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Abstract

The rapid aging of populations and global connectivity necessitates considering factors such
as geographical proximity, socioeconomic conditions, and cultural connections in mortality
forecasting. Additionally, catastrophes, pandemics, and political turmoil can disrupt the
delicate balance of this complex system, introducing further layers of uncertainties to the
already challenging task of predicting the future course of life expectancy. This project
builds upon a hierarchical Bayesian random walk with drift (HBS-RW) model, inheriting
its advantage of capturing the dependency structure of mortality rates across ages and
populations. We further extend the model by adding jump components to account for
extreme events in the data. From the numerical illustrations, the proposed model with jump
components generally demonstrates superior performance compared to the HBS-RW model
without a jump component and other Lee-Carter-based models in most conducted tests.
Among the jump models, those incorporating trajectory jump effects yield the lowest average
of mean absolute percentage error (AMAPE) overall. The choice between independent and
dependent trajectory jump effects depends on the characteristics of the data. However, from
a practical perspective, opting for the independent trajectory jump effect is favored, as it is
significantly time efficient, compared to the models incorporating the dependent trajectory
jump effect, in the maximum likelihood estimation for parameters.

Keywords: Hierarchical Bayesian; mortality modeling; multi-population mortality; transi-
tory jump effects; permanent jump effects
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Chapter 1

Introduction

1.1 Overview

Developing a robust predictive model for future mortality rates has been an ongoing topic
of interest in life insurance industry. The Lee-Carter (LC) model, proposed by Lee and
Carter (1992), is frequently referred due to its straightforward and easily extensible na-
ture. The the Joint-k (JK) model, the augmented common factor (ACF) model, and the
co-integrated (CI) model, presented by Carter and Lee (1992), Li and Lee (2005), and Li
and Hardy (2011), respectively, are three extensions of the Lee-Carter model. These three
advancements enable more applications in fitting and forecasting mortality rates across
multiple populations. However, two-stage fitting process of the Lee-Carter model, involving
separate model parameter estimation and trend fitting using time series models, can lead to
potential inconsistencies, resulting from multiple sources, including parameter estimation,
mortality projection, and potential model misspecification. This, in turn, affects the accu-
racy of long-term mortality predictions.

Aiming to mitigate potential inconsistencies arising from the two-stage model fitting
process within the Lee-Carter model and its extensions, Lin and Tsai (2022) proposed a so-
lution that simplifies the model specification to a random walk with drift model, and then
applies Bayesian theory to model the logarithmic dynamics of central death rates across a
range of ages within a single population. Additionally, Lin and Tsai (2022) considered cross-
population co-movements prompted by the impact of rapid globalization by integrating the
hierarchical Bayesian theory into the modeling of mortality rates across multiple popula-
tions. Further details on the Bayesian mortality model and its extensions are discussed in
Chapter 2.

While the Jump model is widely employed in financial mathematics to capture high-
severity but low-frequency events, relatively few studies have applied it to jump events in
mortality data. Most studies discussing mortality models still overlook the impact of adverse
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mortality risk. Cox et al. (2006) is the pioneer in recognizing the impact of extreme events
on mortality rates, by directly applying the geometric Brownian motion and a compound
Poisson process, widely used in financial models, to mortality models. Following Cox et al.
(2006), Lin and Cox (2008) extended their work by proposing a model that considers short-
term, transitory effects of adverse mortality jumps. However, it is worth noting that their
model overlooks potential correlations in mortality data. Recognizing the non-negligible
correlation within mortality data, Chen and Cox (2009) developed a new Lee-Carter-based
model capturing transitory effects.

Building upon the hierarchical Bayesian mortality model studied in Lin and Tsai (2022),
this project employs the model’s inherent capability to incorporate co-movements across
populations resulting from rapid internationalization. Additionally, the new model intro-
duces either permanent or transitory jump effects in its mortality stochastic processes to
capture adverse mortality risks. Ultimately, this project demonstrates the effectiveness of
the new model in mortality forecasting, highlighting its superior performance compared to
conventional mortality models.

1.2 Motivation

Mortality rate plays a crucial role in determining the prices of insurance, annuity, and
retirement products, as well as influencing the overall business and operational strategies
of life insurance companies. Accurate mortality forecasting has traditionally been pivotal
in directly impacting the prices of life insurance products. Nevertheless, the proliferation
of financial innovations in recent decades has granted insurance and reinsurance companies
greater flexibility in transferring or hedging their mortality risk through securitization. This
makes reliable mortality predictions invaluable tools for informed decision-making, ensuring
the resilience and adaptability of these companies in the face of evolving challenges.

