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Abstract

We propose a basket trial design that tests the effectiveness of a new treatment for several types
of cancers where the endpoint is the survival time. During the trial conduct, Bayesian subgroup
analysis is conducted to classify the cancer types into different clusters according to both the sur-
vival time and the longitudinal biomarker measurements of the patient. Finally, we make Bayesian
inferences to decide whether to stop recruiting patients for each cluster early and make conclusions
about whether the treatment is effective for each cluster according to the estimated median survival
time. The simulation study shows that our proposed method performs better than the independent
approach and the Bayesian Hierarchical Modeling (BHM) method in most of the scenarios.

Keywords: Bayesian subgroup analysis; Longitudinal biomarkers; Phase I/II trials; Clinical trials
for cancer
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Chapter 1

Introduction

Traditional clinical trials for cancer treatments focus on the evaluation of the treatment for a spe-
cific cancer type. Nowadays, with the rapid development of drugs that deal with a certain molecular
alteration, the focus of clinical trials for cancer treatments has shifted toward the evaluation of the
treatment of a group of cancer types that share the same molecular alterations. This type of trial
is called a basket trial, which has several advantages over traditional clinical trials. One of the ad-
vantages of evaluating the treatment for similar cancer types together is that the clinical trial can
have a larger sample size and thus have a higher power. Another advantage of basket trial is that
it allows the study of rare cancer types that have a very small sample size, which is inconvenient
to study independently.
Some clinical trials assume that the treatment effects for all cancer types in the study are ex-
changeable, which is not usually the case because some cancer types might be more sensitive to the
treatment than others. In this case, the exchangeability assumption often causes a higher type-I
error rate if the cancer type is insensitive to the treatment. Several studies have considered classi-
fying the cancer types into exchangeable clusters, so that information can be borrowed within each
cluster. Chu and Yuan (2018 [CY18]) proposed a design in which the cancer types are grouped
into one effective cluster and one ineffective cluster, and the cancer types that are grouped into the
same cluster are considered to be exchangeable. Chen and Lee (2020 [CL20]) proposed a design
in which the cancer types are classified into clusters, and the number of clusters changes dynam-
ically during the trial. Fujikawa et al. (2020 [Fuj+20]) also proposed a basket trial that borrows
information based on similarities across the subgroups. Zhou and Ji (2020 [ZJ20]) also proposed a
basket trial which uses a formal Bayesian hypothesis testing procedure to test the efficacy of the
treatment in subgroups of cancers, where the subgroups are classified according to the similarity
of the probability that the alternative hypothesis is true. However, these four studies considered
binary endpoints instead of continuous endpoints such as survival time.
Some studies have shown that biomarkers can be associated with the clinical outcomes of the pa-
tients. Samstein et al. (2019 [Sam+19]) showed that tumor mutational burden (TMB), which is a
predictive biomarker, is associated with the overall survival (OS) of the patient. As a result, there
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is a need to incorporate biomarker measurements when classifying the cancer types into subgroups
with different efficacy. There are some clinical trial designs which incorporate biomarkers as classi-
fiers which can help to classify cancer types into different subgroups. Takeda et al. (2022 [TLR22])
proposed a Bayesian subgroup design where the cancer types are classified into subgroups according
to both the cancer type itself and a second classifier (biomarker). Liu et al. (2023 [LTR23]) also
proposed a two-stage design where only patients whose biomarkers measured in the first stage are
positive are enrolled in the second stage. These studies highlight the importance of biomarkers as
a potential classifier for cancer types because higher values in some biomarkers can be associated
with better clinical outcomes. Yin et al. (2021 [Yin+21]) proposed a method that combines find-
ing the biomarker cutoff and testing the effectiveness of the treatment using Bayesian hierarchical
modelling. However, these three designs only allow measuring the biomarker one time instead of
allowing longitudinal biomarker measurements, and their endpoints are binary instead of continu-
ous.
Longitudinal biomarkers are biomarkers that are collected multiple times over time during the
clinical study, which can be used to track the progression and predict the outcome of the disease.
Some clinical trials utilize longitudinal biomarker measurements to help predict the outcome of the
disease. van Delft et al. (2022 [van+22]) conducted research in which serum tumor marker mea-
surements, which are longitudinal biomarkers, are used to predict the immunotherapy non-response
in patients with non-small cell lung cancer. However, this study did not consider classifying more
than one cancer type into subgroups. Some clinical studies demonstrate longitudinal biomarkers are
associated with a certain clinical outcome. Wu et al. (2017[Wu+17]) found that there is a longitu-
dinal association between fasting blood glucose, which is a type of biomarker, and arterial stiffness
risk in non-diabetic individuals. Paulo et al. (2020[Pau+20]) found that a “longitudinal increase
of HbA1c was independently associated with higher rates of cardiovascular events in patients with
type 2 diabetes and multivessel CAD”, where HbA1c is a biomarker.
In some clinical trials, researchers are more interested in the progression-free survival time (PFS)
instead of the binary indicator of whether the treatment is effective. Consequently, there is a need
to develop a clinical trial method that evaluates the effectiveness of a treatment for cancers for
which the endpoint is progression-free survival time (PFS) instead of a binary endpoint.
We propose the basket trial design to test the effectiveness of a specific new treatment for several
types of cancers for which the endpoint is the survival time. Unlike traditional studies which treat
each type of cancer separately, we use Bayesian subgroup analysis to first classify the cancer types
into different clusters according to both the survival time and the biomarker measurements of the
patients, and then estimate the parameters to find out whether the treatment is effective for each
cluster of cancer types. We conclude that the treatment is effective for a cluster of cancer types if
the estimated median survival time for this cluster is greater than the threshold that we desire.
In summary, our proposed clinical trial design has many advantages. First, we incorporate the
longitudinal biomarker measurements along with the survival outcomes to help classify the cancer
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types. Second, the endpoint in our proposed method is progression-free survival time, which is very
uncommon in the clinical trial methods proposed by other researchers.
Our proposed method is motivated by the clinical trial which investigates the effectiveness of pan-
HER kinase inhibitor neratinib for treating solid tumors harbouring HER2 and HER3 mutations.
This trial is conducted by Hyman et al. (2018[Hym+18]), and it is registered at Clinicaltrials.gov.
This is a basket trial that evaluates the efficacy of the drug on 21 cancer types, such as breast,
lung, bladder and colorectal cancer. The patients were classified into different cohorts according to
the tumor type and whether it is an HER2-mutant tumor or an HER3-mutant tumor. In total, 141
patients were enrolled in the trial. In this trial, the researchers measured tumor DNA and tumour-
derived cell-free DNA in plasma as biomarkers, which can be used to help evaluate “how ERBB2/3
copy number and clonality as well as co-mutational pattern affected outcome” (2018[Hym+18]).
The researchers are interested in the efficacy of the drug in each cohort. One of the secondary
endpoints in this study is the progression-free survival time (PFS), which was estimated using the
Kaplan-Meier method.
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Chapter 2

