on SCI research [97], [124], [125] and 

as a tool for integrating FE and experimental data in other engineering scenarios [90], [91], 

[92], suggest it can help with some of the challenges of studying the complex correlation 

between mechanical loading and tissue damage. ML algorithms have been used in 

combination with imaging technologies, such as MRI, to identify lesions and damage to 

the spinal cord [97]. Other applications of ML algorithms have used clinical data to predict 

changes in functional outcomes after treatment [97], [125], and to assess the pain in 

patients with SCI [124]. These studies leverage the advantages of ML algorithms to 

understand complex relationships between SCI-related variables [97], [124], [125]. 

Additionally, the methodologies presented in [90] and [92], where experimental or clinical 

data were employed along with mechanical results from FE simulations to train different 

ML algorithms for bridge damage and hip fracture detection, further motivates and 

supports the exploration of ML in establishing a relationship between tissue mechanics 

and tissue damage in SCI.  

Within these research studies, a broad range of ML algorithms have been applied. 

Each algorithm has capabilities and advantages worth exploring for the purposes of the 

study. For instance, LR was used in previous SCI work to fit mechanical estimations from 

FE models with injury status [9], [18], which would facilitate comparisons across studies. 

DT are versatile and have the potential to be upgraded to a Random Forest classifier. 

SVM is capable of discerning complex decision planes between several features [95], [96], 

which could be highly relevant since studies have suggested that SCI is most likely the 

product of the combined effect of multiple mechanical parameters [126]. Lastly, KNN is 

both adaptable [103] and can provide insights regarding the spread and similarity [95], 

[103] of values between injured samples. 

We hypothesized that using different ML algorithms could improve the 

identification of injured elements in both the GM and WM tissue based on mechanical 

loading predictions from FE models of SCI. This is because depending on the ML 

algorithm, the criteria or approach to analyze the data provided will be different, providing 

a flexible approach to find correlations between variables [100]. Furthermore, employing 

different ML algorithms could help circumvent the different levels of correlation between 

the mechanical features and the damage in the GM and WM, since it is possible that 

different methods will prove to be better at identifying damage for a specific tissue. By 

using ML approaches, our study aims to contribute to a comprehensive understanding of 
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tissue damage identification post-SCI, with implications for clinical practice and further 

research. 

3.2. Methods 

An experimental NHP cervical spinal cord contusion dataset [18] trained four 

classification ML algorithms from the scikit-learn library [127]: LR, DT, SVM, and KNN to 

identify damaged or healthy tissue. The classification performance of each model was 

evaluated using the area under the ROC curve (AUC) score for the spinal cord GM, WM, 

and whole cord. This score was also used to select the best algorithm for identifying injured 

elements on each dataset. The relevance of the included mechanical features and the 

mechanical values reported for samples with an injury probability equal or greater than 

50% for each of the selected algorithms were also requested and compared against 

findings in the literature.  

3.2.1. Dataset details 

Pre-injury MRI scans taken from three NHP subjects were used to develop subject-

specific FE models matched to in vivo experiments (Figure 3-1 C) [18]. The results from 

the FE models of the spinal cord tissue were segmented into WM and GM elements 

(Figure 3-1 E). The dataset consisted of five mechanical features with the most relevance 

and correlation with tissue damage [18]: min/max principal logarithmic strain (LEP), 

logarithmic strain in the longitudinal or axonal direction (LEAXON), Tresca stress 

(TRESCA), and strain energy density (ESEDEN). Structural tissue damage in the spinal 

cord was observed from cross-sectional histological slices from each subject at a mean 

time of 20 weeks post injury (Figure 3-1 B), with a standard deviation of 0.47 [47]. 

Overlaying the histology data on element slices from the computational models, each 

element was assigned into one of two target classes: injured (1) or healthy (0). 
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Figure 3-1. Diagram of the spinal cord tissue datasets generation for training the 
ML algorithms. Weeks after unilateral impact SCI experiments (A), a 
histological analysis was performed on the spinal cord of NHP 
subjects in [47] (B). The experiments were recreated using subject-
specific FE models (C), and the simulation outcomes (D) compared 
against histological images. For the gray and white matter sections, 
the elements located inside the injury area were labeled as injured, 
and their values were exported as coma separated files. 

After having been assigned to a target class, the elements from the FE models 

were used to create three datasets across all subjects: GM elements (GM-only), WM 

elements (WM-only), and combined GM & WM elements (GM&WM) to explore the 

differences in predicting tissue damage in the spinal cord based on evaluating GM-only or 

WM-only, or combined tissue elements, GM&WM. The experimental SCI were unilateral 

and mild, resulting in more healthy elements in the datasets than injured elements. In 

addition, there were more WM than GM elements in the dataset due to the tissue 

distribution in the cervical spinal cord. These uneven distributions of data per tissue type 

and target value (healthy/injured) were accounted for in the training and implementation 

of the ML algorithms using their internal method to balance the class weights. 
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3.2.2. Data pre-processing 

The datasets were imported and converted into data frames (pandas’ library, 

Python). The datasets were checked for duplicate values and redundant features, and 

then split into train, validation, and test datasets with 70%, 20%, and 10% of the original 

dataset respectively, using the train_test_split_ function [127]. To keep the original class 

distribution in the split datasets, the 'stratify' parameter was set (Table 3-1). Datasets from 

GM-only and WM-only were concatenated into a new dataset as GM&WM dataset. To 

distinguish GM and WM, a new feature column 'TissueType' was included in the dataset. 

 his new feature had binary values, with ‘0’ representing the GM and ‘1’ the WM samples. 

Table 3-1. Number of healthy and injured elements after each dataset split. 

Dataset 
Train Validation Test 

Healthy Injured Healthy Injured Healthy Injured 

GM-only 965 553 276 158 138 79 

WM-only 3952 1202 1129 344 565 172 

GM&WM 4916 1755 1406 502 703 251 

3.2.3. Parameter tuning and cross-validation 

To compare the performance of the four ML models on each dataset, a 10-fold 

cross-validation (CV) [127] and the AUC metric were employed. K-fold was combined with 

shuffle splits to generate randomized sets that preserved the class distribution of the 

original set. Each algorithm was first fitted to the training portion of the data and then the 

validation set was used to find the best hyperparameters for each ML algorithm using a 

randomized search CV function [127]. In this context, the term hyperparameter refers to 

the set of internal and tunable parameters characteristic to each ML algorithm [128]. These 

hyperparameters were set before the learning process began and they affected the 

training of the algorithms [128], which made it important to properly define their values to 

have reliable classification or prediction results. To avoid overfitting during the 

hyperparameter optimization, an additional 5-fold stratified shuffle split was included in the 

CV parameter of the randomized search function (Table 3-2).  
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Table 3-2. The range of randomized search parameters evaluated for each ML 
Algorithm during hyperparameter tuning. 

General & algorithms’ parameters 

n_iter = 50 scoring = roc_auc 

LR DT SVM KNN 

C: loguniform (1e-
5, 100) 

Criterion: gini, 
entropy 

C: loguniform (1e0, 
4e2) 

n_neighbour: 
range(1, 100) 

Solver: liblinear, 
lbfgs, newton-cg 

min_samples 

_split: range (2, 80) 

Gamma: auto, 
scale 

Weights: uniform, 
distance, none 

Class_weight: 
balanced, none 

Splitter: best, 
random 

Kernel: rbf, poly, 
sigmoid 

- 

- 
Class_weight: 

balanced, none 
Class_weight: 

balanced, none 
- 

 

The mean and standard deviation (SD) values for the balanced accuracy, 

precision, recall, F1 score, and AUC metrics were calculated for each algorithm after the 

10-fold CV. Only the AUC values were reported since it was selected as the decisive 

metric. For each dataset, the algorithms and set of tuned parameters with the highest 

mean AUC score after the 10-fold CV were selected for the final test. Each dataset was 

split again into new training and test sets, where the initial validation and test sets were 

combined into a larger evaluation set (30% of the original data) and used to train and test 

the best performing algorithms with tuned parameters. The accuracy, precision, recall, F1 

score, and AUC metrics were calculated. 