The rapid recent aging of populations and increased global connectivity has necessitated
researchers and actuaries to consider diverse aspects when predicting mortality rates. This
expansion goes beyond traditional considerations like age and gender, now encompassing
influences like geographical proximity, the intricacies of socioeconomic conditions, and deep-
rooted cultural connections. These broader considerations are crucial, as the world becomes
increasingly interconnected and populations are aging at unprecedented rates. Furthermore,
catastrophes, pandemics, and political turmoil can suddenly disrupt the delicate balance of
this complex system, and these occurrences can trigger dramatic spikes in mortality rates,
introducing further layers of complexities and uncertainties to the already challenging task
of predicting the future course of life expectancy. However, existing mortality models of-
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Figure 1.1: The Logarithm of central death rate. (a) UK males (b) Spain males

ten focus on single demographic groups, neglecting the potential impact of extreme events
such as pandemics, catastrophes, and war. Additionally, most models, extended from the
Lee-Carter model, face inconsistencies due to two-stage parameter estimation and trend
fitting. To address these challenges, Lin and Tsai (2022) proposed a hierarchical Bayesian
random walk model. This innovative approach not only accounts for multiple populations
and mitigates estimation inconsistencies but also demonstrates superior predictive perfor-
mance compared to commonly used models.

Regarding extreme events in mortality data, although some literature on mortality mod-
eling has discussed the effectiveness of jump models in capturing high-severity but low-
frequency events, the application of these models in mortality forecasting is rarely explored.
The mortality datasets for the United Kingdom and Spain are comprehensive, allowing the
observation of pivotal events in history that led to sharp increases in mortality rates, for
example, World War, the Spanish flu pandemic, and the COVID-19 pandemic. As depicted
in Figure 1.1, World War I had a significant impact on mortality rates in both the United
Kingdom and Spain in the early 1900s, especially among young males who were recruited to
army. Additionally, pandemics contributed to a portion of the observed mortality changes.
The substantial shifts in mortality rates during the 1940s were primarily influenced by
World War II. Finally, the fluctuations observed in 2019-2020 resulted from the COVID-
19 pandemic. Figure 1.2, illustrating yearly mortality decrements, provides a more direct
reference to these events, with clear spikes seen during the aforementioned periods in both
countries.
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Figure 1.2: The yearly decrement in the logarithm of central death rate. (a) UK males (b)
Spain males

Our approach bridges the gap by integrating the strengths of the hierarchical Bayesian
model with jump models. This innovative combination aims to comprehensively capture the
intricate impact of speedy internationalization and extreme events within mortality data,
potentially leading to a significant advance in accurate mortality forecasting.

1.3 Outline

The remainder of this project is organized as follows. Chapter 2 presents a comprehen-
sive literature review, covering Lee-Carter-based mortality forecasting models, Bayesian
mortality and demographic modeling, as well as mortality models that incorporate jump
models. Chapter 3 offers a detailed mathematical derivation of the extended Hierarchical
Bayesian model, incorporating various types of jumps, including permanent and transi-
tory jump effects. In Chapter 4, numerical illustrations demonstrate the application of our
proposed model. Within the same chapter, we assess the forecasting performance of our solu-
tion, comparing it with other commonly used models for multi-population forecasting. The
evaluation is conducted using the Average of Mean Absolute Percentage Error (AMAPE).
Finally, Chapter 5 provides a final conclusion of our findings and insights.
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Chapter 2

Literature Review

2.1 Mortality forecasting

Literature on mortality forecasting models has significantly expanded since Lee and Carter
(1992) introduced their classic mortality model. This model is founded based on the as-
sumption that the dynamics of the logarithm of central death rates for a single population
is influenced by three factors: an age-specific parameter, the rate of change at each age
multiplied by an overall time trend of mortality rates, plus a model error. However, the
inherent limitation of the Lee-Carter model, specific to single populations, prompts schol-
ars to extend it in order to capture and predict the dynamics of mortality rates across
diverse demographic populations. Carter and Lee (1992) proposed the joint-k (JK) model,
replacing the single population time trend with a common one across diverse populations,
allowing for a better understanding of mortality dynamics in various situations. Li and Lee
(2005) argued that closely related populations share similar mortality patterns unlikely to
diverge significantly over time, and introduced the augmented common factor (ACF) model
by considering both common historical experiences and individual trend differences. This
approach enhances the understanding of mortality trends by capturing shared patterns and
individual variations. Li and Hardy (2011) challenged the assumption of no connection be-
tween mortality rates in the Lee-Carter model for two populations of interest, proposing
the co-integrated (CI) model as an improvement. Instead of employing two independent
processes, they assume a linear relationship between the time trend for the base population
and that for each of other studied populations, creating a model that captures correlated
changes over time. This approach offers a novel perspective on the intricate relationships
within diverse populations. Renshaw and Haberman (2006) enhanced the Lee-Carter model
by introducing a cohort effect to capture characteristic and systematic mortality patterns.
The analysis suggests that limiting the modeling to Lee-Carter alone might lead to the loss
of distinctive cohort-related patterns. However, the established linear patterns in the pe-
riod and cohort parameters provide a solid foundation for effective forecasting, contributing
to an overall improvement in model fitting. Other studies based on the Lee-Carter model
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can be referred to Renshaw and Haberman (2003), Li et al. (2009), and Mitchell et al. (2013).

