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Abstract

While deep learning-based approaches have demonstrated expert-level performance in der-

matological diagnosis tasks, they rely on a data-driven learning paradigm that requires 

large-scale annotated data and mimic the biases therein (e.g., biases towards skin types). 

Furthermore, existing public dermatological datasets have limitations such as small size, nar-

row disease coverage, insufficient annotations, and non-standardized image acquisitions. In 

this thesis, we propose CIRCLe, a skin color-invariant deep representation learning method 

for improving fairness in skin lesion classification b y u tilizing a  r egularization l oss t o en-

courage images with the same diagnosis but different s kin t ypes t o h ave s imilar latent 

representations. Moreover, we introduce DermSynth3D, a novel framework for synthesizing 

large-scale densely annotated in-the-wild dermatological images by blending skin disease 

patterns onto 3D textured meshes of human subjects using a differentiable r enderer and 

generating 2D images from various camera viewpoints under chosen lighting conditions in 

diverse background scenes.

Keywords: Skin image analysis; Skin type bias; Dermatology; Classification; Lesion detec-

tion; Deep learning
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Chapter 1

Introduction

1.1 Background and Motivation

Diagnosis and analysis of skin conditions are an enormous burden on the healthcare system,

with at least 3000 distinct skin diseases identified so far [18]. Both human dermatologists and

sophisticated computerized approaches struggle to address this complex task of analyzing

skin conditions.

Owing to the advancements in deep learning (DL)-based data-driven learning paradigm,

convolutional neural networks (CNNs) can be helpful decision support tools in healthcare.

This is particularly true for dermatological applications where recent research has shown

that DL-based models can reach the dermatologist-level classification accuracies for skin

diseases [22,41,49] while doing so in a clinically interpretable manner [13,77]. Computerized

analysis of skin diseases often rely on 2D colored images, with significant research efforts

devoted to analysis of conditions within clinical images [72].

However, this data-driven learning paradigm that allows models to automatically learn

meaningful representations from data leads DL models to mimic biases found in the data,

i.e., biases in the data can propagate through the learning process and result in an inherently

biased model, and consequently in a biased output. Although research into algorithmic

bias and fairness has been an active area of research, interest in the fairness of machine

learning algorithms, in particular, is fairly recent. Multiple studies have shown the inherent

racial disparities in machine learning algorithms’ decisions for a wide range of areas: pre-

trial bail decisions [64], recidivism [9], healthcare [84], facial recognition [23], and college

1



admissions [65]. Specific to healthcare applications, previous research has shown the effect

of dataset biases on DL models’ performance across genders and racial groups in cardiac

MR imaging [91], chest X-rays [70,100,101], and skin disease imaging [47]. Recently, Groh et

al. [47] showed that CNNs are the most accurate when classifying skin diseases manifesting

on skin types similar to those they were trained on.

Moreover, this data-driven learning paradigm of DL-based models, requires large-scale

annotated training data. Current publicly available datasets of clinical images are used for

training DL-based models to perform various tasks, such as classification [37,48,57,108,124],

lesion segmentation [51, 80], lesion tracking [44, 107, 129], lesion management [3], and skin

tone prediction [62]. While there are numerous publicly available 2D dermatological image

datasets [80], existing “in-the-wild” clinical datasets have limitations in creating semanti-

cally rich ground truth (GT) labels that can be used for the diverse range of dermatological

tasks mentioned.

1.2 Thesis Contributions

In this thesis, we aim to propose methodologies to improve skin type fairness and classi-

fication performance in skin condition diagnosis and introduce a novel framework for syn-

thesizing large-scale densely annotated in-the-wild dermatological images. The third and

fourth chapters of this thesis describe the details of the two contributions. which are briefly

described in the following two subsections:

1.2.1 CIRCLe: Color Invariant Representation Learning for Unbiased
Classification of Skin Lesions

While deep learning-based approaches have demonstrated expert-level performance in der-

matological diagnosis tasks, they have also been shown to exhibit biases toward certain

demographic attributes, particularly skin types (e.g., light versus dark), a fairness concern

that must be addressed.

In our first contribution, we propose CIRCLe, a skin color invariant deep representation

learning method for improving fairness in skin lesion classification. CIRCLe is trained to

classify images by utilizing skin type transformations to compute a regularization loss that

2



encourages images with the same diagnosis but different skin types to have similar latent

representations. To the best of our knowledge, this is the first work that uses skin type trans-

formations and skin color-invariant disease classification to tackle the problem of skin type

bias present in large-scale clinical image datasets and how these biases permeate through

the prediction models. We present a new state-of-the-art classification accuracy over 114

skin conditions and 6 Fitzpatrick skin types (FSTs) from the Fitzpatrick17K dataset. While

previous works had either limited their analysis to a subset of diagnoses [16] or less granular

FST labels [124], our proposed method achieves superior performance over a much larger

set of diagnoses spanning over all the FST labels.

We provide a comprehensive evaluation of our proposed method, CIRCLe, on 6 different

CNN architectures, along with ablation studies to demonstrate the efficacy of the proposed

domain regularization loss. Furthermore, we also assess the impact of varying the size and

the FST distribution of the training dataset partitions on the generalization performance

of the classification models. Finally, we propose a new fairness metric called Normalized

Accuracy Range that, unlike several existing fairness metrics, works with multiple protected

groups (6 different FSTs in our problem).

The code is available at https://github.com/arezou-pakzad/CIRCLe.

[87] Arezou Pakzad, Kumar Abhishek, and Ghassan Hamarneh. “CIRCLe: Color In-

variant Representation Learning for Unbiased Classification of Skin Le-

sions”, In Proceedings of the 17th European Conference on Computer Vision (ECCV)

ISIC Skin Image Analysis Workshop, 2022. https://doi.org/10.1007/978-3-031-25069-9_

14

1.2.2 DermSynth3D: Synthesis of in-the-wild Annotated Dermatology
Images

Despite the availability of numerous skin image datasets (e.g., [11,37,48,57,113,115,122]),

there is a lack of a large-scale skin-image dataset that can be applied to a variety of skin

analysis tasks, especially in an in-the-wild clinical setting. Moreover, existing datasets are

limited in their scope and are often task-specific, requiring extensive additional annotation

for generalizing them to other dermatological applications.

3
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To address this gap, in our second contribution, we present DermSynth3D, a computa-

tional pipeline along with an open-source software library, for generating synthetic 2D skin

image datasets using 3D human body meshes blended with skin disorders from clinical im-

ages. Our approach uses a differentiable renderer to blend the skin lesions within the texture

image of the 3D human body and generates 2D views along with corresponding annotations,

including semantic segmentation masks for skin conditions, healthy skin, non-skin regions,

and skin condition bounding boxes.

In particular, my contribution to this thesis is demonstrating the effectiveness of the

synthesized data by utilizing it in the training process of machine learning models and

evaluating them on real-world dermatological images, showcasing that the DermSynth3D-

trained model learns to generalize to skin condition detection and segmentation tasks.

The code is available at https://github.com/sfu-mial/DermSynth3D.

[105] Ashish Sinha*, Jeremy Kawahara*, Arezou Pakzad*, Kumar Abhishek, Matthieu

Ruthven, Enjie Ghorbel, Anis Kacem, Djamila Aouada, and Ghassan Hamarneh (*

joint first authors). “DermSynth3D: Synthesis of in-the-wild Annotated Der-

matology Images”, In Medical Image Analysis, 2024. https://arxiv.org/abs/

2305.12621

As indicated in the reference above, I am a joint first author of this work. My contri-

butions to this work that warranted joint first authorship are designing and implementing

the experiments, analyzing the results, and writing the manuscript. More specifically, the

experiments I designed and conducted were to demonstrate the effectiveness and utilities of

the synthesized data in wound bounding box detection with synthetic data augmentation,

wound bounding box detection and semantic segmentation using only synthetic data, the

utility of synthetic data in pre-training wound detection model, and the ablation studies for

parameter choices of wound bounding box detection.

1.3 Thesis Outline

This thesis covers the details of the methods developed to improve skin type fairness in

skin condition classification and synthesize in-the-wild annotated dermatology images. In

4
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addition to this introduction chapter, the thesis includes four chapters. The outlines of the

following chapters are as follows:

• Chapter 2: Describes the clinical skin condition datasets we used in this thesis, demon-

strates the data distribution, and visualizes some image examples.

• Chapter 3: Describes the development of CIRCLe, a method based on domain invariant

representation learning for unbiased skin condition classification and the design of

fairness metric NAR, and shows that this method improves classification performance

and fairness, domain adaptation capability, and generalization ability of the model.

• Chapter 4: Describes the development of DermSynth3D, a framework for synthesis

of densely annotated in-the-wild dermatological images, and shows the effectiveness

of the generated synthetic data for improving skin condition bounding box detection

and segmentation performance.

• Chapter 5: Summarizes the contributions made and presents limitations and potential

future research works.

