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Abstract

Triangle counting (TC) is one of the fundamental computing patterns in graph computing
and social networks. Due to its high memory-to-computation ratio and random memory ac-
cess patterns, it is nontrivial to accelerate TC’s performance. In this work, we propose a high-
performance TC (HiTC) accelerator to speed up triangle counting on high-bandwidth mem-
ory (HBM)-equipped FPGAs via software/hardware codesign. First, we propose hardware-
friendly reordering, tiling, and encoding techniques to address the random access issue and
optimize bandwidth utilization. Based on that, we design streaming-based hardware accel-
erators on FPGAs which leverage HBM to achieve higher bandwidth and customize the
computation pipeline for better computing throughput. Experiments using the SuiteSparse
dataset show that our HiTC achieves a geomean speedup of 8.6x (up to 24.1x) over the
Vitis TC FPGA library on the AMD-Xilinx HBM-based Alveo U280 FPGA. Compared to
the software implementation on two 12-core Intel Xeon Silver 4214 CPUs, HiTC achieves a
geomean speedup of 18.6x (up to 669.8x).

Keywords: Triangle Counting; Binary Matrix Multiplication; High-Level Synthesis; Hard-
ware Acceleration; HBM-Equipped FPGA
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Chapter 1

Introduction

Graph theory is an effective tool to understand and analyze many real-world scenarios, from
social networks to logistics systems. Graphs can efficiently model relationships between en-
tities, and clearly visualize connections, dependencies, and interactions. Triangle counting
(TC) is a fundamental task in graph theory and network analysis used to determine the
number of triangles passing through each node within a given graph. A triangle is a set of
three nodes, where each node is connected with both of the other two nodes. The impor-
tance of triangle counting in graph analysis is to reveal important structural properties and
local connectivity patterns within networks [27]. Triangle counting is commonly used for
community detection [28], clustering coefficients [19], analyzing social networks, enhancing
recommendation systems, etc. For example, if users A, B, and C form a triangle in the rec-
ommendation system case, they would have similar preferences. Recommending items liked
by one user to the others can be more effective. Also, triangle counting is closely related
to community detection in network analysis. In general nodes within the same community
tend to be strongly connected, forming closed triangles. By counting triangles, users can
easily identify those network regions that potentially form communities.

Accelerating the triangle counting problem is beneficial for large-scale analysis tasks,
especially when dealing with massive graphs containing millions of vertices and edges that
become common things in graph processing. For example, social media companies such as
Facebook [10] and LinkedIn [20], need to analyze the connections between users to under-
stand the network’s structure. Each user is represented by a node and connections between
users are represented by edges. Triangles in this case demonstrate a closed loop of connec-
tions such as mutual friends. Nowadays, social network size can be massive, thus analyzing
the network using traditional computing methods can be extremely time-consuming and
power-consuming, which is unrealistic. For example, in LinkedIn [20], a popular technique
for friend recommendation, also known as "People You May Know", needs triangle counting
algorithms for graph analysis. Having a real-time or near-real-time performance of the trian-
gle counting algorithm can improve users’ experience and stay ahead of competitors. Thus,
accelerating the triangle counting problem is important for many real-world scenarios.
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As an alternative hardware acceleration platform, Field Programmable Gate Arrays
(FPGAs) have received strong interests from academic researchers and the industry. Com-
pared to other hardware acceleration platforms like Graph Processing Units (GPU), users
can customize their hardware design, and FPGAs are more energy efficient. There are var-
ious approaches to solving TC problem, and selecting a method that is more suitable for
FPGAs acceleration becomes the first question.

The current TC algorithms can be classified into three approaches, namely matrix
multiplication-based, set-intersection-based, and subgraph matching-based methods. For
this project, we choose matrix multiplication-based TC as it is a more suitable approach
for FPGAs acceleration, and a detailed explanation will be presented in Chapter 2.

TC problem has a high memory-to-computation ratio, meaning that the algorithm
requires a significant amount of memory access relative to the amount of computation
performed. This characteristic poses five critical challenges when accelerating a matrix
multiplication-based TC on FPGA. Firstly, the sparse nature of the graphs used in TC
results in irregular memory access patterns and imbalanced workload distribution. Sec-
ondly, the size of large-scale sparse matrices often exceeds the capacity of limited on-chip
buffers. Thirdly, the traditional compressed sparse row (CSR) format is not HBM friendly
for continuously burst reading data as it needs to interact between the offset array and
index array. Fourthly, the challenge of optimizing hardware design to leverage bit-wise op-
erations for binary sparse matrices necessitates a customized architectural approach. Lastly,
timing closure problems can arise when scaling up hardware design on multi-die FPGAs.
Addressing these challenges requires a comprehensive approach to both software and hard-
ware design and optimization, tailored specifically to the unique requirements of matrix
multiplication-based TC on FPGAs.

In this thesis, we propose a novel matrix multiplication-based TC accelerator, HiTC,
to overcome those challenges. In the hardware-friendly software prepossessing step, we first
utilize a graph reordering strategy, called Minimum Degree Order (MDO) [21] to rearrange
the vertices of the graph in a way that reduces the distance between adjacent vertices in
memory. As a result, it can improve data locality, and lead to faster memory access times.
When triangle counting algorithms access neighboring vertices or their adjacency lists, there
is a higher likelihood that these vertices are located close to each other in memory. After
graph reordering, we introduce a sparsity-aware tiling technique designed for large-scale
datasets. This method tiles the large sparse matrix into small tiles, allowing only a small
tile to be loaded onto the FPGA at a time. Conventional DDR memory offers limited
memory bandwidth [26]. To overcome this limitation, we utilize HBM to support higher
memory bandwidth. Nevertheless, fully exploiting the bandwidth benefit of HBM is non-
trivial. To address this, we compress the sparse matrix in each tile and apply data encoding
and packing to enable streaming access. Additionally, we employ memory coalescing and
bursting techniques to optimize off-chip memory access. In the hardware part, we propose
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an efficient buffer technique to fit random distribution nonzero elements on the fixed on-chip
buffer. To leverage the characterise of binary sparse matrix multiplication, we propose two
different ways of computation: comparator-based hardware design and lookup table based
hardware design. These two hardware designs are used to support different distributions
of the input matrix. Overall HiTC addresses the aforementioned challenges and is the first
work to implement matrix-multiplication-based triangle counting on FPGA.

We compare the hardware performance of HiTC with 24-core CPU and other FPGA
implementations. There are only two existing FPGA implementations, one is from Huang
et al. [18] and another is from Vitis benchmark [37]. As Huang’s paper only shows the
synthesis results and both Vitis benchmark and Huang’s design use similar algorithms,
we only compare our implements with Vitis benchmark [37] on the same Xilinx FPGA
platforms.

Evaluation on SuiteSparse Matrix Collection [37] dataset shows that our HiTC achieve
a geomean speedup of 8.63x (up to 24.1x), compared to Vitis TC benchmark on the AMD-
Xilinx Alveo U280 HBM-based FPGA. Compared to Intel MKL running on two 12-core
Xeon Silver 4214 CPUs, HiTC achieves a geomean speedup of 18.6x (up to 669.8x).

1.1 Contributions of HiTC

In summary, we propose HiTC to accelerate triangle counting on HBM-equipped FPGAs
via software/hardware codesign and make three major contributions. It is the first work
that uses the matrix multiplication way for TC acceleration on FPGA.

1. We propose hardware-friendly reordering, tiling, and encoding techniques to address
the random access issue and optimize bandwidth utilization.

2. We design streaming-based hardware accelerators on FPGAs that leverage HBM to
achieve higher bandwidth and customize the computation pipeline for better comput-
ing throughput.

3. Experimental results show HiTC outperforms multi-core CPUs with an 18.6x geomean
speedup (up to 669.8x), and exceeds previous FPGA accelerators in the AMD/Xilinx
Vitis library, with a geomean speedup of 8.6x (up to 24.1x).
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Chapter 2

Background and Related Work

This chapter covers the relevant background information needed to understand this work.
Firstly we introduce the existing three different methodologies for TC in graphs and then
discuss why we choose matrix multiplication-based TC as the baseline to accelerate on
FPGA. Next, we illustrate the mathematical derivation of how to use bitwise operations
based on sparse matrix-matrix multiplications. We will discuss the previous CPU and GPU
works for accelerating TC on CPU and GPU. Lastly, we discuss previous TC acceleration
works on FPGAs.

2.1 Three Different Approaches for TC

Numerous methods have been proposed to count triangles, which can be divided into three
categories: subgraph matching approach, set-intersection approach, and matrix multiplica-
tion methods. All of these algorithms have their advantages and are suitable for different
graph structures and hardware platforms, making them important for accelerating triangle
counting tasks in various applications.

2.1.1 Subgraph Matching to a Triangle Pattern

Subgraph matching involves finding all instances of a specific pattern, represented by a query
graph, within a larger target graph [40]. This problem is utilized in various applications,
with triangle counting being one example where the pattern corresponds to a triangle. The
complexity of computing subgraph matching is classified as NP-complete [4]. The primary
method to solve this problem is through a brute-force search, which exhaustively examines
all subgraphs. Ullmann et al. [31] initially introduced a backtracking technique for subgraph
matching, which explores different search sequences, pruning strategies, and neighborhood
indices. Subsequent research efforts have focused on enhancing Ullmann’s method, with
approaches such as SPath [41] and GraphQL [15] offering further refinements.

Using the subgraph matching approach for triangle counting comes with several limita-
tions. In this context, the computational complexity can be substantial due to the necessity
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of evaluating all possible node and edge combinations in the graph. Wang et al. [32] examine
the optimization effectiveness of subgraph matching for triangle counting, focusing on the
filtering-and-joining procedure. This approach involves enumerating all triangles, which de-
mands significant memory during the joining phase. Although optimizations have enhanced
performance compared to earlier algorithms, subgraph matching tends to be slower than
intersection-based methods, except for specific datasets resembling meshes with numerous
leaf nodes that can be filtered out in the initial phase. In this next subsection, we will
introduce the set-intersection approach.

2.1.2 Set-Intersection Approach

The set-intersection approach for triangle counting is a method used to identify triangles
within a graph without self-edges and duplicate edges. This method involves performing set
operations on the adjacency lists of vertices. Assuming the graph is stored in an edge list
file, the first step is to generate the adjacency list structure, where each vertex in the graph
has a corresponding list containing its neighbors. Once the adjacency list is generated, the
algorithm iterates through each vertex v in the graph and considers its neighboring vertices.
If u are neighbors of v, then the algorithm computes the intersection of their adjacency lists
of u and v. The total number of triangles for each node is counted by summing the number of
intersections across all vertices. For instance, consider nodes A and B as neighbors. The set
of neighbors of node A is {B, D, E, F}, and the set of neighbors of node B is {A, C, E, F, G}.
The intersection of these sets is {E, F}, which are the common neighbors of nodes A and
B. Therefore, there are two triangles {A, B, E} and {A, B, F}.

The set-intersection approach tends to be more efficient for very sparse graphs where
the average vertex degree is relatively low so that the computation cost of set intersection
operations is lower compared with more dense graphs. The set intersection approach for
triangle counting is well-suited for parallel access on both GPUs and CPUs, because it
involves performing set intersection operations independently on each vertex’s adjacent list.
However, this approach is challenging for FPGA implementation due to several factors:
Firstly, the memory access pattern on adjacent lists is very random and not continuous,
which needs to randomly jump from one vertex to another vertex to find the intersection of
two adjacent lists. If the adjacent list is stored in the off-chip memory of FPGA, it causes
inefficient burst reading from off-chip memory. Moreover, FPGA has limited on-chip buffers
which cannot store the entire adjacent list on-chip.

2.1.3 Matrix Multiplication-based Approach

The matrix multiplication-based approach for TC is a class of algorithms that uses the adja-
cency matrix of the graph to perform matrix operations for TC. Many solutions employed a
linear algebraic computation model. Table 2.1 lists the notation symbols used in this thesis.
Let A be the symmetric adjacency matrix representation of an undirected graph G(V, E).
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Table 2.1: Notation used in this thesis
Symbol Description
G(V, E) An undirected graph G with vertex V and edge sets E
NZ Non-zero
NE Non-empty
nnz Number of non-zero elements
A Adjacency matrix of graph G
U Upper triangle part of adjacency matrix A
L Lower triangle part of adjacency matrix A
|set| Length of set array
ncuts total number of cuts in n dimension of a matrix
⊙ Element-wise multiplication

The naive approach is:
TC(G) = 1

6
∑

diag−1(A×A×A) (2.1)

Equation 2.1 does matrix multiplication three times with the same A matrix. The total
number of triangles equals to the sum of all the nnz elements in the diagonal region of the
A3 matrix. Azad, et al. [1] further improve this method by utilizing the mask to reduce the
complexity of computation, as shown in Equation 2.2. L is the lower triangular part of A,
and U is the upper triangular part of A.