While the Lee-Carter model exhibits effective and straightforward mortality forecasting
capabilities, its drawbacks are also apparent. The two-stage fitting process of the Lee-
Carter model, which involves separate parameter estimation and trend fitting using time
series models, can lead to potential inconsistencies, resulting from multiple sources, includ-
ing parameter estimation, mortality projection, and potential model misspecification. This
approach may lead to discrepancies between projected trends and actual mortality rates,
affecting the accuracy of long-term mortality predictions (see, for example, Leng and Peng
(2016) and Lin and Tsai (2022)).

In existing literature, an alternative suggestion is to simplify the model specification
by using a random walk with drift model for the dynamics of the logarithm of central
death rates. Tsai and Yang (2015) introduced a linear relational model that exploits the
relationship between a specific population’s mortality sequence and the base one to predict
future mortality rates. The sequences for each of the intercept and slope parameters from the
regression model can be further modeled using either a simple linear regression or a random
walk with drift approach. Compared to the Lee-Carter model, their models demonstrate
overall superior forecasting performance across the empirical age span, as evidenced by
lower average of root mean squared errors (RMSEs), lower average of mean absolute errors
(MAEs), and lower average of mean absolute percentage errors (MAPEs). Tsai and Lin
(2017) integrated the Bühlmann semi-parametric credibility approach into each of the Lee-
Carter model, the CBD model, and the model proposed by Tsai and Yang (2015) to improve
mortality forecasting. This approach suggests that, the predicted yearly mortality decrement
for a specific age is determined by a weighted average of two yearly decrements for that age
time trend and the overall group time trend for all ages. The credibility slope is suggested
to more effectively capture the downward trend of the future mortality rates, leading to
improve forecasting performance. Lin and Tsai (2022) proposed a random walk with drift
model and further applied Bayesian theory to enhance the forecasting performance. The
results show that this approach not only implies easier parameter estimation but also avoids
inconsistencies found in the Lee-Carter model.

2.2 Bayesian mortality and demographic modeling

The literature related to Bayesian mortality and demographic modeling has been exten-
sively developed (see, for example, Czado et al. (2005), Pedroza (2006), and Wong et al.
(2018)). Arató et al. (2006) explored hierarchical Bayesian modeling to estimate the num-
ber of age-dependent deaths across different geographic regions. The model integrates a
conditional binomial distribution for the number of age-dependent deaths and employs a
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Gaussian model to accommodate correlations among age-dependent mortality rates. The
consequent maps of mortality rates demonstrate reduced variability and smoother patterns
when contrasted with naive estimates. Cairns et al. (2011) proposed a Bayesian framework
for modeling the joint development over time of mortality rates in two related populations.
This model incorporates a mean-reverting stochastic spread to capture variations in death
rates between the populations. This framework is particularly valuable when the population
of interest is smaller and exhibits more volatile mortality than the other population. Li et
al. (2015) argued that forecasting mortality rates using mortality models is sensitive to the
sample size. They proposed Bayesian learning to determine age- and gender-specific poste-
rior distributions of the sample size, incorporating it as an extra parameter into the model’s
parameter space. The forecasts of the Bayesian model were proved to be robust in out-of-
sample forecasting. Alexander et al. (2017) introduced a Bayesian hierarchical model for
estimating sub-national mortality rates. This model leverages age patterns within mortality
curves, combining information across geographic regions and smoothing over time through
a Bayesian framework. Aiming to mitigate potential inconsistencies arising from the two-
stage fitting process within the Lee-Carter model and its extensions, Lin and Tsai (2022)
proposed a solution that simplifies model specification to a random walk with drift model.
They further structured a multi-level hierarchical Bayesian framework to model mortality
rates for multi-populations with shared characteristics. In the era of rapid internationaliza-
tion, this model showed effective in addressing the complexities of mortality dependencies
among diverse populations and improving the reliability of predictive performance.

