
The fast transposed Vandermonde solver
and its implementation in C

by

Hyukho Kwon

B.Sc., Simon Fraser University, 2020

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Hyukho Kwon 2024
SIMON FRASER UNIVERSITY

Spring 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Hyukho Kwon

Degree: Master of Science

Thesis title: The fast transposed Vandermonde solver and its
implementation in C

Committee: Chair: Luis Goddyn
Professor, Mathematics

Michael Monagan
Supervisor
Professor, Mathematics

Amarpreet Rattan
Committee Member
Associate Professor, Mathematics

Marni Mishna
Examiner
Professor, Mathematics

ii

Abstract

We study the algorithm of Kaltofen and Yagati [8], which solves an n × n transposed
Vandermonde system of linear equations over a field F . This algorithm does O(n log2 n)
arithmetic operations in F . It assumes that the fast Fourier transform (FFT) is used for
polynomial multiplication, polynomial division, and polynomial multipoint evaluation over
F . We implemented this fast transposed Vandermonde solver in C. It uses the "product tree"
of Borodin and Munro [2]. In our C implementation, we optimize the fast multiplication, the
fast division, and the fast evaluation algorithms. To speed up fast division, we use Hanrot,
Quercia, and Zimmerman’s "middle product" [6]. Our fast solver beats Zippel’s O(n2) solver
[15] when n ≥ 128 and F = Zp with p < 263.

Keywords: transposed Vandermonde system; fast Fourier transform; polynomial multi-
point evaluation; polynomial division; bit-reversal permutation

iii

Dedication

For the two ladies I love: Byeongnam, my paternal grandmother, who raised her children
and took care of her father-in-law by herself and Chunja, my maternal grandmother, who
did not have the opportunity to showcase or develop her brilliant talents due to her gender
— "History has failed us, but no matter."

iv

Acknowledgements

I would like to thank my supervisor, Michael Monagan. Without his ceaseless support
and constructive feedback, I would not have been able to face challenges and explore new
opportunities at Simon Fraser University.

Also, I would like to thank Mahsa Ansari and Sophie Hoare for being my computer algebra
buddies. It was great fun to take the Topics in Computer Algebra course together.

I would like to thank Eric Lam for being my friend, who likes my cynical jokes. You are the
only one I can always share my honest feelings in Vancouver.

I would like to thank Bryce Haley for enriching my undergraduate life at Simon Fraser
University. Without you, I could not get out of my comfort zone.

I would like to thank my parents, Oh-hyung and Misook, for their emotional support. Your
limitless love always makes me strong enough to stay in Canada by myself.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Tools 6
2.1 Fast Fourier Transform Algorithm . 6

2.1.1 Fast Fourier Transform . 6
2.1.2 Inverse Fast Fourier Transform . 11
2.1.3 Optimizing the Fast Fourier Transform 13

2.2 Fast Multiplication . 14
2.2.1 Fast Multiplication . 14
2.2.2 Another Fast Fourier Transform . 17
2.2.3 Optimizing Fast Multiplication . 21

2.3 FFT Permutation . 23
2.3.1 Bit-reversal Permutation . 23
2.3.2 FFT on the Reciprocal Polynomials 26

3 Fast Algorithms 31
3.1 Fast Division . 31

3.1.1 Classical Division Algorithm . 31
3.1.2 Newton Inversion . 32
3.1.3 The Middle Product . 35

vi

3.1.4 Optimizing Newton Inversion . 38
3.1.5 Fast Division . 40
3.1.6 Optimizing Fast Division . 43

3.2 Fast Multipoint Evaluation . 44
3.2.1 Classical Evaluation Algorithm . 44
3.2.2 The Product Tree . 45
3.2.3 Dividing Down the Product Tree . 47
3.2.4 Fast Multipoint Evaluation . 50
3.2.5 Optimizing Fast Multipoint Evaluation 51

3.3 Fast Transposed Vandermonde Solver . 56
3.3.1 Zippel’s Transposed Vandermonde Solver 56
3.3.2 Fast Transposed Vandermonde Solver 61

4 Benchmarks 66
4.1 Fast Division . 66
4.2 Fast Multipoint Evaluation . 67
4.3 Fast Transposed Vandermonde Solver . 69

5 Implementation Notes 71
5.1 Polynomial Representation and Underlying Library 71
5.2 Fast Multiplication . 73
5.3 Fast Division . 75
5.4 Fast Multipoint Evaluation . 77
5.5 Fast Transposed Vandermonde Solver . 80

Bibliography 82

Appendix A Code 84

vii

List of Tables

Table 2.1 Timings in ms for the classical multiplication of two polynomials of
degree n and Algorithm 7 Fast multiplication 23

Table 2.2 The bit-reversal permutation of {0,1,. . . ,7} 24
Table 2.3 σ(m+j) and n−σ(m+j) with the bit-reversal permutation σ for n = 16 27

Table 3.1 Timings in ms for classical division and fast division with a dividend
polynomial of degree 2n− 1 and a divisor polynomial of degree n . . 44

Table 3.2 Timings in ms for classical evaluation and fast evaluation with a poly-
nomial of degree n− 1 at n distinct evaluation points 53

Table 3.3 The list of algorithms in Chapter 3 and complexity in the number of
arithmetic operations in F . 65

Table 4.1 CPU timings in ms for polynomial divisions over Zp of degree 2n − 1
divided by n where p = 3 · 230 + 1 . 67

Table 4.2 CPU timings in ms for polynomial multipoint evaluations over Zp of
degree n− 1 at n distinct points where p = 3 · 230 + 1 68

Table 4.3 CPU timings in ms for solving n×n transposed Vandermonde system
over Zp with p = 3 · 230 + 1 . 70

Table 4.4 CPU timings in ms for solving n×n transposed Vandermonde system
over Zp with p = 116 · 255 + 1 . 70

Table 5.1 CPU timings in ms for two million multiplications in Zp on the three
different computers: luke, steph, and maple 72

viii

List of Figures

Figure 1.1 The layout of a product tree . 4

Figure 3.1 The product tree described in Example 3.13 45
Figure 3.2 Dividing down the product tree described in Example 3.16 48

Figure 5.1 Polynomial f(x) = ∑d
i=0 fix

i in C where fi ∈ Zp 71
Figure 5.2 The temporary array T of size 3n used in polFFTmul 75
Figure 5.3 The array T of size 4n used in polNIwithMP 76
Figure 5.4 The temporary array of size max(2d + 4n, 2 deg(f) + 2) used in

polFFTdiv . 77
Figure 5.5 The temporary array C of size n

2 used in BUPT 78
Figure 5.6 The way BUPT stores T6,0 − x64 in the array T when n = 64 78
Figure 5.7 The way BUPT stores Ti,j − x2i in the array T when n > 64 79
Figure 5.8 The array T of the modified product tree returned from BUPT . . . 79
Figure 5.9 The temporary array C of size n

2 + deg(f) + 2 used in DDPT 80
Figure 5.10 The temporary array C of size kn + 2 used in polFASTTVS 81

ix

Chapter 1

Introduction

Let F be a field. Let a ∈ F [x] be a polynomial where a(x) = a0 + a1x + · · ·+ an−1xn−1. For
u1, u2, . . . , un ∈ F , let bi = a(ui) for 1 ≤ i ≤ n. The polynomial interpolation problem is to
find a(x) given (ui,bi) for 1 ≤ i ≤ n. The following linear system of equations can be used
to solve this problem.

b1 = a(u1) = a0 + a1u1 + a2u2
1 + · · ·+ an−1un−1

1

b2 = a(u2) = a0 + a1u2 + a2u2
2 + · · ·+ an−1un−1

2
...

bn = a(un) = a0 + a1un + a2u2
n + · · ·+ an−1un−1

n

We can rewrite this in matrix representation:

1 u1 · · · un−1
1

1 u2 · · · un−1
2

...
...

...
1 un · · · un−1

n

a0

a1
...

an−1

 =

b1

b2
...

bn

 .

V a b

The matrix V is called a Vandermonde matrix and V a = b is called a Vandermonde system
of equations. It is known that det(V) = ∏

1≤i<j≤n(ui − uj). Thus, if u1, u2, . . . , un are
distinct, V a = b has a unique solution.

Suppose we use Gaussian elimination to solve V a = b. In that case, we do O(n3) arith-
metic operations in F and need space for O(n2) elements of F . Alternatively, Lagrange
interpolation or Newton interpolation can be used to solve V a = b. Both methods do
O(n2) arithmetic operations in F and need space for O(n) elements of F . To speed up

1

the evaluation of a(ui), various algorithms, including the fast Fourier transform (FFT), use
geometric point sequences ui = αi−1 for some α ∈ F .

Let ui = αi−1 where αi ̸= αj for all i ̸= j. Then a(ui) = a(αi−1) = bi. It follows that, for
1 ≤ i ≤ n,

bi = a(ui) = a(αi−1) =
n−1∑
j=0

aj(αi−1)j =
n−1∑
j=0

aj(αj)i−1 =
n−1∑
j=0

aj(uj+1)i−1.

That is

b1 = a(u1) = a0 + a1 + a2 + · · ·+ an−1

b2 = a(u2) = a0u1 + a1u2 + a2u3 + · · ·+ an−1un

b3 = a(u3) = a0u2
1 + a1u2

2 + a2u2
3 + · · ·+ an−1u2

n

...

bn = a(un) = a0un−1
1 + a1un−1

2 + a2un−1
3 + · · ·+ an−1un−1

n

We can express this system of linear equations in matrix-vector form:

1 1 1 · · · 1
u1 u2 u3 · · · un

u2
1 u2

2 u2
3 · · · u2

n
...

...
...

...
un−1

1 un−1
2 un−1

3 · · · un−1
n

a0

a1

a2
...

an−1

=

b1

b2

b3
...

bn

U a b

.

The matrix U is called a transposed Vandermonde matrix since U = V ⊤. Also, Ua = b
is called a transposed Vandermonde system of equations. Transposed Vandermonde sys-
tems of equations arise in sparse interpolation algorithms in computer algebra. Ben-Or and
Tiwari’s deterministic sparse interpolation algorithm [1] and Zippel’s probabilistic sparse
interpolation algorithm [15] have to solve transposed Vandermonde systems of equations.
Hu and Monagan’s sparse polynomial greatest common divisor (GCD) algorithm [7] needs
to solve the transposed Vandermonde system of equations as well. The n × n transposed
Vandermonde system is used to interpolate a sparse polynomial with n terms in all three
algorithms.

In this work, we look at how Ben-Or and Tiwari algorithm creates a transposed Vander-
monde system of equations. Let f = ∑t

i=1 aiMi(x1, x2, . . . , xn) ∈ F [x1, x2, . . . , xn] be a
sparse multivariate polynomial where ai ∈ F and Mi(x1, x2, . . . , xn) is a monomial of f for

2

1 ≤ i ≤ t. Given a term bound T ≥ t, Ben-Or and Tiwari algorithm uses the first n primes
2, 3, 5, . . . , pn to compute

bj = f(2j , 3j , 5j , . . . , pj
n) for 0 ≤ j ≤ 2T − 1.

Let mi = Mi(2, 3, 5, . . . , pn). Ben-Or and Tiwari algorithm has two main steps. In the first
step, it determines the mi from the bj . In the second step, it determines the Mi and ai. By
the fundamental theorem of arithmetic, every mi is distinct. If Mi = xd1

1 xd2
2 · · ·xdn

n , then
mi = 2d13d2 · · · pdn

n . We can obtain d1, d2, . . . , dn by dividing mi by 2,3,5, etc.

Example 1.1. Suppose n = 3. If m1 = 60 = 22 · 3 · 5, then M1(x1, x2, x3) = x2
1x2x3.

Once all Mis are found, Ben-Or and Tiwari algorithm solves the t × t transposed Vander-
monde system of equations for the unknown coefficients a1, a2, . . . , at:

1 1 1 · · · 1
m1 m2 m3 · · · mt

m2
1 m2

2 m2
3 · · · m2

t
...

...
...

...
mt−1

1 mt−1
2 mt−1

3 · · · mt−1
t

a1

a2

a3
...

at

=

b0

b1

b2
...

bt−1

.

U a b

Note that if we choose F = Q, the fractions will get large while solving this transposed
Vandermonde system. Instead of using Q, we can work on F = Zp where p > mi < pd

n if it
is known that deg(f) ≤ d. If we choose p > mi, all mi remain distinct in Zp.

In the following, let M(n) be the number of arithmetic operations in F for polynomial
multiplication of two polynomials where the sum of the degrees of these polynomials is
less than 2n. Zippel presented an algorithm which requires O(n2) arithmetic operations in
F and space for O(n) elements of F to solve Ua = b [15]. To improve Zippel’s method,
Kaltofen and Yagati presented an asymptotically fast transposed Vandermonde solver [8].
They managed to reduce the number of arithmetic operations in F to O(M(n) log n). If
we use the fast Fourier transform (FFT) algorithm, M(n) ∈ O(n log n). Thus, we get an
O(n log2 n) solver.

Kaltofen and Yagati’s algorithm needs to evaluate two polynomials of degree n − 1 at
n points u1, u2, . . . , un. Horner’s method takes O(n2) arithmetic operations in F with n

distinct evaluation points to evaluate a polynomial of degree n − 1. To make polynomial
multipoint evaluation more efficient, Borodin and Munro developed a divide-and-conquer
algorithm that constructs a product tree [2]. In Figure 1.1, we present the layout of a product
tree.

3

∏n
i=1(x − ui)

Tk,0∏n
2
i=1(x − ui)

Tk−1,0
...

(x − u1)(x − u2)
T1,0

x − u1

T0,0

x − u2

T0,1

...

(x − u3)(x − u4)
T1,1

x − u3

T0,2

x − u4

T0,3

∏n
i= n

2 +1(x − ui)

T1,1
...

(x−un−3)(x−un−2)
T1, n

2 −2

x− un−3

T0,n−4

x− un−2

T0,n−3

...

(x − un−1)(x − un)
T1, n

2 −1

x− un−1

T0,n−2

x − un

T0,n−1

. . .

. . .

Figure 1.1: The layout of a product tree

The leaves of the product tree are the linear polynomials x− u1, x− u2, . . . , x− un. This
product tree consists of the product of x − uis as described in Figure 1.1 where uis are
evaluation points. Using this product tree, their algorithm takes O(M(n) log n) arithmetic
operations in F to compute a(ui) for 1 ≤ i ≤ n. Also, the product tree needs space for
O(n log n) elements of F . In this thesis, we study, design and implement the fast transposed
Vandermonde solver based on Kaltofen and Yagati’s idea.

We first review the FFT algorithm, fast polynomial multiplication, and the permutation
related to the FFT. Based on the FFT, we study three fast algorithms and present our
optimized versions of them: fast polynomial division, fast polynomial multipoint evaluation,
and the fast transposed Vandermonde solver. We have implemented the FFT and the three
fast algorithms in C for F = Zp with a prime p < 263. To show how well the algorithms
perform, we time these fast algorithms and compare their time with the classical O(n2)
algorithms.

In Chapter 2, we discuss the discrete Fourier transform (DFT), the FFT algorithm in-
troduced by Cooley and Tuckey [3], and the inverse fast Fourier transform(inverse FFT)
algorithm. Using the FFT and the inverse FFT, polynomial multiplication can be done in
O(n log n) arithmetic operations in F where the sum of the degrees of two polynomials is
less than 2n. We can reduce the number of data moves by cancelling out the permutation
from the FFT based on Law and Monagan’s observation [9]. Also, we implement this fast
multiplication in C and present an optimized version of fast polynomial multiplication. Ad-
ditionally, the FFT permutes the elements in a way called the bit-reversal permutation. We
present our own O(n) algorithm for the bit-reversal permutation and an O(n) algorithm for
computing the DFT of the reciprocal polynomial f (rec)(x) given the DFT of f(x).

4

In Chapter 3, we discuss classical polynomial division first. Using a Newton iteration, we can
compute the inverse of the divisor as a power series. Then, using the reciprocal polynomial,
we construct the fast polynomial division [14], which does at most 5M(n)+O(n) arithmetic
operations in F . To speed up division, we have implemented the so-called "middle product"
algorithm of Hanrot, Quercia, and Zimmerman [6]. This algorithm reduces the cost of fast
division from at most 5M(n) + O(n) to at most 4M(n) + O(n) arithmetic operations in F .
We further reduce this to 11

3 M(n) + O(n). Then we optimize fast division by implementing
these algorithms in C.

Next, we discuss the product tree and dividing down the product tree for fast polyno-
mial multipoint evaluation [2]. Fast multipoint evaluation does 25

6 M(n) log2 n + O(n log n)
arithmetic operations in F . We have optimized a C implementation. Lastly, we study Zip-
pel’s transposed Vandermonde solver and Kaltofen and Yagati’s transposed Vanderemonde
solver. After reviewing these methods, we present our optimized C implementation, which
performs 53

6 M(n) log2 n + O(n log n) arithmetic operations in F .

Chapter 4 presents the execution time for our optimized fast division, fast evaluation, and
fast transposed Vandermonde solver. We compare our timings with the timings of the clas-
sical algorithms. Our optimized fast transposed Vandermonde solver beats Zippel’s O(n2)
algorithm for n ≥ 128, which is a good result.

In Chapter 5, we describe the polynomial representation in C and the underlying C library
we use for the fast algorithms. Additionally, we discuss how we allocate memory to create a
temporary array for each fast algorithm. Particularly, we optimize the structure of the prod-
uct tree for fast multipoint evaluation due to the cutoff. To speed up our implementation,
we have designed most of our algorithms so that they do not allocate memory. Instead, they
run in the space of the input arrays, an output array, and a constant number of working
arrays, where the size of the working arrays is linear in the size of the input arrays. This is
important for recursive algorithms, which, otherwise, could spend a lot of time allocating
and freeing many small arrays.

In this thesis, we have discovered the following which we believe to be original.

• The DFT of the reciprocal polynomial Fω(f (rec)) can be obtained from the DFT of the
original polynomial Fω(f) without the FFT algorithms. Lemma 2.26 and Algorithm 10
give more details.

• We create the modified structure of the product tree for fast multipoint evaluation.
Algorithm 21, Algorithm 22, and Algorithm 23 show more details.

5

Chapter 2

Tools

2.1 Fast Fourier Transform Algorithm

We start by recalling the details of the fast Fourier transform (FFT) algorithm and fast
multiplication from [14]. Then we review Law and Monagan’s fast multiplication [9] and
implement our optimized fast multiplication algorithm in C. Moreover, we discuss the bit-
reversal permutation in FFT and our algorithm for computing the discrete Fourier transform
(DFT) of the reciprocal polynomial from the DFT of the original polynomial using linear
work.

2.1.1 Fast Fourier Transform

Let F be a field. We need the definition of a primitive n-th root of unity in F . We set F to
be finite fields of integers modulo p where p is a prime for examples and implementations.

Definition 2.1 (primitive n-th root of unity). An element ω ∈ F is a primitive n-th root
of unity if ωn = 1 and ωi ̸= 1 for all 1 ≤ i < n.

Example 2.2. Let F = Z17. A primitive 4-th root of unity in Z17 is 13 because 134

mod 17 = 1, but 131 mod 17 = 13, 132 mod 17 = 16, and 133 mod 17 = 4.

With this definition, we can define the discrete Fourier transform.

Definition 2.3 (discrete Fourier transform). Suppose a(x) = a0 + a1x + · · ·+ an−1xn−1 ∈
F [x] is of degree less than n. Let ω be a primitive n-th root of unity in F . Also, let a =
[a0, a1, . . . , an−1] ∈ F n. Then the linear map Fω : F n −→ F n which evaluates f at n powers
of ω

Fω(a) = [a(ωi) : 0 ≤ i ≤ n− 1]

is called the discrete Fourier transform (DFT).

6

Horner’s evaluation method is one way to compute the Fω(a). Horner’s method does n− 1
multiplications and n−1 additions to compute a(ωi) for each i. Since there are n evaluation
points, this method does O(n2) arithmetic operations in F . However, with the fast Fourier
transform (FFT) algorithm, Fω(a) can be computed in O(n log n) arithmetic operations
in F .

In 1965, Cooley and Tuckey introduced the FFT algorithm to compute the discrete Fourier
transform using a divide-and-conquer approach [3]. Before discussing the FFT algorithm,
we list some properties of ω, a primitive n-th root of unity in F .

Lemma 2.4. With even n, let ω be a primitive n-th root of unity in F . Then

(i) ω
n
2 = −1

(ii) ωj+ n
2 = −ωj

(iii) ω2 is a primitive n
2 -th root of unity in F

(iv) 1 + ω + ω2 + · · ·+ ωn−1 = 0 and

(v) ω−1 = ωn−1 and ω−1 is a primitive n-th root of unity.

(vi) ωk is a primitive n-th root of unity if and only if gcd(k, n) = 1.

Proof. (i) Since ωn = 1 and n is even, we have

ωn = ω
n
2 · ω

n
2 = 1.

Then
(ω

n
2)2 − 1 = (ω

n
2 − 1)(ω

n
2 + 1) = 0.

This implies that ω
n
2 = ±1. However, ω

n
2 ̸= 1 by Definition 2.1. Thus, ω

n
2 = −1.

(ii) By (i), we have ω
n
2 = −1. Immediately it follows that

ωj+ n
2 = ω

n
2 · ωj = (−1) · ωj = −ωj .

(iii) Let u = ω2. We know that ωi ̸= 1 for 0 < i < n. Then

uj = (ω2)j ̸= 1, 0 < j <
n

2 .

Also, u
n
2 = (ω2) n

2 = ωn = 1. Therefore ω2 is a primitive n
2 -th root of unity.

7

(iv) From (ii), ωj+ n
2 = −ωj . Then we have

1 + ω + ω2 + · · ·+ ωn−1 = (1 + ω + · · ·+ ω
n
2 −1) + (ω

n
2 + ω

n
2 +1 + · · ·+ ωn−1)

=
n
2 −1∑
i=0

ωi +
n
2 −1∑
i=0

ωi+ n
2

=
n
2 −1∑
i=0

ωi +
n
2 −1∑
i=0
−ωi by (i)

= 0.

(v) Since ωn = 1 by Definition 2.1, we have

ωn = ω(n−1)+1 = ωn−1 · ω = 1 =⇒ ω−1 = ωn−1.

Next, towards a contradiction, we assume that ω−1 is not a primitive n-th root of
unity. It follows that some m satisfying (ω−1)m = 1 exists where 1 ≤ m ≤ n−1. Then

ωn · (ω−1)m = 1 · 1 = 1.

This implies that ωn−m = 1. However, this contradicts that ωi ̸= 1 for 1 ≤ i ≤ n− 1.
Hence, ω−1 is a primitive n-th root of unity.

(vi) (⇒) Assume gcd(k, n) ̸= 1. Let gcd(k, n) = g. It follows that k = qk · g and n = qn · g
where gcd(qk, qn) = 1. This implies that

(ωk)qn = ωk·qn = ω(qk·g)·qn = ωqk·n = (ωn)qk = 1.

Since qn < n, ωk is not a primitive n-th root of unity.

(⇐) Suppose (ωk)i = 1 for some 1 ≤ i ≤ n − 1. Then ωk·i = 1, which implies that
n|k · i for 1 ≤ i ≤ n− 1. Thus, gcd(n, k) ̸= 1.

Now, we develop the FFT algorithm. This version of the FFT algorithm is called the
decimation-in-time algorithm [12]. Suppose a(x) = a0 + a1x + · · · + an−1xn−1 ∈ F [x] is
a polynomial of degree n− 1 where n is even. Then we can rewrite a(x) as

a(x) = (a0 + a2x2 + a4x4 + · · ·+ an−2xn−2) + x(a1 + a3x2 + a5x4 + · · ·+ an−1xn−2). (2.1)

8

We define b(x) = a0+a2x+a4x2+· · ·+an−2x
n
2 −1 and c(x) = a1+a3x+a5x2+· · ·+an−1x

n
2 −1.

Then (2.1) can be expressed as

a(x) = b(x2) + x · c(x2).

Then, for 0 ≤ i ≤ n
2 − 1, we have

a(ωi) = b((ω2)i) + ωi · c((ω2)i).