TC(G) = 1
2nnz(A ∩ (L× U)) = 1

2
∑

A[i][j]=1
L× U (2.2)

In the Azad algorithm, the element-wise matrix multiplication operation filters out all
the wedges that are not connected by edges in the graph, thus removing non-triangular
formations. A further improvement can be proposed by Sandia [36] which replaces U by L
in the sparse matrix matrix multiplication. This modification introduces a condition where
the resulting matrix from the multiplication of L with itself is nonzero only if v1 > v2.
This constraint reduces the number of wedges stored in C. As a result, there is typically a
decrease in the number of operations and runtime. Therefore, in this thesis, we will mainly
introduce Sandia algorithm [36].

A[i][j] ∈ {0, 1} indicates whether there is an edge between vertices i and j. A2[i][j] shows
the number of paths that start from i to j using two steps. If there exists an edge between
vertex i and vertex j, and there is also a path of length two from i to j passing through an
intermediate vertex k, then vertices i, j, and k together form a triangle, and the symbol ⋂
defines element-wise multiplication.
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Let matrix U be the upper triangle part of the adjacency matrix A, with all zeros on
the diagonal. The TC of the graph G is given by

TC(G) = nnz(U ∩ U2) =
∑

U [i][j]=1
U2[i][j] (2.3)

where nnz stands for the number of nonzero elements.
It is noted in [33] that since matrix A is a sparse binary matrix, the multiplication

operation in U2 can be implemented by AND operation in hardware, and the summation
operation becomes a bit counter (BitCount), as shown below.

U2[i][j] =
n∑

k=0
AND(U [i][k], U [k][j])

= BitCount(AND(U [i][∗], U [∗][j]T )) (2.4)

TC(G) = BitCount(AND(U [i][∗], U [∗][j]T ))

in which U [i][j] = 1 (2.5)

After considering the three approaches discussed above, we have decided to use the
matrix multiplication method to solve the TC problem for several reasons. Firstly, this
approach can effectively utilize the bitwise operations inherent in the TC algorithm, making
it well-suited for FPGA acceleration. Secondly, matrix multiplication inherently allows for
a high degree of parallelism on FPGAs, further enhancing computational speed. Thirdly,
this approach is scalable for large graphs by tilling the matrix and processing it in blocks.
It is worth noting that the FPGA acceleration of the matrix multiplication method for TC
has not been extensively studied, leaving ample room for development in this area.

2.1.4 Four Different Ways of Computing Sparse-sparse Matrix Multipli-
cation

The above section shows that matrix multiplication-based TC is a variant of sparse matrix-
matrix multiplication (SpGEMM) with extra elementwise multiplication applied after cal-
culating the SpGEMM. The sparse matrix are binary matrix and asymmetric through the
diagonal. If we focus on the SpGEMM part, there are four different ways of performing the
computation [29], including the inner product approach, outer product approach, row-wise
product approach, and column-wise product approach, as shown in Figure 2.1. This figure
illustrates four different possible ways for matrix A (orange) x matrix B (green) = matrix
C (blue). All the nonzero elements of each matrix are indicated by different colors.
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Figure 2.1: Four different ways of computing SpGEMM.

The inner product-based matrix multiplication is defined by the following equa-
tion.

C[i, j] =
N∑

k=0
A[i, k]×B[k, j] (2.6)

It is a method used to compute the elements of the resulting matrix C by taking the
inner product of corresponding rows and columns of matrices A and B. Figure 2.1 shows
the step-by-step computation order, where in this example N = 3 (based 0). Each element
C[i, j] of the result matrix C is the inner product of the ith row of the matrix A and the jth

column of matrix B, which is the sum of the products of corresponding elements of the row
and column. The operations contain index matching and multiply-accumulate operations
to compute each element of the resulting matrix.

To achieve better memory performance, the input matrices must be stored in different
formats, requiring A to be in row-major and B to be in column-major order. It computes
each element of the output matrix individually, resulting in significant wasted computation
when the output matrix is sparse. For example in Figure 2.1(a), when multiplying the second
row of matrix A with the second column of matrix B, there is no matched index; hence the
output is zero. When the input matrix is sparse, the inner product is inefficient due to the
need for unnecessary index matching.

The outer product of matrix multiplication is represented by Equation 2.7.

C[:, :] =
N∑

k=0
A[:, k]×B[k, :] (2.7)

Each time, one column of matrix A multiplies with one row of matrix B, which produces
partial results for the entire output matrix C. This is repeated for all elements of matrix C.
A simple example can be found in Figure 2.1(b). However, the input matrices A and B have
to be stored in different formats. This time A is stored in column-major, and B is stored
in row-major. Also, this approach needs to buffer the entire matrix C to accumulate the
partial sum of the matrix C. It might cause a read-after-write conflict in parallel computing
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where different processing elements want to update the same address of the matrix C, which
brings challenges to efficient parallelism.

The row-wise product approach for matrix multiplication is shown by Equa-
tion 2.8.

C[i, :] =
N∑

k=0
A[i, k]×B[k, :] (2.8)

where C[i,:] represents ith row of matrix C. Each element of the ith row of A multiplies
with the entire B matrix to get the partial result of the ith row of matrix C. After going
through all the elements inside the ith row of A, we need to accumulate all the partial results
of ith row of C. Repeat this process for all rows of matrix A, calculating the inner product
for each row and each row of matrix B.

The row-wise product approach is also recognized as Gustavson’s algorithm [14], involv-
ing the multiplication of non-zero elements in a row of matrix A with the corresponding
non-zero entries in matrix B. Here, the row index in matrix B is determined by the column
index of the non-zero value in matrix A.

There are several advantages to using the row-wise approach for TC, firstly all three
matrices A, B, and C can be stored in a consistent format. According to the TC Equa-
tion 2.3, the input three matrices U can all be stored in CSR format, saving time for format
conversion. Secondly, multiple processing elements (PEs) can compute different rows of the
sparse output matrix individually, eliminating the need to synchronize reads and writes to
the output memory. Finally, the computation pattern of the row-wise product is friendly to
modify into TC design. The detailed computation process will be shown in Chapter 3.

The column-wise product approach for matrix multiplication is similar to row-
wise, but in this case, all three matrices are accessed in column-major order. This is defined
by Equation 2.9.

C[:, j] =
N∑

k=0
A[:, k]×B[k, j] (2.9)

Each column C[:,j] of the resulting matrix C calculates the inner product of the jth col-
umn of matrix B and each column of matrix A. Comparing row-wise product with column-
wise product, both of them support consistent input matrix format, one reuses B matrix
and the other reuses A matrix. There is not too much difference, so in this thesis, we choose
a row-wise product for sparse-sparse matrix multiplication.

2.1.5 Challenges to Accelerate TC

Accelerating triangle counting presents several challenges. Firstly, the triangle counting
problem has a high memory-to-computation ratio because storing the graph structure con-
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sumes a significant amount of memory. It is critical to devise an efficient compression format
for storing the sparse matrix that allows for parallel access. Secondly, leveraging parallel
processing capabilities is essential for accelerating triangle counting. Finally, ensuring scala-
bility to handle graphs that exceed the capacity of a single machine is a significant challenge.

2.2 Compression Format for Sparse Matrix

This thesis focuses on the matrix multiplication method for TC. Storing matrices in a dense
pattern leads to many unnecessary calculations and redundant storage [11]. This issue is
particularly noticeable when dealing with the upper triangle part of a sparse matrix, where
about half of the matrix is empty. To address this problem, a common approach is to
use compression formats to store sparse matrices. There are several sparse matrix formats,
with the compressed sparse row (CSR) [12] and compressed sparse column (CSC) formats
being widely used. Both formats aim to efficiently represent sparse matrices by storing only
the nonzero elements and their respective row and column indices. The main difference
between CSR and CSC lies in how they store the column or row indices: CSR stores the
nonzeros in row-major order, while CSC stores them in column-major order. Another format,
the coordinate format (COO) [23], is a straightforward approach that pairs each nonzero
element with its row and column index. Other compression formats, such as compressed
diagonal storage (CDS) [8], skyline storage (SKS) [34], and diagonal (DIAG) formats, are
efficient for specific distribution patterns. For example, the DIAG format is designed for
sparse matrices where the majority of nonzero elements are in the diagonal region.

However, using the CSR format for HBM-equipped FPGA accelerations presents several
challenges. Firstly, the CSR format is inefficient in terms of HBM bandwidth utilization.
This format stores a binary sparse matrix using two arrays: a row pointer array and a
column index array. Accessing non-zero elements requires the accelerator to first access
the row pointer array. Additionally, the continuous storage of non-zero elements hinders
cross-row vectorized accesses. The interaction between these arrays complicates continuous
memory access and prevents full streaming access to the non-zero elements. Secondly, fully
utilizing the port width becomes a challenge. The data bit-width in CSR format is usually
32-bit, whereas HBM can support larger port widths. Finally, how to tile the sparse matrix
in the CSR format becomes a problem.

2.3 Related CPU and GPU Works

Table 2.2 lists several representative accelerator implementations on different accelerator
platforms including CPU, GPU and FPGA.
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Table 2.2: Related Works in CPU, GPU and FPGA
CPU GPU FPGA

TCM
[DAC’18]

kkTri
[HPEC’17]

TC-Cilk
[HPEC’17]

HPETC
[TPDS’17]

bbTC
[TPDS’22]

Wang’s
[HPGP’18]

Huang’s
[HPEC’18]

Algorithmic properties
Intersect method ✓ ✓ ✓

Matrix multiplication ✓ ✓ ✓ ✓

Subgraph matching ✓

Optimizations
Vertex Ordering ✓ ✓ ✓ ✓

Compression ✓ ✓ ✓ ✓

Parallelization strategy
1D ✓ ✓ ✓ ✓

2D ✓

2.3.1 Previous TC Acceleration Works on CPU

Several techniques have been proposed to accelerate triangle counting on CPUs, aiming
to improve performance and efficiency. These techniques include multi-threading, SIMD
(Single Instruction, Multiple Data) vectorization, and task parallelism. Table 2.2 lists three
representative CPU implementations, including TCM, kkTri, and TC-Cilk. TCM [7], uses a
matrix multiplication-based approach for triangle counting. It employs row-wise partitions
on the input sparse matrix to enable parallel processing of sub-matrices, achieving coarse-
grained parallelization. However, a drawback of this approach is that different sub-matrices
may access the entire graph during execution, requiring multiple processor cores to share
the same memory space.

Julian [25] develops algorithms that leverage a multicore system’s parallel capabilities
through dynamic multithreading and are fine-tuned for memory hierarchy efficiency by
employing cache-oblivious techniques.

Another approach, described in [22], utilizes fast vector instruction implementations of
set operation-based algorithms to directly compute the exact triangle count. This method
leverages SIMD vectorization to improve performance. kkTri [36] focuses on triangle count-
ing on a single compute node, using linear algebra techniques. kkTri [36] uses sparse hashmap
based accumulators, which can significantly improve the cache locality. In this case, the
hashmap is used to quickly determine if three vertices form a triangle by checking for con-
necting edges between them. This approach evolved from their previous work on the miniTri
application [35], which specifically targets triangles in graphs. kkTri leverages Kokkos Ker-
nels, a C++ performance portability programming ecosystem, to adapt the implementa-
tion on multicore architectures. It offers advantages over TCM [7], particularly in its use of
compression. TC-cilk [39] is another implementation that uses matrix multiplication based
approach.
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By efficiently utilizing the multiple cores available in modern CPUs, these techniques
aim to distribute the workload of triangle counting across multiple processing units, thereby
reducing computation time.

2.3.2 Previous TC Acceleration Works on GPU

TC, a foundational task in graph processing, has received significant attention regarding
GPU acceleration. Various techniques are used to optimize performance in this field. Previ-
ous works can be classified into four classes based on their algorithmic properties: list inter-
section, map intersection, search intersection, and matrix multiplication approach. Table 2.2
lists three representative GPU implementations that use those three different approaches.