3.2.4.  Feature importance and range of values on injured elements   

From the results of the selected and tuned ML algorithms for the GM and WM 

datasets, the mechanical values of all the samples correctly classified with an injury 

probability above 50% were requested using inverse prediction, as well as the coefficient 

of importance for each mechanical feature. The combined GM&WM set was excluded 

from this analysis, since the spinal cord tissues do not share the same mechanical 

features, and it would be difficult to isolate the effect of mechanics on the gray and white 

matters and their different tolerances to stress and strain values. The predicted probability 

for each sample of the test set to be classified into one of the two classes was requested. 

After, the index of all the samples with a predicted probability of injury greater than 50% 

were located, saved, and compared against the index number of the samples that were 

indeed injured samples. By doing so, the final list of index numbers corresponded only to 
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the ones belonging to the samples correctly predicted as injured. Using built-in scikit learn 

functions, the maximum, minimum, mean, and standard deviation values were calculated 

from the final list of samples for each mechanical feature.  

Feature importance was extracted using available Python functions for the LR and 

DT algorithms. Since KNN and SVM algorithms do not support the same functions for 

requesting feature importance, an iterative approach followed the method of other medical 

classification studies [129] to determine which features had a higher contribution in the 

calculated AUC score [129]. This approach consisted of training the KNN and SVM 

algorithm after hyperparameter tunning with one mechanical feature at a time, then 

proceed with the testing of the algorithm and requesting the AUC score at the end of each 

iteration. The AUC values acquired by the algorithms with each individual mechanical 

feature were reported, and the one with the highest score was selected as the more 

relevant one. 

3.3. Results 

3.3.1. Parameter tuning and cross-validation 

The AUC values acquired with each ML algorithm were relatively similar across 

datasets (Table 3-3).  The KNN algorithm was most effective for the GM-only set while LR 

showed the best classification performance for both the WM-only and GM&WM sets, 

although with different hyperparameter values (Table 3-3). 

Table 3-3. CV Mean [SD] AUC values for each ML algorithms after 
hyperparameter tuning. 

 LR DT SVM KNN 

GM-only 0.82 [0.01] 0.82 [0.01] 0.82 [0.01] 0.83 [0.01] 

WM-only 0.81 [0.01] 0.79 [0.02] 0.80 [0.02] 0.79 [0.02] 

GM&WM 0.82 [0.01] 0.80 [0.02] 0.80 [0.02] 0.80 [0.02] 

 

The KNN algorithm best performed when considering 32 neighbors around the 

point of interest, and with distance-based weight for the class labeling (Table 3-4). For the 

LR algorithm, the C parameter value represents the strength of the regularization executed 

on the data before classification. 
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Table 3-4. Best performing ML algorithms for each dataset with the 
corresponding set of hyperparameters. 

 Dataset 

 GM-only WM-only GM&WM 

ML algorithm KNN LR LR 

Tuned 
parameters 

n_neighbors: 32 C: 3.756 C: 50.745 

weights: distance solver: newton-cg solver: liblinear 

- class_weight: balanced 
class_weight: 

balanced 

 

Comparing the best algorithms' performance on each dataset and the evaluated 

metrics (Figure 3-2): accuracy, precision, recall, F1 score, and the AUC show that most of 

the metrics scores obtained by the LR algorithms for the WM-only and GM&WM datasets 

were similar in magnitude. In contrast, the KNN algorithm used for the GM-only set showed 

better scores in all the metrics, particularly in precision and F1 score.   

 

Figure 3-2. Metrics scores of the best performing algorithms for each dataset 
after CV and hyperparameter tuning, using the 30% test set. 

3.3.2. Feature importance and range of values on injured elements   

For the GM-only dataset with the KNN algorithm, the recursive analysis of feature 

importance showed that the top three mechanical features that provided the highest AUC 

score were minimum logarithmic strain (Min LEP), followed by the maximum logarithmic 
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strain (Max LEP) and Tresca stress (TRESCA). The AUC values scored by the KNN 

algorithm with each individual mechanical feature are displayed in Table 3-5. 

Table 3-5. Results from the feature importance analysis on the GM-only dataset 
and KNN classifier using the AUC score. A heat map of feature 
importance is included (darker color – higher importance). 

Dataset Criteria 
Mechanical Feature 

Min LEP Max LEP LEAXON TRESCA ESEDEN 

GM AUC value 0.82 0.81 0.72 0.81 0.79 

 

The range of mechanical values for the all the GM-only samples that were correctly 

classified by the KNN algorithm as injured or healthy are summarized in Table 3-6. 

‘ hreshold’ values observed between in ured and healthy elements were also included.  

Table 3-6. Maximum, mean, minimum, and SD values of the GM-only samples 
correctly predicted with an injury probability >50% (injured - red) and 
<50% (healthy – white). 

Mechanical 
feature 

Injury 
probability 

Sample 
class 

Min Mean Max SD Threshold 

Min LEP >50% Injured -0.36 -0.62 -0.95 0.12 
-0.53 

<50% Healthy -0.11 -0.30 -0.53 0.09 

Max LEP >50% Injured 0.26 0.35 0.48 0.05 
0.34 

<50% Healthy 0.11 0.21 0.34 0.05 

LEAXON >50% Injured 0.10 0.26 0.44 0.08 
0.32 

<50% Healthy 0.00 0.10 0.32 0.07 

TRESCA >50% Injured 0.13 0.42 1.95 0.24 
0.30 

<50% Healthy 0.03 0.09 0.30 0.06 

ESEDEN >50% Injured 0.01 0.07 0.43 0.05 
0.14 

<50% Healthy 0.00 0.02 0.14 0.02 

 

The data in Table 3-6 show that the spread of mechanical values in injured GM 

tissue sections always showed larger maximum magnitudes than the spread of feature 

values in the healthy areas. The largest differences between maximum magnitudes in 

healthy and injured GM elements were observed for the TRESCA and ESEDEN features, 
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with 147% and 102% of percentage difference, respectively. Consequently, most 

mechanical magnitudes found on healthy samples of the GM-only set overlapped with the 

range of values reported for the injured ones. These ranges were more overlapped for the 

ESEDEN and LEAXON features, since approximately 93 and 69% of the values were 

shared. An overlap of only 35% of the Max LEP values was identified between the healthy 

and injured samples. The standard deviation on GM injured elements indicated a larger 

spread of magnitudes than in the healthy samples for all mechanical features, particularly 

for the TRESCA and ESEDEN. 

For the WM-only dataset, the best classifier algorithm was LR. By requesting the 

coefficients of importance calculated by the ML algorithm, the logarithmic strain in the 

axonal direction (LEAXON) was found to have the largest effect on increasing the 

probabilities of a sample to be classified as injured, followed by the Tresca stress and Min 

LEP (Table 3-7).  

Table 3-7. Results from the feature importance analysis on the WM-only dataset 
                      g  h         ’              .   h           
feature importance is included (darker color – higher importance). 