According to Lemma 2.4 (ii), ωi+ n
2 = −wi. It follows that for n

2 ≤ i ≤ n− 1,

a(ωi) = a(ωj+ n
2) = b((ωj+ n

2)2) + ωj+ n
2 · c((ωj+ n

2)2)

= b((−ωj)2) + (−ωj) · c((−ωj)2)

= b((−ω2)j)− ωj · c((−ω2)j).

where j = i− n
2 . Thus, for 0 ≤ i ≤ n

2 − 1, we have

a(ωi) = b((ω2)i) + ωi · c((ω2)i)

a(ωi+ n
2) = b((ω2)i)− ωi · c((ω2)i)

(2.2)

which differ by a sign. Now suppose n = 2k for some k > 1. Both b(x) and c(x) are
polynomials of degree less than n

2 . Also, by Lemma 2.4 (iii), ω2 is a primitive n
2 -th root of

unity in F . We can evaluate b(x) and c(x) at the powers of ω2 by two recursive calls. After
evaluation, we can combine the results using (2.2) to obtain a(ωi) for 0 ≤ i ≤ n − 1. The
FFT in Algorithm 1 combines these ideas.

Theorem 2.5. Algorithm 1 does 2n log2 n + n− 1 arithmetic operations in F .

Proof. Let T (n) be the number of arithmetic operations in F for Algorithm 1 with a polyno-
mial of degree less than n. Assume n = 2k for some k ∈ N. When n = 1, no multiplication
is performed. Thus, T (1) = 0. When n ≥ 2, Algorithm 1 needs to compute ω2 first by
doing one multiplication. Then Algorithm 1 makes two recursive calls to compute b((ω2)i)
and c((ω2)i) for 0 ≤ i ≤ n

2 − 1. In the for loop, one addition, one subtraction, and two
multiplications occur at each iteration. This for loop iterates n

2 times. Thus, we have

T (1) = 0

T (n) = 2T
(

n
2
)

+ 2n + 1 for n ≥ 2.

9

Algorithm 1 FFT(Fast Fourier Transform)
Input: n = 2k for some k ∈ N, a = [a0, a1, . . . , an−1] ∈ F n, and ω ∈ F is a primitive n-th

root of unity
Output: [a(1), a(ω), . . . , a(ωn−1)] ∈ F n where a = ∑n−1

i=0 aix
i,

1: if n = 1 then return a end if
2: m← n

2
3: b← [a0, a2, . . . , an−2]
4: c← [a1, a3, . . . , an−1]
5: B ← FFT(m, b, ω2) // B = [B0, B1, . . . , Bm−1] where Bi = a(ω2i)
6: C ← FFT(m, c, ω2) // C = [C0, C1, . . . , Cm−1] where Ci = a(ω2i+1)
7: y ← 1
8: for i from 0 to m− 1 do
9: t← y · Ci // t = ωi · Ci

10: Ai ← Bi + t // Ai = a(ωi)
11: Ai+m ← Bi − t // Ai+m = a(ωi+ n

2)
12: y ← y · ω // y = ωi+1

13: end for
14: return [A0, A1, . . . , An−1]

It follows that

T (n) = 2T (n
2) + 2n + 1

= 2(2T (n
4) + n + 1) + 2n + 1 = 4T (n

4) + 2n + 2 + 2n + 1

= 4(2T (n
8) + n

2 + 1) + 2n + 2 + 2n + 1

= 8T (n
8) + 2n + 4 + 2n + 2 + 2n + 1

...

= 2n + 2k−1 + 2n + 2k−2 + · · ·+ 2n + 2 + 2n + 1.

This expression simplifies:

T (n) = 2n + 2n + · · ·+ 2n + 2k−1 + 2k−2 + · · ·+ 1

= 2n + 2n + · · ·+ 2n + 2k − 1

= k(2n) + n− 1

= 2n log2 n + n− 1 ∈ O(n log n).

Thus, Algorithm 1 does O(n log n) arithmetic operations in F .

10

2.1.2 Inverse Fast Fourier Transform

Let a ∈ F n be a vector containing the coefficients of the polynomial a = a0 + a1x +
· · · + an−1xn−1 ∈ F [x] and ω ∈ F be a primitive n-th root of unity. Since Fω is a linear
transformation, we can express Fω(a) as a matrix-vector multiplication. Suppose n = 2k for
some k ∈ N. The following Vandermonde linear system of equations shows Fω(a).

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

a0

a1

a2
...

an−1

=

a(1)
a(ω)
a(ω2)

...
a(ωn−1)

Vω a b

(2.3)

Given Fω(a), we can find the coefficients of a(x) by interpolating a(ωi) for 0 ≤ i ≤
n − 1. This interpolation is called the inverse discrete Fourier transform (IDFT). With
b = [a(1), a(ω), . . . , a(ωn−1)] ∈ F n, we can solve Vωa = b for a. Also, we can obtain a by
computing V −1

ω and multiplying V −1
ω by b. Both methods require O(n3) arithmetic oper-

ations in F to recover a with Gaussian elimination. To improve the cost of computing the
IDFT, we use the following lemma.

Lemma 2.6 (Theorem 30.7 in [4]). Let Vω be a matrix of size n× n such that

Vω =

1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) · · · ω(n−1)2

Then VωVω−1 = nI, which further implies that (Vω)−1 = 1

nVω−1, where I is the n×n identity
matrix.

Proof. Let N be the matrix computed by VωVω−1 . Then each entry Ni,j is the dot product
of the i-th row of Vω and the j-th column of Vω−1 , so

Ni,j = 1 · 1 + ωi · ω−j + · · ·+ ωi(n−1) · ω−j(n−1).

When i ̸= j, we have
Ni,j = 1 + ωi−j + · · ·+ ω(i−j)(n−1).

11

For 1 ≤ k ≤ n− 1, we know that 1− ωkn = 0. It follows that

0 = 1− ωkn = (1− ωk)(1 + ωk + ω2k + · · ·+ ω(n−1)k).

Since 1− ωk ̸= 0 for 1 ≤ k ≤ n− 1,

1 + ωk + ω2k + · · ·+ ω(n−1)k = 0.

Also, 1− ω−kn = 0. It follows that

0 = 1− ω−kn = (1− ω−k)(1 + ω−k + ω−2k + · · ·+ ω−(n−1)k).

Likewise, 1− ω−k = 1− (ω−1)k ̸= 0 for 1 ≤ k ≤ n− 1 by Lemma 2.4 (v). As a result,

1 + ω−k + ω−2k + · · ·+ ω−(n−1)k = 0.

Therefore, for i ̸= j,
Ni,j = 1 + ωi−j + · · ·+ ω(i−j)(n−1) = 0.

On the other hand, when i = j,

Ni,j = 1 + ωi−j + · · ·+ ω(i−j)(n−1) = 1 + 1 + · · ·+ 1 = n.

It follows that

N = VωVω−1 =

n 0 0 · · · 0
0 n 0 · · · 0
0 0 n · · · 0
...

...
...

...
0 0 0 · · · n

= n

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

= nI.

Immediately, we have

(Vω)−1VωVω−1 = (Vω)−1(nI) =⇒ Vω−1 = n(Vω)−1 =⇒ (Vω)−1 = 1
n

Vω−1 .

Consequently, we can interpolate a = [a0, a1, . . . , an−1] from b = [a(1), a(ω), . . . , a(ωn−1)]
using Fω−1(b). That is,

a = (Vω)−1b = 1
n

Vω−1b = 1
n

Fω−1(b).

12

Lemma 2.4 (v) states that ω−1 is a primitive n-th root of unity. This implies that we are
able to compute Fω−1(b) using Algorithm 1 with inputs n, b, and ω−1. Therefore, the IDFT
can be computed using.

a = 1
n

FFT (n, b, ω−1) (2.4)

To compute (2.4), we call Algorithm 1 with inputs n, b, and ω−1 and multiply the output
by 1

n to obtain a. We call this the inverse fast Fourier transform (inverse FFT) algorithm.

2.1.3 Optimizing the Fast Fourier Transform

Law and Monagan presented an optimized version of Algorithm 1 that precomputes the
powers of ω [9]. They created an array W such that

W = [1, ω, ω2, . . . , ω
n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0] ∈ F n.

It costs n
2 − 1 multiplications to build the array W .

Moreover, the output of the FFT can be returned in the input array a, containing the
coefficients of a(x). For this in-place routine, they took a temporary array T of size n as
input and removed the arrays b and c in Algorithm 1. They also used T for the two recursive
calls to avoid allocating other memory space. This optimization is shown in Algorithm 2.

Algorithm 2 FFT1(Fast Fourier Transform 1)
Input: n = 2k for some k ∈ N, a = [a0, a1, . . . , an−1] ∈ F n, W =

[1, ω, ω2, . . . , ω
n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0] where ω ∈ F is a

primitive n-th root of unity, and a temporary array T of length n
Output: [a(1), a(ω), . . . , a(ωn−1)] ∈ F n where a = ∑n−1

i=0 aix
i

1: if n = 1 then return a end if
2: m← n

2
3: for i from 0 to m− 1 do
4: Ti ← a2i

5: Tm+i ← a2i+1
6: end for
7: FFT1(m, T , W + m, a) // [T0, T1, . . . , Tm−1] where Ti = a(ω2i)
8: FFT1(m, T + m, W + m, a + m) // [Tm, Tm+1, . . . , Tn−1] where Tm+i = a(ω2i+1)
9: for i from 0 to m− 1 do

10: s←Wi · Tm+i // s = ωi · a(ω2i+1)
11: ai ← Ti + s
12: ai+m ← Ti − s
13: end for
14: return

In Algorithm 2, the first recursive call takes an input W + m. The notation W + m indi-
cates that the array starts from the m-th element of W . This notation is based on pointer

13

arithmetic in C. Likewise, T + m means the array that starts from the m-th element of T ,
and a + m implies the array starts from the m-th element of a in the second recursive call.

Theorem 2.7. Algorithm 2 does 3
2n log2 n arithmetic operations in F .

Proof. Let T (n) be the number of arithmetic operations in F for Algorithm 2 with a poly-
nomial of degree less than n. When n = 1, no arithmetic operation is performed. For n ≥ 2,
each iteration does three arithmetic operations in the loop, which iterates n

2 times. Then
we have T (1) = 0

T (n) = 2T
(

n
2
)

+ 3n
2 for n ≥ 2.

Thus, T (n) = k(3n
2) = 3

2n log2 n by the same type of computation as above.

Remark 2.8. There is one multiplication out of three arithmetic operations in the second
for loop. We can refine the proof to show that Algorithm 2 does 1

2n log2 n multiplications in
F .

Remark 2.9. Algorithm 2 is easily parallelized for large n by executing lines 7 and 8 in
parallel for sufficiently large n ≥ 1024 [9].

2.2 Fast Multiplication

2.2.1 Fast Multiplication

Now, we look into how to use the FFT and inverse FFT algorithms to multiply two poly-
nomials in O(n log n) arithmetic operations in F . Let f, g ∈ F [x] be polynomials such that
f(x) = f0 + f1x + · · · + fd1xd1 and g(x) = g0 + g1x + · · · + gd2xd2 . Let h ∈ F [x] be the
product of f and g. The classical multiplication algorithm does at most (d1 + 1)(d2 + 1)
multiplications and d1 · d2 additions in F . Thus, if d = d1 = d2, it costs at most (d + 1)2

multiplications and d2 additions in F to obtain h.

We choose n to be the smallest power of 2, satisfying n > d1 +d2. Suppose we can compute a
primitive n-th root of unity ω ∈ F . After computing ω, we create an array of W containing
ωi for 0 ≤ i ≤ n/2 − 1 as described in Algorithm 2. To use the FFT, we define A =
[f0, f1, . . . , fd1 , 0, . . . , 0] ∈ F n by padding with zeros to length n. Similarly, we define B =
[g0, g1, . . . , gd2 , 0, . . . , 0] ∈ F n. Fω is a ring homomorphism. (See [14] Lemma 8.11.) It follows
that, for 0 ≤ i ≤ n− 1,

(f · g)(ωi) = f(ωi) · g(ωi).

Thus, point-wise multiplication of Fω(A) and Fω(B) gives Fω(C) where C ∈ F n contains
the coefficients of h = f · g. Lastly, we use the inverse FFT to recover the polynomial h.

14

Algorithm 3 shows the fast multiplication algorithm with FFT1.

Algorithm 3 Fast multiplication
Input: Two polynomials f, g ∈ F [x] such that f(x) = ∑d1

i=0 fix
i and g(x) = ∑d2

i=0 gix
i

Output: h(x) = f(x) · g(x)
1: n← The smallest power of 2 greater than deg(f) + deg(g)
2: Compute a primitive n-th root of unity ω in F
3: if ω does not exist then return FAIL end if
4: W ← [1, ω, ω2, . . . , ω

n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0]

5: T ← An array of length n
6: A← [f0, f1, . . . , fd1 , 0, . . . , 0] ∈ F n

7: B ← [g0, g1, . . . , gd2 , 0, . . . , 0] ∈ F n

8: FFT1(n, A, W, T) //A = [A0, A1, . . . , An−1] = [f(1), f(ω), . . . , f(ωn−1)]
9: FFT1(n, B, W, T) //B = [B0, B1, . . . , Bn−1] = [g(1), g(ω), . . . , g(ωn−1)]

10: C ← An array of length n
11: for i from 0 to n− 1 do Ci ← Ai ·Bi end for // Ci = f(ωi) · g(ωi)
12: V ← [1, ω−1, ω−2, . . . , ω− n

2 +1, 1, ω−2, ω−4, . . . , ω− n
2 +2, 1, ω−4, ω−8, . . . , ω− n

2 +4, . . . , 1, 0]
13: FFT1(n, C, V, T)
14: Compute n−1 once
15: for i from 0 to n− 1 do Ci ← n−1 · Ci end for
16: return

∑d1+d2
i=0 Cix

i

Example 2.10. Assume F = Z17. Let f, g ∈ Z17[x] be polynomials such that

f(x) = 1 + x + x2

g(x) = 1 + 2x.

We want to compute h(x) = f(x) · g(x). Since deg(f) = 2 and deg(g) = 1, the smallest
power of 2 greater than deg(f) + deg(g) is 4, and then we set n = 4. We can obtain 13 as a
primitive 4-th root of unity in Z17. We have the array W containing the powers of 13

W = [1, 13, 1, 0].

Next, we can define

A = [1, 1, 1, 0]

B = [1, 2, 0, 0]

By calling the FFT on A and B with an array T of length 4, we have

FFT1(4, A, W, T)→ A = [3, 13, 1, 4] = [f(1), f(ω), f(ω2), f(ω3)]

FFT1(4, B, W, T)→ B = [3, 10, 16, 9] = [g(1), g(ω), g(ω2), g(ω3)].

15

We compute point-wise multiplications of A and B. It follows that

C = [Ai ·Bi : for i = 0, 1, 2, 3] = [9, 11, 16, 2].

Now, 13−1 mod 17 = 4, which is also a primitive 4-th root of unity in Z17 according to
Lemma 2.4 (v). It follows that the array V is

V = [1, 4, 1, 0].

We can compute the inverse FFT on C with 4. With an array T of length 4, we have

FFT1(4, C, V, T)→ C = [4, 12, 12, 8].

By multiplying C by 4−1 mod 17 = 13, we have

C = [1, 3, 3, 2].

Thus, h(x) = 1 + 3x + 3x2 + 2x3.

Theorem 2.11. Let T (n) be the number of arithmetic operations in F that the FFT of size
n. Then Algorithm 3 does 3T (2n) + O(n) arithmetic operations in F when the sum of the
degrees of two polynomials is at most 2n− 1.

Proof. Let M(n) be the number of arithmetic operations in F that Algorithm 3 does with
two polynomials where the sum of the degrees of these polynomials is less than 2n. Algo-
rithm 3 calls three FFT1 of size 2n, so it performs 3T (2n) arithmetic operations in F . It
takes 2(n − 1) multiplications to create arrays W and V . Also, it does 2n multiplications
to compute the point-wise product of A and B. Moreover, Algorithm 3 does one inverse for
n−1 and 2n multiplications to compute the product of Ci and n−1 for all i. Thus,

M(n) = 3T (2n) + 2(n− 1) + 2n + 1 + 2n

= 3T (2n) + 6n− 1

= 3T (2n) + O(n).

We know that Algorithm 2 FFT1 does T (n) = 3
2n log2 n arithmetic operations in F . Thus,

M(n) = 3T (2n) + O(n) = 3(3
2(2n) log2(2n)) + O(n) = 9n log2 n + O(n).

16

2.2.2 Another Fast Fourier Transform

In Algorithm 3, we allocate at least space for 6n elements of F in memory to store arrays
A, B, W , V , T , and C. To reduce space, Law and Monagan used the other version of the
FFT algorithm which is called a decimation-in-frequency algorithm [14], [12]. Let a ∈ F [x]
be a polynomial such that

a(x) = (a0 + a1x + · · ·+ a n
2 −1x

n
2 −1) + (a n

2
x

n
2 + a n

2 +1x
n
2 +1 + · · ·+ an−1xn−1).

First, we divide a(x) by (x n
2 − 1). Then we have

a(x) = q1(x) · (x
n
2 − 1) + r1(x) (2.5)

where r1(x) = (a0 + a n
2
) + (a1 + a n

2 +1)x + · · ·+ (a n
2 −1 + an−1)x n

2 −1. Additionally, when we
divide a(x) by (x n

2 + 1), we have

a(x) = q2(x) · (x
n
2 + 1) + r2(x) (2.6)

where r2(x) = (a0−a n
2
) + (a1−a n

2 +1)x + · · ·+ (a n
2 −1−an−1)x n

2 −1. We are able to compute
r1 in n

2 additions and r2 in n
2 subtractions. Now, consider a evaluated at x = ω2i where

ω ∈ F is a primitive n-th root of unity. For 0 ≤ i ≤ n
2 − 1, (2.5) gives

a(ω2i) = q1(ω2i) · ((ω2i)
n
2 − 1) + r1(ω2i) = r1(ω2i).

Likewise, consider a(x) evaluated at x = ω2i+1, for 0 ≤ i ≤ n
2 − 1. From (2.6), we have

a(ω2i+1) = q2(ω2i+1) · ((ω2i+1)
n
2 + 1) + r2(ω2i+1)

= q2(ω2i+1) · (ω
2in

2 + n
2 + 1) + r2(ω2i+1)

= r2(ω2i+1).

If we define r∗
2(x) = r2(ω · x) = ∑n

2 −1
i=0 (ai − a n

2 +i)(ω · x)i = ∑n
2 −1
i=0 ((ai − a n

2 +i) · ωi)xi, it
follows that

r∗
2(ω2i) = r2(ω2i+1).

This decimation-in-frequency algorithm is given in Algorithm 4.

Theorem 2.12. Algorithm 4 does 3
2n log2 n arithmetic operations in F .

Proof. Let T (n) be the number of arithmetic operations in F that Algorithm 4 performs
with a polynomial of degree less than n. For n = 1, no arithmetic operation is performed.

17

Algorithm 4 FFT2(Fast Fourier Transform 2)
Input: n = 2k for some k ∈ N, a = [a0, a1, . . . , an−1] ∈ F n , W =

[1, ω, ω2, . . . , ω
n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0] where ω ∈ F is a

primitive n-th root of unity, and a temporary array, T , of length n
Output: [a(1), a(ω), . . . , a(ωn−1)] ∈ F n where a = ∑n−1

i=0 aix
i

1: if n = 1 then return a end if
2: m← n

2
3: for i from 0 to m− 1 do
4: Ti ← ai + am+i

5: s← ai − am+i

6: Tm+i ← s ·Wi

7: end for
8: FFT2(m, T , W + m, a) // [T0, T1, . . . , Tm−1] where Ti = a(ω2i)
9: FFT2(m, T + m, W + m, a + m) // [Tm, Tm+1, . . . , Tn−1] where Tm+i = a(ω2i+1)

10: for i from 0 to m− 1 do
11: a2i ← Ti

12: a2i+1 ← Tm+i

13: end for
14: return

Otherwise, each iteration in the first loop does three arithmetic operations, and this loop
iterates n

2 times. After the first loop, Algorithm 4 makes two recursive calls. Thus, we have

T (1) = 0

T (n) = 2T
(

n
2
)

+ 3n
2 for n ≥ 2

This recurrence relation is the same as Theorem 2.7, hence, T (n) = 3
2n log2 n.

In [9], Law and Monagan presented an algorithm that computes A = Fω(f) and B = Fω(g)
with FFT2 and Fω−1(A× B) with FFT1, where × is a point-wise multiplication. We note
that both Algorithm 2 and Algorithm 4 permute the order of elements in the input array
a. In Algorithm 4, the permutation is performed at the end of the algorithm. On the
other hand, Algorithm 2 permutes the elements of the input array in the beginning. The
permutation related to FFT1 and FFT2 is known as the bit-reversal permutation. The
bit-reversal permutation is an involution, that is, the bit-reversal permutation is its own
functional inverse.

Example 2.13. Let σ be the bit-reversal permutation. Using Algorithm 2, we can observe
the bit-reversal permutation with eight elements. Let a ∈ F 8 be

a = [a0, a1, a2, a3, a4, a5, a6, a7].

18

which is one of the inputs for Algorithm 2. After the first for loop, we have

T = [a0, a2, a4, a6, a1, a3, a5, a7].

Then there are two recursive calls. In FFT1(4, T , W + 4, a), the first for loop permutes the
elements in T . Then we have

a = [a0, a4, a2, a6]

Likewise, FFT1(4, T + 4, W + 4, a + 4) permutes the elements of T + 4 = [a1, a3, a5, a7].
After permuting elements,

a + 4 = [a1, a5, a3, a7]

Hence,
a = [a0, a4, a2, a6, a1, a5, a3, a7]

After the for loop in FFT1(4, T , W + 4, a), two recursive calls with two elements result in

T = [a0, a4] and T + 2 = [a2, a6]

Similarly, two recursive calls with two elements after the for loop in FFT1(4, T , W + 4, a)
yields

T + 4 = [a1, a5] and T + 6 = [a3, a7]

Thus
T = [a0, a4, a2, a6, a1, a5, a3, a7]

Since FFT1 with one element does not perform the permutation, we end up with

a = [a0, a4, a2, a6, a1, a5, a3, a7]

Hence, with eight elements, the bit-reversal permutation σ is

σ =
(

0 1 2 3 4 5 6 7
0 4 2 6 1 5 3 7

)
.

In binary,

σ =
(

000(2) 001(2) 010(2) 011(2) 100(2) 101(2) 110(2) 111(2)

000(2) 100(2) 010(2) 110(2) 001(2) 101(2) 011(2) 111(2)

)
.

Hence, σ−1 = σ.

Law and Michael observed that the bit-reversal permutation is cancelled out by applying
FFT2 to compute Fω of two polynomials first and FFT1 to compute Fω−1 on the point-

19

Algorithm 5 FFT1(Fast Fourier Transform 1 with no permutation)
Input: n = 2k for some k ∈ N, a = [a0, a1, . . . , an−1] ∈ F n, and W =

[1, ω, ω2, . . . , ω
n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0] where ω ∈ F is a

primitive n-th root of unity
Output: [a(1), a(ω), . . . , a(ωn−1)] ∈ F n where a = ∑n−1

i=0 aix
i

1: if n = 1 then return a end if
2: m← n

2
3: FFT1(m, a, W + m) // a = [a1, a2, . . . , am−1]
4: FFT1(m, a + m, W + m) // a + m = [am, am+1, . . . , an−1]
5: for i from 0 to m− 1 do
6: s← ai

7: t←Wi · am+i // Wi = ωi for 0 ≤ i ≤ n− 1
8: ai ← s + t
9: am+i ← s− t

10: end for
11: return

wise product [9]. Thus, we do not have to permute the elements. Since data movement is
expensive on a modern computer, Law and Monagan suggested removing the permutation
steps from both Algorithm 2 and Algorithm 4 [9]. By doing so, we also do not have to allocate
a temporary array T since no space is required to store the permutation. Permutation-
eliminated FFT1 and FFT2 are presented as Algorithm 5 and Algorithm 6. The number
of arithmetic operations in F for both algorithms is the same as for the previous versions
with the permutation.