Disclaimer: The author declares that substantial parts of chapters 3, 4, and 5 of this

thesis have been borrowed nearly identically from my original first-authored and joint-first-

authored publications listed in Section 1.2.
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Chapter 2

Datasets Used in The Thesis

There are two primary types of dermatological datasets, clinical and dermoscopic, that

offer distinct insights into skin conditions. The datasets used and synthesized in this thesis

consist of clinical images of skin conditions. It is important to note the difference between

Dermoscopy and Clinical images when discussing dermatological datasets.

Dermoscopy images generally focus on the analysis of a single lesion, with large scale

annotated dermoscopy datasets now available for public use [30,95,113]. While dermoscopy

has been shown to improve the diagnostic ability of trained specialists, the field-of-view of

a dermoscopy image is generally limited to a localized patch of skin on the body (e.g., a

mole). In contrast, clinical images vary considerably in their acquisition protocols, ranging

from a closeup view focused on a single lesion, to a view that captures a significant portion

of the body (Figure 2.1). The contextual information in large-scale clinical images of skin

lesions may provide valuable cues regarding the underlying disease that may not be present

in dermoscopic images alone [19,95].

Clinical images exhibit considerable variability across datasets. For example, the public

DermoFit Image Library dataset [11, 110] contains 1300 clinical images and manual lesion

segmentations from 10 types of skin conditions. These are high-quality images acquired

under standardized conditions. In contrast, other clinical datasets, such as SD-198 [108],

SD-260 [125], or Fitzpatrick17K [48], contain hundreds of types of skin disorders and are

much less standardized, exhibiting a high variability in camera position relative to the

lesion, resulting in dramatic changes in the field-of-view. We use the term “in-the-wild

6



Standardized Skin Lesion Images In-the-wild Skin Lesion Images

ISIC Archive* PH2* DermoFit SD-198 Derm7point Fitzpatrick17k

Figure 2.1: Standardized vs in-the-wild skin lesion images (∗: dermoscopy, all others: clini-
cal).

clinical dataset” to describe these types of image collections, where the camera position,

field-of-view, and background, are inconsistent.

The following sections describe the two main clinical datasets of skin conditions used in

this thesis.

2.1 Fitzpatrick 17K

The Fitzpatrick17K dataset [47] contains 16,577 clinical images with skin condition la-

bels and skin type labels based on the Fitzpatrick scoring system [43]. The images in this

dataset, along with their corresponding skin condition labels, are sourced from two open-

source dermatology atlases: 12,672 images from DermaAmin [8] and 3,905 images from Atlas

Dermatologico [33].

The images in this dataset are annotated with six Fitzpatrick skin type (FST) labels

by a team of non-dermatologist annotators. Figure 2.2 shows some sample images from this

dataset along with their skin types. The dataset includes 114 conditions with at least 53

images (and a maximum of 653 images) per skin condition, as shown in Figure 2.3.

The Fitzpatrick labeling system is a six-point scale originally developed for classifying

sun reactivity of skin and adjusting clinical medicine according to skin phenotype [43]. In

the Fitzpatrick Skin Tone Scale (Table 2.1), different skin types are categorized based on

their response to sun exposure. The skin types are categorized into six levels, from 1 to

6, from lightest to darkest skin types. Although Fitzpatrick labels are commonly used for

categorizing skin types, we note that not all skin types are represented by the Fitzpatrick

scale. [120].
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Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Figure 2.2: Sample images of all six FSTs from the Fitzpatrick17K dataset [47]. Notice
the wide variety in disease appearance, field of view, illumination, and presence of imaging
artifacts, including non-standard backgrounds consistent with clinical images in the wild
and watermarks on some images.
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Figure 2.3: Visualizing the distribution of the skin condition labels in the Fitzpatrick17K
dataset. Notice that the number of images across different skin conditions is not uniformly
distributed.
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Table 2.1: Fitzpatrick Skin Tone Scale

Skin Type Description Color
Sample

Type 1 Always burns, never tans

Type 2 Usually burns, tans with difficulty

Type 3 Burns mildly, tans gradually

Type 4 Rarely burns, tans with ease

Type 5 Very Rarely burns, tans very easily

Type 6 Never burns, tans very easily,
deeply pigmented

1 2 3 4 5 6

Fitzpatrick Skin Type
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1000

2000

3000

4000

5000

C
ou

nt

Figure 2.4: Visualizing the distribution of the Fitzpatrick skin type (FST) labels in the
Fitzpatrick17K dataset. Notice that the number of images is considerably lower for darker
skin types.
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In the Fitzpatrick17K dataset, there are significantly more images of light skin types

than dark skin. There are 11,060 images of light skin types (FSTs 1, 2, and 3), and 4,949

images of dark skin types (FSTs 4, 5, and 6), as shown in Figure 2.4.

2.2 Foot Ulcer (FUSeg)

The FUSeg dataset from the The Foot Ulcer Segmentation Challenge [115] contains 2D clin-

ical dermatological images of ulcers on the foot and the corresponding wound masks. This

dataset includes 1,210 foot ulcer images taken from 889 patients during multiple clinical

visits. The raw images in this dataset were taken under uncontrolled illumination conditions

with various backgrounds by Canon SX 620 HS digital camera and an iPad Pro camera. The

corresponding pixel-wise segmentation mask annotations for each image are acquired man-

ually by wound professionals. Images and their annotations are preprocessed with cropping

and zero-padding.

This dataset contains the standard training, validation, and testing partitions of 810,

200, and 200 images, respectively. The annotations for the testing set are kept private and

will not be released since the official challenge remains open indefinitely [116].

Figure 2.5 shows some sample images from this dataset along with their segmentation

mask annotations.
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Image

Segmentation Mask

Segmentation Mask

Figure 2.5: Sample images from the FUSeg [115] dataset. The first and third rows contain the
preprocessed images in the dataset. The second and fourth rows consist of the corresponding
segmentation mask annotations.
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Chapter 3

CIRCLe: Color Invariant
Representation Learning for
Unbiased Classification of Skin
Lesions

3.1 Introduction

Most public skin disease image datasets are acquired from demographics consisting primarily

of fair-skinned people. However, skin conditions exhibit vast visual differences in manifesta-

tions across different skin types [121]. Lighter skinned populations suffer from over-diagnosis

of melanoma [5] while darker skinned patients get diagnosed at later stages, leading to in-

creased morbidity and mortality [7]. Despite this, darker skin is under-represented in most

publicly available data sets [63,71], reported studies [35], and in dermatology textbooks [6].

Kinyanjui et al. [63] performed an analysis on two popular benchmark dermatology datasets:

ISIC 2018 Challenge dataset [28] and SD-198 dataset [109], to understand the skin type

representations. They measured the individual typology angle (ITA), which measures the

constitutive pigementation of skin images [85], to estimate the skin tone on these datasets,

and found that the majority of the images in the two datasets ITA values between 34.8◦ and

48◦, which are associated with lighter skin. This is consistent with the under-representation

of darker skinned populations in these datasets. It has been shown that CNNs perform

best at classifying skin conditions for skin types that are similar to those they were trained

on [47]. Thus, the data imbalance across different skin types in the majority of the skin
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disease image datasets can manifest as racial biases in the DL models’ predictions, leading

to racial disparities [4]. However, despite these well-documented concerns, very little re-

search has been directed towards evaluating these DL-based skin disease diagnosis models

on diverse skin types, and therefore, their utility and reliability as disease screening tools

remains untested.

Learning domain invariant representations, a predominant approach in domain gener-

alization [81], attempts to learn data distributions that are independent of the underlying

domains, and therefore addresses the issue of training models on data from a set of source

domains that can generalize well to previously unseen test domains. Domain invariant rep-

resentation learning has been used in medical imaging for histopathology image analysis [69]

and for learning domain-invariant shape priors in segmentation of prostrate MR and retinal

fundus images [76]. On the other hand, previous works on fair classification and diagnosis of

skin diseases have relied on skin type detection and debiasing [16] and classification model

pruning [124].

One of the common definitions of algorithmic fairness for classification tasks, based

on measuring statistical parity, aims to seek independence between the bias attribute (also

known as the protected attribute; i.e., the skin type for our task) and the model’s prediction

(i.e., the skin disease prediction). Our proposed approach, Color Invariant Representation

learning for unbiased Classification of skin Lesions (CIRCLe), employs a color-invariant

model that is trained to classify skin conditions independent of the underlying skin type.

In this work, we aim to mitigate the skin type bias learned by the CNNs and reduce the

accuracy disparities across skin types. We address this problem by enforcing the feature

representation to be invariant across different skin types. We adopt a domain-invariant

representation learning method [82] and modify it to transform skin types from clinical skin

images and propose a color-invariant skin condition classifier.
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Figure 3.1: Overview of CIRCLe. (a) The skin lesion image x with skin type z and diagnosis
label y is passed through the feature extractor ϕE . The learned representation r goes through
the classifier ϕC to obtain the predicted label ŷ. The classification loss enforces the correct
classification objective. (b) The skin color transformer (G), transforms x with skin type z
into x′ with the new skin type z′. The generated image x′ is fed into the feature extractor
to get the representation r′. The regularization loss enforces r and r′ to be similar. (c) The
skin color transformer’s schematic view with the possible transformed images, where one of
the possible transformations is randomly chosen for generating x′.