2.3 Mortality model with jump

While the jump model has been proven effective in capturing high-severity but low-frequency
events in financial mathematics, relatively few studies have applied it to jump events in mor-
tality data. Most studies discussing mortality models still overlook the impact of adverse
mortality risk. To understand the potential of the jump model in this context, we examine
the existing literature on its use with mortality data. Cox et al. (2006), as well as Lin and
Cox (2008), argued that the failure to account for extreme events in mortality models, a
prevalent issue in most existing studies, poses a significant problem. As these models are
designed to mitigate adverse mortality risks, neglecting such events weakens the life in-
surer’s financial strength and leaves investors vulnerable to significant financial losses. Cox
et al. (2006) pioneered an approach, commonly used in financial mathematics, that em-
ploys the geometric Brownian motion (GBM) with a compound Poisson process to capture
the dynamics in historical mortality data. In this approach, the GBM captures the nor-
mal pattern of mortality rates, while the compound Poisson process models the dynamics
of adverse events that impact mortality. Lin and Cox (2008) built upon this foundation
by proposing an extended model capable of addressing the short-term, transitory effects
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of such jumps. Notably, while this model showed valuable for pricing mortality-linked in-
surance securities, it overlooked potential correlations within mortality data. Recognizing
this limitation, Chen and Cox (2009) developed a new Lee-Carter-based model that not
only incorporates transitory effects, but also explicitly takes into account the correlations
of data. Their comprehensive exploration of both permanent and transitory jump effects
reveals that the latter may be the more suitable choice for accurate mortality predictions
and securitization analysis. Zhou et al. (2013) highlighted that extreme events can signifi-
cantly impact mortality-linked securities designed for hedging catastrophic mortality risk.
They then developed a two-population mortality model with transitory jump effects and
used it to examine how mortality jumps may affect the supply and demand of such securi-
ties. Liu and Li (2015) challenged the common assumption in existing models of identical
distributions for jump effects and general mortality improvements across ages, noting a mis-
alignment with historical data. Therefore, they proposed a model introducing a modified
Lee-Carter variant that captures the age pattern of mortality jumps through a distinct set
of parameters.

This project aims to construct a robust predictive mortality model for multi-population,
which builds on the findings of Lin and Tsai (2022). We specifically analyze three primary
jump effects: the permanent jump effect (Cox et al. (2006)), the independent-correlation
transitory jump effect (Lin and Cox (2008)), and the dependent-correlation transitory jump
effect (Chen and Cox (2009)). Our ultimate goal is to identify which type of jump effect
yields the most significant improvement in forecasting future mortality rates.
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Chapter 3

Framework

3.1 Mortality models

In this chapter, we introduce the mortality models and Bayesian model, accompanied by
corresponding mathematical notations, definitions, and related derivations to set the stage
for further discussion. Here are some fundamental notations and definitions.

Denote px, t, i as the probability that an individual aged x in year t and population i will
survive one year, and qx, t, i as the complementary probability that they will die within one
year, i.e., qx, t, i = 1 − px, t, i. We make the assumption that deaths are uniformly distributed
within each integer age x and integer year t; that is, for any 0 ≤ s < 1, sqx, t, i = s · qx, t, i.
This assumption allows us to derive the relationship between the central death rate, mx, t, i,
and the one-year death probability, qx, t, i as follows:

mx, t, i = qx, t, i∫ 1
0 spx, t, ids

= qx, t, i∫ 1
0 (1 − sqx, t, i) ds

= qx, t∫ 1
0 (1 − s · qx, t, i) ds

= qx, t, i

1 − qx, t, i/2
,

which implies
qx, t, i = mx, t, i

1 +mx, t, i/2
.

This widely adopted assumption simplifies the conversion of mortality data between
qx, t, i and mx, t, i. Consider a study age-year window [xL, xU ] × [T1, T2], where mortality
rates are available for a specific population i, and a fitting window [xL, xU ] × [tL, tU ],
designed for model fitting, where T1 ≤ tL and tU ≤ T2.

3.1.1 Random walk with drift (RW) model

Lin and Tsai (2022) demonstrated that the commonly used age-period (AP) specification
for modeling the dynamics of the logarithm of central death rates, denoted as ln(mx, t, i),
can be represented as a random walk with a drift term θx, i, as follows:

ln(mx, t, i) = ln(mx, t−1, i) + θx, i + σx, i · ϵx, t, i, (x, t) ∈ [xL, xU ] × [tL + 1, tU ]. (3.1)
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Assume that the dynamics of the central death rate are driven by a geometric Brownian
motion (GBM) as

dmx, t, i

mx, t, i
= αx, i · dt+ σx, i · dWx, t, i, (3.2)