In the list intersection approach, several optimization implementations have been pro-
posed, such as those in TCM [7], HPETC [3]. These implementations utilize set intersections
between adjacent lists, which makes them cache-friendly and can utilize parallel processing
efficiently. [7] is a multicore triangle counting algorithm implementation that demonstrates
improved scalability in parallel environments by employing a list-based intersection ap-
proach. The computation of the list-based intersection algorithm can be illustrated with a
simple example: given two adjacent lists A and B, each element in A needs to be compared
with all elements in B, resulting in a time complexity of O(n2). This method contrasts with
the use of dense hashmaps, which can lead to inefficient memory utilization. HPETC [3]
takes advantage of a set intersection operation along with matrix multiplication imple-
mented relying on bitmaps and on atomic operations.

The map intersection approach uses hash maps to represent the adjacent lists of vertices.
Compared with list intersection approach, it allows for faster lookup of the neighbor list
but it has a high memory requirement. bbTC [38] leverage the characteristics of both list
intersection approach and map intersect approach by employing a hybrid approach to solve
triangle counting. It uses a list-intersect algorithm for low-degree vertices and a hash map
algorithm for high-degree vertices. Besides that Tom et al. [30] implement the map-based
algorithm using GraphMat, a parallel and distributed graph processing framework.

In the search intersection approach, a common technique is to use binary search to
achieve efficient parallelism on GPUs. Existed works include TriX [16] for multiple GPUs
and TC-stream for a single GPU [17]. These implementations are designed for large-scale
graphs. TC-stream proposes a parallel vertex approach with 1D partitioning and vertex
reordering to address the workload balance problem. On the other hand, TriX utilizes a 2D
partitioning strategy to evenly distribute the workload among multiple GPUs.

The matrix multiplication approach utilizes an adjacency matrix along with matrix
multiplication operations to count triangles. In this case, the adjacency matrix is binary,
simplifying the multiplication operation to the intersection operation. Thus intersection can
be implemented using the previous three approaches.
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2.4 Challenges for Accelerating TC on FPGAs

FPGAs possess greater flexibility than GPUs, while consuming less power, making them
well-suited for high-performance applications that require energy efficiency [18]. Moreover,
FPGAs possess greater flexibility than GPUs, allowing them to be repurposed for other
applications if necessary. However, implementing a TC accelerator on an FPGA is non-trivial
and poses several challenges. Firstly, the TC problem has a high memory-to-computation
ratio, making it essential to efficiently utilize the HBM bandwidth. Secondly, the nature of
sparse graphs leads to irregular memory access. Thirdly, FPGAs have limited on-chip buffer,
so dividing the workload effectively is critical. Lastly, the CSR format, as a commonly used
compression format, is inefficient with HBM.

2.4.1 Previous TC Acceleration Works on FPGAs

In [18], the authors present an edge-based set intersection way for acceleration TC on
FPGAs. It uses the intersection-based method for triangle counting, which iterates over
each edge and finds common elements from two adjacency lists of head and tail nodes. The
main computation of this method is to count the number of matching elements between
two adjacent lists, where the adjacent lists can be seen as one row of the adjacency matrix.
However, to compare the column indices between two rows requires a 32-bit input MUX in
hardware, which is too expensive to represent an one-bit nonzero element in the adjacency
matrix. Vitis libraries benchmark also using edge-based set intersection way for TC. Both
of them are more efficient for ultra-sparse datasets (density < 0.00001%) but not efficient
for datasets with a higher density. In this thesis, we propose a design of streaming-based
hardware accelerators on FPGAs that leverage HBM to achieve higher bandwidth and
customize the computation pipeline for better computing throughput.
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Chapter 3

HiTC Design

3.1 Overall End-to-end TC Accelerator Workflow

Figure 3.1 shows the overview of our HiTC accelerator design on CPU+FPGA computing
system, which consists of two parts: the software part and the hardware part.

In the software part, the user needs to input the edge list file of a graph, the graph can
be an undirected graph. We first convert the edge list into a sparse binary adjacency matrix
stored in a compressed sparse row (CSR) format. After that, a graph reordering algorithm,
called minimum degree order (MDO), is performed. The MDO algorithm originated from a
technique initially proposed by Markowitz in 1959 for non-symmetric linear programming
problems [21]. MDO helps to gather most of the nonzero elements into the right corner of
the sparse matrix, as shown in Fig. 3.2. Based on the TC algorithm that we discussed in
Section 2.1.2, only the data in the upper triangle part of the matrix needs to be used for
TC.

Next, three duplicated matrices A, B, and C, are created as the input to the FPGA
kernel. To save the limited on-chip buffer, we apply a sparsity-aware tiling technique on
three input matrices based on the parameters defined by the user including maximum tile
depth, maximum tile width, hardware buffer depth, and hardware buffer width. The next
step is to do data encoding of the CSR matrix so that data is stored in a streaming fashion.
To fully utilize the bandwidth (512 bits), we pack 32 elements of 16-bit data into one packet
and transfer them through the HBM channels.

In the hardware part, we develop two designs: a simple comparator-based hardware
design, which will be explained in Sec. 3.3, and a more efficient lookup-table based hardware
design, explained in Sec. 3.4.

3.2 Hardware-friendly Software Preprocessing

In this section, we will introduce all the techniques used in software preprocessing, including
graph reordering, data compressing, data encoding, and data packing. There are several
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Figure 3.1: The overview of the proposed HiTC workflow.
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reasons why we need software preprocessing. Firstly, the adjacency matrix generated by the
original graph is too sparse with poor data locality. We need a graph reordering technique to
rearrange the vertices of the graph in a way that improves the data locality of the adjacency
matrix. Secondly, the conventional CSR format is not HBM-friendly. We need a customized
compressed format based on the CSR to make it more suitable for hardware design, for
example, by minimizing data communication overhead between streaming modules and
external interfaces. Meanwhile, we propose data encoding and packing techniques to improve
bandwidth optimization.

3.2.1 Graph Reordering Algorithm

Graph reordering, also known as graph permutation or graph ordering, is the process of re-
arranging the vertices of a graph systematically to improve data locality and minimize the
edge transformation during graph processing applications [2]. The goal of graph reordering
is to rename the node order without changing the graph structure. One of the major chal-
lenges for accelerating matrix-multiplication-based TC is that the adjacency matrix with
an irregular memory access pattern exhibits poor data locality. After analyzing the nonzero
distribution of the input graphs used for TC problem, we notice most of the nonzero ele-
ments are scattered among the adjacency matrix, as shown in Figure 3.2(a). However, the
dispersed distribution is inefficient for data locality and will cause many edge transverse.
After investigating the existing graph processing algorithms, we focus on two reordering
algorithms: reverse Cuthill-McKee (RCM) as shown in Figure 3.2(b) and minimum degree
order (MDO) as shown in Figure 3.2(c).
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Figure 3.2: Graph reordering techniques: Reverse Cuthill-McKee (RCM) vs. Minimum De-
gree Order (MDO).
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Reverse Cuthill-McKee (RCM) Ordering

The Reverse Cuthill-McKee (RCM) algorithm, introduced by George [9], is a variant of
the Cuthill-McKee (CM) ordering [5], which aims at reducing the bandwidth of a sparse
symmetric matrix A. The reason for us to choose RCM ordering instead of CM ordering is
that it was observed in [24] that by reversing the CM ordering, we can reduce the amount
of fill-in for many graphs.

RCM ordering is commonly used to reduce the bandwidth of sparse matrices. Note
bandwidth in linear algebra means different in hardware. In the context of graph theory,
the bandwidth of a matrix is defined as the maximum distance between any non-zero element
and the main diagonal. We want the bandwidth to be as small as possible, which means the
graph has a more clustered structure. For example, the original adjacency matrix in 3.2(a)
has a large bandwidth. After the RCM reordering, all the non-zero elements of the new
adjacency matrix are close to the diagonal region, as shown in Figure 3.2 (b). As the
adjacency matrix is symmetric, we only consider the upper triangle part of the sparse
matrix.

Algorithm 1: Cuthill-McKee Ordering
Input: Undirected graph G = (V, E)
Output: Ordered level sets Si

1: Choose starting node s //for each connected component;
2: S1 ← {s}, mark s;
3: i = 1;
4: while Si ̸= ∅ do
5: Si+1 ← ∅;
6: //in order of increasing degree;
7: for each u ∈ Si do
8: //in order of increasing degree;
9: for each unmarked v adjacent to u do

10: Si+1 ← Si+1 ∪ {v};
11: mark v;
12: end
13: end
14: i = i + 1 //move on to the next level set;
15: end

Algorithm 1 shows the pseudo code for the Cuthill-McKee (CM) algorithm. Once we
get the net node ID for CM order, the RCM order can be obtained by reversing the CM
order, as shown in Equation 3.1.

nodeRCM
i = nodeCM

n−i+1 for i = 1, . . . , n (3.1)
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In general, the RCM has the same envelope as CM but better-observed behavior in
practice.

Minimum Degree Ordering (MDO)

The MDO algorithm[21], as shown in Algorithm 2 is another graph ordering algorithm
commonly used in the context of sparse matrix computations. As shown in Figure 3.2,
MDO reordering helps to gather most of the non-zero elements into the right corner of the
adjacency matrix by renaming the node ID of the graph. First, it reorders the nodes based
on their degrees, where the degree of a node represents the number of edges incident to
that node. Line 4 shows how to calculate the corresponding degree of a node v. Once the
degrees of all nodes are stored in a set D(node, degree), the subsequent step involves sorting
the degree set in ascending order of degree values. The final step is to rename the node ID
based on the ascending order of degree value. With the above steps, the MDO algorithm
effectively clusters the NZ elements into the right corner of the adjacency matrix.

Algorithm 2: Minimum Degree Ordering
Input: Undirected graph G = (V, E) in CSR format
Output: Ordered level sets Si

1: Create sets of node degrees D(node, degree);
2: Calculate the degree of each node in the original matrix;
3: for each v ∈ V do
4: degree = G.offset[v+1] - G.offset[v];
5: Dv ← (v, degree);
6: end
7: sort(D) //sort degrees in increasing order ;
8: for each v ∈ V do
9: Get the node ID from the degree sets;

10: Sv ← Sv ∪ {D[v].first};
11: end

3.2.2 Hardware-friendly Tiling Technique

According to Figure 3.1, the inputs of the FPGA kernel contain three sparse matrices.
Figure 3.3 shows an example of three input matrices A, B, and C. All three matrices
have the same content, which represents the upper triangle part of an adjacency matrix.
However, the three matrices play different roles. Mathematically, the computation order is:
First, matrix A is multiplied by matrix B to get the intermediate matrix, called AB[M][N].
Then element-wise multiplication between matrix AB and matrix C is performed (C[M][N]
⊙ AB[M][N] = result[M][N]). Finally, the number of TC is the sum of all non-empty (NE)
elements of the matrix result[M][N].
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Figure 3.3: HiTC computation order

Due to the limited FPGA resource, we apply a hardware-friendly tiling technique to
divide all the 3 input matrices into sub-matrices. Each time the kernel processes data tile
by tile and accumulates the partial results of TC. The detailed computation order cross
tiles and within tile-level order will be discussed later in this chapter.

Due to the limited on-chip buffer resource and regular hardware requirements in HiTC
design, we propose a hardware-friendly tiling scheme to address those problems. The rela-
tionship between graphs and sparse matrices means that vertex-level tiling corresponds to
row-based (1D) tiling, while edge-level tiling corresponds to nonzero-based (2D) partition-
ing [38]. However, the existing partition technique used for TC is not friendly for hardware.
The matrix multiplication-based TC can be seen as a variant of SpGEMM, which contains
data reused from one input sparse matrix.

According to Figure 3.3, we need to reuse matrices B and C during the computation.
However, buffering sparse matrix on-chip is nontrivial. Traditional 2D tiling for matrices
uses fixed tile shape, which is used for dense matrices. For sparse matrices, we want only to
store the NE elements on-chip and skip the zeros. Since we cannot predict how many NE
elements are inside each tile, tiling with fixed tile size cannot be used for a sparse matrix.

Thus, we propose a hardware-friendly tiling technique for sparse matrices. The new
tiling scheme depends on four constraints:

1. Hardware buffer width

2. Hardware buffer depth

3. Maximum tile width

4. Maximum tile depth.

The values of these four parameters depend on the FPGA resources and can be changed by
the user.
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Figure 3.4: An example of tiling a sparse matrix

Figure 3.4 illustrates a simple example. In this example, we set the buffer size as 2× 2,
which can store at most 4 non-zero elements. Thus, we need to ensure that for each tile
after tiling, the non-zero elements in each sub-matrix should not exceed 4. Therefore, finding
suitable cutting positions becomes the key problem that needs to be addressed.