3.2 Method

3.2.1 Problem Definition

Given a dataset S = {X, Y , Z}, consider xi, yi, zi to be the input, the label, and the

protected attribute for the ith sample respectively, where we have Nc classes (|Y | = Nc) and

Np protected groups (|Z| = Np). Let ŷi denote the predicted label of sample i. Our goal is

to train a classification model fθ(·) parametrized by θ that maps the input xi to the final

prediction ŷi = fθ(xi), such that (1) the prediction ŷi is invariant to the protected attribute

zi and (2) the model’s classification loss is minimized.

3.2.2 Feature Extractor and Classifier

In the representation learning framework, the prediction function ŷi = fθ(xi) is obtained

as a composition ŷi = ϕC ◦ ϕE(xi) of a feature extractor ri = ϕE(xi), where ri ∈ Rp is

a learned representation of data xi, and a classifier ŷi = ϕC(ri), predicting the label ŷi,
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given the representation ri (Figure 3.1(a)). Thus, we aim to learn a feature representation

r that is invariant to the protected attributes, and hypothesize that this will lead to better

generalization for classification.

3.2.3 Regularization Network

Inspired by the method proposed by Nguyen et al. [82], we use a generative modelling

framework to learn a function g that transforms the data distributions between skin types.

To this end, we employ a method to synthesize a new image corresponding to a given input

image with the subject’s skin type in that image changed according to the desired Fitzpatrick

skin type (FST) score. We call this model our Skin Color Transformer. After training the

Skin Color Transformer model, we introduce an auxiliary loss term to our learning objective,

whose aim is to enforce the domain invariance constraint. (Figure 3.1(b))

Skin Color Transformer

We learn the function G that performs image-to-image transformations between skin type

domains. To this end, we use a Star Generative Adversarial Network (StarGAN) [26]. The

goal of the StarGAN is to learn a unified network G (generator) that transforms the data

density among multiple domains. In particular, the network G(x, z′) transforms an image

x to an output image x′ conditioned on the target skin type z′. The generator’s goal is to

fool the discriminator D into classifying the transformed image as the target skin type z′.

StarGAN’s model has three main loss functions: (1) Adversarial loss, which is common to

all the GAN’s. The Discriminator tries to maximize the error while the Generator tries to

minimize:

Ladv = Ex[logDsrc] + Ex,z′ [log(1 − Dsrc(G(x, z′)))], (3.1)

where Dsrc is termed as a probability distribution over sources given by D. (2) Domain

classification loss, which is associated with classifying and generating images specific to the

domains (i.e. skin types in our problem). For a given input image x and a target domain z′,

the goal is to translate x into an output image x′, which is properly classified to the target

domain z′. The objective is decomposed into two terms: a domain classification loss of real

images used to optimize D, and a domain classification loss of fake images used to optimize
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G. In detail, the former is defined as:

Lr
cls = Ex,z[−logDcls(z|x)], (3.2)

where the term Dcls(z|x) represents a probability distribution over domain labels computed

by D. By minimizing this objective, D learns to classify a real image x to its corresponding

original domain z. On the other hand, the loss function for the domain classification of fake

images is defined as:

Lf
cls = Ex,z′ [−logDcls(z′|G(x, z′))], (3.3)

where G tries to minimize this objective to generate images that can be classified as the

target domain z′. (3) Reconstruction loss to prevent reconstruction errors after changing

specified domains:

Lrec = Ex, z′, z[||x − G(G(x, z′), z)||1], (3.4)

where G takes in the translated image G(x, z′) and the original domain label z as input and

tries to reconstruct the original image x. Overall the loss functions combined for the D and

G is:

LD = −Ladv + λclsLr
cls, (3.5)

LG = Ladv + λclsLf
cls + λrecLrec, (3.6)

where λcls = 1 and λrec = 10.

After training, we use G as the Skin Color Transformer. This model takes the image xi

with skin type zi as the input, along with a target skin type zj and synthesizes a new image

x′
i = G(xi, zj) similar to xi, only with the skin type of the image changed in accordance

with zj .

Domain Regularization Loss

In the training process of the disease classifier, for each input image xi with skin type zi, we

randomly select another skin type zj ̸= zi, and use the Skin Type Transformer to synthesize
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a new image x′
i = G(xi, zi, zj). After that, we obtain the latent representations ri = ϕE(xi),

and r′
i = ϕE(x′

i) for the original image and the synthetic image respectively. Then we enforce

the model to learn similar representations for ri and r′
i by adding a regularization loss term

to the overall loss function of the model:

Ltotal = Lcls + λLreg (3.7)

where Lcls is the prediction loss of the network that predicts ŷi given ri = ϕE(xi), and

Lreg is the regularization loss. In this equation, λ ∈ [0, 1] is a hyper-parameter controlling

the trade-off between the classification and regularization losses. We define Lreg as the

distance between the two representations ri and r′
i to enforce the invariant condition. In

our implementation, we use cross entropy as the classification loss Lcls:

Lcls = −
Nc∑
j=1

yij log(ŷij), (3.8)

where yij is a binary indicator (0 or 1) if class label j is the correct classification for the

sample i and ŷij is the predicted probability the sample i is of class j. The final predicted

class ŷi is calculated as

ŷi = arg max
j

ŷij . (3.9)

We use squared error distance for computing the regularization loss Lreg:

Lreg = ||ri − r′
i||22. (3.10)

3.3 Experimental Details

3.3.1 Dataset

We evaluate the performance of the proposed method on the Fitzpatrick17K dataset, which

we described in Chapter 2. We randomly select 70%, 10%, and 20% of the images for the

train, validation, and test splits, where the random selection is stratified on skin conditions.

Since the Fitzpatrick17K dataset does not have standard splits, we repeat the experiments

with five different random seeds for splitting the data, to ensure the reproducibility and
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robustness of our findings. A series of transformations are applied to the training images

which include: resize to 128 × 128 resolution, random rotations in [−15◦, 15◦], and random

horizontal flips. We also use ImageNet [39] training partition’s mean and standard deviation

values to normalize our images for training and evaluation.

3.3.2 Implementation Details

Feature Extractor and Classifier

We choose VGG-16 [104] pre-trained on ImageNet as our base network. We use the con-

volutional layers of VGG-16 as the feature extractor ϕE . We replace the VGG-16’s fully-

connected layers with a fully connected 256-to-114 layer as the classifier ϕC . We train the

network for 100 epochs with plain stochastic gradient descent (SGD) using learning rate

1e-3, momentum 0.9, minibatch size 16, and weight decay 1e-3. We report the results for

the epoch with the highest accuracy on the validation set.

Skin Color Transformer

StarGAN [26] implementation is taken from the authors’ original source code with no signif-

icant modifications. We train StarGAN on the Fitzpatrick17K dataset, using the same train

split used for training the classifier. As for the training configurations we use a minibatch

size of 16. We train the StarGAN for 200,000 iterations and use the Adam [61] optimizer

with a learning rate of 1e-4.

Model Training and Evaluation Setup

We use the PyTorch library [88] to implement our framework and train all our models on a

workstation with AMD Ryzen 9 5950X processor, 32 GB of memory, and Nvidia GeForce

RTX 3090 GPU with 24 GB of memory.

3.3.3 Evaluation Metrics

We aim for an accurate and fair skin condition classifier. Therefore, we assess our method’s

performance using metrics for both accuracy and fairness. We use the well-known Micro-

averaged Accuracy, Recall, and F1 metrics for evaluating our model’s classification per-

formance. For fairness, we use the Equal Opportunity Difference (EOD) metric [50]. In
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addition, since EOD is limited to the assessment of only two protected groups, to measure

fairness in the model’s accuracy for multiple groups of skin types, we assess the accuracy

(ACC) disparities across all six skin types by proposing the Normalized Accuracy Range

(NAR).

Equal Opportunity Difference

EOD measures the difference in true positive rates (TPR) for the two protected groups. Let

TPRz denote true positive rate of group z and z ∈ {0, 1}. Then EOD can be computed as:

EOD = |TPRz=0 − TPRz=1|. (3.11)

A value of 0 implies both protected groups have equal benefit. Given that the above metric

(and other common fairness metrics in the literature [15,40,50]) are defined for two groups:

privileged and under-privileged, w.r.t the protected attribute, we adopt the light (FSTs 1,

2, and 3) versus dark (FSTs 4, 5, and 6) as the two groups.