where αx, i is the drift term, σx, i is the volatility, and Wx, t, i is a Wiener process (that is,
Wx, t, i is normally distributed with mean 0 and variance t). Then the logarithms of central
death rate in years t and t− 1, by the Itô’s Lemma, become

ln(mx, t, i) = ln(mx, 0, i) +
(
αx, i − 1

2σ
2
x, i

)
· t+ σx, i ·Wx, t, i

and
ln(mx, t−1, i) = ln(mx, 0, i) +

(
αx, i − 1

2σ
2
x, i

)
· (t− 1) + σx, i ·Wx, t−1, i,

respectively, which imply

ln(mx, t, i) = ln(mx, t−1, i)+
(
αx, i − 1

2σ
2
x, i

)
+σx, i·ϵx, t, i, (x, t) ∈ [xL, xU ]×[tL+1, tU ], (3.3)

where ϵx, t, i = Wx, t, i −Wx, t−1, i for t = tL + 1, tL + 2, . . ., by the properties of independent
and stationary increments of the Wiener process, are independent and identical normal
random variables with mean 0 and variance 1.

Note that Equation (3.3) closely resembles Equation (3.1), and forms the basis of the
jump models introduced by Cox et al. (2006) and Lin and Cox (2008). To maintain con-
sistency with the jump models, we transform the specification proposed by Lin and Tsai
(2022)) from Equation (3.1) into Equation (3.3).

• ln(mx, t, i): the logarithm of the central death rate at age x and time t for population
i.

• ln(mx, t−1, i): the logarithm of the central death rate at the same age x and the previous
time point, t− 1 for population i.

• αx, i: the instantaneous expected central death rate for age x and population i, which
characterizes the expected rate of change in death rates at this age and population.

• σx, i: the instantaneous volatility of the central death rate for age x and population i,
which quantifies the level of randomness or fluctuations in central death rates at this
age and population.

• ϵx, t, i: the time trend errors which are assumed independent and identically distributed
standard normal random variables for fixed values of x and i, where t ranges from tL

to tU .
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Equivalently, the yearly decrements in the logarithm of the central death rate, denoted as
Yx, t, i|Λ ≜ ln(mx, t+1, i) − ln(mx, t, i) for t = tL, tL + 1, . . ., are also assumed to be inde-
pendent and identically normally distributed with mean (αx, i − 1

2σ
2
x, i) and variance σ2

x, i,
where Λ is a random variable, representing risk parameter(s), for a specific study population.

Forecasting future mortality rates with Equation (3.2) only requires estimating the val-
ues of αx, i and σx, i, which is relatively simple compared to other models. However, as
Lin and Tsai (2022) mentioned, directly forecasting mortality rates with this model would
likely lead to inaccurate results. Therefore, in accordance with their proposal, we incorpo-
rate Bayesian frameworks to capture the co-movement across ages and populations, aiming
to improve forecasting performance. This approach is discussed in detail in Section 3.4.

3.1.2 Random walk model with permanent jump effects (RWPJ)

Combining Equation (3.2) with a compound Poisson process, we model jump events follow-
ing the methodologies proposed by Cox et al. (2006) and Lin and Cox (2008). For the sake
of simplicity1, we assume that there is at most one jump event in each year for all ages and
population i, denoting Nx, t, i the jump frequency variable with a jump probability ηx, i.

Nx, t+1, i =

1, with probability ηx, i;

0, with probability 1 − ηx, i.

When an abnormal mortality shock occurs, its severity is captured by a jump severity
variable denoted as γx, t, i, representing the magnitude of the mortality increase during the
shock. In our model, we assume that γx, t, is are independent and identically distributed
log-normal random variables with mean µx, i and standard deviation sx, i for fixed values of
x and i. Furthermore, γx, t, i is assumed to be independent of the jump frequency variable
Nx, t, i. In other words, the yearly decrement in the logarithm of the central death rate can
be redefined as follows:

Yx, t, i = ln(mx, t+1, i) − ln(mx, t, i)

=
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+1, i +Nx, t+1, i · ln(γx, t+1, i)

=


(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+1, i, (Scenario 1);(

αx, i − 1
2σ

2
x, i

)
+ σx, i · ϵx, t+1, i + ln(γx, t+1, i), (Scenario 2).

1While we can use a Poisson random variable to model the jump frequency, Chen and Cox (2009) argued
that this approach does not offer new insights into the comparison between permanent and transitory jump
effects and may unnecessarily complicate the mathematical framework.
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The distribution of Yx, t, i can be analyzed into two scenarios. In the first scenario, when
Nx, t, i = 0, Yx, t, i follows an independent and identically normal distribution with a mean of
(αx, i − 1

2σ
2
x, i) and a variance of σ2

x, i. Conversely, in the second scenario, when Nx, t, i = 1,
the mean of Yx, t, i becomes (αx, i − 1

2σ
2
x, i) + µx, i, and its variance increases to σ2

x, i + s2
x, i.