Firstly, in the horizontal direction of the sparse matrix, we go through the matrix row
by row and count the number of non-empty rows starting from row 0. Then we split rows
into tiles when the number of NE rows meets the depth limit. We repeat this process until
it reaches the last row of the sparse matrix.

Conceptually, to cut in the vertical direction, we need to transpose the CSR format into
CSC format first to go through data in column-major. As the original adjacency matrix is
symmetric to the diagonal, the content of CSR and CSC are the same in this case. While
iterating column by column, we use a dictionary to store the pair (row index: accumu-
lated # columns). If the current column contains any row with accumulated # columns
> buffer width, we cut the tile from the current column and reset the dictionary.

An example can be seen in Figure 3.6. Suppose we iterate the matrix from the 0th to the
4th column, the dictionary store in pairs (row index: accumulated #columns), {(2 : 1), (3 :
1)}, meaning there exist two non-zeros in 4th column located in 2th and 3th row respectively.
Next, in the 5th column, we update the dictionary to {(2 : 2), (3 : 2)}. However, in the 6th

column, the updated dictionary becomes {(2 : 2), (3 : 3), . . .}, where (3 : 3) means the 3rd

row contains 3 non-zero elements, which is greater than the buffer width. Thus, we need to
cut between 5th column and 6th column.

Besides buffer depth and buffer width, we have other two constraints (max tile width,
max tile height) to make sure the shape of sub-matrices after tiling are within a certain
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limit. The larger the size of the sub-matrix is, the more bits need to be used to represent
the index values of each non-zero entry inside the sparse matrix.
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Figure 3.5: Comparison of non-empty tasks after tiling sparse matrix using RCM and MDO
algorithms. A non-empty task (tile_A, tile_B, tile_C) means all three tiles are non-empty.

Figure 3.5 compares the number of non-empty tasks resulting from the two reordering
algorithms, RCM and MDO, applied to the tiling of a sparse matrix. A task can be defined
as a tuple (tile_A, tile_B, tile_C). According to Figure 3.3, the FPGA kernel processes
tasks sequentially, and the overall kernel execution time is directly proportional to the total
number of tasks. Thus, we want the number of non-empty tasks to be as low as possible.
The estimated geometric mean reveals that the MDO algorithm outperforms RCM in terms
of identifying and skipping empty tasks. In conclusion, the MDO reordering method is more
effective in optimizing the tiling process for sparse matrices, resulting in a more compact
representation with fewer non-empty tasks.

3.2.3 Sparse Matrix Format

In this thesis, we customize the traditional compressed sparse row (CSR) format to facilitate
vectorized and streaming access to individual HBM channels while enabling simultaneous
access to multiple channels. CSR format is a popular method for representing sparse ma-
trices in computer science and numerical computing.

In the CSR format, the binary sparse matrix is stored in two arrays: 1. The column index
array stores the column indices of the NE elements in the same order as the corresponding
values in the value array. Note the input adjacency matrices are binary matrices, so it is

21



not necessary to store the values for the NE elements as it is always equal to 1. 2. An
offset array that stores the locations in the column index array that start a row. It contains
n+1 elements, where n is the number of rows in the matrix. To access the NE elements
of a specific ith row of the sparse matrix, we need to first locate the starting index of ith

row in the offset array, which indicates the position in column index arrays where the NE
elements of ith row start. Once we have the starting index for ith row, we can iterate over
the corresponding elements in the column index array to access the NE elements and their
column indices for that row.

The process above contains a lot of nonconsecutive data accesses for both offset array and
column index array, which prevent fully streaming accesses to the NE elements. Meanwhile,
the nonconsecutive data access pattern is inefficient for off-chip memory access and will
greatly reduce the performance.

To address this problem, we propose a customized compress format that supports effi-
cient data transfer through off-chip memory in a streaming fashion.
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Figure 3.6: An example of the customized sparse matrix format.

Figure 3.6 illustrates an example of our sparse matrix format on one of the tiles in
an 8 × 8 matrix. Tiling is required to handle large matrices that exceed the buffer size.
Meanwhile, we can customize the data bit width used to represent the index data. This can
help to reduce to memory overhead of storing the sparse matrix. The original CSR format
used 32 bits to represent the index data, but we use 15 bits to represent the column index,
which reduce the memory storage overhead. After tiling, the data in each tile will be stored
in CSR format. To construct the column index array for a CSR matrix, iterate over each
row of the original matrix. For each non-zero element in the row, record the column index
of that element in the JA array. To construct the offset array, start with the value 0 at the
beginning of the array. Then, for each row of the matrix, count the nnz encountered so far
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and add this count to the offset array. For example, row 2 in tile 0th tile contains 2 NZ, then
offset[2+1] - offset[2] = 2. Then we record the column indices of those 2 NZ in the column
index array, which are 4 and 5 respectively.

To minimize the data width used to represent index data, we calculate the relative
position of each NE element inside the tile. The next step is to combine the offset array
with the column index array into one so that there is no data communication between two
separate arrays. For each row of the tile, we store the row index followed by the column
indices. Each index data consists of the flag (1 bit) and index value (15 bits). If a column
index has flag == 1, it means the column index is valid. If flag == 0, it means that the
current column index is used for zero padding. If a row index has flag == 1, it means it
starts a new row. If flag == 0, it means the previous row has not finished.

After decoding, the final step is packing the streams of elements into streams of packets.
We fully utilize the HBM bandwidth that transfers 512-bit data per access to off-chip
memory. Each 512-bit packet contains 1 row index (16 bits) and 31 column indices (16
bits each). In our design, the number of processing elements (PEs) per processing element
group (PEG) relies on this data packet structure. Each PEG contains 31 PEs. The detailed
architecture will be shown in the next section.

Figure 3.6 shows one stream of data stored in one HBM channel and is assessed by
clusters of 2 PEs. The PE is scheduled in cyclic order within one tile.

In summary, the proposed customized sparse matrix format is hardware-friendly and
fully utilizes the bandwidth of HBM.

3.3 Comparator-based Hardware Design

In this chapter, we introduce two streaming designs aimed at accelerating TC. As the TC
application is memory-bound, we use the streaming design to save more on-chip memory.
Compared with non-streaming design, the implementation effort for streaming design is
more challenging. There are three input matrices for the FPGA kernel, as shown in Fig-
ure 3.3. We buffer both B tile and C tile on-chip for data reuse and access A tile in a
streaming fashion.

The first design is quite straightforward, called comparator-based hardware design,
which is explained in this section. The second design is an optimized design based on the
first one, called lookup table-based hardware design, which will be explained in Sec. 3.4.

This section begins with an exposition on the overview architecture of the accelerator
tailored to the comparator-based hardware design. Subsequently, we present the correspond-
ing algorithm for HiTC, followed by a detailed explanation of each constituent component.
This includes a buffer module and comparator design. Finally, we present an analytical
model to evaluate the performance characteristics of the proposed design.
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3.3.1 Accelerator Architecture Overview
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Figure 3.7: Comparator-based hardware design architecture.

HiTC makes efficient use of limited on-chip memory to exploit data reuse on the B
tile and utilizes the C tile as a mask to eliminate unnecessary computation from general
sparse-sparse matrix multiplication.

Figure 3.7 depicts the overview data flow architecture for comparator-based hardware
design. The arrows indicate the data transfer direction, and the bit width for each stream
is shown beside the arrow. Initially, the loading module is used to load the 512-bit input
streams from HBM and stream them into processing engine group (PEG) through a FIFO
channel. We deploy N PEG to compute block-based TC and each PEG contains 31 PEs.
Since each PEG has 31 PEs, we can process ith row of A × B tile in one cycle. The reason
to use 31 PEs per PEG is because each element inside the input stream contains 32 ×
16-bit data. One 512-bit pack consists of 1-row index with 31-column indices. Based on
the computation way for the row-wise product, to calculate one row of A × B tile at one
time, we need 31 PEs. Each PE contains one buffer module and one comparator which is
represented as CMP in the architecture figure. There are 31 CMP modules run in parallel
and each of them calculates the partial result. At the end, an adder tree is used to sum all
the partial results generated by the 31 CMP modules and output one 32-bit value. Once all
the PEGs finish processing data, we need to sum all the 6 results generated by all 6 PEGs
and get the total number of triangles.

Inside one PEG, the processing includes the following. Firstly, we buffer one B tile with
31 copies and one C tile on-chip. Both the B tile and C tile use the same buffering strategy.
There are 31 buffer B modules, each acting as a relay node to construct a chain-based
broadcasting network. In chain-based broadcasting, data are transmitted sequentially from
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one node to the next in a linear chain-like fashion. Each node in the chain receives data
from the preceding node and forwards it to the subsequent node. Since all the components
run in a pipelined fashion, the time overhead for transmitting data from one buffer module
to another can be overlapped. After buffering both B tile and C tile, the next step is to
access the A in data in a streaming fashion to the filter module. The filter module will
output A column indices used to access B tile. Meanwhile, the filter module will output
A row indices used to access B tile. After that, all the buffer modules will output column
indices in a streaming fashion to the comparator module. Each comparator module is used
to compare the B-column index with C column index and count the number of common
numbers. The adder tree is used to add all the results generated by 31 comparator modules
and output a 32-bit value as the partial result for TC.

3.3.2 Detailed Processing

The overall processing sequence can be described by the example in Figure 3.8, where only
one processing engine group (PEG) exists in the architecture. Upon tiling, the FPGA kernel
processes data tile by tile in a sequential manner. In this particular instance, we have three
input matrices A, B, and C. Suppose the B tile and C tile are buffered on-chip already, then
we input the A stream from the HBM memory.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C[M][N] A[M][K] B[K][N]

○ X.

0 0

0 0

0 0

1 1

0 0 0 0

0 0 0 0

1 1 0 0

1 1 1 1

1 1

1 1

0 0

0 0

𝑪𝒓𝒐𝒘 𝒊𝒅𝒙 = 𝑨𝒓𝒐𝒘 𝒊𝒅𝒙

𝑨𝒄𝒐𝒍 𝒊𝒅𝒙 = 𝑩𝒓𝒐𝒘 𝒊𝒅𝒙
0

3

1
Col idx 0 1

Col idx 0 1

Col idx 0 1

Col idx 0 1

Count intersect Add
results

2

2

4
Triangles

Processing  Order in Comparator-based Design

4Buffer C Buffer BStreaming A

Figure 3.8: Processing order for comparator-based hardware design.

The initial step involves decoding the 1st-row packet of A and getting the current row
index. Next, we check whether the corresponding row of C is non-empty. For instance, we
first stream in row 2 of A, but row 2 of C is empty. We then proceed to read row 3 of A and
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unpack its data. Upon accessing the C tile, we ascertain that row 3 of C contains data. We
proceed to stream the column indices from the row of C into the subsequent comparator
module.

After filtering the A data by the C tile, the filter module outputs all the A column
indices into different buffer B modules to access the B tile. In this example, a3,0 is utilized
to locate the 0th row of the B tile and retrieve its column indices (0 and 1). Concurrently,
a3,1 is employed to access the 1st row of B, yielding 2 column indices (0 and 1). Regarding
a3,2, it results in an empty row in the 2nd row of B, prompting us to skip it.

Upon identifying the corresponding column indices in the B buffer, the subsequent step
involves comparing them with the column indices in the C tile and counting the common
values. The comparator module outputs the count of common values. Finally, we sum all
the output values from different comparator modules to obtain the partial result of TC.

3.3.3 Buffering Scheme

HiTC makes efficient use of limited on-chip memory to exploit data reuse. In order to solve
the random distribution issue, we propose a specific tiling scheme aiming to limit the number
of NE elements inside each tile. The tiling scheme is used to help with the buffer module.
In this subsection, we will take a detailed look at the buffer module. In our design, both B
tile and C tile use the same buffer strategy.
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Figure 3.9: Hardware component: buffer module design.

Figure 3.9 illustrates the data structure for one buffer module, which consists of three
parts: a mask table, an address array, and an index array.

To reduce the memory overhead, we only store the NE elements inside one tile. The size
of the index array is determined by the HBM port width and also the BRAM bank size. As
we show in the sparse matrix format, each 512-bit packet transferred through HBM channel
contains 1 row index and 31 column indices. The depth of the index array relies on the 18K
memory bank size of BRAM. The size of one 18K BRAM is 512 × 36 bits. To fully utilize
the BRAM bank, we set the size of indices to be 512×496 bits, which use seven 18K BRAM
banks. Each row of the index array contains 31× 16 bits of data, or 496 bits in total. When

26



buffering data on an index array, the column indices in one row of sparse matrix can be
stored on-chip in one cycle. Also, the column indices in each row of the matrix have to be
stored in increasing order for the convenience of computation later.