Normalized Accuracy Range

In order to measure fairness in the model’s accuracy for multiple groups of skin types,

we assess the accuracy (ACC) disparities across all the six skin types by proposing the

Normalized Accuracy Range (NAR) as follows:

NAR = ACCmax − ACCmin

mean(ACC) , (3.12)

where ACCmax and ACCmin are the maximum and minimum accuracy achieved across

skin types and mean(ACC) is the mean accuracy across skin types, i.e.:

ACCmax = max{ACCi : 1 ≤ i ≤ Np},

ACCmin = min{ACCi : 1 ≤ i ≤ Np},

mean(ACC) = 1
Np

Np∑
i=1

ACCi

(3.13)
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A perfectly fair performance of a model would result in equal accuracy across the different

protected groups on a test set, i.e. ACCmax = ACCmin, leading to NAR = 0. As the

accuracies across protected groups diverge, ACCmax > ACCmin, NAR will change even

if the mean accuracy remains the same, thus indicating that the model’s fairness is also

changed. Moreover, NAR also takes into account the overall mean accuracy: this implies

that in cases where the accuracies range (ACCmax − ACCmin) is the same, the model with

the overall higher accuracy leads to a lower NAR, which is desirable. In our quantitative

results, we report EOD for completeness; however, it is not an ideal measure, given it

is restricted to only two protected groups whereas we have six. Therefore, we focus our

attention on NAR.

3.3.4 Models

Baseline

For evaluating our method, we compare our results with the method proposed by Groh et

al. [47], which has the current state-of-the-art performance on the Fitzpatrick17K dataset.

We call their method the Baseline. To obtain a fair comparison, we use the same train and

test sets they used.

Improved Baseline (Ours)

In order to evaluate the effectiveness of the color-invariant representation learning process,

we perform an ablation study, in which we remove the regularization loss Lreg from the

learning objective of the model and train the classifier with only the classification objective.

We call this model the Improved Baseline.

CIRCLe (Ours)

The proposed model for unbiased skin condition classification, CIRCLe, is composed of two

main components: the feature extractor and classifier, and the regularization network (Fig.

3.1).
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Multiple Backbones

To demonstrate the efficacy of our method, we present evaluation with several other back-

bone architectures in addition to VGG-16 [104] used by Groh et al. [47]. In particular, we

use MobileNetV2 [99], MobileNetV3-Large (referred to as MobileNetV3L hereafter) [54],

DenseNet-121 [55], ResNet-18 [52], and ResNet-50 [52], thus covering a wide range of CNN

architecture families and a considerable variety in model capacities, i.e. from 2.55 million

parameters in MobileNetV2 to 135.31 million parameters in VGG-16 (Table 3.1). For all

the models, we perform an ablation study to evaluate if adding the regularization loss Lreg

helps improve the performance.

Table 3.1: Comparing the model capacities and computational requirements of different
backbones evaluated. For all the six backbones, we report the number of parameters and
the number of multiply-add operations (MulAddOps). All numbers are in millions (MM).
Note how the six backbones encompass several architectural families and a large range
of model capacities (∼ 2MM to ∼ 135MM parameters) and computational requirements
(∼ 72MM MulAddOps to ∼ 5136MM MulAddOps).

MobileNetV2 MobileNetV3L DenseNet-121 ResNet-18 ResNet-50 VGG-16

Parameters (MM) 2.55 4.53 7.22 11.31 24.03 135.31
MulAddOps (MM) 98.16 72.51 925.45 592.32 1335.15 5136.16

3.4 Results and Analysis

3.4.1 Classification and Fairness Performance

Table 3.2: Classification performance and fairness of CIRCLe for classifying 114 skin con-
ditions across skin types as assessed across five folds (mean ± std. dev.). We compute the
overall accuracy based on the micro average accuracy across all skin types. Values in bold
indicate the best results. CIRCLe yields the best performance while also improving fairness.

Model Recall F1-score
Accuracy

EOD ↓ NAR ↓
Overall Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Baseline 0.251 0.193 0.202 0.158 0.169 0.222 0.241 0.289 0.155 0.309 0.652

Improved
Baseline (Ours)

0.444
±0.007

0.441
±0.009

0.471
±0.004

0.358
±0.026

0.408
±0.014

0.506
±0.023

0.572
±0.022

0.604
±0.029

0.507
±0.027

0.261
±0.028

0.512
±0.078

CIRCLe
(Ours)

0.459
±0.003

0.459
±0.003

0.488
±0.005

0.379
±0.019

0.423
±0.011

0.528
±0.024

0.592
±0.022

0.617
±0.021

0.512
±0.043

0.252
±0.031

0.474
±0.047
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Table 3.2 shows the accuracy and fairness results for the proposed method in comparison

with the baseline. From the table, we can see that our Improved Baseline method recog-

nizably outperforms the baseline method in accuracy and fairness. By using a powerful

backbone and a better and longer training process, we more than doubled the classification

accuracy on the Fitzpatrick17K dataset for all the skin types. This indicates that the choice

of the base classifier and training settings plays a significant role in achieving higher accuracy

rates on the Fitzpatrick17K dataset. Moreover, we can see that CIRCLe further improves

the performance of our Improved Baseline across all the skin types, as well as the overall

accuracy. This significant improvement demonstrates the effectiveness of the color-invariant

representation learning method in increasing the model’s generalizability. This observation

shows that when the model is constrained to learn similar representations from different

skin types that the skin condition appears on, it can learn richer features from the disease

information in the image, and its overall performance improves. In addition, CIRCLe shows

improved fairness scores (lower EOD and lower NAR), which indicates that the model is

less biased. To the best of our knowledge, we set a new state-of-the-art performance on the

Fitzpatrick17K dataset for the task of classifying the 114 skin conditions.

Different model architectures may show different disparities across protected groups [90].

We can see in Table 3.3 that the color-invariant representation learning (i.e. with the reg-

ularization loss Lreg activated) significantly improves the accuracy and fairness results in

different model architecture choices across skin types, which indicates the effectiveness of the

proposed method independently from the backbone choice and its capacity. We can see that

while the regularization loss does not necessarily improve the EOD for all the backbones,

EOD is not the ideal measure of fairness for our task since as explained in Section 3.3.3,

it can only be applied to a lighter-versus-darker skin tone fairness assessment. However,

employing the regularization loss does improve the NAR for all the backbone architectures.

3.4.2 Domain Adaptation Performance

For evaluating the model’s performance on adapting to unseen domains, we perform a “two-

to-other” experiment, where we train the model on all the images from two FST domains
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Table 3.3: Evaluating the classification performance improvement contribution of the regu-
larization loss Lreg with multiple different feature extractor backbones. Best values for each
backbone are presented in bold. EOD reported (for two groups of light and dark FSTs) for
completeness but evaluation over all the 6 FSTs uses NAR (see text for details). Observe
that Lreg improves the classification accuracy and the fairness metric NAR for all back-
bones.

Model Lreg Recall F1-score
Accuracy

EOD ↓ NAR ↓
Overall Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

MobileNetV2
✗ 0.375 0.365 0.398 0.313 0.364 0.409 0.503 0.491 0.333 0.280 0.472
✓ 0.404 0.397 0.434 0.354 0.357 0.471 0.559 0.544 0.421 0.258 0.455

MobileNetV3L
✗ 0.427 0.403 0.438 0.357 0.388 0.449 0.543 0.560 0.413 0.271 0.449
✓ 0.425 0.412 0.451 0.369 0.400 0.464 0.565 0.550 0.444 0.275 0.420

DenseNet-121
✗ 0.425 0.416 0.451 0.393 0.397 0.452 0.565 0.522 0.500 0.278 0.364
✓ 0.441 0.430 0.462 0.413 0.406 0.473 0.561 0.550 0.452 0.294 0.324

ResNet-18
✗ 0.391 0.381 0.417 0.355 0.353 0.431 0.538 0.516 0.389 0.263 0.430
✓ 0.416 0.410 0.436 0.367 0.380 0.458 0.543 0.538 0.389 0.282 0.395

ResNet-50
✗ 0.390 0.382 0.416 0.337 0.363 0.422 0.549 0.506 0.389 0.257 0.497
✓ 0.440 0.429 0.466 0.384 0.402 0.502 0.580 0.569 0.421 0.283 0.411

Table 3.4: Classification performance measured by micro average accuracy when trained
and evaluated on holdout sets composed of different Fitzpatrick skin types (FSTs). For
example, “FST3-6” denotes that the model was trained on images only from FSTs 1 and 2
and evaluated on FSTs 3, 4, 5, and 6. CIRCLe achieves higher classification accuracies than
Baseline (Groh et al. [47]) and Improved Baseline (also ours) for all holdout partitions and
for all skin types.