Dataset Criteria 
Mechanical Feature 

Min LEP Max LEP LEAXON TRESCA ESEDEN 

WM 
Coefficient of 
importance 

3.74 -1.29 7.47 5.24 3.12 

 

 The thresholds and ranges of mechanical values for the injured and healthy 

samples correctly classified in the WM-only set are displayed in Table 3-8. Like the GM, 

the injured WM samples also showed larger maximum magnitudes than the healthy 

elements. The largest percentage differences between maximum values in healthy and 

injured samples were 147.7% and 92.4%, for the TRESCA and ESEDEN features, in that 

order. There was also a significant overlap between the range of LEAXON and ESEDEN 

values, since 100 and 96.9% of these features’ magnitudes in healthy WM elements were 

also found on injured samples (Table 3-8). The standard deviation on mechanical values 

associated with injured samples was also larger than deviation on healthy samples, 

specially for the TRESCA and ESEDEN. 
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Table 3-8. Maximum, mean, minimum, and SD values of the WM-only samples 
correctly predicted with an injury probability >50% (injured - red) and 
<50% (healthy – white). 

Mechanical 
feature 

Injury 
probability 

Sample 
class 

Min Mean Max SD Threshold 

Min LEP >50% Injured -0.28 -0.69 -1.20 0.19 
-0.77 

<50% Healthy -0.05 -0.32 -0.77 0.12 

Max LEP >50% Injured 0.12 0.41 0.76 0.11 
0.68 

<50% Healthy 0.04 0.27 0.68 0.09 

LEAXON >50% Injured 0.00 0.28 0.45 0.07 
0.26 

<50% Healthy 0.00 0.06 0.26 0.06 

TRESCA >50% Injured 0.02 0.18 0.93 0.13 
0.14 

<50% Healthy 0.00 0.02 0.14 0.02 

ESEDEN >50% Injured 0.01 0.07 0.87 0.09 
0.32 

<50% Healthy 0.00 0.01 0.32 0.02 

 

Different threshold values were observed for each spinal cord tissue. GM’s 

LEAXON and TRESCA thresholds were found after larger magnitudes than the WM ones. 

However, the roles inverted when looking at the Min/Max LEP and ESEDEN WM 

thresholds, whose values were larger than the proposed values for the GM. The most 

significant differences between the threshold values of the two tissues were found in the 

ESEDEN and TRESCA features (78.3 and 72.7%, respectively), while the closest 

thresholds were the LEAXON and Min LEP ones (20.7 and 36.9%).  

3.4. Discussion 

Mechanical data from FE models in combination with histopathology results from 

SCI experiments have shown the correlation between injury mechanics and tissue 

damage [9], [17], [18], [54], [126], [130], [131]. Still, it has not been possible to quantify 

this relationship, or to identify clear mechanical threshold values after which the spinal 

cord tissue will be damaged. As such, in this study it was proposed to explore the 

capabilities of different ML algorithms to classify injured elements in computational models 

of SCI, based on the mechanical outputs of the injury simulations. It was expected that 

including different classifiers, which follow different approaches to find patterns in the data, 
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would leverage some of the challenges encountered when studying the effect of 

mechanics on tissue damage. 

Our results show that the ML algorithms have different classification capabilities 

for identifying injured elements based on the input data coming from FE models and 

histopathology. Each algorithm assigned distinct levels of importance to the mechanical 

features in the tissue datasets, which affected the minimum magnitudes at which each 

algorithm classified a sample as injured. Based on those observations, evaluating the 

performance of other ML classifiers that would use different criteria to analyze the input 

data could further validate the classification results, and the observed patterns between 

the mechanical feature magnitudes and the probability of an element to be injured. At the 

same time, it would be ideal to increase the number of available samples, since currently 

the data available belonged to only three primate subjects. Having data from more animal 

subjects would help to confirm our findings are not only representative of the observed 

cases and would strengthen the conclusions discussed in this document. These 

improvements in the proposed methodology could contribute to enhance the relevance of 

FE models as a clinical tool for the prediction of injury patters on animal experiments.  

3.4.1. Parameter tuning and cross-validation 

The AUC scores achieved by the evaluated ML algorithms differed depending on 

the evaluated dataset, still the values fell within the narrow range of 0.79 and 0.83. These 

results agree with other biomedical binary classification studies [100], [132], where the 

performance of ML algorithms was linked to the ability to find patterns in the data [100]. In 

this study, differences in sample sizes and distribution of classes could further affect the 

algorithms' sensitivity. For instance, the WM-only set had more than three times the 

number of samples than the GM-only one (Table 3-1). At the same time, this smaller 

sample size increased the percentage of injured elements in this set. Around 36% of the 

GM-only dataset were injured elements, in contrast with the 23% and the 26% included in 

the WM-only and GM&WM datasets, respectively. The similar proportion of injured 

elements between the WM-only and the GM&WM sets might explain the similarities in the 

metrics scores calculated by their LR classifiers; it also suggests that evaluating for tissue 

damage simultaneously for the gray and white matter does not facilitate the classification 

task. 
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The variance in number of injured elements per data set was related to the 

structural differences in the GM and WM tissues and the distribution of tissues across the 

spinal cord. The differences in material properties for GM and WM have been found to 

affect their mechanical response during injury, and therefore the distribution of damage 

[9], [55]. GM is a homogeneous and blood vessel-dense tissue [9], while WM shows 

anisotropic behavior due to the highly aligned set of axonal fibers [18]. Particularly in the 

WM it has been difficult to correlate mechanical parameters with tissue damage. Axonal 

fibers located in the WM are distributed with different densities throughout the tissue and 

can exhibit different calibre (diameters) depending on their location [34]. Future work on 

improving the material models implemented in FE models of SCI could investigate better 

capturing the variable characteristics of the axonal fibers in different sections of the WM 

tissue to gain a better insight at the distribution of stresses and strains. These observations 

highlight the classification challenges of the data and justify the interest in exploring the 

use of ML to better identify injured sections in the spinal cord tissues. 

The unbalanced distribution of injured and healthy elements was one of the 

reasons the AUC score was selected as the comparison metric. In other ML applications 

the accuracy score determines the classification potential of an algorithm [132], however, 

in this study, the skewed class distribution limited this metric’s relevance. Based on the 

findings of [133], [134], using other available metrics such as precision and recall, could 

result in prioritizing the classification of only one of the available classes. Consequently, 

the AUC score was selected as the metric to evaluate, since the results found in [132], 

[135] also showed it is robust for both balanced and unbalanced datasets, even those with 

a greater imbalance compared with these data.  

The differences between the algorithms’ performance on each tissue dataset were 

more evident when looking at several metrics. As shown in Figure 3-2, the accuracy, recall, 

and AUC scores were similar between datasets. However, precision and F1 scores were 

significantly lower in the WM-only and GM&WM datasets compared to the GM-only set, 

indicating there is a greater number of false-positive (healthy samples classified as 

injured) cases in the classification. These results might be related to the smaller number 

of injured samples available in the sets for the ML algorithms to learn from and the 

differences in correlation between mechanical features and the damage in GM or WM 

tissue found in [8], [9], [18]. Although is important to mention that one of the reasons why 

the WM tissue damage has shown a weaker correlation to mechanical parameters than 
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the GM, could be due to the anisotropy of the material resulting from the uneven 

distribution of axonal fibers and the different diameters they can exhibit, that to the author’s 

knowledge, has not been captured in the WM definition of FE models of SCI. Another 

factor that should be consider is the that the histology used to characterize tissue damage 

was obtained around 20 weeks after the mechanical impact to the spinal cord [47]. This 

means that the resulting damage is a combination of the mechanical loading effect during 

the primary injury phase and the biological responses that follow during the secondary 

injury, which limits the ability of the algorithms to predict tissue level injury from mechanics 

alone. 