Algorithm 6 FFT2(Fast Fourier Transform 2 with no permutation)
Input: n = 2k for some k ∈ N, a = [a0, a1, . . . , an−1] ∈ F n, and W =

[1, ω, ω2, . . . , ω
n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0] where ω ∈ F is a

primitive n-th root of unity
Output: [a(1), a(ω), . . . , a(ωn−1)] ∈ F n where a = ∑n−1

i=0 aix
i,

1: if n = 1 then return a end if
2: m← n

2
3: for i from 0 to m− 1 do // ai = fi for 0 ≤ i ≤ n− 1
4: s← ai + am+i

5: t← ai − am+i

6: ai ← s
7: am+i ← t ·Wi // Wi = ωi for 0 ≤ i ≤ n− 1
8: end for
9: FFT2(m, a, W + m)

10: FFT2(m, a + m, W + m)
11: return

20

2.2.3 Optimizing Fast Multiplication

In Algorithm 3, the arrays W and V are created independently. However, we can create the
array V containing powers of ω−1 by permuting the elements of W . According to Lemma 2.4
(ii), ω

n
2 −i = ω−i for 1 ≤ i ≤ n

2 − 1. When we compute W , the first n
2 elements are

W = [1, ω, ω2, . . . , ω
n
2 −1, . . .].

Since the first n
2 elements of V are

V = [1, ω−1, ω−2, . . . , ω−(n
2 −1), . . .] = [1, ω

n
2 −1, ω

n
2 −2, . . . , ω, . . .],

we can obtain V by setting Vi = W n
2 −i for 1 ≤ i ≤ n

2 − 1. Then we construct the remaining
part of V from the first n

2 elements in V .

We also consider the boundary case. Let f, g ∈ F [x] be polynomials such that f = f0 +
f1x+ · · ·+fd1xd1 and g = g0 +g1x+ · · ·+gd2xd2 . Assume deg(f)+deg(g) = d1 +d2 = n = 2k

for some k ∈ N. That is, the degree of f ·g is n. To compute this product, with Algorithm 3,
we need to use the FFT of size 2n. In Chapter 3, we will encounter this type of polynomial
multiplication when constructing a product tree.

To reduce the size of the FFT to n, we compute

f · g = f · (g − gd2xd2) + f · gd2xd2 .

Since f is of degree d1 and g − gd2xd2 is of degree d2 − 1, d1 + (d2 − 1) = n− 1 < n. Thus
f · (g− gd2xd2) can be done with the FFT of size n. After this multiplication, it takes d1 + 1
multiplications to compute f · gd2xd2 , and we add this result to f · (g− gd2xd2), which does
at most d1 additions. We present Algorithm 7 based on these improvements.

Theorem 2.14. Assume that T (n) is the number of arithmetic operations in F to compute
FFT of size n. It follows that Algorithm 7 does 3T (2n) + O(n) arithmetic operations in F

when the sum of the degrees of two polynomials is at most 2n− 1.

Proof. Let M(n) be the number of arithmetic operations in F that Algorithm 7 does with
two polynomials where the sum of the degrees of these polynomials is less than 2n. Algo-
rithm 7 executes three FFTs of size 2n. It takes n− 1 multiplications to compute W . Then
Algorithm 7 does 2n multiplications for point-wise multiplication. During the inverse FFT,
it takes one inverse to get n−1 and 2n multiplications to multiply the result of the inverse

21

Algorithm 7 Fast multiplication (using FFT1 and FFT2 with no permutation) [9]
Input: Two polynomials f(x), g(x) ∈ F [x] where F is a field such that f(x) = ∑d1

i=0 fix
i

and g(x) = ∑d2
i=0 gix

i

Output: h(x) = f(x) · g(x)
1: d← deg(f) + deg(g)
2: n← the smallest power of 2 greater than d− 1
3: if d = n then
4: h1 ← Fast multiplication(f ,g − gd2xd2) //h1 = f · (g − gd2xd2)
5: h2 ← f · gd2xd2

6: h← h1 + h2
7: return h
8: end if
9: Compute a primitive n-th root of unity ω in F

10: if ω does not exist then return FAIL end if
11: W ← [1, ω, ω2, . . . , ω

n
2 −1, 1, ω2, ω4 . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0]

12: A← [f0, f1, . . . , fd1 , 0, . . . , 0] ∈ F n

13: B ← [g0, g1, . . . , gd2 , 0, . . . , 0] ∈ F n

14: FFT2(n, A, W) //A = [A0, A1, . . . , An−1] = [f(1), f(ω), . . . , f(ωn−1)] T (n)
15: FFT2(n, B, W) //B = [B0, B1, . . . , Bn−1] = [g(1), g(ω), . . . , g(ωn−1)] T (n)
16: C ← An array of length n
17: for i from 0 to n− 1 do Ci ← Ai ·Bi end for //Ci = f(ωi) · g(ωi)
18: V ← [1, ω−1, ω−2, . . . , ω− n

2 +1, 1, ω−2, ω−4, . . . , ω− n
2 +2, 1, ω−4, ω−8, . . . , ω− n

2 +4, . . . , 1, 0]
19: FFT1(n, C, V) . T (n)
20: Compute n−1 once
21: for i from 0 to n−1 do Ci ← n−1 ·Ci end for //C = [C0, C1, . . . , Cd1+d2 , 0, . . . , 0]
22: return

∑d1+d2
i=0 Cix

i

FFT by n−1. Therefore,

M(n) = 3T (2n) + (n− 1) + 2n + 1 + 2n

= 3T (2n) + 5n = 3T (2n) + O(n)

Both Algorithm 5 FFT1 and Algorithm 6 FFT2 do T (n) = 3
2n log2 n arithmetic operations

in F . It follows that M(n) = 9n log2 n + 14n ∈ O(n log n) arithmetic operations in F . Also,
Algorithm 7 performs 3n log2 n + O(n) multiplications in F .

Corollary 2.15. Let M(n) be the number of arithmetic operations in F that Algorithm 7
does with two polynomials where the sum of the degrees of these polynomials is less than 2n.
Then

M(n) ≥ 2M(n
2).

22

Proof. From the proof of Theorem 2.14, we note that if n ≥ m for some n, m ∈ N,

M(n)
n

= 9 log2 n + 14 ≥ 9 log2 m + 14 = M(m)
m

.

If m = n
2 , we have

M(n)
n
≥

M
(

n
2
)

n
2

=⇒ M(n) ≥ 2M
(

n
2
)

.

In the remainder of this thesis, we assume that 2M
(

n
2
)
≤M(n) if Algorithm 7 Fast multipli-

cation is used. Basically, we assume polynomial multiplication is at least linear complexity.

Now, we compare Algorithm 7 to the classical polynomial multiplication algorithm. In
Monagan’s C library for polynomial arithmetic in Zp[x] with a prime p < 263, polmul64s

implements the classical O(n2) polynomial multiplication. We worked over the field F = Zp

where p = 3 · 230 + 1, a 32-bit prime. We use two polynomials of degree n = 2k for some
k ∈ N. These two polynomials are generated by choosing their coefficients at random from
[0, p).

n Classical multiplication (ms) Fast multiplication (ms)
26 0.0075 0.0146
27 0.0249 0.0322
28 0.0890 0.0713
29 0.3348 0.1612
210 1.327 0.3391
211 5.217 0.7205
212 20.84 1.608

Table 2.1: Timings in ms for the classical multiplication of two polynomials of degree n and
Algorithm 7 Fast multiplication

From Table 2.1, the classical multiplication algorithm is faster than Algorithm 7 for n <

28 = 256. Contrarily, Algorithm 7 is faster than the classical one for n ≥ 256. This implies
that when the degrees of two polynomials are at least 256, Algorithm 7 Fast multiplication
takes less time. From Table 2.1, we present an optimized fast multiplication in Algorithm 8.

2.3 FFT Permutation

2.3.1 Bit-reversal Permutation

In the previous section, we mentioned that Cooley and Tuckey’s FFT algorithm involves
the bit-reversal permutation. Now, we define the bit-reversal permutation.

23

Algorithm 8 Optimized fast multiplication (FastMul)
Input: Polynomials f, g ∈ F [x] where F is a field
Output: h(x) = f(x) · g(x)

1: if deg(f) · deg(g) < 216 then
2: h← Call classical multiplication with inputs f and g
3: return h
4: end if
5: h← Call Algorithm 7 Fast multiplication with inputs f and g
6: return h

Definition 2.16. Let {0, 1, . . . , n − 1} be a finite set of size n = 2k for some k ∈ N. The
bit-reversal permutation σ is

σ(i) = j

where i = (bk−1bk−2 . . . b0)2 and j = (b0b1 . . . bk−1)2 in binary.

Remark 2.17. The bit-reversal permutation is an involution. In other words, σ(σ(i)) = i

for all i ∈ {0, 1, . . . , n− 1}.

Example 2.18. Let n = 8 = 23. Then

i i in binary σ(i) in binary σ(i)
0 0002 0002 0
1 0012 1002 4
2 0102 0102 2
3 0112 1102 6
4 1002 0012 1
5 1012 1012 5
6 1102 0112 3
7 1112 1112 7

Table 2.2: The bit-reversal permutation of {0,1,. . . ,7}

Let P (n) be the number of moves of elements in Algorithm 1 where n = 2k for some k ∈ N.
If n = 1, no permutation is performed. Otherwise, there are n

2 moves to b and n
2 moves to

c. Also, two recursive calls exist in Algorithm 1. Thus, we haveP (1) = 0

P (n) = 2
(

n
2
)

+ 2P (n
2) for n ≥ 2.

This implies that P (n) = n + 2(n
2) + · · ·+ 2k−1(2) = kn = n log2 n.

We found that the bit-reversal permutation σ can be done with linear moves based on the
following lemma.

24

Lemma 2.19. Let σ : {0, 1, . . . , n − 1} → {0, 1, . . . , n − 1} be the bit-reversal permutation
where n = 2k for some k ∈ N. Then, for 0 ≤ j ≤ 2i − 1,

σ(2i + j) = σ(j) + 2k−(i+1).

Example 2.20. Continuing from Example 2.18, k = 3 since 8 = 23. Then we have

σ(6) = σ(22 + 2) = σ(2) + 23−(2+1) = 2 + 20 = 3.

Proof (Lemma 2.19). It is obvious that σ(0) = 0. For all 0 ≤ i ≤ k − 1, assume we know
σ(0), σ(1), . . . , σ(2i− 1). If we permute 2i to 2i+1− 1, 1 is in the i-th bit in binary. In other
words, we permute

2i + j = (00 . . .

i-th︷︸︸︷
1 bi−1bi−2 . . . b0)2

for 0 ≤ j ≤ 2i − 1. Then applying σ on 2i + j

σ(2i + j) = (b0b1 . . . bi−110 . . . 0)2

= (b0b1 . . . bi−10 . . . 0)2 + (00 . . . 0
k−(i+1)-th︷︸︸︷

1 0 . . . 0)2

= σ(j) + 2k−(i+1)

since every j is at most i digit binary number for 0 ≤ j ≤ 2i − 1.

We know each σ(j) for 0 ≤ j ≤ 2i − 1. It follows that we only need to add 2k−(i+1) to all
σ(j) to compute σ(2i + j). Thus,

σ(2i + j) = σ(j) + 2k−(i+1)

for 0 ≤ j ≤ 2i − 1.

Using the identity of Lemma 2.19, we present our bit-reversal permutation algorithm in
Algorithm 9.

Theorem 2.21. Algorithm 9 does n + O(log n) arithmetic operations in Z.

Proof. Let P (n) be the number of arithmetic operations in Z that Algorithm 9 does. One
division is performed to compute δ. In the outer loop, one division and one multiplication
are performed at each iteration. Also, in the inner for loop, every iteration does one addition
and this loop iterates i times. Hence, i additions exist at each iteration in the outer loop.
This outer loop iterates log2 n times since i doubles each iteration in the outer while loop.

25

Algorithm 9 Bit-reversal permutation
Input: n = 2k for some k ∈ N
Output: π = [σ(0), σ(1), . . . , σ(n− 1)] where σ is a bit-reversal permutation.

1: π0 ← 0 //π0 = σ(0) = 0
2: δ ← n

2
3: i← 1
4: while i < n do
5: for j from 0 to i− 1 do πi+j ← πj + δ end for
6: δ ← δ

2
7: i← i · 2
8: end while
9: return π

This implies that

P (n) = 1 +
k−1∑
j=0

(1 + 1 + 2j)

= 1 + 2k + 2k − 1

= n + 2 log2 n

= n + O(log n).

2.3.2 FFT on the Reciprocal Polynomials

Definition 2.22. Let f ∈ F [x] be a polynomial such that f = fdxd +fd−1xd−1 + · · · f1x+f0

with fd ̸= 0. The reciprocal polynomial of f is defined

f (rec)(x) = xdf
(

1
x

)
= f0xn + f1xd−1 + · · ·+ fd−1x + fd.

Therefore, f (rec) has coefficients in reverse order of the coefficients of f .

Example 2.23. Assume f = 1− 2x + 4x2 + 3x3. Then the reciprocal polynomial of f is

f (rec) = x3f
(

1
x

)
= x3

(
1− 2

(
1
x

)
+ 4

(
1
x

)2
+ 3

(
1
x

)3
)

= x3 − 2x2 + 4x + 3.

Suppose ω ∈ F is a primitive n-th root of unity and deg(f) < n. Then

Fω(f) = [f(1), f(ω), . . . , f(ωn−1)]

Now, we consider computing Fω(f (rec)) from Fω(f). One way to compute this is the follow-
ing. We use the inverse FFT on Fω(f) to obtain f and then compute f (rec) from f . Then

26

we obtain Fω(f (rec)) by applying the FFT on f (rec). It takes two FFTs of size n, both of
which perform O(n log n) arithmetic operations in F . However, we can compute Fω(f (rec))
from Fω(f) with no FFT but some linear work.

Remark 2.24. Let f ∈ F [x] be a polynomial such that f = fdxd + fd−1xd−1 + · · · f1x + f0

with fd ̸= 0. Assume ω ∈ F is a primitive n-th root of unity. Then

f (rec)(ωi) = (ωi)df(ωn−i).

Algorithm 6 FFT2 returns the array a containing the values of f(ωi) in the order of the
bit-reversal permutation σ:

a = Fω(f) = [f(ωσ(0)), f(ωσ(1)), . . . , f(ωσ(n−1))].

Now, we can obtain f (rec)(ωi) for 0 ≤ i ≤ n−1 from a using Lemma 2.26 where d = deg(f):

Fω(f (rec)) = [(ωσ(0))d · f(ωn−σ(0)), (ωσ(1))d · f(ωn−σ(1)), . . . , (ωσ(n−1))d · f(ωn−σ(n−1))]

To compute f(ωn−σ(i)) for 0 ≤ i ≤ n− 1, we observe a property of n− σ(i).

Example 2.25. Let n = 16 = 24. For every i, we define m = 2i and notice that n−σ(m+j)
lists the σ(m + j) in reverse order for all 0 ≤ j ≤ m− 1 from Table 2.3.

m j m + j σ(m + j) n− σ(m + j)
0 0 16

20 0 1 8 8

21 0 2 4 12
1 3 12 4

22

0 4 2 14
1 5 10 6
2 6 6 10
3 7 14 2

23

0 8 1 15
1 9 9 7
2 10 5 11
3 11 13 3
4 12 3 13
5 13 11 5
6 14 7 9
7 15 15 1

Table 2.3: σ(m + j) and n− σ(m + j) with the bit-reversal permutation σ for n = 16

27

From Example 2.25, for each m, n− σ(m + j) where j is from 0 to m− 1 equals σ(m + j∗)
where j∗ is from m− 1 to 0. We set j = m− 1− j∗ and then j∗ = m− 1− j. This implies
that

σ(m + j∗) = σ(m + m− 1− j) = σ(2m− 1− j).

Thus, n− σ(m + j) = σ(2m− 1− j).

Lemma 2.26. Let n = 2k for some k ∈ N and σ be the bit-reversal permutation. Assume
m = 2i for some 0 ≤ i ≤ k − 1. Then

σ(m + j) + σ(2m− 1− j) = n

for any 0 ≤ j ≤ m− 1.

Proof. Let j be an arbitrarily chosen value from 0 ≤ j ≤ m− 1. Then, in binary,

j = (bi−1bi−2 . . . b1b0)2

where bd ∈ {0, 1} for all d. Since m = 2i, for 0 ≤ j ≤ m− 1

m + j = 2i + j = (00 . . . 0
ith︷︸︸︷
1 bi−1bi−2 . . . b0)2.

It follows that

σ(m + j) = (b0b1 . . . bi−1

k−(i+1)th︷︸︸︷
1 0 . . . 0)2.

Also, in binary, 2m− 1− j can be written as

(2m−1)−j = (00 . . . 0
ith︷︸︸︷
1 1 . . . 1)2− (00 . . . 0bi−1bi−2 . . . b0)2 = (00 . . . 0

ith︷︸︸︷
1 ci−1ci−2 . . . c0)2

where cd = 1− bd for 0 ≤ d ≤ i− 1. This implies that

σ(2m− 1− j) = (c0c1 . . . ci−1

k−(i+1)th︷︸︸︷
1 0 . . . 0)2.

28

Using cd = 1− bd,

σ(m + j) + σ(2m− 1− j) = (b0b1 . . . bi−1

k−(i+1)th︷︸︸︷
1 0 . . . 0)2 + (c0c1 . . . ci−1

k−(i+1)th︷︸︸︷
1 0 . . . 0)2

= (b0b1 . . . bi−110 . . . 0)2 + (11 . . . 1
k−(i+1)th︷︸︸︷

1 0 . . . 0)2 − (b0b1 . . . bi−10 . . . 0)2

= (00 . . . 0
k−(i+1)th︷︸︸︷

1 0 . . . 0)2 + (11 . . . 1
k−(i+1)th︷︸︸︷

1 0 . . . 0)2

= (
kth︷︸︸︷
1 000 . . . 0)2

= 2k = n.

Using this property, we present Algorithm 10 that obtains Fω(f (rec)) from Fω(f) with no
FFTs.

Algorithm 10 FFT of the reciprocal polynomial
Input: n = 2k for some k ∈ N, A = [f(ωσ(0)), f(ωσ(1)), . . . , f(ωσ(n−1))] where σ is a bit-

reversal permutation and A = Fω(f), and ω ∈ F , a primitive n-th root of unity
Output: Fω(f (rec)) = [f (rec)(ωσ(0)), f (rec)(ωσ(1)), . . . , f (rec)(ωσ(n−1))]

1: I ← Call Algorithm 9 with n // I = [σ(0), σ(1), . . . , σ(n− 1)] = [I0, I1, . . . , In−1]
2: u← ωd

3: W0 ← 1
4: for i from 1 to n− 1 do Wσ(i) = Wσ(i−1) · u end for
5: i← 1
6: B0 ← A0
7: while i < n do
8: l← i · 2− 1
9: for j from 0 to i− 1 do Bi+j ← Al−j end for

10: i← l + 1
11: end while
12: for i from 1 to n− 1 do Bi ← Bi ·Wi end for
13: return B

Theorem 2.27. Assume Algorithm 10 works on the field F = Zp, where p is a prime.
Algorithm 10 does at most 3n + O(log n) arithmetic operations in F .

Proof. Let R(n) be the number of arithmetic operations in F that Algorithm 10 does.
Line 2 takes at most 2⌈log2 d⌉ multiplications to compute ωd mod p using the Square-and-
multiply algorithm [13]. Since d ≤ n, computing ωd mod p does at most 2 log2 n arithmetic
operations in F . After computing ωd, the first for loop does n− 1 multiplications. Then the
while loop iterates log2 n times, and each iteration does one multiplication, one subtraction,

29

and one addition. The inner for loop iterates i times, and it takes one addition and one
subtraction to compute indices of A and B. Hence, the inner for loop costs 2i arithmetic
operations in F . The last for loop does n− 1 multiplications in line 12. This implies that

R(n) ≤ 2⌈log2 d⌉+ n− 1 +
k∑

i=1
(3 + 2 · 2i−1) + n− 1

≤ 2 log2 n + 3 log2 n + 2
(

2k−1
2−1

)
+ 2n− 2

= 5 log2 n + 2(n− 1) + 2n− 2

= 4n + 5 log2 n− 4

= 4n + O(log n).

30

Chapter 3

Fast Algorithms

We need two fast algorithms to construct the fast Vandermonde solver algorithm: the fast
division algorithm and the fast multipoint evaluation algorithm. These two fast algorithms
use the fast multiplication in Chapter 2. The fast division algorithm uses Newton inversion
[14] and the middle product [6]. Then we optimize Newton inversion by computing repeated
Fω once. The fast multipoint evaluation algorithm uses the product tree [2]. We modify
the product tree by optimizing Fω in this chapter. For comparison, we review Zippel’s
transposed Vandermonde solver [15]. Then we present Kaltofen and Yagati’s fast transposed
Vandermonde solver [8].

3.1 Fast Division

3.1.1 Classical Division Algorithm

Let F be a field. Suppose f, g ∈ F [x] are polynomials such that f = ∑m
i=0 fix

i and g =∑n
i=0 gix

i. It follows that the degree of f is m, and the degree of g is n. Let LT (f) denote
the leading term of f , i.e., LT (f) = fmxm. To divide f by g, we want to obtain the quotient
and remainder q, r ∈ F [x] such that

f = g · q + r (3.1)

where r = 0 or deg(r) < n. Algorithm 11 presents the classical division algorithm for F [x].

Theorem 3.1. Let f, g ∈ F [x] be such that f is a dividend and g is a divisor. Assume
deg(f) = m and deg(g) = n and m ≥ n. Then Algorithm 11 performs at most O((m− n +
1)n) arithmetic operations in F .

Proof. Algorithm 11 computes a new term q(∗) of the quotient q in each iteration. Since
deg(q) = m−n, q has at most m−n + 1 terms. Thus, lines 4, 5, and 6 are executed at most

31

Algorithm 11 Classical division
Input: f, g ∈ F [x] where g ̸= 0.
Output: q, r ∈ F [x] such that f = g · q + r where r = 0 or deg(r) < deg(g).

1: q ← 0
2: r ← f
3: while r ̸= 0 and deg(r) ≥ deg(g) do
4: q(∗) ← LT (r)/LT (g)
5: q ← q + q(∗)

6: r ← r − (g · q(∗))
7: end while
8: return q, r

m−n+1 times. Each iteration does one division in F to compute q(∗). Since g is a polynomial
of degree n, g has at most n+1 terms. We know that gnxn ·q(∗) = fmxm, so it is unnecessary
to compute this again. Therefore, g·q(∗) requires at most n multiplications in F . Additionally,
the difference between LT (f) and LT (g · q(∗)) is zero. It follows that f − (g · q(∗)) needs
at most n subtractions in F . Thus, the total number of arithmetic operations in F for the
classical division is at most (m−n+1)(1+n+n) = (m−n+1)(2n+1) ∈ O((m−n+1)n).

Corollary 3.2. If m = 2n, this division does (2n− n + 1)(1 + n + n) = (n + 1)(2n + 1) =
2n2 + 3n + 1 ∈ O(n2) arithmetic operations in F .

Corollary 3.3. If n = 1, this division does (m− 1 + 1)(1 + 1 + 1) = 3m ∈ O(m) arithmetic
operations in F .

Corollary 3.3 will be used in Zippel’s transposed Vandermonde solver.

3.1.2 Newton Inversion

To obtain a faster division algorithm, we need to look into how to find the inverse of the
divisor polynomial. To discuss the inverse, let f̂ = f(x) mod xn be the remainder when f

is divided by xn. This is equivalent to simply truncating f at the xn−1 term.

Definition 3.4. Let f ∈ R[x] where R is any ring. The order n approximation of f is
f̂ = f(x) mod xn.

Let f ∈ F [x] be a polynomial where f = ∑n−1
i=0 fix

i with f0 ̸= 0. We can compute a
polynomial a(x) mod xn ∈ F [x] by equating the coefficients f ·a = 1 where a is the inverse
of f . It follows that 1 = f0 · a0

0 = ∑
i+j=k fi · aj for k ≥ 1.

32

Then we have a0 = f−1
0 since f0 ̸= 0, which does one inverse. Also, for k ≥ 1, f0 · ak =

−
∑

i+j=k,i ̸=0 fi · aj . This implies that

ak = f−1
0 · (−

∑
i+j=k,i ̸=0

fi · aj) = −a0 · (
∑

i+j=k,i ̸=0
fi · aj). (3.2)

For k ≥ 1, it takes k multiplications and k − 1 additions to compute the sum in (3.2) and
one multiplication and one negation to multiply −a0 by the sum. Thus computing ak does
k + (k− 1) + 1 + 1 = 2k + 1 arithmetic operations in F . When we compute the polynomial
a of degree n− 1, this method does

1 +
n−1∑
i=1

(2k + 1) = 1 + 2n(n−1)
2 + n− 1 = 1 + n2 − n + n− 1 = n2

arithmetic operations in F . Therefore equating the coefficients of f · a = 1 costs O(n2).