Holdout
Partition

Method Overall Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

FST3-6
Baseline 0.138 - - 0.159 0.142 0.101 0.090

Improved Baseline 0.249 - - 0.308 0.246 0.185 0.113
CIRCLe 0.260 - - 0.327 0.250 0.193 0.115

FST12 and FST56
Baseline 0.134 0.100 0.130 - - 0.211 0.121

Improved Baseline 0.272 0.181 0.274 - - 0.453 0.227
CIRCLe 0.285 0.199 0.285 - - 0.469 0.233

FST1-4
Baseline 0.077 0.044 0.055 0.091 0.129 - -

Improved Baseline 0.152 0.078 0.111 0.167 0.280 - -
CIRCLe 0.163 0.095 0.121 0.177 0.293 - -

and test it on all the other FST domains. Table 3.4 shows the performance of our model

for this experiment. CIRCLe recognizably improves the domain adaptation performance in

comparison with the Baseline and Improved Baseline, demonstrating the effectiveness of

the proposed method in learning a color-invariant representation.
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3.4.3 Classification Performance Relation with Training Size

Table 3.5: Total number of training images for each experiment illustrated in Figure 3.2.
Note that the test set for all these experiments is the original test split with 3,205 images
(20% of the Fitzpatrick17K dataset images), and the number of training images for exper-
iments with 100% of each FST group is the same for all three groups, and is equal to the
original train split with 11,934 images (70% of the Fitzpatrick17K dataset images).

0% 20% 40% 60% 80%

FST12 5,964 7,073 8,183 9,293 10,403
FST34 7,088 7,973 8,858 9,743 10,628
FST56 9,974 1,0281 10,589 10,897 11,205
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Figure 3.2: Classification performance of CIRCLe on the test set as the number of training
images of the FST groups increases. Each FST group line plot indicates the series of exper-
iments in which the percentage of number of training images of that FST group changes
as the rest of the training images remain idle. The rightmost point in the plot, with 100%,
is identical for all the FST groups, which is the overall accuracy achieved by CIRCLe in
Table 3.2. The std. dev. error band, illustrated in the figure, is computed by repetition of
experiments with three different random seeds.

As CIRCLe’s performance improvement and effectiveness in comparison with the base-

lines is established in Section 3.4.1, we further analyze the relation of CIRCLe’s classification

performance with the percentage of images of the FST groups in the training data. To this

end, we consider the FST groups of light skin types (FSTs 1 and 2) with 5,549 images,

medium skin types (FSTs 3 and 4) with 4,425 images, and dark skin types (FSTs 5 and 6)
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with 1,539 images in the training set. For each FST group, we gradually increase the number

of images of that group in the training set, while the number of training images in other

groups remains unchanged, and report the model’s overall accuracy on the test set. The

total number of training images for each of these experiments is provided in Table 3.5. As we

can see in Figure 3.2, as the number of training images in a certain FST group increases, the

overall performance improves, which is expected since DL-based models generalize better

with larger training datasets. However, we can see that for the least populated FST group,

i.e., dark skin types (FST56) with 13% of the training data, our method demonstrates a

more robust performance across experiments, and even with 0% training data of FST56,

it achieves a relatively high classification accuracy of 0.443. In addition, note that in these

experiments, FST groups with lower number of images in the dataset, would have a larger

number of total training images, since removing a percentage of them from the training

images will leave a larger portion of images available for training (Table 3.5). This indicates

that when the number of training images is large enough, even if images of a certain skin

type are not available, or are very limited, our model can perform well overall. This obser-

vation signifies our method’s ability to effectively utilize the disease-related features in the

images from the training set, independently from their skin types, as well as the ability to

generalize well to minority groups in the training set.

3.5 Summary

In this chapter, we proposed CIRCLe, a method based on domain invariant representation

learning, for mitigating skin type bias in clinical image classification. Using a domain-

invariant representation learning approach and training a color-invariant model, CIRCLe

improved the accuracy for skin disease classification across different skin types for the

Fitzpatrick17K dataset and set a new state-of-the-art performance on the classification

of the 114 skin conditions. We also proposed a new fairness metric, Normalized Accuracy

Range, for assessing the fairness of classification in the presence of multiple protected groups

and showed that CIRCLe improves the fairness of classification. Additionally, we presented

an extensive evaluation over multiple CNN backbones as well as experiments to analyze
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CIRCLe’s domain adaptation performance and the effect of varying the number of training

images of different FST groups on its performance.

Having looked at algorithmic approaches to improve the fairness and performance of a

skin condition classification model, we next look at leveraging dermatological data synthesis

to improve skin condition bounding box detection and semantic segmentation performance.
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Chapter 4

DermSynth3D: Synthesis of
in-the-wild Annotated
Dermatology Images

4.1 Introduction

Clinical images play a vital role in dermatology research, providing crucial insights into

various skin conditions. In-the-wild clinical images are commonly utilized to train classi-

fication models [37, 48, 57, 108, 124], where the entire image serves as input for predicting

skin disorder classes. However, beyond classification, other tasks such as lesion segmen-

tation [51, 80], tracking [44, 107, 129], management [3], and skin tone prediction [62] are

important. The dataset for wound segmentation, introduced by Wang et al. [115], presents

a valuable resource for automating wound area measurement in therapy monitoring. Addi-

tionally, research by Groh et al. [48] highlights the significance of segmenting healthy skin

in automated methods aimed at estimating skin tones. This segmentation process has been

demonstrated to enhance the accuracy of skin tone prediction in imaged subjects.

Synthesizing images with their corresponding annotations presents a viable strategy for

curating the necessary data, proven successful in both medical and non-medical domains.

In non-medical contexts, image synthesis with annotations has been applied in face anal-

ysis [123] and indoor scene segmentation [78]. For a comprehensive exploration of image

synthesis, particularly utilizing generative adversarial network (GAN) models [46, 119], in-

terested readers are directed to the survey conducted by Shamsolmoali et al. [102].
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Given the often limited size of medical image datasets [10, 32, 66], the adoption of syn-

thesis techniques for medical image analysis has gained popularity in recent years. This

approach facilitates the generation of ground truth-annotated images across various modal-

ities, including MRI [24, 38], CT [27, 83], PET [17, 118], and ultrasound [74, 111]. For a

deeper examination of the use of GANs and image synthesis in medical imaging, readers

are directed to comprehensive surveys by Yi et al. [128], Kazeminia et al. [59], Wang et

al. [117], Rawat et al. [106], and Yang et al. [127].

In the domain of skin image analysis, efforts have been directed toward synthesizing skin

lesion images. Initial works utilized noise-based GANs [14] and conditioned output on diag-

nostic categories [20]. Subsequently, Abhishek et al. [1] proposed a GAN-based framework

for generating skin lesion images constrained to binary lesion segmentation masks, while

Pollastri et al. [89] employed GANs to generate both skin lesion images and corresponding

binary segmentation masks. For a comprehensive review of deep learning-based synthetic

data generation techniques for skin lesion images, readers are referred to the survey con-

ducted by Mirikharaji et al. [80].

The current “in-the-wild” clinical datasets are often limited in their scope and tend to be

task-specific, thereby limiting their utility in providing semantically rich ground truth (GT)

labels suitable for various dermatological tasks. Consequently, there has been relatively less

exploration into generating synthetic data for clinical images compared to dermoscopic im-

ages. In addressing this gap, Li et al. [73] proposed a method to synthesize 2D data by

blending small lesions onto larger torso images, enabling training data creation for lesion

mask detection across extensive body regions. Similarly, Dai et al. [34] introduced a tech-

nique for generating burn images with automatic annotations, utilizing Style-GAN [56] to

synthesize burn wounds integrated with textures from a 3D human avatar. Both approaches

emphasized the challenges in obtaining appropriately labeled real training data specific to

their dermatological tasks, thus motivating their use of synthetic data.

Our proposed methodology shares similarities with that of Dai et al. [34], where we adopt

a comparable pipeline involving the blending of 2D skin disorder images onto 3D textured

meshes to create a comprehensive 2D dataset accompanied by corresponding annotations.
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However, we expand the scope of our work by incorporating a diverse range of skin tones and

background scenes. This expansion enables us to generate semantically rich and meaningful

labels for 2D “in-the-wild” clinical images, which are applicable to a variety of dermatological

tasks, rather than being limited to a single task. Moreover, the annotated data generated

by DermSynth3D in the form of semantic segmentation masks and 3D scene parameters,

can be used to train machine learning models for a variety of medical tasks that may benefit

clinical practice.

4.2 Method

Our proposed DermSynth3D framework automates the process of blending skin disease

regions from 2D images onto 3D texture meshes, while allowing for control over lighting

and material parameters, from appropriate camera viewpoints, and renders the resulting

2D image and the corresponding ground truth annotations. Figure 4.1 shows our proposed

framework. We describe an overview of our proposed framework in this section. For a more

detailed description of the method, we refer interested readers to our published paper [105].

We define a 2D clinical image x ∈ RW ×H×3 as an RGB image with width W and height H

that shows a skin condition, and a corresponding binary segmentation mask s ∈ {0, 1}W ×H

where pixels with a non-zero value indicate the diseased region (as shown in “2D skin

lesions” in Figure 4.1). We define a 3D avatar of a human subject as a mesh M composed

of vertices V , faces F , and a UV map U , where the vertices and the faces determine the

geometry of the mesh and the UV map determines the mapping between the geometry and

a 2D texture image T ∈ RWT ×HT ×3 that contains pixels representing the surface of the skin.