3.1.3 Random walk with independent and transitory jump effects (RWITJ)

Lin and Cox (2008) argued that most mortality jumps, such as the 1918 flu or the 2004
Indian Ocean earthquake and tsunami, are one-time events. However, mortality generally
improves over a long period. Additionally, they argued that the probability of experiencing
a catastrophic mortality event is extremely low, making data correlations negligible. Conse-
quently, this implies that the mortality pattern following a shock is entirely independent of
the pattern observed during the shock itself. The following section introduces their modeling
framework. We first define jump frequencies for years t and t+ 1 as

Nx, t, i =

1, with probability ηx, i,

0, with probability 1 − ηx, i;
Nx, t+1, i =

1, with probability ηx, i,

0, with probability 1 − ηx, i.

(3.4)
Considering Equation (3.4), as a jump impulse in [t− 1, t] is independent of that in

[t, t+ 1], four distinct scenarios emerge. These scenarios include two consecutive periods
with and without a mortality jump. We demonstrate that all four scenarios conform to
normal distributions, each with distinct means and variances.

Yx, t, i = ln(mx, t+1, i) − ln(mx, t, i)

=
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+1, i +Nx, t+1, i · ln(γx, t+1, i) −Nx, t, i · ln(γx, t, i)

=



(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+1, i, (Scenario 1);(

αx, i − 1
2σ

2
x, i

)
+ σx, i · ϵx, t+1, i − ln(γx, t, i), (Scenario 2);(

αx, i − 1
2σ

2
x, i

)
+ σx, i · ϵx, t+1, i + ln(γx, t+1, i), (Scenario 3);(

αx, i − 1
2σ

2
x, i

)
+ σx, i · ϵx, t+1, i + ln(γx, t+1, i) − ln(γx, t, i), (Scenario 4).

In Table 3.1, we summarize all the scenarios alongside their corresponding means, vari-
ances, and probabilities.

3.1.4 Random walk with dependent and transitory jump effects (RWDTJ)

Chen and Cox (2009) suggested that transitory jump effects introduce data dependence,
and neglecting this dependence in the model of Lin and Cox (2008) could lead to inaccurate
parameter estimation. They proposed a model accounting for this dependent data struc-
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Table 3.1: Potential jump events under RWITJ
Scenario Nx, t, i Nx, t+1, i E[Yx, t, i] V ar[Yx, t, i] P robability

1 0 0 αx, i − σ2
x, i/2 σ2

x, i (1 − ηx, i)2

2 1 0 αx, i − σ2
x, i/2 − µx, i σ2

x, i + s2
x, i ηx, i · (1 − ηx, i)

3 0 1 αx, i − σ2
x, i/2 + µx, i σ2

x, i + s2
x, i (1 − ηx, i) · ηx, i

4 1 1 αx, i − σ2
x, i/2 σ2

x, i + 2 s2
x, i (ηx, i)2

ture. This section adopts a similar approach by incorporating the random walk model with
dependent and transitory jump effects.

Generally, the model follows a structure similar to RWITJ. However, the inherent de-
pendence between consecutive data points necessitates analyzing two consecutive periods
simultaneously. In other words, we need to consider the year-on-year changes in the yearly
decrement of the logarithm of the central death rate, represented by Yx, t, i at time t and
Yx, t+1, i at time t+ 1,

Yx, t, i =
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+1, i +Nx, t+1, i · ln(γx, t+1, i) −Nx, t, i · ln(γx, t, i),

Yx, t+1, i =
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+2, i +Nx, t+2, i · ln(γx, t+2, i) −Nx, t+1, i · ln(γx, t+1, i).

(3.5)

Observing Equation (3.5), when Nx, t+1, i = 0, ln(γx, t+1, i) disappears. In this case, both
Yx, t, i and Yx, t+1, i are not affected by the same-period jump factor, and Yx, t, i and Yx, t+1, i

are assumed to be independent. On the other hand, when Nx, t+1, i = 1, both Yx, t, i and
Yx, t+1, i are driven by ln(γx, t+1, i), leading a correlation between Yx, t, i and Yx, t+1, i.

