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Abstract

This thesis explores two variations of signed graphs. For the first variation we study nowhere-

zero flows. Here we develop algorithms for computing the circular flow number in cubic

graphs and we establish some theorems giving bounds on the circular flow number. For the

second variation we prove a theorem showing the existence of a decomposition of a signed

graph into positive cycles and a related theorem implying the existence of a removable cycle.

We also establish a new structure theorem characterizing when a 3-connected signed graph

has a path between two distinguished vertices that is disjoint from a negative cycle.

Keywords: Signed graphs; Circular flow; Circular coloring; Nowhere-zero flow; Positive

cycle decomposition; Removable positive cycle; Two disjoint negative cycles
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Chapter 1

Introduction

1.1 Basic Definitions

Throughout this thesis, we will use the standard notation and definitions from ’Introduction

to Graph Theory’ by West [21]. We review some of these essential definitions first. A graph

G is a triple consisting of a vertex set V (G), an edge set E(G), and a relation that associates

with each edge two vertices (not necessarily distinct), called its endpoints. We draw a graph

on paper by placing each vertex at a point and representing each edge by a curve joining

the locations of its endpoints. A loop is an edge whose endpoints are equal. Multiple edges

are edges having the same pair of endpoints. A simple graph is a graph having no loops

or multiple edges. When u and v are the endpoints of an edge, they are adjacent and

are neighbors. To denote an edge with endpoints u and v, we generally use uv. A directed

graph, or digraph, D, consists of a set of vertices V (D), a set of edges E(D), and a function

which assigns each edge e an ordered pair of vertices (u, v). The degree of a given vertex v,

denoted as d(v), is the number of edges incident to v. A cubic graph is a graph in which

all vertices have a degree of three. A walk W of a graph G is an alternating sequence

v1, e1, v2, . . . , ek−1, vk of vertices and edges (allowing repetition) such that for 1 ≤ i ≤ k−1,

the edge ei has endpoints vi and vi+1. A walk of a graph is said to be closed if v1 and vk

are identical. A path P of a graph is a walk where all the vertices vi are distinct. A cycle of

a graph is a closed walk with all the vertices vi (except v1 = vk) distinct. The length of a

walk is the number of its edges. An odd (or even) cycle is a cycle of odd (or even) length. If

X, Y are disjoint subsets of V (G) with X ∪ Y = V (G), then the set of edges with one end
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in X and the other in Y is called an edge cut (or cut for short) and is denoted E(X, Y ). A

graph is k-edge-connected if every proper nonempty subset of vertices ∅ ̸= X ⊂ V (G) has

|E(X, V (G) \X)| ≥ k. If G is a directed graph, then we let −→E (X, Y ) (←−E (X, Y )) denote the

set of edges directed from X to Y (Y to X). A graph G′ is a subgraph of another graph G

if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). A k-coloring of a graph G is a labeling f : V (G)→ S,

where |S| = k (often we use S = [k]). The labels are colors; the vertices of one color form

a color class. A k-coloring is proper if adjacent vertices have different labels. A graph is

k-colorable if it has a proper k-coloring. The chromatic number, denoted as χ(G), is the

least k such that G is k-colorable.

Let G be a graph and let G1, G2 ⊆ G. We call (G1, G2) a k-separation (or separation of

order k) if the following conditions are satisfied:

• G1 ∪G2 = G

• E(G1) ∩ E(G2) = ∅

• |V (G1) ∩ V (G2)| = k

The separation is proper if V (G1) \ V (G2) ̸= ∅ ≠ V (G2) \ V (G1).

If G is a graph, an embedding of G in the plane is a function ϕ which assigns each

vertex of G a distinct point in the plane and assigns to each edge e with ends u, v a simple

rectifiable curve with ends ϕ(u) and ϕ(v) so that this curve minus its ends is disjoint from

the image of V (G)∪ (E(G) \ {e}). A plane graph is a graph G together with an embedding

of G in the plane. A graph is planar if there exists an embedding of it in the plane. Let G

be a plane graph, and construct a new plane graph G∗ as follows. For each face a ∈ F (G),

add a vertex a∗ in a. For each edge e ∈ E(G) which lies in the boundary walk of the faces

a, b, add an edge from a∗ to b∗ which crosses e but is otherwise disjoint from the image of

G (if e appears twice in the boundary walk of a, then e∗ is a loop at a∗). This can be done

so that G∗ is a plane graph, and we call any plane graph constructed in this manner a dual

of G. Note: for convenience we sometimes treat a pair of dual planar graphs G and G∗ as

having the same edge set with an edge e in G corresponding to e in G∗.

2



x y

Figure 1.1: A digon in a signed graph

1.2 Signed Graphs and Switching

A signed graph (G, σ) consists of a graph G together with an assignment σ : E(G)→ {−1, 1},

referred to as a signature. Given a signed graph (G, σ), we denote by E+(G, σ) and E−(G, σ)

the sets of positive and negative edges of (G, σ), respectively.

A signed graph with all edges being negative is denoted by (G,−), while a signed graph

with all edges positive is denoted by (G, +). A signed multigraph on two vertices with two

parallel edges of different signs is called a digon. We say a signed graph (H, π) is an (induced)

subgraph of (G, σ) if H is an (induced) subgraph of G, and π is a signature on H such that

for every e ∈ E(H), π(e) = σ(e). For simplicity, we may write (H, σ) as a subgraph of (G, σ)

if H is a subgraph of G.

In this thesis, for drawing a signed graph, we use solid lines to represent positive edges,

and dashed or dotted lines to represent negative edges.

A negative theta is constructed from a negative cycle C and a signed path P such that

only the endpoints of the path P are on the cycle C. Let Q1 and Q2 be the unique paths

of cycle C with same endpoints of the path P . By observation exactly one of cycles Q1 ∪P

and Q2 ∪ P is negative. We call this property theta property.

In this thesis we consider two different notions of equivalence for signed graphs. The

first of these is called switching equivalence, and we introduce this next. Given a signed

graph (G, σ) and a vertex v of (G, σ), a switching at the vertex v involves changing the sign

of every edge incident to v. Note that if there is a loop at vertex v, the change will occur

twice, thus nullifying the effect. Given a set A ⊆ V (G), a switching at the set A involves

switching the signs of all edges in the edge-cut E(A, V \A). This operation is equivalent to

successively switching at each vertex in A.

Definition 1.2.1. Let G be a graph and let σ, σ′ be signatures of G. We say that (G, σ) is

switching equivalent to (G, σ′) if it may be obtained from (G, σ) through a series of switching
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at vertices to the opposite sign. We may also simply say that σ′ is switching-equivalent to

σ.

If (G, σ) is a signed graph and H ⊆ G, the sign of H is defined to be σ(H) =∏
e∈E(H) σ(e). It is straightforward to verify that switching at a vertex has no effect on

the sign of any cycle. So for every cycle C, any two switching equivalent signatures σ, σ′ will

satisfy σ(C) = σ′(C). In fact, two signatures are switching equivalent if and only if they are

either both positive or negative on all cycles.

Proposition 1.2.1. [22] Two signed graphs (G, σ) and (G, σ′) are switching equivalent if

and only if they have the same set of negative cycles.

Proof. We already observed the “only if” direction. For the “if” direction we assume that σ

and σ′ have the same set of negative cycles and we will show how to transform σ into σ′ by

a sequence of switches. We may assume without loss that G is connected and we choose a

spanning tree T ⊆ G. For every edge e ∈ E(T ) the graph T \ {e} has two components, say

with vertex sets X and Y . We call E(X, Y ) the fundamental cut of T associated with e. Note

that each fundamental cut contains exactly one edge of the tree T . Let E(T ) = {e1, . . . , em}

and we modify σ in steps. On step i we do nothing if σ(ei) = σ′(ei) but if σ(ei) ̸= σ′(ei)

we modify σ by switching on the fundamental cut associated with ei. At the end of these

steps, the signatures σ and σ′ agree on E(T ). For every edge f ∈ E(G) \ E(T ) there is a

unique cycle C of G with E(C) ⊆ E(T )∪ {f} called the fundamental cycle associated with

f . By assumption σ(C) = σ′(C) but since σ and σ′ agree on e1, . . . , em it follows that they

must satisfy σ(f) = σ′(f). Therefore, after our switching we have arranged that σ = σ′ as

desired.

So in the setting of signed graphs under switching equivalence, the signs of cycles carry

all of the important information, not the signs of the edges. We call a signed graph balanced

if every cycle is positive and note that in this case our signed graph (G, σ) is switching

equivalent to (G, +).

There is a vast body of structure theorems for minors and other containment relations

for ordinary graphs, but there are comparatively few structure theorems for signed graphs.
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One such theorem of interest is the following result first discovered by Lovász et. al. and

proved by Slilaty. Before stating his theorem, we require one added bit of terminology. A

graph G is internally k-connected if for every X ⊆ V (G) with |X| < k the graph G − X

is either connected, or has exactly two components, one of which is an isolated vertex. A

graph G is a k-sum of the graphs G1 and G2 if for i = 1, 2 there exists a k-element subset

of V (Gi) called Xi so that G may be obtained from G1 and G2 by identifying the cliques

X1 and X2.

Theorem 1.2.1. [18] [Slilaty] Let (G, σ) be a 3-connected signed graph. If (G, σ) does not

contain two vertex disjoint negative cycles, one of the following holds:

1. G− v is balanced for some vertex v ∈ V (G)

2. |V (G)| ≤ 5

3. G can be embedded in the projective plane so that every face is bounded by a positive

cycle.

4. G can be expressed as a 3-sum of a graph with no two disjoint negative cycles and a

balanced graph with at least 5 vertices.

Our main theorem in this area is the following result characterizing when a signed graph

has a path between a distinguished pair of vertices disjoint from a negative cycle. (In fact

we prove a stronger form of this theorem that applies under the weaker assumption of

3-connectivity.)

Theorem 1.2.2. Let (G, σ) be a signed 3-connected and internally 4-connected graph and

let u, v ∈ V (G). If G does not contain a u, v path P and a negative cycle C so that V (P )∩

V (C) = ∅ then one of the following is true

• G \ {u, v} is balanced.

• G is planar and every negative face contains u or v.

Another question of interest for signed graphs (under switching) is the existence of

a decomposition into positive cycles. We prove an extension of the following well known

theorem of Seymour on this problem.
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Theorem 1.2.3 (Seymour). [17] Let (G, σ) be a signed planar 2-connected Eulerian graph.

If |E−(G, σ)| is even, there exist positive cycles C1, . . . , Ck so that {E(C1), . . . , E(Ck)} is a

partition of E(G).

Theorem 1.2.4. Let (G, σ) be a signed 2-connected Eulerian planar graph with minimum

degree ≥ 4 and let e ∈ E(G) be distinguished. Then there exists either a positive removable

cycle C with e ̸∈ E(C) or a removable balanced sausage H with e ̸∈ E(H).

1.3 Nowhere-Zero Flows

The study of nowhere-zero flows has a prominent place within graph theory. Tutte in-

troduced this subject and showed that for planar graphs nowhere-zero flows are dual to

colourings. He then made three far-reaching conjectures concerning the exisence of these

flows that remain open despite considerable work. In this section we introduce this subject

which is central to our research.

Given a graph G, an orientation D of G is a directed graph obtained from G by assigning

a direction to each edge of G. For each edge e = uv, if e is oriented from u to v in D, then

we have (u, v) ∈ E(D). Given a graph G and an Abelian group A, an A-flow of G is a pair

(D, f) where D is an orientation of G and f : E(G) → A satisfies the following property

called the Kirchoff Rule at every vertex v

∑
(v,w)∈E(D)

f(vw)−
∑

(u,v)∈E(D)
f(uv) = 0. (1.1)

An A-flow f is called nowhere-zero if f : E(G)→ A \ {0}. A Z-flow f is called a k-flow

if |f(e)| ≤ k−1 holds for every e ∈ E(G). Tutte proved the following theorem showing that

nowhere-zero k-flows are dual to k-colourings for planar graphs.

Theorem 1.3.1 (Tutte). If G and G∗ are dual planar graphs, then G has a k-colouring if

and only if G∗ has a nowhere-zero k-flow.

We will provide a proof of this theorem in Chapter 2. Surprisingly, Tutte proved the

following theorem showing that the existence of a nowhere-zero A-flow depends only on the

order of the group A.
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Theorem 1.3.2 (Tutte). Let G be a graph and let A be an abelian group of order k. Then

G has a nowhere-zero A-flow if and only G has a nowhere-zero k-flow.

Let us pause to make a quick observation concerning A-flows. Suppose that (D, f) is an

A-flow of the graph G and let {X, Y } be a partition of V (G). Then

∑
e∈
−→
E (X,Y )

f(e)−
∑

e∈
←−
E (X,Y )

f(e) =
∑
x∈X

( ∑
(x,w)∈E(D)

f(xw)−
∑

(u,x)∈E(D)
f(ux)

)
= 0

So in words, the net flow across every edge-cut must be zero. It follows immediately from

this that every graph with a cut-edge cannot have a nowhere-zero A-flow for any abelian

group A. Note: for planar graphs this is dual to the statement that a planar graph with a

loop has no proper colouring. Tutte made the following conjecture that is central to this

subject.

Conjecture 1.3.1 (Tutte). Every graph without a cut-edge has a nowhere-zero 5-flow.

The Petersen graph does not have a nowhere-zero 4-flow, so the above conjecture is best

possible if true. Seymour proved that every graph without a cut-edge has a nowhere-zero

6-flow, but Tutte’s 5-flow conjecture remains open.

1.4 Circular Colouring and Flow

There is a natural refinement of graph colouring and nowhere-zero flows called circular

colouring and circular flow that we introduce next. Let r ≥ 1 be a real number. The

standard circle of circumference r is defined as Cr = R/rZ. We can get Cr from the interval

[0, r] by identifying the two endpoints, 0 and r and will usually denote points in Cr using

the corresponding real numbers in the interval [0, r). However, the above quotient structure

also equips Cr with the structure of an additive (abelian) group. For two points, x and y, on

Cr, the distance between x and y on Cr, denoted by dCr (x, y) or d (mod r)(x, y), is the length

of the shorter arc of Cr connecting x and y. Given a graph G, a circular r-coloring of G

is a mapping f : V (G)→ Cr such that every edge uv ∈ E(G) satisfies dCr (f(u), f(v)) ≥ 1.
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The circular chromatic number of G is defined as

χc(G) = inf{r | G admits a circular r-coloring}.

The concept of circular coloring of graphs was introduced by Vince in 1988 in [20], where

a different but equivalent definition was given, and the parameter was called the “star

chromatic number.” Later, the above definition was given in [24], and the term “circular

chromatic number” was coined in [25]. The invariant χc(G) is a refinement of χ(G) and

contains more information since χ(G)− 1 < χc(G) ≤ χ(G).