Our goal is to transfer the skin condition within x onto a location on the texture image T

of the 3D mesh M . We approach this problem through an image-blending method, where

given a 2D binary segmentation mask s indicating the skin condition within x and a target

location on the mesh, we blend the diseased region within the mesh’s texture image T .

4.2.1 Placing and Blending Skin Conditions on the Mesh

In our framework, we ensure the accurate placement of skin conditions on 3D meshes by

enforcing criteria for suitable locations. These criteria dictate that the region for lesion
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Figure 4.1: Overview of our proposed framework DermSynth3D. The pipeline takes texture
images of 3D meshes, 2D segmented skin conditions, and background scenes as input, and
blends the skin condition onto texture images to produce lesion-blended texture maps. Af-
ter blending, 2D views of the meshes are rendered from various camera viewpoints, under
different lighting conditions, and combined with background images to create a synthetic
dermatology dataset of images with skin lesions and their corresponding ground truth an-
notations.

placement should; (1) not overlap with clothing, hair, or the background, (2) not over-

lap with another skin condition (when blending multiple skin conditions), and (3) exhibit

minimal depth changes, preventing blending lesions across disjoint anatomy. To validate a

location’s suitability, we assess if the lesion placement region meets these criteria, leveraging

both depth information from the renderer and manual annotations of non-skin regions.

Initially, we assess the feasibility of positioning a scaled clinical image x and its corre-

sponding lesion mask s within the center of the rendered view. Given potential discrepancies

in size between x and ã, we create an image ax ∈ RW̃ ×H̃×3, depicting the lesion within

the rendered view, along with a corresponding lesion mask as ∈ RW̃ ×H̃ . Subsequently, we

evaluate if the region as accommodating the skin disorder aligns with the aforementioned

suitability criteria.

To mitigate significant depth changes and prevent lesion overlap with the background, we

leverage depth information (z̃) provided by the renderer. This depth data aids in identifying

local regions with pronounced depth changes or regions exterior to the mesh. Additionally,

to avoid lesion overlap with non-skin regions, we rely on manual annotations (referenced in
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Section 4.3) delineating non-skin areas within the texture image. These annotations serve

to differentiate between skin and non-skin regions, ensuring accurate placement of skin

conditions.

Once suitable locations are identified, we blend skin conditions into the texture im-

age of the 3D mesh. Skin conditions manifest across various body locations and can be

observed from diverse viewpoints in real-world clinical scenarios. To efficiently synthesize

realistic “in-the-wild” clinical images, our framework blends the skin disorder directly into

the mesh’s texture image. This approach enables the framework to render the blended skin

disorder from various viewpoints. The blending process involves updating the texture image

to incorporate the skin condition while preserving the original texture in unaffected regions.

We follow the deep image blending approach by Zhan et al. [130], where an iterative op-

timization, minimizes a blending loss function between a foreground object cropped from

the source image and the target image which the selected object would be blended onto.

Leveraging an iterative optimization technique inspired by deep image blending methods,

we achieve a harmonious integration of skin conditions into the texture image.

4.2.2 Synthesizing the 2D Image Dataset

Creating the dataset of 2D rendered images and their corresponding dense annotations

involves a methodical two-step process. First, we determine suitable locations for blending

skin conditions onto the texture image (T ) of the 3D mesh (M). This step, detailed in

Section 4.2.1, entails sampling 2D images (x) with skin conditions from real dermatological

image collections (Section 4.3) and their respective annotated masks (s). Enhancing color

constancy within these images, we employ the Shades of Gray algorithm [42]. Subsequently,

iterative blending processes, described in Section 4.2.1, is applied to blend multiple skin

conditions at various locations. The first step yields a blended texture image Tb ∈ RWT ×HT ×3

and a corresponding texture mask Tm ∈ ZWT ×HT , indicating the locations of the skin

conditions, where WT and HT are the width and the height of the original texture image T

respectively.

In the second step, leveraging the blended texture image Tb and texture mask Tm, we

generate a dataset of rendered 2D views and target labels. This process involves randomizing
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Figure 4.2: Generated synthetic images of multiple subjects across a range of skin tones in
various skin conditions, backgrounds, lighting, and viewpoints.

camera positions to render 2D RGB views ãTb
from the blended texture image Tb. Variations

are introduced through diffuse, ambient, and specular lighting parameters, and for more

realistic views and improved illumination, we enforce that the camera is placed outside of

the mesh and that the light source reaches the camera without being blocked by the mesh.

To create the final image, we combine the foreground with a background image of 2D indoor

scene.

Next, we describe each of our different target variables. The skin condition mask ãTm

is computed by rendering with the texture mask Tm. The skin mask askin is computed

by excluding both the skin condition regions ãTm and the regions of the body labeled as

non-skin. The non-skin mask anonskin is computed from regions containing neither skin ãTm

nor skin conditions askin (Figure 4.3, third row). Additionally, we obtained bounding boxes

around skin condition regions by computing the minimal enclosing box around each skin

condition mask (Figure 4.3, second row from the top).
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Figure 4.3: A few examples of data synthesized using DermSynth3D. The rows from top
to bottom show respectively: the rendered images with blended skin conditions, bounding
boxes around the lesions, GT semantic segmentation masks.

Finally, we generate our dataset by rendering a set of 2D images and the corresponding

annotations for each mesh, by sampling n times under different camera, lighting, and mate-

rial parameters, and background scenes. We show some example images from the generated

2D dataset in Figure 4.2.

4.3 Materials for Synthetic Data Generation

We incorporate 3D textured human meshes from the 3DBodyTex dataset [97, 98]. This

dataset has 400 high-resolution textured meshes from 200 subjects captured in various poses,

wearing sports clothing. These meshes are utilized to introduce realistic human anatomy

into synthetic images.

For dermatological image segmentation, we employ the Fitzpatrick17K dataset, a clinical

dataset featuring “in-the-wild” images alongside corresponding skin condition labels, which

we described in Chapter 2. From this dataset, 75 images are manually segmented into lesion,

skin, and background segments. This segmentation aids in accurately representing diverse

skin conditions in synthetic images.

To enhance the realism of synthetic images, we integrate backgrounds sourced from

2D indoor scene images available in public datasets [78, 93]. These backgrounds contribute

to creating visually convincing synthetic images that closely resemble real-world clinical

environments.
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4.4 Experimental Details

4.4.1 Synthetic Dataset

We generate a dataset of 10,000 synthetic images using DermSynth3D based on the dataset

construction details provided in [105]. The synthetic dataset is generated by capturing

randomly rendered views of the 3D meshes with blended skin conditions on them. Images

are generated by rendering the blended views with a height H̃ and width W̃ of 512 × 512,

and diversified by placing multiple skin conditions into a single texture image, sampling

from a range of camera views and lighting parameters, and various backgrounds. For the

experiments, based on the requirements of the experiment, a subset of images was randomly

selected from this synthetic dataset of 10,000 images.

4.4.2 Evaluation Dataset

We use the FUSeg dataset, which we described in Chapter 2. As the ground truth annota-

tions for the official test set are not publicly released, we use the official validation set for

our evaluation and split the official training set into 610 images for training and 200 images

for internal validation. We use common image augmentation and normalization techniques

(e.g., rotation, color shifts) on the training images.

4.4.3 Model Training Details

Bounding Box Detection

We convert the masks of the wounds to bounding boxes by labeling the connected regions of

the masks and computing the minimal enclosing bounding box. We then train a Faster R-

CNN [92] model with pre-trained weights for bounding box detection. We use a mini-batch

size of 8 images and train the model for a maximum of 50 epochs using SGD [21, 60, 94]

with a learning rate of 0.001. We choose the model weights with the maximum intersection

over union (IoU) score over the internal validation set of real images.

Semantic Segmentation

We train a DeepLabV3 [25] network with a ResNet-50 [52] backbone with pre-trained

weights as our model. We use a mini-batch size of 8 images and minimize the binary cross
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Figure 4.4: An example of the overlapping centroid metric [131]. Left shows the difference
between IoU and overlapping centroids metric. IoU differs among the green, blue, and orange
boxes; however, they have the same centroid (diamond) and are considered as “matching”
using the overlapping centroid metric. Middle shows an “unmatch” scenario. The orange
box contains the centroid for the green and blue boxes; however, the green and blue boxes
do not contain the centroid for the orange box, and thus are not considered a match. Right
shows a “match” scenario. The green and orange boxes match as both contain each other’s
centroids. Note that the green and orange boxes have the same IoU in the middle and right
figures, but only the right figure shows a match using the centroid metric.

entropy loss for a maximum of 250 epochs using the Adam optimizer with a learning rate

of 0.00005 and a weight decay of 0.00005. We choose the model weights with the maximum

Dice score over the internal validation set of real images.