When a similar methodology was followed using an FE model of rat SCI [9], 

experimental tissue damage data, and linear regression to correlate damage to maximum 

principal strain values, they reported AUC scores of 0.97 and 0.88 for the GM and WM, 

respectively. In this study, lower AUC scores were achieved, ranging between 0.82-0.83 

for the GM-only dataset, 0.79-0.81 for the WM-only, and 0.8-0.81 for the combined 

GM&WM set. However, the higher AUC scores reported in [9] are most likely related to 

the larger injury generated in the animal subjects, since they were subjected to a bilateral 

injury, the shorter time between the injuries and the histology collection [136], and the 

analysis of one mechanical parameter. In [18], Jannesar and colleagues used LR to 

investigate the correlation between mechanical outcomes of FE models of non-human 

primate SCI and tissue damage on a larger version of the same data used for this study. 

The mean AUC values acquired in [18] ranged between 0.85-0.95 for the GM and 0.72-

0.9 for the WM matter; which were also higher AUC scores than the acquired ones in this 

work. 

The variance in AUC results with respect to Jannesar et al. [18] observations can 

also be explained by the differences between implemented approaches on each study. 

The AUC scores reported by Jannesar and coworkers were generated after analyzing the 

data one mechanical feature at a time, while in this study, the training and testing of the 

LR algorithm included the values of the five relevant features. The features were not 

studied individually since other researchers support that tissue damage after SCI might 

be the result of a combination of stresses and strains, rather than by the individual effects 

of one of these parameters [126]. Additionally, in this study collinear features and outlier 

experimental data were removed from the input samples. In [18], the data of an FE model 

corresponding to a NHP subject whose experiment deviated from the expected outcomes 



88 

due to an undiagnosed medical condition was included. The results from this experiment 

and FE model were significantly different than the ones found in other subjects, therefore 

those samples were excluded from the input data used in this study. Moreover, during the 

data pre-processing of the datasets, the Von Mises and Tresca features had a Pearson 

correlation coefficient of 1, indicating collinearity between the variables. In the context of 

ML, collinearity indicates that two or more features are closely correlated to each other, 

and they provide similar or redundant information regarding the prediction or classification 

task [137]. Researchers try to avoid the use of highly collinear features in ML applications 

since they increase the dimensionality of the problem without providing relevant 

information, thus reducing the model’s performance and efficiency [137], [138]. 

Consequently, the datasets used in this study only included the TRESCA feature data. 

This choice was taken both to avoid the collinearity issue between the Tresca and Von 

Mises stress features, and the limitations of the Von Mises criterion to properly calculate 

stress values in non-linear and non-isotropic materials [123], such as the ones used to 

represent the GM and WM in the spinal cord of our FE models. Lastly, on [18], random 

sets with equal number of injured and healthy samples were used to fit the statistical 

model, while in this study the proportion of samples was kept the same. To account for 

the unbalanced datasets the “class weight” was included as part of the ML algorithms. 

These changes were proposed to improve the quality of the data and mitigate sources of 

variability, which can allow us to draw more reliable conclusions regarding the relationship 

between mechanical loading and tissue damage during SCI. 

3.4.2. Feature importance and range of values on injured elements 

The best performing algorithms for each spinal cord tissue dataset also provided 

different results regarding the mechanical features’ importance for identifying damage. For 

the GM-only elements classified with the KNN algorithm, the Min LEP followed by Max 

LEP and TRESCA were the best injury predictors based on the AUC scores obtained 

when classifying samples using each individual feature (Table 3-5). The differences 

between AUC scores ranged between 1 and 13%, which indicates similar contributions of 

the mechanical parameter to the injury identification in this dataset. These findings are 

similar to the reported ones on Jannesar et al. [18], where using the Nagelkerke R2 to 

measurement the injury-predicting capabilities of each feature, reported that TRESCA, 
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MaxLEP, and MinLEP were the most relevant features for the GM, with a percentage 

difference in their R2 value no larger than 24%.  

Meanwhile, LEAXON, TRESCA, and Min LEP showed the highest coefficients of 

importance for the LR classifier used with the WM-only dataset (Table 3-7). Percentage 

differences between the features’ coefficients of importance ranged from 18 to 283%. This 

suggests that the most relevant mechanical features had larger contributions in the 

classification of injured samples for the WM dataset evaluated with the LR algorithm and 

highlights the importance of carefully selecting the features included on the datasets. In 

[18], the same mechanical features showed the highest relevance for tissue identification 

however the order was: TRESCA, Min LEP, and LEAXON, and the largest difference 

between the R2 values of each parameter was approximately 48%. The observed variance 

in the order of feature importance’s rankings between Jannesar findings and our results 

could be related to the differences in the included data, included features, and the fitting 

process for the algorithms previously explained. Still, other studies such as the one 

performed by Czyz et al. [113], agree with the results from the WM-only set, where the 

LEAXON feature showed the highest coefficient of importance for identification of tissue 

damage. They evaluated the predictive roles of stress and strain values in the horizontal 

(X), sagittal (Y), and longitudinal (Z) axis of the spinal cord of FE models reconstructed 

from human SCI cases. Using a multiple logistic regression model, they found that stress 

and strains in the longitudinal or axonal direction were more significant indicators of 

neurological damage than the values in other directions. 

The observed differences in threshold values of the most relevant features, 

presented in Table 3-6 and Table 3-8, provided information regarding the susceptibility of 

each spinal cord tissue to damage after impact. GM-only samples with an injury probability 

>50% showed to be more susceptible to Min/Max LEP magnitudes than the WM samples. 

Inversely, WM samples results indicated they are more susceptible to TRESCA stress and 

LEAXON strains than the GM. These could be key observations to account for during the 

interpretation of mechanical outcomes from FE models recreating animal SCI 

experiments. Particularly since depending on the impact parameters and morphological 

dimensions of the animal subjects, both the distribution and magnitude of stresses and 

strains will vary [17], [18], [55], [122]. Accounting for the susceptibility of each spinal cord 

tissue to different mechanical parameters could provide insights to better control the 

spread of damage in the experiments, by carefully tunning the levels of spinal cord 
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compression or applied force, which could improve the consistency of injury outcomes 

between subjects. 

Comparing the proposed thresholds against the ones in [18], the magnitudes of 

their values differ with the findings of this work by at least 32%. Yet, their results show 

similar trends to the ones found in this study regarding the susceptibility of each spinal 

cord tissue to the mechanical features. As such, Jannesar et al.’s GM results indicated it 

was less susceptible to Tresca stress than the WM, and the opposite behavior was 

observed for when comparing the Min/Max LEP thresholds. The differences in the 

proposed threshold magnitude can be explained by the fact that Jannesar et al. used the 

samples right at the 50% probability mark, while in this work, both the correctly classified 

healthy and injured samples were studied and the ‘thresholds’ were defined after finding 

a value that was not shared between the healthy and injured elements. This approach was 

followed to have a closer look at the range of mechanical values that the ML algorithms 

related only to tissue damage, since based on the findings of Russel et al. [8], it was 

possible to find ranges where even small magnitudes of stress or strain were also related 

to in ury. Additionally, according to the author’s understanding of the ML algorithms, the 

samples classified as injured with probabilities close to the 50% boundary represent 

samples that the algorithm was less certain about during the classification. As such, 

defining thresholds from those samples might not be optimal, since it is likely that the 

algorithms were not able to draw strong conclusions about the correlation of mechanical 

features and tissue damage. It is also suggested that future stages of this work consider 

these facts when using the inverse prediction method to define thresholds, since it was 

shown in this study that even considering the correctly classified injured GM and WM 

samples with more than 50% of injury probability, there are wide ranges of values for the 

different mechanical features that can even be found on the healthy samples (Table 3-6 

and Table 3-8). 