If D is an orientation of G and C is a cycle of G, we let −→C denote the “forward” edges of

C and ←−C denote the “backward” edges. The imbalance of C is defined to be the maximum

of
{
|E(C)|
|
←−
C |

, |E(C)|
|
−→
C |

}
(where we treat this maximum as∞ if C+ = ∅ or C− = ∅). We define the

cycle imbalance of the orientation D to be the maximum over all cycles C of the imbalance

of C. Note that every acyclic orientations of graphs have infinite imbalance. Minty proved

that a graph G is k-colourable if and only if it has an orientation of imbalance at most k.

More generally we have the following.

Theorem 1.4.1. (See [9]) For every graph G, the circular chromatic number χc(G) is equal

to the minimum cycle imbalance of an orientation of G.

Dualizing circular colouring gives rise to the notion of a circular modulo r-flow. For a

real number r ≥ 0 we define a circular modulo r flow to be a pair (D, f) where D is an

orientation of G and f : E(G) → Cr is a flow satisfying the property dCr (0, f(e)) ≥ 1 for

every e ∈ E(G). The circular flow number of G is defined as

ϕc(G) = inf{r | G admits a circular modulo r flow}.

Let us note that if G has a nowhere-zero k-flow, then it has a nowhere-zero Zk = Z/kZ-

flow which is also a circular modulo k flow so in this case we have ϕc(G) ≤ k. With this

definition in place, Tutte’s flow-colouring duality naturally extends to give us the following

relationship for a pair of dual planar graphs G and G∗

8



χc(G) = ϕc(G∗)

There is also a similar result relating orientations to circular flow number. If D is a

directed graph and {X, Y } is a partition of V (D) then we define the imbalance of the

edge cut E(X, Y ) to be the maximum of
{
|E(X,Y )|
|
−→
E (X,Y )|

, |E(X,Y )|
|
←−
E (X,Y )|

}
and we treat this as ∞

if one of −→E (X, Y ) or ←−E (X, Y ) is empty. The cut imbalance of D is defined to be the

maximum imbalance of an edge cut. Note that only strongly connected digraphs have finite

cut imbalance.

Theorem 1.4.2. (See [9]) For every graph G, the circular flow number ϕc(G) is equal to

the minimum cut imbalance of an orientation of G.

For the sake of completeness, we give a proof of this result in Chapter 2. Let us note here

that Theorems 1.4.1 and 1.4.2 imply that χc(G) and ϕc(G) are always rational numbers. In

fact whenever one of these parameters is equal to the fraction p
q it is possible to realize the

optimal colouring or flow using only p equally spaced points on the circle Cr.

1.5 Signed Graphs and Inversion

We have already introduced signed graphs and an equivalence based on switching (on edge-

cuts). Here we introduce a new type of equivalence based on changing the signature on a

cycle. Let (G, σ) be a signed graph and let C be a cycle of G, an inversion on the cycle C

modifies the signature σ by changing the sign on all edges of E(C).

Definition 1.5.1. Let G be a graph and let σ, σ′ be signatures of G. We say that (G, σ) is

inversion equivalent to (G, σ′) if it may be obtained from (G, σ) through a series of inversions

on cycles. We may also simply say that σ′ is inversion-equivalent to σ.

Suppose that we wish to modify our signed graph (G, σ) into a new signed graph (G, σ′)

by a sequence of cycle inversions on the cycles C1, . . . , Ck. In this case, the set of edges on

which σ and σ′ differ is precisely

S = E(C1)⊕ E(C2)⊕ . . .⊕ E(Ck)

9



where we use A ⊕ B to denote the symmetric difference of A and B. Observe that since

C1, . . . , Ck are cycles the set S has even degree at every vertex, so S can be expressed as

a disjoint union of cycles. So in fact we can transform (G, σ) to (G, σ′) by a sequence of

inversions on edge-disjoint cycles.

Let (G, σ) be a signed graph embedded in the plane, let G∗ be an embedded dual graph

of G and assume that E(G∗) = E(G) and that every edge e appears in our drawing as

a pair of crossing edges one from G and the other from G∗. In this case (G∗, σ) is also a

signed graph. By planar duality, If C is the edge set of a cycle in G∗, then C is a bond (a

minimal nonempty edge-cut) in G. So inversion the signed graph (G∗, σ) on C changes the

signature in exactly the same way as switching the signed graph (G, σ) on the edge-cut C.

So switching and inversion may be viewed as dual operations for planar graphs.

We previously showed that two graphs are switching equivalent if they have the same

negative cycles, next we show the corresponding result for inversions.

Lemma 1.5.1. Two signed graphs (G, σ) and (G, σ′) are inversion equivalent if and only

if they have the same set of negative cuts.

Proof. We have already observed that if (G, σ) and (G, σ′) are inversion equivalent, then

each cut has the same sign in these two signed graphs. For the converse, assume that the

sign of each cut in (G, σ) is the same as its sign in (G, σ′). In particular, this holds for the

cuts of the form [{v}, V (G) \ {v}] for every v ∈ V (G). Hence, if we take the symmetric

difference S of the sets of negative edges in (G, σ) and (G, σ′), then the subgraph induced

by these edges will have an even degree on each vertex. Therefore, (G, σ′) is obtained from

(G, σ) by inversion on the even-degree subgraph induced by S.

When investigating signed graphs it is frequently convenient to work with a signature

that has relatively few negative edges. In our investigations, we considered the special family

of signed cubic graphs and wished to determine when one could find an inversion equivalent

signature for which no vertex was incident with 3 negative edges. It turns out that this is

always possible when the graph is 3-connected, and in fact we prove the following more

general result in Chapter 3.
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x

x̄
0 ≡ r

Figure 1.2: A point x and its antipodal point on a circle of circumference r create a pair of
diametrically opposite points.

Theorem 1.5.1. If (G, σ) is a simple k-edge-connected k-regular signed graph, then there

is a signature σ′ inversion-equivalent to σ so that every vertex is incident with at most 2

edges from the set E−(G, σ′).

1.6 Circular coloring and flow for signed graphs

We return to the setting of flows and our standard circle of circumference r, given by

Cr = R/rZ. For a point x ∈ Cr, there is a unique point at a distance r/2 from x that is

called the antipodal point of x and is denoted by x. Next we introduce our main colouring

definition.

Definition 1.6.1. Given a signed graph (G, σ) and a real number r, a circular r-coloring

of (G, σ) is a mapping f : V (G)→ Cr satisfying the following conditions:

• For every positive edge uv of (G, σ), dCr (f(u), f(v)) ≥ 1.

• For every negative edge uv of (G, σ), dCr (f(u), f(v)) ≥ 1.

The circular chromatic number of (G, σ) is defined as χc(G) = inf{r | (G, σ) admits a

circular r-coloring}.

Note that for any negative edge uv, the condition dCr (f(u), f(v)) ≥ 1 is equivalent to

dCr (f(u), f(v)) ≤ r/2− 1.

Proposition 1.6.1. Let (G, σ) and (G, σ′) be two switching-equivalent signed graphs. Then

every circular r-coloring of (G, σ) corresponds to a circular r-coloring of (G, σ′). In partic-

ular, χc(G, σ) = χc(G, σ′).
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Figure 1.3: As a notable example, the circular chromatic number of these two signed graphs
are both 10/3. (See [23])

Proof. As signed graphs (G, σ) and (G, σ′) are switching equivalent, without loss of gener-

ality, we assume that (G, σ′) is obtained from (G, σ) by switching at a vertex set A. Let f

be a circular r-coloring of (G, σ). We define g : V (G)→ Cr as follows:

g(v) =


f(v) if v ∈ V (G) \A

f(v) if v ∈ A

(1.2)

It is straightforward to verify that g is a circular r colouring of (G, σ′) as desired.

Observation 1.6.1. If G is a graph with no loop, then χc(G, +) = χc(G).

Next we turn our attention to flows in signed graphs. Our main definition is next.

Definition 1.6.2. Given a signed graph (G, σ) and a real number r, a circular modulo

r-flow of (G, σ) is a pair (D, f) where D is an orientation of G and f : E(G) → Cr is a

flow that satisfies the following conditions:

• For every positive edge e of (G, σ), dCr (0, f(e)) ≥ 1

• For every negative edge e of (G, σ), dCr ( r
2 , f(e)) ≥ 1.

The circular flow number of (G, σ) is defined as ϕc(G, σ) = inf{r | (G, σ) admits a circular

modulo r-flow }.
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As should be, the circular flow number of a signed graph is invariant under inversion.

Proposition 1.6.2. Let (G, σ) and (G, σ′) be two inversion-equivalent signed graphs. Then

every circular modulo r-flow of (G, σ) corresponds to a circular modulo r-flow of (G, σ′). In

particular, ϕc(G, σ) = ϕc(G, σ′).

Proof. Let (D, f) be a circular modulo r flow of (G, σ) and assume that σ′ is obtained from

σ by switching on the even set of edges S. Define the function g : E(G)→ Cr as follows:

g(e) =


f(e) if e ∈ E(G) \ S

f(e) if e ∈ S

(1.3)

For every vertex v ∈ V (G) there are an even number of edges of S incident with v and the

flow value on each of these edges is modified by adding r
2 . It follows that (D, g) is a flow.

By construction it is a circular modulo r flow.

As we will show in Chapter 2, flow-colouring duality extends naturally to this setting.

Theorem 1.6.1. Let G and G∗ be dual planar graphs with common edge set E and let

σ : E → {−1, 1}. Then χc(G, σ) = ϕc(G∗, σ).

1.7 Computing the circular flow number

For all k ≥ 3 determining if a graph has chromatic number at most k is NP-complete. In

contrast, by Seymour’s 6-flow theorem [17], it is easy to test if a graph has flow number

at most 6 (we need only check for cut edges). Despite this fact, it is still NP-complete to

determine if a graph has flow number at most 4 (for cubic graphs this is equivalent to the

existence of a 3-edge-colouring). For an integer 3 ≤ k ≤ 5 it is straightforward to find

an exponential time algorithm to determine if a graph G has a nowhere-zero Zk-flow. For

instance, one may go over all orientations, choose a spanning tree T and for every edge

e ∈ E(G) \ E(T ) pick a value for ϕ(e) ∈ Zk \ {0}. Now ϕ can be completed to a flow by

assigning every edge f ∈ E(T ) a value so that the net flow across the fundamental cut of T

relative to f is zero. It can be shown that the resulting function ϕ is always a flow, and we

can check if it is nowhere-zero by looking at the edges in E(T ).
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In contrast, determining the circular flow number of a particular graph G is considerably

more complicated. Lukot’ka found an interesting algorithm achieving the following result.

Theorem 1.7.1 (Lukot’ka). [14] There exists an algorithm that inputs a cubic graph G

and either computes ϕc(G) in time O(20.6|V (G)|) or determines that G is a counterexample

to Tutte’s 5-flow conjecture.

In Chapter 2 we consider the setting of circular flows on signed graphs and prove the

following theorem.

Theorem 1.7.2. There exists an algorithm that inputs a signed graph (G, σ) and computes

the circular flow number of (G, σ) in time O(2|V (G)|+|E(G)|).
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Chapter 2

Determining the circular flow
number of signed graphs

In this chapter we explore circular flows for signed graphs and prove Theorem 1.7.2.

2.1 Flow-colouring duality

Our goal in this section is to prove two theorems that we restate from the introduction.

Theorem 1.3.1. If G and G∗ are dual planar graphs with common edge set E, then G has

a proper k-colouring if and only if G∗ has a nowhere-zero k-flow.

Theorem 1.6.1. Let G and G∗ be dual planar graphs with common edge set E and let

σ : E → {−1, 1}. Then χc(G, σ) = ϕc(G∗, σ).

In fact, both of these theorems follow immediately from the following more general

result.

Theorem 2.1.1. Let G and G∗ be dual planar graphs with a common edge set E. Let A be

an Abelian group and let D be an orientation of G∗.

1. If f : V (G)→ A, there exists a function g : E → A so that (D, g) is a flow of G∗ and

every e ∈ E incident with u, v ∈ V (G) satisfies g(e) = ±(f(u)− f(v))

2. If g : E → A and (D, g) is a flow of G∗, then there exists a function f : V (G) → A

so every e ∈ E incident with u, v ∈ V (G) satisfies g(e) = ±(f(u)− f(v)).
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Proof. For the first part, we may view f as assigning elements of A to the faces of G∗.

Define the function g : E → A by the rule: For every directed edge e ∈ D suppose that f

assigns the face on the left of e the value a and the face on the right a b. Then we define

g(e) = a− b. We claim first that g is a flow. First suppose that x is a vertex of G∗ with all

edges directed away from it. In this case it is easy to check that the sum of g(e) over all

edges incident with x is equal to 0. Switching the direction of an edge negates the value on

it, so more generally, every vertex x ∈ V (G∗) will satisfy Equation (1.1). Therefore g is a

flow. It follows from the construction that whenever e ∈ E is incident with u, v ∈ V (G) we

must have g(e) = ±(f(u)− f(v)) as desired.

For the second part we assume that (D, g) is a flow of G∗ and choose a spanning tree

T of G. Choose a vertex v ∈ V (G) and assign each vertex u ∈ V (G) a value f(u) by the

following rule: Let P be the unique path in T from v to u. Observe that for every edge of P ,

the corresponding dual edge has an orientation given by D and as we move along the path

this dual edge either crosses our path left-to-right or right-to-left. Define f(u) to be the sum

of g over all left-to-right edges minus the sum of g over all right-to-left edges. If e along P

is an edge of T incident with the vertices u, w ∈ V (G) then it is an immediate consequence

of the definition that g(e) = ±(f(u)−f(w)). Next suppose that e ∈ E(G)\E(T ) is an edge

incident with v, w ∈ V (G). Consider the fundamental cycle of e and the tree T . In the dual

graph this corresponds to an edge cut, and since g is a flow, the net flow of g across this

edge cut must be 0. It follows from this that g(e) = ±(f(u)− f(v)).

The proofs of Theorems 1.3.1 and 1.6.1 are immediate consequences of the above result.

2.2 Circular flows

We have already defined circular modulo r-flows for both graphs and signed graphs, but we

will require a stronger type of real valued flow for our investigations.

Definition 2.2.1. Let G be a graph, let f : E(G) → R, let D be an orientation of G and

assume that (D, f) is a flow of G.