4.4.4 Evaluation Metrics

For evaluating the bounding box detection performance, we use two metrics: the intersection

over union (IoU) score, which measures the exact match between a detected and ground

truth bounding box, and the average precision of overlapping centroids (APcentroid) [131],

which determines the bounding box localization performance rather than its precise bound-

aries and is more suitable for medical applications.

Average precision of overlapping centroids

APcentroid metric is based on the overlapping centroids. Specifically, if two centroids of the

ground truth bounding box y and the model’s predicted box y′ are enclosed by both we

have,

(c(y) ∈ y′) & (c(y′) ∈ y) (4.1)
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where c(.) computes the centroid of the box, a “correct detection” or ”match” occurs.

Figure 4.4 shows examples using the overlapping centroid metric on various bounding boxes.

After computing the true and false positive detections, we compute average precision (AP),

which measures the area under the precision-recall curve.

4.5 Experiments and Results

Detecting and segmenting wounds in clinical images is an important step in tracking and

extracting morphological features from the wounds, which is crucial for diagnosis and treat-

ment. Bounding box detection and semantic segmentation of wounds can be used to localize

the wounds in clinical images and minimize unnecessary information within the scene to

improve downstream tasks [115].

We perform the following experiments in order to evaluate how well a model trained

on our generated synthetic data can generalize to unseen real data. We emphasize that

our goal in these experiments is not to compete with state-of-the-art performance over

these datasets, but rather to show the utility of the generated dataset by assessing the

model’s ability to generalize to real 2D images when trained on this dataset. Ideally, we

would evaluate our approach over an existing “in-the-wild” clinical dermatological dataset

with skin conditions, skin, and background segmentation labels. However, to the best of

our knowledge, there exists no such dataset, as most skin image datasets contain labels for

binary segmentation tasks (e.g., skin vs background or lesion vs background).

4.5.1 Wound Bounding Box Detection with Synthetic Data Augmenta-
tion

To assess the performance improvement from using synthetic images in the training process,

we gradually increase the number of synthetic images added to the training sets of limited

real images. We can see in Figure 4.5 that augmenting the entire real training dataset with

synthetic images significantly improves the wound detection performance. This observation

highlights the capacity of synthetic images to introduce meaningful information (beyond

what is in the real images) during training. Figure 4.5 demonstrates that the addition of
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Figure 4.5: Wound bounding box detection performance across five folds (mean and standard
deviation) on FUSeg dataset, where the number of synthetic images added to a fixed number
of real images in the training set gradually increases. Bounding box detection performance
is measured by (a) IoU and (b) APcentroid (note that the vertical scales of the two plots are
different). The plotted results extend up to the point of convergence. The horizontal red
line indicates the results for the model that is trained on 610 real images, which shows the
bounded performance using all the real images.
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synthetic images consistently improves the detection performance and reduces the standard

deviation error in the results, thus leading to more robust and reliable performance.

We note that the performance of the model converges after the addition of 400 syn-

thetic training images and increasing them beyond 1000 did not significantly increase the

performance. However, this maybe partly application dependent.

Moreover, using only less than 1/6th of the available real images (100 annotated real

images) alongside synthetic ones, we can achieve comparable detection results to the upper

bound, which is less than a 2% drop in performance. Note that for generating synthetic

training images using DermSynth3D, only 50 lesion annotations were used, which is 8.2% of

the cost of dense annotations compared with the real dataset of wounds. Another notable

observation in Figure 4.5 is that by adding 100 synthetic images to a very small dataset

of 10 real images, we can achieve a similar performance as a dataset of 100 real images.

This demonstrates the usefulness of this approach in situations where real data is extremely

limited.

4.5.2 Wound Bounding Box Detection and Semantic Segmentation using
Only Synthetic Data

To further explore the usefulness of our synthetic images in scenarios where there is no real

training data available, we conduct additional experiments. We create a synthetic dataset

of 610 images, which is the same size as the “real” wound image training set of the FUSeg

dataset. We then evaluate the performance of a model in bounding box detection and

segmentation when it is trained on this synthetic-only dataset and tested on the real wound

image testset. The quantitative results are reported in Table 4.1 alongside the model’s

performance when trained on the FUSeg training set of real wound images, under the same

training settings.

Our experiments show that for wound detection, when only synthetic DermSynth3D data

is available, an average precision of 80% in wound localization can still be achieved. We can

see in Table 4.1 that the model trained on only synthetic images achieves an APcentroid of

0.80 and IoU of 0.42. The significant gap between the IoU and APcentroid suggests that the

model localizes the wounds, but does not precisely match the bounding boxes encapsulating
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Figure 4.6: Qualitative results for foot ulcer bounding box detection on FUSeg dataset
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Table 4.1: Foot ulcer bounding box detection and segmentation performance on the test set
of real images of wounds.

Detection (bounding box overlap) Segmentation (pixel-wise comparison)
Train dataset APcentroid IoU Dice IoU

Synthetic 0.80 ±0.018 0.42 ±0.011 0.49 ±0.007 0.37 ±0.008
FUSeg 0.88 ±0.012 0.61 ±0.008 0.81 ±0.003 0.71 ±0.004

them. By analyzing the qualitative results of the model’s predictions (Figure 4.6), we observe

two major trends in the model’s failure cases. (1) There seems to be a semantic difference

between a skin condition and a wound. In our synthetic dataset, the whole lesion area,

including the surrounding affected skin, is annotated as the lesion. However, in the FUSeg

dataset, only the open-wound area is covered by the segmentation mask. This mismatch

in labeling across these two image domains causes the model to over-segment some images

(Figure 4.6 bottom three rows), resulting in a drop in the IoU. (2) As the synthetic data

contains a variety of skin conditions across different parts of the body when trained on

synthetic images, the model learns to detect other skin conditions within the image that are

not of the wound. This can cause the model to over-detect wounds in the images (Figure 4.6

bottom row), resulting in a decrease in both IoU and APcentroid.

Additionally, for the segmentation performance, Table 4.1 shows that a model trained

on only synthetic images still achieves a Dice score of 0.49, which is more than 60% of

the performance on real data (0.81 Dice), despite the differences in semantic content (skin

conditions selected from Fitzpatrick17K dataset versus foot ulcers) and source domains

(synthetic versus real). This demonstrates that even in the absence of real images, training

on synthetic DermSynth3D data can provide more than 60% of the expected performance

when trained on real clinical images, despite the significant domain gaps.

4.5.3 Utility of Synthetic Data in Pre-training for Wound Detection

Since the introduction of AlexNet [68], leveraging pre-trained models trained on extensive

datasets and fine-tuning them for subsequent tasks has become a widely adopted strategy

within the computer vision community [67, 103]. Nevertheless, existing pre-trained models

are predominantly trained on natural images, which exhibit a notable domain gap when
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Figure 4.7: Wound bounding box detection performance across three folds (mean and stan-
dard deviation) on FUSeg dataset. The pre-training method is changed across experiments
with four methods of training from scratch, pretrained backbone on COCO, and two datasets
of generated images from DermSynth3D, with sizes of small (1.5k images) and large-scale
(10k images).
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compared to medical images. The unavailability of pre-trained models tailored to medical

data stems mainly from the challenges of annotating such data and the associated costs

of constructing large-scale datasets suitable for pretraining models. However, our proposed

data synthesis framework, DermSynth3D, can potentially create large-scale data with a

relatively much lower cost.

To assess the utility of the synthetic data in pre-training for wound detection, we perform

a set of experiments where we use the synthetically generated data from DermSynth3D to

pre-train Faster R-CNN [92] model from scratch and fine-tune the model on sets of limited

real images. We compare the results obtained on the test set with the other scenarios

such that the model is not pre-trained at all and pre-trained on on COCO dataset [75].

We can see in Figure 4.7 that even though the size of our datasets of generated images

from DermSynth3D (1.5k and 10k images) is much smaller than the COCO dataset (about

238k images), by pre-training the model on a synthetic dermatological dataset, the model’s

performance improves noticeably. In addition, in the case of very limited data, with only 10

or 50 real images for fine-tuning, a model pre-trained on DermSynth3D data can achieve

comparable performance to that of fine-tuned on the whole dataset of real images (610

images). Therefore, a notable utility of our proposed framework can be in synthesizing

large-scale “in-the-wild” clinical datasets for enhancing model performance via pre-training

the model on a more specific and similar dataset.

4.6 Ablation Study

To explore the impact of parameter selections in image synthesis on the end results, we con-

ducted an ablation study focusing on a specific application of the proposed framework: foot

ulcer bounding box detection. Given the significant cost associated with manual segmen-

tation and acquiring skin lesions and textured meshes, we concentrate on evaluating how

varying the number of lesions and meshes influences the performance of foot ulcer bounding

box detection. We systematically adjusted the number of lesions and their blending with

different numbers of meshes. We generated a training dataset of 1500 synthetic images. We
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Figure 4.8: An ablation study on the effect of the number of lesions and number of meshes
on the downstream task of bounding-box detection is visualized as a heatmap. The darker
the shade, the lower the value of the performance metric.
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followed the experimental settings outlined in Section 4.4, and used the real test set of the

FUSeg dataset for evaluation.