Next, we sequentially discuss the dynamics of Yx, t+1, i under the scenarios of Nx, t+1, i = 0
and Nx, t+1, i = 1. When Nx, t+1, i = 0, Yx, t+1, i is only driven by Nx, t+2, i · ln(γx, t+2, i), that
is,

Yx, t+1, i = ln(mx, t+2, i) − ln(mx, t+1, i)

=
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+2, i +Nx, t+2, i · ln(γx, t+2, i)

=


(
αx, i − 1

2σ
2
x, i

)
+ σx, i · ϵx, t+2, i, (Scenario 1);(

αx, i − 1
2σ

2
x, i

)
+ σx, i · ϵx, t+2, i + ln(γx, t, i), (Scenario 2).

(3.6)

Conversely, when Nx, t+1, i = 1, Yx, t+1, i becomes correlated with Yx, t+2, i and is driven
by ln(γx, t, i), ln(γx, t+1, i), and ln(γx, t+2, i). To illustrate this, summing Yx, t, i and Yx, t+1, i in
Equation (3.5) and retaining only Yx, t+1, i on the left-hand side of the equation gives
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Yx, t+1, i = − Yx, t, i + 2
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · (ϵx, t+1, i + ϵx, t+2, i)

+Nx, t+2, i · ln(γx, t+2, i) −Nx, t, i · ln(γx, t, i).
(3.7)

Using Equation (3.7), we analyze four different combinations of Nx, t, i and Nx, t+2, i

under the condition Nx, t+1, i = 1 to derive four distinct scenarios. In each scenario, yx, t, i

represents the observed value of Yx, t, i. The details of these scenarios are outlined below:

Yx, t+1, i =



− yx, t, i + 2
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · (ϵx, t+1, i + ϵx, t+2, i), (Scenario 3);

− yx, t, i + 2
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · (ϵx, t+1, i + ϵx, t+2, i) − ln(γx, t, i), (Scenario 4);

− yx, t, i + 2
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · (ϵx, t+1, i + ϵx, t+2, i) + ln(γx, t+2, i), (Scenario 5);

− yx, t, i + 2
(
αx, i − 1

2σ
2
x, i

)
+ σx, i · (ϵx, t+1, i + ϵx, t+2, i) + ln(γx, t+2, i) − ln(γx, t, i),

(Scenario 6).

Building upon the normal distribution property, all scenarios within the RWDTJ model
can be represented as normal distributions with their respective means and variances. Ta-
ble 3.2 summarizes the means, variances, and corresponding probabilities for all possible
scenarios. It is worth recalling that when Nx, t+1, i = 0, Yx, t+1, i is only driven by ln(γx, t+2, i).
In other words, it does not matter what the value of Nx, t, i is in the first two scenarios.

Table 3.2: Potential jump events under RWDTJ
Scenario Nx, t, i Nx, t+1, i Nx, t+2, i E[Yx, t+1, i] V ar[Yx, t+1, i] P robability

1 − 0 0 αx, i − 1
2 σ2

x, i σ2
x, i (1 − ηx, i)2

2 − 0 1 αx, i − 1
2 σ2

x, i + µx, i σ2
x, i + s2

x, i ηx, i (1 − ηx, i)
3 0 1 0 −yx, t, i + 2

(
αx, i − 1

2 σ2
x, i

)
2 σ2

x, i ηx, i (1 − ηx, i)2

4 1 1 0 −yx, t, i + 2
(
αx, i − 1

2 σ2
x, i

)
− µx, i 2 σ2

x, i + s2
x, i (ηx, i)2 (1 − ηx, i)

5 0 1 1 −yx, t, i + 2
(
αx, i − 1

2 σ2
x, i

)
+ µx, i 2 σ2

x, i + s2
x, i (ηx, i)2 (1 − ηx, i)

6 1 1 1 −yx, t, i + 2
(
αx, i − 1

2 σ2
x, i

)
2 σ2

x, i + 2 s2
x, i (ηx, i)3

3.2 Mortality forecasting

In Lin and Tsai (2022)’s random walk with drift model, estimating the drift as the slope of
the linear prediction function, Ê[Yx, t, i], is relatively straightforward. It can be calculated
by averaging the past observations {yx, 1, i, yx, 2, i, . . .} of {Yx, 1, i, Yx, 2, i, . . .}. In contrast, our
proposed framework for forecasting future mortality rates requires the estimation of model
parameters, including αx, t, σx, t, ηx, t, µx, t, and sx, t. As demonstrated in the previous section,
the distribution of Yx, t, i within RW, RWPJ, RWITJ, and RWDTJ models follows a mixture
of normal distributions, each characterized by distinct means and variances. To estimate
these model parameters, we employ the maximum likelihood estimation method. Detailed
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derivations of the likelihood function for each individual model can be found in Appendix B.