The findings of other researchers regarding possible mechanical thresholds were 

also compared against our results. As it was previously mentioned, Russell and 

colleagues [8] reported that maximum principal strains in the cervical spinal cord of rats 

above 0.1 were correlated to tissue damage after a contusion injury. Czyz et al. [113] work 

with reconstructed FE models from human cervical SCI cases described values of 0.0081 

MPa stress and 0.01 strain in the longitudinal or axonal direction as the cut off magnitudes 

for neurological deficit risk in the spinal cord. In other studies, such as the one of Fradet 
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et al. [130] performed in harvested porcine spinal cords, they detected mechanical 

damage to the cervical spinal cord tissue after engineering strains of 0.74 – approximately 

equivalent to a logarithmic strain of 0.55 - using similar compression rates to the ones 

followed in the NHP experiments studied in this paper. The threshold values proposed in 

[8] and [131] were considerably lower in magnitude than the thresholds suggested in the 

current paper, similar to the observations in Jannesar et al. [18]. The proposed strain 

magnitude indicating mechanical damage by Fradet and colleagues [130] was closer to 

the Max LEP thresholds proposed for the GM and WM samples in this study. Still, it is 

worth noting that they did not look at histopathological evidence to identify tissue damage, 

instead they defined their threshold at the point of material failure they observed during 

the compression of the porcine spinal cord samples. 

Although we were able to isolate and propose individual mechanical threshold 

values for the GM and WM, it is important to consider that tissue damage can be correlated 

to the combined effects of both stresses and strains [114], as opposed to the individual 

effect of a specific mechanical parameter. This idea was proposed in the earlier work of 

Galle et al. [114], where they studied the correlation between stress and strain values at 

the tissue level in WM samples of guinea pig spinal cord using single and multiple 

regression analyses. Their analyses indicated that the strongest correlation between 

tissue damage in the WM was linked with a combination of normal (𝜎𝑥, 𝜎𝑦, and 𝜎𝑧) and 

shear (𝜏𝑥𝑦) stresses, and a combination of in-plane strains (𝜀𝑥, 𝜀𝑦, and 𝜀𝑥𝑦). Even though 

Galle and coworkers’ conclusions resulted from the observation exclusively in the WM, it 

its possible that this behavior could extend to the GM, involving a different combination of 

mechanical parameters. This observation could also highlight one of the main advantages 

of using the methodology proposed in this study for the classification of injured elements 

in FE models of SCI. The selected ML algorithms were trained with the data from multiple 

mechanical features, and they use it simultaneously to construct a multidimensional 

decision boundary that allowed for the classification of the injured elements. Their 

classification process accounts for the collective effect of the including mechanical 

features, following the idea proposed by Galle et al. Future stages of this work could 

concentrate on recovering the multi-variable thresholds defined by these algorithms, and 

studying their correlation with spinal cord tissue damage.  

The implementation of ML algorithms showed promise at classifying and analyzing 

the range of mechanical values of injured and healthy samples of the spinal cord based 
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on FE modeling and histopathological data. The classification capabilities measured with 

the AUC scores fell within the scores reported in previous studies [9], [18]. Additionally, 

looking at the range of mechanical values of the correctly classified healthy and injured 

elements of the FE models, it was possible to identify ranges of values for each 

mechanical feature that corresponded exclusively to the injured elements. Something that 

was not observed in previous studies, since the range of values of the healthy elements 

were not studied [9], [18], or they overlapped with the magnitudes observed on the injured 

elements not allowing to identify a specific separation [8]. While it will be needed to work 

on some of the limitations to make stronger conclusions on these findings, such as 

accessing earlier to the histopathology data to isolate the effect of mechanics on the tissue 

damage, or looking at the combined effect of stresses and strains to define multi-variable 

thresholds, these preliminary results should justify the further exploration of using ML 

algorithms as a tool to study the correlation between injury mechanics and the damage to 

the spinal cord tissue.  

3.5. Conclusion 

This study explored the use of supervised ML algorithms to establish relationships 

between mechanical features and tissue damage in SCI using histological data from 

animal experiments and FE outcomes. Classification performance of the ML algorithms 

varied for GM, WM, and combined (GM & WM) datasets as the distribution of samples, 

relevant features, and target values varied across the tissue datasets. The best performing 

classifier for the GM-only dataset was the KNN algorithm, while LR worked better for both 

the WM-only and GM&WM datasets. This suggests that using different classifiers to 

explore the correlation between the mechanical outputs and tissue damage in the gray 

and white matters could be beneficial to leverage some of the differences in the tissue 

responses during injury. Minimum/maximum logarithmic strain (Min/Max LEP) and Tresca 

stress (TRESCA) were the most relevant features for identifying injury in the GM. For the 

WM, strain in the axonal direction (LEAXON), followed by the Tresca and minimum 

logarithmic strain showed the highest coefficients of importance. Mechanical values that 

corresponded only to the correctly classified injured samples and could be considered as 

approximate thresholds to identify tissue damage based on the outcomes of FE models 

of SCI. These results also suggested that the GM exhibited a larger tolerance to Tresca 

stress and to strains in the axonal direction than the WM. The opposite was found for the 
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injured WM samples, which were classified after larger magnitudes of minimum/maximum 

logarithmic strain, and strain energy density (ESEDEN) than the injured GM samples. 

Leveraging ML to quantify the relationship between mechanical loading and tissue 

damage will improve the reliability of computational models, and open new avenues for 

the implementation of ML algorithms to identify SCI damage. 
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Chapter 4.  
 
Discussion and Conclusion 

4.1. Discussion 

SCI is closely related to mechanical loading [3], [4], [6]. As such, understanding 

how the impact mechanics result in neurological damage in the spinal cord is a key step 

towards the development of prevention technologies, or potential treatments that will allow 

patients to recover motor and sensory function [3], [4]. Computational models of SCI 

based on experimental procedures in animals can help in this matter, since they provide 

a closer look at the tissue-level distribution of different mechanical parameters in the spinal 

cord [8], [9], [17], [18]. Still, the clinical usage of FE models of SCI is limited since the 

provided mechanical data that is yet to be translated or linked to experimental or functional 

outcomes so it can be used in a clinical SCI setting [4], [5], [18]. Attempts have been made 

to link these two areas (computational and clinical SCI methodologies) using FE 

mechanical outcomes in combination with tissue damage data acquired through imaging 

scans or histological procedures post injury, and statistical methods to investigate 

correlation between variables [8], [9], [18]. These attempts have helped understand the 

correlation of deformations and stresses to the tissue damage in the spinal cord that 

affects the neurological functions. Regardless, these methodologies are yet to be 

improved and streamlined so they can be used more efficiently as part of the SCI workflow.  

Motivated by this, the studies in this thesis aimed to improve the reliability and 

clinical relevance of computational models to study the effects of impact mechanics in 

SCI. To achieve this, the effect of different CSF boundary conditions and spinal cord 

morphology in the mechanical outcomes of FE models of SCI were compared (Chapter 

2). It was expected that this study could provide relevant data for guiding FE modeling 

choices, enhancing the accuracy and biofidelity of the computational models, while also 

considering computational efficiency. Subsequently, it was proposed to use ML algorithms 

to link FE mechanical outcomes and tissue damage data (Chapter 3), which could 

contribute to stronger conclusions regarding the correlation between mechanical loading 

and SCI. It was hypothesized that this methodology could help quantify specific limits or 
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tolerances of the spinal cord tissue for mechanical loading, which would be a useful 

contribution for SCI prevention. 

The findings of these thesis chapters proposed interesting implications for the use 

of both FE models and ML algorithms to study SCI. For instance, Chapter 2 underscored 

the relevance of properly defining CSF boundary conditions in computational models of 

SCI to better capture the injury experiments, and accounting for the spinal cord 

morphology to define impact parameters that provide consistent outcomes. These insights 

highlighted important considerations for improving the accuracy of FE models and 

provided additional information to improve the experimental procedures in animals. These 

findings can be linked to the work in Chapter 3. In that chapter, it was mentioned that some 

of the challenges encountered by the ML algorithms during the classification of injured 

elements in the GM and WM dataset could be linked to the input data acquired from the 

computational models. Based on the observations reported in Chapter 2, this is a 

reasonable hypothesis, given that previous computational models of SCI have 

implemented some of the evaluated CSF boundary conditions without having completely 

validated their effect on the mechanical outcomes. For instance, effects of morphology 

and CSF boundary conditions, such as the changes in the magnitudes and location of the 

stresses and strains, could have affected the comparison between histological images 

and the FE element slices used to build the tissue datasets. While it is true there are other 

sources of variability in the generated tissue datasets other than the calculated mechanical 

values, such as the time delay between the injury and the histological data collection, 

improving the accuracy of FE models of SCI is a good step towards more reliable data 

that can be used for studies like the one proposed in Chapter 3. 

Conversely, the findings from Chapter 3 regarding the mechanical features’ 

importance for injury identification provide useful information for guiding the selection of 

requested mechanical features in the simulations of FE studies, like the one in Chapter 2. 

Moreover, the proposed threshold values for injured samples in Chapter 3 could be used 

as preliminary benchmarks to translate the FE results into approximations of injury 

outcomes. For example, Tresca stress figured among the top three most relevant features 

for injury identification for both the GM and WM (Chapter 3), with their respective injury 

thresholds of 0.30 and 0.14 MPa. Figure 2-11, Figure 2-12, and Figure 2-13 in section 

2.3.3 show the Tresca stress magnitudes and locations in the spinal cord cross-sections 

of the simulated FE models. In all these figures, the Tresca stress color plots started at 
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the 0.25 MPa mark, meaning that every bright colored element located in sections of the 

WM could be considered potentially injured based on the 0.14 MPa threshold. The same 

analysis could be performed for the Tresca values located in the GM horns, where the 

elements with values above 0.3 MPa could also be considered as injured. This comparison 

can be implemented for every relevant mechanical parameter, and by identifying the 

location of the mechanical values above the thresholds with respect to the spinal cord 

regions, researchers could speculate about the functional outcomes that might be affected 

after the simulated injury. The preview of the possible injury distribution and neurological 

outcomes could inform researchers and clinicians on whether the followed injury protocol 

will generate suitable injury outcomes for the purpose of the study. This can contribute to 

further leverage the executed experiments on animals, and to this thesis objective of 

improving the reliability of FE models as a complementary tool for SCI research. 

Using the trained ML models and FE outcomes could provide an approximation of 

the injury distribution after an SCI experiment. Motivated by the results of chapter 2 

showing that the same impact parameters resulted in different general, and tissue-level 

mechanical outcomes, FE models could be used to define subject-specific impact 

parameters to improve the consistency of the injury outcomes. Systematically exploring 

subject-specific impact parameters in a large animal experimental model is not ethical or 

feasible. Leveraging the non-invasive nature of FE models of SCI to evaluate different 

combinations of impact parameters for a specific subject and predict mechanical tissue 

loading. The mechanical outcomes of the simulations could be later analyzed using the 

tissue damage thresholds defined with the ML algorithms in Chapter 3, and the potential 

injuries could be compared to determine the best combination of impact parameters for 

each subject.  

Furthermore, the assessment of the location of above-threshold values in the 

spinal cord of the FE models could be automated by including the ML methodology 

introduced in Chapter 3. The ML algorithms from Chapter 3 have already been trained on 

both mechanical FE predictions and histological results and could be used to classify the 

data samples from other FE models. These models would account simultaneously for the 

evaluated mechanical features, which can improve the injury identification, since tissue 

damage in the spinal cord after SCI is likely the product of the combined effect of stresses 

and strains [114]. After classification, it would be possible to modify the Python scripts to 

provide the IDs of every element classified as injured and used them to create a display 
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group in ABAQUS of the injured elements. From there it would be possible to provide a 

three-dimensional view of the injury and its volume, helping to have a better idea of the 

distribution of the damage further away from the injury epicenter. This approximation of 

the injury could be further validated against ultrasound observations of the injury, that can 

be now taken within minutes after the impact and can further separate mechanical effects 

on tissue from biological responses to injury. By performing this comparison, it would be 

possible to assess the accuracy of the injury classification capabilities of the ML algorithms 

and identify possible areas of improvement.  

Even though implementing the previously described methodology could make the 

FE models more versatile tools for SCI research, there are still limitations to overcome 

before this can be done. One of the biggest limitations is the long computational times 

required to run computational models of SCI. In Chapter 2 it was shown that depending 

on the morphology and CSF boundary conditions of the FE models, the computational 

times could vary between 48 and 127 hours. This is in large part attributed to the inability 

to conduct parallel computations on SPH elements. Although the SCI experiments are 

scheduled beforehand, which would provide with time to prepare a computational model 

in case it was needed, for unexpected situations the current FE models would not be able 

to provide a quick preview of the results. Consequently, finding ways to make the SCI 

simulations more efficient while maintaining the accuracy and level of detail in the results 

is one of the priorities for researchers working in this area [18]. Nonetheless, balancing 

the trade-off between computational efficiency and depth of the provided results can be 

complicated. For instance, there are faster computational models of SCI that have 

simplified the material properties of the spinal cord and other meninges [9], [17], [19], [55] 

or have not included them in the simulations [52], [68]. Despite these simplifications, those 

models have been able to predict values such as reaction force or impactor/pellet 

displacement within experimental observations. However, for some of the suggested 

approaches, such as the one in Chapter 3, a more accurate estimation of the tissue-level 

stresses and strains in the spinal cord is needed, and that could be hard to acquire in more 

simplified models. 

In the context of our research and the described FE models, the trade-off is 

currently more inclined towards providing detailed results rather than computational 

efficiency, and it is partially related to the implementation of SPH for representing the CSF. 

Despite the efficiency and accuracy described in other studies of traumatic brain injury 
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and SCI [8], [16], [22], [23], the SPH computations in ABAQUS are performed in a single 

processor, since the method has some limitations in the use of multiple processors 

depending on the characteristics of the analysis [21]. As a result, despite having access 

to the computational resources, it was not possible to breakdown the SCI simulations into 

multiple domains (multiple processors), which would help to reduce the computational time 

of the models. Although our results suggest that different combinations of spinal cord and 

column morphologies and CSF boundary conditions provide better computational times, 

it would be important to look for more efficient alternatives of the implemented FE 

techniques in the computational models of SCI. This idea is not limited to SPH, since other 

areas of our models such as the preload step could be further improved to make the 

simulations more computationally efficient. Successfully reducing the computational times 

of FE models of SCI may be particularly important for both enabling a faster analysis of 

more complex SCI models, like the more detailed subject-specific models, and allowing 

for the implementation of the combined workflow of FE models and ML algorithms for 

injury estimation. 

4.2. Contribution and relevant findings 

As described in section 1.7, the general goal of the work presented in this 

document was to contribute to advancing the reliability and clinical relevance of 

computational models of SCI, by evaluating the CSF representation with SPH under 

different boundary conditions in a contusion FE model with preload, and the integration of 

supervised ML techniques for tissue damage identification. These specific contributions 

are listed next, starting with the findings from the methods described in Chapter 2: 

1. The choice of CSF boundary conditions in a computational model of cervical 

SCI with preload based on NHP experiments has a great influence in the 

predicted impactor displacement, preload reaction forces, and computational 

times. Most importantly it affected the magnitude of the stresses and strains 

calculated in the spinal cord cross-section at the epicenter of the injury. 

2. Spinal cord and spinal column morphologies showed a considerable effect in 

the impact force outcomes and the stress and strain distribution at the injury 

epicenter. The results showed that for the same impact parameters, increasing 
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the morphological dimensions shifted the location of higher stresses and 

strains in the spinal cord dorsolaterally.  

3. The closed boundary (CB) approach, which is a common boundary condition 

employed for the CSF in FE models of SCI, can overestimate the CSF pressure 

in small and average morphologies. These deviations in the CSF pressure can 

affect the stress and strain values calculated in the spinal cord, and as such, it 

would be suggested to implement another CSF containment approach for 

these morphological cases. 

Moving on to Chapter 3, the relevant findings were: 

1. Using mechanical data from FE models of SCI and histological results to train 

them, the supervised ML algorithms k-nearest neighbors and logistic 

regression showed to be better classifiers than decision trees and support 

vector machines for injured elements in the GM, WM, and combined tissues 

datasets. 

2. Classifying injured samples simultaneously in the gray and white matter 

elements showed to have limited improvements in the classification outcomes. 

As such, it is recommended that each spinal cord tissue is evaluated 

individually, as their mechanical response will be related to their specific 

material characteristics and distribution of injured/healthy samples. 

3.  The feature importance analysis depicted that for the GM dataset classified 

with the KNN algorithm, the top three relevant features were minimum principal 

strain, maximum principal strain, and Tresca stress. For the WM set classified 

with LR, the strain in the axonal direction, Tresca stress, and minimum principal 

strain were the three most relevant features for injury identification. 

4. Looking at the injury probabilities predicted by the ML algorithms on the 

classified samples, it was possible to identify mechanical ‘threshold’ values 

corresponding only to correctly classified injured elements. The calculated 

thresholds indicated that the GM is more susceptible to minimum and 

maximum principal strain magnitudes than the WM samples. Meanwhile, it was 
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observed that the WM was more susceptible to the strains in the axonal 

direction and the Tresca stress than the GM. 

4.3. Future research questions  

The work presented in this thesis contributed to the initial objective of refining 

computational models of SCI for improving their reliability and expanding their 

applications. However, the work also motivated many new questions and areas that 

warrant further exploration. While the scope of the thesis was constrained to be achievable 

as a master’s thesis, the results highlight opportunities for ongoing research to deepen 

our understanding of SCI biomechanics and the implementation of both FE models and 

ML algorithms for its study. Consequently, in the following section opportunities for future 

investigation that could continue to expand our understanding of SCI and lead to better 

interventions and treatments for these medical conditions will be discussed. 

Starting with Chapter 2, the observed variability in the mechanical outcomes of the 

evaluated FE models during the preload constitutes a subject for future investigation. The 

preload is a fundamental part of the SCI simulations, as it influences the impactor’s preload 

displacement, which is also linked to the initial spinal cord compression and the total 

impactor’s displacement. The preload step accounts for at least 50% of the simulations’ 

computational time. Making sure the preload’s performance is consistent and efficient in 

both computational and experimental models of SCI could be critical to have better 

mechanical and injury outcomes. The current preload step is force-controlled, which 

explains its sensitivity to the different CSF boundary conditions and morphologies of the 

models. Still, it was consistently observed that the predicted impactor’s displacements 

were below the experimental mean in our models. Since our simulations shown that these 

variations in the preload displacement can have an effect in the impact force and stress 

and strain magnitudes, it proposed to follow the next research directions: 

• Evaluate the difference between a force-controlled and a displacement-

controlled preload phase. Implementing the preload as a displacement-

controlled step could help to reduce the sensitivity of this approach and 

improve the mechanical outcomes such as impactor’s preload displacement, 

and the trapping of the spinal cord at the bottom of the subarachnoid space. 

The comparison between the force-controlled and displacement-controlled 
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preloading could be implemented computationally, and the results could 

provide interesting insights, possibly transferable to the experimental 

procedures. This could be particularly relevant since the preload’s variability is 

not exclusive of the FE models. The peak preload forces and displacements 

reported in the experiments also show certain degree of variability. 

• Compare the computational efficiency and FE outcomes accuracy of the 

preload step when implemented with an implicit solver. The computational 

times required for the simulations are a persistent constraint for widening their 

used in the SCI research workflow. For this reason, making the simulations 

more efficient while maintaining their biofidelity would be a great contribution 

to this field of study. Given the low deformations of the different instances of 

the SCI models during the preload step, it could be possible to run this step 

using an implicit solver instead of an explicit one. Although the distribution of 

computational times was even between the preload and impact steps in most 

simulations, this change could contribute to reducing the overall computational 

time of the simulations. 

The results from our FE models showed that using different CSF boundary 

conditions in our computational models it is possible to provide different ranges of CSF 

pressure values during impact. From previous computational and experimental models, 

we know the importance of properly capturing the CSF pressure, so it does not skew the 

mechanical FE outcomes, yet it captures its protective role during SCI [11], [15], [56]. 

Nonetheless, as shown in the work of Arhiptsov et al. [23], there are situations where SCI 

can be further influenced by medical conditions, such as intracranial hypertension, that 

increases the CSF pressure [120]. There are other conditions that show changes in the 

CSF pressure of the affected population, which also makes them more susceptible to SCI. 

This is the case of when the CSF volume is reduced as seen in older adults [119], and the 

effects of degenerative cervical myelopathy [121]. Consequently, the following research 

question is stated: 

• Investigate the feasibility of some of the proposed CSF boundary conditions 

for effectively recreating SCI scenarios influenced by other medical conditions, 

such as intracranial hypertension, spine degeneration/CSF volume reduction 

in older adults, and degenerative cervical myelopathy. Implementing the CSF 
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boundary conditions could be a computationally efficient substitute to adding 

loading conditions in FE models of SCI for capturing the influence of other 

medical conditions in the CSF pressure, particularly when using SPH as the 

CSF’s modelling approach. 

Shifting gears into the work presented in Chapter 3, the implementation of ML for 

injury classification showed additional challenges when evaluating the WM samples. The 

difference between the precision and recall scores in the WM samples classification 

suggest that it was harder for the LR algorithm to properly label healthy elements than 

injured ones. One of the possible factors related to these differences in classification could 

be the spread of the injury far away from the epicenter. The histological analysis in [47] 

showed that the rostral-caudal spread of the tissue damage from the injury epicenter was 

not uniform. Additionally, it was observed that in spinal cord regions further away from the 

injury epicenter, most of the damage was in discontinuous areas of the WM. In the sections 

of the FE models corresponding to those areas, perhaps the mechanical values of injured 

elements are lower than in other regions and given the limited number of injured samples 

available for the ML classifier, these lower mechanical values affected the classification 

boundary for WM elements. As a result of these observations, a future research 

suggestion is: 

• Modify the tissue datasets and the ML algorithms’ implementation to account 

for the mechanical values of neighbouring elements and the distance from the 

injury epicenter. These changes could help differentiate between WM sections 

that showed low mechanical values in the FE models, but still presented 

damage either due to compromises in adjacent tissue structures (e.g., 

disruption of blood vessels and limited blood supply) or the non-uniform 

distribution of the injury in the rostral and caudal directions.  

From the combined observations reported in Chapter 2 and 3, there are other 

research directions worth exploring. Studies such as the one of Fradet et al. [118], showed 

the change in the stress-strain curves in samples of porcine spinal cord after reaching the 

‘failure’ value. This could imply that during the experiments, certain sections of the spinal 

cord reach these ‘failure’ values before the impact step finishes, which would effectively 

change their mechanical response during the rest of the experiment. In our current 

models, the behavior of the spinal cord will remain constant during the simulated process, 
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however, it is likely that more accurate results would be calculated if it were possible to 

capture failure modes of the materials. This methodology is already implemented in other 

computational studies studying mechanical structures in ABAQUS [139] and rupture in 

soft tissues [140], so it would be feasible to implement. Moreover, either available 

experimental data or threshold values, like the ones proposed in Chapter 3, could be 

useful for triggering the failure mode in the computational models. In summary, the 

research suggestion is: 

• Upgrade the computational models of SCI to capture the damaged-based 

failure of the spinal cord tissues to improve the mechanical response and 

outcomes from the models. 

4.4. Concluding remarks 

In this thesis, we have aimed to enhance the reliability and clinical relevance of 

computational models of SCI through a comprehensive exploration of numerous factors 

influencing mechanical FE outcomes and the integration of ML techniques for tissue 

damage identification. Our work provided valuable insights into the intricate relationship 

between biomechanical parameters, spinal cord morphology, and computational 

methodologies, with implications for both model refinement and clinical applicability. For 

instance, the importance of accurately representing CSF boundary conditions in 

computational models of SCI was demonstrated. Our findings underscored the substantial 

influence of CSF containment approaches on the predicted mechanical outcomes, impact 

parameters (i.e., impactor displacement and reaction forces), and stress and strain 

magnitudes within the spinal cord. Moreover, we identified potential limitations of 

commonly used CSF boundary conditions, suggesting the need for alternative 

approaches, particularly for cases involving small or average morphologies. Furthermore, 

our exploration of spinal cord and spinal column morphologies elucidated their significant 

impact on injury outcomes, with variations in dimensions resulting in distinct stress and 

strain distributions. This highlights the importance of considering subject-specific 

anatomical characteristics in computational modeling efforts, as they profoundly influence 

injury mechanisms and severity. 

The integration of supervised ML algorithms for tissue damage identification 

presented promising avenues for enhancing the clinical relevance of computational 
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models. Through training on mechanical data from FE models and histological results, ML 

algorithms exhibited the ability to classify injured elements within gray and white matter 

tissues. Moreover, the feature importance analysis and the proposed mechanical injury 

'threshold' values provided valuable insights to further our understanding of spinal cord 

tissue vulnerability to mechanical loading. Distinct susceptibility patterns observed 

between gray and white matter tissues emphasize the necessity of individualized 

evaluation, considering their unique material characteristics and response to mechanical 

stimuli. 

Despite these advancements, challenges remain particularly regarding 

computational efficiency and model validation. The prolonged computational times 

associated with detailed FE models necessitate the exploration of strategies for balancing 

computational efficiency with result accuracy. Additionally, ongoing efforts are required to 

link computational predictions against clinical observations, ensuring the fidelity and 

applicability of modeling approaches in real-world scenarios. In conclusion, this thesis 

contributes to the ongoing quest for improving the understanding and management of SCI 

through the refinement of computational modeling techniques and integration of advanced 

ML methodologies. By elucidating the complex interactions between mechanical factors, 

anatomical considerations, and tissue responses, we move closer to the development of 

personalized, clinically relevant tools for SCI research and treatment. 
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Appendix A. 
 
Mesh parameters for the evaluated small and large 
models of SCI 

Table A.1. Small morphology meshing parameters 

Part Part type Element type Mesh pitch 
Number of 
elements 

White matter Deformable solid 
Hexahedral 

(C3D8R) 
0.30 mm 31540 

Gray matter Deformable solid 
Hexahedral 

(C3D8R) 
0.30 mm 10790 

Pia mater Skin 
Quadrilateral shell 

(S4R) 
0.30 mm 5478 

Dura mater Deformable shell 
Quadrilateral shell 

(S4R) 
0.35 mm 5254 

CSF 
Solid converted to 

particles 
Particle element 

(PC3D) 
0.35 mm 13632 

Spinal column Discrete rigid shell 
Quadrilateral 

(R3D4) 
0.65 mm 1990 

Impactor Discrete rigid shell 
Quadrilateral 

(R3D4) 
0.5 mm 648 

 

Table A.2. Large morphology meshing parameters 

Part Part type Element type Mesh pitch 
Number of 
elements 

White matter Deformable solid 
Hexahedral 

(C3D8R) 
0.40 mm 22491 

Gray matter Deformable solid 
Hexahedral 

(C3D8R) 
0.40 mm 8316 

Pia mater Skin 
Quadrilateral shell 

(S4R) 
0.40 mm 4032 

Dura mater Deformable shell 
Quadrilateral shell 

(S4R) 
0.45 mm 4088 

CSF 
Solid converted to 

particles 
Particle element 

(PC3D) 
0.35 mm 17892 

Spinal column Discrete rigid shell 
Quadrilateral 

(R3D4) 
0.65 mm 1990 

Impactor Discrete rigid shell 
Quadrilateral 

(R3D4) 
0.5 mm 648 
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Appendix B. 
 
Figures of spinal cord lateral shift at the time of 
maximum compression in the FE models of SCI 

 

Figure B.1. Comparison of the spinal cord’  lateral shift for every CSF boundary 
condition evaluated in the small SCI model. The figure shows the 
    ’           h       h             h          ’           at the 
impact epicenter. 
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Figure B.2. Comparison of the spinal cord         ’  shift between the end of the 
preload (translucent shape in the back), and the time of maximum 
compression in the impact  phase of the small SCI model for each 
evaluated CSF boundary condition. 

 

 

Figure B.3. Comparison of the spinal     ’  lateral shift for every CSF boundary 
condition evaluated in the average SCI model. The figure shows the 
    ’           h       h             h          ’               h  
impact epicenter. 
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Figure B.4. Comparison of the spinal              ’  shift between the end of the 
preload (translucent shape in the back), and the time of maximum 
compression in the impact  phase of the average SCI model for each 
evaluated CSF boundary condition. 
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Figure B.5. Comparison of the spinal     ’  lateral shift for every CSF boundary 
condition evaluated in the large SCI model. The figure shows the 
    ’           h       h             h          ’               h  
impact epicenter. 

 

Figure B.6. Comparison of the spinal              ’  shift between the end of the 
preload (translucent shape in the back), and the time of maximum 
compression in the impact  phase of the large SCI model for each 
evaluated CSF boundary condition. 
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Appendix C. 
 
Deformed shapes of the spinal cord cross-sections 
at the end of the preload phase in the FE models of 
SCI 

 

Figure C.1. Compression of the spinal cord at the end of the preload for every 
CSF containment method in the small SCI model. 

 

Figure C.2. Compression of the spinal cord at the end of the preload for every 
CSF containment method in the average SCI model. 
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Figure C.3. Compression of the spinal cord at the end of the preload for every 
CSF containment method in the large SCI model. 
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