According to Algorithm 4, we need to randomly access one row of tiles and quickly check
whether this row is empty or not. Thus how to efficiently map the index becomes a crucial
part of the buffer module.

To map the actual row index in the tile with the relative position in the index array,
we need an address array with a shape of 18K×9 bits to record the relative address stored
in the index array. The height of the address array is defined as the maximum tile height.
Since we use 15 bits to represent the row and column index inside a tile, theoretically, the
maximum tile height equals to 215, which is 32K. Considering the tradeoff between tile size
and resource usage, we set the maximum tile height as 18K to save on-chip resources. The
value inside the address array is within a range of 0 to 511, which can be represented by
9-bit data bitwidth. Since the input sparse matrix can be very sparse, each time only a
few rows of the index array need to be updated. However, resetting the address array takes
18K cycles. To efficiently reset the address array, an extra mask array is used to record the
validation of elements in the address array. Instead of resetting the entire address array, we
only reset the mask table which only contains 0 and 1. The original size of the mask table is
18K with 1-bit data inside, where 18K is the maximum tile height. Considering the lookup
table (LUT) usage, we cannot reset the 18K bits of data in one cycle. As a result, we store
mask tables in the BRAM bank. To fit the shape on one BRAM bank, we reshape it to 512
with 32-bit data inside, so that it takes 512 cycles to reset the mask table, which is 32 times
faster than the original mask array reset time.

3.3.4 Comparator Design

The comparator module in our architecture compares two sets of column indices from B tile
and C tile, then returns the count for the number of common elements between the two sets.
When analyzing different methods for counting the number of common elements between
two sets, several approaches can be considered. The trivial method is called the Brute Force
Method, which compares each element of one array with every element of the other array.
Nevertheless, this method is not efficient, which has a time complexity of O(n2).

One of the optimized methods is using set intersection, which is friendly for stream-
ing design, as shown in Algorithm 3. Two input sets are streaming in the comparator. It
initializes two pointers, ’a’ and ’b’, to track the indices of sets A and B respectively and
initializes a counter ’count’ to zero. |A| means the length of stream A. In the hardware
implementation, data in the set are transferred through FIFO in a streaming fashion. The
algorithm then enters a loop that continues as long as the pointers ’a’ and ’b’ are within the
bounds of sets A and B respectively. This loop will run in pipeline fashion with initial inter-
val (II) = 1. If both streams A and B are not empty, the algorithm compares the elements
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Algorithm 3: Comparator module: Set Intersect(A, B)
Input: sets A and B
Output: Number of intersection count: count

1: //a and b use to track the index of sets A and B;
2: a← 0; b← 0; count← 0;
3: while do
4: if a < |A| and b < |B| then
5: if A[a] = B[b] then
6: count + +; a + +; b + + ;
7: end
8: else if A[a] < B[b] then
9: a + +;

10: end
11: else
12: b + +;
13: end
14: end
15: else if a = |A| and b < |B| then
16: b + +;
17: end
18: else if a < |A| and b = |B| then
19: a + +;
20: end
21: else
22: break;
23: end
24: end

at indices ’a’ and ’b’ in sets A and B respectively. If the elements are equal, indicating a
common element, the counter ’count’ is incremented by one, and both pointers ’a’ and ’b’
are incremented to move to the next elements in sets A and B. If the element at index ’a’ in
set A is less than the element at index ’b’ in set B, the pointer ’a’ is incremented to move
to the next element in set A. Similarly, if the element at index ’b’ in set B is less than the
element at index ’a’ in set A, the pointer ’b’ is incremented to move to the next element in
set B. In the hardware, if one of the sets is exhausted but another set is not, it will keep
reading data from the stream until both streams are empty. This while loop will stop only
when both A and B reach the end of streams.

3.3.5 Algorithm

Algorithm 4 demonstrates the pseudo-code for TC accelerations in the proposed comparator-
based hardware architecture.
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Algorithm 4: Block-based TC with Set Intersect Approach
Input: (1) three copies of matrix U, named matrix A, B and C (2) matrix

hyper-parameter mcuts, ncuts, kcuts (3) Q pointer list
Output: number of triangles: tc

1: tc← 0;
2: for k = 0 to kcuts − 1 do
3: for n = 0 to ncuts − 1 do
4: Buffer tiles Bkn;
5: for m = 0 to mcuts − 1 do
6: Buffer tile Cmn;
7: for p = 0 to P do
8: // run in parallel;
9: for r = Qmk to Qmk+1 do

10: stream in Amk[i];
11: if Cmn[i] is not empty then
12: decode(Cmn[i]) //get column indices of Cmn[i];
13: for j = 0 to 31 do
14: //run in parallel;
15: decode(Bkn[j])//get column indices of Bkn[j];
16: tc← tc + SetIntersect(Cmn[i], Bkn[j]);
17: end
18: end
19: end
20: end
21: end
22: end
23: end

First, an input graph is represented as the upper triangle part of an adjacency matrix
format with 3 copies named matrix A, B, and C. To support a large-scale graph, we first
tile the three input matrices into sub-matrices. Since the B tiles need to buffer on-chip with
multiple copies, we want to reuse the current B tile as much as possible. The computation
order across the tile level can be shown in line 2-6.

After buffering B tiles and C tile on-chip, NE elements within a tile of A are streamed
into P PEGs from multiple HBM channels. A distinct set of rows is usually cyclically
assigned to each PE (and each HBM channel). A pointer list Q is used to track the tile
position inside the stream A. Each cycle streams in 1 packet consisting of 1 row of data
in A tile, as shown in Algorithm 4, line 10. The current row index i can be obtained after
unpacking data.

Line 11 filters the current A row index by C tile. After filtering, we use the nnz of A tile
as the index to access corresponding rows in B tile and C tile.
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The last step (line 16) is to count the number of common values between Cmn[i] and
Bkn[j] and accumulate those results. The detailed computation logic is shown in Algo-
rithm 3. The inputs of the set intersect function are two sets of column indices from Cmn[i]
and Bkn[j]. Here we suppose column indices within 1 row of matrix are stored in increasing
order. In this case, we only compare the column index for NE elements.

3.3.6 Performance Analysis and Modeling

We now analyze the performance of Algorithm 4. For better distinction, three copies of input
matrices are named as matrices A, B, and C. The dimensions of the three matrices A, B,
and C are M×K, K×N , and M×N respectively. Due to our specific tiling scheme as shown
in Figure 3.3, we use mcuts, ncuts, and kcuts to denote the number of cuts in the M , N , and
K dimensions respectively. The example in Figure 3.3 contains mcuts = ncuts = kcuts = 2.
Meanwhile, we use m, n, and k to represent the tile indices. For example, B1,2 means a
sub-matrix of B at position (1, 2).

1. In line 2-5 of Algorithm 4, we process the tiles one by one, and we only process the
data when all tiles A, B and C are non-empty. In line 4 we buffer B tile on-chip. The
cycle count for buffer tile B is:

TbufferB = Treset row mask + Tbuffer index array

= [(row mask height− 1)× II + iteration latency]

+ [(avg #rows in B tile− 1)× II + iteration latency] (3.2)

The buffer module consists of two separate for loops with pipeline II=1, including
resetting the row mask and updating the indices array. The time to fill in data in the
address array is covered inside the time to update the indices array. Since each B tile
has random NE elements inside, we consider the average number of rows inside each
B tile.

2. The cycle count for buffer tile C is:

TbufferC = Treset row mask + Tbuffer index array

= [(row mask height− 1)× II + iteration latency]

+
[
(avg #rows in C tile

PEG − 1)× II + iteration latency
]

(3.3)

Both C tile and B tile use the same way of the buffering scheme, but the processed
data are different. Unlike buffer entire tiled data like B, each C buffer only contains

1
P EGs part of C tiles.
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3. The PEG region (lines 10-18) contains three parts: decoding B, decoding C, and
comparing set intersection. Before computation, rows in A tile have been filtered by
C tile. We use #rowsA

⋂
C perPEG to indicate the number of common rows in A tile

generated after filtering:

The cycle count for decode rows in C tile is:

Tdecode C = #rowsA
⋂

C perPEG× Tget c rows

= #rowsA
⋂

C perPEG× [(31− 1)× II + iteration latency] (3.4)

We use ⋂
i∈RA∩C

Ai,∗ ∩ RB to represent the intersection of the column indices inside
the rows of #rowsA

⋂
C perPEG with the rows in B tile in matrix notation. The cycle

count for decode rows in B tile is:

Tdecode B =
⋂

i∈RA∩C

Ai,∗ ∩RB × Tget b rows

=
⋂

i∈RA∩C

Ai,∗ ∩RB × [(31− 1)× II + iteration latency] (3.5)

The cycle count for set-Intersect way of comparator is within a range. mincc shows
the best case, if both B stream and C steam are consumed at the same time. maxcc

shows the worst case, if one of the streams stalls for a long time while the other stream
is consuming. So the cycle count is:

Tcomparator per tile = #rowsA
⋂

C perPEG× range(mincc, maxcc)

mincc = max(avg #col indices per B row, avg #col indices per C row)

maxcc = avg #col indices per B row + avg #col indices per C row
(3.6)

4. The total cycle count for block-based TC-Naive Set Intersect is:

Tcc = Number of valid(tileA, tileB, tileC)

× [max(TbufferB, TbufferC) + max(TdecodeB, TdecodeC, Tcomparator)] (3.7)

Overall, the FPGA kernel processes tasks sequentially, where a valid task contains
non-empty tile A, non-empty tile B, and non-empty tile C. Inside each task, both B
tile and C tile are buffered currently, so we consider the maximum time of them. After
buffering, the computation part contains three processes running in parallel.
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3.3.7 On-chip Memory Resource Analysis and Modeling

One buffer module contains a mask array, address array, and index array. After applying
array reshaping, the mask array with 18432 bits is reshaped into 512 × 36 bits, which can
fit into one memory bank of 18K BRAM. The address array with a shape of 18432 × 9
bits is reshaped to 2304 × 72 bits. An ultra Random-access memory (URAM) block size
is 4096 × 76 bits, and the reshaped address array uses one memory bank of URAM. The
size of the index array is 512× 496 bits, which can either take 14 banks of 18K BRAM or
7 URAM blocks. We use URAMs as much as possible. Therefore, the entire buffer module
can consume either (15× 18K BRAM + 1 URAM) or (1× 18K BRAM + 8 URAM).

There are three buffer modules used on-chip memory, we named bufferB, bufferB_U,
and bufferC_U. The resources used are (15× 18K BRAM+1 URAM), (1× 18K BRAM+
8URAM), and (1× 18K BRAM + 8 URAM) respectively.

IN comparator-based hardware design we use 6 PEGs. The on-chip buffer usage for all
the buffer modules can be estimated as follows:

On-chip resource usage for 6 PEGs = 2× (31× bufferB_U + bufferC_U)

+ 4× (31× bufferB + bufferC_U)

= 124× bufferB + 62× bufferB_U + 6× bufferC_U

= 124× (15× 18K BRAM + 1 URAM)

+ 62× (1× 18K BRAM + 8 URAM)

+ 6× (1× 18K BRAM + 8 URAM)

= 1928× 18K BRAM + 668 URAM (3.8)

3.4 Lookup Table Based Hardware Design

In the previous section, we discuss a comparator-based hardware design that leverages the
set intersection to count triangles. The major computation in the design is to count the
number of common column indices between the B-column index array and the C-column
index array. In the previous design, we iterate through the 16-bit column indices in one array
and check if they exist in another array. This can be seen as a 16-bit comparator. However,
this way of comparison does not utilize the characteristics of a binary sparse matrix, where
each row of the matrix can be seen as a binary string [33].

Instead of comparing the indices of NE elements one by one, we could directly use the
AND operation between one binary string and another. We can count the number of set
1 in the output binary string using a lookup table. This way of comparison can process
multiple NE elements at one time, which is more efficient for a more dense sparse matrix.
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Figure 3.10: The proposed LUT-based hardware design architecture.

3.4.1 Accelerator Architecture Overview

Figure 3.10 depicts the overview data flow architecture for the proposed lookup table-based
hardware design. The left part of the figure is the same as the previous comparator-based
design architecture in Figure 3.7.

Inside one PEG, the processing order includes the following. Firstly, we buffer one B
tile with 31 copies and one C tile on-chip. Both the B tile and C tile use the same buffering
strategy. After buffering both the B tile and C tile, the next step is to access the A in data
in a streaming fashion to the filter module. The filter module will output A column indices
used to access B tile. Meanwhile, the filter module will output the A row index used to
access the C tile. After that, all the B buffer modules will output column indices to the
segment module doing the data slice. The main limitation of the comparator-based design
is that each time only one column index can be compared with another column index in
the comparator module. This leads to low parallelization. By using the segment to store
multiple NZ elements inside one segment. Helping us to process multiple NZ elements at
one time.

Each segment module will receive column indices stream B and it is a fixed-size data
segment pack. The segment pack is used to decompress NE column indices to binary data
segments with 1 and 0 inside. When input column indices stream in sequentially, the same
segment pack will be updated. We then stream out the segment packet to the LUT module
once the next column indices are out of range of the current data segment.

The LUT module has two inputs, including a B-segment pack stream and a C-segment
pack stream. Similar to the set Intersect way of comparator in the previous design, this
time it will compare the data segments of two input streams. The LUT module aims to use
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a pre-defined LUT to count the bit set 1 in a given binary segment. In each cycle, the LUT
module outputs the 32-bit results. In the end, an adder tree is used to add all the results
generated by 31 LUT modules and output a 32-bit value as the partial result for TC.

Detailed Processing

The overall processing sequence can be elucidated using the example in Figure 3.11. We
use the same input example as in the previous design section. Consider a scenario where
only one PEG is used in the architecture. Upon tiling, the FPGA kernel processes data tile
by tile in a sequential manner. In this particular instance, we have three input matrices A,
B, and C. Suppose the B tile and C tile are buffered on-chip already, then we input the A
stream from the HBM.
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Figure 3.11: Processing order for LUT-based hardware design.

Simpliar as Figure 3.8, it first buffers B and C tiles. Then filtering out some of the
data in stream A. Then the column indices to find the corresponding row of B row indices.
Then, we identify the corresponding column indices in the B buffer, the subsequent step
involves decompressing the column indices of C tile into a dense format and applying the
data-slicing technique to each row of C tile. Then we update the data segment and stream
out to LUT module. The same data segment processing needs to apply for B tile data. In
the given example, we set the segment size equal to 2, meaning each segment value is 2 bits.
If we want to compare 0th row of the B with 3rd row of C, we slice the 0th row of the B
with segment width equal to 2, and do the same thing to the 3rd row of C.

The next step is for segment comparison. After transferring 1 B segment and 1 C segment
into 1 LUT module, inside the LUT module, we first compare the segment indices between
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two input segments. We can do an AND operation to find the intersection in one cycle. In
reality, the slice indices between B segment and C segments might be different. Only when
both segments have the same segment indices, we can do the following intersection operation
and computation. We then use a LUT to count the set 1 inside the intersect segment in
one cycle. The LUT in this case is a fixed array that includes all the possibilities for the
count bit set. In this example, the LUT contains 4 elements (0, 1, 1, 2), corresponding to 4
different input conditions ("00", "01", "10", "11"). In addition, there are two LUT segments
in this example to count the bit set in parallel.

The last step is to sum the results from 2 LUT modules and get the final result equal
to 4. Note this example only indices the computation process order, but does not show all
hardware components.

3.4.2 Data Segment Design
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Figure 3.12: Hardware component: data segment module design.

The data segment module is one of the optimized components in LUT-based hardware
design. The main feature is to utilize the bitwise logic operation (AND) to replace the
mathematical multiplication for the binary sparse matrices. Equation 2.5 shows the formula
for TC using bitwise logic computation. To multiply one B row with one C row with AND
operation, data have to be stored in a dense format, which is inefficient for a sparse matrix
since most of the data are 0s. Based on this condition we propose a data segmentation
strategy that slices a large dense row into multiple segments. Only the non-empty segments
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will be processed in the later computation.

segment ID = column index
segment size (3.9)

bit offset = column index mod segment size (3.10)

Figure 3.12 demonstrates the storage format of a data segment. Suppose we want to do
data slicing on the 3rd row of Tile #0. At the beginning, the NE element column indices
are stored in the index array which contains column indices (4, 5). The next step is to
iterate through that row of indices and calculate the segment ID and bit offset, as shown
in Equation 3.10. In this example the segment size = 2. Both column indices 4 and 5 have
segment ID = 2, and bit offsets are 0 and 1 respectively. Since there is no more column
indices in the 3rd row, the next step is to encode the metadata of this segment into a packet.
In this example, the 1 packet (28 bits) consists of data (2 bits), segment ID (2 bits), and end
row flag (1 bit). The bit width of segment data equals the segment size. The bit width of
segment ID equals log2(max tile width

segmentsize ). All these bit width parameters can be adjusted to fit
the actual data limitation. The end row flag is a 1-bit signal to denote whether the current
row ends or not. It helps for following segment comparison in the LUT-based intersection
module since all the segments are input in a streaming fashion.

3.4.3 LUT-based Intersect Module

After the data segmentation process, the next step is to count the intersection between
segments. Algorithm 5 shows the computation process. Inputs of the LUT-based intersection
module contain two sets of segments SegsB and SegsC . There is a for loop to keep reading
two streams and using two pointers i and j to tack the current position of each two streams.
Since the stream lengths of SegsB and SegsC might differ, we first need to check whether
the two streams are valid or not. We use |SegsB| and |SegsB| to indicate the length of two
input streams. If both two streams are not reached at the end (Line 4), we do the following
computation: We first decode two segment packets to get the metadata, including the end
row flag, segment ID, and segment data. We then check whether segment B and segment
C are at the end of the row. Only when both segments are not at the end of the row, we
start comparing the segment ID. If the two segment IDs match, we multiply segment B
with segment C to get the intersection result. The multiplication in binary is the same as
the AND operation. We then use a self-defined lookup table called BitCount to count the
number of 1 inside the intersection segment. For example, if the input is t-bit, the Bitcount
array contains 2t elements to represent all the possibilities of different input numbers.
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Algorithm 5: LUT-based intersection (SegsB, SegsC).
Input: Two sets of segments SegsB and SegsC

Output: Number of intersection count: count
1: i← 0; j ← 0 // i and j track the index of sets SegsB and SegsC ;
2: count← 0;
3: while do
4: if i < |SegsB| and j < |SegsC | then
5: (FLAGend row B, bSegID, bSegdata) = decoder(SegsB[i]);
6: (FLAGend row C, cSegID, cSegdata) = decoder(SegsC [j]);
7: if FLAGend row B = 0 and FLAGend row C = 0 then
8: if bSegID = cSegID then
9: count← count+ BitCount(bSegdata AND cSegdata);

10: i← i + 1; j ← j + 1;
11: end
12: else if bSegID < cSegID then
13: i← i + 1;
14: end
15: else
16: j ← j + 1;
17: end
18: end
19: else if FLAGend row B = 1 and FLAGend row C = 0 then
20: j ← j + 1;
21: end
22: else if FLAGend row B = 0 and FLAGend row C = 1 then
23: i← i + 1;
24: end
25: else
26: i← i + 1; j ← j + 1;
27: end
28: end
29: else if i = |SegsB| and j < |SegsC | then
30: j ← j + 1;
31: end
32: else if i < |SegsB| and j = |SegsC | then
33: i← i + 1;
34: end
35: else
36: break;
37: end
38: end

3.4.4 Algorithm

Algorithm 6 shows the pseudo-code for TC accelerations with the proposed LUT-based
hardware architecture. The part in Lines 1-11 is the same as the previous comparator-based
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design. For Cmn[i], we need to decode the entire row with a data slicing technique to tile
Cmn[i] into a set of segments SegsC . Meanwhile, we use the NE column indices of A tile
as the index to access corresponding rows in B tile, as shown in lines 13-15. For each row
of Bkn[j], we apply the same data slicing strategy to slice the current row into a set of
segments SegsB. Different iterations in the for loop (line 13) are run in parallel. Different
Bkn[j] needs to compare the data from the same Cmn[i]. The sub-function, called LUT-
based Intersection gets the two sets of segments for B and C in a streaming fashion. The
detailed logic for segment comparison and intersection can be found in Algorithm 5. This
function will output a set of results. The last step (line 16) is to accumulate those results.
The detailed computation logic for LUT-based intersection algorithm will be explained in
the next subsection.

Algorithm 6: Block-based TC with LUT-based method.
Input: (1) three copies of matrix U, named matrix A, B, and C (2) matrix

hyper-parameter mcuts, ncuts, kcuts (3) Q pointer list
Output: number of triangles: tc

1: tc← 0;
2: for k = 0 to kcuts − 1 do
3: for n = 0 to ncuts − 1 do
4: Buffer tiles Bkn;
5: for m = 0 to mcuts − 1 do
6: Buffer tile Cmn;
7: for p = 0 to P do
8: // run in parallel;
9: for r = Qmk to Qmk+1 do

10: stream in Amk[i];
11: if Cmn[i] is not empty then
12: Slice Cmn[i] into a set of segments SegsC ;
13: for j = 0 to 30 do
14: //run in parallel;
15: Slice Bkn[j] into a set of segments SegsB;
16: tc← tc + LUT-based Intersect(SegsB, SegsC);
17: end
18: end
19: end
20: end
21: end
22: end
23: end
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3.4.5 Performance and On-chip Memory Analysis and Modeling

Since both the LUT-based hardware design and the previous comparator-based design used
the same buffer module, the on-chip buffer usage is the same as the previous design. The
detailed estimation can be found in the previous section.

For performance analysis, We use Algorithm 6 as an example. For better distinction,
three copies of input matrices are named as matrices A, B, and C. The dimensions of the
three matrices A, B, and C are M×K, K×N , and M×N respectively. Due to our specific
tiling scheme as shown in Figure 3.3, we use mcuts, ncuts, and kcuts to denote the number
of cuts in the M , N , and K dimensions respectively. The example in Figure 3.3 contains
mcuts = ncuts = kcuts = 2. Meanwhile, we use m, n, and k to represent the tile indices. For
example, B1,2 means a sub-matrix of B at position (1, 2).

1. In line 2-5, we process the input tile by tile, and we only process the data when both
tile A, B and C are non-empty. In line 4 we buffer B tile on-chip, which is the same
as the previous comparator-based design. The cycle count for buffer tile B is:

TbufferB = Treset row mask + Tbuffer index array

= [(row mask Height− 1)× II + iteration latency]

+ [(avg #rows in B tile− 1)× II + iteration latency] (3.11)

2. The cycle count for buffer tile C is:

TbufferC = Treset row mask + Tbuffer index array

= [(row mask Height− 1)× II + iteration latency]

+
[
(avg #rows in B tile

PEG − 1)× II + iteration latency
]

(3.12)

Unlike buffering the entire data in one tile, each C buffer only contains 1
P EGs part of

C tiles.

3. The PEG region (lines 10-18) contains three parts: data segment of B, data segment of
C, and LUT-based intersection. Before computation, rows in A tile have been filtered
by C tile, and we used #rowsA

⋂
C perPEG to indicate the number of common rows

in A tile generated after filtering.

To segment one row of index array in a buffer tile, we need to iterate the column
indices in a pipeline fashion updating the same segment packet and streaming out to
the next computation module. The cycle count for data segmentation of C is:
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Tseg C = #rowsA
⋂

C perPEG× Tsegment1row

= #rowsA
⋂

C perPEG× [(bufferwidth− 1)× II + iteration latency]

(3.13)

The cycle count for the data segmentation of B is given below. We use ⋂
i∈RA∩C

Ai,∗∩
RB to represent the intersection of the column indices inside the rows of
#rowsA

⋂
B perPEG with the rows in B tile in matrix notation.

Tseg B =
⋂

i∈RA∩C

Ai,∗ ∩RB × Tsegment1row

=
⋂

i∈RA∩C

Ai,∗ ∩RB × [(bufferwidth− 1)× II + iteration latency]

(3.14)

The cycle count for LUT-based Intersect is:

TLUTIntersect = #rowsA
⋂

C perPEG× Tcompare1rowrange(mincc, maxcc)

mincc = max(avg #seg per B row, avg #seg per C row)

maxcc = avg #seg per B row + avg #seg per C row

(3.15)

The LUT-based Intersection is similar to the set Intersection method that was used
in previous hardware design. Both of them contain one loop with a pipeline across
different iterations. However, the cycle count for LUT-based intersection depends on
the segment size and NE element distribution. Due to the random NE distribution of
the sparse matrix, for better estimation, we consider the average value of segments
per row in each tile.

4. Total cycle count:

Tcc = Number of valid(tileA, tileB, tileC)

× [max(TbufferB, TbufferC) + max(Tseg B, Tseg C, TLUTIntersect)] (3.16)
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Chapter 4

Experimental Results

In this chapter, we describe our experimental setup and present our experimental results.
For comparator-based design, we will show the performance changing when scaled-up hard-
ware design. For the look-up table design, we will present the performance comparisons
for different segment sizes and find a suitable segment size with better performance. After
that, we will show the performance comparison between the comparator-based design and
the LUT-based design. Using this segment size as the fixed parameter, we will illustrate the
performance improvement when scaling up the design. Then we will compare our design
with other FPGA work of the TC accelerator.

4.1 Evaluation Setup

We use the Xilinx high-level synthesis (HLS) tool with Vitis version 2021.2 to implement
both comparator-based design and LUT-based design on AMD-Xilinx HBM-based Alveo
U280 FPGA. We compare the performance of our design with the open-source Vitis TC
FPGA library on the same FPGA board, as well as optimized multi-core CPU implemen-
tation on two 12-core Intel Xeon Silver 4214 CPUs.

We assess the performance of our proposed hardware designs through an evaluation
conducted on 12 real-world graphs sourced from the SuiteSparse Matrix Collection [6].
Table 4.1 presents comprehensive details of these selected graphs. Our dataset comprises a
diverse array of graphs ranging from small-scale to large-scale, exhibiting various degrees
of sparsity, thereby ensuring a comprehensive evaluation of our hardware implementations.
The graph datasets range in the number of vertices from 4K to 131K, and in the number
of edges from 88K to 14M. The density of the graphs varies from 4.39E-04 to 8.78E-02.

Since the triangle counting project is an end-to-end project with CPU + FPGA codesign
platforms, we have a few assumptions. We assume the input graph is stored in CSR format
in RAM already. The comprehensive evaluation of TC’s execution time does not incorporate
the duration required for data transfer from the CPU’s solid-state drive (SSD) to the random
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Table 4.1: Selected graph dataset.
Dataset # Vertices # Edges Density
kron_g500-logn17 131,070 5,113,985 5.95E-04
TEM181302 77,360 3,828,854 1.28E-03
raefsky6 6,316 134,443 6.74E-03
bundle1 10,581 380,160 6.79E-03
facebook 4,039 88,234 1.08E-02
mouse_gene 45,101 14,461,095 1.42E-02
mycielskian15 24,575 5,555,555 1.84E-02
mycielskian14 12,287 1,847,756 2.45E-02
mycielskian13 6,143 613,871 3.25E-02
human_gene1 22,283 12,323,680 4.96E-02
raefsky1 36,417 291,034 4.39E-04
human_gene2 14,340 9,027,024 8.78E-02

access memory (RAM), nor does it encompass the time taken for data transfer between the
CPU and the FPGA.

4.2 Performance of Comparator-based Hardware Design

In this section, we analyze the performance of comparator-based hardware design, by divid-
ing it into several parts. Firstly we will list all the configuration settings of the design that
achieved the best performance. Then we will show a detailed runtime breakdown for each
module inside the architecture. The final part of the analysis will discuss the performance
improvements when scaling up the hardware design by increasing the number of PEGs.

4.2.1 Design Configuration

Table 4.2 provides a detailed configuration for the comparator-based hardware design. Due
to the limited on-chip resource, we can put a maximum used 6 PEGs inside the architecture,
with each PEG containing 31 PEs. The number of PEs per PEG in our design is decided
by the HBM port width and our row-wise matrix multiplication way. In total, this design
incorporates 25 High Bandwidth Memory (HBM) channels.

Moreover, it outlines the stream width when transferring data from off-chip data as 512
bits. The maximum dimensions for each tile are specified, with a width of 32,768 and a
height of 18,432. The sizes of various arrays crucial to the design are: the index array (512
x 496 bits), the mask array (512 x 36 bits), and the address array (2304 x 72 bits). These
parameters provide insight into the hardware configuration and specifications essential for
the comparator-based design.
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Table 4.2: Comparator-based hardware design parameters
Parameters Value
# PEGs 6
# PEs per PEG 31
# HBM Channel 25
stream width 512 bits (32 x 16)
max tile width 32,768
max tile height 18,432
indices array size 512 x 496 bits
mask array size 512 x 36 bits
address array size 2304 x 72 bits
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Figure 4.1: Comparison of the relative speedup for various scales of the comparator-based
hardware design against the baseline.
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4.2.2 Performance Scaling Analysis

The bar charts in Figure 4.1 illustrate the comparison of the relative speedup for various
scales of the comparator-based hardware design against the baseline (1 core CPU execu-
tion time), including 1 PEG, 2 PEGs, and 6 PEGs. Our method exhibits notable speedup
compared to the baseline on three datasets, namely mycielskian13, mycielskian14, and my-
cielskian15. This is attributed to their characteristics as strongly connected graphs with
relatively higher densities, ranging from 1.84E-02 to 3.25E-02, as indicated in Table 4.1.

Note that the density of the input graph significantly influences the performance, with
denser graphs generally resulting in better performance. For instance, although raefsky6
and mycielskian13 possess similar numbers of vertices, raefsky6 has fewer edges compared
to mycielskian13.

The geometric mean of the nine datasets is presented in the final three columns, revealing
relative speedups of 14x, 26x, and 53x for 1 PEG, 2 PEGs, and 6 PEGs, respectively. The
speedup increases by approximately 2 times when scaling up from 1 PEG to 2 PEGs.
However, as the design scales from 2 PEGs to 6 PEGs, the performance does not linearly
increase. This is attributed to the reduction in achievable frequency as the hardware design
is scaled up by adding more PEGs. Specifically, the achievable frequency decreases from
284 MHz to 257 MHz and 212 MHz when scaling up from 1 PEG to 2 PEGs and 6 PEGs,
respectively. After investigation, we found that adding more PEGs in FPGA designs can
lead to increased routing congestion due to design complexity, resulting in longer signal
propagation delays and decreased clock frequency. Additionally, more PEGs raise resource
utilization, which can restrict resources for critical paths and reduce achievable frequency.
Moreover, scaling up PEGs can exacerbate timing closure challenges, making it harder to
meet timing requirements (300 MHz in this case). As the clock frequency increases, the
duration of each clock cycle decreases, allowing more operations to be performed per unit
of time, thereby reducing the execution time of a kernel or application. As a result, further
scaling up PEGs cannot get linear improvement for the performance in reality.

4.2.3 Execution Time Breakdown

To further refine our design and facilitate design exploration, we have applied the ana-
lytical model detailed in Section 3.3.5 to a range of datasets. Figure 4.2 illustrates the
estimated execution time breakdown for our comparator-based design, as calculated using
Equation 4.1. These estimations were made using a realized frequency of 221 MHz, and
the cycle count was informed by the performance analysis previously discussed in Section
3.3.5. The datasets are arranged in ascending order of density. Given that the TC problem
does not necessitate storing a large volume of results, our focus was primarily on the load
and computation aspects. In the loading phase, tiles B and C are buffered concurrently.
During execution, the buffering times for B and C may vary. In the computation phase,
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Figure 4.2: Comparator-based design execution time breakdown

three tasks—decoding B, decoding C, and the intersection—are executed in parallel. As
tile densities differ, the bottleneck in the computation phase can shift among these three
modules.

Execution Time = Cycle Count
Frequency (4.1)

It is noteworthy that the datasets for TEM181302 and kron-g500 show a comparatively
larger proportion of load time than others. These two datasets have a lower density, result-
ing in the computation occupying a smaller percentage of the total execution time. Our
tiling strategy for the sparse matrix, which is contingent on the number of non-zero ele-
ments, means that the load times for different tiles are approximately equal. Consequently,
if the load time remains constant and the computation time decreases, the relative share of
computation time also diminishes. Overall, we alleviate the high memory-to-compute ratio
of the matrix-multiplication way of TC. Because we use streaming design to overlap the
loading time with the computation time.

4.3 Performance of Lookup Table-based Hardware Design

In this section, we analyze the performance of the LUT-based Hardware Design, breaking it
down into several parts. We start by listing the configuration settings that yielded the best
performance. Then, we provide a detailed runtime breakdown for each module within the
architecture. Additionally, we demonstrate how to select an appropriate segment size based
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on our evaluation. Finally, we discuss the performance enhancements achieved by scaling
up the hardware design through an increase in the number of PEGs.

4.3.1 Design Configuration

Table 4.3 outlines the specific parameters for the LUT-based hardware design. Like the
previous design, the LUT-based design is constrained by on-chip resource utilization and
supports a maximum of 6 PEGs, with each PEG consisting of 31 PEs. While many configura-
tions remain consistent with the comparator-based design, the LUT-based design introduces
two additional parameters: segment data size (16) and segment ID bit-width (11 bits).

Table 4.3: LUT-based hardware design parameters
Parameters Value
# PEGs 6
# PEs per PEG 31
# HBM Channel 25
stream width 512 bits (32 x 16)
max tile width 32,768
max tile height 18,432
indices array size 512 x 496 bits
mask array size 512 x 36 bits
address array size 2304 x 72 bits
segment data size 16
seg ID bit width 11

4.3.2 Segment Size Analysis

In the preceding section, we emphasize the significance of segment size selection. Larger
segment sizes facilitate greater parallelization but come with increased resource usage and
higher memory overhead. Therefore, balancing resource utilization and performance is cru-
cial in LUT-based designs. For instance, if the segment size is set to 6, each NE element
stored in the segment requires 1 bit of a 6-bit input-output LUT. In contrast, with a seg-
ment size of 32, accessing a single bit of 32-bit data necessitates a 32-bit input-output LUT.
Given that the total number of segment modules equals 32 ×#PEGs = 192, choosing an
appropriate segment size becomes imperative.

The bar chart in Figure 4.3 shows the comparison of the relative speedup for various
data segment sizes of the LUT-based hardware design with 6 PEGs against the baseline
(1 core CPU execution time). The segment sizes 8 (212 MHz), 16 (211 MHz), and 32 (204
MHz) are the tested date segment size, each associated with a final achievable frequency.
The chart demonstrates that as resource utilization increases, the achievable frequency
tends to decrease. Notably, the datasets mycielskian13, mycielskian14, and mycielskian15
exhibit significant speedup compared to the baseline due to their characteristics of strongly
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Figure 4.3: Performance comparison for LUT-based hardware design with variant segment
size.

connected graphs with higher densities. The LUT-based design uses segment comparison,
which is advantageous for denser matrices. With a fixed segment size, segments with more
NE elements are processed concurrently, leading to higher parallelization. Conversely, if
each segment only contains one NE element, processing time remains the same, but the
optimization is lower, as each cycle processes only one NE element. In that case, the perfor-
mance is the same as the comparator-based design. For a segment size of 8, the geometric
mean speedup is approximately 40x, while for a size of 16, it is around 55x. The speedup
drops for a segment size of 32, with a geometric mean of approximately 42x. Overall, the
chart suggests that a segment size of 16 offers the best performance compared to sizes 8
and 32.

4.3.3 Performance Scaling Analysis

The bar chart in Figure 4.1 illustrates the comparison of the relative speedup for various
scales of the LUT-based hardware design against the baseline (1 core CPU execution time).
The hardware designs are scaled up to include 1 PEG, 2 PEGs, and 6 PEGs. Three datasets,
namely mycielskian13, mycielskian14, and mycielskian15, exhibit notable speedup compared
to the baseline, as we discussed previously, because the LUT-based TC is suitable for more
dense sparse matrices. The last three columns show the geometric mean value for 1 PE, 2
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Figure 4.4: Performance comparison when scaled-up LUT-based hardware design.

PEGs, and 6 PEGs, which are approximately 10x, 10x, and 56x. Here the relative speedup
for 1 PEG and 2 PEGs are roughly the same, because the achievable frequency of 1 PEG
is significantly higher than the 2 PEGs design, even though the scale of 2 PEGs design is
two times larger than the 1 PEG. As a result, it shows the importance of having a higher
clock frequency.

In terms of timing optimization for HLS designs, we use the TAPA [13] framework
along with the Autobridge framework. TAPA/Autobridge introduces a task-parallel HLS
programming model along with a coarse-grained floorplanning strategy aimed at enhancing
timing closure and clock frequency.

In summary, the chart illustrates that as the FPGA design is scaled up by increasing the
number of PEGs, there is a noticeable increase in the relative speedup. This suggests that
while scaling up can increase parallelism and potentially improve performance, it may also
lead to challenges such as reduced achievable frequency and increased complexity, which
can impact the overall speedup.

4.3.4 Execution Time Breakdown

Similar to the performance analysis in comparator-based designs, we propose an execution
time breakdown for LUT-based designs, as illustrated in Chart 4.5. We employ a frequency
of 211 MHz to convert the estimated cycle count into execution time. The ratio between
the loading and computation segments for various datasets is similar to those observed in
the comparator-based design. This similarity arises because we have merely replaced the
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comparator module with a segment module in conjunction with the LUT module. Access
to the LUT does not constitute a bottleneck in the computation process. Instead, the
computational bottleneck primarily resides within the segment B and segment C modules.

Accuracy = 1− |Testimate − Tactual|
Tactual

(4.2)

Figure 4.6 illustrates the accuracy of the analytical module, which can be computed us-
ing Equation 4.2. Overall, the analytical module’s accuracy across various datasets hovers
around 90%. A primary factor influencing accuracy is the pipeline feature of our stream-
ing design, wherein each module operates in a pipeline fashion. Consequently, there is an
overlapping execution time among different hardware modules, which complicates accurate
estimation. Since both hardware designs utilize a similar method for performance assess-
ment, the precision of the LUT-based design’s estimation is correspondingly relative to that
of the comparator-based design.

4.4 Overall Performance Comparison between Design 1 vs
Design 2

After evaluating the performance of both the comparator-based and LUT-based designs,
we compare their respective performances. Each design is configured to achieve its best
performance, with both employing 6 PEGs. For the LUT-based design, a segment size of
16 is chosen as it yields the best performance.
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The bar chart in Figure 4.7 shows the speedup of the LUT-based design over the
comparator-based design. The red line indicates a speedup of 1x, i.e., equal performance
between the two designs. Bars above the red line indicate that the LUT-based design out-
performs the comparator-based design in terms of execution time.

Out of the 12 datasets tested, only one dataset (kron_g500-logn17 ) shows that the
comparator-based design is slightly better than the LUT-based design. The geometric mean
value indicates that the LUT-based design is 1.1x faster than the comparator-based design.
This highlights that the LUT-based design offers a higher relative speedup compared to
the comparator-based design, suggesting that the LUT-based approach is more efficient in
terms of FPGA kernel execution time.

4.5 Resource Utilization and Design Frequency

Table 4.4 provides a comparison of resource utilization and operating frequency for two
designs of the HiTC accelerator implemented on the AMD Xilinx Alveo U280 platform.
Resource utilization is presented in terms of Look-Up Tables (LUTs), Flip-Flops (FFs),
Block RAMs (BRAMs), Ultra RAMs (URAMs), and Digital Signal Processors (DSPs).
To fully leverage the maximum bandwidth of the HBM at 450MHz with 512-bit ports,
our target frequency is 225MHz. We achieve 221 MHz and 211 MHz for comparator-based
design and LUT-based design respectively. There is a slight frequency loss due to timing
closure and routing congestion problems, which is reasonable.

In the first design, named "Comparator-based TC (U280)," The resource bottleneck for
both two designs is URAM usage (69.6%). As we discussed in the previous chapter, both
designs use the same buffer modules, thus the BRAM and URAM usage is roughly the
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Figure 4.7: The speedup of LUT-based design over comparator-based design

Table 4.4: HiTC resource utilization and frequency

Design Name
Resource Utilization Freq.

(MHz)LUT FF BRAM URAM DSP
Comparator-based (U280) 48.8% 31.5% 60.8% 69.6% 30.4% 221
LUT-based (U280) 57.6% 34.8% 65.6% 69.6% 34.9% 211

same. Comparing the resource usage between the first design and the second design, the
second design used a little bit more resources for LUT, FF, and BRAM, because the second
design uses LUT-based intersection modules, which require a wider FIFO channel to transfer
data, since each 1 packet of segment takes 28 bits. On the other hand, the comparator-based
design directly transfers column indices (each 16 bits) in a streaming fashion through FIFO.
The FIFO by default is implemented by the LUT. Meanwhile, each LUT-based intersection
module contains a self-define lookup table which is implemented by registers. As a result,
the LUT-based hardware design has more resource consumption than the comparator-based
design and also achieves lower frequency than the comparator-based design.

4.6 Comparison with CPU and Other FPGA Design

In this section, we conduct benchmarking on CPU and other FPGA designs. We run exper-
iments using the 12 datasets from the SuiteSparse Collection and compare our HiTC design
(LUT-based design, segment size = 16) with Vitis TC FPGA library on the AMD-Xilinx
HBM-based Alveo U280 FPGA. We also compare it with the software implementation on
two 12-core Intel Xeon Silver 4214 CPUs. As far as we know there are two existing FPGA
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implements for TC, including Huang’s work [18], and the other one is from the AMD Vitis™
unified software development platform, where the TC is one of the applications provided.
However, since Hang’s work only does the synthesis instead of implementing the design on
the actual hardware board, we will not use Huang’s work for comparison.

Figure 4.8: HiTC performance comparison of our design against 1-core CPU (baseline),
multi-core CPU, and Vitis FPGA design on real-world graphs

The bar chart in Figure 4.8 provides a comparison of the HiTC performance of an
FPGA design against a single-core CPU (baseline), a multi-core CPU (24-core), and a Vitis
FPGA design, based on real-world graphs. The performance is measured in terms of relative
speedup (X-axis), with higher values indicating better performance.

The single-core CPU, serving as the baseline, has a relative speedup of 1, as it is the
standard for comparison. The multi-core CPU (24-core) shows a geometric mean speedup
of approximately 8x and achieves 2x to 20x speedup across 12 datasets. The limitations in
achieving speedup with 48 threads compared to 1 thread on a CPU are primarily due to
overhead, data dependency, memory bandwidth constraints, and resource contention. These
factors can outweigh the benefits of parallel execution and reduce the overall efficiency of
the parallelization. The Vitis FPGA design further enhances the performance, achieving
speedups ranging from 2x to 162x, indicating a substantial increase in efficiency.

Our HiTC design stands out with the highest relative speedups compared with the
baseline, ranging from 36x to a remarkable 2767x, showcasing its superior performance in
handling real-world graphs compared to the other works. There are 3 out of 12 datasets
that have over 900x speed up compared with the baseline. It is because those three datasets,
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mouse_gene, human_gene1, and human_gene2, have higher density than other datasets,
which are 1.42E-02, 4.96E-02, and 8.78E-02 respectively.

Another important factor is the NE elements are distributed more dispersed than what
would be expected in a random distribution. As a result, the nnzs in each row of the tile
after tiling are roughly the same. When the HiTC schedules the PE workload, it will assign
different rows to different PEGs in a cyclic manner. Based on the dispersion distribution,
it is more likely to have a balanced workload for different PEGs. Balancing the workload
among PEGs in FPGA acceleration is crucial for optimizing performance. This is because
all PEGs operate in parallel, and the overall performance is constrained by the slowest-
running PEG. For example the HiTC performance on dataset Facebook combined does not
have a significant improvement (4̃2x) compared with other datasets, because this dataset
consists of friends lists from Facebook, and some celebrities have thousands of friends on
Facebook. Thus the adjacency matrix to represent this social network contains some dense
rows with more NE elements. Those dense rows will make the PEG workloads imbalanced
and further constrain the final performance.

The baseline code used in this thesis is a basic implementation of triangle counting using
three compressed sparse row (CSR) matrices A, B, and C. It iterates over each row of matrix
A, then for each non-zero entry in A, it iterates over corresponding columns in matrices
B and C to check for triangles. For sparse matrices, this approach is efficient because it
only processes non-zero entries. However, for dense sparse matrices, where most entries
are non-zero, the algorithm becomes slow due to the nested loops iterating over all rows
and columns multiple times, leading to a high number of operations. From the software
perspective, the nested loops and repeated access to memory locations can cause cache
misses and inefficient memory access patterns, especially for dense sparse matrices. This
results in longer execution times. From a hardware perspective, repeated random memory
accesses and computations can lead to increased resource utilization and longer critical
paths. Dense sparse matrices require more operations and memory accesses, which can slow
down the FPGA’s processing speed.

In summary, the chart demonstrates that the HiTC FPGA design significantly outper-
forms the single-core CPU, multi-core CPU, and Vitis FPGA design in terms of relative
speedup, highlighting its effectiveness in processing real-world graphs.

In addition to actual run time comparison, another evaluation metric is # edges of graph
divided by execution time. This metric is commonly used in graph processing algorithms
to estimate the throughput of a kernel. The bar chart in Figure 4.9 presents the absolute
million edges per second (MEPS) for three implements: a multi-core CPU (24-core), a Vitis
FPGA design, and out HiTC work, using real-world graphs.

The multi-core CPU (24-core) has a geometric mean value of 0.4 MEPS. The Vitis
FPGA design shows a similar geometric mean of throughput to the multi-core CPU, which
is approximately 0.9 MEPS. However, the HiTC FPGA design significantly surpasses both
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Figure 4.9: Throughput comparison with multi-core CPU and Vitis FPGA design and HiTC
on real-world graphs.

the multi-core CPU and the Vitis FPGA design, achieving a geometric mean throughput
of 7.7 MEPS, indicating a substantial enhancement in processing speed.

For the actual throughput results in HiTC, TEM181302 dataset has significantly higher
throughput than other datasets, which is 117.9 MEPS. Not only for HiTC, the TEM181302
dataset achieves the highest result in both multi-core CPU and Vitis benchmarks. Several
factors can affect the throughput result, including the graph density, NE elements distribu-
tion, data access pattern, and input graph size.

In summary, the chart illustrates that the HiTC FPGA design outperforms the multi-
core CPU, and Vitis FPGA design in terms of throughput, showcasing its superior ability
to process real-world graphs efficiently.
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Chapter 5

Conclusion and Future Work

TC stands as a foundational task in graph computing and social networks, yet its acceler-
ation poses challenges due to its high memory-to-computation ratio and random memory
access patterns. In this thesis, we propose HiTC, a software/hardware codesign approach
to accelerate triangle counting on HBM-equipped FPGAs. The development of a triangle
counting accelerator on an HBM-equipped FPGA confronts three main hurdles:

1. Inefficient HBM Bandwidth Utilization: Traditional sparse matrix compression for-
mats have been shown to be unfriendly and inefficient for HBM.

2. Random Memory Access Patterns: Sparse matrices exhibit an irregular distribution
of non-zero elements.

3. Limited On-chip Buffers: FPGA’s constrained buffer resources pose challenges for
highly sparse matrices with irregular non-zero element distributions.

To tackle these challenges, we devise a triangle counting accelerator based on matrix
multiplication, leveraging the bitwise operations inherent in the TC algorithm. We intro-
duce hardware-friendly reordering, tiling, and encoding techniques to address random access
issues and optimize bandwidth utilization. Our approach designs streaming-based hardware
accelerators on FPGAs, leveraging HBM for higher bandwidth and customizing the com-
putation pipeline for improved computing throughput.

In summary, our work presents HiTC, a novel matrix multiplication-based TC accel-
erator that overcomes the challenges inherent in accelerating TC on FPGA. We employ a
graph reordering strategy, minimum degree order (MDO), to enhance data locality, followed
by a sparsity-aware partitioning technique for large-scale datasets. Additionally, we propose
efficient buffer techniques for accommodating random distribution nonzero elements within
fixed on-chip buffers. Leveraging the characteristics of binary sparse matrix multiplication,
we introduce two computation approaches: comparator-based and lookup table-based hard-
ware designs. Our work represents the first implementation of matrix-multiplication-based
triangle counting on FPGA, effectively addressing the aforementioned challenges.
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Experimenting with the SuiteSparse dataset, HiTC achieves a geometric mean speedup
of 8.6x (up to 24.1x) over the Vitis TC FPGA library on the AMD-Xilinx HBM-based Alveo
U280 FPGA. Compared to software implementations on two 12-core Intel Xeon Silver 4214
CPUs, HiTC achieves a geometric mean speedup of 18.6x (up to 669.8x).

Future Work: The proposed HiTC accelerator demonstrates superior performance
for sparse matrices with densities greater than 10−5. However, its performance is limited
when dealing with ultra-sparse matrices. Investigating the set intersect-based method for
FPGA could enhance its effectiveness in solving less connected graphs, thereby expanding
its applications.
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