Methods

2.1 Model

In this study, we consider I types of cancer. For each type of cancer, we recruit ni patients. We
measure the biomarker for each patient L-times, where the measurement times are denoted by t1,
· · · , tL. The biomarker measurement of the j-th patient in the i-th cancer type measured at time tl

is denoted by Zijl. We assume that we will measure the biomarker at the same time points for all
patients. After we complete the biomarker measurements, we measure the survival time for each
patient, denoted by tij . Let ωij be the censoring indicator for the j-th patient in the i-th cancer
type, where ωij = 1 if the patient is not censored, and ωij = 0 if the patient is censored. We assume
that the I types of cancer can be grouped into K clusters according to the biomarker measurements
and the survival time. In this article, we consider the case where K = 2, which means that there
is one effective cluster and one ineffective cluster. However, the method can be generalized for the
cases where K > 2. The objective of the study is to determine whether the treatment is effective for
each cluster of patients, which is reflected by the median survival time for each cluster of patients.
The hypothesis test is

H0 : ρi < q0 versus Ha : ρi > q1,

where ρi is the median survival time for cluster i, q0 is the median survival time cutoff under
which the treatment is deemed ineffective, and q1 is the median survival time cutoff over which the
treatment is deemed effective.
Let πik denote the probability that cancer type i belongs to cluster k. Let Ci be an indicator of
which cluster the cancer type belongs to. For example, C1 = 2 means that the first cancer type
belongs to the second cluster. We assume that Ci has the multinomial distribution:

Ci ∼ Multinomial(πi1, . . . , πiK).

Recall that Zijl is the biomarker measurement of the j-th patient in the i-th cancer type measured
at time tl. We assume the biomarker measures are structured as follows,

4



Zijl|(Ci = k) = µk(tl) + vi + wij + ϵijl,

which reflects the grouping structure of the model. Specifically, every cluster has a mean trajectory
of the biomarker, which is denoted by µk(tl). Every group within the cluster can have a mean
trajectory that varies from the mean trajectory of the cluster, and the difference is denoted by vi.
Every patient within the group can have a mean trajectory that varies from the mean trajectory
of the group, and the difference is denoted by wij . The error term of the j-th patient in the i-th
cancer type measured at time tl is denoted by ϵijl. Here, µk(tl) has the B-Spline structure.

µk(tl) = γ1(k)B1,k(tl) + γ2(k)B2,k(tl) + . . . + γS(k)BS,k(tl),

where Bq,k are the B-Spline basis functions, γq(k) are the coefficients associated with the B-Spline
basis function, and S is the number of B-Spline basis functions. In our simulation study, we set
S = 6.
We assume that vi ∼ N(0, σ2

v), wij ∼ N(0, σ2
w), and ϵijl ∼ N(0, σ2

ϵ ), where σ2
v , σ2

w, and σ2
ϵ are

the variances of the corresponding Normal distributions. The survival function for the i-th patient
in the j-th cancer type is assumed to be related to the cluster membership of the patient via a
Cox-proportional hazard model with the baseline hazard following a Weibull distribution,

St(tij) = exp{−λtr
ijexp(θ(k))}.

where λ and r are the scale and shape parameters of the baseline Weibull distribution, and we
specify θ(1) = 0 for the sake of identifiability. The corresponding probability density function of the
survival time is

ft(tij) = exp{−λtr
ijexp(θ(k))}rtr−1

ij λexp(θ(k)).

We will use the Gibbs sampler to sample from posterior distributions of the parameters, which is
common in Bayesian clinical trial designs.

2.2 Prior Distributions

We assign vague prior distributions to the parameters of the model. The prior distributions assigned
to the parameters of the model are as follows.

(πi1, . . . , πiK) ∼ Dirichlet(2, . . . , 2).

γq(k) ∼ N(0, 104) for q = 1, 2, . . . , S and k = 1, . . . , K.

σ2
v ∼ IG(10−3, 10−3).

σ2
w ∼ IG(10−3, 10−3).
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σ2
ϵ ∼ IG(10−3, 10−3).

θ2 ∼ Uniform(−1, 1).

λ ∼ Gamma(0.1, 0.1).

r ∼ Gamma(0.1, 0.1).

In the distributions above, IG(α, β) denotes the inverse Gamma distribution with shape parameter
α and scale parameter β.