To speed up finding the inverse, recall that Newton’s method is a root-finding algorithm
which successively approximates the roots of equation f(x) = 0 [14]. Newton’s method
starts with an initial approximation α0. Subsequent approximations are computed using

αi = αi−1 −
f(αi−1)
f ′(αi−1)

for i ≥ 1. With a suitable initial point α0, this iteration generates a sequence {αi}∞i=0
converging to one of the roots of the equation f(x) = 0.

Newton’s iteration generates a sequence of polynomials approximating f−1. Denote y = f−1.
Then we can obtain y by solving the following equation:

f(x)− 1
y(x) = 0.

We define a(y) = f − 1
y . We can obtain f−1 from solving a(y) = 0 by Newton’s iteration.

Assume y0 ∈ F is the initial approximation. The derivative of a(y) is a′(y) = 1
y2 . To compute

the root of a(y), Newton iteration with y0 results in

yi = yi−1 −
a(yi−1)
a′(yi−1) = yi−1 −

f − 1
yi−1

1
y2

i−1

= yi−1 − f · y2
i−1 + yi−1 = 2yi−1 − f · y2

i−1 (3.3)

for i ≥ 1. We call this method Newton inversion. With Newton inversion, we can compute
the inverse of a polynomial as a power series to an order n [14].

33

Theorem 3.5. Let F be a field. Assume f = f0 + f1x + f2x2 + · · · ∈ F [x] and f0 ̸= 0. Let
y0 = f−1

0 and yi = 2yi−1 − f · y2
i−1 mod x2i for i ≥ 1. For all i ≥ 0,

f · yi mod x2i = 1.

Proof. See the proof of Theorem 9.2. in [14].

We note that we use yi = 2yi−1 − (f mod x2i) · y2
i−1 mod x2i for the recurrence.

Example 3.6. We want to compute the inverse of f = 1 + 3x + 5x2 to an order 4 approxi-
mation. That is, we compute (1+3x+5x2)−1 mod x4. According to Theorem 3.5, we start
with

y0 = 1−1 = 1 mod x1

When i = 1, we have

y1 = 2y0 − f · y2
0 = 2 · 1− (1 + 3x + 5x2 mod x2) · 12 = 2− 1− 3x

= 1− 3x mod x2.

When i = 2, we have

y2 = 2y1 − f · y2
1 = 2 · (1− 3x)− (1 + 3x + 5x2)(1− 3x)2

= 2− 6x− (1− 3x− 4x2 − 3x3 + 45x4) = 2− 6x− 1 + 3x + 4x2 + 3x3 − 45x4

= 1− 3x + 4x2 + 3x3 mod x4.

Then we have f−1 mod x4 = 1− 3x + 4x2 + 3x3.

Applying Theorem 3.5, we can create a recursive algorithm as described in Algorithm 12.

Algorithm 12 Newton inversion
Input: A polynomial f = f0 + f1x + · · · ∈ F [x] with f0 ̸= 0 and n ∈ N
Output: An order n approximation of f−1

1: if n = 1 then
2: y ← f−1

0 ∈ F
3: return y
4: end if
5: m← ⌈n

2 ⌉
6: g ← f mod xn

7: g−1 ← Newton inversion(g, m)
8: b← g−1 · g−1 mod xn

9: c← g · b mod xn

10: y ← 2 · g−1 − c
11: return y

34

Theorem 3.7. Let n = 2k for some k ∈ N. Let M(n) be the number of arithmetic operations
in F for polynomial multiplication where the sum of the degrees of two polynomials is less
than 2n. Then Algorithm 12 does at most 3M(n) + O(n) arithmetic operations in F .

Proof. Let I(n) be the number of arithmetic operations for computing f−1 mod xn by
Algorithm 12. When n = 1, Algorithm 12 only computes f−1

0 in line 2, and hence, I(1) = 1.
For n > 1, Algorithm 12 makes one recursive call to compute g−1 to an order m = n

2 ,
which costs I(n

2). Then, in line 8, since the degree of g−1 is n
2 − 1, g−1 · g−1 is a polynomial

multiplication and costs less than M(n
2). In line 9, there is another multiplication of two

polynomials, b of degree n − 2 and g of degree n − 1, which performs less than M(n)
arithmetic operations in F . Moreover, it takes O(n) arithmetic operations in F to compute
2 · g−1 − c in line 9. Hence, we haveI(1) = 1

I(n) < I
(

n
2
)

+ M
(

n
2
)

+ M (n) + O(n) for n > 1

By Corollary 2.15, we observe that M(n
2) ≤ 1

2M(n) using fast multiplication. In other
words, polynomial multiplication is not sub-linear. Then we have

I(n) < I(n
4) + M(n

4) + M(n
2) + O(n

2) + M(n
2) + M(n) + O(n)

≤ I(n
8) + M(n

8) + M(n
4) + O(n

4) +
(
M(n

2) + M(n
4)
)

+
(
M(n) + M(n

2)
)

+ O(n)
...

≤
(
M
(

n
2
)

+ M
(

n
4
)

+ · · ·+ M(1)
)

+
(
M(n) + M

(
n
2
)

+ · · ·+ M(2)
)

+ O(n)

≤ 1
2M(n) + 1

4M(n) + · · ·+ 1
nM(n) + M(n) + 1

2M(n) + · · ·+ 1
n/2M(n) + O(n)

=
(

1
2 + 1

4 + · · ·+ 1
n

)
M(n) +

(
1 + 1

2 + · · ·+ 1
n/2

)
M(n) + O(n)

≤M(n) + 2M(n) + O(n) ∈ 3M(n) + O(n).

If a primitive n-th root of unity in F exists, M(n) = 9n log2 n+O(n) using fast multiplication
and Algorithm 12 does at most 27n log2 n + O(n) ∈ O(n log n) arithmetic operations in F .

3.1.3 The Middle Product

In 2004, Hanrot, Quercia, and Zimmerman [6] reduced the constant 3 in Theorem 3.7 to
2, that is the complexity of their Newton inversion is 2M(n) + O(n). From (3.3), they
considered an alternative formula for Newton’s method.

yk = 2yk−1 − f · y2
k−1 = yk−1 + yk−1 − f · y2

k−1 = yk−1 + yk−1 · (1− f · yk−1)

35

We know that f ·yk−1 mod x2k−1 = 1. Assume n = 2k and yk−1 = h0+h1x+· · ·+h n
2 −1x

n
2 −1.

Let f∗ denote f mod xn. After f mod xn is computed,

f∗ · yk−1 = (f0 + f1x + · · ·+ fn−1xn−1)(h0 + h1x + · · ·+ h n
2 −1x

n
2 −1)

= 1 + 0 · x + · · ·+ 0 · x
n
2 −1 + m0x

n
2 + · · ·+ m n

2 −1xn−1 + a0xn + · · ·+ a n
2 −2x

3n
2 −2

for some mi, ai ∈ F . Let mp = ∑n
2 −1
i=0 mix

i and a = ∑n
2 −2
i=0 aix

i. It follows that

f∗ · yk−1 mod xn = 1 + mp · x
n
2 + a · xn mod xn = 1 + mp · x

n
2 .

The polynomial mp is called the middle product.

Since deg(f∗) = n−1 and deg(yk−1) = n
2 −1, the degree of f∗ ·y2k−1 = 3n

2 −2. Algorithm 7
Fast multiplication needs an FFT of size 2n, which is the smallest power of 2 greater than
3n
2 − 2. However, instead of using the FFT of size 2n to multiply f∗ by yk−1, we will use an

FFT of size n.

Let A = [f0, f1, . . . , fn−1] ∈ F n where every fi is the coefficient of f∗ at degree i. Also, let
B = [h0, h1, . . . , h n

2 −1, 0, . . . , 0] ∈ F n where each hi is the coefficient of yk−1 at degree i.
Assume ω ∈ F is a primitive n-th root of unity. We define C = Fw(A)×Fw(B) ∈ F n, where
× is a point-wise multiplication. This implies that

C = [f∗ · yk−1(1), f∗ · yk−1(ω), . . . , f∗ · yk−1(ωn−1)].

We note that for all 0 ≤ i ≤ n− 1

f∗ · yk−1(ωi) = 1 + mp(ωi) · (ωi)
n
2 + a(ωi) · (ωi)n

= 1 + mp(ωi) · (ωi)
n
2 + a(ωi) · (ωn)i

= 1 + mp(ωi) · (ωi)
n
2 + a(ωi) (since ωn = 1)

Thus, C equals Fw(D) where D = [1 + a0, a1, . . . , a n
2 −2, 0, m0, m1, . . . , m n

2 −1] ∈ F n contain-
ing the coefficients of 1 + mp · x

n
2 + a.

Thus, applying the inverse FFT of size n on C yields

1
n

Fω−1(C) = D.

This enables us to extract the coefficients of mp. With this middle product, we can rewrite
Newton’s method as

yk = yk−1 + yk−1 · (1− f · yk−1) = yk−1 + (yk−1 · (−mp) mod x
n
2) · x

n
2 (3.4)

36

Based on (3.4), we can use the middle product to improve Newton inversion algorithm. This
is presented in Algorithm 13.

Algorithm 13 Newton inversion with the middle product
Input: A polynomial f = f0 + f1x + · · · ∈ F [x] with f0 ̸= 0 and n ∈ N
Output: An order n approximation of f−1

1: if n = 1 then
2: y ← f−1

0 ∈ F
3: return y
4: end if
5: m← ⌈n

2 ⌉
6: g ← f mod xn

7: y ← Algorithm 13 Newton inversion with the middle product(g,m) I(m)
8: b← y · g using fast multiplication with the FFT of size n // b = ∑n−1

i=0 bix
iM(n

2)
9: mp← −

∑n−m−1
i=0 bi+mxi

10: h← y ·mp using fast multiplication // h = ∑n−2
i=0 hix

i . M(n
2)

11: y ← y + xm ·
∑n−m−1

i=0 hix
i

12: return y

Theorem 3.8. Let n = 2k for some k ∈ N. Let M(n) be the number of arithmetic operations
in F for multiplying two polynomials where the sum of the degrees of these polynomials is
less than 2n. Then Algorithm 13 does at most 2M(n) + O(n) arithmetic operations in F .

Proof. Let I(n) be the total number of arithmetic operations in F for Algorithm 13. When
n = 1, it only needs to compute the inverse of f0 ∈ F . This implies that I(1) = 1. Otherwise,
the algorithm calls itself with size m once. Since n = 2k, m = ⌈n

2 ⌉ = n
2 , it costs I(n

2). In
Chapter 2, we observe that polynomial multiplication where the sum of the degrees of two
polynomials is less than n uses the FFT of size n. However, in line 8, fast multiplication
with the FFT of size n computes y · g although deg(y) + deg(g) = 3n

2 − 2 to read off the
coefficients of mp. This implies that computing y · g costs M(n

2). Also, computing y ·mp

where deg(y) = n
2 −1 and deg(mp) = n

2 −1 does M(n
2) arithmetic operations in F . In line 9,

it takes n−m arithmetic operations in F to negate coefficients. No additions are performed
in line 11. Thus, we haveI(1) = 1

I(n) < I
(

n
2
)

+ 2M
(

n
2
)

+ O(n) for n > 1

37

By Corollary 2.15, 2M(n
2) ≤M(n). Then

I(n) < 2M
(

n
2
)

+ 2M
(

n
4
)

+ · · ·+ 2M(1) + O(n)

≤M (n) + M
(

n
2
)

+ · · ·+ M(2) + O(n)

≤M (n) + 1
2M (n) + · · ·+ 1

n/2M(n) + O(n)

=
(
1 + 1

2 + 1
4 + · · ·+ 1

n/2

)
M(n) + O(n)

< 2M(n) + O(n)

Compared to Algorithm 12, Algorithm 13 saves one polynomial multiplication M(n) out of
three.

3.1.4 Optimizing Newton Inversion

In Algorithm 13, fast multiplication is executed twice to get the inverse of f mod xn. Each
fast multiplication requires three FFTs of size n. We can observe that Algorithm 13 computes
Fω(y) twice in lines 8 and 10 for polynomial multiplications. Also, the same list of powers
of a primitive n-th root of unity is created redundantly in these two fast multiplications. To
reduce the number of arithmetic operations, we can compute Fω(y) once and reuse the result
during the second multiplication. To do so, we break apart Algorithm 7 Fast multiplication.
An optimized Newton inversion with the middle product is shown in Algorithm 14.

Theorem 3.9. Assume d = n = 2k for some k ∈ N. Let T (n) be the number of arithmetic
operations in F that FFT of size n does. Let M(n) be the number of arithmetic operations
in F for polynomial multiplications where the sum of the degrees of two polynomials is less
than 2n. Then Algorithm 14 does at most 5

3M(n) + O(n) arithmetic operations in F .

Proof. Let I(n) be the number of arithmetic operations in F for Algorithm 14. When
n = 1, I(1) = 1 for one negation. For n > 1, m = d

2 = n
2 because we assume n is the power

of 2. It follows that one recursive call does I(n
2) arithmetic operations in F . Moreover,

Algorithm 14 calls two FFT1s and three FFT2s, which cost 5T (n) since d = n. It takes
O(n) arithmetic operations in F to create W and V . Also, point-wise multiplications and
scalar multiplications in Algorithm 14 do O(n) arithmetic operations in F . Thus,

I(1) = 1

I(n) ≤ I(n
2) + 5T (n) + O(n) for n > 1.

Fast multiplication does M(n) = 3T (2n)+O(n) arithmetic operations in F by Theorem 2.14.
Then we have 3T (n) ≤ M(n

2). This further implies that T (n) ≤ 1
3M(n

2) ≤ 1
6M(n) from

38

Algorithm 14 Optimized Newton inversion with the middle product (NIwithMP)
Input: A polynomial f = f0 + f1x + · · · ∈ F [x] with f0 ̸= 0 and d ∈ N
Output: An order d approximation of f−1

1: if d = 1 then
2: y ← f−1

0 ∈ F
3: return y
4: end if
5: m← ⌈d

2⌉
6: a← f mod xd // a = ∑n−1

i=0 fix
i

7: y ← NIwithMP (a, m) // y = ∑m−1
i=0 yix

i = f−1 mod xm . I(m)
8: n← The smallest power of 2 greater than d− 1
9: ω ← Compute a primitive n-th root of unity in F

10: W ← [1, ω, ω2, . . . , ω
n
2 −1, 1, ω2, ω4, . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0]

11: A← [f0, f1, . . . , fd−1, 0, . . . , 0] ∈ F n

12: Y ← [y0, y1, . . . , ym−1, 0, . . . , 0] ∈ F n

13: FFT2(n,A,W) // Fω(A) = [F0, F1, . . . , Fn−1] . T (n)
14: FFT2(n,Y ,W) // Fω(Y) = [Y0, Y1, . . . , Yn−1] . T (n)
15: C ← An array of length n // C = [C0, C1, . . . , Cn−1]
16: for i from 0 to n− 1 do Ci ← Fi · Yi end for
17: V ← [1, ω−1, ω−2, . . . , ω− n

2 +1, 1, ω−2, ω−4, . . . , ω− n
2 +2, 1, ω−4, ω−8, . . . , ω− n

2 +4, . . . , 1, 0]
18: FFT1(n,C,V) . T (n)
19: t← n−1

20: for i from 0 to n− 1 do Ci ← t · Ci end for
21: M ← [−Cm,−Cm+1, . . . ,−Cd−1, 0, . . . , 0] ∈ F n // mp = −∑d−m−1

i=0 Ci+mxi

22: FFT2(n,M ,W) // Fω(M) = [M0, M1, . . . , Mn−1] . T (n)
23: H ← An array of length n // H = [H0, H1, . . . , Hn−1]
24: for i from 0 to n− 1 do Hi ←Mi · Yi end for
25: FFT1(n,H,V) . T (n)
26: for i from 0 to n− 1 do Hi ← t ·Hi end for
27: y ← y + xm ·

∑d−m−1
i=0 Hix

i

28: return y

Corollary 2.15. Therefore,

I(n) ≤ I(n
2) + 5

6M(n) + O(n)

≤ I(n
4) + 5

6M(n
2) + 5

6M(n) + O(n)
...

≤ 1 + 5
6M(2) + · · ·+ 5

6M(n
2) + 5

6M(n) + O(n)

≤ 5
6M(n) + 5

12M(n) + · · ·+ 5
6(n/2)M(n) + O(n) (since M(n

2) ≤ 1
2M(n))

= (1 + 1
2 + · · ·+ 1

n/2)5
6M(n) + O(n)

< 2(5
6M(n)) + O(n) ∈ 5

3M(n) + O(n).

39

This optimization reduces the constant 2 in Algorithm 13 to 5
3 .

3.1.5 Fast Division

Let f ∈ F [x] be a dividend polynomial of degree m and g ∈ F [x] be a divisor polyno-
mial of degree n with a nonzero constant term. Then g−1 exists and we can compute g−1

mod xm−n+1 by applying Algorithm 14. Let c denote g−1 mod xm−n+1. Assume r, q ∈ F [x]
are polynomials satisfying f = q · g + r where r = 0 or deg(r) < deg(g). It follows that

f · c = q + r · c =⇒ q = f · c− r · c.

Since the polynomial r is unknown, we are unable to compute r · c which might contain
some terms of degree less than m− n + 1. Thus, we cannot obtain the quotient polynomial
q.

To avoid this problem, we use the reciprocal polynomial introduced in Chapter 2. Let
f ∈ F [x] be a polynomial such that f = fnxn + fn−1xn−1 + · · · + f1x + f0 with fn ̸= 0.
According to Definition 2.22, the reciprocal of f is

f (rec)(x) = xnf
(

1
x

)
= f0xn + f1xn−1 + · · ·+ fn−1x + fn.

Thus, f (rec) has coefficients in reverse order of the coefficients of f . We know that (f (rec))−1

exists since fn ̸= 0, which implies that f (rec) has a nonzero constant term.

We note that if f0 ̸= 0, deg(f) = deg(f (rec)). Furthermore, assuming deg(f (rec)) = k, we
have

(f (rec))(rec)(x) = xkf (rec)
(

1
x

)
= xk

(
1
x

)n
f
(

1
1/x

)
= xk−nf(x)

Thus we conclude that (f (rec))(rec) = f if and only if f0 ̸= 0.

Theorem 3.10. Let F be a field. Suppose f, g ∈ F [x] are polynomials such that deg(f) = m

and deg(g) = n, where m ≥ n. Let q, r ∈ F [x] satisfy f = g · q + r where r = 0 or
deg(r) < deg(g). Then

q(rec) = f (rec) · (g(rec))−1 mod xm−n+1.

Proof. Since f = g · q + r, we have

f
(

1
x

)
= g

(
1
x

)
· q
(

1
x

)
+ r

(
1
x

)
=⇒ xmf

(
1
x

)
= xm

(
g
(

1
x

)
· q
(

1
x

)
+ r

(
1
x

))
=⇒ xmf

(
1
x

)
= xng

(
1
x

)
· xm−nq

(
1
x

)
+ xmr

(
1
x

)
(deg(q) = m− n)

=⇒ f (rec)(x) = g(rec)(x) · q(rec)(x) + xmr
(

1
x

)
.

40

We consider two cases: r(x) = 0 and r(x) ̸= 0. If r(x) = 0, it follows that r(1
x) = 0. Then

we have
f (rec)(x) = g(rec)(x) · q(rec)(x).

Since (g(rec))−1 exists and deg(q(rec)) ≤ deg(q) = m− n,

q(rec)(x) = f (rec)(x) · (g(rec)(x))−1 mod xm−n+1.

If r(x) ̸= 0, assume deg(r) is l. Then 0 ≤ l < n. We have

f (rec)(x) = g(rec)(x) · q(rec)(x) + xm−lxlr
(

1
x

)
= g(rec)(x) · q(rec)(x) + xm−lr(rec)(x).

(g(rec))−1 exists, so it follows that

q(rec)(x) = f (rec)(x) · (g(rec)(x))−1 − xm−lr(rec)(x) · (g(rec)(x))−1.

As l < n, this implies that m − l > m − n. Also, r(rec)(x) ̸= 0 as well. With Newton’s
method, (g(rec))−1 can be expressed as a power series to an order m − n + 1. Therefore,
deg((g(rec))−1) > 0. Then

deg
(
xm−lr(rec)(x) · (g(rec)(x))−1

)
≥ m− l > m− n.

Since deg(q(rec)) ≤ deg(q) = m− n, we can conclude that

q(rec)(x) = f (rec)(x) · (g(rec)(x))−1 − xm−lr(rec)(x) · (g(rec)(x))−1 mod xm−n+1

= f (rec)(x) · (g(rec)(x))−1 mod xm−n+1.

Based on Theorem 3.10, we can compute q(rec) by multiplying f (rec) by (g(rec))−1 and
truncate this product to order m − n + 1. Since deg(q(rec)) ≤ m − n, we reverse the order
of coefficients in q(rec) to obtain q. In other words, q = ∑m−n

i=0 q∗
m−n−ix

i when q(rec) =∑m−n
i=0 q∗

i xi. Once we have obtained q, the remainder r can be computed using r = f − g · q.

Example 3.11. Let F = Z17 and f, g ∈ F [x] be a polynomial such that

f = 1 + 2x + 3x2 + 4x3

g = 5 + 6x + 7x2.

41

We want to compute polynomials r, q ∈ F [x] satisfying f = g · q + r where r = 0 or
deg(r) < deg(g). The reciprocals of f and g are

f (rec) = 4 + 3x + 2x2 + x3

g(rec) = 7 + 6x + 5x2.

Since deg(q) = deg(f) − deg(g) = 3 − 2 = 1, we truncate f (rec) and g(rec) to order 2. We
have

f (rec) mod x2 = 4 + 3x

g(rec) mod x2 = 7 + 6x.

Using Newton inversion, we compute (g(rec))−1 to order x2 such that

(g(rec))−1 mod x2 = 5 + 3x.

Then we multiply f (rec) by (g(rec))−1.

f (rec) · (g(rec))−1 = 3 + 10x + 9x2

According to Theorem 3.10, the order 2 approximation of this product is q(rec).

q(rec) = 3 + 10x + 9x2 mod x2 = 3 + 10x

Thus,
q = 10 + 3x.

Then r can be computed by

r = f − gq = 1 + 2x + 3x2 + 4x3 − (5 + 6x + 7x2)(10 + 3x) = 2 + 12x.

Hence, r = 2 + 12x and q = 10 + 3x.

Now, we present the fast division algorithm in Algorithm 15 based on Theorem 3.10.

Theorem 3.12. Let M(n) be the number of arithmetic operations in F for multiplying
two polynomials where the sum of the degrees of these polynomials is less than 2n. Assume
f ∈ F [x] is a dividend polynomial of degree 2n− 1 and g ∈ F [x] is a divisor polynomial of
degree n. Then Algorithm 15 executes at most 11

3 M(n) + O(n) arithmetic operations in F .

Proof. Let D(n) be the number of arithmetic operations in F that Algorithm 15 does to
divide f by g. We can compute reciprocal polynomials by shifting coefficients and truncate
polynomials to order n by reading off the coefficients up to degree n − 1. Thus, no arith-

42

Algorithm 15 Fast division
Input: Polynomials f, g ∈ F [x] where g ̸= 0.
Output: The remainder and quotient r, q ∈ F [x] of f ÷ g satisfying f = g · q + r where

r = 0 or deg(r) < deg(g)
1: m← deg(f)
2: n← deg(g)
3: if m < n then return f, 0 end if
4: s← m− n + 1
5: a← g(rec) mod xs

6: b← f (rec) mod xs

7: c← NIwithMP(a, s) // c = a−1 mod xm−n+1 . I(n)
8: e← b · c using fast multiplication . M(n)
9: q(rec) ← e mod xs // q(rec) = ∑m−n

i=0 q∗
i xi

10: q ←
∑m−n

i=0 q∗
m−n−ix

i

11: M ← g · q using fast multiplication .M(n)
12: r ← f −M
13: return r, q

metic operations are performed. We observe that Algorithm 14 Newton inversion with the
middle product does I(n) arithmetic operations in F to get an order 2n − 1 − n + 1 = n

approximation. After executing Newton inversion, Algorithm 15 does one multiplication to
compute q(rec) = b · c in line 8. Since deg(b) = n− 1 and deg(c) = n− 1, it takes less than
M(n) arithmetic operations in F to compute b · c. In line 11, there is another multiplication
to compute g · q, which does at most M(n) arithmetic operations in F as well because
deg(g) = n and deg(q) = n − 1. Line 12 costs at most n + 1 subtractions in F . Thus, the
cost of Algorithm 15 is

D(n) = I (n) + M (n) + M (n) + O(n)

≤ 5
3M (n) + 2M(n) + O(n) (by Theorem 3.9)

= 11
3 M(n) + O(n).

When we use fast multiplication, M(n) = 9n log2 n + O(n), and hence, D(n) = 33n log2 n +
O(n) ∈ O(n log n).

3.1.6 Optimizing Fast Division

We compare Algorithm 15 to Algorithm 11 in terms of timing. We will work over the field
F = Zp where p = 3 · 230 + 1 to implement both algorithms. Let n be the degree of divisor
such that n = 2k for some k ∈ N. Assume that the degree of dividend polynomial is 2n− 1.
We randomly chose the coefficients of the dividend and divisor polynomials from [0, p).

43

n Classical division ratio Fast division ratio
26 0.010 - 0.037 -
27 0.027 2.70 0.093 2.51
28 0.086 3.19 0.186 2.00
29 0.291 3.38 0.403 2.17
210 1.05 3.60 0.809 2.01
211 4.27 4.07 1.76 2.18
212 18.5 4.33 3.92 2.23
213 64.5 3.49 9.30 2.37
214 262.0 4.06 20.9 2.24
215 1175.8 4.48 40.3 1.93
216 4493.5 3.82 89.3 2.22

Table 3.1: Timings in ms for classical division and fast division with a dividend polynomial
of degree 2n− 1 and a divisor polynomial of degree n

The columns labelled "ratio" are the values of execution time with n divided by execution
time with n

2 . Table 3.1 shows that the execution time for the classical algorithm increases
by a factor of 4 as n increases by a factor of 2. This is because the cost of the classical
algorithm is O(n2).

Table 3.1 also shows that classical division is faster than fast division when n < 1024.
However, for n ≥ 1024, fast division is getting faster as n increases. It follows that it
is better to use classical division for the degree of divisor is less than or equal to 512.
Contrarily, fast division performs better than classical division for n ≥ 1024. We adopt this
result in our Algorithm 16 FastDiv.

Algorithm 16 Optimized fast division (FastDiv)
Input: Polynomials f, g ∈ F [x] where g ̸= 0.
Output: The remainder and quotient r, q ∈ F [x] of f ÷ g satisfying f = g · q + r where

r = 0 or deg(r) < deg(g)
1: if deg(g) · (deg(f)− deg(g)) ≤ 218 then
2: r, q ← Algorithm 11 Classical division (f ,g)
3: return r, q
4: end if
5: r, q ← Algorithm 15 Fast division (f ,g)
6: return r, q

3.2 Fast Multipoint Evaluation

3.2.1 Classical Evaluation Algorithm

Let F be a field. Let f = f0 + f1x + · · ·+ fn−1xn−1 ∈ F [x] and u0, u1, . . . , un−1 be distinct
elements in F . To compute f(ui) for all 0 ≤ i ≤ n − 1, we can rewrite f using Horner’s

44

method as
f = f0 + x(f1 + x(f2 + · · ·+ x(fn−1)) · · ·)).

Then, for arbitrary i, computing f(ui) = f0 + ui(f1 + ui(f2 + · · ·+ ui(fn−1)) · · ·)) requires
n − 1 multiplications and n − 1 additions. This implies that evaluating a polynomial of
degree n − 1 with Horner’s method at one point takes O(n) arithmetic operations in F .
Thus, the cost of evaluating this polynomial at u0, u1, . . . , un−1 is O(n2).

3.2.2 The Product Tree

In 1971, Borodin and Munro introduced a fast algorithm for polynomial evaluation at
multipoints [2]. To implement this fast algorithm, a product tree should be constructed
first. Suppose u0, u1, . . . , un−1 ∈ F are distinct evaluation points where n = 2k for some
k ∈ N. We construct a complete binary tree T with these evaluation points. See Figure 3.1.
In T , every leaf is a linear polynomial x − ui for 0 ≤ i ≤ n − 1. Each parent node is the
product of their two children.

Let Ti,j be a polynomial in j−th node from the left at height i in the tree T . Then Tk,0 =∏n−1
i=0 (x − ui), which is the root of T . Since F is a field and u0, u1, . . . , un−1 are pairwise

distinct, every Ti,j is a monic square-free polynomial. Moreover, building up this product tree
does not depend on the polynomial to be evaluated but on the evaluation points only. Thus,
once we construct a product tree, we can use this product tree again for other polynomials
to be evaluated at the same points.

Example 3.13. In Z97, suppose four evaluation points are u0 = 9, u1 = 7, u2 = 5, and
u3 = 3. Then we can build up a product tree like the one below.

(x − 9)(x − 7)(x − 5)(x − 3)
T2,0

(x − 9)(x − 7)
T1,0

x − 9
T0,0

x − 7
T0,1

(x − 5)(x − 3)
T1,1

x − 5
T0,2

x − 3
T0,3

Figure 3.1: The product tree described in Example 3.13

Algorithm 17 builds the product tree T level by level. To prove the correctness of Algo-
rithm 17, we denote x−ul as ml for 0 ≤ l ≤ n−1. Then the root of this tree can be written

45

Algorithm 17 Building up a product tree
Input: n = 2k for some k ∈ N and u0, u1, . . . , un−1 ∈ F .
Output: A product tree T containing polynomials Ti,j for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.

1: for j from 0 to n− 1 do T0,j ← x− uj end for
2: for i from 1 to k do // k = log2 n
3: for j from 0 to 2k−i − 1 do
4: Ti,j ← Ti−1,2j · Ti−1,2j+1
5: end for
6: end for
7: return T

as Tk,0 = ∏n−1
l=0 ml. Also, each Ti,j can be expressed as

Ti,j = (x− u2i·j)(x− u2i·j+1) · · · (x− u2i·j+(2i−1))

= m2i·j ·m2i·j+1 · · ·m2i·j+(2i−1).

This implies that every Ti,j is a product of 2i subsequent linear polynomials from m2i·j to
m2i·j+(2i−1), which satisfies the recurrence with T0,j = mj and Ti,j = Ti−1,2j · Ti−1,2j+1 for
1 ≤ i ≤ k and 0 ≤ j ≤ 2k−i − 1.

Theorem 3.14. Let M(n) be the number of arithmetic operations in F for multiplying
two polynomials where the sum of the degrees of these polynomials is less than 2n. Then
Algorithm 17 does M(n) log2 n + O(n) arithmetic operations in F .

Proof. Let B(n) be the number of arithmetic operations to construct a product tree with n

evaluation points. The first for loop does n negations. After the first for loop, Algorithm 17
runs a nested loop. The outer for loop iterates k = log2 n times and the inner for loop
iterates 2k−i times. In each iteration of the inner for loop, Algorithm 17 multiplies two
polynomials of degree 2i−1. The sum of the degrees of these two polynomials is not less
than 2i but less than 2i+1. It follows that each iteration of the inner loop does at most
M(2i) arithmetic operations in F . Thus,

B(n) ≤ n +
k∑

i=1
2k−iM(2i)

= M (n) + 2M
(

n
2
)

+ 22M
(

n
4
)

+ · · ·+ 2k−1M(2) + n.

By Corollary 2.15, 2M(n
2) ≤M(n). Then we have

B(n) ≤M(n) + M(n) + · · ·+ M(n) + n

= k ·M(n) + n

= M(n) log2 n + O(n).

46

By Theorem 2.14, Algorithm 7 does M(n) = 9n log2 n + O(n) arithmetic operations in F .
With fast multiplication, Algorithm 17 does M(n) log2 n + O(n) = 9n log2

2 n + O(n log n) ∈
O(n log2 n) arithmetic operations in F .

3.2.3 Dividing Down the Product Tree

Let f ∈ F [x] be a polynomial of degree at most n − 1. Using the product tree, we can
evaluate f based on the Chinese Remainder Theorem over F [x]. Let mi = x − ui for all
0 ≤ i ≤ n − 1. Let f mod mi be the remainder of f divided by mi. Since mi is a linear
polynomial, f mod mi is a constant. When we evaluate f at x = ui, we have

f(ui) = q(ui)mi(ui) + r(ui) = r(ui) = q(ui)(ui − ui) + r(ui) = r(ui)

This implies that f mod mi = f(ui). Thus we can evaluate a polynomial at n distinct
points by dividing the polynomial by n linear polynomials. The cost of these divisions is
O(n2) since each division does 3n− 3 arithmetic operations in F by Corollary 3.3. We can
use the product tree instead of n linear divisions because of the following lemma.

Lemma 3.15. Let f, g, h ∈ F [x] where g|h. Then f mod g = (f mod h) mod g.

Proof. Dividing f by h gives
f = q · h + r

for some q, r ∈ F [x] where r = 0 or deg(r) < deg(h). It follows that f mod h = r. Moreover,
let s ∈ F [x] be a polynomial such that h = g · s. Then we have

f mod g = (q · h + r) mod g

= (q · (g · s) + r) mod g

= r mod g

= (f mod h) mod g.

We note that each node in T is a factor of its parent node in T . In other words,

Ti,j = Ti−1,2j · Ti−1,2j+1 =⇒ Ti−1,2j |Ti,j and Ti−1,2j+1|Ti,j .

Using Lemma 3.15, we can divide down the product tree to compute polynomial multipoint
evaluation. This division down the product tree is implemented with a divide-and-conquer
approach.

47

Example 3.16. Assume n = 4. Let f(x) = 1 + 2x + 3x2 + 4x3 ∈ Z97[x]. Given the product
tree in Example 3.13, we want to evaluate f(x) at u0 = 9, u1 = 7, u2 = 5, and u3 = 3. This
algorithm computes f mod T1,0 and f mod T1,1. At this step, we have

r0 = f mod T1,0 = f mod (x− 9)(x− 7) = 46x + 48 and

r1 = f mod T1,1 = f mod (x− 5)(x− 3) = 28x + 58.

(x − 9)(x − 7)(x − 5)(x − 3)
T2,0

(x − 9)(x − 7)
T1,0

x − 9
T0,0

r0 = 74

x − 7
T0,1

r1 = 79

r0 = 46x + 48

(x − 5)(x − 3)
T1,1

x − 5
T0,2

r0 = 4

x − 3
T0,3

r1 = 45

r1 = 28x + 58

Figure 3.2: Dividing down the product tree described in Example 3.16

After computing two remainders, this algorithm makes two recursive calls. One is with input
n
2 = 2, r0, and the tree rooted at T1,0. This recursive call outputs

r0 = 46x + 48 mod T0,0 = 46x + 48 mod (x− 9) = 74 and

r1 = 46x + 48 mod T0,1 = 46x + 48 mod (x− 7) = 79.

The other recursive call is with input n
2 = 2, r0, and the tree rooted at T1,1. It outputs

r0 = 28x + 58 mod T0,2 = 28x + 58 mod (x− 5) = 4 and

r1 = 28x + 58 mod T0,3 = 28x + 58 mod (x− 3) = 45.

Thus, we have f(9) = 74, f(7) = 79, f(5) = 4, and f(3) = 45.

Algorithm 18 computes all f(ui) for 0 ≤ i ≤ n− 1.

The correctness of Algorithm 18 can be shown by induction on k = log2 n. For k = 0, f is a
constant since the input polynomial f is of degree less than n and n = 1. For an inductive
hypothesis, we assume that Algorithm 18 computes the correct values for k = m − 1 ≥ 0.
Now consider when k = m. Assume f ∈ F [x] is a polynomial of degree at most n− 1 where
n = 2m. Let q0 be the quotient of f divided by Tm−1,0. Since Tm−1,0 = ∏n

2 −1
i=0 (x − ui),

48

Algorithm 18 Dividing down the product tree
Input: n = 2k for some k ∈ N, f ∈ F [x] of degree less than n, and the product tree T built

up with u0, u1, . . . , un−1 ∈ F .
Output: f(u0), f(u1), . . . , f(un−1) ∈ F

1: if n = 1 then return f ∈ F end if
2: r0 ← f mod Tk−1,0 // divide f by ∏n

2 −1
i=0 (x− ui)

3: r1 ← f mod Tk−1,1 // divide f by ∏n−1
i= n

2
(x− ui)

4: r0(u0), . . . , r0(u n
2 −1) ← Algorithm 18 Dividing down the product tree (n

2 , r0, the tree
rooted at Tk−1,0)

5: r1(u n
2
), . . . , r1(un−1) ← Algorithm 18 Dividing down the product tree (n

2 , r1, and the
tree rooted at Tk−1,1)

6: return r0(u0), . . . , r0(u n
2 −1), r1(u n

2
), . . . , r1(un−1)

evaluating f at ui for 0 ≤ i ≤ n
2 − 1 gives

f(ui) = q0(ui)Tm−1,0 + r0(ui) = q0(ui) · 0 + r0(ui) = r0(ui).

Also, let q1 be the quotient of f divided by Tm−1,1 = ∏n−1
i= n

2
(x− ui). Similarly,

f(ui) = q1(ui)Tm−1,1 + r1(ui) = q1(ui) · 0 + r1(ui) = r1(ui)

for n
2 ≤ i ≤ n− 1. Then we evaluate r0 and r1 at n

2 = 2m−1 distinct evaluation points using
recursive calls. Correctness follows immediately.

Theorem 3.17. Let M(n) be the number of arithmetic operations in F for polynomial
multiplication of two polynomials where the sum of the degrees of these polynomials less
than 2n. Also, let D(n) be the number of arithmetic operations in F that polynomial division
does with a dividend polynomial of degree 2n−1 and a divisor polynomial of degree n. Then
Algorithm 18 does 11

3 M(n) log2 n+O(n log n) arithmetic operations in F with input f ∈ F [x]
of degree less than n.

Proof. Let C(n) be the number of arithmetic operations in F that Algorithm 18 does with
input polynomial f of degree at most n− 1. When n = 1, no operations occur, and hence,
C(1) = 0. Otherwise, Algorithm 18 does two divisions by Tk−1,0 and Tk−1,1 first. Both Tk−1,0

and Tk−1,1 are of degree n
2 , so each division does at most D(n

2) arithmetic operations in F .
Then Algorithm 18 makes two recursive calls of size n

2 with r0 and r1 of degree at most
n
2 − 1. This implies that

C(1) = 0

C(n) ≤ 2D(n
2) + 2C(n

2) for n > 1.

49

It follows that
C(n) ≤ 2D

(
n
2
)

+ 4D
(

n
4
)

+ 8D
(

n
8
)

+ · · ·+ 2kD(1).

Since 2M(n
2) ≤M(n) by Corollary 2.15, it follows that 2D(n

2) ≤ D(n). As a result,

C(n) ≤ D(n) + D(n) + · · ·+ D(n)

= kD(n) = D(n) log2 n.

From Theorem 3.12, fast division does D(n) = 11
3 M(n) + O(n) arithmetic operations in F

with a dividend of degree 2n− 1 and a divisor of degree n. Thus,

C(n) ≤ D(n) log2 n = 11
3 M(n) log2 n + O(n log n).

With fast multiplication, M(n) = 9n log2 n + O(n). Thus, C(n) = 33n log2
2 n + O(n log n) ∈

O(n log2 n) arithmetic operations in F .

Remark 3.18. The cost of dividing down the product tree is 11
3 times as expensive as the

cost of building up the product tree even with the optimizations to polynomial divisions.

3.2.4 Fast Multipoint Evaluation

We can combine the two procedures above: constructing a product tree and dividing down
the product tree to obtain Borodin and Munro’s fast multipoint evaluation algorithm [2].

Algorithm 19 Fast multipoint evaluation
Input: n = 2k for some k ∈ N, f ∈ F [x] of degree less than n, and u0, u1, . . . , un−1 ∈ F .
Output: f(u0), f(u1), . . . , f(un−1) ∈ F

1: Construct the product tree T using Algorithm 17 with inputs n, and u0, u1, . . . , un−1
2: Compute the evaluations f(u0), f(u1), . . . , f(un−1) using Algorithm 18 Dividing down

the product tree with inputs n, f , and T
3: return f(u0), f(u1), . . . , f(un−1)

We note that the root Tk,0 = ∏n−1
i=0 (x − ui) of the product tree has degree n. Since Algo-

rithm 19 takes the input f of degree at most n− 1, the root Tk,0 is not used for polynomial
divisions. However, this root polynomial will later be used for the fast transposed Vander-
monde solver algorithm. Therefore, we build the entire product tree with the root polynomial
Tk,0 in this algorithm.

Theorem 3.19. Let M(n) be the number of arithmetic operations in F for multiplying two
polynomials where the sum of the degrees of these polynomials is less than 2n. Also, let D(n)
be the number of arithmetic operations in F that polynomial division does with a dividend

50

polynomial of degree 2n− 1 and a divisor polynomial of degree n. Then Algorithm 19 does
14
3 M(n) log2 n + O(n log n) arithmetic operations in F .

Proof. Let E(n) be the number of arithmetic operations in F for Algorithm 19. Algorithm 19
calls both Algorithm 17 and Algorithm 18 once. Let B(n) be the cost of building a product
tree with n evaluation points and C(n) be the cost of dividing down the product tree with
a polynomial degree less than n. It follows that E(n) = B(n) + C(n).

Using fast multiplication and fast division, B(n) = M(n) log2 n + O(n) by Theorem 3.14.
Likewise, by Theorem 3.17, C(n) = 11

3 M(n) log2 n + O(n log n). Then we have

E(n) = B(n) + C(n)

≤M(n) log2 n + O(n) + 11
3 M(n) log2 n + O(n log n)

= 14
3 M(n) log2 n + O(n log n).

By Theorem 2.14, fast multiplication with two polynomials where the sum of the degrees
of these polynomials is at most 2n− 1 does M(n) = 9n log2 n + O(n) arithmetic operations
in F . This implies that Algorithm 19 does 42n log2

2 n + O(n log n) ∈ O(n log2 n) arithmetic
operations in F .

3.2.5 Optimizing Fast Multipoint Evaluation

We discuss our optimized fast multipoint evaluation algorithm based on Algorithm 19.
Algorithm 19 calls Algorithm 17 Building up a product tree first. Algorithm 17 starts from
the leaves of the tree. At the i-th step, this algorithm multiplies a pair of polynomials of
degree 2i−1, and there exist n

2i = 2k−i pairs of such polynomials. Since the product of two
polynomials is a polynomial of degree 2i, fast multiplication uses the FFT of size 2i+1. To
improve efficiency, we cut down the size of the FFTs. The following simple optimization will
speed up the construction of the product tree by approximately a factor of 2.

Consider Ti−1,2j and Ti−1,2j+1 for some j. We can write these two polynomials as

Ti−1,2j = a0 + a1x + · · ·+ a2i−1−1x2i−1−1 + x2i−1

Ti−1,2j+1 = b0 + b1x + · · ·+ b2i−1−1x2i−1−1 + x2i−1

51

Then we can compute Ti,j by separating the leading term and the remaining terms.

Ti,j = Ti−1,2j · Ti−1,2j+1

=
(
a0 + a1x + · · ·+ a2i−1−1x2i−1−1 + x2i−1) · (b0 + b1x + · · ·+ b2i−1−1x2i−1−1 + x2i−1)

=
(
(a0 + a1x + · · ·+ a2i−1−1x2i−1−1) + x2i−1) · ((b0 + b1x + · · ·+ b2i−1−1x2i−1−1) + x2i−1)

Let A, B ∈ F [x] be a polynomial such that

A = a0 + a1x + · · ·+ a2i−1−1x2i−1−1,

B = b0 + b1x + · · ·+ b2i−1−1x2i−1−1.

It follows that

Ti,j = (A + x2i−1) · (B + x2i−1) = A ·B + (A + B) · x2i−1 + x2i
.

The leading term of every polynomial Ti,j in the product tree will be x2i for 0 ≤ i ≤ k,
and its coefficient is 1. We do not have to compute the leading term of Ti,j , and hence, we
do not store all the leading terms of polynomials in the product tree. Also, we are able to
compute (A + B) · x2i−1 by adding and shifting coefficients in A and B, which only takes
O(n) arithmetic operations in F . Then we have one polynomial multiplication of A·B where
A and B are of degree 2i−1 − 1. Thus, we can use one fast multiplication with the FFT of
size 2i instead of 2i+1.

Algorithm 20 modifies Algorithm 17 to be recursive.

Algorithm 20 Recursive building up a product tree
Input: n = 2k for some k ∈ N and u0, u1, . . . , un−1 ∈ F .
Output: A product tree T containing polynomials Ti,j for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.

1: if n = 1 then return −uj end if
2: A tree rooted at Tk−1,0 ← Algorithm 20 with inputs 2k−1 and u0, . . . , u n

2 −1 B(n
2)

3: A tree rooted at Tk−1,1 ← Algorithm 20 with inputs 2k−1 and u n
2
, . . . , un−1B(n

2)
4: A← Tk−1,0 // A = ∑n

2 −1
i=0 aix

i

5: B ← Tk−1,1 // B = ∑n
2 −1
i=0 bix

i

6: C ← A ·B using fast multiplication . M(n
2)

7: D ← A + B
8: Tk,0 ← C + D · x2k−1

9: return T

Theorem 3.20. Algorithm 20 does 1
2M(n) log2 n + O(n log n) arithmetic operations in F ,

where M(n) is the number of arithmetic operations in F for multiplying two polynomials
where the sum of the degrees of these polynomials is less than 2n.

52

Proof. Let B(n) be the number of arithmetic operations in F for Algorithm 20 with n

distinct evaluation points. B(1) = 1 for the negation in line 1. For n > 1, two recursive calls
in lines 2 and 3 cost 2B(n

2). In line 6, Algorithm 20 does polynomial multiplication where
the sum of the degrees of two polynomials is at most n−2. It takes at most M(n

2) arithmetic
operations in F to multiply two polynomials. Also, Algorithm 20 does O(n) additions in
lines 7 and 8. Therefore,B(1) = 1

B(n) = 2B(n
2) + M(n

2) + O(n) for n > 1.

By Corollary 2.15, this recurrence relation results in

B(n) = M
(

n
2
)

+ 2M
(

n
4
)

+ · · ·+ 2k−1M (1) + kO(n) + n

≤ 1
2 (M(n) + M(n) + · · ·+ M(n)) + O(n log n)

= 1
2 (k ·M(n)) + O(n log n)

= 1
2M(n) log2 n + O(n log n) ∈ O(M(n) log n).

Now we compare the execution time for the classical evaluation algorithm and Algorithm 19
Fast evaluation. We will work over the field F = Zp where p = 3 · 230 + 1. Let n be the
number of evaluation points where n = 2k for some k ∈ N. We generated a polynomial
f ∈ F [x] of degree n − 1 to be evaluated by randomly choosing its coefficients from [0, p).
Also, the distinct evaluation points u0, u1, . . . , un−1 are randomly chosen from [0, p).

n Classical evaluation ratio Fast evaluation ratio
26 0.043 - 0.054 -
27 0.161 3.74 0.130 2.41
28 0.498 3.09 0.350 2.69
29 2.003 4.02 0.734 2.10
210 8.808 4.39 2.149 2.93
211 34.94 3.96 6.223 2.90
212 132.1 3.78 16.16 2.60
213 509.8 3.85 43.36 2.68
214 2098.9 4.11 98.06 2.26
215 7942.0 3.78 252.8 2.58
216 34001.6 4.28 562.8 2.23

Table 3.2: Timings in ms for classical evaluation and fast evaluation with a polynomial of
degree n− 1 at n distinct evaluation points

53

The columns labelled "ratio" contain the values of execution time with n divided by execu-
tion time with n

2 . Table 3.2 shows that the execution time for the classical O(n2) algorithm
increases by a factor of 4 as n is doubled. Moreover, Table 3.2 shows that for n ≤ 64, clas-
sical evaluation using Horner’s method is faster than Algorithm 19 Fast evaluation. When
n > 64, Algorithm 19 is much faster, and the gap between two polynomial multipoint evalu-
ation algorithms increases as n grows. By reflecting on this result, we change all the required
algorithms for fast multipoint evaluation, as shown below.

Algorithm 21 Optimized building up a product tree (BUPT)
Input: n = 2k for some k ∈ N and [u0, u1, . . . , un−1] ∈ F n.
Output: A modified product tree T containing polynomials Ti,j for 6 ≤ i ≤ k and 0 ≤ j <

2k−i

1: if n ≤ 64 then // Tk,0 = ∏n−1
i=0 (x− ui)− xn

2: M ← x− u0
3: for i from 1 to n− 1 do . O(n2)
4: M ←M · (x− ui)
5: end for
6: Tk,0 ←M − xn

7: return Tk,0
8: end if
9: A tree rooted at Tk−1,0 ← BUPT(2k−1, [u0, . . . , u n

2 −1]) . B(n
2)

10: A tree rooted at Tk−1,1 ← BUPT(2k−1, [u n
2
, . . . , un−1]) . B(n

2)
11: A← Tk−1,0 // A = ∑n

2 −1
i=0 aix

i

12: B ← Tk−1,1 // B = ∑n
2 −1
i=0 bix

i

13: C ← A ·B using fast multiplication . M(n
2)

14: D ← A + B
15: Tk,0 ← C + D · x2k−1

16: return T

Algorithm 22 Optimized Dividing down the product tree (DDPT)
Input: n = 2k for some k ∈ N, f ∈ F [x] of degree less than n, and the product tree T built

up with ui for all 0 ≤ i ≤ n− 1.
Output: f(u0), f(u1), . . . , f(un−1) ∈ F

1: if n ≤ 64 then
2: for i from 0 to n− 1 do
3: f(ui)← Call classical polynomial evaluation with inputs f and ui O(n)
4: end for
5: return f(u0), f(u1), . . . , f(un−1)
6: end if
7: r0 ← f mod Tk−1,0 . D(n

2)
8: r1 ← f mod Tk−1,1 . D(n

2)
9: C ← DDPT(n

2 , r0, the tree rooted at Tk−1,0) // C = [r0(u0), . . . , r0(u n
2 −1)] C(n

2)
10: D ← DDPT(n

2 , r1, the tree rooted at Tk−1,1) // D = [r1(u n
2
), . . . , r1(un−1)] C(n

2)
11: return r0(u0), . . . , r0(u n

2 −1), r1(u n
2
), . . . , r1(un−1)

54

Algorithm 21 computes ∏n−1
i=0 (x − ui) − xn for n ≤ 64. In line 2, it takes one negation to

initialize M . In the for loop, each iteration does one negation, 2i multiplications, and i− 1
additions in F . Hence, each iteration does 3i arithmetic operations in F . Then it takes

1 +
n−1∑
i=1

3i = 3
(

n(n− 1)
2

)
+ 1 = 3

2n2 − 3
2n + 1 ∈ O(n2)

to compute Tk,0 when n ≤ 64. On the other hand, for n > 64, Algorithm 21 constructs the
modified product tree using two recursive calls like Algorithm 20.

Similarly, in Algorithm 22 DDPT, we implement the classical evaluation algorithm using
Horner’s method for n ≤ 64. As a result, our DDPT does not divide down further. Horner’s
method does O(n2) arithmetic operations in F for polynomial multipoint evaluation with a
polynomial of degree n− 1 at n distinct points. When n > 64, Algorithm 22 DDPT makes
two recursive calls after computing two fast divisions as Algorithm 18 behaves.

Algorithm 23 Optimized fast multipoint evaluation (FastEval)
Input: n = 2k for some k ∈ N, f ∈ F [x] of degree less than n, and u0, u1, . . . , un−1 ∈ F .
Output: f(u0), f(u1), . . . , f(un−1) ∈ F

1: if n ≤ 64 then
2: for i from 0 to n− 1 do . O(n2)
3: f(ui)← Call classical polynomial evaluation with inputs f and ui

4: end for
5: return f(u0), f(u1), . . . , f(un−1)
6: end if
7: T ← BUPT(n, u0, u1, . . . , un−1) . B(n)
8: f(u0), f(u1), . . . , f(un−1)← DDPT(n,f , T). .C(n)
9: return f(u0), f(u1), . . . , f(un−1)

Algorithm 23 executes the classical evaluation algorithm using Horner’s method for n ≤ 64.
Otherwise, Algorithm 23 calls our BUPT and DDPT algorithms to evaluate a polynomial
of degree n− 1 at n distinct points.

Theorem 3.21. Let M(n) be the number of arithmetic operations in F for multiplying two
polynomials where the sum of the degrees of these polynomials is less than 2n. Also, let D(n)
be the number of arithmetic operations in F that polynomial division does with a dividend
polynomial of degree 2n− 1 and a divisor polynomial of degree n. For n > 64, Algorithm 23
does 25

6 M(n) log2 n + O(n log n) arithmetic operations in F .

Proof. Let E(n) be the number of arithmetic operations in F for Algorithm 23 when n > 64.
Algorithm 23 calls both Algorithm 21 which costs B(n) and Algorithm 22 which costs C(n)
once. It follows that E(n) = B(n) + C(n). B(n) = 1

2M(n) log2 n + O(n) by Theorem 3.14

55

and C(n) = 11
3 M(n) log2 n + O(n log n) by Theorem 3.17. Then we have

E(n) = 25
6 M(n) log2 n + O(n log n).

Since fast multiplication does M(n) = 9n log2 n + O(n) arithmetic operations in F by
Theorem 2.14, Algorithm 23 does 75

2 n log2
2 n+O(n log n) ∈ O(n log2 n) arithmetic operations

in F .

3.3 Fast Transposed Vandermonde Solver

3.3.1 Zippel’s Transposed Vandermonde Solver

Let a ∈ F [x] be a polynomial such that a(x) = a0 + a1x + · · · + an−1xn−1 with unknown
coefficients a0, a1, . . . , an−1. Let α ∈ F be αi ̸= αj for all i ̸= j and satisfy bi = a(αi−1) for
1 ≤ i ≤ n. Let ui = αi−1 for 1 ≤ i ≤ n. Then we have

bi = a(αi−1) =
n−1∑
j=0

aj(αi−1)j =
n−1∑
j=0

aj(αj)i−1 =
n∑

j=1
aj(αj−1)i−1 =

n∑
j=1

aj(uj)i−1.

We express these equations as Ua = b, where

U =

1 1 · · · 1
u1 u2 · · · un

...
...

...
un−1

1 un−1
2 · · · un−1

n

 , a =

a0

a1
...

an−1

 , and b =

b1

b2
...

bn

Ua = b is a transposed Vandermonde system of equations. In 1990, Zippel presented an
O(n2) algorithm to solve a transposed Vandermonde system of equations [15]. We present
Zippel’s method and construct Kaltofen and Yagati’s fast method from Zippel’s method.

Lemma 3.22. Let V be a n× n Vandermonde matrix such that

V =

1 u1 · · · un−1

1
1 u2 · · · un−1

2
...

...
...

1 un · · · un−1
n

 .

Then
det(V) =

∏
1≤i<j≤n

(uj − ui).

56

Proof. See the proof in [5].

Corollary 3.23. Let U be a transposed Vandermonde matrix of size n× n. Then

det(U) ̸= 0 if and only if ui ̸= uj , ∀i ̸= j.

Proof. (⇐) Assume all u1, u2, . . . , un are distinct. Consider V = U⊤, which is a Vander-
monde matrix. According to Lemma 3.22, det(V) = ∏

1≤i<j≤k(uj − ui). Since ui ̸= uj for
all i ̸= j, det(V) ̸= 0. Due to the fact that det(V) = det(V ⊤), det(U) cannot be zero as
well.

(⇒) Assume det(U) ̸= 0. Then det(U) = det(U⊤) = det(V) ̸= 0. It follows that det(V) =∏
1≤i<j≤k(uj − ui) ̸= 0. Therefore, ui ̸= uj for all i ̸= j.

By Corollary 3.23, a transposed Vandermonde matrix U must have a unique inverse. Let

U−1 =

s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n

...
...

...
sn,1 sn,2 · · · sn,n

Then we can compute a by solving

a = U−1b.

To compute U−1, let pi ∈ F [x] be a polynomial such that pi(x) = si,1 +si,2x+ · · ·+si,nxn−1

for 1 ≤ i ≤ n. From the fact that U−1U = I,

s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n

...
...

...
sn,1 sn,2 · · · sn,n

1 1 · · · 1
u1 u2 · · · un

...
...

...
un−1

1 un−1
2 · · · un−1

n

 =

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

U−1 U I

Each entry Ii,j in I is computed by multiplying the i-th row of U−1 by the j-th column of
U . Observe that

Ii,j =
[
si,1 si,2 · · · si,n

]

1
uj

...
un−1

j

 = si,1 · 1 + si,2 · uj + · · ·+ si,n · un−1
j = pi(uj).

57

Since I is the n× n identity matrix,

pi(uj) =

1 if i = j

0 otherwise.

To obtain the polynomials pi(x), we compute M(x) ∈ F [x] of degree n by

M(x) = (x− u1)(x− u2) · · · (x− un).

Zippel calls M(x) the master polynomial. Let qi(x) ∈ F [x] of degree n− 1 be computed by

qi(x) = M(x)
x− ui

=
∏
j ̸=i

(x− uj)

for all 1 ≤ i ≤ n. Each division to obtain qi costs 3n arithmetic operations in F by
Corollary 3.3. Then we have qi(uj) = 0 if i ̸= j

qi(uj) ̸= 0 otherwise

Since pi(ui) = 1, we can set pi(x) as

pi(x) = qi(ui)−1 · qi(x)

for 1 ≤ i ≤ n. Now, we have all the coefficients of pi(x). Consequently, we obtain U−1. Then
we can solve the transposed Vandermonde system of equations Ua = b.

Example 3.24. Assume F = Z11. Let U be a transposed Vandermonde matrix made up
of u1 = 1, u2 = 2, and u3 = 3, and b = [4, 5, 6].

1 1 1
1 2 3
1 4 9

a0

a1

a2

 =

4
5
6

U a b

To solve this transposed Vandermonde system of equations, we compute the master poly-
nomial M first.

M(x) = (x− 1)(x− 2)(x− 3) mod 11 = x3 + 5x2 + 5.

58

Now, all qis are obtained by polynomial division.

q1(x) = M(x)
x− 1 = x2 + 6x + 6

q2(x) = M(x)
x− 2 = x2 + 7x + 3

q3(x) = M(x)
x− 3 = x2 + 8x + 2

Then we evaluate qis at x = ui for all i = 1, 2, 3.

q1(1) = 2, q2(2) = 10, q3(3) = 2

Computing the inverse of qi(ui) gives

c1 = q1(1)−1 = 6, c2 = q2(2)−1 = 10, c3 = q3(3)−1 = 6

Now we can obtain pi by computing ci · qi for i = 1, 2, 3.

p1 = c1 · q1 = 6(x2 + 6x + 6) = 3 + 3x + 6x2

p2 = c2 · q2 = 10(x2 + 7x + 3) = 8 + 4x + 10x2

p3 = c3 · q3 = 6(x2 + 8x + 2) = 1 + 4x + 6x2

Thus,

U−1 =

3 3 6
8 4 10
1 4 6

The dot product of the coefficients of pi and b gives a0, a1, and a2.

a0 = 3 · 4 + 3 · 5 + 6 · 6 mod 11 = 8

a1 = 8 · 4 + 4 · 5 + 10 · 6 mod 11 = 2

a2 = 1 · 4 + 4 · 5 + 6 · 6 mod 11 = 5

Therefore, a = [8, 2, 5].

Zippel’s transposed Vandermonde solver is presented in Algorithm 24.

Theorem 3.25. Algorithm 24 does O(n2) arithmetic operations in F

Proof. Let V (n) be the number of arithmetic operations in F for Algorithm 24 Zippel’s
transposed Vandermonde solver. There are n negations to compute −u1,−u2, . . . ,−un. In
the for loop in line 2, M is the polynomial of degree i at the i−th iteration. Then M

is multiplied by a linear polynomial at each iteration, which does i multiplications and i

59

Algorithm 24 Zippel’s transposed Vandermonde solver
Input: n, u1, u2, . . . , un ∈ F which compose the transposed Vandermonde matrix U , and

b = [b1, b2, . . . , bn] ∈ F n

Output: a = [a0, a1, . . . , an−1] ∈ F n satisfying V a = b
1: M ← x− u1
2: for i from 1 to n− 1 do // M = ∏n

i=1(x− ui) . O(n2)
3: M ←M · (x− ui+1)
4: end for
5: for i from 1 to n do
6: q ←M/(x− ui) . O(n)
7: c← q(ui) . O(n)
8: if c = 0 then return ERROR "ui’s are not distinct" end if
9: c← c−1

10: p← c · q // p = ∑n−1
j=0 pjxj . O(n)

11: P ← [p0, p1, . . . , pn−1]
12: ai−1 ← Compute the dot product of P · b . O(n)
13: end for
14: return [a0, a1, . . . , an−1]

additions. Since this for loop iterates n − 1 times, it takes 2 + 4 + · · · + 2(n − 1) = n2 − n

arithmetic operations to compute M .

After obtaining M , in the second for loop, there is one division of M by (x−ui) to compute
q at each iteration, which does 2n arithmetic operations in F by Corollary 3.3. Also, using
Horner’s method, it takes n− 1 additions and n− 1 multiplications to evaluate q at x = ui

since deg(q) = n − 1. Only one arithmetic operation is performed to compute the inverse
of q(ui). Moreover, q(ui)−1 · q(x) takes n multiplications. Lastly, the dot product does n

multiplications and n−1 additions. Hence, each iteration of the second loop costs 2n+2n−
2 + 1 + n + 2n− 1 = 7n− 2 arithmetic operations in F . This for loop iterates n times. As
a consequence,

V (n) = n + n2 − n + n(7n− 2) = 8n2 − 2n ∈ O(n2).

Lemma 3.26. Algorithm 24 can be implemented using space for O(n) elements of F

Proof. Algorithm 24 needs space to store the master polynomial M of degree n, which takes
n + 1 words. Also, in the second for loop, the algorithm requires space to store polynomial
q of degree n− 1. It takes n words to store q. The array for storing q can be reused for the
other iterations. Then q can be evaluated at ui and multiplied by q(ui) using O(1) elements
of F . Thus, Algorithm 24 uses space for n + 1 + n + O(1) = 2n + 1 + O(1) ∈ O(n) elements
of F .

60

3.3.2 Fast Transposed Vandermonde Solver

Although Zippel’s algorithm is faster than Gaussian elimination, its cost is quadratic in
time. This implies that it takes a large amount of time when n is very large. Kaltofen
and Yagati presented a faster version of the transposed Vandermonde solver [8]. Kaltofen
and Yagati’s algorithm costs O(M(n) log n) arithmetic operations in F , where M(n) is the
number of arithmetic operations in F for polynomial multiplication where the sum of the
degrees of two polynomials is less than 2n. However, O(n log n) space is needed as their
algorithm needs to construct the product tree for polynomial multipoint evaluation.

We know that
pi(x) = qi(ui)−1 · qi(x) = si,1 + si,2x + · · ·+ si,nxn−1.

from Zippel’s algorithm. It follows that

a = U−1b =

∑n

j=1 s1,jbj∑n
j=1 s2,jbj

...∑n
j=1 sn,jbj

 .

We define
D = bnx + bn−1x2 + · · ·+ b1xn ∈ F [x]. (3.5)

Consider

pi ·D = (si,1 + si,2x + · · ·+ si,nxn−1)(bnx + bn−1x2 + · · ·+ b1xn).

Observe that the coefficient of xn in pi ·D is si,1 · b1 + si,2 · b2 + · · ·+ si,n · bn which equals
ai−1 for 1 ≤ i ≤ n. To compute this, we can rewrite pi(x) as

pi(x) = qi(ui)−1 · qi(x) = qi(ui)−1
(

M(x)
x− ui

)
=
(

1∏
j ̸=i(ui − uj)

)(
M(x)
x− ui

)
= M(x)

ri · (x− ui)

where ri = ∏
j ̸=i(ui − uj). This implies that

M(x) = ri · (x− ui) · pi(x).

Suppose we compute

H(x) = M ·D = h0x + h1x2 + · · ·+ h2n−2x2n−1 + h2n−1x2n.

61

It follows that

H(x)
x− ui

= M ·D
x− ui

= ri · (x− ui) · pi(x) ·D
x− ui

= ri · pi(x) ·D.

Thus, the coefficient of xn in H(x)
x−ui

is ri · ai−1.

In general, when we compute H(x)
x−z , the coefficient of xi in the quotient is of the form

vi(z) = hi + hi+1z + · · ·+ h2n−1z2n−1−i

It follows that the coefficient of xn in this quotient is

vn(z) = hn + hn+1z + · · ·+ h2n−1zn−1. (3.6)

This implies that for 1 ≤ i ≤ n,
vn(ui) = ri · ai−1.

Now, we need to compute ri. Recall that qi = M(x)
x−ui

. The derivative of M(x) can be expressed
as

M ′(x) = (x− ui)q′
i(x) + (x− ui)′qi(x) = (x− ui)q′

i(x) + qi(x).

Then
M ′(ui) = (ui − ui)q′

i(ui) + qi(ui) = qi(ui) =
∏
j ̸=i

(ui − uj) = ri.

Hence, ri can be obtained by evaluating M ′(x) at x = ui for all i. It follows that

ai−1 = vn(ui)
ri

= vn(ui)
M ′(ui)

for 1 ≤ i ≤ n. Algorithm 25 computes ai−1 this way.

We present an example for Algorithm 25.

Example 3.27. Suppose F = Z17. Let U be a transposed Vandermonde matrix made up
of 1, 2, 3, and 4, and b = [5, 6, 7, 8].

1 1 1 1
1 2 3 4
1 4 9 16
1 8 10 13

a0

a1

a2

a3

 =

5
6
7
8

U a b

62

We can compute the product tree. From this tree, we have

M(x) = T2,0 = 7 + x + x2 + 7x3 + x4.

Then we set D as

D(x) = b4x + b3x2 + b2x3 + b1x4 (See (3.5))

= 8x + 7x2 + 6x3 + 5x4.

H is computed by

H(x) = M ·D = 5x + 6x2 + 6x3 + 2x4 + 3x6 + 7x7 + 5x8.

We can obtain the coefficient of x4 of H
x−z by reading off the coefficients from H as stated

in (3.6). It follows that
Q(z) = 3z + 7z2 + 5z3.

By dividing down the product tree, we have

v1 = Q(1) = 15, v2 = Q(2) = 6, v3 = Q(3) = 3, v4 = Q(4) = 2.

Now, we compute M ′ = 1 + 2x + 4x2 + 4x3. Using dividing down the product tree again,
we obtain

r1 = M ′(1) = 11, r2 = M ′(2) = 2, r3 = M ′(3) = 15, r4 = M ′(4) = 6.

Once we divide vi by ri for 1 ≤ i ≤ n, we have

a0 = v1/r1 = 15/11 mod 17 = 6

a1 = v2/r2 = 6/2 mod 17 = 3

a2 = v3/r3 = 3/15 mod 17 = 7

a3 = v4/r4 = 2/6 mod 17 = 6.

Thus, we have the vector a = [6, 3, 7, 6].

This motivates Algorithm 25 with our BUPT and DDPT algorithms.

Theorem 3.28. Let M(n) be the number of arithmetic operations in F for multiplying two
polynomials where the sum of the degrees of these polynomials is less than 2n. Algorithm 25
does at most 53

6 M(n) log2 n + O(n log n) arithmetic operations in F .

Proof. Let V (n) be the total number of arithmetic operations in F that Algorithm 25 does
to solve the n×n transposed Vandermonde system. Algorithm 25 calls Algorithm 21 BUPT

63

Algorithm 25 Optimized fast transposed Vandermonde solver(FastTVS)
Input: n = 2k for some k ∈ N, u1, u2, . . . , un ∈ F , which compose the transposed Vander-

monde matrix U and b = [b1, b2, . . . , bn] ∈ F n

Output: a = [a0, a1, . . . , an−1] ∈ F n satisfying Ua = b
1: T ← BUPT(n, u1, u2, . . . , un) // T is the modified product treeB(n)
2: M ← Tk,0 from T // M = ∏n

i=1(x− ui)
3: D ← bn + bn−1x + · · ·+ b1xn−1

4: H ← (M ·D) · x using fast multiplication // H = ∑2n−1
i=0 hix

i+1 M(n)
5: Q←

∑n−1
i=0 hn+ix

i // ∑n−1
i=0 hn+iz

i is the coefficient of xn in H/(x− z)
6: q1, q2, . . . , qn ← DDPT(n,Q,T) // qi = Q(ui) . C(n)
7: Differentiate M . O(n)
8: r1, r2, . . . , rn ← DDPT(n,M ′, T) // ri = M ′(ui) . C(n)
9: for i from 1 to n do .O(n)

10: t← r−1
i

11: ai−1 ← t · qi

12: end for
13: return [a0, a1, . . . , an−1]

of size n once, which performs B(n) arithmetic operations in F . Also, Algorithm 25 calls
Algorithm 22 DDPT of size n twice which does 2C(n) arithmetic operations in F . To obtain
H in line 4, one polynomial multiplication of M of degree n and D of degree n− 1 is done,
which costs M(n). In line 7, computing M ′ does n multiplications in F . From line 9 to 12,
it takes n multiplications and n inverses to compute r−1

i and qi · r−1
i for 1 ≤ i ≤ n. Thus,

the total number of arithmetic operations in F for our FastTVS is

V (n) ≤ B(n) + 2C(n) + M(n) + 3n.

Since we use our BUPT algorithm and DDPT algorithm, B(n) = 1
2M(n) log2 n+O(n log n)

and C(n) = D(n) log2 n by Theorem 3.14 and Theorem 3.17. It follows that

V (n) = 1
2M(n) log2 n + O(n log n) + 2D(n) log2 n + M(n) + 3n.

With our fast division, D(n) = 11
3 M(n) + O(n) according to Theorem 3.12. This implies

that

V (n) = 1
2M(n) log2 n + O(n log n) + 2

(11
3 M(n) + O(n)

)
log2 n + M(n) + 3n

= 1
2M(n) log2 n + O(n log n) + 22

3 M(n) log2 n + O(n log n) + M(n) + 3n

≤ 53
6 M(n) log2 n + O(n log n).

64

If we use fast multiplication, M(n) = 9n log2 n + O(n). Thus,

V (n) ≤ 53
6 (9n log2 n + O(n)) log2 n + O(n log n) = 159

2 n log2
2 n + O(n log n) ∈ O(n log2 n).

The following is the table of algorithms presented in Chapter 3.

Operation Algorithm Complexity Ref.

Newton inversion to
order n

Algorithm 12 Newton inver-
sion

3M(n) + O(n) [14]

Algorithm 13 Newton inver-
sion with the middle product

2M(n) + O(n) [6]

Algorithm 14 NIwithMP 5
3M(n) + O(n)

Polynomial division of
degree 2n− 1 by n

Algorithm 11 Classical divi-
sion

O(n2) [14]

Algorithm 15 Fast division 11
3 M(n) + O(n)

Algorithm 16 FastDiv 11
3 M(n) + O(n)

Building a product
tree with n points

Algorithm 17 Building up a
product tree

M(n) log2 n + O(n) [2]

Algorithm 20 Recursive build-
ing up a product tree

1
2M(n) log2 n + O(n log n)

Algorithm 21 BUPT 1
2M(n) log2 n + O(n log n)

Dividing down the
product tree with n
points

Algorithm 18 Dividing down
the product tree

11
3 M(n) log2 n + O(n log n) [2]

Algorithm 22 DDPT 11
3 M(n) log2 n + O(n log n)

Polynomial multipoint
evaluation with n
points

Horner’s method 2n2 − 2n [14]
Algorithm 19 Fast multipoint
evaluation

14
3 M(n) log2 n + O(n log n) [2]

Algorithm 23 FastEval 25
6 M(n) log2 n + O(n log n)

n× n Transposed
Vandermonde solver

Algorithm 24 Zippel’s trans-
posed Vandermonde solver

8n2 − 2n [15]

Algorithm 25 FastTVS 53
6 M(n) log2 n + O(n log n)

Table 3.3: The list of algorithms in Chapter 3 and complexity in the number of arithmetic
operations in F

65

Chapter 4

Benchmarks

In Chapter 3, we gave the number of arithmetic operations for every fast algorithm. We
want to demonstrate that our optimized fast algorithms are much faster than the classical
algorithms in practice. The implementation of the classical algorithms is from Monagan’s
libraries gcd4.c and VSolve3.c. We used the prime p = 3·230+1 for testing polynomials over
a field Zp. For transposed Vandermonde solvers, we also used the prime p = 116 · 255 + 1,
which is 62-bit. We recorded the timings of both algorithms using clock() function of
time.h library in C. Then we converted the values from clock() to milliseconds by dividing
by 1000. We implemented all the algorithms discussed in Chapter 3 on the computer with
32 GB of RAM and one AMD FX8350 8-core CPU at 4.2GHz.

4.1 Fast Division

Chapter 3 shows that our optimized fast division (FastDiv) does O(n log n) arithmetic
operations in F . We use poldiv64s in gcd4.c library for the classical division, which does
O(n2) arithmetic operations in F . During our optimized fast division, we also record the
time for our NIwithMP. Table 4.1 shows the time for Monagan’s poldiv64s and our FastDiv,
where n is the degree of divisor polynomial and 2n−1 is the degree of dividend polynomial.
All the dividend and divisor polynomials’ coefficients are chosen randomly from [0, p).

The first column labelled "n" represents the degree of the divisor. The second column labelled
"Classical division" contains the time it took to execute the classical division algorithm. The
third column labelled "ratio" indicates the ratio computed as

ratio = run time of division algorithm with n

run time of division algorithm with n
2

from the classical division. The fourth column contains the time spent in our Newton inver-
sion with the middle product (NIwithMP) when our FastDiv is executed. Like the second

66

and third columns, the fifth and sixth columns are the time for FastDiv and the ratio for
our FastDiv. The following column labelled "speed up" indicates the value

speed up = Classical division time
FastDiv time .

The last column labelled "Maple" presents the execution time for Maple’s division routine
Rem, which computes remainder for Zp[x] [10].

n
Classical
division ratio NIwithMP FastDiv ratio speed

up Maple

26 0.0085 - - 0.0085 - 1.00 0.1977
27 0.0273 3.21 - 0.0270 3.17 1.01 0.3330
28 0.0930 3.41 - 0.0920 3.41 1.01 0.6933
29 0.3356 3.60 - 0.3355 3.64 1.00 1.6250
210 1.3240 3.94 0.5310 1.1998 3.57 1.10 3.9531
211 5.2450 3.96 1.081 2.6130 2.17 2.00 9.4062
212 20.454 3.90 2.364 5.8370 2.23 3.50 22.062
213 81.311 3.98 5.015 12.337 2.11 6.59 50.250
214 321.84 3.96 10.654 26.598 2.16 12.10 115.75
215 1,293.5 4.02 23.149 56.460 2.12 22.91 275.50
216 5,237.0 4.05 49.806 122.07 2.16 42.90 646.00

Table 4.1: CPU timings in ms for polynomial divisions over Zp of degree 2n− 1 divided by
n where p = 3 · 230 + 1

Our FastDiv outperforms the classical division algorithm for n ≥ 210 = 1024. When the
degree of the divisor is 216 = 65, 536, our FastDiv executes approximately 43 times faster
than the classical algorithm. For n ≤ 512, our FastDiv algorithm executes the classical
division algorithm instead. Consequently, FastDiv increases by a factor of around 3.5 as the
degrees of the dividend and divisor are doubled for n ≤ 512. Moreover, the time for the
classical division algorithms increases by a factor approaching 4 as we double the degrees
of dividend and divisor. This indicates that the classical division algorithm is quadratic.

4.2 Fast Multipoint Evaluation

We observed that our fast multipoint evaluation (FastEval) costs O(n log2 n) in Chapter 2.
In gcd4.c, poleval64s is the classical evaluation algorithm based on Horner’s method. To
compare the run time, we executed our FastEval and poleval64s. We also computed the
time for our optimized building up a product tree (BUPT) algorithm and dividing down
the product tree (DDPT) algorithm during execution. Table 4.2 presents the time for the
classical polynomial evaluation and our optimized version of fast evaluation algorithms at
n distinct evaluation points. We set the degree of polynomials being evaluated as n − 1.

67

All coefficients of the polynomials and distinct evaluation points are randomly chosen from
[0, p).

n
Classical
evaluation ratio BUPT DDPT FastEval ratio speed

up
26 0.0390 - - - 0.0380 - 1.02
27 0.1460 3.74 0.074 0.112 0.2050 5.39 0.71
28 0.5709 3.91 0.104 0.240 0.3850 1.88 1.48
29 2.255 3.95 0.320 0.659 0.9900 2.57 2.27
210 9.011 3.99 0.841 1.987 2.840 2.87 3.17
211 35.994 3.99 1.934 6.359 8.231 2.90 4.37
212 142.65 3.96 4.536 17.700 22.357 2.71 6.38
213 572.67 4.01 10.701 46.824 57.665 2.58 9.93
214 2,287.8 4.00 25.040 117.22 142.48 2.47 16.05
215 9,132.0 3.99 57.022 286.26 343.67 2.41 26.57
216 36,676.9 4.02 129.92 677.44 808.12 2.35 45.38

Table 4.2: CPU timings in ms for polynomial multipoint evaluations over Zp of degree n−1
at n distinct points where p = 3 · 230 + 1

In Table 4.2, the first column is the number of evaluation points n. The second column
labelled "Classical evaluation" contains the time for the classical evaluation algorithm. The
following column labelled "ratio" contains the value defined as

ratio = execution time for evaluation algorithm with n

execution time for evaluation algorithm with n
2

.

We compute these values from the time for the classical evaluation algorithm. The fourth
column labelled "BUPT" represents the time for our BUPT algorithm. Similarly, the fifth
column labelled "DDPT" shows the time for our DDPT algorithm. The following column
labelled "FastEval" contains the total time to execute our FastEval. Like the third column,
the sixth column contains the ratio values defined above for our FastEval algorithm. Lastly,
the last column labelled "speed up" contains the values computed by

speed up = Classical evaluation time
FastEval time .

From Table 4.2, we note that our fast multipoint evaluation is slower than the classical
evaluation when n = 128. As we set n = 64 as a cut-off, our FastEval runs the classical
evaluation for n ≤ 64. However, when n = 128, we need to compute the products of linear
polynomials, ∏63

i=0(x − ui) and ∏127
i=64(x − ui), where uis are evaluation points. Since com-

puting these two products is expensive, our FastEval is slower than the classical evaluation
for n = 128. For n ≥ 256, our FastEval outperforms the classical evaluation algorithm.
In particular, our fast evaluation runs 45 times faster than the classical evaluation when

68

n = 216 = 65, 536. As we expected, the classical algorithm grows a factor of 4 as n increases
by a factor of 2.

4.3 Fast Transposed Vandermonde Solver

In VSolve3.c, Zippel’s transposed Vandermonde solver algorithm VandermondeSolve64s

does O(n2) arithmetic operations in F for an n × n transposed Vandermonde system. As
we discussed in Chapter 3, our FastTVS does O(n log2 n) arithmetic operations in F .

We use two primes: a 32-bit prime p = 3·230+1 and a 62-bit prime p = 116·255+1. Table 4.3
presents the time for transposed Vandermonde solvers over Zp with p = 3 ·230 +1. Similarly,
Table 4.4 presents the time for transposed Vandermonde solvers over Zp with p = 116·255+1.
Table 4.3 and Table 4.4 show the time for Zippel’s transposed Vandermonde solver (Zippel
TVS) and our optimized fast transposed transposed Vandermonde solver (FastTVS) with
an n × n transposed Vandermonde matrix. We also track the time for the BUPT and the
two DDPTs during our FastTVS execution.

For each benchmark, we create a polynomial f of degree n − 1 where all the coefficients
are randomly chosen from [0, p). Using α chosen randomly from [0, p), we evaluate f at αi

for 0 ≤ i ≤ n − 1. Then we use [α0, α1, . . . , αn−1] ∈ F n, which compose n × n transposed
Vandermonde matrix, and [f(α0), f(α1), . . . , f(αn−1)] ∈ F n as inputs.

In both Table 4.3 and Table 4.4, the first column n is the number of interpolation points. The
second column labelled "Zippel TVS" shows the time for Zippel’s transposed Vandermonde
solver. We define ratio as

ratio = execution time for TVS algorithm with n

execution time for TVS algorithm with n
2

.

The third column labelled "ratio" contains the ratio computed from Zippel TVS. Then
the following columns represent the time for subroutines while our FastTVS runs. The
column labelled "BUPT" contains the time for our BUPT algorithm. Moreover, the columns
labelled "DDPT1" and "DDPT2" show the time for our DDPT algorithm executed twice in
our FastTVS. Like the second and third columns, the seventh column labelled "FastTVS"
indicates the total time for our FastTVS algorithm and the eighth column shows the ratio
as defined above computed from our FastTVS. The following column labelled "speed up"
contains the value obtained by

speed up = Zippel TVS time
FastTVS time .

69

The last column labelled "Maple" presents the execution time for Monagan’s Maple imple-
mentation of Algorithm 25 FastTVS, which uses Maple’s fast multiplication and division
routines for Zp[x].

n
Zippel
TVS ratio BUPT DDPT1 DDPT2 FastTVS ratio speed

up Maple

26 0.1270 - 0.020 0.042 0.041 0.132 - 0.96 2.8
27 0.4830 3.80 0.047 0.109 0.096 0.309 2.34 1.56 7.4
28 1.9249 3.99 0.128 0.243 0.236 0.875 2.83 2.19 15.8
29 7.5300 3.91 0.303 0.654 0.653 2.055 2.35 3.66 32.6
210 30.091 4.00 0.768 1.965 1.979 5.664 2.76 5.31 81.6
211 119.46 3.97 1.929 6.313 6.397 16.677 2.94 7.16 173.6
212 476.21 3.99 4.556 17.676 17.719 44.234 2.65 10.76 349.0
213 1,903.1 4.00 10.692 46.762 46.306 112.81 2.55 16.86 973.0
214 7,617.6 4.00 24.734 116.68 116.82 277.05 2.46 27.49 2,167
215 30,629 4.02 58.236 284.83 285.75 670.03 2.42 45.71 4,860
216 122,162 3.99 130.42 678.51 681.43 1,575.4 2.35 77.54 11,124

Table 4.3: CPU timings in ms for solving n × n transposed Vandermonde system over Zp

with p = 3 · 230 + 1

n
Zippel
TVS ratio BUPT DDPT1 DDPT2 FastTVS ratio speed

up Maple

26 0.1389 - 0.046 0.049 0.040 0.1990 - 0.69 3.4
27 0.4879 3.51 0.052 0.103 0.093 0.3220 1.61 1.51 8.6
28 1.9039 3.90 0.120 0.244 0.242 0.7900 2.45 2.41 20.8
29 7.4640 3.92 0.325 0.664 0.662 1.9690 2.49 3.79 63.0
210 30.826 4.12 0.748 1.952 1.952 5.4069 2.74 5.70 113.2
211 116.84 3.79 1.960 6.234 6.348 15.577 2.88 7.50 270.0
212 469.64 4.01 4.546 17.596 17.678 42.371 2.71 11.08 608.0
213 1,868.0 3.97 10.784 45.389 45.714 107.41 2.53 17.39 1,321
214 7,455.7 3.99 24.692 114.60 114.22 265.43 2.47 28.08 3,025
215 29,986 4.02 56.525 279.13 277.70 649.44 2.44 46.17 7,190
216 120,292 4.01 128.54 663.53 661.97 1,500.7 2.31 80.15 16,403

Table 4.4: CPU timings in ms for solving n × n transposed Vandermonde system over Zp

with p = 116 · 255 + 1

Table 4.3 and Table 4.4 show that our fast transposed Vandermonde solver beats Zippel’s
transposed Vandermonde solver for n ≥ 27 = 128. When n = 216 = 65, 536, our FastTVS is
77 times faster than Zippel’s transposed Vandermonde solver with p = 3 · 230 + 1. Also, our
FastTVS is 80 times as fast as Zippel’s method with p = 116 · 255 + 1. Both tables indicate
that the time for Zippel’s method increases by a factor of 4 as we double the number of
interpolation points since it costs O(n2).

70

Chapter 5

Implementation Notes

5.1 Polynomial Representation and Underlying Library

We have coded the fast algorithms in C to speed up our implementation. The C code for
the fast algorithms is provided in Appendix A. Our C code supports primes p < 263. We
used the prime p = 3 ·230 +1 for testing. We use a dense array of coefficients for polynomial
representation, as shown in Figure 5.1.

f0

0

f1

1

f2

2

f3

3

· · ·

· · ·

fd−1

d− 1

fd

d

Figure 5.1: Polynomial f(x) = ∑d
i=0 fix

i in C where fi ∈ Zp

For arithmetic in Zp, we use Monagan’s classical arithmetic library for Zp[x] gcd4.c. In
gcd4.c, we have the following subroutines for arithmetic in Zp. All routines assume a, b ∈ Zp.

#define LONG long long int

defines LONG as a signed 64-bit integer.
LONG add64s(LONG a, LONG b, LONG p);

returns a + b mod p.
LONG sub64s(LONG a, LONG b, LONG p);

returns a− b mod p.
LONG neg64s(LONG a, LONG p);

returns −a mod p.
LONG modinv64s(LONG a, LONG p);

returns a−1 mod p.
LONG mul64s(LONG a, LONG b, LONG p);

returns a · b mod p.

71

LONG powmod64s(LONG a, LONG n, LONG p);

returns an mod p for n ≥ 0.

We note that mul64s(a,b,p) computes a · b to get a 128-bit signed integer c = a · b first.
Then this subroutine divides c by the 64-bit signed integer p. However, the hardware division
instruction is very slow. The division instruction is typically 10 to 40 times longer than the
multiplication a·b [11]. To speed up multiplication in Zp, we use Pearce’s library int128g.c.
In this library, we use the following subroutines for multiplication in Zp.

#define UINT64 unsigned long long

defines UINT64 as an unsigned 64-bit integer.
typedef struct {UINT64 s; UINT64 v; UINT64 d0; UINT64 d1;} recint;

defines recint as a composite datatype to store the pre-computed inverse of p.
recint recip1(UINT64 p);

returns a new recint variable including the inverse of p.
UINT64 mulrec64(UINT64 a, UINT64 b, recint v);

returns a · b mod p where p−1 is stored in v.

Let c = a · b. Based on Möller and Granlund’s idea [11], mulrec64(a,b,v) gets the pre-
computed integer p−1 stored in v and multiplies p−1 by c instead of dividing c by p. Let
q = c · p−1. Then this subroutine computes c − q · p to obtain a · b mod p. While mul64s

does one multiplication and one division, mulrec64 does three multiplications, some other
bit operations, and a subtraction.

We want to demonstrate that mulrec64 is faster than mul64s in practice. We chose two
primes p = 3 · 230 + 1 and p = 262 − 67. We created an array of one million elements which
are chosen from [0, p) at random. Then we compute point-wise multiplication of this array
by itself twice, which does two million modular multiplications in total.

Prime p Computer mul64s mulrec64s

3 · 230 + 1
luke 21.431 9.737
steph 19.442 5.067
maple 5.743 4.326

262 − 67
luke 38.096 8.952
steph 53.870 4.658
maple 5.741 4.194

Table 5.1: CPU timings in ms for two million multiplications in Zp on the three different
computers: luke, steph, and maple

We recorded the time for mul64s and mulrec64 on three different computers. The first
computer luke has 32 GB of RAM and one AMD FX8350 8-core CPU at 4.2GHz. Another
computer steph has 16 GB of RAM and Intel Core i5 8500 with 6 cores CPU at 3.4/4.1
GHz. The last computer maple has 256 GB of RAM and 2 Intel Gold 6342 with 24 core

72

CPUs at 2.8/3.5 GHz. Table 5.1 shows that mulrec64 is faster than mul64s in practice.
Thus, we use mulrec64 instead of mul64s.

Monagan’s gcd4.c library also has the classical algorithms for operations on polynomials
over Zp.

int poladd64s(LONG *A, LONG *B, LONG *C, int da, int db, LONG p);

computes C = A + B mod p where da = deg(A) and db = deg(B) and returns deg(C).
int polsub64s(LONG *A, LONG *B, LONG *C, int da, int db, LONG p);

computes C = A−B mod p = C where da = deg(A) and db = deg(B) and returns deg(C).
int poldiff64s(LONG *f, int d, LONG *g, LONG p);

computes f ′ mod p, stores f ′ mod p in g where d = deg(f), and returns deg(g).
int polmul64s(LONG *A, LONG *B, LONG *C, int da, int db, LONG p);

computes C = A ·B mod p where da = deg(A) and db = deg(B) and returns deg(C).
int poldiv64s(LONG *A, LONG *B, int da, int db, LONG p);

computes the quotient Q and the remainder R satisfying A = BQ + R mod p where
da = deg(A) and db = deg(B) and returns deg(R). Q and R are overwritten in A as
A = [R | Q] in this division.
LONG poleval64s(LONG *f, int d, LONG x, LONG p);

returns f(x) mod p where d = deg(f).
void polcopy64s(LONG *A, int d, LONG *B);

copies A where d = deg(A) and pastes this into B.

Moreover, we use Zippel’s transposed Vandermonde solver algorithm from the library VSolve3.c.

void VandermondeSolve64s(LONG *m, LONG *y, int n, LONG *a, LONG *M, int shift,

LONG p);

solves the transposed Vandermonde system of equations

1 1 1 · · · 1
m0 m1 m2 · · · mn−1

m2
0 m2

1 m2
2 · · · m2

n−1
...

...
...

...
mn−1

0 mn−1
1 mn−1

2 · · · mn−1
n−1

a0

a1

a2
...

an−1

=

y0

y1

y2
...

yn−1

where M is an array of size n + 1 to store ∏n−1

i=0 (x−mi). The algorithm does not allocate
any arrays, so it uses O(n) space.

5.2 Fast Multiplication

Let f, g ∈ Zp[x] be polynomials to be multiplied. For our Algorithm 8 FastMul, we use the
following subroutines.

73

The following subroutines are from Monagan’s fftutil8.c library.
void MakeW64(LONG n, LONG w, LONG *W, LONG p, recint P);

computes the powers of w and stores them in W where w is a primitive n-th root of unity in
Zp. Then W will contain [1, ω, ω2, . . . , ω

n
2 −1, 1, ω2, ω4 . . . , ω

n
2 −2, 1, ω4, ω8, . . . , ω

n
2 −4, . . . , 1, 0].

void MakeWinv64(LONG n, LONG *W, LONG p);

obtains the powers of w−1 from the existing W filled with the powers of w where w is a
primitive n-th root of unity in Zp. W will become
[1, ω−1, ω−2, . . . , ω− n

2 +1, 1, ω−2, ω−4, . . . , ω− n
2 +2, 1, ω−4, ω−8, . . . , ω− n

2 +4, . . . , 1, 0].

Then we implement the following subroutines.

void FFT1(LONG *A, int n, LONG *W, LONG p, recint P);

computes Fw(A) with a primitive n-th root of unity in Zp. This is our C implementation of
Algorithm 5 FFT1.
void FFT2(LONG *A, int n, LONG *W, LONG p, recint P);

computes Fw(A) with a primitive n-th root of unity in Zp. This is our C implementation of
Algorithm 6 FFT2.
int polFFTmul(LONG *A, LONG *B, LONG *C, int dA, int dB, LONG p, LONG alpha);

computes C = A ·B mod p where dA = deg(A) and deg(B) = dB and returns deg(C). α is
the primitive element of Zp, which is pre-computed in Maple. This is our C implementation
of Algorithm 7 Fast multiplication.
int polFASTmul(LONG *A, LONG *B, LONG *C, int dA, int dB, LONG p, LONG alpha);

computes C = A ·B mod p where dA = deg(A) and deg(B) = dB and returns deg(C). α is
the primitive element of Zp, which is pre-computed in Maple. This is our C implementation
of Algorithm 8 FastMul.

Assume we compute f · g using polFASTmul. Let n be the smallest power of 2 greater than
deg(f) + deg(g). First, we need to compute a primitive n-th root of unity.

Lemma 5.1. Assume p is a prime and F is a field such that F = Zp. Suppose n = 2k for
some k ∈ N. Then a primitive n-th root exists if and only if n divides p− 1.

Proof. Let α be a primitive element in Zp. Since n divides p− 1, we can say that

n · q = p− 1 for some q

This implies that

αp−1 mod p = 1 ⇐⇒ αq·n mod p = 1

⇐⇒ (αq)n mod p = 1

Hence, αq is a primitive n-th root of unity in F .

74

Using Lemma 5.1, we are able to compute a primitive n-th root of unity in F . In polFASTmul,
we get a primitive element of F as an input, called α. In our implementation, we pre-compute
the primitive element α from Maple using NumberTheory[PrimitiveRoot] [10]. Then we
compute (p−1)/n and call powmod64s to calculate α(p−1)/n mod p. We note that we should
choose a prime in the form of p = c · 2k + 1 for some c and large k to use Lemma 5.1.

Next, we need to discuss memory allocation for fast multiplication. polFASTmul is our C
implementation of Algorithm 8. In polFASTmul routine, if the product of the degrees of two
polynomials is less than 216, we use the classical multiplication polmul64s. Otherwise, we
use the FFT by calling polFFTmul.

In Algorithm 7, we need an array A of length n containing the coefficients of the f and
padded with zeros. Likewise, an array B of length n is needed, which contains the coefficients
of g and is padded with zeros. Also, we need another array W for the powers of a primitive
n-th root of unity ω using MakeW64. We already discussed that our W is of length n in
Chapter 2. After computing Fω(A) and Fω(B), we overwrite Fω(A) × Fω(B) in A where
× is a point-wise multiplication. Then, to compute the inverse FFT, we can overwrite the
powers of ω−1 in W using MakeWinv64. Thus, we create a temporary array T of size 3n

words for A, B, and W using malloc.

T = A = Fω(f)

n

B = Fω(g)

n

W

n

Fω(f)× Fω(g) V

Figure 5.2: The temporary array T of size 3n used in polFFTmul

5.3 Fast Division

Let f, g ∈ Zp[x] be polynomials where f is a dividend polynomial and g is a divisor polyno-
mial. Assume that d = deg(f)−deg(g) + 1, which is the degree of the quotient with adding
1. Also, let n be the smallest power of 2 greater than d− 1.

We implement the following routines to implement Algorithm 16 FastDiv.

void polNIwithMP(LONG *A, LONG *B, LONG *T, int dA, int n, LONG p, LONG alpha);

computes A−1 to order n approximation using Newton inversion with the middle product
and stores this result in B where dA = deg(A) and T is an extra array for computation.
Also, α is the primitive element of Zp, which is pre-computed in Maple. This is our C im-
plementation of Algorithm 14 NIwithMP.
int polFFTdiv (LONG *A, LONG *B, int dA, int dB, LONG p, LONG alpha);

75

computes the quotient Q and the remainder R satisfying A = B ·Q+R where dA = deg(A)
and dB = deg(B). This division stores R and Q in A and returns deg(R). Also, α is the
primitive element of Zp, which is pre-computed in Maple. This is our C implementation of
Algorithm 15 Fast division.
int polFASTdiv (LONG *A, LONG *B, int dA, int dB, LONG p, LONG alpha);

computes the quotient Q and the remainder R satisfying A = B ·Q+R where dA = deg(A)
and dB = deg(B). This division stores R and Q in A and returns deg(R). Also, α is the
primitive element of Zp, which is pre-computed in Maple. This is our C implementation of
Algorithm 16 FastDiv.

Our C implementation of Algorithm 16 polFASTdiv calls the classical division poldiv64s

for deg(g) · (deg(f) − deg(g)) ≤ 218 = 262, 144. Otherwise, polFFTdiv is executed. During
polFFTdiv execution, polNIwithMP is called to compute the inverse of g(rec) to order d

approximation where d− 1 is the degree of the quotient. While using Newton inversion, we
need an array Y for Fω((g(rec))−1 mod x

d
2). Also, we need an array G for Fω(g mod xd).

Both of these arrays are of length n.

Also, for the FFT algorithm, we need the arrays W and V containing the powers of ω

and ω−1 where ω ∈ Zp is a primitive n-th root of unity. Since Algorithm 14 uses the FFT
and the inverse FFT of size n at least twice, we do not overwrite V in W for reuse, unlike
Algorithm 7. The length of W is n, and so is V . It follows that space for 4n words is required
to store these values for polNIwithMP as illustrated in Figure 5.3.

T = Fω((g(rec))−1 mod x
d
2)

n

Fω(g mod xd)

n

W

n

V

n

Figure 5.3: The array T of size 4n used in polNIwithMP

We store f (rec) in the input array of f by reversing the order of the coefficients. As a result,
we do not allocate space for f (rec). In polFFTdiv, we need to store g(rec), which requires an
array of size d. Also, we should store the output of Newton inversion, (g(rec))−1 mod xd in
an array of size d. After computing Newton inversion, we store (f (rec) mod xd) · ((g(rec))−1

mod xd) in T which is of size at most 2d − 1 words. Thus, we need a temporary array of
size at most 2d + 4n words to get the quotient.

After computing the quotient, we reuse the existing temporary array to store the result of
g · q, where q is the quotient polynomial. Since the degree of g · q is deg(f), the size of a
temporary array to store g · q must be deg(f) + 1. Also, we need space for deg(f) + 1 words
to store f to get the remainder since our polFFTdiv stores q in the input array containing
the dividend polynomial.

76

g(rec) mod xd

d

(g(rec))−1 mod xd

d

T for polNIwithMP

4n

f (rec) · (g(rec))−1

f

deg(f) + 1

g · q

deg(f) + 1

Figure 5.4: The temporary array of size max(2d + 4n, 2 deg(f) + 2) used in polFFTdiv

Consequently, we allocate the temporary array of size max(2d + 4n, 2 deg(f) + 2) words
using malloc.

5.4 Fast Multipoint Evaluation

Assume we have n = 2k evaluation points u0, u1, . . . , un−1 ∈ Zp for some k ∈ N. Let f ∈ F [x]
be a polynomial of degree n− 1 to be evaluated. The following subroutines are used for our
C implementation of FastEval.

void BUPT(LONG *A, LONG *T, int n, int k, int M, LONG p, LONG alpha, recint P);

builds a product tree T using u0, u1, . . . , un−1 ∈ Zp stored in A where n = 2k for some k ∈ N.
M is the distance between every parent node and its first child node in the array T , and α

is the primitive element of Zp pre-computed in Maple. Also, P is used for mulrec64. This
is our C implementation of Algorithm 21 BUPT.
void DDPT(LONG *A, LONG *B, LONG *T, int n, int dA, int k, int M, LONG p, LONG

alpha);

divides A down the product tree T built up with u0, u1, . . . , un−1 ∈ Zp where A is the
polynomial to be evaluated and dA = deg(A). This stores A(u0), A(u1), . . . , A(un−1) ∈ Zp

in B where n = 2k for some k ∈ N. M is the distance between a parent node and its first
child node in the array T . Also, α is a primitive element of Zp pre-computed in Maple. This
is our C implementation of Algorithm 22 DDPT.
void polFASTeval(LONG *A, LONG *B, LONG *U, int n, int dA, int M, LONG p, LONG

alpha);

computes A(u0), A(u1), . . . , A(un−1) ∈ Zp where A is the polynomial to be evaluated and
dA = deg(A). This routine stores Bi = A(ui) for 0 ≤ i < n in B where u0, u1, . . . un−1 ∈ Zp

are stored in U . Also, M is the distance between every parent node and its first child in the
product tree array, and α is a primitive element of Zp computed from Maple. This is our C
implementation of Algorithm 23 FastEval.

77

In our C implementation of Algorithm 23 polFASTeval, for n ≤ 64, the classical evaluation
poleval64s is called n times. When n > 64, polFASTeval calls BUPT first.

We assume n = 2k > 64 for some k ∈ N. After two recursive calls in BUPT, we need a
temporary array C of length n

2 to store (Tk−1,0 − x2k−1) + (Tk−1,1 − x2k−1) before shifting
its coefficients.

C = (Tk−1,0 − x2k−1) + (Tk−1,1 − x2k−1)

n
2

Figure 5.5: The temporary array C of size n
2 used in BUPT

Now, we discuss how BUPT returns the modified product tree. As mentioned before, we
do not store the leading term of every polynomial in the product tree since it is monic.
Since our BUPT is a recursive algorithm, we consider the base case when n = 64. Our C
implementation of Algorithm 21 BUPT computes T6,0−x64 and stores this result in the array
T .

T6,0 − x64 =
63∏

i=0
(x− ui)− x64 = a0 + a1x + · · ·+ a63x63

Depending on the distance M , BUPT stores u0, ui, . . . , un−1 in T [M], T [M + 1], . . . , T [M +
n − 1]. Thus, an array of size 128 is required to store T6,0 − x64 and u0, u1, . . . un−1 when
n = 64. This is illustrated in Figure 5.6.

T = a0

0

a1

1

a2

2

· · ·

· · ·

a63

63

· · ·

· · ·

u0

M

u1

M + 1

· · ·

· · ·

u63

M + 63

M

Figure 5.6: The way BUPT stores T6,0 − x64 in the array T when n = 64

Now, consider when n > 64. Let n = 2k for some k ∈ N. Assume our BUPT stores every node
of polynomials up to Ti−1,j − x2i−1 in T for i ≥ 7 and 0 ≤ j ≤ 2k−i+1 − 1. Then, for i ≥ 7
and 0 ≤ j ≤ 2k−i − 1,

Ti,j − x2i = Ti−1,2j · Ti−1,2j+1 − x2i

Let A = Ti−1,2j − x2i−1 and B = Ti−1,2j+1 − x2i−1 . Then

Ti,j − x2i = (A + x2i−1)(B + x2i−1)− x2i = A ·B + (A + B) · x2i−1

78

T = . . .

. . .

Ti,j − x2i

2i

· · ·

· · · 2i−1 2i−1

. . .

. . .

Ti−1,2j − x2i−1
Ti−1,2j+1 − x2i−1M

Figure 5.7: The way BUPT stores Ti,j − x2i in the array T when n > 64

Thus, we can compute Ti,j−x2i without recovering the leading term of Ti−1,2j and Ti−1,2j+1.
After computing Ti,j − x2i , this polynomial is stored in T , as described in Figure 5.7.

Likewise, our BUPT repeats this procedure until the root Tk,0−x2k is computed. In the end,
BUPT stores the modified product tree in T , as shown in Figure 5.8.

T = Tk,0 − xn

n
n
2

n
2

· · ·

· · · 64 64

· · ·

· · · 1

· · ·

· · · 1

u0 un−1Tk−1,0 − x
n
2 Tk−1,1 − x

n
2

T6,0 − x64 T6,1 − x64

Figure 5.8: The array T of the modified product tree returned from BUPT

Let S(n) be the space required to represent the modified product tree in a one-dimensional
array T with n evaluation points. For the base case, S(64) = 128 when n = 64.

For n > 64, we need to store two trees rooted at Ti−1,2j − x2i−1 and Ti−1,2j+1− x2i−1 . Also,
we need the space to store Ti,j − x2i for 0 ≤ i ≤ 2k−i − 1, each of which is of size 2i. Since
there are 2k−i many such polynomials, we need space for 2i · 2k−i = 2k = n words. This
implies that S(n) = 2S(n

2) + n. Thus, we have

S(64) = 128

S(n) = 2S(n
2) + n for n > 64

It follows that

S(n) = n + n + · · ·+ n + 128 · 2k−6

= (k − 6)n + 2k+1

= (k − 6)n + 2n

= (k − 4)n

79

Therefore, with n evaluation points, we need to allocate a temporary array T of size (k−4)n
for the modified product tree using malloc in polFASTeval.

Additionally, let f ∈ F [x] be the polynomial to be evaluated. DDPT divides f by Tk−1,0 and
Tk−1,1. Each child polynomial of the root is of degree n

2 . Since every child polynomial is
stored without its leading term, we need to recover the leading term. This implies we need an
array of size n

2 +1. Also, after applying polFASTdiv, the dividend polynomial is overwritten
with the remainder and the quotient. We should store the dividend in another array for the
second division. Thus, DDPT requires a temporary array C of size (n

2 + 1) + deg(f) + 1 =
n
2 + deg(f) + 2.

C = Tk−1,0

n
2 + 1

f

deg(f) + 1

Tk−1,1

Figure 5.9: The temporary array C of size n
2 + deg(f) + 2 used in DDPT

5.5 Fast Transposed Vandermonde Solver

Let n = 2k for some k ∈ N. Suppose the size of a transposed Vandermonde matrix is n×n.
We assume the transposed Vandermonde system we want to solve is Ua = b

void polFASTTVS(LONG *V, LONG *U, LONG *A, int n, int k, LONG p, LONG alpha);

solves the transposed Vandermonde system of equations

1 1 1 . . . 1
u1 u2 u3 · · · un

u2
1 u2

2 u2
3 . . . u2

n
...

...
...

...
un−1

1 un−1
2 un−1

3 · · · un−1
n

a0

a1

a2
...

an−1

=

v1

v2

v3
...

vn

where U = [u1, u2, . . . , un] and V = [v1, v2, . . . , vn] and stores the result in A. n = 2k for
some k ∈ N. Also, α is a pre-computed primitive element of Zp from Maple, where p is a
prime. This is our C implementation of Algorithm 25 FastTVS.

Like polFASTeval, polFASTTVS needs an array of size (k − 4)n for the modified product
tree. Also, this algorithm needs to store the root polynomial M of the modified product
tree, which takes n + 1 words. To store D = bn + bn−1x + · · ·+ b1xn−1, it needs space for n

words. Then H = (M ·D) ·x should be stored in an array of size 2n + 1. Since Algorithm 25
does not use M ,D, and H again, we can reuse the arrays for these polynomials. polFASTTVS

80

stores Q in the array for D and Q(u1), Q(u2), . . . , Q(un) in the array for H. Moreover, M ′

is stored in the array for M and M ′(u1), M ′(u2), . . . , M ′(un) are stored in the rest of array
for H. Therefore, we need to allocate a temporary array C of size (k−4)n+4n+2 = kn+2
for polFASTTVS.

C =

C =

the product tree T

(k − 4)n

M

n + 1

D

n

H

2n + 1

(k − 4)n

M ′

n

Q

n

Q(ui)

n

M ′(ui)

n

Figure 5.10: The temporary array C of size kn + 2 used in polFASTTVS

81

Bibliography

[1] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate
polynomial interpolation. In Proceedings of the twentieth annual ACM symposium on
theory of computing, pages 301–309. ACM, 1988.

[2] Allan Borodin and Ian Munro. Evaluating polynomials at many points. Information
Processing Letters, 1(2):66–68, 1971.

[3] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms, third edition. Computer science. MIT Press, 2009.

[5] Roderick Gow. Cauchy’s matrix, the Vandermonde matrix and polynomial interpola-
tion. Bulletin of the Irish Mathematical Society, 28:45–52, 1992.

[6] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The middle product algo-
rithm I. Speeding up the division and square root of power series. Applicable algebra
in engineering, communication and computing, 14(6):415–438, 2004.

[7] Jiaxiong Hu and Michael Monagan. A fast parallel sparse polynomial gcd algorithm.
Journal of Symbolic Computation, 105:28–63, 2021.

[8] Erich Kaltofen and Lakshman Yagati. Improved sparse multivariate polynomial inter-
polation algorithms. In ISSAC, Lecture Notes in Computer Science, pages 467–474.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.

[9] Marshall Law and Michael Monagan. A parallel implementation for polynomial mul-
tiplication modulo a prime. In Proceedings of the 2015 International Workshop on
parallel symbolic computation, pages 78–86. ACM, 2015.

[10] Michael Monagan and Keith Geddes et al. Maple 8 Introductory Programming Guide.
Number v. 2 in Maple 8 / Waterloo Maple Inc. Waterloo Maple, 2002.

[11] Niels Möller and Torbjörn Granlund. Improved division by invariant integers. IEEE
transactions on computers, 60(2):165–175, 2011.

[12] John G Proakis. Digital signal processing : principles, algorithms, and applications /
John G. Proakis, Dimitris G. Manolakis. Prentice Hall, 3rd ed. edition, 1996.

82

[13] Douglas Robert Stinson and Maura Paterson. Cryptography : theory and practice.
Textbooks in Mathematics. Chapman and Hall/CRC, Boca Raton, 4th ed. edition,
2018.

[14] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, United States, 2013.

[15] Richard Zippel. Interpolating polynomials from their values. Journal of symbolic
computation, 9(3):375–403, 1990.

83

Appendix A

Code

void polNIwithMP(LONG *A, LONG *B, LONG *T, int dA, int n, LONG p, LONG alpha){
LONG *B1,*W,*T1,*Mid, *Winv, invN;
int m,i,N,N2;
LONG omega;
recint P;
//P is initialized to use mulrec64
P = recip1(p);
//Base case
if (n == 1){

B[0] = modinv64s(A[0],p);
return;

}
//m = ceiling of n/2
m = n/2;
if (n & 1) m = m+1;
//N is the smallest power of 2 greater than or equal to n
N = 1;
while (N < n) N = N«1;
//Recursive newton inversion call
polNIwithMP(A,B,T,dA,m,p,alpha);
//Copy the polynomial T = A mod xn

for (i = 0;i < n;i++) T[i] = A[i];
if (n < dA) for(i = n;i < N;i++) T[i] = 0;
if (dA < N) for (i = dA+1;i < N;i++) T[i] =0;
//omega is the N-th root of unity
W = T+2*N;
omega = powmod64s(alpha,(p-1)/N,p);
MakeW64(N,omega,W,p,P);
//FFT multiplication to obtain middle product terms
T1 = T+N;
polcopy64s(B,m-1,T1);
for (i = m;i < N;i++) T1[i]= 0;

84

FFT2(T,N,W,p,P);
FFT2(T1,N,W,p,P);
for(i = 0;i < N;i++) T[i] = mulrec64(T[i],T1[i],P);
Winv = W+N;
for (i = 0;i < N;i++) Winv[i]=W[i];
MakeWinv64(N,Winv,p);
FFT1(T,N,Winv,p,P);
invN = modinv64s(N,p);
for (i = 0;i < N;i++) T[i] = mulrec64(invN,T[i],P);
//Extract the middle product terms from above.
for (i = 0;i < n-m;i++) T[i] = neg64s(T[i+m],p);
for (i = n-m;i < N;i++) T[i] = 0;
//Another FFT multiplication
FFT2(T,N,W,p,P);
for (i = 0;i < N;i++) T[i] = mulrec64(T[i],T1[i],P);
FFT1(T,N,Winv,p,P);
for (i = 0;i < N;i++) T[i] = mulrec64(invN,T[i],P);
//Add the middle product terms to the output of recursive call
for (i = 0;i < n-m;i++) B[i+m] = add64s(T[i],B[i+m],p);
return;

}

int polFFTdiv(LONG *A, LONG *B, int dA, int dB, LONG p, LONG alpha){
LONG *Ar, *Br, *Brinv, *T, *Q, *R, *Qu, *M;
int i, s, dQ, dR, N, dM, m, len, min, dm, da;
LONG temp;
//B = 0
if (dB < 0) {

printf("division by zero \n");
exit(1);

}
//The degree of A is less than the degree of B
if (dA < dB) return dA;
//dQ is the degree of quotient
dQ = dA-dB;
s = dQ+1;
//Br is the array to save all temporary value in this algorithm
N = 1;
while (N < s) N = N « 1;
if (4*N +2*s < 2*dA+2) len = 2*dA+2;
else len = 4*N + 2*s;
Br = array(len);
//Br is the reciprocal of B mod xs

if (dB > dQ) dm = dQ;
else dm = dB;
for (i = 0;i <= dm;i++) Br[i] = B[dB-i];

85

if (dB < dQ) for (i = dB+1;i <= dQ; i++) Br[i] = 0;
//Compute Br−1 mod xs

Brinv = Br+s;
T = Brinv+s;
for (i = 0;i < s;i++) Brinv[i] = 0;
polNIwithMP(Br,Brinv,T,dB,s,p,alpha);
//Compute the reciprocal of A
da = dA/2;
for (i = 0;i <= da;i++) {

temp = A[i];
A[i] = A[dA-i];
A[dA-i] = temp;

};
//Compute the reciprocal of A x Brinv mod xs

for (i = 0;i <= 2*dQ; i++) T[i] = 0;
polFASTmul(A,Brinv,T,dQ,dQ,p,alpha);
//Copy A in the temporary array and store Q mod xs in A
for (i = 0;i <= dA;i++) Br[i] = A[dA-i];
Q = A + dB;
for (i = 0;i <= dQ;i++) Q[i] = T[dQ-i];
//Store B x Q in M
M = Br+dA+1;
polFASTmul(B,Q,M,dB,dQ,p,alpha);
dM = dQ+dB;
//Compute A - (B x Q) to get remainder
dR = polsub64s(Br,M,Br,dA,dM,p);
//Store the remainder in A
R = A;
for (i = 0;i <= dR;i++) R[i] = Br[i];
free(Ar);
return dR;

}

int polFASTdiv (LONG *A, LONG *B, int dA, int dB, LONG p, LONG alpha){
int dR, i;
if (dB*(dA-dB) <= 262144) {

dR = poldiv64s(A,B,dA,dB,p);
return dR;

}
dR = polFFTdiv(A,B,dA,dB,p,alpha);
return dR;

}

86

void BUPT(LONG *A, LONG *T, int n, int k, int M, LONG p, LONG alpha, recint P){
int kn, h1, n1, i, l, t, N, w, q, j;
LONG *T1, *T2, *C, *A1, *A2, *W, *C1, *C2;
LONG u;

//Base case
if (n <= 64){

T[0] = neg64s(A[0],p);
for (i = 1;i < n;i++){

u = neg64s(A[i],p);
for (j = i-1;j >= 0;j–) T[j+1] = T[j];
T[0] = 0;
for (j = 0;j < i;j++) T[j] = add64s(T[j],mulrec64(T[j+1],u,P),p);
T[i] = add64s(T[i],u,p);

}
for (i = 0;i < n;i++) T[i+M] = A[i];
return;

}
//Set N= 2n and n1 = n/2
N = 2*n;
n1 = n»1;
//Set pointers for recursive call
T1 = T+M;
T2 = T1+n1;
A1 = A;
A2 = A+n1;
//Recursive calls for the first half and the second half
BUPT(A1,T1,n1,k-1,M,p,alpha,P);
BUPT(A2,T2,n1,k-1,M,p,alpha,P);
//C is an temporary array for saving the product of two polynomials
C = array(n1);
//if n=2, multiplication and addition happen on integers.
//otherwise, use polmul64s and poladd64s for product and sum of two polynomials
if(n == 2){

T[0] = mulrec64(T1[0],T2[0],P);
C[0] = add64s(T1[0],T2[0],p);

}else{
polFASTmul(T1,T2,T,n1-1,n1-1,p,alpha);
poladd64s(T1,T2,C,n1-1,n1-1,p);

}
//Add shifted values of C to T
for (l = 0;l < n1;l++) T[l+n1] = add64s(T[l+n1],C[l],p);
free(C);
return;

}

87

void DDPT(LONG *A, LONG *B, LONG *T, int n, int dA, int k, int M, LONG p, LONG
alpha){

int i, d, m, j, l, doublen, drL, drR, x, kn, km;
LONG *C, *T1, *T2, *R, *cA, *TL, *TR, *pL, *pR, *AL, *AR, *BL, *BR;
//Base case
if (n <= 64){

for (i = 0;i < n;i++) B[i] = poleval64s(A,dA,T[i+M],p);
return;

}
//Set m,kn, and km
m = n»1;
kn = k*n;
km = kn»1;
//Set the pointers for polynomial division
TL = T+M;
TR = TL+m;
doublen = n*2;
C = array(m+dA+2);
cA = C+m+1;
for (i = 0;i <= dA;i++) cA[i] = A[i];
//Obtain the remainder of A divided by the root of the left subtree
for (i = 0;i < m;i++) C[i] = TL[i];
C[m] = 1;
drL = polFASTdiv(A,C,dA,m,p,alpha);
//Obtain the remainder of A divided by the root of the right subtree
for (i = 0;i < m;i++) C[i] = TR[i];
C[m] = 1;
drR = polFASTdiv(cA,C,dA,m,p,alpha);
for (i = 0;i <= drR;i++) A[i+m] = cA[i];
free(C);
//Recursive calls;
AL = A;
AR = A+m;
BL = B;
BR = B+m ;
DDPT(AL,BL,TL,m,drR,k-1,M,p,alpha);
DDPT(AR,BR,TR,m,drL,k-1,M,p,alpha);
return;

}

void polFASTeval(LONG *A, LONG *B, LONG *U, int n, int dA, int M, LONG p, LONG
alpha){

LONG *T;
int k, m, i, len;
float t1, t2;
recint P;

88

//For n <= 64, use poleval64s
if (n <= 64){

for (i = 0;i < n;i++) B[i] = poleval64s(A,dA,U[i],p);
return;

}
//Compute k = log_2(n)
k = 0;
m = n;
while (m != 1){

k = k+1;
m = m»1;

}
//Construct a temporary array T of length len
len = (k-4)*n;
T = array(len);
P = recip1(p);
//Call BUPT to construct a product tree
BUPT(U,T,n,k,M,p,alpha,P);
//Call DDPT to get evaluations
DDPT(A,B,T,n,dA,k,M,p,alpha);
free(T);
return;

}

void polFASTTVS(LONG *V, LONG *U, LONG *A, int n, int k, LONG p, LONG alpha){
int kn, quadn, i, x, d, N, tlen, tlen2;
LONG *T, *R, *D, *H, *Q, *r, *s, *E1, *E2, *Rd;
LONG M, t;
recint P;
P = recip1(p);
//Create a product tree using U, of which
//entries make up the transposed Vandermonde matrix and store in T
N = n«1;
if (n <= 64) tlen = 2*n;
else tlen = (k-4)*n;
T = array(tlen + 2*N + 2);
BUPT(U,T,n,k,n,p,alpha,P);
//Set R is the root of the product tree
R = T + tlen;
for (i = 0;i < n;i++) R[i] = T[i];
R[n] = 1;
//D is the polynomial with coefficients from V
D = R+n+1;
for (i = 0;i < n;i++) D[n-1-i] = V[i];
//Compute H = (M times D) times x
H = D+n;

89

polFASTmul(D,R,H,n-1,n,p,alpha);
for (i = 0;i < N+1;i++) H[N+1-i] = H[N-i];
H[0] = 0;
//Read off the coefficients of H to get Q
Q = D;
for (i = 0;i < n;i++) Q[i] = H[n+i+1];
//Call DDTP to evaluate Q at U[i]
E1 = H;
DDPT(Q,E1,T,n,n-1,k,n,p,alpha);
//Call DDPT to evaluate R’
E2 = E1 + n;
Rd = R;
d = poldiff64s(R,n,Rd,p);
DDPT(Rd,E2,T,n,n-1,k,n,p,alpha);
//Obtain the coefficient vector
for (i = 0;i < n;i++) A[i] = mulrec64(E1[i],modinv64s(E2[i],p),P);
free(T);
return;

}

90

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Tools
	Fast Fourier Transform Algorithm
	Fast Fourier Transform
	Inverse Fast Fourier Transform
	Optimizing the Fast Fourier Transform

	Fast Multiplication
	Fast Multiplication
	Another Fast Fourier Transform
	Optimizing Fast Multiplication

	FFT Permutation
	Bit-reversal Permutation
	FFT on the Reciprocal Polynomials

	Fast Algorithms
	Fast Division
	Classical Division Algorithm
	Newton Inversion
	The Middle Product
	Optimizing Newton Inversion
	Fast Division
	Optimizing Fast Division

	Fast Multipoint Evaluation
	Classical Evaluation Algorithm
	The Product Tree
	Dividing Down the Product Tree
	Fast Multipoint Evaluation
	Optimizing Fast Multipoint Evaluation

	Fast Transposed Vandermonde Solver
	Zippel's Transposed Vandermonde Solver
	Fast Transposed Vandermonde Solver

	Benchmarks
	Fast Division
	Fast Multipoint Evaluation
	Fast Transposed Vandermonde Solver

	Implementation Notes
	Polynomial Representation and Underlying Library
	Fast Multiplication
	Fast Division
	Fast Multipoint Evaluation
	Fast Transposed Vandermonde Solver

	Bibliography
	Appendix Code