For the wound detection task, we can see in Figure 4.8 that the results improve when

generating synthetic images using more lesions and more meshes, which can be attributed

to the overall increased diversity of the training images. Furthermore, increasing the lesion

count while maintaining a consistent mesh quantity yields a more discernible enhancement

in comparison to solely increasing the number of meshes. Moreover, adding more lesions

while keeping a consistent number of meshes results in a more noticeable improvement

compared to increasing the number of meshes alone. This underscores the significance of

lesion variability as a key factor in the efficacy of the data produced by DermSynth3D for the

given task. The observed performance gains can be attributed to the diverse image variations

achieved by modifying the lighting and viewpoints for each mesh. However, beyond a certain

threshold, the benefits diminish when solely augmenting the number of meshes, likely due

to differences (e.g., skin tones) between the meshes and the real images.

4.7 Summary

In this chapter we introduced DermSynth3D, a novel framework for synthesizing densely

annotated in-the-wild dermatological images by blending 2D skin conditions onto textured

3D meshes of human subjects and generating a custom dataset of 2D views with correspond-

ing labels that span across several downstream tasks, such as segmentation and detection.

Through extensive evaluation, we show the effectiveness of the generated synthetic data on

two main dermatological applications of foot ulcer detection and segmentation, by demon-

strating the generalization achieved after training a model on synthetic data and testing

on real data. We observed that when the generated synthetic images are added to a small

dataset of real images in the training process, they can improve the model’s performance.

Our results suggest that DermSynth3D has the potential to generate meaningful derma-

tological data for computerized skin image analysis, especially in resource-constrained or

ethically challenging real-world scenarios. We also performed ablation studies to ascertain

the contribution of the main components of our image synthesis pipeline.
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Chapter 5

Conclusion and Future Work

5.1 Summary of Contributions

In this thesis, we directed our attention to addressing the dermatological data imbalance

and dataset availability, and our contribution is two-fold.

In our first contribution, we addressed the problem of mitigating bias in DL-based

models for the classification of skin conditions across skin types. We proposed a skin color-

invariant model by using a domain-invariant representation-learning method. We proposed

a skin color transformer by using a generative model to learn mappings from one skin type

to another in a clinical skin condition image, and we enforced the learning objective of the

classification model to be invariant across different skin types. We demonstrated that the

proposed model enhanced classification performance while improving the results’ fairness

across skin types, resulting in less biased diagnosis and better model generalization and

adaptability.

In our second work, we addressed the problem of a lack of annotated in-the-wild clinical

data in the literature. We leveraged textured 3D meshes and blended 2D skin conditions

onto them to synthesize densely annotated in-the-wild dermatological images that can be

utilized for several downstream tasks. We showed the effectiveness and utility of the syn-

thesized images on two applications of detection and segmentation of skin conditions and

demonstrated the model generalization to real data when trained on our synthetic images

through extensive evaluation.
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5.2 Thesis Limitations and Future Work

Some of the limitations in our work can open up new research directions and potential

future works in the field:

5.2.1 Limitations of skin condition image datasets with skin type anno-
tations

In order to develop fair and accurate DL-based data-driven diagnosis methods in dermatol-

ogy, we need annotated datasets that include a diversity of skin types and a range of skin

conditions. However, only a few publicly available datasets satisfy these criteria. Out of all

the datasets identified by the Seventh ISIC Skin Image Analysis Workshop at European

Conference on Computer Vision 2022 (derm7pt [58], Dermofit Image Library [12], Diverse

Dermatology Images (DDI) [36], Fitzpatrick17K [47], ISIC 2018 [28], ISIC 2019 [29,31,112],

ISIC 2020 [96], MED-NODE [45], PAD-UFES-20 [86], PH2 [79], SD-128 [109], SD-198 [109],

SD-260 [126]), only three datasets contain Fitzpatrick skin type labels: Fitzpatrick17K with

16,577, DDI with 656, and PAD-UFES-20 with 2,298 clinical images. The Fitzpatrick17K

dataset is the only dataset out of these three which covers all the 6 different skin types (with

over 600 images per skin type) and contains more than 10K images, suitable for training

high-capacity DL-based networks and our GAN-based color transformer. It also contains

samples from 114 different skin conditions, which is the largest number compared to the

other two. For these reasons, we used the Fitzpatrick17K dataset for training and evaluating

CIRCLe. However, skin conditions in the Fitzpatrick17K dataset images are not verified by

dermatologists, and skin types in this dataset are annotated by non-dermatologists. Also,

the patient images captured in the clinical settings exhibit various lighting conditions and

perspectives. During our experiments, we found many erroneous and wrongly labeled im-

ages in the Fitzpatrick17K dataset, which could affect the training process. Our preliminary

investigation into these data discrepancies has been further elaborated upon in the recent

work [2]. Fig. 5.1 shows some erroneous images in the Fitzpatrick17K dataset. Therefore,

one possible future work can be cleaning the Fitzpatrick17K dataset and verifying its skin

conditions and skin types by dermatologists.
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Figure 5.1: Sample erroneous images from the Fitzpatrick17K dataset that are not clinical
images of skin conditions, but are included in the dataset and are wrongly labeled with skin
conditions.

5.2.2 Extending available annotated data for skin condition classification

As we can see in Section 3.4.3 and Figure 3.2, the number of training images plays a sig-

nificant role in the model’s performance across different skin types. Although we proposed

CIRCLe for improving the skin condition classifier’s fairness and generalizability, the impor-

tance of obtaining large and diverse datasets must not be neglected. Mitigating bias in AI

diagnosis tools in the algorithm stage, as we proposed, can be effective and is particularly

essential for the currently developed models, however, future research at the intersection

of dermatology and computer vision should have specific focus on adding more diverse and

annotated images to existing databases.

While our synthetic dataset generated by DermSynth3D included a range of skin tones

derived from subjects in the 3DBodyTex dataset, future work may examine extending

DermSynth3D to enable selection of specific skin tones, thereby enhancing dataset diversity.

Our initial efforts to estimate skin tone based on pixel-level values within the DermSynth3D

framework encountered challenges, notably due to the sensitivity of calculation-based meth-

ods to image acquisition environments and manual thresholding. These limitations present

opportunities for refinement in future research endeavors.

5.2.3 Maintaining skin condition diagnosis in data synthesis

A natural extension to both of our works is to introduce constraints to the data synthesis to

maintain the skin condition label. In our first work, while the total loss function of CIRCLe

addresses both skin condition classification performance and skin type representation invari-

ance, the skin color transformer is not directly constrained to maintain the skin condition
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label during the transformation. Therefore, since skin conditions appear differently across

skin types, the images synthesized from the transformation may not be dermatologically

correct representations of their original diagnosis. Moreover, in our second work, the de-

sign choices of DermSynth3D are as such to randomize the parameter variations (e.g., skin

condition type, location on the body, size, etc.) during the dataset creation to diversify the

data while synthesizing visually plausible images with high utility in the training process of

DL-based models in downstream tasks. However, in reality, different skin conditions might

appear in specific parts of the body with certain size limits; therefore, future works can

extend our proposed data synthesis framework to address skin condition diagnosis-related

constraints to generate more dermatologically correct data.

5.2.4 Domain gap between DermSynth3D data and foot ulcers

In our second work’s experiments, while we used the FUSeg dataset as the dataset of real

in-the-wild skin condition images, we acknowledge that there is a semantic domain gap

between a skin condition and a wound. As we see in Section 4.5.1, the model’s performance

when trained on synthetic images can partially be attributed to this semantic difference.

Moreover, while the FUSeg dataset only contains images of ulcers on the foot (Figure 2.5),

the DermSynth3D dataset contains images of different types of skin conditions on various

parts of the body (Figure4.2). Future works can explore utilizing domain adaptation meth-

ods to improve the segmentation and detection performance on real data (Table 4.1) by

leveraging the generated synthetic data.

5.2.5 Other possible future works

In exploring the future directions of this work, it is important to acknowledge the evolving

landscape of machine learning architectures. While CNNs have served as the fundamen-

tal framework in our study for their efficacy in image classification and object detection

tasks, it is essential to recognize the growing prominence of Transformer models [114].

Addressing this concern, future work could explore the integration of Transformer archi-

tectures. However, it is worth noting that Transformers typically demand larger amounts
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of data and computational resources for effective training, potentially posing challenges in

resource-constrained environments.

Moreover, diffusion-based modelling [53], presents a promising avenue for synthesizing

dermatological images. Future works can explore more photo-realistic and diverse derma-

tological image generation using stable diffusion models conditioned on disease class, skin

type, location on the body, etc.
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