1. f is a circular r-flow of G if |f(e)| ∈ [1, r − 1] holds for every e ∈ E(G).
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2. Let σ : E(G)→ {−1, 1} be a signature. Then f is a circular r-flow of (G, σ) if

• |f(e)| ∈ [1, r − 1] holds for every e ∈ E+(G, σ)

• |f(e)| ∈ [0, r/2− 1] ∪ [r/2 + 1, r] holds for every e ∈ E−(G, σ)

If G is a graph and (D, f) is a circular r-flow of G, then f can also be viewed as a circular

modulo r-flow of G (more precisely, f + rZ is the modulo r-flow). The next lemma is the

key result from this section, it shows that we can also go in the other direction. The proof of

this well known property is based on Tutte’s proof equating the existence of a nowhere-zero

k-flow and a nowhere-zero Zk-flow.

Lemma 2.2.1. Let G be a graph with orientation D, let f : E(G) → Cr, and assume

that (D, f) is a flow. Then there exists g : E(G) → (−r, r) so that (D, g) is a flow and

g(e) + rZ = f(e) holds for every e ∈ E(G).

Before proving the lemma we require another definition and a simple observation. Let G

be a graph, let D be an orientation of G, let A be an Abelian group, and let f : E(G)→ A.

We define the boundary function of f denoted ∂f : V (G)→ A by the following rule:

∂f(v) =
∑

(v,w)∈E(D)
f(vw)−

∑
(u,v)∈E(D)

f(uv).

Note that for any such function f we must have ∑
v∈V (G) ∂f(v) = 0 since each edge con-

tributes 0 to the sum.

Proof. For proving, choose a function g : E(G) → (−r, r) so that g(e) + rZ = f(e) holds

for every e ∈ E(G) and subject to this ∑
v∈V (G) |∂(g(v))| is minimum. If there is an edge e

with g(e) < 0 then we reverse e and negate g(e). By this operation we may assume g(e) ≥ 0

holds for every e ∈ E(G).

There are three distinct types of vertices in the graph G, namely V1, V2, and V3, with

the property that ∂(g(v)) assumes a positive value for vertices in V1, a value of zero for

vertices in V2, and a negative value for vertices in V3. For the sake of contradiction, let’s

assume that ∑
v∈V (G) |∂(g(v))| ≠ 0. This implies that both V1 and V3 are non-empty.
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If D contains a directed path from a vertex in V1 to a vertex in V3, we can modify g by

subtracting r from every edge in this path, and this gives a new function that contradicts

the choice of g. Therefore, no such path exists, and it follows that there is a partition of

V (G) into {X, Y } so that V3 ⊆ X and V1 ⊆ Y and all edges between X and Y are directed

from X to Y . Now consider the following sum

∑
x∈X

∂g(x)

On one hand, this quantity must be negative since V3 ⊆ X and V1 ∩X = ∅. On the other

hand, every edge with both ends in X contributes nothing, so this sum is also equal to∑
e∈
−→
E (X,Y ) g(e) and this must be non-negative. This contradiction implies that ∂g is the

constant 0 function, and g is the desired flow.

2.3 Hoffman’s circulation theorem

In this section we introduce and prove an important theorem due to Hoffman that we require

in the proof of our main result from this chapter. We will also use this theorem to deduce

the following theorem from the introduction.

Theorem 1.4.2. (see [9]) For every graph G, the circular flow number ϕc(G) is equal to

the minimum cut imbalance of an orientation of G.

Next we state and prove Hoffman’s Theorem. Note that it gives a flow-based general-

ization of the standard Ford-Fulkerson max-flow/min-cut thoerem.

Theorem 2.3.1. (Hoffman’s Circulation Theorem [10]). Let D be a digraph and let s, t :

E(D) → R≥∅ satisfy s(e) ≤ t(e) for each e ∈ E(D). Then there exists a function f :

E(D) → R≥∅ satisfying that for every v ∈ V ,
∑

(v,u)∈E(D) f(vu) = ∑
(w,v)∈E(D) f(wv) with

s(e) ≤ f(e) ≤ t(e) for each e ∈ E(D) if and only if

∑
(u,v)∈E(D),u∈U,v /∈U

s(uv) ≤
∑

(x,y)∈E(D),x/∈U,y∈U

t(xy) (2.1)

for every U ⊂ V (D).
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Proof. Define the slack of a set U ⊆ V (D) to be

l(U) =
∑

(u,v)∈A(G),u∈U,v /∈U

t(uv)−
∑

(x,y)∈A(G),x/∈U,y∈U

s(xy). (2.2)

It suffices to prove the existence of a flow ϕ under the assumption that every set has slack

greater or equal than zero. If every edge e satisfies s(e) = t(e), then we define ϕ = s = t.

Now for every v ∈ V we have

∑
(x,y)∈E(D),x∈{v},y∈V \{v}

ϕ(xy)−
∑

(x,y)∈E(D),x∈V \{v},y∈{v}
ϕ(xy) = l(v) ≥ 0 (2.3)

and

∑
(x,y)∈E(D),x∈V \{v},y∈{v}

ϕ(xy)−
∑

(x,y)∈E(D),x∈{v},y∈V \{v}
ϕ(xy) = l(V − v) ≥ 0. (2.4)

Since the Left hand side of equation (2.4) equals negative the Left hand side of equation

(2.3), they both equal to 0. So ϕ is a flow. We shall now modify s, t one edge at a time

(maintaining nonnegative slack everywhere) until we achieve s = t. To do this, choose an

edge f with s(f) ̸= t(f). Choose a set X ⊆ V (D) with minimum slack so that f ∈ (X, Xc)

and choose a set Y ⊆ V (D) with minimum slack so that f ∈ (Y c, Y ). Set S be the set of

edges with one end in X \ Y and one end in Y \X and note that f ∈ S. Now we have

l(X) + l(Y ) = l(X ∩ Y ) + l(X ∪ Y ) +
∑
e∈S

(t(e)− s(e)) ≥ t(f)− s(f). (2.5)

So, we may choose x, y ≥ 0 with x ≤ l(X) and y ≤ l(Y ) and x + y = t(f) − s(f). Now

increase s(f) by x and decrease t(f) by y. Then s(f) = t(f) and it follows from our choice

of X, Y that the resulting functions s, t still have nonnegative slack for every set.

2.4 Orientations and flows

Let G be a graph with orientation D, let f : E(G) → R and assume that (D, f) is a flow

of G. We call f nonnegative if f(e) ≥ 0 holds for every e ∈ E(G). If there exists an edge e
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with f(e) < 0 then we may modify our orientation by reversing this edges and negate f(e)

to get another flow. By repeating this operation we can always turn a real valued flow into

a nonnegative one. The resulting orientations can be very useful in working with flows. In

particular, they feature in our proof of the following theorem restated from the introduction.

Theorem 1.4.2. For every graph G, the circular flow number ϕc(G) is equal to the mini-

mum cut imbalance of an orientation of G.

Proof of Theorem 1.4.2. First suppose that G has an orientation D with cut imbalance r.

Define the functions ℓ, u : E(G)→ R by the rule that ℓ is constantly 1 and u is constantly

r − 1. It now follows from Hoffman’s theorem that we may choose a flow f : E(G) → R

with 1 ≤ f(e) ≤ r − 1 for every e ∈ E(G) and this is a circular r-flow.

Next suppose that G has a circular r-flow (D, f). By reversing edges, we may assume

that f is nonnegative. We claim that D has cut imbalance at most r. To see this, consider

a cut E(X, Y ) of the graph. Since f is a flow we must have

∑
e∈
−→
E (X,Y )

f(e) =
∑

e∈
←−
E (X,Y )

f(e)

It now follows from 1 ≤ f(e) ≤ r− 1 that the imbalance of this cut is at most r. Thus D is

an orientation with imbalance at most r.

Let (D, f) be a circular r-flow of the graph G, and assume that f is nonnegative. If (X, Y )

is a partition of V (G) then we call (X, Y ) tight if every edge in −→E (X, Y ) has f(e) = 1 and

every edge in ←−E (X, Y ) has f(e) = r− 1. Observe that for our orientation, E(X, Y ) has cut

imbalance exactly r. So for this orientation D there does not exist a nonnegative function

f ′ : E(G) → R for which (D, f ′) is a circular r′-flow for some r′ < r. On the other hand,

if there is no tight cut, then it is possible to apply Hoffman’s Theorem to get a smaller

circular flow. In particular, this gives rise to following observation.

Observation 2.4.1. A graph G has ϕc(G) = r if and only if G has a circular r-flow, and

every such flow has a tight cut.
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In fact, a similar tight cut property for circular flows in signed graphs. Let’s begin with

the definitions. Let (G, σ) be a signed graph and let (D, f) be a circular r-flow of (G, σ). By

possibly reversing edges, we assume that f is nonnegative. If (X, Y ) is a pair of nonempty

disjoint sets with union V (G) then we call (X, Y ) tight if the following holds:

f(e) =



1 if e ∈
−→
E (X, Y ) ∩ E+(G, σ)

r − 1 if e ∈
←−
E (X, Y ) ∩ E+(G, σ)

r
2 + 1 if e ∈

−→
E (X, Y ) ∩ E−(G, σ)

r
2 − 1 or r if e ∈

←−
E (X, Y ) ∩ E−(G, σ)

Theorem 2.4.1. A signed graph (G, σ) has ϕc(G, σ) = r if and only if (G, σ) has a circular

r-flow, but every such flow has a tight cut.

Proof sketch. First suppose that (G, σ) has a circular s-flow (D, f) for some s < r. In this

case (D, r
sf) is a circular r-flow with no tight pairs.

Next suppose that (D, f) is a nonnegative circular r-flow of (G, σ) with no tight pair.

Let ϵ > 0 be a real number to be chosen later. Now we replace our flow f with an upper

and lower bound function on every edge so we can apply Theorem 2.3.1. We let m = |E(G)|

and proceed as follows for every edge e ∈ E(G).

• If f(e) = 1 and σ(e) = 1 then let ℓ(e) = 1 + ϵ and u(e) = 1 + mϵ

• If f(e) = r − 1 and σ(e) = 1 then let ℓ(e) = r − 1−mϵ and u(e) = r − 1− ϵ.

• If f(e) = r and σ(e) = −1 then let ℓ(e) = r −mϵ and let u(e) = r − ϵ

• If f(e) = r
2 + 1 and σ(e) = −1 then let ℓ(e) = r

2 + 1 + ϵ and u(e) = r
2 + 1 + mϵ

• If f(e) = r
2 − 1 and σ(e) = −1 then let ℓ(e) = r

2 − 1−mϵ and let u(e) = r
2 − 1− ϵ.

• Otherwise we let ℓ(e) = f(e)−mϵ and let u(e) = f(e) + mϵ.

We may choose ϵ suitably small so that every positive edge e has ℓ(e) > 1 and u(e) < r− 1

and so that every negative edge e has either ℓ(e) > −1 and u(e) < r
2 − 1 or has ℓ(e) > r

2 + 1

and u(e) < r.
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It follows from the assumption that no cut is tight that for every cut, all suitably small

choices for ϵ will not violate the condition in Hoffman’s Theorem. Therefore, for some ϵ > 0

we satisfy the conditions for every cut to apply Hoffman’s Theorem, and the resulting output

is an r′ circular colouring for some r′ < r.

Based on the above theorem, if a signed graph (G, σ) has ϕc(G) = r and (D, f) is a

nonnegative circular r-flow of G, then there must be a tight cut. We can then express the

value r based on the number of tight edges of different types. In particular this means that

r must always be a rational number.

2.5 Balanced valuations

Let D be an orientation of the graph G. For every X ⊆ V (G) we define d+(X) = |−→E (X, V (G)\

X)| and d−(X) = |←−E (X, V (G)\X)|. For a single vertex v we simplify the notation by defin-

ing d+(v) = d+({v}) and d−(v) = d−({v}). Define the function b : V (G) → Z by the rule

that b(v) = d+(v)−d−(v). For every X ⊆ V (G) we have the following equation (this follows

from the fact that every edge with both ends in X makes no contribution).

∑
x∈X

b(x) =
∑
x∈X

(
d+(x)− d−(x)

)
= d+(X)− d−(X) (2.6)

It follows from this equation and elementary considerations that the function b satisfies all

of the following properties:

(i) ∑
v∈V (G) b(v) = 0

(ii) b(v) ≡2 deg(v) for every v ∈ V (G).

(iii) |E(X, V (G) \X)| ≥∑
x∈X b(x)

This brings us to the key definition for this section.

Definition 2.5.1. If G is a graph a function b : V (G)→ Z is called a balanced valuation

if it satisfies properties (i), (ii), and (iii) from the above list.

We have already seen that for every orientation D of G, the function b : V (G) → Z

given by outdegree minus indegree gives rise to a balanced valuation. In this case we say
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that the orientation D is associated with b. The next lemma shows that in fact, every such

balanced valuation can be constructed in this manner.

Lemma 2.5.1. Let G be a graph and let b : V (G)→ Z be a balanced valuation. Then there

exists an associated orientation of G (i.e. an orientation of G for which b(v) = d+(v)−d−(v)

holds for every v ∈ V (G)).

Proof. We construct an auxiliary digraph D∗ from G together with functions ℓ : E(D∗)→ R

and u : E(D∗)→ R according to the following rules: The vertex set of D∗ consists of V (G)

together with a single new vertex w. For every edge xy ∈ E(G) we add two directed edges

(x, y) and (y, x) to E(D∗) and we set ℓ(x, y) = ℓ(y, x) = 0 and u(x, y) = u(y, x) = 1. Finally,

for every vertex z ∈ V (G) with b(z) > 0 we add the edge (w, z) to E(D∗) and we assign

u(w, z) = ℓ(w, z) = b(z) and for every z ∈ V (G) with b(z) < 0 we add the edge (z, w)

to E(D∗) and we assign u(w, z) = ℓ(w, z) = −b(z). It follows from parts 1 and 3 in the

definition of balanced valuation that the digraph D∗ together with the functions ℓ and u

satisfy the conditions for Hoffman’s theorem. Therefore we may choose a real valued flow

f : E(D∗) → R so that every edge e ∈ E(D∗) satisfies ℓ(e) ≤ f(e) ≤ u(e). Call an edge

xy ∈ E(G) tight if one of f(x, y), f(y, x) is equal to 1 and the other is 0. Over all possible

real valued flows, let us assume that f has been chosen as follows:

1. The number of tight edges is maximum

2. Subject to 1, the number of edges (x, y) ∈ E(D∗) with f(x, y) = 0 is maximum.

We claim that our flow f chosen as above has every edge tight. If there is an edge

xy ∈ E(G) with f(x, y), f(y, x) > 0 then we may modify f by decreasing the value on each

of these edges by min{f(x, y), f(y, x)} while maintaining our flow and this contradicts the

choice of f . It follows that for every edge xy ∈ E(G) at least one of f(x, y) or f(y, x) is equal

to 0. In particular, if xy is not tight, then f(x, y)+f(y, x) < 1. Suppose that not all edges in

G are tight. In this case our construction together with property (ii) imply that there cannot

be just one non-tight edge incident with a vertex in V (G). It follows from this that we may

choose a cycle C of non-tight edges of G. Let C1 and C2 be the two directed cycles of D∗

corresponding to C. Assume that either C1 contains an edge (x, y) with f(x, y) > 0 or that
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neither C1 nor C2 contains such an edge. Let M = max{f(x, y) | e ∈ E(C1)} and modify f

by adding 1−M to every edge of E(C1). It follows from our assumptions that the resulting

flow has more tight edges thus contradicting our choice. Therefore, our chosen function f

must have every edge tight. Now modify D∗ to form D by deleting every (x, y) ∈ E(D)

with f(x, y) = 0 and deleting the vertex w. It follows from this construction that D is an

orientation of G and d+(v)− d−(v) = b(v) holds for every v ∈ V (G).

