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Abstract

A natural question to ask in the study of ℓ-adic and mod-ℓ representations attached to ellip-
tic curves over Q is what conditions guarantee two such representations will be isomorphic.
Related to this question is if we suppose two such representations are not isomorphic, does
there exist a ‘certificate’ which proves they are not isomorphic? One way to show that two
representations are not isomorphic is to show that they have different trace values on a
group element. For an elliptic curve E over Q and a prime p of good reduction, one defines
the trace of Frobenius ap(E), which is an integer independent of ℓ and arises as a trace
value. In this thesis, we are interested in giving upper bounds for the smallest prime p such
that ap(E) ̸= ap(E′). Serre [30] gives a classical asymptotic bound, although the constants
are quite large. Recent work of Mayle-Wang [18] provides an explicit bound with smaller
constants. We expand on Mayle-Wang’s work and further reduce the constants appearing
in their result. Both methods use explicit forms of the Chebotarev density theorem which
assume the generalized Riemann hypothesis.
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Chapter 1

Introduction

A powerful tool in a modern mathematician’s repertoire is representation theory, the study
of relating an abstract group and its elements to linear transformations. This takes a group
that may be complicated and difficult to work with and instead translates it into the lan-
guage of matrices, which are well-understood objects. In number theory, often one is inter-
ested in studying the absolute Galois group of Q, denoted GQ = Gal(Q̄/Q), that being the
group of automorphisms of an algebraic closure of Q, Q̄, fixing Q, and the representations
which arise from this Galois group. Such a representation is known as a Galois representa-
tion. These representations are, unfortunately, still rather difficult to work with, and so often
one wishes for some geometric object upon which GQ may act on. A simple example of such
an object is an elliptic curve, that being a smooth plane curve of the form y2 = x3 + ax+ b

with a special ‘point at infinity’. These representations of elliptic curves appeared famously
in Andrew Wiles’ proof of Fermat’s Last Theorem [36] (and with Richard Taylor in [35]),
the famous conjecture there are no integer solutions x, y, z ∈ Z to the equation

xn + yn = zn

when n ≥ 3 and xyz ̸= 0. There is also the famous Langlands’ program, a series of con-
jectures relating Galois representations to automorphic forms (a topic we do not explore
here; one can see [17] for Langlands’ original article, or [6] for a more storied approach).
A natural question arising from theses conjectures is if we are given two representations,
under what conditions will the two representations be isomorphic? Or, as we shall explore
in this thesis, if the representations are not isomorphic, can we find tighter upper bounds
on a ‘certificate’ which shows, as representations, they are not isomorphic?

In 1983, Gerd Faltings [12] proved the Mordell conjecture which states (in our specialized
case) that an elliptic curve has only finitely many points in Q. Serre took ideas from this
and developed a method in which one can validate that two representations are isomorphic
(or not isomorphic) on some finite extension of the base field Q. In particular, if we attach
ℓ-adic representations to two different elliptic curves, we can check if these representations
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are isomorphic over a finite extension of Q. The method works by finding a prime p whose
Frobenius element σp in the absolute Galois group gives a different trace value for the two
representations. Serre [30] in 1981 proved, up to a constant, an upper bound on the smallest
such prime depending only on knowledge of the primes of bad reduction of the two elliptic
curves, in particular he proved it is of order O((logn)2(log logn)12). More recently, Mayle-
Wang [18] has given an explicit result that is much improved compared to Serre’s asymptotic
result. Both results rely on the celebrated Chebotarev density theorem, a major result in
number theory that is a generalization of Dirichlet’s primes in arithmetic progressions.
In this thesis, we first examine Serre’s [30] original argument, computing explicitly the
constants in his asymptotic result, then look to improving Mayle-Wang [18] in most cases
when we restrict to elliptic curves over the rationals.

The new tool we employ in our work is a particular description of a quotient of the
deviation group of a group G, denoted δ(G). Most of this work follows the work done by
Chênevert [9] in his thesis, and expands on work done by Serre. Much as Serre developed
a method of proving a prime distinguished two representations of elliptic curves (given in
detail in Chapter 4), the deviation group serves a similar purpose. Our contribution to this
work is expanding on a remark given by Chênevert [9, pg. 114] in which he states that, in
the case of 2-adic representations (that is, a representation whose codomain is GLn(Z2)),
we can, in fact, replace δ(G) with a new set that serves the same purpose as the deviation
group. Since a proof of this fact was never given we have given the details here in the context
of Mayle-Wang’s recent work.

We give a brief overview of this thesis. In Chapter 2, we provide a relatively self-contained
overview of the material required for understanding the proofs appearing in subsequent
chapters, including basic algebraic number theory (discriminants of number fields, ramifica-
tion of primes), elliptic curves (basic definitions, torsion points, reduction modulo a prime),
representations of elliptic curves, and the Chebotarev density theorem. Then, in Chapter 3,
we investigate the discriminant of a particular number field, that being the rational numbers
Q adjoined with torsion points of an elliptic curve. Chapter 4 sees us follow Serre’s method
as given in [30] but with more exposition given on his method as well as explicitly working
out the constants appearing in his result. Lastly, in Chapter 5, we follow Mayle-Wang [18]
and their method, but in more generality, considering instead the deviation group appearing
in the work of Chênevert [9].
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Chapter 2

Background

Here we give a treatment of the various topics required to understand our work in sub-
sequent chapters. We begin with an outline of basic topics from algebraic number theory
(including the notion of discriminants of number fields, ramification of primes, and various
useful ideals), then move on to elliptic curves, galois representations (in particular ℓ-adic
representations of elliptic curves), and an introduction to the Chebotarev density theorem.

2.1 Discriminants, Ramification, and Differents

There are three main objects we make use of throughout this thesis: the discriminant of a
number field, the relative discriminant, and the (relative) different. We begin with the most
basic of these three objects, that being the discriminant. For a number field K, we will fix
the notation nK = [K : Q]. First, some preliminaries from algebraic number theory.

Definition 2.1.1. Let K be a number field. The ring of integers OK is defined to be the
integral closure of K, that is, the set of all elements a ∈ K which satisfy a monic polynomial
f ∈ Z[x].

The ring of integers will always be a free Z-module, thus a basis set E ⊆ OK exists.
There is also the notion of an integral basis:

Definition 2.1.2. Let K be a number field, and n = nK . The elements ω1, . . . , ωn ∈ OK

are called an integral basis of OK over Z if for any element x ∈ OK can be written uniquely
as x = α1ω1 + . . .+ αnωn for α1, . . . , αn ∈ Z.

Given a number field and its ring of integers, we define the discriminant in the following
way:

Definition 2.1.3. Let K/Q be a number field with ring of integers OK , and n = nK . Let
ω1, . . . , ωn be an integral basis for OK . If σ1, . . . , σn are embeddings of K into C, then we
define the discriminant of K, dK , to be the square of the determinant of the matrix whose
ij-entry is given by σi(ωj).
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It is worth mentioning that the discriminant of a number field does not depend on the
choice of integral basis, for the determinant of the two integral bases will differ only by a
unit. A classic result gives a lower bound on the possible size of a discriminant in terms of
the size of the extension.

Theorem 2.1.4. [19, Theorem 4.3] Let K/Q be a number field, and nK = [K : Q]. Then,

|dK |1/2 ≥
(
π

4

)nK/2 nnK
K

nK ! . (2.1)

The quantity on the right-hand side of (2.1) is known as the Minkowski bound.
Similar to the discriminant, we can define the relative discriminant of a number field

L/K when K is not Q. This will instead be an ideal of OK , rather than an integer. As in
the definition of Definition 2.1.3, if we are given an n-tuple of elements (x1, . . . , xn), not
necessarily a basis, then the discriminant of these elements is the square of the determinant
of the matrix whose elements are σi(xj) (see [25, Chapter 2.11]). We use this to define the
relative discriminant.

Definition 2.1.5. [25, Chapter 13.2, Definition 3] Let n = [L : K]. The relative discriminant
of L/K, dL/K , is the ideal of OK generated by the discriminant of elements (x1, . . . , xn)
running over all possible bases {x1, . . . , xn} of L/K with each xi ∈ OL.

If the base field is K = Q, then dL/K = (dL).
Our main use of the (relative or not) discriminant of a number field is to detect ram-

ification of primes. In order to introduce ramification, we need to understand how ideals
in the ring of integers can be decomposed into a product of prime ideals. By the Funda-
mental Theorem of Arithmetic, elements a ∈ Z can be written uniquely as a product of
prime numbers. The question becomes, Does such a unique factorization hold for the ring
of integers? The answer is yes for ideals of the ring of integers, but that for an arbitrary
ideal of some ring, there need not be a unique factorization. Recall that a ring R is called
a Dedekind domain if it is noetherian, integrally closed, and every nonzero prime ideal is
maximal [22, Chapter I, Definition 3.2]. A very useful fact is that the ring of integers is a
Dedekind domain.

Theorem 2.1.6. The ring OK is a Dedekind domain.

Proof. See Neukirch [22] Chapter I, Theorem 3.1.

We now give a decomposition of ideals of OK into prime ideals.

Theorem 2.1.7. Every ideal I of OK admits a factorization I = p1 . . . pr into nonzero
prime ideals pi ⊆ OK which is unique up to the order of the factors.

Proof. See Neukirch [22] Chapter I, Theorem 3.3.
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Knowing this decomposition, we can state what it means for a prime to ramify. It turns
out that only a select few primes enjoy ramification, and that determining these primes can
be simple if one knows the discriminant dL/K . First, a definition.

Definition 2.1.8. [19, Chapter 3] Let L/K be a separable extension, and OL, OK the ring
of integers of L, K respectively. Let p ⊆ OK be a prime ideal of OK . Write

pOL = Pe1
1 . . .Pes

s

for ei ≥ 1, called the ramification index, and Pj ⊆ OL prime ideals. If any ei > 1, then p is
said to ramify in L.

In order to state the following theorem, we must generalize the concept of the division
of integers into the division of ideals, that is, what it means to say one ideal divides another.
The following definition accomplishes this.

Definition 2.1.9. [19, Chapter 3] Let p ⊆ OK and P ⊆ OL be prime ideals. We say P

divides p if P occurs in the factorization of pOL.

Theorem 2.1.10. Let L be a finite extension of a number field K, and let OL, OK be the
ring of integers of L and K respectively. Assume OL is a free OK-module. Then a prime
p ⊆ OK ramifies in L if and only if p divides dL/K .

Proof. See Milne [19] Chapter 3, Theorem 3.35.

In Chapter 3, we are interested in computing the discriminant of a particular number
field. Rather than use Definition 2.1.3 or Definition 2.1.5 to compute the discriminant, we
will instead find the primes which ramify, as per Theorem 2.1.10, which must then occur in
the factorization of dL/K .

We now state a few useful facts we shall employ about the relative discriminant. Before
we can do this, however, we must first define the norm of an ideal. Since we have a factor-
ization of an ideal into a product of prime ideals (Theorem 2.1.7), and we wish for the norm
function to be a homomorphism between the ideals of OL and the ideals of OK , it suffices
that we define the norm for prime ideals.

Definition 2.1.11. [19, Chapter 4] Let L/K be a separable extension. Let P ⊆ OL be a
prime ideal, and define p = P ∩ OK and f(P/p) = [OL/P : OK/p]. We define the norm of
P as

NL/K(P) = pf(P/p).

For completion, note that if I ⊆ OL is any ideal with decomposition I = ∏s
i=1 Pi, then

NL/K(I) = NL/K

(
s∏

i=1
Pi

)
=

s∏
i=1

NL/K(Pi)
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which we can then compute using Definition 2.1.11.
We now state three facts related to the computation of the relative discriminant. The

first fact we state helps us to compute the discriminant in a tower of fields.

Proposition 2.1.12. For a tower of fields K ⊆ L ⊆M , one has

dM/K = d
[M :L]
L/K NL/K

(
dM/L

)
. (2.2)

Proof. See Neukirch [22] Chapter III, Corollary 2.10.

The second fact describes what happens if we have two linearly disjoint fields and we
wish to consider the discriminant of their composite field.

Proposition 2.1.13. Let L/K and L′/K be two finite Galois extensions. Assume L∩L′ =
K. Then

dLL′/K = d
[L′:K]
L/K d

[L:K]
L′/K .

Proof. See Neukirch [22] Proposition (2.11).

The final tool we introduce is the different of a number field. Again we consider the
situation of a separable extension L/K, where K is a number field and [L : K] < ∞. As
the relative discriminant is used to detect ramification of prime ideals of OK , the relative
different will likewise be used to detect ramification of prime ideals of OL in L. To define
the relative different, we first need to recall the definition of a fractional ideal.

Definition 2.1.14. [25, Chapter 7.1, Definition 1] Let A be an integral domain, K its
associated field of fractions, and M ⊆ K an A-module. M is a fractional ideal of A if there
exists a ∈ A such that aM ⊆ A. In addition, a nonzero fractional ideal N is invertible if
there exists N ′ such that N ·N ′ = A.

The element a above can be thought of as clearing all denominators of elements in M .

Definition 2.1.15. [25, Chapter 13.2] Let L/K be a separable extension, and M ⊆ L. We
define the complimentary set of M with respect to a Dedekind domain R to be the set

M∗ = {x ∈ L | TrL/K(xM) ⊆ R}.

A note on notation: for a ring R, we will define R× to be the multiplicative group.
If we consider the complimentary set O∗

L with respect to OL, it turns out this will be a
fractional ideal.

Proposition 2.1.16. O∗
L is a fractional ideal of L with respect to OL.

Proof. See Ribenboim [25] Chapter 13.2.
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Knowing now O∗
L is a fractional ideal, we can define the different of a number field.

Definition 2.1.17. [22, Chapter III, Definition 2.1] We define the different of a number
field, DL/K , to be the inverse of the fractional ideal O∗

L, that is, DL/K = (O∗
L)−1. DL/K is

an ideal of OL.

The following relationship exists between the relative discriminant, the norm of a number
field, and the different.

Proposition 2.1.18. Let L/K be a number field. If dL/K denotes the discriminant of
L/K, NL/K the norm, and DL/K the different, then the following relation exists between
the discriminant and the different:

dL/K = NL/K(DL/K).

Proof. See Neukirch [22] Chapter III, Theorem 2.9

2.2 Elliptic Curves

The objects central to our study are elliptic curves. These curves are of such great impor-
tance in number theory that they appear in many places, including the famous proof of
Fermat’s Last Theorem. For our treatment of elliptic curves, we shall specify to the plane
cubic form; for a more rigorous treatment (including background material on some basics
of algebraic geometry, which we do not cover here), see Silverman [33]. What follows uses
Silverman [33] as a guide.

We begin with a definition of an elliptic curve.

Definition 2.2.1. An elliptic curve E over a field K is a smooth (nonsingular) plane cubic
equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.3)

where a1, a2, a3, a4, a6 ∈ K, and with an additional extra point O known as the point at
infinity, from which there is an algebraic group law on the set of points of E. An elliptic
curve written in the form above is said to be in Weierstrass form.

It is important to note that the set of points which on our elliptic curve lie in an algebraic
closure of K, K̄. The algebraic group law consists of an addition morphism + : E×E → E,
and a negation morphism − : E → E, that then satisfy all the appropriate axioms so that
E(K) is a group, where O serves as the identity element.

There are a number of quantities one can define from the coefficients of an elliptic curve.
The most important for our purposes is the discriminant, ∆(E), which is defined to be

∆(E) = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, (2.4)
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where
b2 = a2

1 + 4a2,

b4 = 2a4 + a1a3,

b6 = a2
3 + 4a6,

and
b8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4.

We note that we can rephrase the condition of our elliptic curve being nonsingular by speci-
fying ∆(E) ̸= 0 (see [33, Chapter III.1, Proposition 1.4(i)]). Similar to how the discriminant
of a number field detects the ramification of primes, the discriminant of an elliptic curves
detects whether or not a given curve (over a local field) will have good or bad reduction at
a prime p. We will discuss what the reduction of an elliptic curve is later.

We can also define the j-invariant, given by

j = c3
4/∆(E), (2.5)

with
c4 = b2

2 − 24b4. (2.6)

The j-invariant describes an isomorphism class of elliptic curves, that is, over K̄, two elliptic
curves will be isomoprhic if and only if they have the same j-invariant (see Silverman [33,
Chapter III.1, Proposition 1.4]).

We now consider the m-torsion group of an elliptic curve. First, recall that, together
with O, the points on an elliptic curve form a group under addition. So, if P,Q ∈ E(K̄) are
points on our elliptic curve (that is, P = (a, b) for a, b ∈ K̄, and a, b satisfy the equation of
definition for E), then P +Q defines a new point on E (see Silverman [33, Chapter III.2] for
a precise outline of the group law). The point at infinity O acts as identity, so P +O = P

for all P ∈ E. With this, we can define the multiplication-by-m map,

[m] : E → E, P 7−→ P + . . .+ P︸ ︷︷ ︸
m times

.

If m < 0, then [m](P ) = [−m](−P ), where −P is understood to be the inverse of the point
P (the point such that P −P = O), and [0](P ) = O. As in group theory, we can talk about
the m-torsion of our elliptic curve, that being the subgroup

E[m] = {P ∈ E(K̄) | [m](P ) = O}.

It turns out that E[m] is rather easy to describe–in fact, it is isomorphic to two copies of
Z/mZ.

8



Proposition 2.2.2. Let E be an elliptic curve and m ∈ Z with m ̸= 0. If m ̸= 0 in K (that
is, if either Char(K) = 0 or if Char(K) = p then p ∤ m), then

E[m] ∼= Z/mZ× Z/mZ.

Proof. See Silverman [33] Chapter III.6 Corollary 6.4(b).

Later, we will examine the field Q(E[ℓ]), where ℓ is prime. This field consists of the
rational numbers together with points (x, y) that are annihilated by multipilcation-by-ℓ
map.

We also define an isogeny between two elliptic curves.

Definition 2.2.3. [33, Chapter III.4] Let E, E′ be two elliptic curves. An isogeny from E

to E′ is a morphism
ϕ : E → E′

satisfying ϕ(OE) = OE′ , where OE , OE′ denotes the point at infinity for E and E′ re-
spectively. Two elliptic curves are isogenous if there is an isogeny from E to E′ such that
ϕ(E) ̸= {OE′}.

If the field K is finite, say K = Fq, then we wish to count the number of solutions
(x, y) ∈ F2

q to the elliptic curve

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ Fq. Let Nq(E) denote the number of these points on our elliptic
curve over the field Fq, and note that, since O, the point at infinity, is always a solution,
Nq(E) will be one larger than the number of points (x, y) ∈ F2

q satisfying the Weierstrass
equation for E. The following theorem of Hasse describes an upper bound on the size of
Nq(E).

Theorem 2.2.4 (Hasse). Let E be an elliptic curve defined over a finite field Fq. Then,

|Nq(E)− q − 1| ≤ 2√q.

Proof. See Silverman [33] Chapter V.1, Theorem 1.1.

The usefulness of Hasse’s Theorem, to us, comes in estimating a quantity known as the
trace of Frobenius. For a prime q, we define

aq(E) = 1 + q −Nq(E), (2.7)

to be the trace of E. We see, using Hasse’s Theorem, that |aq(E)| ≤ 2q1/2. We will make
use of this simple bound later.
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The name trace of Frobenius is appropriate, as it arises from the qth Frobenius map
ϕq : E → E given by (x, y) → (xq, yq). Since the endomorphisms of E, End(E) (the
isogenies from E to itself), forms a 2-dimentional Z-module, each endomorphism has a
quadratic characteristic polynomial associated with it, and therefore a trace. The trace,
therefore, of ϕq in fact equals aq(E) (proofs of these facts appear in Silverman [33, Chapter
V.2])

We can also consider an integral elliptic curve, that is, a curve whose coefficients ai

come from the ring of integers. In particular, for an elliptic curve E(K), for K a local
field complete with respect to a discrete valuation ν, and with ring of integers OK and
uniformizer π, given in Weierstrass form as

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with the coefficients ai ∈ K, we can perform a substitution (x, y) 7→ (u−2x, u−3y) and, if
we choose u such that u is divisible by a large enough power of π, this substitution results
in a Weierstrass equation whose coefficients now lie in OK (we have, in a sense, cleared
the denominators of the coefficients ai). Thus, we will have ν(∆(E)) ≥ 0, and since this
valuation is discrete, we can pick, among all such integral Weierstrass models, the one which
minimizes ν(∆(E)).

Definition 2.2.5. [33, Chapter VII.1] Let K be a local field, complete with respect to a
discrete valuation ν, and let OK be the ring of integers of K. Let E be an integral elliptic
curve over OK . A Weierstrass equation for E is called a minimal Weierstrass equation for
E at ν if ν(∆(E)) is minimized. The minimal value of ν(∆(E)) is called the valuation of
the minimal discriminant of E at ν.

Recall that the j-invariant defined in (2.5) defines an isomorphism class of elliptic curves.
Given two curves E and E′ belonging to the same isomorphism class, it is possible for E
and E′ to have different reductions. Thus, we take the minimum Weierstrass equation to be
the representative of each isomorphism class; this produces a well-defined way in which we
can take the reduction of E. The following proposition proves such a minimal Weierstrass
equation exists for any elliptic curve E.

Proposition 2.2.6. Let K be a local field.

a) Every elliptic curve E over K has a minimal Weierstrass equation.

b) A minimal Weierstrass equation is unique up to a change of coordinates

x = u2x′ + r, y = u3y′ + u2sx′ + t,

with u ∈ O∗
K (the group of units of OK) and r, s, t ∈ OK .

10



Proof. See Silverman [33] Chapter VII.1 Proposition 1.3.

Having obtained a minimal Weierstrass equation for a given elliptic curve E, we now
consider its reduction modulo π a uniformizer.

Definition 2.2.7. [33, Chapter VII.2] Let K and OK be as above, and let π be a uni-
formizer for OK , that is, a generator for the unique maximal ideal of OK . Let t̃ denotes the
reduction of t in OK/πOK for any t ∈ OK . If E is given in minimal Weierstrass form, with
a1, a2, a3, a4, a6 ∈ OK , then the reduction of E modulo π, denoted Ẽ, is the curve obtainted
by reducing its coefficients by π, that is,

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

In the definition above, since every elliptic curve has a minimal Weierstrass model, and
because we began with such a model, Proposition 2.2.6 guarantees this reduction is unique.
Thus, there is no ambiguity when speaking about the reduction of an elliptic curve.

We now classify the reduction of an elliptic curve into one of three types.

Definition 2.2.8. [33, Chapter VII.5] Let E be an elliptic curve, and Ẽ the reduction of
E modulo π.

a) E has good (or stable) reduction at π if Ẽ is nonsingular.

b) E has multiplicative (or semistable) reduction if Ẽ has a node. The reduction is said to
be split if the slopes of the tangent lines at the node are in OK/πOK , otherwise it is
said to be nonsplit.

c) E has additive (or unstable) reduction if Ẽ has a cusp.

In cases (b) and (c), we say E has bad reduction at π.

We will say an elliptic curve E is semistable if it has good or multiplicative reduction.
In addition, there are two categories of ordinary reduction. We say an elliptic curves

Ẽ over a finite field Fp is ordinary if Ẽ(F̄p) has non-trivial p-torsion, and is supersingular
otherwise. Then, E has good ordinary reduction at a prime p if Ẽ is smooth and ordinary,
and good supersingular reduction if Ẽ is smooth and supersingular. We can define the height
of the reduction of E at a prime of good reduction, h, as

h =

1, E has good ordinary reduction,

2, E has good supersingular reduction .
(2.8)

It is also worth noting how reduction behaves over finite extensions.

Proposition 2.2.9 (Semistable Reduction Theorem). Let E be an elliptic curve over a
local field K.
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1. Let K ′/K be an unramified extension. Then the reduction type of E over K is the
same as the reduction type of E over K ′.

2. Let K ′/K be a finite extension. If E has either good or multiplicative reduction over
K, then it has the same reduction type over K ′.

3. There exists a finite extension K ′/K such that E has either good or split multiplicative
reduction over K ′.

Proof. See Silverman [33] Chapter VII.5, Proposition 5.4.

From part (c) above, we say that E has potentially good reduction if E has good
reduction over the finite extension K ′, and it has potentially multiplicative reduction if E
has multiplicative reduction over K ′.

Our goal is to determine if a curve E will have good or bad reduction at π using only
properties of E. We have the following proposition.

Proposition 2.2.10. Let E be an elliptic curve over a local field K given in minimal
Weierstrass equation.

a) E has good reduction if and only if ν(∆(E)) = 0, that is, ∆(E) ∈ O∗
K . In this case, Ẽ

is an elliptic curve over OK/πOK .

b) E has multiplicative reduction if and only if ν(∆(E)) > 0 and ν(c4) = 0, that is, ∆(E) ∈
πOK and c4 ∈ O∗

K .

c) E has additive reduction if and only if ν(∆(E)) > 0 and ν(c4) > 0, that is, ∆(E), c4 ∈
πOK .

Proof. See Silverman [33] Chapter VII.5 Proposition 5.1

The above proposition tells us the discriminant determines when an elliptic curve over
a local field will have good reduction or bad reduction. In order to speak of reduction for an
elliptic curve over Q, we need to introduce a global minimal model for an elliptic curve. Let
K be a number field, MK the complete set of independent absolute values on K, M0

K the
set of nonarchimedian absolute values. Let ordν be the normalized valuation of an absolute
value ν ∈M0

K , that is, it is a valuation such that ordν(K×) = Z.

Definition 2.2.11. [33, Chapter VIII.8] The minimal discriminant of an elliptic curve E
over K, denoted DE/K , is the integral ideal of K given by

DE/K =
∏

ν∈M0
K

pordν(∆ν)
ν ,

where pν is a prime ideal in OK associated to ν, and ∆ν is the discriminant of a minimal
Weierstrass model for E over the local field Kν , complete with respect to ν.

12



Our goal is to determine if there is a Weierstrass model that is simultaneously minimal
for each absolute value ν ∈M0

K . That leads to the definition of a global minimal Weierstrass
equation.

Definition 2.2.12. [33, Chapter VIII.8] A global minimal Weierstrass equation for E over
K is a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with a1, a2, a3, a4, a6 ∈ OK and such that the discriminant ∆E satisfies DE/K = (∆(E)).

For elliptic curves over arbitrary fields K, there might not be a global minimal model
(see Silverman [33, Chapter VIII.8, Example 8.5]), however for Q this is the case.

Proposition 2.2.13. Let K be a number field. If K has class number one, then every
elliptic curve E over K has a global minimal Weierstrass equation. In particular, this is
true for K = Q.

Proof. See Silverman [33] Chapter VIII.8 Proposition 8.2 and Corollary 8.3.

Thus, for an elliptic curve E over Q, we can construct a global minimal model for E,
then speak to its reduction modulo a prime q. In particular, if Ẽ denotes the reduced curve,
and we note that ∆(Ẽ) = ∆(E) (mod q), then noting that a curve is nonsingular if and
only if ∆(Ẽ) ̸= 0, which implies q ̸| ∆(E). That gives the following corollary.

Corollary 2.2.14. Let E be an elliptic curve over Q. Let ∆(E) be the discriminant of an
elliptic curve E in global minimal Weierstrass form. Then, E has good reduction at a prime
q if and only if q does not divide ∆(E).

From this theorem, we see that the set of primes for which E has bad reduction is finite.
We will denote the set of primes for which E has bad reduction as P (E).

2.3 Galois Representations

This section is dedicated to giving a brief description of two particular types of representa-
tions of elliptic curves: the ℓ-adic representation, and the mod ℓ representation. We begin
by introducing these representations.

First, we recall the definition of a representation. We denote by GLn(L) the group of
invertible n× n matrices with coefficients in L.

Definition 2.3.1. [14, Definition 3.1] A representation of a group G over a field L is a
homomorphism ρ : G→ GLn(L). We say the representation is then of degree n.

13



Alternatively, we may define a representation of a group G over a field L as a homomor-
phism ρ : G→ GL(V ) where V is an n-dimensional vector space over L and GL(V ) denotes
the group of linear automorphisms of V over L [29, Chapter 1]. The difference between the
two definitions is that in the former definition, we have a specified basis for the vector space
V over L.

We let K̄ denote the algebraic closure of K, and write GK = Gal(K̄/K) to be the
absolute Galois group of K, that is, all automorphisms σ : K̄ → K̄ for which σ|K = idK .
In particular, we shall study later representations of the absolute Galois group of Q, GQ =
Gal(Q̄/Q).

We follow a similar treatment as Silverman [33, Chapter III.7]. As before, let E be an
elliptic curve over K, and E[ℓ] the ℓ-torsion of E. If σ ∈ GK and P ∈ E[ℓ], then notice that

[ℓ](σ(P )) = σ([ℓ](P )) = σ(O) = O

and so GK acts on the points in E[ℓ]. This then gives us a representation

GK → Aut(E[ℓ]) ∼= GL2(Z/ℓZ)

since E[ℓ] is a 2-dimensional vector space over Z/ℓZ (Proposition 2.2.2). We can go further
with this construction. Instead of considering a representation into GL2(Z/ℓZ), we wish to
instead construct a representation into GL2(Zℓ), where Zℓ denotes the ℓ-adic integers. We
do this by ‘gluing’ together the mod ℓ representations given above by using an inverse limit.

We illustrate an inverse limit through an example, that being the construction of the
ℓ-adic integers, following Neukirch [22, Chapter II.1]. Given a positive integer k ∈ Z, we
successively apply to k (and then all subsequent quotients) the division algorithm by dividing
by ℓ, obtaining a system of equations

k = a0 + ℓk1,

k1 = a1 + ℓk2,

...

kn−1 = an−1 + ℓkn,

kn = an.

Then, writing k = ∑n
i=0 aiℓ

i we obtain the ℓ-adic expansion of k. Allowing for negative
integers, we turn our finite sum into a series k = ∑∞

i=0 aiℓ
i. This is an ℓ-adic integer, and

the set of all such ℓ-adic integers is denoted by Zℓ. However, the motivation for a separate
definition arrises when one attempts to show Zℓ is a ring under the normal operations of
addition and multiplication. Rather, we wish to view the ℓ-adic integers as a sequence of
residue classes. If k = ∑∞

i=0 aiℓ
i and sn = ∑n−1

i=0 aiℓ
i ∈ Z, then we let s̄n = sn (mod ℓn) ∈
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Z/ℓnZ. Each term in this sequence lies in a different ring, but we get the projection maps
λi : Z/ℓi+1Z → Z/ℓiZ defined by s̄ → s̄ (mod ℓi) so that λi(s̄i+1) = s̄i. This gives us the
projections

Z/ℓZ λ1←− Z/ℓ2Z λ2←− Z/ℓ3Z λ3←− . . . λn←− Z/ℓn+1Z λn+1←−−− . . . .

We then have

lim←−
n

Z/ℓnZ = {(xm)∞
m=1 | xm ∈ Z/ℓmZ and λm(xm+1) = xm} .

This is the projective limit, which we denote by lim←−n
Z/ℓnZ. The following proposition says

that this construction does in fact define the ℓ-adic integers.

Proposition 2.3.2. Associating to every ℓ-adic integer k = ∑n
i=0 aiℓ

i the sequence (s̄n)∞
n=1

as above gives a bijection Zℓ → lim←−n
Z/ℓnZ.

Proof. See Neukirch [22] Chapter II, Proposition 1.3

An important detail in this construction is that this inverse limit was done with respect
to the sequence (s̄n)∞

n=1, and the maps λi act in this ‘inverse’ direction.
We mimic the above construction of Zℓ, this time gluing together the groups E[ℓn]. This

produces an object known as the Tate module.

Definition 2.3.3. [33, Chapter III.7] Let E be an elliptic curve over a number field K and
ℓ ∈ Z a prime, with char(K) ̸= ℓ. The (ℓ-adic) Tate module of E is the group

Tℓ(E) = lim←−
n

E[ℓn],

where the inverse limit is taken with respect to the multiplication by ℓ maps

E[ℓn+1]→ E[ℓn], P 7→ ℓP.

We note that for the group E[ℓn], the points annihilated by the multiplication-by-ℓn

map lie in K̄. Notice, also, that since P ∈ E[ℓn+1], the point ℓP (that being the point P
added to itself ℓ times) must lie in E[ℓn]. This map, then, works in an "inverse" way as the
maps λi did in the previous example.

When comparing the construction of the Tate module to the ℓ-adic integers, the group
E[ℓn] corresponds to Z/ℓnZ, whereas the maps λi now correspond to maps E[ℓn+1]→ E[ℓn].

Notice that the action of the absolute Galois group GK commutes with the reduction
maps on each torsion group E[ℓn], so GK also acts on Tℓ(E). This action is Zℓ-linear as E
is defined over K. Thus, we get a representation

GK → Aut(Tℓ(E)) ∼= GL2(Zℓ).
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Since each E[ℓn] is a Z/ℓnZ module, when we take the inverse limit we see that Tℓ(E) is a
Zℓ-module. This leads to the following definition:

Definition 2.3.4. [33, Chapter III.7] The ℓ-adic representation ofGK attached to an elliptic
E over a number field K is the homomorphism

ρE,ℓ : GK → GL2(Zℓ).

We also have the representation

ρ̄E,ℓ : GK → GL2(Z/ℓZ).

If p is a prime of good reduction, and σp denotes the Frobenius element at p of GK (that
is, the automorphism is defined as σp(x) = xp), then we have (from Serre [30, pg. 188])

tr ρE,ℓ(σp) = ap(E) and det ρE,ℓ(σp) = p. (2.9)

and
tr ρ̄E,ℓ(σp) ≡ ap(E) (mod ℓ) and det ρ̄E,ℓ(σp) ≡ p (mod ℓ). (2.10)

Proofs for (2.9) and (2.10) can be found in Silverman [33, Chapter V, Chapter VII].
Given a second elliptic curve E′, with the analogous representations ρE′,ℓ and ρ̄E′,ℓ, we

wish to determine if ρE,ℓ and ρE′,ℓ are isomorphic. By isomorphic representations, we shall
mean:

Definition 2.3.5. [29, Chapter 1] Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two
representations of a group G. We say ρ1 is isomorphic to ρ2 and write ρ1 ∼= ρ2 if there exists
ϕ : V1 → V2 such that ϕ is an isomorphism between V1 and V2 and is G-invariant, that is,
ϕ ◦ ρ1(g) = ρ2(g) ◦ ϕ for all g ∈ G.

The work we do in this thesis concerns explicit forms of the isogeny theorem, which
states two elliptic curves are isogenous if and only if their Tate modules are isomorphic.
More specifically, we have the following statement from Silverman (although the proofs are
due to Tate [34] and Faltings [12]):

Theorem 2.3.6 (Isogeny Theorem). Let ℓ ̸= char(K). Denote by HomK(E,E′) the group
of isogenies from E to E′ defined over K, and similarly the set Hom(Tℓ(E), Tℓ(E′)) to be
the group of Zℓ-linear maps from Tℓ(E) to Tℓ(E′) that commute with the action of GK̄/K .
Then, the natural map

HomK(E,E′)→ Hom(Tℓ(E), Tℓ(E′))

is an isomorphism in the following two cases:
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a) K is a finite field (Tate [34]),

b) K is a number field (Faltings [12]).

In his seminal paper, Faltings [12] proved the following (which is taken from a translation
of his paper found in [10]):

Theorem 2.3.7. Let A and A′ be abelian varieties over a number field K. Let Nv be the
inertial degree of the place v, Fv a Frobenius element at v, and Iv the inertial group at v.
Define

Lv(s,A) = det(1− (Nv)s · Fv | Tℓ(A)Iv )−1,

and L(s,A) = ∏
v Lv(s,A) the associated L-series of A, with the product running over all

but finitely many places v of K. Then the following are equivalent:

i) A and A′ are isogenous.

ii) Tℓ(A)⊗Zℓ
Qℓ
∼= Tℓ(A′)⊗Zℓ

Qℓ, where Tℓ(A) and Tℓ(A′) are the Tate modules of A and
A′ respectively, and Qℓ is the field of fractions of Zℓ.

iii) Lv(s,A) = Lv(s,A′) for all but finitely many places v of K.

iv) Lv(s,A) = Lv(s,A′) for all places v of K.

Proof. See Faltings [12, Corollary 2].

We make two quick notes. First, there is a definition for Lv(s,A) when A has bad
reduction (see Faltings [12]). Second, in the case of elliptic curves over Q, Silverman [33,
Chapter C.16] gives

L(s, E) =
∏

p/∈P (E)
Lp(s, E)−1

with
Lp(s, E) = 1− ap(E)p−s + p1−2s

for a prime p of good reduction. Thus, Lp(s, E) = Lp(s, E′) as a function of s if and only if
ap(E) = ap(E′).

For elliptic curves, Serre gives the following proposition:

Proposition 2.3.8. [27, pg. IV-15] Let E and E′ be elliptic curves over a field K. The
following are equivalent:

a) The Galois representations ρE,ℓ and ρE′,ℓ are isomorphic for all ℓ.

b) The Galois representations ρE,ℓ and ρE′,ℓ are isomorphic for one ℓ.

c) We have ap(Ẽ) = ap(Ẽ′) for all p such that E, E′ have good reduction at p (recalling
that Ẽ denotes the reduction of E at p).
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d) For a set of places of K of density one, we have ap(Ẽ) = ap(Ẽ′).

Proof. See Serre [27, pg. IV-15].

From here, Serre [30] states two cases that we can consider in regards to the ℓ-adic
representations:

a) If the ℓ-adic representations ρE,ℓ and ρE′,ℓ are isomorphic for all primes ℓ, then the sets
P (E) and P (E′) are equal, and ap(E) = ap(E′) for all p ̸∈ P (E). This is exactly the
statement of Proposition 2.3.8, in particular this comes from part (c) after noting that
ap(E) = ap(Ẽ).

b) If there exists a prime ℓ0 such that ρE,ℓ0 and ρE′,ℓ0 are not isomorphic, then the set
of primes p for which ap(E) ̸= ap(E′) has positive density (see Definition 2.4.4 for a
precise definition of density), in particular it is infinite. This is given by the negation
of Proposition 2.3.8, in particular the negation of the statement (d), that being a set of
primes for which ap(E) ̸= ap(E′).

We shall be interested in studying the second case, that being the negation of Proposition
2.3.8. We will assume the representations are not isomorphic, so that the set of primes p
such that ap(E) ̸= ap(E′) is infinite. We then work to give an upper bound on the smallest
prime in this set.

In relation to representations, we also make short use of the inertia group. We have the
following two definitions.

Definition 2.3.9. [22, Definition 9.2] Let L/K be a finite Galois extension, with Galois
group G. Let P ⊆ OL be a prime ideal. Then, the subgroup GP of G defined by

GP = {σ ∈ G | σ(P) = P}

is called the decomposition group of P over K.

Definition 2.3.10. [22, Definition 9.5] Let k(P) = OL/P and k(p) = OK/p. The inertia
group of P over K, IP ⊆ GP, is the kernel of the homomorphism

GP → Gal(k(P)/k(p)).

2.4 Prime Number Theorem and Chebotarev Density The-
orem

The results we give in this thesis rely on Chebotarev’s Density Theorem. We begin first
with a special case of Chebotarev’s Density Theorem, the famous Prime Number Theorem.

First, we must establish what it means for two functions to be asymptotically equivalent.
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Definition 2.4.1. [1, Chapter 3.2] Let f and g be two functions. We say f is asymptotically
equivalent to g and write f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.

With the definition of asymptotic equivalence, it is now straight-forward to give the
Prime Number Theorem. First, we give the definition of three various prime counting func-
tions.

Definition 2.4.2. [1, Chapter 4.2] We denote by π(x) the prime counting function, given
explicitly as

π(x) =
∑
p≤x

1. (2.11)

We denote by θ(x) and ψ(x) the Chebyshev functions, with explicit formulas

θ(x) =
∑
p≤x

log p (2.12)

and
ψ(x) =

∑
k∈N,pk≤x

log p. (2.13)

The Prime Number Theorem describes the asymptotic behavior of π(x), θ(x), and ψ(x).

Theorem 2.4.3 (Prime Number Theorem). Let π(x), θ(x), and ψ(x) be as above. One has

π(x) ∼ Li(x) =
∫ x

2

dx

log x

and
θ(x) ∼ x.

and
ψ(x) ∼ x.

Proof. See [1, Chapter 13] or [23].

It is worth noting that all three asymptotics given above are equivalent; thus, it suffices
to show the validity of one for all three to be true. Hadamard and de la Vallée Poussin
proved the theorem, independently, in 1896; their proof required the use of the Riemann
Zeta function and complex analysis.

We now introduce the Chebotarev Density Theorem. By density, we shall mean:

Definition 2.4.4. [22, Chapter 13, Definition 13.1] Let M be a set of prime ideals of K.
The limit

d(M) = lim
s→1+

∑
p∈M NL/K(p)−s∑
p NL/K(p)−s

,

provided it exists, is called the Dirichlet density of M .
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The Chebotarev Density Theorem makes an assertion about the Artin symbol. We define
this next, following [20].

Let L/K be a finite extension of number fields, with galois group G. For every prime
ideal P ⊆ OL, there is a Frobenius element σ ∈ G such that σ(P) = P, and for every
element a ∈ OL, we have

ϕp(a) ≡ aq (mod P)

with q equal to the number of elements in the residue field OK/p, with p = P ∩OL. When
P is unramified, the element σ is unique, and is denoted (L/K

P ).

Definition 2.4.5. [20, pg. 8] Let L/K be a finite extension of number fields with galois
group G, and p ⊆ OK an unramified prime ideal of K. If P ⊆ OL is a prime ideal above p,
then the Artin symbol of P, (L/K

P ), is equal to the Frobenius element σ ∈ G as above. For
the prime p in K, the Artin symbol is defined as the conjugacy class(

L/K

p

)
=
{(

L/K

P′

)
| P′ ∩ OL = p

}
⊆ G.

We define PL/K(σ), for σ ∈ G, to be the set

PL/K(σ) =
{
p ⊆ OK | ∃P ⊆ OL such that

(
L/K

P

)
= σ

}
(2.14)

The Chebotarev Density Theorem describes the density of the set PL/K(σ).

Theorem 2.4.6 (Chebotarev Density Theorem). [22, Theorem 13.4] Let L/K be a Galois
extension with Galois group G. Then, for every σ ∈ G, the set PL/K(σ) has positive density,
and it is given by

d(PL/K(σ)) = |[σ]|
|G|

,

where
[σ] = {τστ−1 | τ ∈ G}.

It is not quite clear how Theorem 2.4.6, in its current form, is related to the Prime
Number Theorem. To mould it into an analytic form, we define a new prime counting
function, πC(x, L/K), for a conjugacy class C of the galois group of L/K, to be the function

πC(x, L/K) =
∣∣∣∣{p | p unramified in L,

(
L/K

p

)
= C,NK/Qp ≤ x

}∣∣∣∣
(see [16]).

Theorem 2.4.7 (Chebotarev Density Theorem). Let πC(x, L/K) be as above. Then,

πC(x, L/K) ∼ |C|
|G|

Li(x).
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In this form, it is much more clear how Chebotarev Density Theorem relates to the
Prime Number Theorem. In particular, if we take L = K = Q, then there is only one
conjugacy class, of size one, and |G| = 1, so we obtain exactly the Prime Number Theorem.

Effective versions of Chebotarev’s Density Theorem exist as well, which shall be our
primary application. In essence, we shall be applying results in which the constants are
explicitly computable in terms of the discriminants of L and K, as well as the size of each
extension over Q. The first of these was given by Lagarias and Odlyzko [16]. Their result
(as well as ours) are conditional results, and rely on the validity of the famous Generalized
Riemann Hypothesis (abbreviated GRH). We introduce briefly this conjecture.

The Riemann zeta function, ζ(s), for s ∈ C, is defined to be the series

ζ(s) =
∞∑

n=1

1
ns

(see [13, Chapter 1]). For Re s > 1, the series is well-defined and converges. For Re s < 1,
we can analytically continue ζ(s) to the entirety of the complex plane, leaivng only a simple
pole at s = 1 (see [13, Chapter 1, Theorem 1.2] for a detailed look at this continuation).
An important point about this extension of the domain of ζ(s) to all of C is that we may
now consider its zeros, that is, those values s0 ∈ C such that ζ(s0) = 0. A class of zeros,
known as the ‘trivial zeros’, occur at the negative even integers {−2,−4,−6, . . .}; thus,
ζ(−2k) = 0 for k ≥ 1 an integer (see [3, Chapter 1]). Other than the trivial zeros, ζ(s) ̸= 0
for 0 < Re s < 1; all other zeros occur within this region, known as the critical strip. The
Riemann Hypothesis, arguably the most famous unsolved problem in mathematics, claims
all zeros within the critical strip must lie on the line Re s = 1/2.

Conjecture (Riemann Hypothesis). If s0 ∈ C is a nontrivial zero of ζ(s), then Re s0 = 1/2.

While this remains unproven, much work has gone into understanding further the dis-
tribution of zeros within the critical strip. For example, zero-free regions describe portions
of the complex plane in which no zeros of ζ(s) exist, and extending these into the critical
strip help understand the distribution of zeros further (see [13, Chapter 6] for a survey of
some zero-free region results). Likewise, zero density estimates detect possible zeros in given
regions in the critical strip (seee [13, Chapter 11]); of course, if the Riemann Hypothesis is
true, then the density of zeros in the critical strip is zero outside of the line Re s = 1/2.
Lastly, numerical verification heights exist, that is, numbers H0 such that for any s ∈ C
that is a non-trivial zero satisfying im s ≤ H0, then Re s = 1/2 (see [3, Chapter 1, Table
2.2] for an overview of the history of verification heights). Many other equivalent statements
exist for the Riemann Hypothesis (see [3, Chapter 10]).

As the Riemann Hypothesis describes the behavior of zeros in the critical strip for ζ(s),
the Generalized Riemann Hypothesis concerns the distribution of zeros of L-functions. These
are defined in terms of Dirichlet characters, for which we now give a definition:
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Definition 2.4.8. [4, Chapter 12.2] A Dirichlet character χ(n) is a character of the group
(Z/mZ)∗ for m ≥ 1 that is zero whenever (n,m) ̸= 1. A Dirichlet character is multiplicative,
so χ(ab) = χ(a)χ(b) whenever a, b are coprime, and is periodic.

Definition 2.4.9. [4, Chapter 12.2] Let χ be a character of (Z/mZ)∗. The Dirichlet L-
function associated to χ is the series

L(s, χ) =
∞∑

n=1

χ(n)
ns

.

We note the similarity of L(s, χ) to ζ(s); in particular ζ(s) is an L-function with the
trivial character χ(n) = 1 for all n ∈ Z. Thus, the statement of the Generalized Riemann
Hypothesis should not be too surprising:

Conjecture (Generalized Riemann Hypothesis). Let L(s, χ) be an L-function associated
to the Dirichlet character χ. If s0 ∈ C is a nontrivial zero of L(s, χ), then Re s0 = 1/2.

All the methods described regarding the zeta function–zero free regions, zero density
estimates, height verifications–exist for L-functions as well, but are more difficult. It is
worth noting as well that conditional results are often much stronger than unconditional
results.

Definition 2.4.10. [22, Chapter VII, Definition 5.1] The Dedekind zeta function of a
number field K is defined by the series

ζK(s) =
∑
a

1
NK/Q(a)

where a varies over the integral ideals of K.

Remark 2.4.11. The Extended Riemann Hypothesis (ERH) extends the Riemann Hy-
pothesis to Dedekind zeta functions, as the Generalized Riemann Hypothesis extends the
Riemann Hypothesis to L-functions.

We now state the first explicit form of Theorem 2.4.7.

Theorem 2.4.12. [16, Theorem 1.1] There exists an effectively computable positive absolute
constant c1 such that if ERH holds for the Dedekind zeta function of L, then for every x ≥ 2,

|πC(x, L/K)− |C|
|G|

Li(x)| ≤ c1

( |C|
|G|

x1/2 log(|dL|xnL) + log |dL|
)
.

An important corollary, one that we shall make use of, is finding an x0 such that
πC(x0, L/K) > 0.

Corollary 2.4.13. [16, Corollary 1.2] There exists an effectively computable positive ab-
solute constant c2 such that if GRH holds for the Dedekind zeta function of L ̸= Q, then
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for every conjugacy class C of G there exists an unramified prime ideal p of K such that
(L/K

p ) = C and
NK/Q(p) ≤ c2(log |dL|)2(log log |dL|)4.

If L = Q, then p = (2) is a solution.

The above is a non-nullity result about πC(x, L/K); it asserts the size of x we must
take to ensure that πC(x, L/K) is nonzero, that is, there is some prime ideal whose Artin
symbol hits C and with norm smaller than x. A simpler non-nullity result comes from [24].

Theorem 2.4.14. There exists an absolute constant c1 > 0 such that, for C ̸= ∅ and
assuming GRH, we have

πC(x, L/K) ≥ 1

for all x ≥ 2 such that x ≥ c1(log |dL|)2.

Oesterlé [24] finds that c1 = 70, although his proof was seemingly never published.
An improvement to Lagarias and Odlyzko is given by Bach-Sorenson [2]:

Theorem 2.4.15. [2, Theorem 5.1] Assume GRH. Let K/Q be a Galois extension of num-
ber fields, with K ̸= Q. Let dK denote the discriminant of K. Let nK denote the degree of
K. Let C ⊆ Gal(K/Q) be a nonempty subset closed under conjugation. Then, there is a
prime p of Q unramified in K with (K/Q

p ) ⊆ C, of residue degree 1, satisfying

p ≤ (a log |dK |+ bnK + c)2

for some triple (a, b, c) taken from Table 2.1. We may take a = 4, b = 2.5, and c = 5 to
cover all cases of log |dK | and nK = [K : Q].

Remark 2.4.16. We note the values a = 4, b = 2.5, and c = 5 apply for all values of
nK = [K : Q] and log |dK |. For particular ranges of log |dK | and [K : Q], we may take
refined constants appearing in Table 2.1 coming from [2, Table 3].

We make mention of a fact we shall employ later. By Lemma 4.1.6, we may move the
log |dK | term into the term involving nK , and vice versa we may move nK into the log |dK |
term. This is at the expense of larger constants, however allows us to force either a or b to
be 0. See Remark 4.1.5.

A corollary to the above is given in Mayle-Wang [18, Corollary 6] for quadratic extensions
when we need to pick the prime p more specifically:
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n = [K : Q]
log |dK | 2 3-4 5-9

1-5 (3.29, 1.48, 4.9) — —
5-10 (2.662, 0.75, 4.8) (2.808, 0.58, 4.7) —
10-25 (2.301, 0.52, 5) (2.524, 0.45, 4.9) (2.736, 0.35, 4.7)
25-100 (1.881, 0.34, 5.5) (2.035, 0.27, 5.3) (2.231, 0.21, 5.1)

100-1000 (1.446, 0.23, 6.8) (1.527, 0.17, 6.4) (1.629, 0.11, 6.1)
1000-10000 (1.125, 0.63, 10.9) (1.148, 0.5, 10.2) (1.178, 0.37, 9.5)

10000-100000 (1.032, 0.44, 20.2) (1.038, 0.5, 18.7) (1.046, 0.56, 17.3)
100000+ (1.008,−0.06, 47.7) (1.01,−0.03, 41.9) (1.012, 0, 37.8)

n = [K : Q]
log |dK | 10-14 15-49 50+

1-5 — — —
5-10 — — —
10-25 (2.303, 0.19, 4.8) — —
25-100 (2.297, 0.19, 5) (2.228, 0.1, 4.9) —

100-1000 (1.667, 0.09, 6) (1.745, 0.04, 5.8) (1.755, 0, 5.7)
1000-10000 (1.189, 0.32, 9.2) (1.212, 0.24, 8.8) (1.257, 0, 7.3)

10000-100000 (1.049, 0.59, 16.8) (1.054, 0.63, 16) (1.095, 0, 8.2)
100000+ (1.012, 0, 37.8) (1.014, 0.02, 35.9) (1.017, 0.07, 31.8)

Table 2.1: Values (a, b, c) appearing in Theorem 2.4.15 for a number field K/Q, appearing in
[2, Table 3], with degree nK and dK the discriminant. The line — is used for combinations
of n and log |dK | that are not possible by Minkowski’s Theorem.

Corollary 2.4.17. [18, Corollary 6] Assume GRH. Let K/Q be a Galois extension of
number fields, with K ̸= Q. Let m be a positive integer, and set K̃ = K(

√
m). Denote

dK̃ to be the absolute value of the discriminant of K̃. Let nK̃ denote the degree of K̃. Let
C ⊆ Gal(K/Q) be a nonempty subset that is closed under conjugation. Then there exists a
prime number p not dividing m that is unramified in K/Q with

(
K/Q

p

)
⊆ C and satisfying

p ≤ (ã log |dK̃ |+ b̃nK̃ + c̃)2,

where ã, b̃, c̃ are absolute constants that may be taken to be 4, 2.5, and 5 respectively or may
be taken to be the improved values given in [2, Table 3] associated with K̃.

Before proving the next proposition, we require a simple lemma regarding a particular
inequality.

Lemma 2.4.18. Let K be a Galois number field, dK the absolute value of the discriminant,
and nK the degree of K. Then, for all nK ≥ 74,

exp
(0.07

0.24nK + 24.5
0.24

)
≤ dK .
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Proof. To prove this lemma, we ‘wedge’ the Minkowski bound (2.1) between the left-hand
and right-hand side. For simplicity, label the sequences

an = exp
(0.07

0.24n+ 24.5
0.24

)
and bn = (π/4)n(nn/n!)2.

By Theorem 2.1.4, we always have bnK ≤ dK . We claim an ≤ bn for n ≥ 74, which we prove
by induction on n.

Base case: If n = 74, then computationally one can check a74 ≤ b74. We have a74 ≈
5.102× 1053, and b74 ≈ 6.979× 1053.

Inductive step: Suppose an ≤ bn for some n ≥ 74. We have

an+1 = exp
(0.07

0.24(n+ 1) + 24.5
0.24

)
= exp

(0.07
0.24n+ 24.5

0.24

)
exp

(0.07
0.24

)
≤ bn exp

(0.07
0.24

)
≤ bn+1.

The final inequality requires some work to prove. First, we have

exp
(0.07

0.24

)
bn ≤ bn+1 ⇐⇒ exp

(0.07
0.24

)
(π/4)n(nn/n!)2 ≤ (π/4)n+1((n+ 1)n+1/(n+ 1)!)2

⇐⇒ exp
(0.07

0.24

)
n2n ≤ π/4(n+ 1)2n

⇐⇒ exp
(0.07

0.24

)
4/π ≤ (n+ 1)2n

n2n
.

(2.15)

On the left-hand side, we have exp
(

0.07
0.24

)
4/π ≈ 1.705. On the right-hand side, when n = 74,

we have (75)148

74148 ≈ 7.291. Also, this is an increasing function, as

d

dx

(
x+ 1
x

)2x

=
(

1 + 1
x

)2x [
2 log

(
1 + 1

x

)
− 2
x+ 1

]

which is positive, so (2.15) holds (one could also see limn→∞(n+1
n )2n = e2). Thus the claim

is proven.

We give our own version of Theorem 2.4.15 and Corollary 2.4.17. The idea is to collapse
Table 2.1 into a 1-dimensional table, removing the condition on log |dK | so that each tuple
is valid for a range of nK . We do this by picking a "pivot" tuple for each column, for which
all tuples appearing before the pivot are absorbed into a special constant p0, and all tuples
appearing after are checked to be smaller than the pivot tuple. By smaller, we shall mean
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nK̃ = [K̃ : Q] (p0, ā, b̄, c̄)
2 (2111964, 1.125, 0, 12.16)

3-4 (2353401, 1.148, 0.5, 10.2)
5-9 (2676790, 1.178, 0.37, 9.5)

10-14 (2803146, 1.189, 0.32, 9.2)
15-49 (3072167, 1.212, 0.240, 8.80)
50+ (3100065, 1.257, 0, 7.3)

Table 2.2: 4-tuples (p0, ā, b̄, c̄) as appearing in Proposition 2.4.19.

a tuple (a, b, c) is smaller (or provides a stronger bound) than a tuple (a′, b′, c′) (both from
Table 2.1) if

(a log |dK |+ bnK + c)2 ≤ (a′ log |dK |+ b′nK + c)2

for all appropriate values of log |dK | and nK .

Proposition 2.4.19. Assume GRH. Let K/Q be a Galois extension of number fields with
K ̸= Q. Let m be a positive integer, and set K̃ = K(

√
m). Denote dK̃ to be the absolute

value of the discriminant of K̃. Let nK̃ denote the degree of K̃. Let C ⊆ Gal(K/Q) be a
nonempty subset that is closed under conjugation. Then there exists a 4-tuple (p0, ā, b̄, c̄)
taken from Table 2.2 and a prime number p not dividing m that is unramified in K/Q with(

K/Q
p

)
⊆ C and satisfying

p ≤ max{p0, (ā log |dK̃ |+ b̄nK̃ + c̄)2}.

Proof. Apply Corollary 2.4.17, to get a prime p not dividing m that is unramified in K/Q
and satisfies p ≤ (ã log |dK̃ |+ b̃nK̃ + c̃)2.

The remainder of the corollary is proved through an exhaustive case analysis through
all possible ranges on nK̃ appearing in Table 2.1.

We begin by examining the case nK̃ = 2 (the first column of Table 2.1). We choose the
tuple (1.125, 0.63, 10.9) to be our pivot. Note that, because nK̃ is fixed in this case, we can
absorb b̃ into c̃, giving us the tuple (1.125, 0, 12.16). We then find p0 as follows:

• If 1 ≤ log |dK̃ | ≤ 5, then

p ≤ (3.29 log |dK̃ |+ 1.48 · 2 + 4.9)2 ≤ (3.29 · 5 + 7.86)2 ≤ 590.977.

• If 5 < log |dK̃ | ≤ 10, then

p ≤ (2.662 log |dK̃ |+ 0.75 · 2 + 4.8)2 ≤ (2.662 · 10 + 6.3)2 ≤ 1083.727.
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• If 10 < log |dK̃ | ≤ 25, then

p ≤ (2.301 log |dK̃ |+ 0.52 · 2 + 5)2 ≤ (2.301 · 25 + 6.04)2 ≤ 4040.510.

• If 25 < log |dK̃ | ≤ 100, then

p ≤ (1.881 log |dK̃ |+ 0.34 · 2 + 5.5)2 ≤ (1.881 · 100 + 0.34 · 2 + 5.5)2 ≤ 37744.719.

• If 100 < log |dK̃ | ≤ 1000, then

p ≤ (1.446 log |dK̃ |+ 0.23 · 2 + 6.8)2 = (1.446 · 1000 + 7.26)2 ≤ 2111964.628.

Considering the maximum of all possible values above, we see p ≤ 2111964. We take this to
be our p0 in the case nK̃ = 2.

It remains to verify that the two tuples appearing after our pivot point are smaller than
our pivot tuple.

• If 10000 < log |dK̃ | ≤ 100000, then

p ≤ (1.032 log |dK̃ |+ 0.44 · 2 + 20.2)2 ≤ (1.125 log |dK̃ |+ 12.16)2

where the last inequality holds provided log |dK̃ | ≥ 95.914.

• If 10000 < log |dK̃ |, then

p ≤ (1.008 log |dK̃ | − 0.06 · 2 + 47.7)2 ≤ (1.125 log |dK̃ |+ 12.16)2

where the last inequality holds provided log |dK̃ | ≥ 302.736.

Thus, we see p ≤ (1.125 log |dK̃ | + 12.16)2 in the above two cases. Therefore, we have p ≤
max{2111964, (1.125 log |dK̃ |+12.16)2}, which corresponds to the tuple (2111964, 1.125, 0, 12.16).

Next, suppose now nK̃ = 3 or nK̃ = 4, which corresponds to the second column of Table
2.1. We pick the tuple (1.148, 0.5, 10.2) to be our pivot this time. We begin by noting that,
if log |dK̃ | < 5, then using the generic bound with a = 4, b = 2.5, and c = 5, we have

p ≤ (4 log |dK̃ |+ 2.5nK̃ + 5)2 ≤ 1225. (2.16)

Similarly, we find p0 as follows:

• If 5 ≤ log |dK̃ | ≤ 10, then

p ≤

1191.631, nK̃ = 3

1232.011, nK̃ = 4
.
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• If 10 < log |dK̃ | ≤ 25, then

p ≤

4809.423, nK̃ = 3

4872.041, nK̃ = 4
.

• If 25 < log |dK̃ | ≤ 100, then

p ≤

43936.352, nK̃ = 3

44049.614, nK̃ = 4
.

• If 100 < log |dK̃ | ≤ 1000, then

p ≤

2352879.888, nK̃ = 3

2353401.446, nK̃ = 4
.

Looking at the maximum of all ranges above, we see p ≤ 2353401. We take this to be our
p0 for the range 3 ≤ nK̃ ≤ 4. We now verify the two tuples which appear after our pivot
are, in fact, smaller than our pivot.

• If 10000 < log |dK̃ | ≤ 100000, then

p ≤ (1.038 log |dK̃ |+ 0.5nK̃ + 18.7)2 ≤ (1.148 log |dK̃ |+ 0.5nK̃ + 10.2)2

where the last inequality holds for both nK̃ = 3 and nK̃ = 4 provided that log |dK̃ | ≥
77.273.

• If 100000 < log |dK̃ |, then

p ≤ (1.01 log |dK̃ | − 0.03nK̃ + 41.9)2 ≤ (1.148 log |dK̃ |+ 0.5nK̃ + 10.2)2

where the last inequality holds for both nK̃ = 3 and nK̃ = 4 provided that log |dK̃ | ≥
218.189.

Again, we have p ≤ max{2353401, (1.148 log |dK̃ |+ 0.5nK̃ + 10.2)2}. Thus, the appropriate
4-tuple for the case nK̃ = 3 or nK̃ = 4 is (2353401, 1.148, 0.5, 10.2).

The next three cases (when 5 ≤ nK̃ ≤ 9, or 10 ≤ nK̃ ≤ 14, or 15 ≤ nK̃ ≤ 49) are
proved in an identical manner to the above two cases, using code to verify the given 4-
tuple. The pivots we used are, respectively, (1.178, 0.37, 9.5) (for the case 5 ≤ nK̃ ≤ 9),
(1.189, 0.32, 9.2) (for the case 10 ≤ nK̃ ≤ 14), and (1.212, 0.24, 8.8). The code which does
this manual verification can be found in Appendix A.

The last case we establish explicitly. For both cases, we choose our pivot to be the tuple
(1.257, 0, 7.3). First, suppose 50 ≤ nK̃ ≤ 73. This we, again, verify using the code, and we
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get a 4-tuple (3100065, 1.257, 0, 7.3). For the case nK̃ ≥ 74, we note that if 100 ≤ log |dK̃ | ≤
1000, then

p ≤ (1.755 log |dK̃ |+ 5.7)2 ≤ 3100064.49.

If 1000 < log |dK̃ | ≤ 10000, then

p ≤ (1.257 log |dK̃ |+ 7.3)2.

We must verify the above, our pivot, is larger than the remaining two cases.

• If 10000 < log |dK̃ | ≤ 100000, then

p ≤ (1.095 log |dK̃ |+ 8.2)2 ≤ (1.257 log |dK̃ |+ 7.3)2

where the last inequality holds provided that log |dK̃ | ≥ 5.556.

• If log |dK̃ | > 100000, then

p ≤ (1.017 log |dK̃ |+ 0.07nK̃ + 31.8)2 ≤ (1.257 log |dK̃ |+ 7.3)2,

where the last inequality holds if

1.017 log |dK̃ |+ 0.07nK̃ + 31.8 ≤ 1.257 log |dK̃ |+ 7.3⇐⇒ 0.07nK̃ + 24.5 ≤ 0.24 log |dK̃ |

⇐⇒ exp
(0.07

0.24nK̃ + 24.5
0.24

)
≤ dK̃ .

(2.17)

By Lemma 2.4.18, the last inequality of (2.17) holds for nK̃ ≥ 74, thus p ≤ (1.257 log |dK̃ |+
7.3)2.

Taking the maximum of all cases again, we see p ≤ max{3100064, (1.257 log |dK̃ | + 7.3)2}.
This corresponds to the 4-tuple (3100064, 1.257, 0, 7.3), the same tuple as at the beginning
of this case. This completes our analysis.

Remark 2.4.20. By appropriately scaling ā, b̄, c̄ appearing in each case to Ā, B̄, C̄, we can
make it so that p0 ≤ (Ā log |dK̃ | + B̄nK̃ + C̄)2 for all values of log |dK̃ | and nK̃ in the
appropriate range. This reduces the 4-tuple (p0, ā, b̄, c̄) to a 3-tuple (Ā, B̄, C̄). However, the
scaling factor can be quite large for each case, and remove any potential advantage in smaller
constants. For example, in the first case, we have the 4-tuple (2111964, 1.125, 0, 12.16). We
would then need to consider a scalar k ∈ R such that

2111964 ≤ k(1.125 log |dK̃ |+ 12.16)2.
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Given that log |dK̃ | ≥ 1, we would need to take k ≥ 11966. This would make Ā = 13461.75
and C̄ = 145506.56. For the results presented in Chapter 4, the constants are already
large enough to dominate any potential increase which may arise from such scaling factors;
however, in Chapter 5, our constants are quite small, and such scaling factors would nullify
our improvements.

Remark 2.4.21. The choice of which 3-tuple to pick as the pivot is entirely arbitrary. For
example, for the case n = 2, we could have chosen the tuple (1.881, 0.34, 5.5) coming from
Table 2.1 to be our pivot, which would have resulted in a 4-tuple of (4040, 1.881, 0, 6.18).
When choosing a pivot, notice that taking a pivot corresponding to a larger range of log |dK̃ |
results in a smaller ā at the expense of a larger p0. In our results where we make use of
these constants (Chapter 5), we are required to take the final 4-tuple as our nK̃ is large, so,
p0 = 3100064. For the other cases, we make the choice to push ā to be as small as possible
by making the pivot larger, but no larger than 3100064 (see Remark 5.3.1 for a concrete
example of why smaller ā is better for our purposes). For other applications where a smaller
p0 or ā would be beneficial, one can reproduce Table 2.2 by choosing a different pivot.

Remark 2.4.22. In (2.16), we considered what happens when log |dK̃ | < 5 (in the case
when nK̃ = 3 or nK̃ = 4) even though in Table 2.1 this combination of log |dK̃ | and nK̃

is claimed to not be possible. We applied Theorem 2.4.15 with the general values of a, b, c,
those being a = 4, b = 2.5, and c = 5. We consider this ‘impossible’ case as there are some
entries in Table 2.1 that do not give tuples for combinations of nK̃ and log |dK̃ | that would,
in fact, be possible. For example, [18, Remark 13] notes the maximal totally real subfield
of Q(ζ7) has degree 3 and discriminant 49, yet Table 2.1 gives no tuple for a degree 3 field
for which the logarithm of the discriminant is less than 5. Thus, in order to account for this
case, we must use the generic bounds. This is incorporated into the code given in Appendix
A, however given how large p0 is in all cases, this is not sufficient to change our final result.
However, if one were to pick different pivots, it is possible that p0 would be small enough
that this generic case will be larger than all tuples appearing before the pivot.
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Chapter 3

Torsion Fields of Elliptic Curves

The goal of this chapter is to give an account of some facts related to the discriminant
of torsion fields. In particular, if E is an elliptic curve over Q and ℓ a prime, we examine
closely the field Q(E[ℓ]); specifically, we examine the relationship between the primes of
bad reduction of E and the primes which ramify in Q(E[ℓ]). Our work in this section relies
heavily on results of both Cali-Kraus [7] and Kraus [15].

We work to determine which primes ramify in the number field Q(E[ℓ]). As above, let E
be an elliptic curve and ℓ a prime. Denote L = Q(E[ℓ]). We begin by stating a theorem due
to Serre and Tate [32, Theorem 1] describing the primes which have good (or bad) reduction.
Note the theorem is stated for general abelian varieties, which, in our case, can be thought
of as being elliptic curves. The particular version we give appears in [18, Theorem 8].

Theorem 3.0.1. Let A/Q be an abelian variety. For a prime number p, the following are
equivalent:

a) A has good reduction at p,

b) Q(A[m])/Q is unramified at p for each positive integer m not divisible by p, and

c) Q(A[m])/Q is unramified at p for infinitely many positive integers m, not divisible by p.

Proof. See [32, Theorem 1].

Theorem 3.0.1 gives us a clearer picture of what the discriminant of L shall look like.
By Theorem 2.1.10, a prime p is ramified in L if and only p divides dL; thus, the primes for
which E has bad reduction should be ramified in L. This idea we shall expand upon and
make more explicit in a different way.

Let us now turn our attention to the primes in P (E), the primes where E has bad
reduction. By the end of this section, we will prove a subset of the primes from P (E) also
ramify in L. To see this, however, we must state results of Kraus and Cali-Kraus.

The setup is as follows: let q and ℓ be primes, K a finite unramified extension of Qq,
νq the q-adic valuation, and D an integer characterized by the following two equivalent
properties:
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a) the different of the extension K(E[ℓ])/K is the Dth power of the valuation (maximal)
ideal of K(E[ℓ]),

b) the discriminant ideal of the extension K(E[ℓ])/K is generated by qnD/e, where n is the
degree and e is the ramification index of the extension K(E[ℓ])/K.

Before we begin our analysis, we must split into two cases, depending on whether or not
q = ℓ or q ̸= ℓ. We begin with the former case, that being we assume q = ℓ.

3.0.1 The case q = ℓ

Our first goal is to replace the exponent appearing on q in the discriminant ideal. From
here on, we shall replace q with ℓ (understanding that they are the same). Let K be a
finite unramified extension of Qℓ endowed with the valuation ν which extends that of Qℓ

(following Cali-Kraus).

Lemma 3.0.2. Let ℓ be a prime. Let K be a finite extension of Qℓ and E/K be an elliptic
curve with potentially good reduction. Let n be the degree, and e be the ramification index,
of the extension K(E[ℓ])/K. Then n/e ≤ 48.

Proof. Let L = K(E[ℓ]), G be the Galois group, and I be the inertia group of L/K. Recall
that G/I is cyclic and isomorphic to the Galois group of the extension of residue fields
k(L)/k(K).

If E/K has good ordinary reduction or multiplicative reduction, then ρE,ℓ(I) is conjugate
to (

∗ 0
0 1

)
or
(
∗ ∗
0 1

)
(3.1)

and has order ℓ − 1 (see [28, Proposition 13]) so that e = #ρE,ℓ(IL) = ℓ − 1. The image
ρE,ℓ(I) is normal in ρE,ℓ(G). But the normalizer of (3.1) in GL2(Fℓ) is itself, so it follows
that n = e > 1 and hence n/e = 1.

If E/K has good supersingular reduction, then ρE,ℓ(I) is conjugate to a non-split Cartan
subgroup of order ℓ2 − 1 (see [28, Proposition 12]) so that e = #ρE,ℓ(IL) = ℓ2 − 1 > 1. The
image ρE,ℓ(I) is normal in ρE,ℓ(G). But the normalizer of C ′ in GL2(Fℓ) contains C ′ with
index 2, so it follows that n/e ≤ 2.

If E/K has additive reduction, after a finite extension M/K of degree dividing 24 that
E/M has good or multiplicative reduction [28, §5.6]. Let n′, e′ be the degree, ramification
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index of M(E[ℓ])/M , respectively. Then n/e ≤ 24n′/e′ ≤ 48 by the diagram:

F = M(E[ℓ])

M L = K(E[ℓ])

K

Qℓ

Given this, we see both that, since e > 1, ℓ must be ramified in K(E[ℓ])/K, and that
the discriminant ideal of K is generated by at least ℓ48D.

Thus, it remains to determine what D is. Let h denote the height of the reduction of
E; recall from (2.8) that h = 1 if E has good ordinary reduction, and h = 2 if E has good
supersingular reduction. If h = 1, then we let jcan(Ẽ) be the j-invariant of the canonical
lifting of Ẽ to E, such that if we reduce E modulo the maximal ideal of K, we get Ẽ. The
following is a result of Kraus [15]:

Theorem 3.0.3. [15, Theorem 2] Let ℓ be a prime. Suppose K is a finite extension of Qℓ,
and E an elliptic curve which has good reduction on K. Denote by Ẽ the elliptic curve
obtained by reducing E modulo the maximal ideal of K.

i) If j(Ẽ) = 0 (that is, νℓ(c4) ≥ 1) and h = 1 (that is, ℓ ≡ 1 (mod 3)), then

D =

ℓ
2 − 2 if νℓ(c4) = 1,

ℓ− 2 if νℓ(c4) ̸= 1.

ii) If j(Ẽ) = 1728 (that is, νℓ(c4) ≥ 1) and h = 1 (that is, ℓ ≡ 1 (mod 4)), then

D =

ℓ
2 − 2 if νℓ(c6) = 1,

ℓ− 2 if νℓ(c6) ̸= 1.

iii) If j(Ẽ) /∈ {0, 1728} and h = 1, then

D =

ℓ
2 − 2 if νℓ(j − jcan(Ẽ)) = 1,

ℓ− 2 if νℓ(j − jcan(Ẽ)) ̸= 1.
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iv) If h = 2,
D = ℓ2 − 2.

Applying both Lemma 3.0.2 and Theorem 3.0.3 in our situation, we see that ℓ ramifies
in Q(E[ℓ])/Q.

3.0.2 The case q ̸= ℓ

Suppose now that q ̸= ℓ. Like in the previous case, we must once again work to simplify
the exponent appearing on q, that being qnD/e. We have the following proposition coming
from Darmon-Diamond-Taylor [11]:

Proposition 3.0.4. [11, Proposition 2.12] Suppose that E has multiplicative reduction at
q. Let δ : Gq/Iq → {±1} be the unique non-trivial unramified quadratic character of Gq

if E has non-split multiplicative reduction, and let δ be the trivial character if E has split
multiplicative reduction. Let ϵℓ : GQ : Z×

ℓ be the ℓ-adic cyclotomic character Then,

ρE,ℓ |Gq∼
(
ϵℓ ∗
0 1

)
⊗ δ,

and if ℓ ̸= q then mq(ρE,ℓ) = 1.

We wish to give an analogous Lemma to Lemma 3.0.2 in the case q ̸= ℓ.

Lemma 3.0.5. Let ℓ be an odd prime. Let K be a finite extension of Qq and E/K be
an elliptic curve with potentially multiplicative reduction. Let n be the degree, and e be the
ramification index, of the extension K(E[ℓ])/K, and q ̸= ℓ a prime such that K(E[ℓ])/K is
ramified at q. Then n/e ≤ 2(ℓ− 1).

Proof. As before, we consider the order of the image ρE,ℓ(Gq)/ρE,ℓ(Iq). By Proposition
3.0.4, we have the image of ρE,ℓ(Gq) is exactly

ρE,ℓ |Gq∼
(
ϵℓ ∗
0 1

)
⊗ δ.

Given there are at most ℓ(ℓ−1) possibilities for ϵℓ and ∗, and that δ can have at most order
2, we see n | 2ℓ(ℓ− 1), implying n ≤ 2ℓ(ℓ− 1).

Now we consider ρE,ℓ(Iq). Note that ϵℓ(Iq) = 1 since, in the case q ̸= ℓ, ϵℓ is unramified
at q. There are only two possibilities for ρE,ℓ(Iq): either it is trivial, or its image is given by
matrices of the form (

1 ∗
0 1

)
(3.2)

which would then have order ℓ. If the image is trivial, we have e = 1, which implies q does
not ramify, a contradiction to our assumption that q is, in fact, ramified in the extension
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K(E[ℓ])/K. So, the image must, in fact, be given by matrices as in (3.2); thus |ρE,ℓ(Iq)| = ℓ.
Lastly, when combined with the size of ρE,ℓ(Gq), we get the result n/e ≤ 2ℓ(ℓ − 1)/ℓ =
2(ℓ− 1).

All that remains is to determine D; we use the following result of Cali-Kraus [7] to
achieve this aim:

Theorem 3.0.6. [7, Theorem 1] Let q, ℓ be primes such that q ̸= ℓ. Let K be a finite
extension of Qq. Let νq(x) denote the valuation of x at q.

1) Suppose νq(j) < 0.

a) If E has reduction of multiplicative type on K, then

D =

0 if ℓ divides νq(j),

ℓ− 1 if ℓ does not divide νq(j).

b) If E has additive reduction on K, and q ̸= 2, then

D =

1 if ℓ divides νq(j) or ℓ = 2,

2ℓ− 1 if ℓ does not divide νq(j) and ℓ ̸= 2,

otherwise if q = 2, then we are in one of two cases:

i) If νq(c6) = 6, then

D =

2 if ℓ divides νq(j),

3ℓ− 1 if ℓ does not divide νq(j),

ii) else if νq(c6) = 9, then

D =

3 if ℓ divides νq(j),

4ℓ− 1 if ℓ does not divide νq(j).

2) Suppose νq(j) ≥ 0, and E has addititve reduction on K. Assume q ≥ 5. Let m be the
denominator of νq(∆E)/12, with ∆E the discriminant of E. We have

D =



m− 1 if ℓ ̸= 2,

1 if ℓ = 2 and νq(∆) is odd,

2 if ℓ = 2 and νq(∆) is even and not 6,

0 if ℓ = 2 and νq(∆) = 6.
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3) In all remaining cases, D is given explicitly and satisfies D ≤ 68.

If E has multiplicative reduction on K, then so long as ℓ does not divide νq(j) (for any
q ∈ P (E), the primes of bad reduction of E), then q will ramify. We have that D ≤ 2(4ℓ−1),
which is linear in ℓ.
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Chapter 4

The Method of Serre

This chapter is dedicated to describing the method Serre gives in [30] for finding an upper
bound on the smallest prime p such that ap(E) ̸= ap(E′). This result is not as refined
as Mayle-Wang [18] (the results of which appear in Chapter 5), however we make a few
modifications to the original theorem, including using Bach-Sorenson (Theorem 2.4.15) for
our Chebotarev estimate, as well as a different bound on the discriminant. We begin by
stating Serre’s original result:

Theorem 4.0.1. [30, Theorem 21] Let E and E′ be two elliptic curves defined over Q.
Suppose that the set of primes p such that ap(E) ̸= ap(E′) is infinite. Let S be a finite set
of primes containing both P (E) and P (E′); let NS = ∏

ℓ∈S ℓ. Let p = p(E,E′, S) be the
smallest prime number not belonging to S such that ap(E) ̸= ap(E′). Under GRH, we have

p ≤ C1(logNS)2(log log 2NS)12, (4.1)

where C1 is an absolute constant.

An overview of the argument looks as follows: suppose we have two elliptic curves E
and E′, and let P (E), P (E′) denote the primes of bad reduction of E and E′ respectively.
Let p be the smallest prime such that ap(E) ̸= ap(E′). We wish to pick a prime ℓ such
that, modulo ℓ, the two traces are distinguished, that is, ap(E) ̸≡ ap(E′) (mod ℓ). Once
we have accomplished this, we can look at the field generated by the kernel of our mod ℓ

representation, and apply a Chebotarev Density estimate to pick a prime q that will also
satisfy aq(E) ̸≡ aq(E′) (mod ℓ). By minimality, p ≤ q, and so p will also satisfy the upper
bound on q given to us by Chebotarev. Once we are in such a position, then some simple
estimates and bookkeeping will give us our desired result.

We fix some notation: we let

P (L) = {q ∈ Z | q prime and q is unramified in L }
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for a number field L/Q, and for an elliptic curve E the analogous set

P (E) = {q ∈ Z | q prime and E has bad reduction at q }.

For a set of primes P , we denote the product

NP =
∏
q∈P

q,

in particular we will consider the product

N = NP (E)NP (E′). (4.2)

We give our modification of Theorem 4.0.1. Note that, asymptotically, it is the same
as Theorem 4.0.1, however here we have explicitly worked out the constants and employed
Proposition 2.4.19.

Theorem 4.0.2. Let E and E′ be two elliptic curves defined over Q. Suppose that the set
of primes p such that ap(E) ̸= ap(E′) is infinite. Let p be the smallest prime number not
belonging to P (E) ∪ P (E′) such that ap(E) ̸= ap(E′). Let S be a finite set of primes, such
that for all primes q not belonging to S, both E and E′ will have good reduction at q. Then,

p ≤ C12(log logNS)12 [logNS + log log logNS + c̄]2 , (4.3)

where
C12 = C11(logC10 + 1), (4.4)

C11 = C7C
12
10 , (4.5)

C10 = C9(log(2 + c̄) + 1), (4.6)

C9 = 2(logC8 + 2), (4.7)

C8 = C4(2, 14)C7, (4.8)

C7 = 6C6C
12
5 (1 + logC5)2, (4.9)

C6 = 16(log 2)2ā2, (4.10)

C5 = (C3 log 8 + 1/2), (4.11)

and C4(r, s) and C3 are as appears in Lemma 4.2.1 and Lemma 4.1.2 respectively, and ā,
c̄ can be taken to be 4 and 5 respectively by Theorem 2.4.15 or any appropriate value from
Table 2.2.
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Remark 4.0.3. Given our constants are taken from Proposition 2.4.19, one may wonder
why we do not consider (4.3) with the maximum of p0. In this case, the constant C12 is so
large that (4.3) overpowers p0. See Remark 4.2.2, where we have worked out C12 explicitly.

The work is split into two sections: first, some preliminary work detailing the tools we
shall be employing in the main argument, then a section in which we give a proof of Theorem
4.0.2.

4.1 The Tools of Serre

We shall require two helpful lemmas of Serre [30], the latter of which will help us pick our
special prime ℓ.

Lemma 4.1.1. [30, Lemma 11] There exists an absolute constant C2 > 0 such that∑
q≤x log q ≥ C2x for all x ≥ 2 (note that the summation runs over prime numbers q ≤ x).

Proof. By Theorem 2.4.3, we know θ(x) ∼ x. Thus, for large x, we have that

ax <
∑
q≤x

log q < bx (4.12)

for any constants 0 < a < 1 < b. We can then scale a and b so that the inequality (4.12)
holds for all x ≥ 2.

Lemma 4.1.2. [30, Lemma 12] If n ∈ Z>0, there exists a prime number ℓ such that
n ̸≡ 0 (mod ℓ) and ℓ ≤ C3 log 2n, where C3 is an absolute constant.

Proof. Take C3 = sup(2/ log 2, 1/C2). For the purpose of contradiction, suppose such a
prime ℓ does not exist. Then, n would be divisible by all primes ℓ ≤ x, where x = C3 log 2n.
Consider now the product ∏ℓ≤x ℓ; by our assumption, n is divisible by each prime ℓ in this
product, and so we have n ≥ ∏

ℓ≤x ℓ, or logn ≥ ∑
ℓ≤x log ℓ. By our hypotheses, we have

x ≥ C3 log 2 ≥ 2, and Lemma 4.1.1 gives us

logn ≥
∑
ℓ≤x

log ℓ ≥ C2x = C2C3 log 2n ≥ log 2n,

but then logn ≥ log 2n, which is a contradiction.

We note that Serre [30] gives the optimal values of the two constants in Lemma 4.1.1
and 4.1.2 as C2 = 1/3 log 2 and C3 = 2/ log 2. In addition, note that the prime ℓ is of order
O(logn).

Next, we give a brief description of how we shall distinguish the traces. Recall our
goal is, given two elliptic curves, to find a prime q ̸∈ S so that aq(E) ̸= aq(E′). Serre
accomplishes this by considering a particular conjugacy class of the Galois group, and
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showing that elements of this conjugacy class in fact are able to distinguish the trace
elements. Then, applying an explicit Chebotarev estimate to that conjugacy class gives a
prime q so that aq(E) ̸= aq(E′). The construction is as follows. Recall the two-dimensional
mod ℓ representations attached to E and E′ as

ρ̄E,ℓ : GQ → GL2(Z/ℓZ) and ρ̄E′,ℓ : GQ → GL2(Z/ℓZ)

and define
ρ̄ℓ : GQ → GL2(Z/ℓZ)×GL2(Z/ℓZ) (4.13)

by ρ̄ℓ(x) = (ρ̄E,ℓ(x), ρ̄E′,ℓ(x)). Let Gℓ = ρ̄ℓ(GQ) ⊂ GL2(Z/ℓZ)×GL2(Z/ℓZ) be the image of
the map ρ̄ℓ. Define

Cℓ = {(s, s′) ∈ Gℓ | tr(s) ̸= tr(s′)}. (4.14)

We claim Cℓ is nonempty. Let q be a prime number not belonging to P (E) ∪ P (E′), and
distinct from ℓ. The representation ρℓ is unramified at q (see [11, Proposition 2.11]), so we
can find the Frobenius element at q, σq, and get

ρ̄ℓ(σq) = (ρ̄E,ℓ(σq), ρ̄E′,ℓ(σq)).

This is an element of Gℓ defined up to conjugation; let ρ̄ℓ(σq) = (sq, s
′
q). By (2.10), we have

tr(sq) ≡ aq(E) (mod ℓ) and tr(s′
q) ≡ aq(E′) (mod ℓ).

Then, (sq, s
′
q) belongs to Cℓ if and only if

aq(E) ̸≡ aq(E′) (mod ℓ). (4.15)

According to the fact that ap(E) ̸≡ ap(E′) (mod ℓ) and ℓ ̸= p, this condition is satisfied
when q is exactly p. We therefore have (sp, s

′
p) ∈ Cℓ, which shows that Cℓ is not empty.

Let Hℓ be the intersection of Gℓ with the group of homotheties (λ, λ), where λ runs
through (Z/ℓZ)∗. The conjugacy class Cℓ is stable under multiplication by Hℓ so that it is
the inverse image of a non-empty subset C ′

ℓ of G′
ℓ = Gℓ/Hℓ.

Lemma 4.1.3. [30, Lemma 13] With the setup as above, we have |G′
ℓ| < 2ℓ6.

Proof. Denote the kernel of the canonical homomorphism

Gℓ → GL2(Z/ℓZ)×GL2(Z/ℓZ)→ PGL2(Z/ℓZ)× PGL2(Z/ℓZ) (4.16)

by H̃ℓ, which is the intersection of Gℓ with the group of (λ, µ), where λ and µ run through
(Z/ℓZ)∗. We see H̃ℓ contains Hℓ. On the other hand, if (s, s′) ∈ Gℓ, we have det(s) = det(s′)
from (2.10). It follows that if (λ, µ) ∈ H̃ℓ, we have λ2 = µ2, thus λ = ±µ; this shows that
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(H̃ℓ : Hℓ) = 1 or 2. From here,

|G′
ℓ| = |Gℓ/Hℓ| ≤ 2|Gℓ/H̃ℓ| ≤ 2|PGL2(Z/ℓZ)|2 ≤ 2(ℓ3 − ℓ)2 ≤ 2ℓ6,

which gives the lemma.

The last lemma we state comes from Serre [30, Theorem 6], however we employ a different
Chebotarev estimate to the one Serre originally used.

Lemma 4.1.4. Let L be a Galois extension of Q of degree nL < ∞, and S a finite set of
primes such that L/Q is unramified outside S. Assume GRH. For any conjugacy class C of
G = Gal(L/Q), there exists a prime number q ̸∈ S such that σq ∈ C and

q ≤
[
2ā
(
log |dL|+ nL log

(
NS\P (L)

))
+ c̄
]2

(4.17)

where ā, c̄ can be taken to be 4 and 5 respectively, or can be chosen from Table 2.2, assuming,
also, that b̄ = 0.

Proof. Let P (L) be the set of primes that are ramified in L. Given that all primes outside
S must not ramify in L, we have P (L) ⊆ S. We consider now two cases:

i) Suppose P (L) = S. Apply Proposition 2.4.19 to L and the conjugacy class C, so that
we get a prime p ̸∈ S such that

p ≤ (ā log |dL|+ c̄)2.

Noting that (4.17) is larger than the above bound, we conclude the result in this case.

ii) Suppose P (L) ⊊ S. Let D be the product of the primes q ∈ S \P (L), and let F be the
unique quadratic field such that dF = D if D is odd, and dF = 2D if D is even; we
have F = Q(

√
±D) in the first case and F = Q(

√
±D/2) in the second case, the sign

being chosen such that ±D ≡ 1 (mod 4) and ±D/2 ≡ 3 (mod 4) respectively. As L is
not ramified at any prime factors of dF (dL and dF are coprime), the fields L and F

are linearly disjoint (see [21, Theorem 4.26]). Their compound L′ = L.F is Galois, with
Galois group G′ = G × {±1}. As dL and dF are relatively prime, Proposition 2.1.13
gives

dL′ = (dF )nL(dL)2. (4.18)

In particular, P (L′) is equal to S; the extension L′/Q is ramified at all the prime
numbers q belonging to S. Apply Proposition 2.4.19 to L′/Q and to C × {±q} to get
a prime p ̸∈ S with σp ∈ C and

p ≤ (ā log |dL′ |+ c̄)2. (4.19)
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According to (4.18), we have

log |dL′ | = nL log |dF |+ 2 log |dL|. (4.20)

We have the simple bound dF ≤ D2, and so

nL log |dF | ≤ 2nL log |D| ≤ 2nL log

 ∏
q∈S\P (L)

q

 = 2nL logNS\P (L). (4.21)

We deduce therefore

log |dL′ | ≤ 2nL logNS\P (L) + 2 log |dL| (4.22)

which, when combining with (4.19), we get

p ≤ (ā log |dL′ |+ c̄)2 ≤

2ā

log |dL|+ nL log

 ∏
q∈S\P (L)

q

+ c̄

2

,

giving the desired bound

Remark 4.1.5. One may wonder what allows us to assume b̄ = 0 in Lemma 4.1.4 given
that no such stipulation is made in Proposition 2.4.19. Let us suppose we take a 4-tuple
from Table 2.2 (which, recall, is a condensed version of Table 2.1) (p0, ā, b̄, c̄). For most cases
appearing, b̄ ̸= 0. However, in each case when b̄ is nonzero, we are given an explicit range
nlower ≤ nK ≤ nupper for which the 4-tuple is valid (the final case, when n ≥ 50, we are
given b̄ = 0). Then, we can take

(ā log |dK |+ b̄nK + c̄)2 ≤ (ā log |dK |+ b̄nupper + c̄)2,

and so our 4-tuple becomes (p0, ā, 0, b̄nupper + c̄), thus eliminating b̄.
We may also subsume the term b̄nK into ā. By Lemma 4.1.6 (appearing below), we have

(1
2 log 3)nK ≤ log |dK |, thus nK ≤ 2

log 3 log |dK |. Therefore,

(ā log |dK |+ b̄nK + c̄)2 ≤
((

ā+ 2b̄
log 3

)
log |dK |+ c̄

)
.

and so the 4-tuple becomes (p0, ā+ 2b̄
log 3 , 0, c̄). One may then consider which of the two gives

a smaller bound given the situation.

Lastly, we give a bound on the discriminant of a number field K/Q. This is given in
Serre [30, Proposition 6], but we use the version found in [18, Lemma 7]. We note that the
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radical of an integer a, rad(a), is defined to be the product of all prime divisors of a, that
is, rad(a) = ∏

q|a q.

Lemma 4.1.6. [18, Lemma 7] If K/Q is a nontrivial finite Galois extension, then(1
2 log 3

)
[K : Q] ≤ log dK ≤ ([K : Q]− 1) log rad(dK) + [K : Q] log([K : Q]),

where dK is the absolute value of the discriminant of K.

Proof. The left-hand side inequality follows from Theorem 2.1.4 (see [30, pg. 139]). For the
right-hand side, let DK/Q ⊆ OK denote the different ideal, and note by Proposotion 2.1.18
we have

dK = NK/Q(DK/Q) =
∏

q|dK

qνq(NK/Q(DK/Q)).

Taking logarithms of both sides, we get

log dK =
∑
q|dK

νq(NK/Q(DK/Q)) log q =
∑
q|dK

∑
q|q
fqνq(DK/Q) log q. (4.23)

For each prime ideal q ⊆ OK lying above q, we have that

νq(DK/Q) = eq − 1 + sq

for some integer sq satisfying 0 ≤ sq ≤ νq(eq). Thus,

∑
q|q
fqνq(DK/Q) =

∑
q|q
fq(eq − 1) +

∑
q|q
fqsq ≤ [K : Q]− 1 +

∑
q|q
fqνq(eq). (4.24)

Since K/Q is Galois, eq divides [K : Q] (see [19, Theorem 3.34]). Thus, νq(eq) ≤ νq([K : Q]).
Hence,

∑
q|q
fqνq(eq) =

∑
q|q
fqeqνq(eq) ≤ νq([K : Q])

∑
q|q
fqeq = νq([K : Q])[K : Q]. (4.25)

Lastly, ∑
q|dK

νq([K : Q])[K : Q] log q ≤ [K : Q] log[K : Q]. (4.26)

Applying all the above to (4.23), we obtain

log dK ≤ ([K : Q]− 1)
∑
q|dK

log q + [K : Q] log[K : Q].

The result is then obtained by replacing ∑q|dK
log q with log rad(dK).
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Remark 4.1.7. We could also study what happens if we use Lemma 4.1.6 in the proof of
Lemma 4.1.4, in particular applying the result of Lemma 4.1.6 to (4.20). We would have:

log |dL′ | = nL log |dF |+ 2 log |dL|

≤ nL((nF − 1) log rad dF + nF lognF ) + 2((nL − 1) log rad dL + nL lognL)

= nL(log rad dF + 2 log 2) + 2((nL − 1) log rad dL + nL lognL)

≤ nL(log rad dF + 2 log 2 + 2 log rad dL + 2 lognL)

= nL

2 log rad dL + log

 ∏
q∈S\P (L)

q

+ 2 log(2nL)


(4.27)

We could then compare (4.27) with (4.22) to see which gives the better bound on log |dL′ |.
However, given the scope of this chapter is to expand on Serre’s original argument, we
choose to use Lemma 4.1.4 in its current form.

4.2 Improvement

With the preliminary work now taken care of, we work to prove Theorem 4.0.2. We begin
with a proof of a simple lemma we will make use of.

Lemma 4.2.1. Let r, s > 0, with r > 1 and satisfying s > (1 − 1
r ) log(2). Then, for any

real x ≥ 2, we have
x1/r ≤ C4(r, s) x

(log x)s
(4.28)

where C4(r, s) = max
{

2 1−r
r (log(2))s, ( sr

r−1)se−s
}

.

Proof. Beginning with (4.28), we have

x1/r ≤ C4(r, s) x

(log x)s
⇐⇒ x

1−r
r (log x)s ≤ C4(r, s). (4.29)

First, notice if r = 1, then (4.29) becomes (log x)s ≤ C4(1, s), but the left is unbounded as
x approaches infinity, so no such constant exists to satisfy the inequality.

Let f(x) = x
1−r

r (log x)s. Since C4(r, s) must obey the above inequality, taking C4(r, s)
to be the maximum of the function f(x) shall satisfy (4.28). To that end, we find

d

dx
f(x) = −x

1−r
r

−1(log (x))s−1 ((r − 1) log (x)− sr)
r

.

There are two critical values: x = 1 and x = e
sr

r−1 (note that, if s = 1, then x = 1 is not a
critical value). Since x ≥ 2, we do not consider the first critical value x = 1. Since r and s
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satisfy s > (1− 1
r ) log(2), we notice

s > (1− 1
r

) log(2)⇐⇒ sr

r − 1 > log(2)⇐⇒ e
sr

r−1 > 2

so the second critical point is to the right of x = 2. Thus, we take

C4(r, s) = max{f(2), f(e
sr

r−1 )} = max
{

2
1−r

r (log(2))s,

(
sr

r − 1

)s

e−s
}

as desired.

Now we prove Theorem 4.0.2.

Proof of Theorem 4.0.2. Let p be the smallest prime such that ap(E) ̸= ap(E′). Let n =
|ap(E)− ap(E′)| > 0. By Lemma 4.1.2, there exists a prime ℓ such that n ̸≡ 0 (mod ℓ), and
ℓ ≤ C3 log 2n; in particular, we know ap(E) ̸≡ ap(E′) (mod ℓ). In addition, by Theorem
2.2.4 (Hasse’s Theorem),

ℓ ≤ C3 log(2|ap(E)− ap(E′)|)

≤ C3 log(2(|ap(E)|+ |ap(E′)|)

≤ C3 log(8p1/2)

≤ C5 log p

(4.30)

where C5 = (C3 log 8 + 1/2).
Let L be the subfield of Q̄ fixed by the kernel of the homomorphism Gal(Q̄/Q) →

Gℓ → G′
ℓ, where we recall that Gℓ is the image of the map ρℓ defined in (4.13), and

G′
ℓ = Gℓ/Hℓ. The extension L is galois, with galois group G′

ℓ. It is not ramified outside of
the set Sℓ = P (E) ∪ P (E′) ∪ {ℓ}. Apply Lemma 4.1.4 to this extension and to a conjugacy
class of G′

ℓ containing C ′
ℓ to get a prime q ̸∈ Sℓ and σq ∈ C ′

ℓ satisfying

q ≤ [2ā(log |dL|+ nL log(NSℓ\P (L))) + c̄]2

≤ [2ā((nL − 1) log rad(dL) + nL log(nL) + nL log(NSℓ\P (L))) + c̄]2

≤ [2ānL(logNS + log(nL)) + c̄]2

≤ [2ā(2ℓ6)(logNS + log(2ℓ6)) + c̄]2

≤ [4āℓ6(logNS + log 2 + 6 log ℓ) + c̄]2

≤ 16(log 2)2ā2ℓ12[logNS + 6 log ℓ+ c̄]2

= C6ℓ
12[logNS + 6 log ℓ+ c̄]2

(4.31)

where we have used Lemma 4.1.6 on the second line, |Gℓ| ≤ 2ℓ6 coming from Lemma
4.1.3, and C6 = 16(log 2)2ā2. Since p is the smallest prime such that ap(E) ̸= ap(E′), and
aq(E) ̸= aq(E′), we have p ≤ q ≤ C6ℓ

12[logNS + 6 log ℓ+ c̄]2.
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We now work to remove ℓ. Recall, by (4.30), we have ℓ ≤ C5 log p. Thus,

p ≤ C6(C5 log p)12[logNS + 6 log(C5 log p) + c̄]2

≤ C7(log p)12[logNS + log log p+ c̄]2
(4.32)

where C7 = 6C6C
12
5 (1 + logC5)2.

Divide both sides of (4.32) by (log p)14 to get

p

(log p)14 ≤ C7

[ logNS + log log p+ c̄

log p

]2

= C7

[ logNS + c̄

log p + log log p
log p

]2

≤ C7 [logNS + c̄+ 1]2

(4.33)

where we have used the estimates

logNS + c̄

log p ≤ logNS + c̄ and log log p
log p ≤ 1.

Apply Lemma 4.2.1 with r = 2 and s = 14 (notice 14 > log(2)
2 ) to get

p1/2 ≤ C4(2, 14) p

(log p)14 ≤ C8 [logNS + c̄+ 1]2

with C8 = C4(2, 14)C7. In particular,

log p ≤ 2 (logC8 + 2 log(logNS + c̄+ 1))

≤ 2(logC8 + 2) log(logNS + c̄+ 1)

= C9 log(logNS + c̄+ 1)

≤ C9 log((1 + c̄+ 1) logNS)

= C9(log(2 + c̄) + log logNS)

≤ C9(log(2 + c̄) + 1) log logNS)

= C10 log logNS

(4.34)

with C9 = 2(logC8 + 2) and C10 = C9(log(2 + c̄) + 1). Lastly, combining (4.34) with (4.32)
yields

p ≤ C7(log p)12 [logNS + log log p+ c̄]2

≤ C7C
12
10 (log logNS)12 [logNS + log(C10 log logNS) + c̄]2

≤ C11(log logNS)12 [logNS + (logC10 + 1) log log logNS + c̄]2

≤ C11(logC10 + 1)(log logNS)12 [logNS + log log logNS + c̄]2

= C12(log logNS)12 [logNS + log log logNS + c̄]2

(4.35)
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with C11 = C7C
12
10 and C12 = C11(logC10 + 1).

Remark 4.2.2. Explicitly computing the constant C12 reveals it is quite large. Using ā = 4
and c̄ = 5, we find

C12 ≈ 2.79× 1045.

The size of C12 makes any practical use of Theorem 4.0.2 difficult. We will find the results
of Chapter 5 are a vast improvement.
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Chapter 5

The Method of Mayle-Wang

Recent work of Mayle-Wang [18] has given an explicit result on the smallest prime which
achieves ap(E) ̸= ap(E′). The constants are quite small, and, like Serre, depend on only
knowledge of the primes of bad reduction of the two elliptic curves E and E′. We recall
from (4.2) that N = NP (E)NP (E′) for two elliptic curves E and E′.

Theorem 5.0.1. [18, Theorem 2] Assume GRH. Let E,E′ be two elliptic curves over Q
without complex multiplication. Suppose E and E′ are not Q-isogenous. Then there exists
a prime p of good reduction for E and E′ such that ap(E) ̸= ap(E′) and satisfying the
inequality

p ≤ (482 log rad(2N) + 2880)2. (5.1)

In this chapter, we work to give a generalized result of Theorem 5.0.1 which will follow
the same structure as Mayle-Wang, but where we choose to leave unevaluated a critical
bound on a particular Galois group. Then, we shall use this generalization to give an
improvement on the constants appearing in Theorem 5.0.1 in the case when the mod 2
representations are either isomorphic and irreducible, or not isomorphic.

Let G be a group, and suppose ρ1 and ρ2 are two non-isomorphic representations of
G. The set δ(G) (described precisely in Definition 5.1.1) is known as the deviation group,
and it is a finite set containing a subset which acts as a certificate that ρ1 and ρ2 are
not isomorphic. The set φ(G) (defined in Proposition 5.1.6) is a subset of a very explicit
semi-direct product, and so estimating |φ(G)| is much easier. We now give the general result:

Proposition 5.0.2. Assume GRH. Let G be a group. Let E,E′ be two elliptic curves over
Q. Suppose E and E′ are not Q-isogenous. Let δ(G) be the deviation group of G with respect
to the ℓ-adic representations ρE,2 and ρE′,2. Then there exists a prime p of good reduction
for E and E′ such that ap(E) ̸= ap(E′), and a 4-tuple (p0, ā, b̄, c̄) from Table 2.2 (chosen
such that the degree is equal to 2|δ(G)|) such that

p ≤ max{p0, (ā((2|δ(G)| − 1) log rad(2N) + 2|δ(G)| log(2|δ(G)|)) + 2|δ(G)|b̄+ c̄)2}. (5.2)
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Furthermore, if E and E′ are such that their mod 2 representations are isomorphic and
absolutely irreducible, then we may replace |δ(G)| with |φ(G)|.

We provide a proof in Section 5.3. Improvements to the size of the group δ(G) appearing
above shall lead to further improvements in the constants.

What follows is our main result, in which we have employed Proposition 5.0.2 with
an estimate on the size of |φ(G)| to give an improvement on Theorem 5.0.1 when the
representations are isomorphic and irreducible, or not isomorphic.

Theorem 5.0.3. Assume GRH. Let E, E′ be two elliptic curves over Q. Suppose E and E′

are not Q-isogenous. Assume the mod 2 representations ρ̄E,2 and ρ̄E′,2 are not isomorphic,
or if they are isomorphic that they are absolutely irreducible. Then there exists a prime p
of good reduction for E and E′ such that ap(E) ̸= ap(E′) and satisfying the inequality

p ≤ max{3100065, (120 log rad(2N) + 559)2}. (5.3)

A proof is given in Section 5.3.

Remark 5.0.4. Mayle-Wang, in Theorem 5.0.1, include a hypothesis that the elliptic curves
E and E′ be without complex multiplication; in Proposition 5.0.2 and Theorem 5.0.3, we
have dropped this assumption. The original result of Serre in Chapter 4 does not require
such a hypothesis. All we require here is that the set of primes for which ap(E) ̸= ap(E′)
is infinite, which is satisfied once we assume the two elliptic curves are not Q-isogenous, a
consequence of Faltings’ Theorem (Theorem 2.3.7).

5.1 The Deviation Group δ(G)

As in Chapter 4, we required a way to determine when two representations are not iso-
morphic, by considering their trace value at a group element. The method, in this chapter,
differs from the previous strategy. Here, we wish to construct a finite group, called the de-
viation group, denoted δ(G), from which we can find a finite subset that will determine if
the two representations are isomorphic or not.

Our treatment of the deviation group will follow the exposition given in Ignasi’s thesis
[26]. We note that Ignasi’s exposition is, itself, taken from Chênevert’s thesis [9], whose
work follows the work of Serre [31] (the propositions and lemmas which appear here, with
the exception of Lemma 5.1.8, can also be found in in [9, Chapter 5]). Let G be a group,
and L a local field (a finite extension of Qℓ, for ℓ prime) with ring of integers Oλ, maximal
ideal λ, and residue field k = Oλ/λOλ. We let π be a uniformizer, so λ = πOλ. Let
ρ1, ρ2 : G → GLn(Oλ) be two λ-adic representations. We begin by extending the map
ρ1 × ρ2 : G→ GLn(Oλ)×GLn(Oλ) from G to the group ring Oλ[G]. Recall that the group
ring Oλ[G] is a Oλ-module with a basis being the elements of G; explicitly, it can be written
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as
Oλ[G] =

{∑
aigi | ai ∈ Oλ, gi ∈ G, with only finitely many ai nonzero

}
.

We define the map ρ : Oλ[G]→Mn(Oλ)⊕Mn(Oλ), where Mn(Oλ) is defined to be the set
of all matrices with entries in Oλ, to be

ρ
(∑

aigi

)
=
(∑

aiρ1(gi),
∑

aiρ2(gi)
)
.

Note that the image need not be contained in GLn(Oλ)×GLn(Oλ), as, in general, GLn(Oλ)
need not be closed under taking Oλ-linear combinations.

Let M be the full image of ρ inside Mn(Oλ) ⊕Mn(Oλ), and consider the composition
map δ : G ρ−→M× → (M/λM)×.

Definition 5.1.1. [26, Definition 2.1.1] The image δ(G) of G inside (M/λM)× is called the
deviation group of the pair of representations ρ1, ρ2.

Remark 5.1.2. Since M is a subalgebra of R = Mn(Oλ)×Mn(Oλ), it might be tempting
to think δ(G) is a subgroup of (R/λR)× = GL2(k)×GL2(k) but this may not be the case.
See the remark after [26, Definition 2.1.1].

The deviation group turns out to be finite, as described by the following proposition.

Proposition 5.1.3. [26, Proposition 2.1.2] The group δ(G) is finite, and in particular we
have |δ(G)| ≤ |k|2n2.

Proof. M is a submodule of the free Oλ-module Mn(Oλ) ⊕Mn(Oλ). Since Oλ is a local
ring, M is free and is of rank r, where r satisfies

r ≤ rank(Mn(Oλ)⊕Mn(Oλ)) = 2n2.

Given M is a Oλ-module, M/λM is a k-algebra of dimension r. Hence,

|δ(G)| ≤ |(M/λM)×| ≤ |k|r ≤ |k|2n2

as claimed.

Remark 5.1.4. A similar bound on |δ(G)| is employed by Mayle-Wang in their proof of
Theorem 5.0.1, although they do not explicitly mention the deviation group (they implicitly
work with it). See the proof in [18, Theorem 2].

Let us turn our attention now to the practical use of δ(G), that being its ability to help
us determine when two representations are isomorphic.

Proposition 5.1.5. [26, Proposition 2.1.3] Let Σ ⊆ G be a subset that surjects onto δ(G).
Then, ρ1 ∼ ρ2 if and only if tr(ρ1(g)) = tr(ρ2(g)) for all g ∈ Σ.
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Proof. (=⇒) If ρ1 ∼ ρ2, then it must be the case that tr(ρ1(g)) = tr(ρ2(g)).
(⇐=) Suppose tr(ρ1(g)) = tr(ρ2(g)) for all g ∈ Σ, but that ρ1 ̸∼ ρ2. Then, there is some

g0 ∈ G such that tr(ρ1(g0)) ̸= tr(ρ2(g0)). Since this is not an equality in Oλ, it implies there
exists an integer α ≥ 1 such that

tr(ρ1(g0)) ≡ tr(ρ2(g0)) (mod λα) and tr(ρ1(g0)) ̸≡ tr(ρ2(g0)) (mod λα+1).

Letting π be our uniformizer so that λ = πOλ (as above), define the map

ϕ̃ : G→ Oλ

g 7→ π−α(tr(ρ2(g))− tr(ρ1(g))).
(5.4)

Our objective now is to descend ϕ̃ to a new map Φ whose domain is δ(G) instead of G, and
whose codomain is k instead of Oλ. Since Σ surjects into δ(G), we will be able to find an
element g′ ∈ Σ such that Φ(δ(g′)) is not in λM , and hence, the traces restricted to the set
Σ will also be nonequal, which is what we want to prove.

We extend the map ϕ̃ to an Oλ-linear map

ϕ : M → Oλ (5.5)

which satisfies the following commutative diagram:

G Oλ

Oλ[G] M

i

ϕ̃

ρ

ϕ

We claim that ϕ(M) ̸⊆ λ, that is, ϕ is not the zero map. Given ϕ satisfies the above
diagram, notice that ϕ(ρ(i(g0))) = π−α(tr(ρ2(g0)) − tr(ρ1(g0))) ̸∈ λ since tr(ρ2(g0)) −
tr(ρ1(g0)) ̸≡ 0 (mod λα+1) by our assumption above.

Now considering quotients, the map ϕ descends to a nonzero k-linear map M/λM → k,
hence, since δ(G) ⊆ (M/λM)×, to a function

Φ : δ(G)→ k. (5.6)

Notice that ρ(G) is a basis for M = ρ(Oλ[G]) since G is a basis forOλ[G] with coefficients
in Oλ. Since δ is given by the composition of ρ with the canonical homomorphism from
M× → (M/λM)× ⊆ M/λM , we see that δ(G) must span M/λM . Thus, Φ is a nonzero
map into k.

Given that Σ surjects onto δ(G), there exists a g′ ∈ Σ such that Φ(δ(g′)) ̸= 0, that is,

ϕ(ρ(g′)) = π−α(tr(ρ2(g′))− tr(ρ1(g′))) ̸∈ λ.
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In particular, tr(ρ1(g′)) ̸= tr(ρ2(g′)) which contradicts our initial assumption.

Before we introduce the next proposition, some exposition is need (following [26]). We
assume now the representations ρ1, ρ2 : G → GLn(Oλ) are not isomorphic, that is, they
are not conjugate in GLn(Oλ), but that the residual representations ρ̄1 and ρ̄2 obtained
from ρ1 and ρ2 by reduction modulo λ are isomorphic (see Definition 2.3.4 for this notation
applied to the case of ℓ-adic representations). We then have an equality ρ̄1 = P ρ̄2P

−1 for
some matrix P ∈Mn(k).

Define β to be the largest integer such that ρ1 and ρ2 are conjugated modulo λβ, that
is, there is a matrix P ∈ GLn(Oλ) such that ρ1 ≡ Pρ2P

−1 (mod λβ); we then have β ≥ 1,
since ρ̄1 ∼= ρ̄2. In addition, we showed above (in the proof of Proposition 5.1.5) that there
is an integer α ≥ 1 such that tr(ρ1) ≡ tr(ρ2) (mod λα) and tr(ρ1) ̸≡ tr(ρ2) (mod λα+1); in
particular, ρ1 and ρ2 are not conjugate modulo λα+1, so β ≤ α. Given that ρ1 and ρ2 are
conjugate modulo λβ but not conjugate modulo λβ+1, if we replace ρ2 with a conjugate we
may assume ρ1 ≡ ρ2 (mod λβ) but ρ1 ̸≡ ρ2 (mod λβ+1).

Hence, for any g ∈ G, we have

ρ2(g)− ρ1(g) ≡ 0 (mod λβ)⇒ ρ2(g)− ρ1(g) = θgπ
β (5.7)

for some θg ∈Mn(Oλ) and π a uniformizer of λ. Rearranging, we get an equation for ρ2(g)
of the form

ρ2(g) = (In + θgπ
βρ1(g)−1)ρ1(g). (5.8)

Let θ : G→Mn(Oλ) be the map g → θgρ1(g)−1, and notice that (5.8) becomes

ρ2(g) = (In + πβθ(g))ρ1(g). (5.9)

Proposition 5.1.6. [26, Proposition 2.2.1] Let ρ1, ρ2 : G → GLn(Oλ) be representations
that are not isomorphic, and suppose ρ̄1, ρ̄2 : G → GLn(k) are isomorphic. Let β be the
largest integer such that ρ1 and ρ2 are conjugate modulo β, and as above, assume ρ2 has
been replaced by a conjugate such that ρ1 ≡ ρ2 (mod λβ). Let

φ : G→Mn(k) ⋊ GLn(k)

g 7→ (θ(g) (mod λ), ρ1(g) (mod λ))
(5.10)

where the semidirect product is with respect to the action of GLn(k) on Mn(k) by conjuga-
tion, that is multiplication is given by

(A,B) · (C,D) = (A+BCB−1, BD).

Then φ is a group homomorphism which factors through the deviation group δ(G).

52



Proof. First, let us show φ is a group homomorphism. That is, given g, h ∈ G, we must
show

φ(gh) = (θ(gh) (mod λ), ρ1(gh) (mod λ))

= (θ(g) + ρ1(g)θ(h)ρ1(g)−1 (mod λ), ρ1(g)ρ1(h) (mod λ))

= φ(g)φ(h),

where the operation on Mn(k) is addition. Since ρ1 is a homomorphism, we know ρ1(gh) =
ρ1(g)ρ1(h), and so the second component splits appropriately. Hence, it suffices that we
show the first component splits, that is,

φ(gh)1 = θ(g) + ρ1(g)θ(h)ρ1(g)−1 (mod λ).

By (5.8), we have

ρ2(g) = (In + θgπ
βρ1(g)−1)ρ1(g) = (In + πβθ(g))ρ1(g) (5.11)

and
ρ2(h) = (In + θhπ

βρ1(h)−1)ρ1(h) = (In + πβθ(h))ρ1(h) (5.12)

and
ρ2(gh) = (In + θghπ

βρ1(gh)−1)ρ1(gh) = (In + πβθ(gh))ρ1(gh). (5.13)

Using the right-hand sides of (5.11) and (5.12), we have

ρ2(gh) = ρ2(g)ρ2(h)

= (In + πβθ(g))ρ1(g)(In + πβθ(h))ρ1(h)

= ρ1(g)ρ1(h) + πβ(θ(g)ρ1(g)ρ1(h) + ρ1(g)θ(h)ρ1(h)) + π2βθ(g)ρ1(g)θ(h)ρ1(h).
(5.14)

Equating the right-hand side of (5.14) with the right-hand side of (5.13), then multiplying
by ρ1(gh)−1 on the right and by π−β, we obtain an equation for θ(gh):

θ(gh) = θ(g) + ρ1(g)θ(h)ρ1(g)−1 + πβθ(g)ρ1(g)θ(h)ρ1(g)−1.

Since β ≥ 1, reducing modulo λ = πOλ, we obtain the desired equality

φ(gh)1 = θ(gh) (mod λ) = θ(g) + ρ1(g)θ(h)ρ1(g)−1 (mod λ).

This shows that φ is a group homomorphism. Now let us show φ factors through δ(G),
i.e. let us show ker(δ) ⊆ ker(φ). Let g ∈ ker(δ). Since (ρ1 × ρ2)(g) = ρ(g) ∈ In + λM , by
the definition of M there exists a subset {ah}h∈G ⊆ Oλ with ah = 0 for almost all h ∈ G
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such that
ρ(g) = In + π

∑
h∈G

ahρ(h).

Since this is a cartesian product ρ1 × ρ2(g), the equation above breaks down into a pair of
equations

ρi(g) = In + π
∑
h∈G

ahρi(h). (5.15)

For i = 1, this implies ρ1(g) ≡ In (mod λ) (since λ = πOλ). This gives that the second
component of φ(g) is the identity element in GLn(k). Moreover, for i = 2, we equate the
right-hand side of (5.11) with the right-hand side of (5.15) and find that

ρ1(g) + πβθ(g)ρ1(g) = In + π
∑
h∈G

ahρ2(h)

= In + π
∑
h∈G

ah(ρ1(h) + πβθ(h)ρ1(h))

= In + π
∑
h∈G

ahρ1(h) + πβ+1 ∑
h∈G

ahθ(h)ρ1(h).

Subtracting ρ1(g) = In + π
∑

h∈G ahρ1(h) and multiplying by π−β, we see

θ(g)ρ1(g) = π
∑
h∈G

ahθ(h)ρ1(h)

which, upon multiplying by ρ1(g)−1 on the right becomes

θ(g) = π
∑
h∈G

ahθ(h)ρ1(hg−1).

Reducing modulo λ, we see

θ(g) = π
∑
h∈G

ahθ(h)ρ1(hg−1) ≡ 0 (mod λ).

Therefore, the first component of φ(g) is the identity element in Mn(k). Thus, we have

φ(g) = (θ(g) (mod λ), ρ1(g) (mod λ)) = (0, In)

hence g ∈ ker(φ).

Remark 5.1.7. The homomorphism δ(G) ↠ φ(G) may not be injective. See [26, Remark
2.2.2].

Lastly, we prove a general lemma regarding determinants of matrices that we shall
employ later.
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Lemma 5.1.8. [26, Lemma 2.2.3] Let R be a discrete valuation ring with uniformizer π,
and F its field of fractions. For any A ∈ GLn(F ),

det(In + πA) = 1 + π tr(A) +O(π2).

Proof. Considering characteristic polynomials and working in F , we have

det(In + πA) = det(π(π−1In +A))

= πn det(π−1In +A)

= πn
( 1
πn

+ 1
πn−1 tr(A) + . . .+ det(A)

)
= 1 + π tr(A) + . . .+ πn det(A)

= 1 + π tr(A) +O(π2).

It can be difficult to compute the exact size of δ(G), or find a tighter upper bound for
it. We will, in the following section, work to replace δ(G) with φ(G) in the case of 2-adic
representations. The codomain of φ is easily understood, and hence a bound for |φ(G)| is
easily computable. This is what allows us to prove Theorem 5.0.3.

5.2 The Tools of Mayle-Wang

The methodology of Mayle-Wang relies on the following proposition that is due to Serre (a
proof of which can be found in [5, Theorem 4.7]). The proposition which follows is a refined
version of Serre’s original argument due to Mayle-Wang [18, Proposition 12] in which we
have reworked the statement and proof to follow the work and notation done in Section
5.1. We note that the statement is similar to that of Proposition 5.1.5: in the previous
proposition, we could decide on if two representations are isomorphic by considering the
traces on a finite set; here, we show that if the representations are not isomorphic, then their
traces must disagree on some finite set. While the proofs are very similar, the advantage of
the following proposition is that it is in a form that we may easily apply Chebotarev to.

Proposition 5.2.1. [18, Proposition 12] Let n a positive integer. Let G be a group and
ρ1, ρ2 : G → GLn(Oλ) be a group homomorphism, and δ(G) the deviation group of G with
respect to the two representations ρ1 and ρ2. Suppose that there exists an element g ∈ G
such that tr ρ1(g) ̸= ρ2(g). Then there exists a subset C ⊆ δ(G) for which

1. the set C is non-empty and closed under conjugation by δ(G), and

2. if the image in δ(G) of an element g ∈ G belongs to C, then tr ρ1(g) ̸= tr ρ2(g).
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Proof. Let R := Mn(Oλ) ×Mn(Oλ). Let M denote the Oλ-subalgebra of R generated by
the image of G under the product map

ρ1 × ρ2 : G→ GLn(Oλ)×GLn(Oλ).

Recall that δ(G) is the image of G under ρ1 × ρ2 in M/λM .
Let α be the largest nonnegative integer such that for each g ∈ G, one has that

tr(ρ1(g)) ≡ tr(ρ2(g)) (mod λα).

As M is a Oλ-subalgebra generated by the image of G under ρ1 × ρ2, it follows that the
congruence trx1 ≡ trx2 (mod λα) holds for each pair (x1, x2) ∈ M . We obtain the Oλ-
module homomorphism ϕ : M → Oλ given by

ϕ(x1, x2) = π−α(tr(x2)− tr(x1)).

Since ϕ(λM) ⊆ λOλ, we may consider the induced Oλ/λOλ-module homomorphism ϕ̄ :
M/λM → Oλ/λOλ.

Let C = δ(G) \ ker ϕ̄ be the set of elements in δ(G) whose image under ϕ̄ in M/λM all
are nonzero. From the definition of α and the linearity of the trace map, there exists g0 ∈ G
such that

tr(ρ1(g0)) ̸≡ tr(ρ2(g0)) (mod λα+1).

Note that the image of (ρ1 × ρ2)(g0) in δ(G) is contained in C, so C is nonempty. Also, C
is closed under conjugation since the trace map is invariant under conjugation.

Finally, suppose that g ∈ G is such that the image of g in δ(G) is contained in C. Then,
ϕ(ρ1 × ρ2(g)) ̸∈ λOλ, and in particular tr ρ1(g) ̸= tr ρ2(g).

We now give an analogous version of Proposition 5.2.1 in the case where the mod 2
representations are isomorphic and absolutely irreducible. This allows us to replace δ(G)
in Proposition 5.2.1 with φ(G) from Proposition 5.1.6, a set which is easier to estimate
the size of. The idea to replace δ(G) with φ(G) comes from Chênevert [9, pg. 114], in
which he gives a remark that, in the 2-adic case, Serre [31] implies that δ(G) ∼= φ(G).
However, in a conversation with Chênevert, Serre mentions he might not have proven the
map δ(G)→ φ(G) was an isomorphism, but, in an unpublished letter to Tate, that the α in
the proof of Proposition 5.1.5 is equal to the β coming from the construction of the function
φ. We show, in the 2-adic case, that α = β, and that we can replace δ(G) in Proposition
5.2.1 with φ(G) and get the same conclusion, that is, there is a subset C ⊆ φ(G) that is a
conjugacy class, and if g ∈ G is such that φ(g) ∈ C, then tr ρ1(g) ̸= tr ρ2(g).

In order to prove this special case, we require a theorem of Carayol [8].
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Theorem 5.2.2. [8, Theorem 1] Let A be a local ring, R an A-algebra, and let ρ1, ρ2 : R→
Mn(A) be two representations of R of the same dimension n. Suppose that the residual
representation ρ̄ : R ⊗A F → Mn(F ), where F is the residue field of A, is absolutely
irreducible. Suppose that the traces for ρ1 and ρ2 are the same for every r ∈ R. Then, ρ1

and ρ2 are isomorphic as representations, that is, there exists a matrix Q ∈ GLn(A) such
that ρ1(r) = Qρ2(r)Q−1 for all r ∈ R.

We now prove the special case.

Proposition 5.2.3. Let n be a positive integer. Let G be a group and ρ1, ρ2 : G→ GLn(Z2)
be a group homomorphism, and suppose the mod 2 representations ρ̄1, ρ̄2 are isomorphic
and absolutely irreducible. Suppose that there exists an element g ∈ G such that tr ρ1(g) ̸=
tr ρ2(g). Then there exists a subset C ⊆ φ(G) for which

1. the set C is non-empty and closed under conjugation by φ(G), and

2. if the image in φ(G) of an element g ∈ G belongs to C, then tr ρ1(g) ̸= tr ρ2(g).

Proof. Our setup begins, as it did, in Section 5.1. Let α be the largest nonnegative integer
such that for each g ∈ G, we have

tr(ρ1(g)) ≡ tr(ρ2(g)) (mod 2α) and tr(ρ1(g)) ̸≡ tr(ρ2(g)) (mod 2α+1).

In addition, we let β be the largest integer such that ρ1 and ρ2 are conjugated modulo λβ,
that is, there is a matrix P ∈ GLn(Oλ) such that ρ1 ≡ Pρ2P

−1 (mod λβ). As demonstrated
before, we have β ≤ α. Also, given that ρ1 and ρ2 are conjugate modulo λβ but not conjugate
modulo λβ+1, if we replace ρ2 with a conjugate Pρ2P

−1 for P ∈ GLn(Z2), we may assume

ρ1 ≡ Pρ2P
−1 (mod 2β) and ρ1 ̸≡ Pρ2P

−1 (mod 2β+1). (5.16)

This implies Pρ2(g)P−1 − ρ1(g) ≡ 0 (mod 2β) for any g ∈ G. In particular, we get
Pρ2(g)P−1 − ρ1(g) = θg2β for some θg ∈Mn(Z2), which we can write as

θg = Pρ2(g)P−1 − ρ1(g)
2β

. (5.17)

In particular, note that

tr(θg) = 2−β(tr(Pρ2(g)P−1)− tr(ρ1(g))) = 2−β(tr(ρ2(g))− tr(ρ1(g))) (5.18)

by the invariance of trace under conjugation.
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We now show α = β. Extend the maps ρ1, ρ2 to the group ring Z/2αZ[G] by ρi(
∑
ajgj) =∑

ajρi(gj), for i = 1, 2 and aj ∈ Z/2αZ and gj ∈ G. Then, notice that

tr(ρ1(
∑

ajgj)) (mod 2α) ≡ tr(
∑

ajρ1(gj)) (mod 2α)

≡
∑

aj tr(ρ1(gj)) (mod 2α)

≡
∑

aj tr(ρ2(gj)) (mod 2α)

≡ tr(ρ2(
∑

ajgj)) (mod 2α).

(5.19)

Since we satisfy the hypotheses of Theorem 5.2.2 with A = Z/2αZ and R = Z/2αZ[G], we
can find a matrix Q ∈ GLn(Z/2αZ) such that ρ1(g) ≡ Qρ2(g)Q−1 (mod 2α) for all g ∈ G.
However, β is the largest integer such that ρ1 and ρ2 are conjugate modulo 2β, so α ≤ β,
implying α = β.

Recall, from (5.10), the map φ : G→Mn(F2) ⋊ GLn(F2) is defined by

φ(g) = (θ(g) (mod 2), ρ1(g) (mod 2))) = ([θgρ1(g)−1]2, [ρ1(g)]2). (5.20)

We note our use of the notation [N ]2, for N ∈ Mn(Z2), to denote the residue class of N
taken modulo 2.

Define the map ϕ′ : Mn(F2) ⋊ GLn(F2)→ F2 by

ϕ′((A,B)) = tr(AB) (5.21)

where the product of matrices is taken to be the action of GLn(F2) on Mn(F2), and the
trace is considered to be modulo 2. By (5.20), notice

ϕ′(φ(g)) = tr([θgρ1(g)−1]2[ρ1(g)]2)

= tr([θgρ1(g)−1ρ1(g)]2)

= tr([θg]2)

= [tr(θg)]2
= [2−α(tr(ρ2(g))− tr(ρ1(g)))]2

(5.22)

where we have used (5.18) above (with β replaced with α, since α = β) and the fact that,
for a matrix N ∈Mn(Z2) with tr(N) = ∑n

i=1 aii for entries aii ∈ Z2 along the diagonal, we
have

tr([N ]2) =
n∑

i=1
[aii]2

=
[

n∑
i=1

aii

]
2

= [tr(N)]2

(5.23)
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which shows the final equality (noting our use of [x]2 in (5.23) to denote the residue class
of a 2-adic integer x ∈ Z2).

Let C be the set of elements in φ(G) that take a nonzero value under the map ϕ′. From
the definition of α and the linearity of the trace map, there exists g0 ∈ G such that

tr(ρ1(g0)) ̸≡ tr(ρ2(g0)) (mod 2α+1).

Note that the image of g0 in φ(G) is inside C, so C is nonempty. In addition, let ϕ(h) ∈ ϕ(G)
for some h ∈ G; then, given φ is a homomorphism (Proposition 5.1.6) and by (5.22) and
the invariance under conjugation of the trace map,

ϕ′(φ(h)φ(g)φ(h)−1) = ϕ′(φ(hgh−1))

= [2−α(tr(ρ2(hgh−1))− tr(ρ1(hgh−1)))]2
= [2−α(tr(ρ2(h)ρ2(g)ρ2(h)−1)− tr(ρ1(h)ρ1(g)ρ1(h)−1))]2
= [2−α(tr(ρ2(g))− tr(ρ1(g)))]2
= ϕ′(φ(g))

̸= 0,

(5.24)

so C is closed under conjugation. Finally, suppose that g ∈ G is such that the image of g in
φ(G) is contained in C. Then, ϕ′(φ(g)) ̸= 0, in particular tr ρ1(g) ̸= tr ρ2(g).

5.3 Improvement

We now give a proof for Proposition 5.0.2. Then, using the improvements brought about
by the deviation group and Proposition 5.1.6, we give an improvement of the result of
Mayle-Wang.

For a prime ℓ and an elliptic curve E, we define

Q(E[ℓ∞]) =
∞⋃

k=1
Q(E[ℓk]).

We begin with the proof of Proposition 5.0.2. We note that the work which follows is the
same as that of Mayle-Wang [18], except for our use of Proposition 2.4.19 and Table 2.2.

Proof of Proposition 5.0.2. Let Oλ = Z2. Let A = E × E′ and apply Proposition 5.2.1
with ℓ = 2, n = 2, G = Gal(Q(A[2∞]/Q)), and the 2-adic representations ρ1 = ρE,2 and
ρ2 = ρE′,2. By Theorem 2.3.7, since the two curves E and E′ are not Q-isogenous, ρ1 and
ρ2 are not isomorphic; therefore, by Proposition 2.3.8, there is some prime p such that
ap(E) ̸= ap(E′).
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By Proposition 5.2.1, there exists a conjugacy class C ⊆ δ(G) obeying the conclusion. Let
K be a subfield of Q(A[2∞]) for which Gal(K/Q) = δ(G), which exists by the fundamental
theorem of infinite Galois theory.

Let m = rad(NP (E)NP (E′)). Apply Proposition 2.4.19 to K̃ = K(
√
m) and C as appear-

ing in Proposition 5.2.1 to obtain a prime p not dividing m such that
(

K/Q
p

)
⊆ C which

satisfies

p ≤ max{p0, (ā log |dK̃ |+ b̄[K̃ : Q] + c̄)2} = max{p0, (ā log |dK̃ |+ 2|δ(G)|b̄+ c̄)2} (5.25)

for a triple (p0, ā, b̄, c̄) appearing in Table 2.2. As Frobp |K=
(

K/Q
p

)
, it follows from Propo-

sition 5.2.1 that
tr ρE,2(Frobp) ̸= tr ρE′,2(Frobp),

and consequently ap(E) ̸= ap(E′).
Let us consider more closely the Chebotarev bound of the form (ā log |dK̃ |+2|δ(G)|b̄+c̄)2.

By Theorem 3.0.1, A has good reduction at some prime ℓ if and only if both E and E′ have
good reduction at ℓ. Thus, K/Q is unramified outside of the prime divisors of m = 2N. As
K̃ is the compositum of K and Q(

√
m), the primes that ramify in K̃ are precisely those that

ramify in K or in Q(
√
m). Thus, since rad(dQ(

√
m)) = rad(2m) =rad(2N), and rad(dK) |

rad(2N),
rad(dK̃) = rad(dKdQ(

√
m)) = rad(2N). (5.26)

Now, applying Lemma 4.1.6 to (5.25) gives us

p ≤ (ā((2|δ(G)| − 1) log rad(2N) + 2|δ(G)| log(2|δ(G)|)) + 2|δ(G)|b̄+ c̄)2

which matches (5.2).
To prove the final statement, note that if the mod 2 representations of E and E′, ρ̄E,2

and ρ̄E′,2, are isomorphic and absolutely irreducible, then we instead apply Proposition
5.2.3 over Proposition 5.2.1, in which case δ(G) is replaced with φ(G); in particular, |δ(G)|
can be replaced with |φ(G)| in (5.2).

Now we give a proof of Theorem 5.0.3.

Proof of Theorem 5.0.3. We split our analysis into two cases. First, assume that the mod 2
representations ρ1 = ρ̄E,2 and ρ2 = ρ̄E′,2 are isomorphic and irreducible. Apply Proposition
5.0.2, and replace δ(G) with φ(G) (since the mod 2 representations are isomorphic and
absolutely irreducible) to get a prime p such that ap(E) ̸= ap(E′) and satisfying

p ≤ (ā((2|φ(G)| − 1) log rad(2N) + 2|φ(G)| log(2|φ(G)|)) + 2|φ(G)|b̄+ c̄)2.
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From (5.11) and Lemma 5.1.8, we have for any g ∈ G,

det(ρ2(g)) = det((I2 + 2βθ(g))ρ1(g))

= (1 + 2β tr(θ(g)) +O(22β)) det(ρ1(g)).
(5.27)

Note that by (2.10), we have det ρ1 = det ρ2, so the above can be rewritten as 0 =
2β tr(θ(g)) +O(22β), which, after multiplying through by 2−β implies

tr(θ) ≡ 0 (mod 2).

In particular, the map φ from Proposition 5.1.6 takes values in M0
2 (F2) ⋊ GL2(F2), where

M0
2 (F2) denotes the matrices with trace 0 with entries in F2. Therefore, we have |φ(G)| ≤
|M0

2 (F2) ⋊ GL2(F2)| = 8 · 6 = 48. Choosing ā = 1.257 and c̄ = 7.3 from Table 2.2, we find

p ≤ (1.257(95 log rad(2N) + 96 log(96)) + 96 · 0 + 7.3)2

≤ (119.415 log rad(2N) + 550.79 + 7.3)2

≤ (120 log rad(2N) + 559)2.

(5.28)

We consider the above bound with the maximum of 3100065 so that the inequality remains
true regardless of the value of the discriminant.

If the mod 2 representations are not isomorphic, then mod 2 already distinguishes the
traces. Apply Lemma 4.1.4 to the field L = Q(E[2], E′[2]), the conjugacy class C2 given in
(4.14), and the set S = P (L) ∪ {2}, so that we get a prime p unramified in L such that
ap(E) ̸≡ ap(E′) (mod 2) (implying ap(E) ̸= ap(E′)) and satisfying

p ≤ (2ā log |dL|+ c̄)2.

Applying Lemma 4.1.6 to the above yields

p ≤ (2ā ((nL − 1) log rad(dL) + nL log(nL)) + c̄) .

Taking [L : Q] ≤ |GL2(F2)|2 = 62 = 36 and the 4-tuple (3072167, 1.212, 0, 20.56) (again
absorbing b̄ into c̄) gives us

p ≤ (2 · 1.212 ((35) log rad(dL) + 36 log(36)) + 20.56)2

≤ (84.84 log rad(2N) + 333.28)2

≤ (85 log rad(2N) + 334)2 .

(5.29)

Considering the maximum of the above with 3072167 completes this case.
To complete the result, we consider the maximum of all possible cases together (that is,

the maximum of (5.28) and (5.29)) which is exactly (5.3).
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Remark 5.3.1. We note that the choice to absorb b̄ into c̄ is deliberate, as per Remark 4.1.5.
For example, when looking at the final case in the proof of Theorem 5.0.3, specifically (5.29),
if we had instead taken the 4-tuple (3072167, 1.212, 0.240, 8.80) and absorbed b̄ = 0.240 into
ā = 1.212, we get a 4-tuple (3072167, 1.649, 0, 8.80), which gives us

p ≤ (2 · 1.649 ((35) log rad(dL) + 36 log(36)) + 8.80)2

≤ (115.43 log rad(2N) + 434.26)2

≤ (116 log rad(2N) + 435)2 .

which we see, in comparison to (5.29), is worse. This provides further justification, as in
Remark 2.4.21, for why we wish ā to be smaller. For a bound of the form (A log(d) + B)2,
after applying Lemma 4.1.6, we see larger ā increases both A and B, whereas larger c̄
increases B only.

Remark 5.3.2. Let us quickly compare the result of Mayle-Wang in (5.1) and our result
in (5.3). In the best case, the two elliptic curves would have bad reduction at only 2, so
rad(2N) = 2. In this case, (5.1) gives

p ≤ (482 log(2) + 2880)2 ≈ 10330419.15.

In the case of (5.3), we get

p ≤ max{3100065, (120 log(2) + 599)2} = 3100065,

which beats (5.1). In fact, (120 log(2N) + 599)2 ≤ 3100065 if and only if

rad(2N) ≤ exp
(√

3100065− 559
120

)
≈ 22340.755.

Given our result is constant for rad(2N) ≤ 22340, whereas (5.1) is logarithmic in the size
of 2N, we beat Mayle-Wang for small rad(2N). When the inequality flips, and 3100065 ≤
(120 log(2) + 599)2, then we notice (120 log rad(2N) + 599)2 ≤ (482 log rad(2N) + 2880)2 by
inspection. Thus, we see (5.3) beats (5.1) in all cases.

Remark 5.3.3. More precise bounds than that which appears in (5.3) are possible. If one
were to work with explicit elliptic curves, one could imagine computing the discriminant
dK of the field K = Q(E[ℓ], E′[ℓ]) for some specially chosen prime ℓ using, say, Kraus and
the results discussed in Chapter 3. Then, when log |dK | is known, one can take a triple
(a, b, c) from Table 2.1 rather than Table 2.2, which would eliminate the need to rely on a
coarser estimate for p0. For elliptic curves whose torsion field has a small discriminant, this
can further improve the constants appearing in the final result of Theorem 5.0.3, as well
as removing the maximum between p0 and the bound (ā log rad(2N) + c̄)2. Additionally, as
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we see in (5.29), if we know the mod 2 representations are not isomorphic, we can further
reduce the size of the constants appearing in (5.3). In this thesis, we have chosen to give
an improvement to Mayle-Wang using a new method that works well for large values of
rad(dK).
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Appendix A

Code

The following is supplemental code which was used to prove Corollary 2.4.19. We pick a
pivot tuple (a, b, c) from Table 2.1, then accomplish two tasks: first we compute the number
p0 (which is computed by examining the tuples which appear before our pivot) and then
we verify our pivot is larger than all other triples which appear afterwards for that range
of nK = [K : Q]. By larger, we shall mean if we have a second tuple (a′, b′, c′), we say the
bound appearing from the tuple (a, b, c) is larger than the bound appearing from the tuple
(a′, b′, c′) if

(a′ log dK + b′nK + c′)2 ≤ (a log dK + bnK + c)2 (A.1)

for all appropriate values of log dK and nK . The language used here is pari/gp.
1 /∗ ar rays which correspond to columns in Table 2 . 1 . Each entry i s g iven in the

form [ a , b , c , dLower , dUpper ] , where the range f o r a , b , c i s v a l i d f o r
d i s c r i m i n a n t s between dLower and dUpper . Each case a l s o i s v a l i d only f o r
a c e r t a i n range o f n ; f o r example , case1 ho lds only f o r n=2, case2 f o r n
between 3 and 4 , e t c . A value o f dUpper = −1 i s used to denote unbounded
disc iminant , or " i n f i n i t y " ∗/

2 case1 = [ [ 3 . 2 9 , 1 . 4 8 , 4 . 9 , 1 , 5 ] , [ 2 . 6 6 2 , 0 . 7 5 , 4 . 8 , 5 , 1 0 ] , [ 2 . 3 0 1 , 0 . 5 2 , 5 , 1 0 , 2 5 ] ,
[ 1 . 8 8 1 , 0 . 3 4 , 5 . 5 , 2 5 , 1 0 0 ] , [ 1 . 4 4 6 , 0 . 2 3 , 6 . 8 , 1 0 0 , 1 0 0 0 ] ,
[ 1 . 1 2 5 , 0 . 6 3 , 1 0 . 9 , 1 0 0 0 , 1 0 0 0 0 ] , [ 1 . 0 3 2 , 0 . 4 4 , 2 0 . 2 , 1 0 0 0 0 , 1 0 0 0 0 0 ] ,
[ 1 . 008 , −0 .06 , 47 . 7 , 100000 , −1 ] ] ;

3 case2 = [ [ 2 . 8 0 8 , 0 . 5 8 , 4 . 7 , 5 , 1 0 ] , [ 2 . 5 2 4 , 0 . 4 5 , 4 . 9 , 1 0 , 2 5 ] ,
[ 2 . 0 3 5 , 0 . 2 7 , 5 . 3 , 2 5 , 1 0 0 ] , [ 1 . 5 2 7 , 0 . 1 7 , 6 . 4 , 1 0 0 , 1 0 0 0 ] ,
[ 1 . 1 4 8 , 0 . 5 , 1 0 . 2 , 1 0 0 0 , 1 0 0 0 0 ] , [ 1 . 0 3 8 , 0 . 5 , 1 8 . 7 , 1 0 0 0 0 , 1 0 0 0 0 0 ] ,
[ 1 . 01 , −0 .03 , 41 . 9 , 100000 , −1 ] ] ;

4 case3 = [ [ 2 . 7 3 6 , 0 . 3 5 , 4 . 7 , 1 0 , 2 5 ] , [ 2 . 2 3 1 , 0 . 2 1 , 5 . 1 , 2 5 , 1 0 0 ] ,
[ 1 . 6 2 9 , 0 . 1 1 , 6 . 1 , 1 0 0 , 1 0 0 0 ] , [ 1 . 1 7 8 , 0 . 3 7 , 9 . 5 , 1 0 0 0 , 1 0 0 0 0 ] ,
[ 1 . 0 4 6 , 0 . 5 6 , 1 7 . 3 , 1 0 0 0 0 , 1 0 0 0 0 0 ] , [ 1 . 0 1 2 , 0 , 3 7 . 8 , 1 0 0 0 0 0 , − 1 ] ] ;

5 case4 = [ [ 2 . 3 0 3 , 0 . 1 9 , 4 . 8 , 1 0 , 2 5 ] , [ 2 . 2 9 7 , 0 . 1 9 , 5 , 2 5 , 1 0 0 ] ,
[ 1 . 6 6 7 , 0 . 0 9 , 6 , 1 0 0 , 1 0 0 0 ] , [ 1 . 1 8 9 , 0 . 3 2 , 9 . 2 , 1 0 0 0 , 1 0 0 0 0 ] ,
[ 1 . 0 4 9 , 0 . 5 9 , 1 6 . 8 , 1 0 0 0 0 , 1 0 0 0 0 0 ] , [ 1 . 0 1 2 , 0 , 3 7 . 8 , 1 0 0 0 0 0 , − 1 ] ] ;

6 case5 = [ [ 2 . 2 2 8 , 0 . 1 , 4 . 9 , 2 5 , 1 0 0 ] , [ 1 . 7 4 5 , 0 . 0 4 , 5 . 8 , 1 0 0 , 1 0 0 0 ] ,
[ 1 . 2 1 2 , 0 . 2 4 , 8 . 8 , 1 0 0 0 , 1 0 0 0 0 ] , [ 1 . 0 5 4 , 0 . 6 3 , 1 6 , 1 0 0 0 0 , 1 0 0 0 0 0 ] ,
[ 1 . 0 1 4 , 0 . 0 2 , 3 5 . 9 , 1 0 0 0 0 0 , − 1 ] ] ;

7 case6 = [ [ 1 . 7 5 5 , 0 , 5 . 7 , 1 0 0 , 1 0 0 0 ] , [ 1 . 2 5 7 , 0 , 7 . 3 , 1 0 0 0 , 1 0 0 0 0 ] ,
[ 1 . 0 9 5 , 0 , 8 . 2 , 1 0 0 0 0 , 1 0 0 0 0 0 ] , [ 1 . 0 1 7 , 0 . 0 7 , 3 1 . 8 , 1 0 0 0 0 0 , − 1 ] ] ;

8
9 /∗
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10 Function which condenses a g iven column o f Bach−Sorenson in to a s i n g l e entry
corre spond ing to the s i z e o f n .

11
12 nStart and nEnd −− determine the range f o r n_K, the degree o f our f i e l d

extens i on . We use t h i s to determine which column we are in , so the re are
only 6 p o s s i b l e va lue s nStart and nEnd should take :

13 nStart = 2 , nEnd = 2 ( corresponds to the f i r s t column )
14 nStart = 3 , nEnd = 4 ( corresponds to the second column )
15 nStart = 5 , nEnd = 9 ( corresponds to the t h i r d column )
16 nStart = 10 , nEnd = 14 ( corresponds to the four th column )
17 nStart = 15 , nEnd = 49 ( corresponds to the f i f t h column )
18 nStart = 50 , nEnd = 73 ( corresponds to a sma l l e r range o f the s i x t h column )
19
20 pivotNum −− determines which t r i p l e we take to be our p ivot . We note 1 <

pivotNum < length ( case ) ( where case i s determined by the range o f n above )
21 ∗/
22 ve r i f yCase ( nStart , nEnd , pivotNum ) = {
23 my( case , p_0=−1,a , b , c , i s V a l i d = true ) ;
24
25 /∗ check range f o r n , and a s s i g n case the appropr ia t e array above (

corresponds to the proper column o f t r i p l e s ( a , b , c ) f o r t h i s range o f n)
∗/

26 i f ( nStart == 2 && nEnd == 2 , case = case1 ) ;
27 i f ( nStart == 3 && nEnd == 4 , case = case2 ) ;
28 i f ( nStart == 5 && nEnd == 9 , case = case3 ) ;
29 i f ( nStart == 10 && nEnd == 14 , case = case4 ) ;
30 i f ( nStart == 15 && nEnd == 49 , case = case5 ) ;
31 i f ( nStart == 50 && nEnd == 73 , case = case6 ) ;
32
33 f o r (n = nStart , nEnd ,
34 p r i n t f ( " Case n = %d \n " , n ) ;
35
36 /∗ i n i t i a l i z e p_0 us ing the g e n e r i c cons tant s a = 4 , b = 2 . 5 , c = 5 . This

takes care o f any p o s s i b l e gap in Table 2 .1 ( s ee Remark 13 in Mayle−
Wang) ∗/

37 p_0 = (4∗ case [ 1 ] [ 4 ] + n ∗2 .5 + 5) ^2 ;
38
39 /∗ loop that computes p_0 . We simply take the equat ion ( a∗ l og (d_K) + b∗n +

c ) ^2 and r e p l a c e l og (d_K) with i t s lower bound and upper bound , then
take the maximum of a l l p o s s i b l e c a s e s ∗/

40 f o r ( i = 1 , pivotNum−1,
41 p_0 = max(p_0 , max( ( case [ i ] [ 1 ] ∗ case [ i ] [ 4 ] + case [ i ] [ 2 ] ∗ n + case [ i ] [ 3 ] )

^2 , ( case [ i ] [ 1 ] ∗ case [ i ] [ 5 ] + case [ i ] [ 2 ] ∗ n + case [ i ] [ 3 ] ) ^2) ) ;
42 p r i n t f ("%0.3 f <= log d\_K <= %0.3 f : %0.6 f <= p_0 <= %0.6 f \n " , case [ i

] [ 4 ] , case [ i ] [ 5 ] , ( case [ i ] [ 1 ] ∗ case [ i ] [ 4 ] + case [ i ] [ 2 ] ∗ n + case [ i
] [ 3 ] ) ^2 , ( case [ i ] [ 1 ] ∗ case [ i ] [ 5 ] + case [ i ] [ 2 ] ∗ n + case [ i ] [ 3 ] ) ^2) ;

43 ) ;
44
45 p r i n t f("−−−−−−−−− \n v e r i f y i n e q u a l i t y a f t e r l og d\_K > %d : \n " , case [

pivotNum ] [ 4 ] ) ;
46 /∗ get a , b , c from the p ivot tup l e ∗/
47 a = case [ pivotNum ] [ 1 ] ;
48 b = case [ pivotNum ] [ 2 ] ;
49 c = case [ pivotNum ] [ 3 ] ;
50
51 /∗ v e r i f y that the t u p l e s appear ing a f t e r the p ivot are sma l l e r than the

p ivot ∗/
52 f o r ( i = pivotNum+1, l ength ( case ) ,
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53 aTi lde = case [ i ] [ 1 ] ;
54 bTi lde = case [ i ] [ 2 ] ;
55 cTi lde = case [ i ] [ 3 ] ;
56 r = ( ( cTi lde+bTilde ∗n)−(c+b∗n) ) /( a−aTi lde ) ; /∗ r i s the value such that

l og (d_K) >= r f o r the g iven i n e q u a l i t y to hold ∗/
57
58 /∗ check i f r i s too l a r g e f o r the g iven range ; i f i t i s , then the

r e s u l t i s not v a l i d ∗/
59 i f ( case [ i ] [ 5 ] != −1 && r > case [ i ] [ 4 ] && r > case [ i ] [ 5 ] , i s V a l i d = False

) ;
60
61 p r i n t f ("%d < log d\_K <= %d : For the bound from tup l e (%0.4g , %0.4g ,

%0.4g ) to be l a r g e r than the bound from tup l e (%0.4g , %0.4g , %0.4g ) ,
we r e q u i r e l og d\_K >= %0.6 f \n " , case [ i ] [ 4 ] , case [ i ] [ 5 ] , a , b , c ,

aTilde , bTilde , cTi lde , r ) ;
62 ) ;
63 p r i n t f("−−−−−−−−− \n\n " ) ;
64 ) ;
65
66 p r i n t f ( "RESULT \n " ) ;
67 i f ( ! i sVa l id , p r i n t f ( " i n v a l i d r e s u l t \n " ) ) ;
68 p r i n t f ( " I f l og d\_K <= %d , then p <= %0.6 f \n " , case [ pivotNum ] [ 4 ] , p_0) ;
69 p r i n t f ( " I f l og d\_K > %d , then p <= (%0.6 f \∗ l og d\_K + %0.6 f n + %0.6 f ) ^2

\n " , case [ pivotNum ] [ 4 ] , a , b , c ) ;
70 }

The calls to the code that produce Table 2.2 are as follows:
1 ve r i f yCase (2 , 2 , 6)
2 ve r i f yCase (3 , 4 , 5)
3 ve r i f yCase (5 , 9 , 4)
4 ve r i f yCase (10 , 14 , 4)
5 ve r i f yCase (15 , 49 , 3)
6 ve r i f yCase (50 , 74 , 2)

An example of the output of the code (for the second call, to demonstrate what happens
when the range for n does not contain only a single value) looks like:

1 Case n = 3
2 5 .000 <= log d_K <= 1 0 . 0 0 0 : 419.430400 <= p_0 <= 1191.630400
3 10 .000 <= log d_K <= 2 5 . 0 0 0 : 991.620100 <= p_0 <= 4809.422500
4 25 .000 <= log d_K <= 1 0 0 . 0 0 0 : 3247.290225 <= p_0 <= 43936.352100
5 100.000 <= log d_K <= 1000 .000 : 25475.352100 <= p_0 <= 2352879.888100
6 −−−−−−−−−
7 v e r i f y i n e q u a l i t y a f t e r l og d_K > 1000 :
8 10000 < log d_K <= 100000: For the bound from tup l e ( 1 . 1 4 8 , 0 .5000 , 10 . 20 ) to

be l a r g e r than the bound from tup l e ( 1 . 0 3 8 , 0 .5000 , 18 . 70 ) , we r e q u i r e l og
d_K >= 77.272727

9 100000 < log d_K <= −1: For the bound from tup l e ( 1 . 1 4 8 , 0 .5000 , 10 . 20 ) to be
l a r g e r than the bound from tup l e ( 1 . 0 1 0 , −0.03000 , 41 . 90 ) , we r e q u i r e l og
d_K >= 218.188406

10 −−−−−−−−−
11
12 Case n = 4
13 5 .000 <= log d_K <= 1 0 . 0 0 0 : 443.523600 <= p_0 <= 1232.010000
14 10 .000 <= log d_K <= 2 5 . 0 0 0 : 1020.163600 <= p_0 <= 4872.040000
15 25 .000 <= log d_K <= 1 0 0 . 0 0 0 : 3278.135025 <= p_0 <= 44049.614400
16 100.000 <= log d_K <= 1000 .000 : 25529.648400 <= p_0 <= 2353401.446400

69



17 −−−−−−−−−
18 v e r i f y i n e q u a l i t y a f t e r l og d_K > 1000 :
19 10000 < log d_K <= 100000: For the bound from tup l e ( 1 . 1 4 8 , 0 .5000 , 10 . 20 ) to

be l a r g e r than the bound from tup l e ( 1 . 0 3 8 , 0 .5000 , 18 . 70 ) , we r e q u i r e l og
d_K >= 77.272727

20 100000 < log d_K <= −1: For the bound from tup l e ( 1 . 1 4 8 , 0 .5000 , 10 . 20 ) to be
l a r g e r than the bound from tup l e ( 1 . 0 1 0 , −0.03000 , 41 . 90 ) , we r e q u i r e l og
d_K >= 214.347826

21 −−−−−−−−−
22
23 RESULT
24 I f l og d_K <= 1000 , then p <= 2353401.446400
25 I f l og d_K > 1000 , then p <= (1 .148000 ∗ l og d_K + 0.500000 n + 10.200000) ^2

Let us examine this output. Lines 1 through 20 print the result for the case when n = 3
and n = 4. Let us examine closer the output for the case n = 3. First, there are four lines
describing the bound on p0 for each given range of log dK . It is worth noting that these
ranges are all the ranges which appear before our chosen pivot. Then, we verify that all
tuples (a′, b′, c′) appearing after our pivot are in fact smaller than our pivot. For example,
here we have chosen our pivot to be the tuple (1.148, 0.5, 10.2). Appearing after line 7
in the output is a check that for the other tuples appearing, (1.148, 0.5, 10.2) provides a
larger bound. On line 8, for example, we compare the tuple (1.148, 0.5, 10.2) to the tuple
(1.038, 0.5, 18.7), in particular line 8 is verifying the inequality (1.527 log dK+0.17·3+6.4)2 ≤
(2.035 log dK + 0.27 · 3 + 5.3)2, which holds for log dK ≥ 77.273. Though we have a check
in the code to determine if there are any problems with the required range for log dK being
outside the assumed range (see line 56 in the code), we also manually verify this fact for
each case (pari/gp does not include an assert function, and so we must instead use a
boolean variable isValid). This same analysis can be done for the case n = 4. Then, lines
23 to 25 display the result. Line 24 prints the maximum value of p0, whereas line 25 simply
prints our pivot, provided no errors were detected.
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