2.3 Trial Design

This trial has M planned interim analyses. Let Dm be the observed data at the m-th interim
analysis. Recall that ρi is the median survival time for cluster i.
If P{ρi > (q0 + q1)/2|Dm} < Qf , then stop recruiting patients for cancer types that belong to the
i-th cluster and conclude that the treatment is ineffective for these types of cancers. Otherwise,
continue to recruit patients for these cancer types. Here, Qf is a probability cutoff; in this study,
we set Qf to be a small value, e.g., 0.05.
At the end of the study, declare that the treatment is effective if P{ρi > (q0 + q1)/2|Dm} > Q for
the i-th cluster of patients. Otherwise, declare that the treatment is ineffective for the i-th cluster
of patients. Here, Q is a probability cutoff; by default, we set Q = 0.8.
At each analysis, we determine the cluster membership of each group using the following rule. If
the posterior probability that Ci = 1 is greater than 0.5, then the i-th cancer type belongs to the
ineffective cluster. Otherwise, the i-th cancer type belongs to the effective cluster.
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Chapter 3

Illustration

We illustrate how to implement our proposed design using a hypothetical clinical trial. Suppose we
would like to evaluate whether a new drug is effective for each of the 12 types of cancers which
share the same molecular aberration. Suppose the maximum number of patients in each cancer
type is 50, and we have one planned interim analysis. In the first stage, we only recruit 30 patients
for each cancer type. We first measure the biomarkers for each patient 20 times. After that, we
record the observed survival time and censoring status of each patient.
After we collect the data, we fit the model and sample from the posterior distributions of the
parameters. Recall that the interim stopping rule is that if P{ρi > (q0 + q1)/2|Dm} < Qf = 0.05,
then we stop recruiting patients for cancer types which belong to the i-th cluster, and conclude
that the treatment is ineffective for these types of cancers. The posterior distribution of ρ1 and ρ2

are shown below.
The posterior probabilities are P (C1 = 1) = P (C2 = 1) = P (C3 = 1) = P (C4 = 1) = P (C5 = 1) =
P (C6 = 1) = 1, and P (C7 = 1) = P (C8 = 1) = P (C9 = 1) = P (C10 = 1) = P (C11 = 1) = P (C12 =
1) = 0, which means that cancer type 1, 2, 3, 4, 5, 6 belong to the first cluster, and cancer type 7,
8, 9, 10, 11, 12 belong to the second cluster. Since P{ρ1 > (q0 + q1)/2|Dm} = 0 < Qf , we declare
that the treatment is ineffective for all the cancer types that are classified into the first cluster.
Since P{ρ2 > (q0 + q1)/2|Dm} = 0.984 > Qf , we continue to recruit 20 more patients for each of
the cancer types that are classified into the second cluster, and record the observed survival time
and censoring status of each patient in these cancer types. In the second stage, we only use the
data of the cancer types that are classified into the second cluster in the previous stage. After that,
we fit the model again and estimate the posterior distribution of the parameters again. Recall that
at the end of the study, we declare that the treatment is effective if P{ρi > (q0 + q1)/2|Dm} > Q

for the i-th cluster of patients. The posterior distribution of ρ1 is shown below.
The posterior probabilities show that P (C7 = 1) = P (C8 = 1) = P (C9 = 1) = P (C10 = 1) =
P (C11 = 1) = P (C12 = 1) = 1, which means that cancer type 7, 8, 9, 10, 11, 12 are classified into
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Figure 3.1: The posterior distribution of the median survival time for cluster 1 at the interim
analysis.

the first cluster in this stage. Since P{ρ1 > (q0 + q1)/2|Dm} = 0.999, we declare that the treatment
is effective for all these six cancer types.

8



Figure 3.2: The posterior distribution of the median survival time for cluster 2 at the interim
analysis.

Figure 3.3: The posterior distribution of the median survival time for cluster 1 at the end of the
trial.
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Chapter 4

Simulation Study

We conduct a simulation study to evaluate the performance of the proposed design. We assume
that the cancer types can be grouped into two clusters. The first cluster is the group where the
treatment is ineffective, and the second cluster is the group where the treatment is effective. Let
q0 = 0.5, and q1 = 0.7 in the hypothesis testing. In our simulation study, there are 12 cancer types
and each of them might belong to either cluster 1 or cluster 2. We conduct 5 scenarios where the
number of cancer types that belong to cluster 1 differs between each scenario. If a cancer type
belongs to cluster 1 (ineffective cluster), then the median survival time we set for this cancer type
is 0.5. By contrast, if a cancer type belongs to cluster 2 (effective cluster), then the median survival
time we specify is 0.7. We set λ = 1.96, r = 1.5, θ(2) = −0.505 to satisfy these constraints.
For the ineffective group, we set (γ1(1), γ2(1), γ3(1), γ4(1), γ5(1), γ6(1)) = (1, 1, 1, 1, 1, 1), so that the
mean value of the biomarker measurements stays the same across the observation period. By con-
trast, for the effective group, we specify (γ1(2), γ2(2), γ3(2), γ4(2), γ5(2), γ6(2)) = (1, 2, 3, 4, 5, 6), result-
ing in the mean biomarker measurements slowly increasing over time. Figure 6.1 shows the mean
trajectories of the biomarker for the ineffective group and effective group in this simulation study.
We simulate the biomarker measurements, the survival times, and the censoring times. The maxi-
mum number of patients for each cancer type is 50. There is one interim analysis conducted when
the number of patients for each cancer type is 30. We compare the performance of our proposed
model with the performance of the independent approach and the Bayesian Hierarchical Model
(BHM) method. The independent approach uses a method similar to the proposed design without
the clustering; it assumes that each cancer type has unique θ and r parameters in the survival func-
tion. The model specification and the Gibbs sampler of the BHM method can be found in a later
section. The probability cutoffs Qf and Q in the trial design are the same across the three methods
so that the comparison would be meaningful. We conduct 500 simulations for each scenario.
Table 4.1 shows the results of the simulation study. In this table, “Early Stop” means that the trial
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Figure 4.1: Mean biomarker measurement. The solid and dashed line represents the mean biomarker
measurement for the effective group and the ineffective group, respectively.

is stopped for this cancer type after the interim analysis because the treatment is considered to be
ineffective. If the trial is stopped early for a cancer type, then no new patients will be recruited
for this cancer type. “Reject” means that the null hypothesis is rejected for this cancer type, and
we conclude that the treatment is effective for this cancer type. “No-Reject” means that the trial
is not early stopped and the null hypothesis is not rejected after interim 2. “Sample Size” means
the average number of patients that are recruited in each cancer type, which are averaged over the
cluster. In scenario A1, there are 12 effective cancer types and no ineffective cancer types. The early
stopping rate for the effective group using our proposed model (0.0%) is lower than that using the
independent approach (0.7%) or the BHM method (1.6%), which means that fewer patients who
are actually in the effective group are wrongly stopped being recruited using our proposed model.
The rejection rate for the effective group after interim 2 using our proposed model (99.6%) is higher
than that using the independent approach (70.5%) or the BHM (73.6%) method, which means that
more patients who are actually in the effective group are correctly classified into the effective group
after the trial is finished using our proposed model. Our proposed method performs better than the
other two methods in these two aspects because our proposed model borrows information across
the cancer types that are classified into the same cluster.

11



Early Stop % Reject % No-Reject % Sample Size
A1 Proposed Model Ineffective - - - -

Effective 0.0 99.6 0.4 50.0
Independent Approach Ineffective - - - -

Effective 0.7 70.5 28.9 49.9
BHM Ineffective - - - -

Effective 1.6 73.6 24.8 49.7
A2 Proposed Model Ineffective 67.8 9.8 22.4 36.4

Effective 0.0 98.9 1.1 50.0
Independent Approach Ineffective 21.6 9.3 69.1 45.7

Effective 0.7 68.0 31.2 49.9
BHM Ineffective 39.0 1.7 59.3 42.2

Effective 1.8 71.2 27.0 49.6
A3 Proposed Model Ineffective 85.4 1.4 13.2 32.9

Effective 1.7 92.5 5.7 49.7
Independent Approach Ineffective 20.5 11.9 67.6 45.9

Effective 0.7 63.3 36.0 49.9
BHM Ineffective 41.8 1.8 56.4 41.6

Effective 1.9 69.7 28.4 49.6
A4 Proposed Model Ineffective 99.0 0.0 1.0 30.2

Effective 3.1 88.3 8.7 49.4
Independent Approach Ineffective 20.4 11.7 67.8 45.9

Effective 0.7 49.1 50.2 49.9
BHM Ineffective 45.8 1.8 52.4 40.8

Effective 2.5 67.1 30.4 49.5
A5 Proposed Model Ineffective 96.4 0.1 3.6 30.7

Effective - - - -
Independent Approach Ineffective 20.3 6.8 72.9 46.0

Effective - - - -
BHM Ineffective 49.4 1.5 49.1 40.1

Effective - - - -

Table 4.1: Results of the main simulation study which compares the performance of the proposed
model with the independent approach and the BHM method. This table shows the early stopping
rate, rejection rate, and sample size under five simulation scenarios.

Scenario A3 has 6 ineffective cancer types and 6 effective cancer types. Our proposed model re-
sults in a much higher early stopping rate (85.4%) for the ineffective group than the independent
approach (20.5%) or the BHM method (41.8%), which means that more patients who are actu-
ally in the ineffective group are correctly stopped being recruited using our proposed model. This
indicates that our proposed model results in a smaller sample size and is more likely to stop the
trial early for the ineffective cluster. The rejection rate for the ineffective group after interim 2
using our proposed model (1.4%) is lower than that using the independent approach (11.9%) or the
BHM method (1.8%), which means that our proposed model yields a lower type-I error rate than
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Figure 4.2: Early stopping rate in the main simulation study. The red, green, and blue bars represent
the BHM method, the independent approach, and the proposed method, respectively. Scenarios A1
to A5 vary regarding the number of effective/ineffective treatments.

the BHM method and the independent approach. The early stopping rate for the effective group
using our proposed model (1.7%) is only slightly higher than that using the independent approach
(0.7%) and is lower than that using the BHM method (1.9%). The rejection rate for the effective
group after interim 2 using our proposed model (92.5%) is higher than that using the independent
approach (63.3%) or the BHM (69.7%) method, which indicates that our proposed method yields
much higher power than the other two methods. Again, the reason why our proposed model per-
forms better is that it borrows information within the subgroup.
In scenarios A2, A4, and A5, the number of ineffective cancer types is 3, 9, and 12, respectively,
and the number of effective cancer types is 9, 3, and 0, respectively. In these three scenarios, our
proposed design generally performs better than the other two methods in most aspects. However,
there are some drawbacks to our proposed model. For instance, in scenario A4, the early stopping
rate for the effective group using our proposed model (3.1%) is higher than that using the indepen-
dent approach (0.7%) or the BHM (2.5%) method.
In summary, our proposed model outperforms the independent approach or the BHM method in
most cases in terms of the higher early stopping rate for the ineffective group, lower early stopping
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Figure 4.3: Rejection rate, which is the proportion of trials where the null hypothesis is rejected,
in the main simulation study. The red, green, and blue bars represent the BHM method, the
independent approach, and the proposed method, respectively. Scenarios A1 to A5 vary regarding
the number of effective/ineffective treatments.

rate for the effective group, higher rejection rate for the effective group, and lower rejection rate
for the ineffective group.
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Chapter 5

Sensitivity Analysis

We conduct three sensitivity analyses to evaluate the robustness of the proposed model. In the first
sensitivity analysis, we change the prior distribution of θ2 from Uniform(-1,1) to Uniform(-2,0),
while there are still 12 cancer types so that we can evaluate whether the model performs well when
the prior distribution of a certain parameter is changed.
Table 5.1 shows the results of the simulation study of the first sensitivity analysis. In scenario B1,
there are 12 effective cancer types and no ineffective cancer types. The early stopping rate for the
effective group using our proposed model (0.0%) is lower than that using the independent approach
(0.7%) or the BHM method (1.6%). The rejection rate for the effective group after interim 2 using
our proposed model (99.5%) is higher than that using the independent approach (70.5%) or the
BHM (73.6%) method. In both of these aspects, our proposed model outperforms the other two
methods.
In scenario B2, there are 3 ineffective cancer types and 9 effective cancer types. The early stopping
rate for the ineffective group using our proposed model (58.0%) is higher than that using the inde-
pendent approach (21.6%) or the BHM method (39.0%). The early stopping rate for the effective
group using our proposed model (0.0%) is lower than that using the independent approach (0.7%)
or the BHM method (1.8%). The rejection rate for the effective group after interim 2 using our
proposed model (97.2%) is higher than that using the independent approach (68.0%) or the BHM
(71.2%) method. However, the rejection rate for the ineffective group after interim 2 using our
proposed model (23.0%) is higher than that using the independent approach (9.3%) or the BHM
(1.7%) method, which is a drawback to our proposed model.
In scenarios B3, B4, and B5, the number of ineffective cancer types is 6, 9, and 12, respectively,
and the number of effective cancer types is 6, 3, and 0, respectively. In these three scenarios, our
proposed design generally performs better than the BHM method and the independent approach
in most of the cases, although there are some cases in which our proposed model performs worse
than the other two methods. This simulation study shows that the performance of our proposed
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Early Stop % Reject % No-Reject % Sample Size
B1 Proposed Model Ineffective - - - -

Effective 0.0 99.5 0.5 50.0
Independent Approach Ineffective - - - -

Effective 0.7 70.5 28.9 49.9
BHM Ineffective - - - -

Effective 1.6 73.6 24.8 49.7
B2 Proposed Model Ineffective 58.0 23.0 19.0 38.4

Effective 0.0 97.2 2.8 50.0
Independent Approach Ineffective 21.6 9.3 69.1 45.7

Effective 0.7 68.0 31.2 49.9
BHM Ineffective 39.0 1.7 59.3 42.2

Effective 1.8 71.2 27.0 49.6
B3 Proposed Model Ineffective 59.2 3.0 37.8 38.2

Effective 7.5 64.5 27.9 48.5
Independent Approach Ineffective 20.5 11.9 67.6 45.9

Effective 0.7 63.3 36.0 49.9
BHM Ineffective 41.8 1.8 56.4 41.6

Effective 1.9 69.7 28.4 49.6
B4 Proposed Model Ineffective 96.8 0.0 3.2 30.6

Effective 10.6 81.7 7.7 47.9
Independent Approach Ineffective 20.4 11.7 67.8 45.9

Effective 0.7 49.1 50.2 49.9
BHM Ineffective 45.8 1.8 52.4 40.8

Effective 2.5 67.1 30.4 49.5
B5 Proposed Model Ineffective 97.3 0.0 2.7 30.5

Effective - - - -
Independent Approach Ineffective 20.3 6.8 72.9 46.0

Effective - - - -
BHM Ineffective 49.4 1.5 49.1 40.1

Effective - - - -

Table 5.1: Simulation results of the sensitivity analysis when the prior distribution of one hyperpa-
rameter is changed. This table shows the early stopping rate, rejection rate, and sample size under
five simulation scenarios. Scenarios B1 to B5 vary regarding the number of effective/ineffective
treatments.

method is generally superior even if we change the prior distribution of one hyperparameter.
In the second sensitivity analysis, we increase the number of cancer types from 12 to 18, while
keeping the prior distribution of θ2 to be Uniform(-1,1), so that we can evaluate whether the model
performs well when there are more cancer types.
Table 5.2 shows the results of the simulation study of the second sensitivity analysis. In scenarios
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Figure 5.1: Early stopping rate when the prior distribution of one hyperparameter is changed.
The red, green, and blue bars represent the BHM method, the independent approach, and the
proposed method, respectively. Scenarios B1 to B5 vary regarding the number of effective/ineffective
treatments.

C1, C2, and C3, the number of ineffective cancer types is 5, 9, and 18, respectively, and the number
of effective cancer types is 13, 9, and 0, respectively. In these three scenarios, our proposed model
performs better than the other two methods in general in terms of the early stopping rate and
the rejection rate. For example, in scenario C2, the early stopping rate for the ineffective group
using our proposed model (89.4%) is higher than that using the independent approach (20.1%) or
the BHM method (43.4%). The rejection rate for the ineffective group after interim 2 using our
proposed model (0.4%) is lower than that using the independent approach (12.2%) or the BHM
method (1.9%). The rejection rate for the effective group after interim 2 using our proposed model
(93.0%) is higher than that using the independent approach (64.0%) or the BHM (69.0%) method.
The only aspect in this scenario where our proposed model performs worse is that the early stop-
ping rate for the effective group using our proposed model (1.8%) is higher than that using the
independent approach (0.5%) and is only slightly lower than that using the BHM (2.2%) method.
This simulation study shows that our proposed method performs greatly even if we increase the
number of cancer types.
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Figure 5.2: Rejection rate, which is the proportion of trials where the null hypothesis is rejected when
the prior distribution of one hyperparameter is changed. The red, green, and blue bars represent
the BHM method, the independent approach, and the proposed method, respectively. Scenarios B1
to B5 vary regarding the number of effective/ineffective treatments.

In the third sensitivity analysis, we increase the number of cancer types from 12 to 18 and change
the prior distribution of θ2 from Uniform(-1,1) to Uniform(-2,0), so that we can evaluate the per-
formance of the model when there are more cancer types and the prior distribution of one hyper-
parameter is changed.
Table 5.3 shows the results of the simulation study of the third sensitivity analysis. In scenario D1,
D2, and D3, the number of ineffective cancer types is 5, 9, and 18, respectively, and the number of
effective cancer types is 13, 9, and 0, respectively. In most cases, our proposed model outperforms
the other two methods in terms of the early stopping rate and rejection rate. For example, in sce-
nario D1, The early stopping rate for the ineffective group using our proposed model (75.4%) is
higher than that using the independent approach (19.3%) or the BHM method (39.5%). The early
stopping rate for the effective group using our proposed model (0.0%) is lower than that using
the independent approach (0.5%) or the BHM method (2.0%). The rejection rate for the effective
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Early Stop % Reject % No-Reject % Sample Size
C1 Proposed Model Ineffective 82.2 4.8 13.0 33.6

Effective 0.0 98.4 1.6 50.0
Independent Approach Ineffective 19.3 10.5 70.2 46.1

Effective 0.5 68.8 30.7 49.9
BHM Ineffective 39.5 1.8 58.7 42.1

Effective 2.0 70.8 27.3 49.6
C2 Proposed Model Ineffective 89.4 0.4 10.2 32.1

Effective 1.8 93.0 5.2 49.6
Independent Approach Ineffective 20.1 12.2 67.7 46.0

Effective 0.5 64.0 35.5 49.9
BHM Ineffective 43.4 1.9 54.7 41.3

Effective 2.2 69.0 28.8 49.6
C3 Proposed Model Ineffective 97.3 0.0 2.7 30.5

Effective - - - -
Independent Approach Ineffective 20.3 7.5 72.2 45.9

Effective - - - -
BHM Ineffective 51.7 1.6 46.7 39.7

Effective - - - -

Table 5.2: Simulation results of the sensitivity analysis when the number of cancer types increases.
This table shows the early stopping rate, rejection rate, and sample size under three simulation
scenarios.

group after interim 2 using our proposed model (96.8%) is higher than that using the independent
approach (68.8%) or the BHM (70.8%) method. The only drawback to our proposed model in this
scenario is that the rejection rate for the ineffective group after interim 2 using our proposed model
(10.2%) is only slightly lower than that using the independent approach (10.5%) and is higher than
that using the BHM (1.8%) method.
In summary, our proposed model still performs better in most of the scenarios, which means that
the model is not very sensitive to the number of cancer types or the prior distribution of the
hyperparameter.

19



Figure 5.3: Early stopping rate when the number of cancer types increases. The red, green, and blue
bars represent the BHM method, the independent approach, and the proposed method, respectively.
Scenarios C1 to C3 vary regarding the number of effective/ineffective treatments.
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Figure 5.4: Rejection rate, which is the proportion of trials where the null hypothesis is rejected
when the number of cancer types increases. The red, green, and blue bars represent the BHM
method, the independent approach, and the proposed method, respectively. Scenarios C1 to C3
vary regarding the number of effective/ineffective treatments.
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Early Stop % Reject % No-Reject % Sample Size
D1 Proposed Model Ineffective 75.4 10.2 14.4 34.9

Effective 0.0 96.8 3.2 50.0
Independent Approach Ineffective 19.3 10.5 70.2 46.1

Effective 0.5 68.8 30.7 49.9
BHM Ineffective 39.5 1.8 58.7 42.1

Effective 2.0 70.8 27.3 49.6
D2 Proposed Model Ineffective 73.4 1.4 25.2 35.3

Effective 6.4 77.5 16.1 48.7
Independent Approach Ineffective 20.1 12.2 67.7 46.0

Effective 0.5 64.0 35.5 49.9
BHM Ineffective 43.4 1.9 54.7 41.3

Effective 2.2 69.0 28.8 49.6
D3 Proposed Model Ineffective 97.9 0.0 2.1 30.4

Effective - - - -
Independent Approach Ineffective 20.3 7.5 72.2 45.9

Effective - - - -
BHM Ineffective 51.7 1.6 46.7 39.7

Effective - - - -

Table 5.3: Simulation results of the sensitivity analysis when the number of cancer types increases,
and the prior distribution of one hyperparameter is changed. This table shows the early stopping
rate, rejection rate, and sample size under three simulation scenarios.
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Figure 5.5: Early stopping rate when the number of cancer types increases, and the prior distribution
of one hyperparameter is changed. The red, green, and blue bars represent the BHM method, the
independent approach, and the proposed method, respectively. Scenarios D1 to D3 vary regarding
the number of effective/ineffective treatments.
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Figure 5.6: Rejection rate, which is the proportion of trials where the null hypothesis is rejected,
when the number of cancer types increases, and the prior distribution of one hyperparameter is
changed. The red, green, and blue bars represent the BHM method, the independent approach,
and the proposed method, respectively. Scenarios D1 to D3 vary regarding the number of effec-
tive/ineffective treatments.
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Chapter 6

Conclusion and Discussion

In conclusion, we propose a basket trial method to test the effectiveness of a treatment for several
types of cancers for which the endpoint is the survival time, where the cancer types are classified
according to the survival time and the biomarker measurements. We conduct Bayesian inference and
make interim decisions about whether to stop recruiting for each cluster of patients. The simulation
study shows that our proposed method performs better than the independent approach and the
BHM method in most of the scenarios. The main advantage of our proposed method is that it
incorporates the longitudinal biomarker measurements and the continuous endpoint.
There are some limitations of the proposed design. First, the biomarkers in our proposed design must
be measured multiple times, so that the method is not suitable for clinical trials in which biomarkers
can only be measured one time. In some clinical trials, researchers only measure biomarkers one time
because it is expensive or time-consuming to measure the biomarkers. Second, our proposed design
only considers one continuous endpoint (progression-free survival time) as the primary endpoint; it
does not incorporate other secondary endpoints into the study.
Some potential research topics can extend our proposed method. For example, we can include a
toxicity indicator as a secondary endpoint, which can be used in the classification of cancer types.
We can also measure the immune response of the patients, and use that additional information to
help classify the cancer types into subgroups.
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Chapter 7

Gibbs Sampler for the Proposed
Model

Step 1: We update Ci.
We denote Zij = (Zij1, ..., ZijL), and Zi = (Zi1, ..., ZiJ ). For i = 1, ..., I, Ci ∼ Multinomial(τi1, ..., τiK),
where

τik =
πikNQi

(ui(k),σ2
ϵ IQi

)
∏

j
[{ft(tij)}ωij {St(tij)}1−ωij ]∑K

i=1 πikNQi
(ui(k),σ2

ϵ I
i
)
∏

j
[{ft(tij)}ωij {St(tij)}1−ωij ]

,

where ui(k) = Xiαα(k) + Xibbi, Qi = Lni,
α(k) = (γ1(k), γ2(k), · · · , γS(k))⊤,

bi = (vi, wi1, ..., wiJ)⊤.

Here, NQi(w, σ2IQi) is a Qi-variate normal density function of Zi, Xiα is a Qi-by-S design matrix
of the i-th arm associated with α(k), and Xib is a Qi-by-(1 + J) design matrix of the i-th arm
associated with the random-effect vector bi.
This formula helps to classify cancer types into subgroups based on the prior probability π, the
biomarker measurements (Z), and the survival outcomes ft(tij) and St(tij). We calculate the prod-
uct of the likelihoods from the three kinds of information for each subgroup k and then normalize
it by dividing the product of the likelihoods by the sum of the product of the likelihoods over k.
If τik is higher for some subgroup k than for other subgroups, then this means that based on the
information, it is more likely that the i-th cancer type belongs to the k-th subgroup.
Step 2: Next, we derive the full conditional distribution of πi as follows. Since the prior distribution
of πi is (πi1, . . . , πiK) ∼ Dirichlet(2, . . . , 2), and the likelihood of Ci is Ci|πi ∼ Multinomial(πi1, . . . , πiK),
we get the posterior distribution based on the conjugacy of Multinomial/Dirichlet distributions.

πi|. ∼ Dir{I(Ci = 1) + 2, ..., I(Ci = K) + 2},

where I(·) is the indicator function.
Step 3: Next, we derive the full conditional distribution of σ2

v , σ2
w, and σ2

ϵ . Since vi ∼ N(0, σ2
v),

wij ∼ N(0, σ2
w), and ϵijl ∼ N(0, σ2

ϵ ), where σ2
v , σ2

w, and σ2
ϵ are the variances of the corresponding
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Normal distributions, and the prior distributions are σ2
v ∼ IG(10−3, 10−3), σ2

w ∼ IG(10−3, 10−3),
and σ2

ϵ ∼ IG(10−3, 10−3), we are calculating the posterior distribution of the variance of the Normal
distribution where the mean is known and the prior distribution of the variance follows Inverse
Gamma distribution. As a result, we get the posterior distributions.

σ2
v |. ∼ IG(10−3 + 0.5I, 10−3 + 0.5

∑I
i=1 v2

i ),
σ2

w|. ∼ IG(10−3 + 0.5N, 10−3 + 0.5
∑I

i=1
∑nj

j=1 w2
ij),

σ2
ϵ |. ∼ IG(10−3 + 0.5LN, 10−3 + 0.5

∑I
i=1

∑nj

j=1
∑L

l=1 ϵ2
ijl).

Step 4: We update b = (v1, · · · , vI , w1, · · · , wIJ)⊤, where N =
∑i

i=1 ni, Xα is a Q-by-S design ma-
trix associated with α, and Xb is a Q-by-(I + N) design matrix associated with the random-effect
vector b. The values of γq(k) for each observation (each measurement for each patient) are stored in
Xα, where each row corresponds to one observation in the dataset, and each column corresponds
to one coefficient associated with the B-Spline basis function. The values of vi and wij for each
observation (each measurement for each patient) are stored in Xb, where each row corresponds to
one observation in the dataset, and each column corresponds to one parameter in b.
Since Zijl|(Ci = k) = µk(tl) + vi + wij + ϵijl, we can use the matrix notations introduced in the
previous section to get that Z − Xαα ∼ N(Xbb, diag(σ2

ϵ , · · · , σ2
ϵ )). When we update b in this

step, we are calculating the posterior distribution of the mean of a multivariate Normal random
variable where the variance is known. Let Σb denote the variance matrix of the prior distribu-
tion of b. Since the prior distribution of b is N(0, Σb), we get the prior distribution of Xbb is
N(0, XbΣbX⊤

b ). As a result, the posterior distribution of Xbb is also a multivariate Normal distri-
bution N(E(Xbb), Var(Xbb)), where

Var(Xbb) = [(XbΣbX⊤
b )−1 + diag(σ−2

ϵ , · · · , σ−2
ϵ )]−1,

E(Xbb) = Var(Xbb)diag(σ−2
ϵ , · · · , σ−2

ϵ )(Z − Xαα).

As a result, the posterior distribution of b is f(b|.) ∼ N(ηb, Vb), where

Vb = Var(X−1
b Xbb) = X−1

b Var(Xbb)(X−1
b )⊤ = [(X⊤

b Var(Xbb)−1Xb]−1 = (Σ−1
b +X⊤

b Xbσ−2
ϵ )−1,

ηb = X−1
b E(Xbb) = X−1

b XbVar(b)X⊤
b σ−2

ϵ (Z − Xαα) = σ−2
ϵ VbX⊤

b (Z − Xαα).

In summary, the full conditional distribution of b is as follows,

f(b|.) ∼ N(ηb, Vb), where
Vb = (Σ−1

b + X⊤
b Xbσ−2

ϵ )−1,
ηb = σ−2

ϵ VbX⊤
b (Z − Xαα),

Σb =
(

σ2
vII 0
0 σ2

wIN

)
.

Step 5: We update α(k) = (γ1(k), γ2(k), . . . , γS(k))⊤. Let Qk denote the number of biomarker mea-
surements in cluster k. Here, Xα(k) is a Qk-by-S design matrix associated with α for cluster k,
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and Xb(k) is a Qk-by-(I + N) design matrix associated with the random-effect vector for cluster k.
The values of γq(k) for each observation (each measurement for each patient) are stored in Xα(k)

for each cluster k, where each row corresponds to one observation in the dataset for cluster k, and
each column corresponds to one coefficient associated with the B-Spline basis function. The values
of vi and wij for each observation (each measurement for each patient) are stored in Xb(k) for each
cluster k, where each row corresponds to one observation in the dataset for cluster k, and each
column corresponds to one parameter in b.
Since Zijl|(Ci = k) = µk(tl) + vi + wij + ϵijl, we can use the matrix notations introduced in the
previous section to get that Z − Xb(k)b ∼ N(Xα(k)αk, diag(σ2

ϵ , · · · , σ2
ϵ )). When we update αk in

this step, we are calculating the posterior distribution of the mean of a multivariate Normal random
variable where the variance is known. Let Σαk denote the variance matrix of the prior distribution
of αk. Since the prior distribution of αk is N(0, Σαk), we can derive the posterior distribution of
αk using exactly the same method in step 4.

Vα(k) = (Σ−1
α(k) + X⊤

α(k)Xα(k)σ
−2
ϵ )−1,

ηα(k) = σ−2
ϵ Vα(k)X

⊤
α(k)(Z(k) − Xb(k)b).

In summary, the full conditional distribution of α(k) is as follows,

f(α(k)|.) ∼ N(ηα(k), Vα(k)), where
Vα(k) = (Σ−1

α(k) + X⊤
α(k)Xα(k)σ

−2
ϵ )−1,

ηα(k) = σ−2
ϵ Vα(k)X

⊤
α(k)(Z(k) − Xb(k)b),

Σα(k) = 104IS .

Step 6: We update θ2 using Metropolis sampling. Since the prior distribution of θ2 is θ2 ∼
Uniform(−1, 1), and the likelihood which involves θ2 is

∏
ij [{ft(tij)}ωij {St(tij)}1−ωij ], we get the

posterior distribution by multiplying the prior and the likelihood.

f(θ2|.) ∝ funif (θ2, −1, 1)
∏

ij [{ft(tij)}ωij {St(tij)}1−ωij ],

where ft(tij) is the probability density function of PFS of the i-th patient in the j-th cancer
type, and St(tij) is the survival function of PFS of the i-th patient in the j-th cancer type. Here,
funif (x, a, b) is the probability density function of a Uniform(a,b) random variable.
Step 7: We update λ using Metropolis sampling. Since the prior distribution of λ is λ ∼ Gamma(0.1, 0.1),
and the likelihood which involves λ is

∏
ij [{ft(tij)}ωij {St(tij)}1−ωij ], we get the posterior distribu-

tion by multiplying the prior and the likelihood.

f(λ|.) ∝ fgamma(λ, 0.1, 10)
∏

ij [{ft(tij)}ωij {St(tij)}1−ωij ],

where fgamma(x, α, β) is the probability density function of a Gamma random variable where the
shape is α and the rate is β.
Step 8: We update r using Metropolis sampling. Since the prior distribution of r is r ∼ Gamma(0.1, 0.1),
and the likelihood which involves r is

∏
ij [{ft(tij)}ωij {St(tij)}1−ωij ], we get the posterior distribu-

tion by multiplying the prior and the likelihood.
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f(r|.) ∝ fgamma(r, 0.1, 10)
∏

ij [{ft(tij)}ωij {St(tij)}1−ωij ],

where fgamma(x, α, β) is the probability density function of a Gamma random variable where the
shape is α and the rate is β.
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Chapter 8

Model Specification and Gibbs
Sampler for the BHM

The structure of the Bayesian Hierarchical Model is as follows. The survival function for the i-th
patient in the j-th cancer type is related to the cancer type of the patient in the following way,
where θi, λi, and ri are the parameters corresponding to each cancer type.

St(tij) = exp{−λit
ri
ijexp(θi)}.

We assume the parameters have the distributions, where µθ, σ2
θ , αλ, βλ, αr, and βr are the hyper-

parameters.

θi ∼ N(µθ, σ2
θ),

λi ∼ Gamma(αλ, βλ),
ri ∼ Gamma(αr, βr).

We assume the hyperparameters have the prior distributions.

µθ ∼ N(0, 10),
σ2

θ ∼ Unif(0, 10),
αλ ∼ Unif(0, 1),
βλ ∼ Unif(0, 1),
αr ∼ Unif(0, 1),
βr ∼ Unif(0, 1).

The Gibbs sampler is as follows.
Step 1: We update θi, λi, and ri using Metropolis sampling

f(θi|.) ∝ fN (θi, µθ, σ2
θ)
∏

j [{ft(tij)}ωij {St(tij)}1−ωij ],
f(λi|.) ∝ fgamma(λi, αλ, βλ)

∏
j [{ft(tij)}ωij {St(tij)}1−ωij ],

f(ri|.) ∝ fgamma(ri, αr, βr)
∏

j [{ft(tij)}ωij {St(tij)}1−ωij ].
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where fN (x, µ, σ) is the probability density function of a Normal(µ, σ) random variable where the
mean is µ and the standard deviation is σ, and fgamma(x, α, β) is the probability density function
of a Gamma random variable where the shape is α and the rate is β. Here, ft(tij) is the probability
density function of PFS of the i-th patient in the j-th cancer type, and St(tij) is the survival
function of PFS of the i-th patient in the j-th cancer type.
Step 2: We update µθ, σ2

θ , αλ, βλ, αr, and βr using Metropolis sampling

f(µθ|.) ∝ fN (µθ, 0, 10){
∏

i fN (θi, µθ, σ2
θ)}, f(σ2

θ |.) ∝ funif (σ2
θ , 0, 10){

∏
i fN (θi, µθ, σ2

θ)},
f(αλ|.) ∝ funif (αλ, 0, 1){

∏
i fgamma(λi, αλ, βλ)}, f(βλ|.) ∝ funif (βλ, 0, 1){

∏
i fgamma(λi, αλ, βλ)},

f(αr|.) ∝ funif (αr, 0, 1){
∏

i fgamma(ri, αr, βr)}, f(βr|.) ∝ funif (βr, 0, 1){
∏

i fgamma(ri, αr, βr)},

where fN (x, µ, σ2) is the probability density function of a Normal(µ, σ2) random variable where
the mean is µ and the standard deviation is σ, funif (x, a, b) is the probability density function of a
Uniform(a,b) random variable, and fgamma(x, α, β) is the probability density function of a Gamma
random variable where the shape is α and the rate is β.
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