We have seen that finding a circular r-flow of a graph is equivalent to finding an orien-

tation of the graph with cut imbalance at most r. However, if b is a balanced valuation of

G and D is an associated orientation, then it follows from equation 2.6 that the imbalance

of every edge cut E(X, Y ) can be computed based on the size of the cut in the underlying

graph |E(X, Y )| and the function b. More precisely, this edge cut will have imbalance given

by |E(X,Y )|
t where t = 1

2
(
|E(X, Y )| − |∑x∈X b(x)|

)
. For every balanced valuation b of G let

us define the imbalance of b to be the maximum imbalance of an edge cut for some (and

thus every) orientation of G associated to b. We now have the following equivalence.

Theorem 2.5.1. [12] Let G be a graph and let r ≥ 2 be a real number. Then the following

statements are equivalent:

• G admits a circular r-flow.

• G has an orientation with imbalance at most r.

• G has a balanced valuation with imbalance at most r.

2.6 Computing ϕc for graphs

In this section we introduce Lukot’ka’s algorithm for computing circular flow numbers in

cubic graphs. We begin with the key observation. Let G be a cubic graph and let (D, f)

be a circular r flow of G for some r < 5 and assume that f is nonnegative. Now define

the balanced valuation b : V (G) → Z by the rule b(v) = d+(v) − d−(v) (where d+ and d−

indicate indegree and outdegree in D). Since every edge has positive flow value and the

graph is cubic, every vertex v has b(v) = ±1. For i = 1, 2 let Vi be the set of vertices v with

b(v) = (−1)i. It follows from the fact that every edge has flow value at least one but less

24



than 4 that every component of the graph induced by Vi has size at most 2. Let us define

this new concept.

Definition 2.6.1. For a positive integer k a k-bisection of a graph G is a partition of

V (G) into {V1, V2} so that the graph induced by Vi has all components of size at most k for

i = 1, 2.

Based on the above discussion, for every cubic graph G with ϕc(G) < 5 we can compute

ϕc(G) by first finding every 2-bisection. Then for every 2-bisection {V1, V2} define the func-

tion b : V (G)→ Z by b(v) = 1 if v ∈ V1 and b(v) = −1 if v ∈ V2 and check if b is a balanced

valuation. If so, then we find an associated orientation D and compute the imbalance of

D. The smallest imbalance found in this exhaustive search will be the circular chromatic

number of G. Lukot’ka constructed a series of algorithms to perform these steps effectively.

Theorem 2.6.1. [14] For a cubic graph G there exists an algorithm with running time

O(20.6|V (G)|) that finds all 2-bisections of G. (see appendix A).

Theorem 2.6.2. [14] Let G be a graph and let b be a mapping from V (G) to Z. There

exists an algorithm with running time O(|E(G)|3/2) that takes G and b as the input and

either shows that b is not a balanced valuation, or constructs an associated orientation.

Theorem 2.6.3. [14] Let G be a graph and let D be an orientation of G. There exists an

algorithm that computes the cut imbalance of G, say r, and if r <∞ also returns a nonneg-

ative circular r-flow (D, f). This algorithm has running time O(|E(G)|1.5 log2 (|E(G)|)).

In fact, using Lukot’ka’s algorithms and some earlier work one may obtain an algorithm

that inputs a cubic graph G and either determines that G is a counterexample to Tutte’s 5-

flow Conjecture or computes ϕc(G) and runs in time 20.6|V (G)|, as claimed in Theorem 1.7.1.

An algorithm of Fomin and Høie [8] uses dynamic programming over path decompositions

to find all integer 5-flows of G in time O(20.34|V (G)|). If no such 5-flow exists, then G is

a counterexample to the 5-flow Conjecture and there is nothing left to show. If every 5-

flow has a tight cut, then we must have ϕc(G) = 5 by Theorem 2.4.1. Otherwise we have

ϕc(G) < 5 and we proceed with Lukot’ka’s algorithms.
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2.7 Determining ϕc for signed graphs

Unfortunately, balanced valuations do not seem helpful in computing circular flow numbers

of signed graphs. This is because negative edges can have arbitrarily small flow values in

a nonnegative flow. Nevertheless, we will provide an exponential time algorithm that can

compute ϕc for a signed graph by reducing this to a certain restricted flow problem on

unsigned graphs.

Let (G, σ) be a signed graph and let T be the set of all v ∈ V (G) so that v is incident

with an odd number of negative edges. We form a new graph Ĝ by adding a new vertex

w and edges joining w to every vertex in T . For every orientation D of G we let D̂ be the

corresponding orientation of Ĝ in which all edges incident to w are directed toward it.

Here is our lemma proved jointly with Devos and Mohar.

Lemma 2.7.1. Let (G, σ) be a signed graph with orientation D and let Ĝ and D̂ be as

above. Let f : E(G)→ Cr and define f̂ : E(Ĝ)→ Cr as follows:

f̂(e) =


f(e) if e ∈ E(G) and σ(e) = 1

f(e) + r
2 if e ∈ E(G) and σ(e) = −1

r
2 if e /∈ E(G).

Then (D, f) is a circular modulo r flow of the signed graph (G, σ) if and only if (D̂, f̂) is a

circular modulo r flow of the (not signed) graph Ĝ.

Proof. For a vertex v ∈ V (G) we consider the boundary of the function f relative to D and

the boundary of f̂ relative to D̂. If v ̸∈ T then at the vertex v the only difference between

f̂ and f is that we have added r
2 on an even number of edges incident with v. Since an even

multiple of r
2 is 0 in Cr this means that the Kirchoff rule holds for f at v if and only if it

holds for f̂ at v. Next suppose that v ∈ T . In this case when moving from G to Ĝ we have

added r
2 on an odd number of edges of G incident with v but in Ĝ the vertex v is adjacent

to the new vertex w and f̂(vw) = r
2 . So again the Kirchoff rule holds for v and the function

f if and only if it holds for f̂ . Finally, by parity we must have |T | even and it follows that

the Kirchoff rule must hold at the new vertex w of Ĝ.
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We have determined that (D, f) is a flow of (G, σ) if and only if (D̂, f̂) is a flow of Ĝ. In

order for f to be a circular modulo r-flow, every positive edge e must have dCr (0, f(e)) ≥ 1

and every negative edge e must have dCr ( r
2 , f(e)) ≥ 1. Thanks to the construction this

translates into the condition dCr (0, f̂(e)) ≥ 1 in Ĝ. It follows that (D, f) is a circular

modulo r-flow of (G, σ) if and only if (D̂, f̂) is a circular modulo r-flow of Ĝ as desired.

We have now shown the following chain of equivalences

(G, σ) has a modulo circular r-flow

⇔ Ĝ has a modulo circular r-flow with all new edges having flow r
2

⇔ Ĝ has a circular r-flow with all new edges having flow ± r
2

For any orientation of Ĝ a straightforward modification of Theorem 2.6.3 allows us to

determine the minimum r for which there exists a nonnegative circular r-flow of Ĝ with

the added restriction that all new edges have flow value r
2 . This algorithm still runs in time

O(|E(Ĝ)|1.5 log2 (|E(Ĝ)|)). So we can compute ϕc(G, σ) by considering all 2|E(G)|+|V (G)|

orientations of Ĝ and running this algorithm on each one. This gives us Theorem 1.7.2 and

completes this chapter.
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Chapter 3

On the maximum negative degree
of signed graphs

This thesis aims to enhance Lukot́ka’s theorems and algorithms for cubic signed graphs. To

achieve this, our initial objective was to demonstrate that every 3-connected cubic signed

graph could be transformed using a sequence of cycle-inversions, resulting in a new signed

graph where no vertex is adjacent to three negative edges. Although, we later discovered

that this assumption was not needed, it is still interesting that it is possible to get such

an outcome. Existence of series of cycle-inversions with this property is the central goal of

this chapter. To lay the foundation for our approach, we will begin by clarifying essential

definitions, theorems, and lemmas, as outlined below.

3.1 T -joins and cycle-inversion on signed graphs

Let G = (V, E) be a connected graph, and let T ⊆ V have |T | even. A subset of edges

J ⊆ E is called a T -join if the graph H = (V, J) has the property that dH(v) is odd for

every v ∈ T and even for every v ∈ V (G) \ T . The following lemma shows that T -joins

always exist.

Lemma 3.1.1. Let G = (V, E) be a connected graph and let T ⊆ V have |T | even. If H ⊆ G

is a spanning tree, then there exists a T -join J with J ⊆ E(H).

Proof. We proceed by induction on |V (H)|. For the base case |V (H)| = 1 so T = ∅ and

J = ∅ satisfies the lemma. For the inductive step we may choose a leaf vertex v with unique
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neighbour u. If v ̸∈ T the result follows by applying induction to H − v and T . If v ∈ T

then we apply the theorem inductively to H − v and the set T ′ = (T \ {v})⊕{u} to choose

a T ′-join J ′. Now J ′ ∪ {uv} is the desired T -join in H.

For a pair of sets A, B we denote the symmetric difference by A⊕B = (A\B)∪ (B \A).

Observe that whenever J is a T -join and C is the edge set of a cycle, then J ⊕ C is also

a T -join. It follows immediately from this that every minimal T -join is the edge set of a

forest. Call a set of edges S ⊆ E even if the graph (V, S) has all vertices of even degree,

and note that every even set of edges can be expressed as a disjoint union of edge sets of

cycles. If J and J ′ are T -joins, then the set J ⊕ J ′ must be even, and it follows that we can

transform J into J ′ by cycle inversions using edge-disjoint cycles. The following observation

is an immediate consequence.

Observation 3.1.1. Let G = (V, E) be connected and let T ⊆ V have |T | even. If J ⊆ E

is a T -join, then it is minimal if and only if (V, J) is a forest.

If {X, Y } is a partition of V and C is the edge cut consisting of the edges with one end

in X and one in Y , then we call C a T -cut if |X∩T | is odd. Observe that a T -cut is minimal

if and only if it is a bond (a minimal nonempty edge cut).

Observation 3.1.2. Let G = (V, E) be connected and let T ⊆ V have |T | even. If C ⊆ E

is a T -cut and J ⊆ E is a T -join, then C ∩ J ̸= ∅.

Proof. Suppose for a contradiction that C ∩ J = ∅ and let {X, Y } be the partition of V

associated with the edge cut C. Now, consider the subgraph H of (V, J) induced by X.

The vertices of odd degree in H are precisely X ∩ T , but this set has odd size, which is

contradictory.

In fact, the minimal sets hitting every T -cut are the minimal T -joins and the minimal

sets hitting every T -join are the minimal T -cuts as we show next.

Theorem 3.1.1. Let G = (V, E) be connected and let T ⊆ V have |T | even.

1. If S ⊆ E has nonempty intersection with every T -cut, then S contains a T -join.
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2. If S ⊆ E has nonempty intersection with every T -join, then S contains a T -cut.

Proof. For the first part, let H1, . . . , Hk be the components of the graph (V, S). For every

1 ≤ i ≤ k the edge cut of G separating V (Hi) from the remaining vertices cannot be a

T -cut since every T -cut intersects S. It follows that Ti := T ∩ V (Hi) has |Ti| even. Lemma

3.1.1 implies that there is a Ti-join, say Ji ⊆ E(Hi). Now J = ∪k
i=1Ji is a T -join contained

in S, as desired.

For the second part, consider the components of the graph G\S, denoted H1, . . . , Hk. If

Ti := T ∩ V (Hi) is even for every 1 ≤ i ≤ k, then every Hi has a Ti-join, Ji and J = ∪k
i=1Ji

is a T -join disjoint from S, and this is a contradiction. It follows that there exists 1 ≤ j ≤ k

for which |Tj | is odd. But then the edge-cut separating V (Hj) from the remaining vertices

is a T -cut contained in S as desired.

In fact, T -joins provide an equivalent way of working with signatures under cycle inver-

sions. Let σ be a signature for the graph G = (V, E) and define Tσ to be the set of vertices

v ∈ V incident to an odd number of edges in E−(G, σ). Note that Tσ is the set of odd degree

vertices in the graph (V, E−(G, σ)) so |Tσ| is necessarily even, and moreover E−(G, σ) is a

Tσ-join. The following lemma characterizes inverse equivalence by way of this connection.

Lemma 3.1.2. Let G = (V, E) be a connected graph with signatures σ, σ′ : E → {−1, 1}.

Then σ is inversing equivalent to σ′ if and only if Tσ = Tσ′

Proof. To establish the "only if" part, observe that applying a cycle inversion to σ has no

effect on the set Tσ. So whenever σ and σ′ are invering equivalent we must have Tσ = Tσ′ .

For the "if" part, suppose T = Tσ = Tσ′ . Consider the set S = E−(G, σ)⊕E−(G, σ′). It

follows from our assumptions that S is even, so there exist edge disjoint cycles C1, . . . , Ck

with S = ⋃k
i=1 E(Ci). Starting with the signed graph (G, σ) and performing cycle inversions

on C1, C2, . . . , Ck enables us to transform it into the signed graph (G, σ′).
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3.2 An extension of Tutte’s theorem

In this section we bootstrap Tutte’s famous theorem on perfect matchings to a more general

result on subgraphs with both parity and upper bound constraints on the vertex degrees.

Let us begin by stating Tutte’s classical theorem.

Theorem 3.2.1 (Tutte’s 1-Factor Theorem, see [2]). A graph G = (V, E) has a perfect

matching if and only if, for every U ⊆ V , the subgraph G \ U has at most |U | components

of odd size.

For the purpose of our investigations into resigning, we need the following generalization

of Theorem 3.2.1 where higher vertex degrees are permitted. The proof bootstraps from the

original.

Here is our theorem, proved jointly with DeVos and Mohar, but we actually found that

it was already proved by Lovász.

Theorem 3.2.2. Let G be a graph and let T ⊆ V (G) have |T | even. Let f : V (G)→ Z and

assume that f(v) is odd if and only if v ∈ T . There exists a subgraph H ⊆ G such that

1. for every v ∈ V (G), degH(v) is odd if and only if v ∈ T , and

2. degH(v) ≤ f(v) holds for every v ∈ V (G)

if and only if there does not exist X ⊆ V (G) such that number of components of G \X with

an odd number of vertices in T is greater than
∑

v∈X f(v).

Proof. The “only if” direction is fairly straightforward, so we prove it first. Suppose that

there exists X ⊆ V (G) so that H1, . . . , Ht are distinct components of G\X with |V (Hi)∩T |

odd and assume that t >
∑

v∈X f(v). Every subgraph of G whose edge set is a T -join must

contain at least one edge between X and V (Hi) for every 1 ≤ i ≤ t. It follows that any

subgraph H ⊆ G satisfying the first constraint must have at least t distinct edges incident

with vertices of X. However, no such subgraph can satisfy the second constraint. It follows

that under this assumption, no subgraph can satisfy both constraints.

For the “if” direction, we create a graph G′ from the original graph G as follows. Create

the new graph G′ by replacing each vertex v ∈ V (G) with new vertices v1, . . . , vf(v). We
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say that v1, . . . , vf(v) are associated with v. For new vertices vi and uj (1 ≤ i ≤ f(v) and

1 ≤ j ≤ f(u)) in V (G′), add the edge viuj if the corresponding vertices v and u are neighbors

in G. For every vertex v ∈ V (G) add all edges of the form vivj where 1 ≤ i < j ≤ f(v) to

G′ (so the subgraph induced by {v1, . . . , vf(v)} is a complete graph). Next is the key claim

Claim: G′ has a perfect matching if and only if G has the desired subgraph.

To prove this claim, first suppose that G has the desired subgraph H we are interested

in. Consider following algorithm:

1. Let G+ and H+ be copies of G′ and H respectively.

2. Let S be the empty set.

3. Let uv ∈ E(H+), choose uivj ∈ E(G+) such that ui and vj (in G+) are corresponding

vertices of u and v (in H+) respectively.

4. Delete uv from E(H+) and ui, vj from V (G+).

5. Add edge uivj to S.

6. Go to step 3 if E(H+) ̸= ∅ (note that since degH+(v) ≤ f(v) you can go back to step

3 while E(H+) ̸= ∅).

7. Output G+ and S

Since degH+(v) is odd if and only if v ∈ T , the final output graph V (G+) has a vertex

partition (corresponding to vertices of G) into sets {V1, . . . , Vn} so that each Vi induces

a clique on an even number of vertices. Choosing a perfect matching from each of these

induced subgraphs extends S to a perfect matching in G′.

Next suppose that G′ has a perfect matching. Over all perfect matchings M choose one

to minimize the number of edges of the form uivj where u, v ∈ V (G) are distinct. Suppose

(for a contradiction) that M contains distinct edges uivj and ui′vj′ where u, v ∈ V (G) are

distinct. In this case we can construct a new perfect matching by removing these two edges

and adding the edges uiui′ and vjvj′ . This new perfect matching contradicts the choice of
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M and it follows that for every uv ∈ E(G) there is at most one edge of the form uivj ∈M .

Let H be the spanning subgraph of G with edge set

E(H) = {uv ∈ E(G) | uivj ∈M for some 1 ≤ i ≤ f(u) and 1 ≤ j ≤ f(v)}

For every v ∈ V (G), we have degH(v) ≤ f(v) since there are f(v) vertices in G′ associated

to this v. By the choice of our M , every v ∈ G has the property that degH(v) has the same

parity as f(v) and this completes the proof of the claim.

Having proved the claim, we can complete the proof of the theorem by showing that

whenever G′ does not have a perfect matching, the graph G has the obstruction (i.e. a set

X ⊆ V (G) such that number of components of G \ X with an odd number of vertices in

T is greater than ∑
v∈X f(v).) Assume now that G′ does not have a perfect matching and

apply Tutte’s 1-factor theorem 3.2.1 to choose a minimal set X ′ with the property that the

number of components of G′ \X ′ with an odd number of vertices is greater than |X ′|.

Let 1 ≤ i, j ≤ f(v) with i ̸= j and consider the vertices vi, vj ∈ V (G′). Note that since

vi and vj are adjacent, they cannot be in distinct components of G′ \ X ′. If vi ∈ X ′ and

vj ̸∈ X ′ then the only vertices of G′ \X ′ adjacent to vi lie in the component of this graph

containing vj . It follows from this that X ′′ := X ′ \ {vi} contradicts our choice of the set

X ′. Therefore, for every v ∈ V (G) all of the vertices of G′ associated to v either lie in X ′

or they are all in the same component of G′ \X ′.

Define the set X = {v ∈ V (G) | vi ∈ X ′ for some 1 ≤ i ≤ f(v)}. Let H ′1, . . . , H ′t be the

components of G′ \X ′ of odd size. For every 1 ≤ i ≤ t let Hi be the subgraph of G induced

by those vertices (of G) associated with vertices in V (H ′i). Since every H ′i has odd size, it

follows that |V (Hi) ∩ T | is odd for every 1 ≤ i ≤ t. So H1, . . . , Ht are all components of

G \X containing an odd number of vertices in T . Now we have found our obstruction set

X since ∑
v∈X f(v) = |X ′| < t.

Corollary 3.2.1. Given a signed graph (G, σ) and a positive integer k, we can decide in

polynomial time if G has an inversing equivalent signature such that the maximum degree

of vertices adjacent to negative edges is less than or equal to k.
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Proof. We may assume that G is simple since there is never a need to use two negative

edges in parallel (or a loop). We may now assume k < |V (G)| as otherwise the signature

σ satisfies the corollary. Following the proof of the above theorem, we form the graph G′.

By this theorem, our graph G has the desired signature if and only if G′ has a perfect

matching. The perfect matching problem for an n vertex m edge graph can be solved

efficiently by Edmond’s Blossom Algorithm in time O(n2m) (see [6]) and this gives us the

desired polynomial algorithm for G.

3.3 k-regular signed graphs

In this section we consider k-regular signed graphs and we are interested in determining if

there is an inversing equivalent signature for which no vertex is incident with more than

two negative edges. We will prove that this property holds true under the assumption that

the graph is k-edge-connected, but may fail under the weaker assumption of (k − 1)-edge-

connectivity.

Corollary 3.3.1. For every simple k-edge-connected k-regular signed graph (G, σ), there

exists an inversing equivalent signature to σ, where each vertex is incident to at most two

negative edges.

Proof. Suppose for contradiction no such signature exists. Let T = {v ∈ V (G) | v is

incident to odd number of negative edges}. Define function f : V (G) → Z such that for

every v ∈ T , f(v) = 1 else f(v) = 2. Now by applying Theorem 3.2.2, either G has a

subgraph H = (V, E′) such that each vertex in T is adjacent to one negative edge, and each

vertex in V \ T is adjacent to either 0 or 2 negative edges, or there exists a set X ⊆ V (G)

such that |∑v∈X f(v)| is less than number of components of G \ X with an odd number

of vertices in T . Let H1, . . . , Ht be the components of G \X containing an odd number of

vertices in T . Let S be set of edges between the set X and the ∪t
i=1V (Hi). It follows from

the k-edge-connectivity of G that there are at least k edges between X and V (Hi) for every

i, thus |S| ≥ kt. On the other hand every vertex in X has degree k so |S| ≤ k · |X|. Thus

kt ≤ |S| ≤ k|X| ≤ k · (|X ∩ T |+ 2 · |X \ T |) = k · (∑v∈X f(v)), a contradiction.
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Figure 3.1: Examples for Theorem 3.3.2 where k = 3

Next we show a family of graphs demonstrating that the above corollary does not hold

under the weaker assumption of (k−1)-edge-connectivity. To verify (k−1)-edge-connectivity

of our graphs, the following classical theorem is useful.

Theorem 3.3.1. (Menger’s Theorem, see[15]) For every graph, the size of a minimum

nonempty edge cut is equal to the maximum number k so that for every pair of vertices,

there exist k pairwise edge-disjoint paths between them.

Now we are ready to give our example graphs.

Here is our theorem proved jointly with Devos and Mohar.

Theorem 3.3.2. For every odd k ≥ 3 there exists a simple (k−1)-edge-connected k-regular

signed graph (G, σ) that has no equivalent signature for which every vertex is incident with

at most two negative edges.

Proof. Define G1 to be a graph with vertex set {1, 2} × Z2(k−1) and an edge between (1, a)

and (2, b) if b−a ∈ {0, 1, . . . , k−2} (mod 2(k−1)). It is straightforward to verify that G1 is a

(k−1)-regular (k−1)-edge-connected bipartite graph with bipartition ({1}×Z2(k−1), {2}×

Z2(k−1)). Define G2 to be the graph obtained from G1 by adding two new vertices u, v where

u is adjacent to all vertices of the form (1, a) where a is odd and v is adjacent to all vertices

of the form (1, b) where b is even. Note that G2 is a (k − 1)-edge-connected graph with

bipartiton (V1, V2) where V1 = {1} × Z2(k−1) and V2 = {2} × Z2(k−1) ∪ {u, v}. Furthermore

every vertex in V1 has degree k and every vertex in V2 has degree k− 1. Now modify G2 to

form a new graph G3 as follows: For every vertex w ∈ V2 let Hw be a graph obtained from
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a complete graph on k + 1 vertices by deleting a matching of size k−1
2 and modify G2 by

adding the graph Hw, deleting the vertex w and then adding edges between every neighbour

of w in G2 and every vertex of degree k− 1 in Hw. The resulting graph G3 is now k-regular

and (k−1)-edge-connected. Let T be a set consisting of V1 together with exactly one vertex

from each subgraph of the form Hw. Now choose a signature σ so that T = Tσ. The signed

graph (G3, σ) cannot have an inversing equivalent signature so that every vertex is incident

with at most two negative edges, since every vertex in V1 would have to be incident with

exactly one negative edge, and after deleting V1 we are left with |V1|+ 2 components each

of which has an odd number of vertices in T .
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Chapter 4

The path and negative cycle
property

In this chapter we will be interested in signed graphs under switching equivalence. For

brevity we will frequently refer a signed graph G without explicitly naming the signature.

In this case it is understood that G is equipped with a signature σ.

Our interest is in studying a property of a signed graph G with a pair of distinguished

vertices u, v. We say that G has the Path-Negative-Cycle Property or PNC property (for

short) if there exists a path P from u to v and a negative cycle C for which V (P )∩V (C) = ∅.

Our goal in this chapter is to provide a structural characterization of all 3-connected graphs

G with distinguished vertices u, v that do not satisfy the PNC property.

Observation 4.0.1. Let G be a signed planar graph with distinguished vertices u, v. If G

has the PNC property, then there exists a u, v path P and vertex disjoint negative cycle C

where C is the boundary of a face.

Proof. Let P be a u, v path and C a negative cycle with V (P )∩V (C) = ∅. We may assume

without loss of generality that in our embedding the path P lies outside the disc bounded

by C. Now the edge set of C can be expressed as the symmetric difference of the edge sets

of all faces inside C and it follows that there is a face inside C bounded by a negative cycle

C ′ and C ′ together with P yield the observation.

It follows from the above observation that if G is a signed planar graph with a pair of

distinguished vertices u, v that G does not have the PNC property if every negative face of
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G is incident with either u or v. In fact this is the main obstruction to the PNC property

as shown in the following theorem, the main result in this chapter.

Theorem 4.0.1. Let G be a 3-connected internally 4-connected signed graph with distin-

guished vertices u, v. If G does not have the PNC property then one of the following holds:

1. G− {u, v} is balanced

2. G can be embedded in the plane with all negative faces incident to either u or v.

Before diving into the proof of this theorem, we begin by establishing some motivation

and background.

4.1 Motivation

The motivation for this problem is an attempt to generalize two famous structure theorems

for graphs and signed graphs. One of these we have already mentioned, but we restate it

for convenience.

Theorem 1.2.1 (Slilaty). [18] Let (G, σ) be a 3-connected signed graph. If (G, σ) does not

contain two vertex disjoint negative cycles, one of the following holds:

1. G− v is balanced for some vertex v ∈ V (G)

2. |V (G)| ≤ 5

3. G can be embedded in the projective plane so that every face is bounded by a positive

cycle.

4. G can be expressed as a 3-sum of a graph with no two disjoint negative cycles and a

balanced graph with at least 5 vertices.

The most interesting case in this theorem is the third. In such an embedding of a signed

graph in the projective plane all contractible cycles must be balanced, and any two non-

contractible cycles intersect are not balanced (thanks to the topology of the projective

plane). The other classical theorem of interest is as follows.
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Let G be a graph and let T = {T1, . . . , Tk} be a collection of pairwise disjoint two

element subsets of V (G). We say that G has a T -linkage if there exist k pairwise vertex

disjoint paths P1, . . . , Pk so that Pi has ends Ti for 1 ≤ i ≤ k.

Theorem 4.1.1 (Thomassen’s 2-Linkage Theorem [19]). Let graph G be 3-connected and

internally 4-connected, with distinct vertices s1, s2, t1, t2 ∈ V (G). Then, either there exist

vertex-disjoint paths P1 and P2 such that Pi has ends si and ti for i = 1, 2, or G has an

embedding in the plane with s1, s2, t1, t2 on the outer face occurring in that cyclic order.

Let us note that in the latter case the plane embedding of G forbids the presence of

the desired paths. Also note that there are (stronger) versions of this theorem that weaken

the connectivity assumption on G. In this section we consider the following problem in an

attempt to generalize both of the aforementioned theorems.

Problem 4.1.1 (The two signatures two cycles problem). Let G be a 3-connected and

internally 4-connected graph with signatures σ1 and σ2. If G does not contain a pair of

vertex disjoint cycles C1, C2 with σi(Ci) = −1, what is the structure of G?

The special case for the above problem when σ1 = σ2 is solved by Slilaty’s structure

theorem. Another case of interest is when σi is a signature with a single negative edge

siti for i = 1, 2. in this case the disjoint negative cycles will exist if and only if the graph

G−{s1t1, s2t2} contains vertex disjoint paths P1, P2 where Pi has ends si, ti for i = 1, 2. So

this case of the problem is solved by the 2-linkage theorem. Indeed, our main result from

this chapter provides a partial solution to this problem in the special case when σ1 has just

one negative edge as we highlight below.

Observation 4.1.1. Let G be a graph with signatures σ1 and σ2. If uv is the unique edge

of G with σ1(uv) = −1 then the signed graph (G−uv, σ2) has the PNC property if and only

if G contains a pair of vertex disjoint cycles C1, C2 with σi(Ci) = −1.

Examples

In this section we introduce some families of graphs with a pair of signatures that do not

have two vertex disjoint cycles one negative in each signature.
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Note that in our illustrations, blue edges represent negative edges in one signature, red

edges indicate negative edges in the second signature, and purple edges signify negative

edges present in both signatures.

Example 4.1.1. Let G be a graph with signatures σ1, σ2 and assume that uv is the unique

negative edge in σ1. Suppose that G − uv is planar and moreover, in a planar embedding

of G− {u, v}, there are exactly two negative faces, F1 and F2 with F1 containing u and F2

containing v (see Figure 4.1).

Observe that in a signed planar graph with exactly two negative faces, say F1 and F2, a

cycle C is negative if and only if exactly one of F1, F2 is inside C. So in the above example

every cycle in G−{u, v} that is negative in σ2 separates F1 and F2 and therefore intersects

every path in G− uv from u to v.

Example 4.1.2. Let G be a graph with vertex disjoint 3-cycles C1, C2, let u ∈ V (C1),

v ∈ V (C2) be adjacent, and assume that deg(u) = 3 = deg(v). Let σ1 be the signature

with uv as the unique negative edge and let σ2 be the signature with negative edge set

E(C1) ∪ E(C2) (see Figure 4.2).

In this example, every cycle C that is negative in σ1 contains a path from u to v and

therefore uses at least two vertices from V (C1) (V (C2)). It follows that there cannot exist

a cycle disjoint from C that is negative in σ2.

Example 4.1.3. Let G1, . . . G2k be vertex disjoint graphs and for 1 ≤ i ≤ 2k let ui, u′i, vi, v′i ∈

V (Gi) be distinct. Assume that for every odd 1 ≤ i ≤ 2k the graph Gi has a planar em-

bedding with ui, vi, v′i, u′i on the outer face in this cyclic order. Let G be constructed from

the union of G1, . . . , G2k by adding the edges uivi+1 and u′iv
′
i+1 for all 1 ≤ i ≤ 2k (indices

modulo 2k). Define σ1 to be the signature with negative edge set {u1v2, u′1v′2} and σ2 to be

the signature with negative edge set {uivi+1 | 1 ≤ i ≤ 2k} (see Figure 4.3)

.

In a graph from the above example consider a cycle C that is negative in σ1 and observe

that C must contain exactly one of the edges uivi+1, u′iv
′
i+1 for every 1 ≤ i ≤ 2k. For every
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Figure 4.2: Illustrations of examples 4.1.2
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Figure 4.4: Illustrations of examples 4.1.4

odd 1 ≤ i ≤ 2k, it follows from the planarity of Gi that every cycle vertex disjoint from

C must contain both of ui−1vi, uivi+1 or neither. It follows that there cannot exist a cycle

disjoint from C that is negative in C2.

Example 4.1.4. Let G1 be an 8 vertex cycle with vertices in cyclic order v1, . . . , v8 together

with the additional edges v2v6 and v4v8. Let G2 be a graph embedded in the plane with four

distinct vertices u1, . . . , u4 arranged in this cyclic order along the outer face. Assume that G1

and G2 are vertex disjoint and then let G be the graph obtained from G1 ∪G2 by adding the

edges v1u1, v3u2, v5u3, and v7u4. Let σ1 be a signature with negative edge set {v1v2, v6v7}

and let σ2 be a signature with negative edge set {v1u1, v3u2} (see Figure 4.4).

A small case analysis reveals that graphs constructed as in the above example do not

contain the desired two vertex disjoint cycles.

Let G be a graph with a signature σ for which all negative edges are incident with the

vertex w. Define S+ (S−) as the set of positive (negative) edges incident to w. We say w is
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Figure 4.5: Illustrations of examples 4.1.5

a balanced vertex. We modify G to form a new signed graph G′ as follows: We introduce two

new vertices, w+ and w−, and modify each edge in S+ (S−) by replacing the endpoint w

with w+ (w−). Subsequently, we remove the vertex w (which becomes isolated at then end

of the process). We call G′ a σ-vertex-split of G. Note that a negative cycle in G corresponds

to a path in G′ from w− to w+.

Example 4.1.5. Let G have signatures σ1 and σ2. Let w1, w2 be distinct vertices and assume

that all negative edges of σi are incident with wi. Let G′ be obtained from G by doing a σ1-

vertex-split (at w1) and then let G′′ be obtained from G′ by doing a σ2-vertex-split (at w2).

Assume that G′′ can be embedded in the plane such that w1
+, w2

+, w1
−, and w2

− appear

consecutively in this order along the outer face (see Figure 4.5).

In this case G′′ does not have two vertex disjoint paths one from w−1 to w+
1 and the

other from w−2 to w+
2 and it follows that the original graph G does not have the desired

disjoint negative cycles.
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4.2 Using a negative K4

Now we begin toward the proof of our theorem characterizing when a signed graph has the

PNC property. In this section we will show how to use a certain subgraph to deduce this

property.

First some definitions. If G is a graph and H ⊆ G, a bridge of H is one of the following:

• A subgraph F ⊆ G isomorphic to K2 with V (F ) ⊆ V (H) and E(F ) ∩ E(H) = ∅.

• A subgraph of G obtained by taking a component of G − V (H) together with every

edge joining a vertex of this component to a vertex in V (H) (with its end vertices).

Note that E(G) is the disjoint union of E(H) and the edge sets of its bridges. If F is a bridge

of H we call V (H) ∩ V (F ) attachment vertices. For the next lemma there is a particular

signed graph of interest. If G is a signed graph a subgraph H ⊆ G is called a negative K4

if H is a subdivision of K4 and every cycle of H that corresponds to a 3-cycle in K4 is

negative.

In the figures below, blue edges represent a negative cycle in one signature, while red

edges indicate disjoint uv-paths.

Lemma 4.2.1. Let G be a signed 3-connected graph with distinguished vertices u, v. If G

has a negative K4 vertex disjoint from {u, v}, then G has the PNC property with respect to

u, v.

Proof. Begin by choosing a negative K4 subgraph called H, vertex disjoint from {u, v} so as

to maximize the size of the bridge containing u. Let Bu (Bv) be the bridge of H containing

u (v). If Bu = Bv then this bridge contains a u, v path that is vertex disjoint from a negative

cycle in H and the proof is complete, so we may assume Bu ̸= Bv.

Let v1, . . . , v4 be the degree 3 vertices in H and for 1 ≤ i ≤ 4 let Ci be the unique cycle

in H not containing vi and note that Ci is negative. If there exists 1 ≤ i ≤ 4 so that Bu

and Bv both have attachments not contained in V (Ci), then we have the desired path from

u to v disjoint from Ci. Accordingly we may assume no such i exists.

For 1 ≤ i < j ≤ 4 let Pij be the unique path in H from vi to vj with V (Pij) ∩

{v1, . . . , v4} = {vi, vj}. First suppose that Bu has an attachment vertex in the interior of
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Figure 4.7: Bu and Bv both have attachments not contained in V (C1).

the path P13. In this case, all attachments of Bv must lie in the path P24 (or there would

be a cycle Ci not containing an attachment vertex of Bu and not containing an attachment

vertex of Bv). Since Bv has at least three attachment vertices, this means that Bv must

contain an attachment vertex in the interior of P24. Observe that a similar argument works

with Bu and Bv interchanged. In particular, if one of Bu or Bv has an “interior” attachment

vertex, then the other one does too.

If the only attachment vertices of both Bu and Bv lie in {v1, . . . , v4}, then it follows from

the fact that Bu and Bv each have at least 3 attachment vertices that there exists 1 ≤ i ≤ 4

so that vi is an attachment of both Bu and Bv. But in this case there exists a path from u

to v vertex disjoint from Ci and this completes the proof. By the above argument, we may

now assume (by possibly relabelling) that all attachment vertices of Bu lie in P13 and all

attachment vertices of Bv lie in P24.

Let Q13 (Q24) be the unique minimal subpath of P13 (P24) containing all attachment

vertices of Bu (Bv). Deleting the ends of the path Q13 from the graph cannot disconnect

Bu∪Q13 with the rest of the graph and it follows that there exists another bridge B of H with
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an attachment x in the interior of Q13 and another attachment vertex y ∈ V (H) \ V (Q13).

Choose a path R ⊆ B from x to y internally disjoint from V (H). Now we consider cases.

Case 1: y ∈ V (P13)

If the unique cycle in P13∪R is negative, then this negative cycle is disjoint from a path

from u to v completing the proof. Otherwise, we can modify H to form another negative K4,

call it H ′, by replacing the subpath of P13 from x to y with the path R. Now H ′ contradicts

the choice of H as the bridge containing u has increased in size.

Case 2: y is in the interior of P24.

Since Bv has at least 3 attachment vertices, we may choose a subpath R′ of P24 from

y to v3 or v4 so that Bv has an attachment vertex not in V (R′). By possibly relabelling,

we may assume R′ has ends v4, y. Observe that the graph (H ∪ R) \ {v2} has exactly two

cycles that contain the path R, say C and C ′. Since E(C) ⊕
E(C ′) = E(C2) exactly one of

C or C ′ is negative and in either case we have a negative cycle disjoint from a u, v path as

desired.

Case 3: y is not in P13 or the interior of P24.

In this case the ends of the path R are either both in V (C2) or both in V (C4) and by

relabelling we may assume the former case. Now C2∪R has two cycles containing R exactly
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Figure 4.10: Case 3: y is not in P13 or the interior of P24.

one of which is negative and this cycle is disjoint from a u, v path thus completing the proof.

4.3 Preparations

In this section we prove some lemmas that will be required for characterizing the PNC

property.

Lemma 4.3.1. Let G be a 3-connected signed graph and let (G1, G2) be a 3-separation of G

with |V (G2) \ V (G1)| ≥ 1. If G2 is not balanced, then there exists a negative cycle C ⊆ G2

so that |V (G1) ∩ V (C)| ≤ 2.

47



Proof. Let X = V (G1) ∩ V (G2) and choose a negative cycle C ⊆ G2. We may assume

X ⊆ V (C) as otherwise we are done. If V (C) = X [21] we may choose a vertex v ∈ V (G2)\X

and three internally disjoint paths starting at v and ending at distinct vertices in X and

the subgraph consisting of C and these paths contains a negative cycle not containing all

of X. So we may assume that V (C) contains a vertex z ̸∈ X. Now let Q ⊆ C be the unique

maximal path of C containing z and not containing a vertex of X in the interior. Let Z be

the set of ends of Q and note that Z ⊆ X. By 3-connectivity G\Z contains a path between

the two components of C−Z and it follows from applying the theta property to C and this

path that G2 contains the desired negative cycle.

Our next lemma will handle a special case in the proof when G− {u, v} is planar.

Lemma 4.3.2. Let G be a 3-connected signed graph with distinguished vertices u, v. Assume

that G′ = G \ {u, v} is a subdivision of a 3-connected planar graph. Then either G has the

PNC property or one of the following holds:

1. G− {u, v} is balanced, or

2. G is planar and every negative face is incident with u or v.

Proof. Suppose first that C is a negative cycle bounding a face in our planar embedding

of G′. If there exists a vertex u′ adjacent to u and v′ adjacent to v with u′, v′ ̸∈ V (C)

then our connectivity implies that G′ \ V (C) is connected and it follows that G has the

PNC property. So it must be that every negative cycle bounding a face contains either all

neighbours of u or all neighbours of v. Note that by parity, the total number of negative

faces is even. If this number is zero, then G − {u, v} is balanced and we are done. By the

above analysis, the only other possibility is that G′ has exactly two negative faces, one of

which contains all neighbours of u and the other contains all neighbours of v. In this case

the original graph G is planar with every negative face incident to u or v.

Before we prove the next lemma we state a strong form of the 2-linkage theorem that

we require.
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Theorem 4.3.1 (Thomassen’s 2-Linkage Theorem (strong form)). [19] Let G be a graph

with distinct vertices s1, s2, t1, t2 and assume that G does not contain a 3-separation (G1, G2)

with s1, s2, t1, t2 ∈ V (G1) and |V (G2)\V (G1)| ≥ 2. If G does not contain a {{s1, t1}, {s2, t2}}-

linkage, then G can be embedded in the plane with the vertices s1, s2, t1, t2 appearing on the

outer face in this order.

Our next lemma handles another key case in the proof of our main theorem.

Lemma 4.3.3. Let G be a 3-connected signed graph with distinguished vertices u, v and

assume the following:

• G \ {u, v} is an unbalanced graph with a balancing vertex w,

• There does not exist a 3-separation (G1, G2) of G with u, v, w ∈ V (G1) and |V (G2) \

V (G1)| ≥ 2.

Then either G has the PNC property, or G is planar and every negative face is incident

with u or v.

Proof. By possibly resigning the graph G we may assume that our signature σ has the

property that all negative edges are incident with at least one of u, v, w. Further modify σ

by changing the sign of every edge incident with u or v to be positive (and note that this

does not affect the PNC property). Let G′ be obtained from G by doing a σ split that splits

the vertex w into w+ and w−. If the graph G′ has a {{u, v}, {w+, w−}}-linkage then G has

the PNC property. Otherwise it follows from Theorem 4.3.1 that G′ can be embedded in

the plane with u, w+, v, w− appearing in this order on the boundary of the infinite face. In

this case the graph G is also planar with exactly two negative faces, one containing u and

the other v.

4.4 Reductions

Our main theorem from this section requires the introduction of numerous reductions that

move from a 3-connected signed graph G to a smaller 3-connected graph G′. In all cases

these reductions will not effect the PNC property.
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For the purpose of our reductions we will assume that G is a signed 3-connected graph

with two distinguished vertices u and v and we will modify preserving these features. We

begin by defining the first reduction.

Definition 4.4.1 (Reduction R1). Let G be a signed 3-connected graph with distinguished

vertices u, v and let (G1, G2) be a 3-separation of G satisfying the following properties:

• u, v ∈ V (G1)

• |V (G2) \ V (G1)| ≥ 2

• All edges in E(G2 \ {u, v}) are positive

Let G′ be the signed graph obtained from G1 by adding a new vertex w and positive edges

joining w to all three vertices in V (G1) ∩ V (G2). We call G′ an R1 reduction of G.

Next we prove that this reduction preserves the PNC property.

Lemma 4.4.1 (First reduction). Let (G, σ) be a signed 3-connected graph with distinguished

vertices u, v and let (G1, G2) be a 3-separation of G with {u, v} ⊆ V (G1) and |V (G2) \

V (G1)| ≥ 2. Then

1. If G2 \ {u, v} is unbalanced, then G has the PNC property.

2. If G2 \ {u, v} is balanced, then by possibly resigning G we may assume that all edges

in this subgraph are positive and perform an R1 reduction to get the graph (G′, σ′).

Then G has the PNC property if and only if G′ has the PNC property.

Proof. First assume that G′2 = G2\{u, v} contains a negative cycle C. Note that by Lemma

4.3.1 we may assume that C contains at most two vertices from the set X = V (G1)∩V (G2).

It now follows from the 3-connectivity of G that there exists a path P from u to v vertex

disjoint from C thus giving the PNC property.

For the second part of the proof we assume that G′2 is balanced and carry out the

reduction defined above to form G′. It is immediate from our assumptions that if G satisfies

the PNC property with path P and cycle C then one of E(P ) ∩ E(G2) or E(C) ∩ E(G2)

is empty. It follows immediately from this that G has the PNC property if and only if G′

does.
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Figure 4.11: R1 - First Reduction

Definition 4.4.2 (Reduction R2). Let G be a signed 3-connected graph with distinguished

vertices u, v and let (G1, G2) be a 3-separation of G satisfying the following properties:

• u ∈ V (G1) \ V (G2) and v ∈ V (G2) \ V (G1)

• |V (G2) \ V (G1)| ≥ 2

• All edges in E(G2 \ v) are positive.

Let G′ be the signed graph obtained from G1 by adding a new vertex v and positive edges

joining v to all three vertices in X = V (G1) ∩ V (G2). In addition, for every x ∈ X, if G2

contains a {{x, v}, X \ {x}} linkage, then we add to G′ a positive edge with ends X \ {x}.

We call G′ an R2 reduction of G.

Let us comment that the strong form of Thomassen’s 2-linkage theorem gives a complete

characterization of when any linkage of size 2 does not exist and thanks to this we can give

a precise structural description of the behaviour of the R2 reduction.

Lemma 4.4.2 (Second reduction). Let G be a signed 3-connected graph with distinguished

vertices u, v. If G′ is an R2 reduction of G, then G has the PNC property if and only if G′

has the PNC property.
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Proof. Let (G1, G2) be the 3-separation on which the R2 reduction is performed and let

X = V (G1) ∩ V (G2). First suppose that G′ has the PNC property with path P and cycle

C. If C does not contain any edge with both ends in X, then C is a negative cycle in G

and it follows from 3-connectivity that C is disjoint from a u, v path in G giving the PNC

property. If C contains an edge xx′ with x, x′ ∈ X, then P must contain the unique vertex

in X \ {x, x′} say x′′. It now follows from our construction that G2 contains the linkage

{{v, x′′}, {x, x′}} and it follows that G has the PNC property.

Next suppose that G has the PNC property with path P and cycle C. If C ⊆ G1 then it

is immediate that G′ will also have the PNC property using the cycle C. Otherwise C must

contain exactly two vertices, say x, x′ ∈ X and P must contain the unique remaining vertex

in X \ {x, x′}, say x′′. It follows from this that G2 contains the linkage {{x, x′}, {v, x′′} so

G′ contains the positive edge xx′. Since all edges of G′ \ v are positive, we can reroute the

negative cycle C ⊆ G to a new negative cycle using xx′ and it follows that G′ has the PNC

property.

Definition 4.4.3 (Reduction R3). Let G be a signed 3-connected graph with distinguished

vertices u, v, let (G1, G2) be a 4-separation of G with X = V (G1) ∩ V (G2) satisfying the

following properties:

• u ∈ V (G1) \ V (G2) and v ∈ V (G1) ∩ V (G2)

• |V (G2) \ V (G1)| ≥ 2

• At least one component H of G2 \ V (G1) has all of X as neighbours of V (H).

• All edges in E(G2 \ v) are positive.

Let G′ be the signed graph obtained from G1 by adding a new vertex w and positive edges

joining w to all four vertices in X = V (G1) ∩ V (G2). In addition, for every x ∈ X, if

G2 contains a {{x, v}, X \ {v, x}} linkage, then we add to G′ a positive edges with ends

X \ {v, x} and a positive edge with ends {v, x}. We call G′ an R3 reduction of G.

Next we show that this reduction works as desired.
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Lemma 4.4.3 (Third reduction). Let G be a signed 3-connected graph with distinguished

vertices u, v. If G′ is an R3 reduction of G, then G has the PNC property if and only if G′

has the PNC property.

Proof. We omit this argument since it is nearly identical to that for the R2 reduction. The

only cases of interest concern the PNC property with a path P and cycle C where C ̸⊆ G1.

However in all such cases we can move between G and G′ by interchanging edges with both

ends in X with suitable paths in G2.

4.5 Characterizing the PNC property

Our main goal for this subsection is to complete our characterization of the PNC property

for 3-connected graphs.

Here is our theorem proved jointly with Devos, Nurse, and Mohar.

Theorem 4.5.1. Let G be a 3-connected signed graph with distinguished vertices u, v. Either

G has the PNC property or one of the following holds:

1. G− {u, v} is balanced, or

2. After applying reductions (R1) and (R2) the graph G is planar and all negative faces

are incident with either u or v.

The proof of our main theorem relies upon another structure theorem for signed graphs

due to Lov’asz, Seymour, Schrijver, and Truemper and written by Gerards.

Theorem 4.5.2. Let G be a simple signed 3-connected graph with no negative K4. Then

G is either balanced, has a balancing vertex, or G can be reduced to a planar graph with

exactly two negative faces by the following operation:

• If (G1, G2) is a 3-separation and G2 is a balanced graph with |V (G2) \ V (G1)| ≥ 2

then resign G so that G2 is positive and replace G by the graph obtained from G1 by

adding a new vertex w and positive edges joining w to every vertex in V (G1)∩V (G2).

Proof of Theorem 4.5.1. Suppose (for a contradiction) that G is a counterexample to the

theorem with |V (G)| minimum. We proceed to establish properties of G in steps.
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(1) G does not have a 3-separation (G1, G2) with u, v ∈ V (G1) and |V (G2) \ V (G1)| ≥ 2.

In this case it follows from Lemma 4.4.1 that either G has the PNC property and we are

done, or G2 \{u, v} is balanced and we can perform reduction (R1) transforming G into the

smaller graph G′. By the minimality of our counterexample, G′ must satisfy the theorem.

If G′ has the PNC property, then so does G (by Lemma 4.4.1) which is contradictory.

Otherwise G′ reduces by (R1) and (R2) to a planar graph with the structure in the theorem

statement, but then so does G. This proves (1).

(2) G− {u, v} does not have a balancing vertex.

Suppose (for a contradiction) that w is a balancing vertex in G− {u, v}. In this case it

follows from Lemma 4.3.3 that the theorem holds for G.

(3) G does not have a vertex w adjacent to both u and v

In this case (2) implies that G− {u, v, w} contains a negative cycle C, but then we the

three vertex path given by u, w, v shows that G has the PNC property.

(4) G does not have a 4-separation (G1, G2) with u, v ∈ V (G1) ∩ V (G2) so that |V (G1) \

V (G2)|, |V (G2) \ V (G1)| ≥ 2.

Suppose (for a contradiction) that (G1, G2) is a 4-separation violating (4). Let w ∈

(V (G1) ∩ V (G2)) \ {u, v} and note that by (2) the graph G − {u, v, w} must contain a

negative cycle C. Without loss of generality we may assume C ⊆ G1. It now follows from

our connectivity that G2 contains a path P from u to v and thus G has the PNC property.

This proves (4).

(5) The graph G is not planar

Suppose (for a contradiction) that G is planar. Then it follows from (1) (3), and (4)

that G−{u, v} is a subdivision of a 3-connected graph. But now Lemma 4.3.2 implies that

G satisfies the theorem.

(6) G does not have an internal 3-separation (G1, G2) with u ∈ V (G1) \ V (G2) and

v ∈ V (G2) \ V (G1).

Suppose (for a contradiction) that (G1, G2) is such a 3-separation and let X = V (G1)∩

V (G2). Form G∗1 from G1 by adding the vertex v and positive edges between v and all vertices
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in X. Similarly, form G∗2 from G2 by adding the vertex u and positive edges between u and

all vertices in X. If G∗i has the PNC property for some i = 1, 2 then it follows from our

connectivity that G also satisfies the PNC property, which is a contradiction. Next suppose

G∗2 \ {u, v} = G2 \ {v} is balanced. In this case we may resign G so that all edges in this

subgraph are positive and then apply reduction R2 to G to obtain the new graph G′. It

follows from the minimality of our counterexample that the theorem holds for G′. If G′ has

the PNC property, then so does G by Lemma 4.4.2. Otherwise G′ can be reduced by R1 and

R2 to a planar graph with all negative faces incident with u or v, but then this conclusion

also holds for G. This proves (6).

(7) G does not have a 4-separation (G1, G2) with u ∈ V (G1)\V (G2) and v ∈ V (G1)∩V (G2)

and G2 \ V (G1) a connected graph of size ≥ 2.

Suppose (for a contradiction) that such a 4-separation exists. If G2 \ {v} contains a

negative cycle, then it follows from our connectivity and Lemma 4.3.1 that G2\{v} contains

such negative cycle C using at most two vertices in V (G1)∩V (G2). But then we can find a

path in G1\V (C) from u to v thus giving G the PNC property. Therefore G2\{v} is balanced,

and by resigning G we may assume these edges are positive. Now apply an R3 reduction to

G forming the graph G′. By the minimality of our counterexample, the theorem holds for

G′. If G′ has the PNC property, then Lemma 4.4.3 implies that G has it too. Otherwise G′

can be reduced by R1 and R2 reductions to a planar graph with the stated properties. Now

consider this R3 reduction that was performed. Let X = V (G1) ∩ V (G2) and let x be the

newly added vertex when doing R3. Since G′ reduces by R1 and R2 reductions to a planar

graph, the subgraph induced by X ∪ {x} is not K5. It follows from this that at least one

of the 2-linkages problems for G2 given by partitioning X into two sets of size two cannot

be solved. It follows from this that G2 is planar, and moreover the embedding of G′ can be

extended to give a planar embedding of G. So the R3 reduction was not actually necessary

to get the desired structure.

(8) The graph G−{u, v} is a subdivision of a 3-connected and internally 4-connected graph.

It follows from (1), (3), and (4) that G−{u, v} is a subdivision of a 3-connected graph.

If this graph is not internally 4-connected, consider a violating 3-separation, and extend this
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to a 5-separation in the original graph G of the form (G1, G2) with u, v ∈ V (G1) ∩ V (G2).

Note that both u and v have neighbours in both V (G1) \V (G2) and V (G2) \V (G1) by (7).

First suppose that G2 \ {u, v} contains a negative cycle C. Then by Lemma 4.3.1 we may

choose such a negative cycle containing at most two vertices from V (G1)∩V (G2). Now our

assumptions imply the existence of a path P ⊆ V (G1) \ V (C) from u to v and thus G has

the PNC property. A similar argument shows that G1 \ {u, v} is balanced. First resign G so

that all edges in G1 \ {u, v} are positive and then resign G so that all edges in G2 \ {u, v}

are positive. This second resigning only uses vertices in V (G2) moreover, we can do this

resigning using at most one vertex in (V (G1)∩V (G2))\{u, v}. To see this, note that if more

vertices were used, we could achieve the same result by switching at the complementary set

of vertices. It now follows that G has a balancing vertex, but this contradicts (2).

With the last property in place we are ready to complete the proof. Let G′ be the graph

obtained from G−{u, v} by suppressing degree 2 vertices. If G′ has a pair of parallel edges

forming a negative cycle, then this negative cycle is disjoint from a u, v path and G has

the PNC property. So we may assume that if G′ has any parallel edges, they have the same

sign, and then we modify G′ to form G′′ by removing any such extra edges.

Now apply Theorem 4.5.2 to G′′. If this graph is balanced or has a balancing vertex

then we are done. If G′′ contains a negative K4 then Lemma 4.2.1 implies that G satisfies

the PNC property. In the remaining case G−{u, v} is planar and Lemma 4.3.2 implies the

result.
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Chapter 5

Decomposition of signed graphs

A decomposition of a graph G is a list of subgraphs H1, . . . , Hk so that {E(H1), . . . , E(Hk)}

is a partition of E(G). It is elementary that a graph G has a decomposition into cycles if

and only if every vertex of G has even degree. In this chapter we will explore the following

more complicated notion.

Definition 5.0.1. A signed graph (G, σ) has a positive cycle decomposition if there is a

decomposition of G given by C1, . . . , Ck where Ci is a positive cycle of G for every 1 ≤ i ≤ k.

Our main result from this section is an extension of a well-known theorem of Seymour

on positive cycle decompositions of planar graphs.

5.1 Positive-cycle decomposition of graphs

For a graph G and its associated negative signed graph (G,−), we see that a cycle C ⊆ G

is odd if and only if it is negative in (G,−). So a positive cycle decomposition of (G,−)

corresponds to a decomposition of G into even cycles. On the other hand, if (H, σ) is a

signed graph, we can modify the graph H to form H ′ by subdividing every positive edge of

H. Now H ′ is an (unsigned) graph and a decomposition of H ′ into even cycles corresponds

to a positive cycle decomposition of (H, σ). So positive cycle decomposition problems are

equivalent to even cycle decomposition problems. Indeed, this is a common in the world of

signed graphs. We prefer the setting of signed graphs since in many cases the connectivity

of the signed graph is a key parameter that is more natural to work with in this setting.

57



If (G, σ) is a signed graph that has a positive cycle decomposition, then every block

of G must contain an even number of negative edges. Seymour proved that this necessary

condition is also sufficient for planar graphs.

Theorem 5.1.1. (Seymour’s Theorem, see [17]) Let (G, σ) be a signed planar graph. Then

(G, σ) has a positive cycle decomposition if and only if all vertices of G have even degree

and every block of G has an even number of negative edges.

The following theorem shows that this result does not hold true for all graphs.

Theorem 5.1.2. [11] There exists a 2-connected Eulerian negative-K5-minor-free signed

graph with an even number of negative edges which does not have a positive cycle decompo-

sition.

1

2 3

0

4
5

6

7
8

9

Figure 5.1: 2-connected Eulerian loopless negative-K5-minor-free signed graph with an even
number of negative edges which is not balanced-cycle decomposable.

Proof of Theorem 5.1.2. We claim that the signed graph (G, σ) in Figure 5.1 is such a signed

graph. Evidently, G is 2-connected, Eulerian and loopless. We claim that (G, σ) does not

have a positive cycle decomposition.

Suppose (for a contradiction) that a positive cycle decomposition of (G, σ) exists and let

C be an arbitrary cycle in this decomposition. Note that G only contains cycles of length

2, 5, 6, 8, or 9. Since all 2-cycles are unbalanced, C must have a length of 5, 6, 8, or 9.

It is easy to check that if C has a length of 5 or 6, then some block of (G−E(C), σ−E(C))

is a negative 2-cycle, leading to a contradiction. Thus, C must have a length of 8 or 9.
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However, since |E(G)| = 20, we can observe that 8a + 9b ̸= 20 for all non-negative integers

a and b.

Now, we need to show that (G, σ) does not contain an negative-K5-minor. By degree

considerations, the only way to obtain a K5-minor from the Petersen graph is to contract a

perfect matching. Therefore, to obtain an negative-K5 from (G, σ), we must delete exactly

one edge from each 2-cycle and then contract a perfect matching M .

Let C be the balanced 5-cycle 04321. It is easy to see that |M∩E(C)| ∈ {0, 2}. Therefore,

our negative-K5-minor either contains a balanced 5-cycle or a balanced 3-cycle, which leads

to a contradiction.

Theorem 5.1.3. [11] Every signed loopless 2-connected Eulerian negative-K4-minor-free

graph with an even number of negative edges has a positive cycle decomposition.

5.2 Removable positive cycles

Next we introduce some concepts that we will use to find positive cycle decompositions. A

cycle C in a graph G is called removable if G−E(C) is 2-connected. Now assume that (G, σ)

is a signed graph. We say that a subgraph H ⊆ G is a balanced sausage if the following

properties hold:

• H can be obtained from a path of length ≥ 2 by adding a second copy of every edge.

• All cycles of H are positive

• Every v ∈ V (H) with degH(v) = 4 satisfies degG(v) = 4

If H is a balanced sausage, then we call it removable if the graph obtained from G by

deleting {v ∈ V (G) | degH(v) = 4} is 2-connected. Our main result in this chapter is the

following theorem showing the existence of removable positive cycles and balanced sausages.

Here is our theorem proved jointly with Devos, Mohar, Wang, and Nurse.

Theorem 5.2.1. Let (G, σ) be a signed 2-connected Eulerian planar graph with minimum

degree ≥ 4 and let e ∈ E(G) be distinguished. Then there exists either a positive removable

cycle C with e ̸∈ E(C) or a removable balanced sausage H with e ̸∈ E(H).
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In fact, the above theorem implies Seymour’s Theorem. Suppose we are given a 2-

connected Eulerian planar graph (G, σ) with an even number of negative edges. If G has a

vertex of degree 2, then by possibly resigning, we may assume this vertex is incident with

a positive edge and contract it. Repeat until all vertices have degree ≥ 4. Now apply the

above theorem to choose either a removable cycle or sausage. After removing it, we repeat

the above process to get rid of degree 2 vertices, then apply the theorem again and so on.

Proof. Suppose that it is false and consider a minimum counterexample (G, σ). We establish

properties of G in steps.

(1) (G, σ) does not contain a balanced sausage H with e ̸∈ E(H).

Suppose (for a contradiction) that G contains a balanced sausage H. Let u1, u2 be the

two vertices in H with degH(ui) = 2 and let S = V (H) \ {u1, u2} (note that S ̸= ∅ by

definition). By possibly resigning G we may assume that all edges of H are positive. Now

modify G to form the signed graph G′ by deleting S and then adding two positive edges in

parallel with ends u1, u2. By the minimality of our counterexample G′ contains a removable

positive cycle or removable balanced sausage and in either case this immediately implies

that G has the same property.

(2) G does not contain a parallel class of size ≥ 3

If (2) were violated, this parallel class would contain a balanced removable cycle by

theta property.

(3) G does not have a proper 2-separation (G1, G2) so that G1, G2 have odd degree vertices.

Suppose (for a contradiction) that such a separation exists and choose one (G1, G2) so

that e ∈ E(G1) and so that G2 is minimal. Letting {x, y} = V (G1) ∩ V (G2) it then follows

that x and y both have odd degree in both G1 and G2, and by the minimality of G2 (and

(2)) it must be that degG2(x), degG2(y) ≥ 3. The theorem holds for the graph obtained

from G2 by adding the distinguished edge xy and it follows that the result holds for G.

(4) G does not have a proper 2-separation (G1, G2) so that G1 and G2 are Eulerian.

Suppose (for a contradiction) that such a separation (G1, G2) exists and let {x, y} =

V (G1) ∩ V (G2). Note that since x and y have even degree in both graphs, they must have
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Figure 5.2: Operations on part (3) and (4)

degree at least two in both G1 and G2. For i = 1, 2 let G′i be the graph obtained from Gi by

identifying the vertices x and y. By induction we may apply the theorem to both G′1 and

G′2 using the distinguished edge e or an arbitrary edge. Let C1, C2 be the two removable

cycles from G′1, G′2. If one of C1 or C2 does not contain the vertex obtained by identifying

x and y, then this is a removable cycle in G and we are done. Otherwise, in the original

graph G the cycle Ci corresponds to an x, y path Pi ⊆ Gi. In this case the cycle P1 ∪ P2 is

a positive removable cycle.

Based on (3) and (4) it must be that G is 3-connected. By possibly changing the sign

of the edge e we may assume that G has an even number of negative edges. Now apply

Seymour’s theorem to choose a decomposition of (G, σ) into positive cycles C0, C1, . . . , Ck

and assume that e ∈ E(C0). Note that C0 may be positive or negative in the original

signature, but every Ci with 1 ≤ i ≤ k is positive. We will show that one of these cycles is

removable. Choose 1 ≤ j ≤ k as follows:

• Maximize the block B of G− E(Cj) containing C0.

• Maximize the component of G− E(Cj) containing C0.

We claim that according to this choice the graph G − E(Cj) is 2-connected. Suppose

this is false. If G − E(Cj) is not connected and H is a component not containing C0 then

choose any 1 ≤ i ≤ k with Ci ⊆ H. Now Ci contradicts the choice of j. So it must be that
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G − E(Cj) is connected. Suppose this graph is not 2-connected and let x1, . . . , xt be the

cut vertices of G − E(Cj) contained in V (B). For every 1 ≤ i ≤ t choose a 1-separation

(Hi, H ′i) of G−E(Cj) so that V (Hi)∩ V (H ′i) = {xi} and B ⊆ H ′i and subject to this Hi is

maximal. It follows from these choices that G is the edge disjoint union of the block B and

the vertex disjoint subgraphs H1, . . . , Ht.

First consider the case that t ≥ 2. Suppose there exists an edge e ∈ E(Cj) incident with

a vertex in V (Hs) \ {xs} and a vertex in V (B) \ {xs}. In this case we get a contradiction to

the choice of Cj by selecting any cycle Ci from a subgraph Hr with r ̸= s. So we may assume

no such edge exists. In this case the 3-connectivity of G implies that t ≥ 3. Furthermore,

there must exist 1 ≤ s < s′ ≤ t so that E(Cj) contains an edge joining a vertex in V (Hs)

and a vertex in V (Hs′). Now choose 1 ≤ r ≤ t with r ̸= s, s′ and a cycle Ci ⊆ Hr. We see

that Ci contradicts the choice of Cj and this is a contradiction.

In the remaining case G can be decomposed into B, H1, and Cj . It follows from the

3-connectivity of G that |V (Cj) ∩ V (B)| ≥ 2 and thus B ∪Cj is 2-connected. Therefore we

get a contradiction to our choice by choosing any Ci with Ci ⊆ H1. This final contradiction

completes the proof.

5.3 Path and cycle decompositions

A graph with a vertex of odd degree cannot have a decomposition into cycles. Here is a

definition offering a more general type of decomposition.

Definition 5.3.1. Let G be a graph with 2k vertices of odd degree. A good decomposition of

G is a decomposition into P1, . . . , Pk, C1, . . . , Ch where P1, . . . , Pk are paths and C1, . . . , Ch

are cycles.

Note that in a good decomposition, every odd degree vertex must appear as the end of

exactly one Pi path.

Let G and G′ be graphs, and let e = uv be an edge of G, and e′ = u′v′ be an edge of

G′. A 2-sum of G and G′ is obtained by deleting edge e from G, deleting edge e′ from G′,

identifying vertex u with vertex u′, and identifying vertex v with vertex v′. If G and G′ are
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Figure 5.3: Three possible cases if G− E(Cj) is not 2-connected

signed graphs, a 2-sum is only permitted when edges e and e′ have the same sign (though

you can always reassign signs to make this true).

We say that a 2-connected signed graph G with a distinguished edge e is tame if the

following conditions hold: G is Eulerian, has an even number of negative edges, and every

edge appears in a 2-edge-cut.

Observation 5.3.1. If G with distinguished edge e is tame, and G′ has no good decompo-

sition, then a 2-sum of G′ and G over the edge e will not have a good decomposition (to

see why, note that by assumption there is an edge f of G so that {e, f} is an edge-cut.

If our 2-sum were to have a decomposition, any path or cycle not using the edge f must

be completely contained in either G or G′. Since G has only vertices of even degree, this

means that apart from the path or cycle using f , all other edges of G are contained in a

positive cycles from the decomposition. But this would give a good decomposition of G, thus

a contradiction. Based on this we have the following conjecture).

63



Conjecture 5.3.1. If G is a 2-connected signed planar graph that is not Eulerian, then G

has a good decomposition unless G may be obtained from a negative K5 by doing 2-sums

with tame planar graphs.

We believe to approach this conjecture by considering a minimum counterexample, graph

G, and then attempting to establish certain properties of G.
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Chapter 6

An Upper bound on circular
chromatic number of signed graphs

A classic theorem due to Brooks on graph colouring is as follows.

Theorem 6.0.1 (Brooks). If G is a connected graph with maximum degree ∆ then G is

∆-colourable, unless G is either a complete graph or an odd cycle.

In our investigations of signed graphs we looked to consider colouring properties. We

had hoped to show an analogue of Brooks’ Theorem in this setting, but discovered that

this result was already implied by an existing theorem on a different type of colouring. In

this chapter we briefly recount some colouring properties and mention this implication. We

begin with a definition for colouring of signed graphs due to Zaslavsky.

Definition 6.0.1. Let (G, σ) be a signed graph and let k be a positive integer. A 2k-colouring

of (G, σ) is a function f : V (G)→ {±1, . . . ,±k} with the following property:

• If uv ∈ E(G) has σ(uv) = 1 then f(u) ̸= f(v).

• If uv ∈ E(G) has σ(uv) = −1 then f(u) ̸= −f(v).

We say that (G, σ) is 2k-colourable if such a colouring exists.

Let us note that (G, σ) is 2k-colourable if and only if (G, σ) has a circular 2k-colouring

where we only use a subset of C2k consisting of 2k points forming the vertices of a regular

2k-gon. In particular, by the same proof as Proposition 1.6.1 we have that a 2k-colouring

of a signed graph gives a corresponding 2k-colouring for any switching equivalent signed

graph.
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An important variation of graph colouring is the notion of list colouring which was first

considered by Erdős, Rubin, and Taylor [16].

Definition 6.0.2. Let G be a graph and for every v ∈ V (G) let L(v) ⊆ N. We say that G

is L-colourable if there exists a function f : V (G)→ N so that f(v) ∈ L(v) holds for every

v ∈ V (G) and f(u) ̸= f(v) whenever uv ∈ E(G). If G is L-colourable for every L with

|L(v)| ≥ k then we say that G is k-choosable.

In fact, Brooks’ Theorem can be generalized to the setting of list colourings as follows.

Theorem 6.0.2. ([4, 3, 7]; a simple proof in [13]) If G is a simple connected graph with

maximum degree ∆ then G is ∆-choosable unless G is either a complete graph or an odd

cycle.

There is another even stronger form of colouring recently introduced by Dvorak and

Postle [5]. They called this correspondence coloring, but we will refer to it as DP -coloring

(as is now standard).

Definition 6.0.3. Let G be a graph. A cover of G is a pair (L, H), where L is an assignment

of pairwise disjoint sets to the vertices of G and H is a graph with vertex set ∪v∈V (G)L(v),

satisfying the following conditions.

• For every v ∈ V (G), H[L(v)] is a complete graph.

• For every uv ∈ E(G), the edges of H between L(u) and L(v) form a matching.

• For every distinct u, v ∈ V (G) with uv /∈ E(G), no edges of H connect L(u) and L(v).

An (L, H)-coloring of G is an independent set I ⊆ V (H) of size |V (G)|. If an (L, H)-

colouring exists whenever |L(v)| ≥ k holds for every v ∈ V (G) then we say that G is DP

k-colourable.

In fact, DP colouring is stronger that both list colouring and signed graph colouring.

Here is our theorem proved jointly with Devos, Bradshaw, and Mohar.

Theorem 6.0.3. Let G be a graph.
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1. If G is DP k-colourable, then is k-choosable

2. If G is DP 2k-colourable, then for every signature σ the signed grpah (G, σ) is 2k-

colourable.

Proof. For the first part, let L be an assignment of lists to the vertices of G with |L(v)| ≥ k

for every v ∈ V (G). Form a cover of G, called (L′, H), by the rule that L′(v) = {v} × L(v)

(so the union of these sets forms V (H) and for every edge uv ∈ E(G) we add to H all

edges of the form (v, c)(u, c) where c ∈ L(v) ∩ L(u). Since G is DP k-colourable, H has an

independent set of size |V (G)| and this gives an L-colouring of G.

For the second part let σ : E(G) → {−1, 1} be a signature of G. Form a cover of G,

denoted (L, H) by the rule that L(v) = {v} × {±1, . . . ,±k} (again the union of these sets

form V (H)). For every positive edge uv ∈ E(G) we add all edges of the form (u, i)(v, i)

to H and for every negative edge uv ∈ E(G) we add all edges of the form (u, i)(v,−i) to

H. Since G is DP k-colourable, H has an independent set of size |V (G)| and this gives a

colouring of the signed graph (G, σ).

In fact, there is a generalization of Brooks’s Theorem to DP colouring as follows.

Theorem 6.0.4. [1] If G is a simple connected graph with maximum degree ∆ then either

G is ∆-DP-colourable, or G is a complete graph or cycle.

By the above discussion this immediately yields the following Brooks type theorem for

signed graph colouring which was our original aim.

Corollary 6.0.1. Let (G, σ) be a connected signed graph with maximum degree ∆ and

assume that ∆ is even. Then (G, σ) is ∆-colourable unless G is either a complete graph or

a cycle.
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Appendix A

Code

Let G be a simple graph. Assume G ̸= K4. This is Lukot’ka’s algorithm for finding all
2-bisection cubic graphs.

1. Find a proper 3-vertex-colouring of G.

2. Extend one colour class into a maximal (with respect to inclusion) independent set.
The graph induced by the remaining vertices is an union of paths (possibly containing
only one vertex) and even circuits.

3. Recursively generate all possible (not necessarily proper) 2-vertex-colourings of the
paths and cycles such that there are no three consecutive edges of the same colour.

4. For each such colouring we do the following.

(a) We extend the colouring of the paths and circuits to the independent set. Con-
sider a vertex v in the independent set. As all three vertices neighbouring v are
already coloured, two of them must have the same colour and thus we have to
colour v with the other colour. We check if this colour does not introduce a
monochromatic connected subgraph on three vertices.

(b) We check if the colouring is a bipartition (we keep track of the number of vertices
of each colour during step 3 process so that this check is done in constant time).
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