After obtaining the maximum likelihood estimates (MLEs), we proceed to calculate the
mean of the yearly decrement in the logarithm of the central death rate under each model.
This yields an estimate for the slope parameter, denoted as θ̂x, i. The specific prediction
model for the logarithm of the predicted central death rate for lives aged x in year tU + τ

and population i can be formulated as follows:

ln(m̂x, tU +τ, i) = ln(mx, tU , i) + θ̂x, i · τ, τ = 1, 2, . . . , (3.8)

where ln(mx, tU , i) and θ̂x, i represent the intercept and slope of the linear prediction function,
respectively. The slope varies across different models and can be estimated using Ê[Yx, t, i]
under the RW, RWPJ and RWITJ models, and Ê[Yx, t, i|Yx, t−1, i = yx, t−1, i] under the
RWDTJ model. The following provide estimates of the slope under each respective model.

• The slope under the RW model is given by

θ̂RW
x, i = α̂x, i − 1

2 σ̂
2
x, i.

• The slope under the RWPJ model is given by

θ̂RW P J
x, i =

(
α̂x, i − 1

2 σ̂
2
x, i

)
· (1 − η̂x, i) +

(
α̂x, i − 1

2 σ̂
2
x, i + µ̂x, i

)
· η̂x, i

= α̂x, i − 1
2 σ̂

2
x, i + η̂x, i · µ̂x, i = θ̂RW

x, i + η̂x, i · µ̂x, i.

• The slope under the RWITJ model is given by

θ̂RW IT J
x, i =

(
α̂x, i − 1

2 σ̂
2
x, i

)
· (1 − η̂x, i)2 +

(
α̂x, i − 1

2 σ̂
2
x, i − µ̂x, i

)
· η̂x, i (1 − η̂x, i)

+
(
α̂x, i − 1

2 σ̂
2
x, i + µ̂x, i

)
· η̂x, i (1 − η̂x, i) +

(
α̂x, i − 1

2 σ̂
2
x, i

)
· (η̂x, i)2

= α̂x, i − 1
2 σ̂

2
x, i = θ̂RW

x, i .
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• The slope under the RWDTJ model is given by

θ̂RW DT J
x, i = 1

tU − tL
·

tU∑
t=tL+1

{(
α̂x, i − 1

2 σ̂
2
x, i

)
· (1 − η̂x, i)2

+
(
α̂x, i − 1

2 σ̂
2
x, i + µ̂x, i

)
· η̂x, i (1 − η̂x, i)

+
[
−yx, t, i + 2

(
α̂x, i − 1

2 σ̂
2
x, i

)]
· η̂x, i (1 − η̂x, i)2

+
[
−yx, t, i + 2

(
α̂x, i − 1

2 σ̂
2
x, i

)
− µ̂x, i

]
· (η̂x, i)2 (1 − η̂x, i)

+
[
−yx, t, i + 2

(
α̂x, i − 1

2 σ̂
2
x, i

)
+ µ̂x, i

]
· (η̂x, i)2 (1 − η̂x, i)

+
[
−yx, t, i + 2

(
α̂x, i − 1

2 σ̂
2
x, i

)]
· (η̂x, i)3

}
= −yx, •, i · η̂x, i +

(
α̂x, i − 1

2 σ̂
2
x, i

)
· (1 + η̂x, i) + µ̂x, i · η̂x, i · (1 − η̂x, i),

where yx, •, i = 1
tU −tL

·
∑tU

t=tL+1 yx, t, i is the sample mean of yx, tL+1, i, yx, tL+2, i, . . . , yx, tU , i.

Our extension leverages the hierarchical Bayesian framework (Lin and Tsai (2022)) to
improve forecasting performance by incorporating age and population co-movement. This
approach overcomes the limitations of the random walk with drift model, which may result
in inferior forecasting performance.

3.3 Bayesian (BS) model

Building upon the four random walk models introduced earlier, with or without jump events,
and classified based on the nature of jump events, this section explores their potential
applications in forecasting mortality rates. The new models in this section address the
limitations of previous approaches by considering the co-movement across the study ages
and multiple populations using the Bayesian framework proposed by Lin and Tsai (2022).

3.3.1 Bayesian model for single population

Observing Equation (3.8), the logarithm of the predicted central death rate can be mod-
eled as a linear function of year τ , with the slope representing the downward time trend
in mortality. To refine this slope estimate, we follow the Bayesian methodology of Lin and
Tsai (2022).

Assuming that we have ỹ = (y1, y2, . . . , yn), a realization from Ỹ = (Y1, Y2, . . . , Yn). Let
Yt|Λ, t = 1, 2, . . . , n, n+1 be random variables, each having a probability density fYt|Λ(yt|λx)
at yt, where Λ is assumed to be a discrete random variable in this project, representing
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the risk parameter for a specific study population. