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Abstract

The ataxin-2 gene (ATXN2) encodes a ribonucleic acid (RNA) binding protein involved
in messenger RNA translation and regulation. Large polyglutamine (CAG) expansions or
repeat regions in ATXN2 are causative of the neurodegenerative disease spinocerebellar
ataxia type 2 (SCA2) and intermediate expansions are considered to be a risk factor for
the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, most variants
in the repeat regions of ATXN2 remain unreported because they are difficult to capture
with traditional short-read sequencing. We analyze rare genetic variants found in short-
read sequencing of exon 1, a polyglutamine repeat region of the ATXN2 gene. The variants
were identified during diagnostic exome sequencing of patients for neurodegenerative dis-
ease. After adjusting for potentially confounding variables such as age, biological sex, and
the enrichment kit used in the sequencing, we find the variants to be associated with neu-
rodegenerative disease, suggesting their involvement in disease pathology. Our preliminary
results with short-read sequencing suggest that re-investigation of the ATXN2 gene with
long-read sequencing technologies that allow a better resolution of repeat regions shows
promise for new insights into neurodegeneration.
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Chapter 1

Introduction

Genes play a big part in how the cells work in our bodies. One such critical gene is the
ATXN2 gene. This gene makes a protein that helps with several important jobs inside
our cells. It helps bring things into the cell (endocytosis), control how cells grow and stay
healthy, and make sure the cell creates the proteins it needs (ribosomal translation). It also
helps keep our cell’s mitochondria powerhouses working properly.

Central to the exploration, we have the N-terminal region of ATXN2, which represents the
starting point or the beginning section of the protein. This N-terminal region contains a
polyglutamine tract (PolyQ) which refers to a portion of the protein consisting of a sequence
of several glutamine units stacked together akin to having a row of the same type of building
block repeated several times in a row. And in this case, there are usually between 14 to 31
of these, also termed residues. When this tract expands, it triggers a cascade of neurological
complications, with various disease manifestations [Lubieniecka et al., 2022]. A lot of times
these diseases vary according to the length of the expansion. The scientific community has
closely associated intermediate-length expansions of the PolyQ tract (27-34 repeats) with
heightened susceptibility to amyotrophic lateral sclerosis (ALS)[Chio et al., 2022]. Even fur-
ther along the spectrum, when the PolyQ tract expands beyond 34 repeats, it precipitates
the onset of spinocerebellar ataxia-2 (SCA2), characterized by a progressive loss of coordi-
nation and motor control.[Egorova and Bezprozvanny, 2019].

Various studies have demonstrated that this gene (ATXN2) can modify the toxicity of
TDP43, a protein closely linked with ALS pathology in a complex manner. All this research
and findings paved the way for an ongoing clinical trial (Clinical Trial NCT04494256) that
harnesses ATXN2 antisense oligonucleotides to lower ataxin-2 protein levels. This could
be a potential direction towards the treatment of individuals battling with ALS. However,
this clinical trial exclusively recruits patients with PolyQ expansions in the ATXN2 gene.
In contrast, we question whether other mutations in the ATXN2 gene, especially those
residing in exon 1 where the PolyQ region is nestled, influence protein function and disease
susceptibility similarly.
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To address this question, our clinical-genetics collaborators in the diagnostic genome-sequen-
cing facility at the Ruhr University, Bochum, evaluated rare genetic variants, including
single nucleotide variants (SNVs) and insertions/deletions (indels), within the first exon of
the ATXN2 gene. They aim to evaluate and understand rare genetic variants in the exon 1 of
ATXN2 and their potential contributions to the pathogenesis of neurodegenerative diseases.
Their study aims to contribute to understanding the genetic underpinnings of neurological
disorders, with potential implications for diagnosis and treatment.

Our collaborators collected data from patients with various diseases. They classified the
diseases based on the current knowledge as ND/non-ND along with the spotted variants
in the exon 1 of the gene (if any). We received their sampled data in two Excel files for
our statistical analysis. In this analysis, we aim to understand the association between the
rare variants in exon 1 of the ATXN2 gene and neurological disorder (ND) status. Here, we
define “rare” to be frequencies of less than 0.01 in the gnomAD public database.

2



Chapter 2

Data

This analysis focuses on the ATXN2 gene, specifically, the variants found in exon 1 of the
gene. We look at their association with neurodegenerative diseases. In this chapter, we
perform some exploratory analysis to understand the data provided to us by our clinical
genetics collaborators. We received the data from 358 people, comprising 134 cases with
neurodegenerative diseases, 161 cases with non-neurodegenerative diseases, and 63 unclas-
sified cases due to mixed symptoms. All of them had a normal number of polyglutamine
repeats in exon 1 of the ATXN2 gene.

The data was delivered in two Excel files for the analysis. These were the <persons> data
file and the <variants> data file respectively. The <persons> data file consists of the infor-
mation about the subjects including the disease they suffer from, its classification (ND or
not), the clinical information, the variants in the exon 1 of the ATXN2 gene found in the
sample (if any), etc. The sample index column indicates the suspected diagnosis (disease).
As specified by our collaborators, the abbreviations used for the sample index are as stated:
P-ALS = Amyotrophic lateral sclerosis, P-SPG = Spastic paraplegia, P-AX = Spinocere-
bellar ataxia paraplegia, P-AMY = Amyloidosis, P-SY = Syndromes/Global developmental
delay, P-MH = Malignant hyperthermia, P-MY = Myopathy, P-NP = Neuropathy, P-DIV
= Diverse/Rare/Unclassifiable, P-SW = Metabolic disease, P-DYT = Dystonia, P-BGW
= Connective tissue diseases, P-TM, = Cancer, P-HL = Hearing loss and EX = ‘Healthy’
individuals. The second data file details the 19 different variants of the ATXN2 gene under
study. Our collaborators refer to the publicly available gnomAD database to find the cor-
responding allele frequency of the variants. For 3 of the 19 variants, no allele frequencies
are reported in the gnomAD database. We call these variants ‘Questionable’ in our analysis
and assess their relationship with disease status separately to check for potential bias from
removing them in the analysis.

The exploratory analysis aims to uncover data patterns and insights that may guide further
investigations into the relationship between the variants found in the exon 1 of the gene
and neurodegeneration (ND status). We use R programming for the exploratory analysis,
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including the readxl R package for reading Excel data and the ggplot2 and dplyr libraries
for visualization and data manipulation.

2.1 The <persons> data

The data comprises 15 variables with 358 observations, representing the total number of
samples. To facilitate analysis, the data is pre-processed as follows. The ‘ND’ (Neurodegen-
erative Disease) column is converted to a factor with levels yes, no, and maybe where yes
corresponds to 1 implying the disease is ND, no corresponds to 0 implying the disease is
non-ND and maybe corresponds to 3 in the original data file implying the disease couldn’t
be classified due to overlapping symptoms. Additionally, a new column, ‘Variant,’ is created
to signify the presence of a genetic variant, with entries “yes” or “no” implying presence or
absence respectively. Another column, ‘Total_Variants,’ is added to indicate the number of
variants each person possesses.

Furthermore, we introduce a new column, ‘age’, providing valuable information for subse-
quent analyses. Note that, we use their date of birth and the date of the data collection to
calculate the age of the subjects. Finally, to check the questionable variants highlighted in
yellow in the Excel files, we added another new column, ‘Questionable Variant’ to identify
samples containing these variants. After pre-processing the data, we started with univariate
summaries of the variables to gain insights into their distribution.

2.1.1 Univariate summaries

The univariate summaries of the dataset include distributions of age, sample index, sex,
disease classification (i.e. neurodegenerative disease (ND), non-ND or undetermined), en-
richment kits, clinical information, and relationships. Distributions of selected variables are
provided in Appendix 1. Briefly, the main findings are as follows. As shown in Figure 2.1, the
majority of individuals in the study are aged between 50-60 years, followed by individuals
aged between 60-70 years.

The dataset has a balanced gender representation of 177 females and 181 males. ND and
non-ND diseases are fairly distributed, with 161 individuals having non-ND conditions, 134
with ND conditions, and 63 undetermined. Amyotrophic lateral sclerosis (ALS) is the most
frequent clinical information category with 74 occurrences comprising approximately 55%
of the ND patients and approximately 21% of the study sample. Most subjects are unrelated
(97 %) except for 12 in six familial clusters: 4 parent-child trios, one father-son pair and
one sibling pair.
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Figure 2.1: Histogram of the age distribution of the sampled individuals.

Amongst the enrichment kits, Twist Comprehensive Exome Refseq vs2 is the most fre-
quently used (67 %), followed by Twist Comprehensive Exome plus Refseq (22 %), Twist
Mix (Comprehensive plus 2.0)(9 %), SureSelect All Exon v7(1.2 %) and Twist Comprehen-
sive Exome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0) ( 0.8%).
According to our collaborators the enrichment-kit categories of “Twist Comprehensive Ex-
ome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)" and “Twist Mix
(Comprehensive plus 2.0)" should be merged whereas the “SureSelect All Exon v7" enrich-
ment kit is from a different vendor and needs to be kept separate from the others. These
enrichment kits have long names, so we have used abbreviations throughout the analysis
to avoid complexity. The abbreviations used are as follows: Twist Comprehensive Exome
Refseq vs2 =TCER vs2, SureSelect All Exon v7 = Exon v7 , Twist Comprehensive Exome
plus Refseq = TCE (RefSeq), Twist Comprehensive Exome plus Refseq, Twist Exome 2.0,
Twist Mix (Comprehensive plus 2.0) = TCE(R, Ex, Mix) and Twist Mix (Comprehensive
plus 2.0)= T Mix.

2.1.2 Bivariate summaries

This section explores the associations between pairs of variables in the <persons> data
file. These bivariate summaries and association tests provide valuable insights into the
relationships between various variables in the dataset, setting the stage for more in-depth
multivariate analyses.

Categorical × categorical variables

We constructed contingency tables for all the possible pairs of categorical variables fol-
lowed by association tests, but report selected results only. Further tables can be found in
Appendix 1.
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Sample Index Female Male
EX 4 4

P-ALS 49 44
P-AMY 0 3
P-AX 13 9

P-BGW 16 4
P-DIV 6 9
P-DYT 3 3
P-HL 1 2
P-MH 3 1
P-MY 19 23
P-NP 22 30

P-SPG 9 10
P-SW 2 1
P-SY 24 34
P-TM 6 4

Table 2.1: Sample Index by Sex.

Table 2.1 summarizes the relationship between sample index and sex (p = 0.2 based on an
exact permutational test) and suggests gender does not play a role in determining the type
of the disease.

Table 2.2 summarizes the association between sample index and enrichment kits (p = 0.0003
based on an exact permutational test). The significant association is difficult to explain
given that the samples to be sequenced are randomized according to disease type (sample
index). However, the association could potentially reflect the different regions enriched and
highlighted by changing enrichment kits over time.

Table 2.3 summarizes the association between sample index and ND status (p = 0.0001,
based on an exact permutational test). A significant association is to be expected because
the diseases (in the sample index) have been classified as ND or non-ND based on their type
and if they lead to neurodegeneration. Certain diseases that can not be identified because
of overlapping symptoms have been classified as unclear or maybe ND.

Table 2.4 summarizes the association between ND status and enrichment kits (p = 0.01
based on an exact permutational test). The significant association between ND status and
enrichment kits aligns with that between sample index and enrichment kits above, as would
be expected because the diseases have been classified as ND or non-ND based on their type
and if they lead to neurodegeneration.

Similarly, Tables 2.5, 2.6, and 2.7 summarize, respectively, the associations between ND
status and (i) the presence of a variant (p = 0.02 based on an exact permutational test),
(ii) the presence of a questionable variant (p = 0.54 based on an exact permutational test),
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TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
EX 8 0 0 0 0

P-ALS 79 0 4 0 10
P-AMY 2 0 1 0 0
P-AX 10 1 6 2 3

P-BGW 14 0 5 0 1
P-DIV 11 0 3 0 1
P-DYT 2 0 3 0 1
P-HL 2 0 1 0 0
P-MH 2 0 2 0 0
P-MY 24 0 14 0 4
P-NP 36 0 9 1 6

P-SPG 10 1 7 0 1
P-SW 2 0 1 0 0
P-SY 35 2 16 0 5
P-TM 3 0 7 0 0

Table 2.2: Sample Index by Enrichment kits.

and (iii) sex (p = 0.31 based on an asymptotic chi-squared test). The p-values obtained are
listed in Table 2.8.

The results indicate that ND status is significantly associated with sample index (as ex-
pected), enrichment kits and the presence of a variant and not significantly associated with
sex and the presence of a questionable variant. To explore further the possibility of enrich-
ment kits as a confounding variable in the association between ND status and the presence
of a variant, we checked its association with the presence of a variant. Table 2.9 summarizes
the association between enrichment kits and the presence of a variant (p=0.0001 based on
an exact permutation test). Even though patients are to be randomized to enrichment kits,
on testing the association between the enrichment kits and the presence of a variant, we
see a strong association conveyed by a very low p-value. Our exploratory analysis tells us
that the enrichment kit is a potential confounding variable to adjust for during our formal
statistical analysis.

The bivariate summaries and the association tests were done for all the possible combi-
nations of the variables. Selected summary tables and results for the association tests not
shown in the main text can be found in Appendix 1.

Age × categorical variables

We use boxplots to visualize the age distribution by different variables like sample index,
ND status, sex, etc. The boxplot in Figure 2.2 suggests that people with an ND disease have
a higher average age than those with non-ND disease. The colors in the boxplot represent
the two sexes. The figure indicates that the average age for males and females is quite similar
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yes no maybe
EX 0 8 0

P-ALS 93 0 0
P-AMY 0 0 3
P-AX 22 0 0

P-BGW 0 20 0
P-DIV 0 13 2
P-DYT 0 0 6
P-HL 0 3 0
P-MH 0 4 0
P-MY 0 42 0
P-NP 0 0 52

P-SPG 19 0 0
P-SW 0 3 0
P-SY 0 58 0
P-TM 0 10 0

Table 2.3: Sample Index by ND status.

TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
yes 99 2 17 2 14
no 99 2 49 0 11

maybe 42 0 13 1 7

Table 2.4: ND status by Enrichment kits.
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no yes
yes 112 22
no 151 10
maybe 58 5

Table 2.5: ND status by the presence of a variant.

no yes
yes 126 8
no 149 12
maybe 61 2

Table 2.6: ND status by the presence of a questionable variant.

for the ND diseases but, for non-ND diseases, males have a slightly lower average age than
females.

Figure 2.2: Age distribution by ND status and sex

We use an F-test based on a null distribution from parametric bootstrapping (with B =
1000 bootstrap replicates) to test the association between the continuous variable, age, and
categorical variables such as ND status and clinical information. The bootstrap tests showed
significant associations of age with ND status (p = 0) and clinical information (p = 0) but
not with gender (p = 0.6), variant presence (p = 0.29), enrichment kits (p = 0.04), or
questionable variants (p = 0.21).

To explore whether age was linearly associated with ND status, we apply a generalized
additive-logistic model with ND status of yes and maybe coded as 1 and ND status of no
coded as 0. We fit a running-average smooth for the predictor ‘age’ with a span of 1/3
the data for flexibility in capturing potential non-linear relationships. Figure 2.4 shows the
resulting fit.
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Female Male
yes 71 63
no 80 81
maybe 26 37

Table 2.7: ND Status by sex.

Variable 1 Variable 2 p-value
ND status Sample Index 0.0001
ND status Enrichment Kits 0.01
ND status Presence of a Variant 0.02
ND status Presence of a Questionable Variant 0.54
ND status Sex 0.30

Table 2.8: Results of tests of association between ND status and different variables.

Figure 2.3: Age distribution by the Enrichment Kits used

The linear trend in the plot suggests that a linear term would be sufficient to describe the
relationship between age and ND status yes or maybe.

2.2 The <variants> data

The <variants> data consists of fewer variables than the <persons> data. These variables
provide information specific to the different variants such as their genomic position, tran-
script and protein annotations, functional consequence, relative frequencies in the GnomAD
public database of genomic variants, etc. We focus here on just one variable, func, describing
the predicted functional consequences of the variants.

Table 2.10 summarizes the func variable. The frameshift_variant category was the most
frequently encountered functional consequence followed by frameshift_truncation.
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TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
no 221 0 67 3 30
yes 19 4 12 0 2

Table 2.9: Presence of a variant by enrichment kits.

Figure 2.4: Prediction of ND status ‘Yes’ or ‘No’ as a function of age by a generalized
additive-logistic model

Type Count
disruptive_inframe_deletion 5

disruptive_inframe_insertion, direct_tandem_duplication 14
frameshift_elongation 1
frameshift_truncation 15

frameshift_variant 18

Table 2.10: Univariate summary for the func variable

11



Chapter 3

Analysis

In this chapter, we conduct a formal statistical analysis of the association between neu-
rodegenerative diseases and rare variants in exon 1 of the ATXN2 gene. As discussed in
the previous chapter, the data include clinical information from 358 individuals with nor-
mal PolyQ repeats. There were 134 cases of neurodegenerative disease, 161 cases of non-
neurodegenerative disease, and 63 cases with mixed symptoms where the disease could not
be categorized. The dataset containing information on the individuals has 15 variables,
including information on whether or not the patient has neurodegenerative disease (ND),
the dates of birth and of sampling, the biological sex, the enrichment kit used to sequence
the subject’s DNA, and information on which of the observed rare variants is carried. The
dataset on variants has information about the 19 rare variants observed in the study such
as whether or not the variant is thought to be questionable, information on the variant
function, the population allele frequency, and the number of allelic copies examined in the
gnomAD public database (i.e. the denominator of the population allele frequency).

We use the SNP-set (Sequence) Kernel Association Test (SKAT), which tests the asso-
ciation between a set of SNPS/genes and continuous or dichotomous phenotypes using a
kernel regression framework [Wu et al., 2011]. The SKAT package in R ([Lee et al., 2023])
implements this test.

3.1 Preprocessing

After the data exploration, to shape our data for the SKAT package, we perform data
preprocessing steps, including:

• Creating covariates matrices (X) to account for demographic and non-genetic vari-
ables: Based on investigator input and the results of our exploratory analysis of the
data, potential confounding variables for the association between ND status and ge-
netic variants are the variables age, sex, and enrichment kit and so we include these
in X. As stated in Chapter 2, we merge certain enrichment kits as suggested by our
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collaborator. Specifically, two enrichment kits are combined, the ‘Twist Comprehen-
sive Exome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)’ used
for 3 subjects and the ‘Twist Mix’ used for 32 subjects. In X, they have been grouped
into the category coded as ‘TCE(R,Ex,Mix)’. We keep the enrichment kit ‘SureSelect
All Exon v7’ coded as ‘Exon v7’ (4 subjects) separate from the others as it is sourced
from a different vendor. We refer to the most common enrichment kit ‘Twist Compre-
hensive Exome Refseq vs2’ (240 subjects), coded as ‘TCER vs2’ in X, as the baseline
category for enrichment kits in all our regression analyses.

• Constructing a kinship matrix (K) to account for relatedness among subjects: The
data have some subjects that belong to the same families: 4 parent-child trios, 1 father-
son duo, and one sibling duo. We can account for kinship in the Gaussian regression
framework implemented in the SKAT package, so we create a kinship matrix for this
analysis.

• Generating phenotype vector (Y ) to indicate the presence of ND diseases: We create
the phenotype or the response vector using the ND column from the <persons> data.

• Constructing genotype matrix (Z): Each row of the genotype matrix represents an
individual, and each of the 19 columns represents a rare variant in exon 1 of the
ATXN2 gene. The matrix was populated with values indicating the copy number of
each variant in each individual. Because these are rare variants, the copy number is
either 1 or 0.

• Calculation of allele frequencies and imputation of missing values: We use the allele
frequencies of the 19 variants reported in the <variants> Excel data file received
from our collaborators. The source of these frequencies is the gnomAD database.
Two missing allele frequencies were not found in the database which implied zero
frequencies were observed in gnomAD-contributed submissions. For our analysis, these
2 frequencies were imputed using the minimum frequency amongst the variants in our
study. The missing frequencies were set to be half the minimum frequency.

3.2 SKAT and SKAT-O

Rare-variant association testing plays a crucial role in deciphering the genetic basis of
complex traits, particularly with the advent of high-throughput sequencing technologies.
Traditional approaches like burden tests, which collapse rare variants into a single genetic
variable, suffer from limitations in power, especially in the presence of non-causal vari-
ants or when protective and deleterious variants coexist. In response to these challenges,
[Wu et al., 2011] introduced the Sequence Kernel Association Test (SKAT) in 2011. The
Sequence Kernel Association Test (SKAT) is a statistical method for rare-variant associa-
tion testing in sequencing data, particularly in genome-wide association studies (GWASs).
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SKAT is a regression approach that can assess the association between genetic variants
(both common and rare) within a specific genomic region and a continuous or dichotomous
trait while adjusting for covariates.

Traditional methods for testing rare variant associations, such as burden tests, often col-
lapse or summarize rare variants within a region into a single value, assuming uniform
effects across variants. However, SKAT acknowledges that rare variants may have varying
directions and magnitudes of effect on the phenotype, including no effect at all. It uses a
multiple regression model to directly regress the phenotype on genetic variants and covari-
ates, allowing for different variant effects.

SKAT employs a kernel association test within a mixed-model framework to assess the
regression coefficients of the variants, effectively accounting for rare variants. As it only
requires fitting a null model with covariates to calculate p-values using simple analytic for-
mulas, it has good computational efficiency and can also exploit local correlation structures
between variants and between subjects, as well as incorporate flexible weights on variants to
boost power (e.g., by assigning higher weights to rarer variants). The SKAT methodology
implements a score test of the aggregated effects of rare genetic variants in some genomic
regions of interest, such as exon 1 of the ATXN2 gene in our analysis.

SKAT-O extends the Sequence Kernel Association Test (SKAT) to optimize power by using
the data to adaptively combine the burden test [Madsen and Browning, 2009] and the non-
burden variance-component test of SKAT. The test statistic is a linear combination of
the burden and SKAT statistics that adapts to the correlation structure of variant effects
through a family of kernels and optimally combines the burden and non-burden sequence
kernel association tests to maximize power. Burden tests are more powerful when most
variants in a region are causal and the effects are in the same direction, whereas SKAT is
more powerful when a large fraction of the variants in a region are noncausal or the effects
of causal variants are in different directions. The SKAT-O unified test maintains power in
both scenarios. For our analysis, we use the default linear kernel in the SKAT package.
[Lee et al., 2023] It provides a flexible and efficient approach to identifying associations
between rare genetic variants and complex traits, accommodating the inherent variability
in variant effects across genomic regions.

3.3 Overview

As already noted, the data has subjects classified as maybe ND because of overlapping
symptoms. We therefore work with two sets of data. For the first dataset, we use all the
subjects regardless of their diagnosis and combine the subjects who may have a neurode-
generative disease, the maybe ND subjects, with subjects who have a neurodegenerative
disease, the yes ND subjects. The maybe and yes ND subjects are taken as cases while the
no ND subjects are taken as controls. For the second dataset, we remove the subjects who
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may have neurodegenerative disease, the maybe ND subjects, and keep only the yes ND
subjects as cases and the no ND subjects as controls.

3.4 Dataset retaining maybe ND subjects

As the maybe ND subjects are retained in this dataset, the response variable, Y , for the
analysis is coded as 1 for ND yes and maybe, and as 0 for ND no.

3.4.1 Null models

We consider two null models to serve as the foundation for subsequent score tests in the
SKAT-O framework. Both null models incorporate only the demographic and clinical co-
variates in X and exclude the genetic variant information Z.

Logistic regression

The first null model that we consider accounts for the binary response variable Y through
logistic regression. Importantly, the logistic regression model implemented in the SKAT R
package takes only unrelated (i.e. independent) subjects. However, as noted in previous
sections, our data contains some related individuals. To ensure independence among the
subjects, we remove the children P-SY163, P-SY165, P-SY166 and P-SY169 in the four
case-parent trios. We also remove the son from the father-son duo and the younger of the
two siblings in the sibling pair. (“P-MY120", “P-MY119"). All these relative clusters involve
individuals who do not have a neurodegenerative disease. We keep the older individuals in
these clusters so that our non-ND “controls” have ages that better match the older ages of
the ND “cases” in our study.

The functions for fitting null models in SKAT do not report the estimated effects of the
covariates in X. Since the logistic regression assumes independent (i.e. unrelated) subjects,
we can equivalently call the glm() function in R to see the effects of age, gender, and
enrichment kit. Table 3.1) summarizes the results, which indicate that:

Estimate Std. Error z value Pr(> |z|)
(Intercept) -3.101130 0.425497 -7.288 3.14e-13***

age 0.076831 0.008029 9.1619 <2e-16***
sexMale 0.079097 0.284635 0.278 0.7811
ekit.TCE -0.846028 0.343175 -2.465 0.0137*

ekit.TwistMix 0.547541 0.521103 1.051 0.2934
ekit.Exon 0.524046 1.469109 0.357 0.7213

Table 3.1: Effect estimates in the logistic regression

• Age is positively associated with neurodegenerative disease(p < 0.001), indicating
that older individuals are more likely to have an ND disease.
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• The coefficient for sex (male) is not statistically significant (p = 0.781), suggesting no
significant difference in the prevalence of ND between genders.

• ‘ekit.TCE’ is negatively associated with neurodegenerative disease (p = 0.01).

As already noted, the ‘ekit.TCE’ category corresponds to a combination of two enrichment
kits in the original <persons> Excel file received from the investigator: ‘Twist Comprehen-
sive Exome plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)’ used for
3 subjects and ‘Twist Mix (Comprehensive plus 2.0)’ used for 32 subjects. The significant
negative association of the response Y with ‘ekit.TCE’ suggests that patients who don’t
have neurodegenerative disease tend to be assigned to one of these two enrichment kits.
This association is hard to explain as patients are never assigned to any specific enrichment
kit, they just end up with a kit that is being used in the lab at that time for all of the
patients. As the vendors update the versions of the kits, they are changed in the labs and
the most recent version is used. The previous versions of the kits are not used again.

Gaussian regression

The second null model that we fit is with Gaussian regression. This model assumes a con-
tinuous Gaussian (rather than binary) response Y but accounts for the relationships among
the subjects through the kinship matrix, K.

As the Gaussian regression model implemented in R’s glm() function incorrectly assumes
independence amongst the subjects, the estimates of the effects of the covariates will be
biased so we do not bother to call it.

3.4.2 Alternative models

In this section, we add effects for the genetic variants in exon 1 of the ATXN2 gene to
our linear models. Therefore, we consider the alternative hypothesis of genetic association
against the null hypothesis of no genetic association. We allocate weights to the variants
using the allele frequency from the gnomAD database.

Questionable variants

Our collaborator asked us to set the questionable variants c.42del, c.80_85del, and c.39_40del
(highlighted in yellow in the original <variants> Excel spreadsheet) to missing in our anal-
yses. We eliminate them from subsequent analyses through a thresholding mechanism based
on the sample frequencies. First, we calculate the sample frequencies of these variants which
are:

• c.42del: ≈ 0.025

• c.80_85del:≈ 0.0056
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• c.39_40del: ≈ 0.020

To exclude these questionable variants from the analysis, we set the missing_cutoff pa-
rameter for the variants in the SKAT() function to be slightly below the lowest observed
frequency, specifically to 0.005. This strategic adjustment ensures the exclusion of question-
able variants.

Variant weights

Variant weights are important in the analysis framework. The idea is to upweight rare
variants relative to common variants, as population-genetics principles predict they are more
likely to be deleterious. We use the population allele frequency of each variant in the publicly
available gnomAD database to determine its corresponding weight in the SKAT analysis.
Leveraging data from gnomAD, the weights for 19 identified variants are computed. Notably,
two variants in our data have no population allele frequencies recorded in gnomAD. We
impute the allele frequencies of these variants to be half the minimum gnomAD frequency
of the variants with gnomAD frequencies in our dataset.

Logistic regression

Transitioning towards statistical modeling, we apply logistic regression implemented in the
SKAT package to the sample of 352 unrelated subjects to assess the association between
rare variants in exon 1 of the ATXN2 gene and neurodegenerative diseases. A SKAT-O test
based on 100,000 bootstrap replicates under the null hypothesis of no genetic association
unveils a significant genetic association (p = 0.03) with ND status, following adjustments
for potential confounders such as age, sex, and enrichment kit.

Gaussian regression

Expanding the analysis, we apply the SKAT methodology for Gaussian regression to the
binary response to account for the familial relationships in the dataset. This time, the anal-
ysis encompasses 358 related subjects. Despite the incorrect assumption of a continuous
Gaussian response, the results remain consistent with those of the logistic regression, af-
firming a significant association (p = 0.02) between the rare variants in exon 1 of ATXN2
and ND status, after adjusting for age, sex, enrichment kit and familial relatedness.

3.5 Dataset removing maybe ND subjects

This section analyses the smaller dataset without subjects of maybe ND status. The aim of
excluding the maybe ND subjects is to remove ambiguity in diagnosis and focus solely on
subjects with clear ND status.
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We create a new phenotype vector, Y , for this smaller dataset. This vector separates subjects
based on their ND status, categorizing them into either yes or no groups. The maybe ND
subjects are excluded from this vector, ensuring a more definitive classification. This dataset
has 295 subjects with 63 subjects with maybe ND status removed. We also set up the
covariates matrix (X) and genotype matrix (Z) for this dataset, excluding the persons in
the maybe ND category.

3.5.1 Null models

We then establish a null model for logistic regression to serve as the foundation for sub-
sequent score tests in the SKAT-O framework. This model incorporates demographic and
clinical covariates only. For the smaller dataset excluding the ND subjects, We focus only
on logistic regression and do not establish a null model for Gaussian regression.

Logistic regression analysis

On a similar note, as we do for the previous larger dataset, we then use R’s glm() function to
fit a null model with logistic regression to be able to see the effect of the various non-genetic
covariates as listed below in Table 3.2.

Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.985171 0.490243 -6.089 1.13e-09***

age 0.052634 0.008225 6.399 1.56e-10***
sexMale -0.188837 0.259431 -0.728 0.4667
ekit.TCE 0.674749 0.340547 1.981 0.0477*

ekit.TwistMix 0.182780 0.427939 0.427 0.6693
ekit.Exon -0.163016 1.298819 -0.126 0.9001

Table 3.2: Effect estimates in the logistic regression with unrelated subjects

From the results above, we see that:

• A significant positive association is observed between age and the likelihood of neuro-
logical disorder (p < 0.001), indicating that older individuals are more likely to have
an ND disease.

• The coefficient for sex (male) is not statistically significant (p = 0.467), suggesting no
significant difference in the prevalence of ND between genders.

• Subjects processed with enrichment kits in the ‘ekit.TCE’ category shows a sta-
tistically significant association with ND (p = 0.048). As already mentioned, the
‘ekit.TCE’ category corresponds to a combination of two enrichment kits in the origi-
nal <persons> Excel file received from the investigator: ‘Twist Comprehensive Exome
plus Refseq, Twist Exome 2.0, Twist Mix (Comprehensive plus 2.0)’ used for 3 subjects
and ‘Twist Mix (Comprehensive plus 2.0)’ used for 32 subjects.
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3.5.2 Alternative models

For the smaller dataset without the maybe ND subjects, we apply only the logistic regression
analysis under the alternative hypothesis of genetic association. We do not consider Gaussian
regression under the alternative hypothesis.

Questionable variants

As described in the previous section, we calculated the sample frequencies of the three
questionable variants, c.42del, c.80_85del, and c.39_40del. The sample frequencies in the
smaller dataset were,

• c.42del ≈ 0.024

• c.80_85del ≈ 0.0067

• c.39_40del ≈ 0.02

To ensure the exclusion of the questionable variants,we set the missing cutoff parameter in
the SKAT() function slightly below the lowest observed frequency, specifically to 0.005. Note
that five variants are removed from the analysis, including two additional variants present
only in subjects with ND status maybe. These two additional removals are both deletions,
‘c.54_58del’ and ‘c.57_59del’.

Logistic regression analysis

We again apply logistic regression implemented in the SKAT package to the sample of 289
unrelated subjects to assess the association between rare variants in exon 1 of the ATXN2
gene and neurological disorder (ND) status. A SKAT-O test based on 150,000 bootstrap
replicates under the null hypothesis of no genetic association unveils genetic association
(p = 0.005 − 0.008 ) with ND status, following adjustments for potentially confounding
variables such as age, sex, and enrichment kits.

3.6 Summary of results

Our analysis shows that the rare variants in exon 1 of the ATXN2 gene are associated with
ND status.

• When subjects who are maybe ND are included in the analysis (i.e. yes and maybe
versus no), rare variants in exon 1 of the ATXN2 gene are associated with ND status
(p = 0.03) in a logistic regression analysis of ND status as a binary response. The
logistic regression analysis is based on n = 352 unrelated subjects and adjusts for age,
sex, and enrichment kit as potential confounding variables.
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• Again, when subjects who are maybe ND are included (i.e. yes and maybe versus no),
rare variants in exon 1 of the ATXN2 gene continue to be significantly associated with
ND status( p = 0.02) in a regression analysis of ND status as a Gaussian response.
The regression analysis is based on n = 358 related subjects and adjusts for age,
sex, and enrichment kit as potential confounding variables. The regression analysis
of a Gaussian response accommodates the relatedness of four parent-child trios, a
father-son duo, and a sibling pair. Still, it incorrectly assumes the binary response is
continuous and has a Gaussian distribution.

• When subjects who are maybe ND are excluded (i.e. yes versus no), rare variants in
exon 1 of the ATXN2 gene are associated with ND status (p = 0.005 − 0.008) in a
logistic regression analysis. The logistic regression analysis is based on n = 289 unre-
lated subjects and adjusts for age, sex, and enrichment kit as potential confounding
variables.
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Chapter 4

Conclusion

We start with an exploratory analysis to understand both the <persons> and <variants>
data files that were shared with us. We begin our exploration with univariate summaries,
where we examine each variable’s unique characteristics and distributions. Through tabular
summaries and visual aids such as histograms and box plots, we gain valuable insights into
the composition and structure of the data. We identify the key variables: sample index,
sex, ND status, enrichment kits, clinical information, age, and presence of a variant, under-
standing their frequencies, distributions, and potential relationships. We follow this with
bivariate summary tables giving us valuable insights into the relationships between various
variables in the <persons> data. We use exact association tests between various categori-
cal variables to gain insights about associated variables such as ND status and enrichment
kits, enrichment kits and the presence of variant, and ND status and the presence of a
variant. We use boxplots to visualize the age distribution with different variables and test
the associations using an F-test based on a null distribution from parametric bootstrapping
with B = 1000 replicates. The bootstrap F-tests indicate a positive association between ND
status and age.

The data chapter lays the groundwork for more in-depth multivariate analyses and further
research into the interplay between variants and neurodegenerative diseases. The insights
gained in this chapter include the identification of the enrichment kit as a potential con-
founding variable in the association between ND status and the presence of a variant since
it is significantly associated with both ND status and the presence of a variant. Another
insight is that age is significantly associated with ND status.

Moving on, the analysis chapter explores the association between neurodegenerative dis-
ease and rare variants in exon 1 of the ATXN2 gene by performing a formal statistical
analysis using the SKAT-O methodology [Lee et al., 2012]. We look at two datasets. The
first dataset retains the maybe ND subjects and considers them as cases along with the
yes ND subjects. The second dataset excludes the maybe ND subjects from the analysis
(it considers the no ND subjects as controls and the yes ND subjects as cases. Two null
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models are fit for the first dataset with logistic and Gaussian regression respectively. R’s
glm() function is used to estimate the effects of non-genetic covariates in the logistic re-
gression in the absence of genetic effects. The results of this logistic regression indicate a
positive association between age and neurodegenerative disease and a negative association
between the ‘ekit.TCE’ enrichment-kit category and neurodegenerative disease. The alter-
native models are formulated removing the questionable variants below a threshold for their
population frequencies. The variant weights are set using their population allele frequencies
in the gnomAD public database. We perform a bootstrap test of genetic association based
on a SKAT-O statistic and 100,000 bootstrap replicates under the null hypothesis. The
SKAT-O test unveils a significant genetic association (p = 0.03) with neurodegenerative
disease, following adjustments for potential confounders such as age, sex, and enrichment
kit.

Similarly, we analyze our second dataset that excludes the maybe ND subjects. We use a
score test with 150,000 bootstrap replicates to assess the association between rare variants in
exon 1 of the ATXN2 gene and neurodegenerative disease The test under the null hypothesis
of no genetic association unveils a significant genetic association (p = 0.005-0.008) with ND
status, following adjustments for potential confounders such as age, sex, and enrichment
kit.
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Appendix A

Supplementary Tables

A.1 Univariate summary tables

Sample Index Count
EX 8

P-ALS 93
P-AMY 3
P-AX 22

P-BGW 20
P-DIV 15
P-DYT 6
P-HL 3
P-MH 4
P-MY 42
P-NP 52

P-SPG 19
P-SW 3
P-SY 58
P-TM 10

Sex Count
Female 177
Male 181

ND status Count
Yes 134
No 161

Maybe 63

A.2 Bivariate summary tables
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no yes
EX 8 0

P-ALS 80 13
P-AMY 2 1
P-AX 17 5

P-BGW 19 1
P-DIV 14 1
P-DYT 5 1
P-HL 3 0
P-MH 3 1
P-MY 41 1
P-NP 50 2

P-SPG 15 4
P-SW 1 2
P-SY 53 5
P-TM 10 0

A.3 R Scripts

An RMarkdown file explaining the R functions described in this thesis along with the entire
code used can be found on GitHub at https://github.com/SFUStatgen/DJ
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no yes
EX 8 0

P-ALS 88 5
P-AMY 3 0
P-AX 19 3

P-BGW 19 1
P-DIV 14 1
P-DYT 6 0
P-HL 3 0
P-MH 2 2
P-MY 37 5
P-NP 51 1

P-SPG 19 0
P-SW 3 0
P-SY 54 4
P-TM 10 0

TCER vs2 Exon v7 TCE(RefSeq) TCE(R,Ex,Mix) T Mix
Female 121 2 37 2 15
Male 119 2 42 1 17
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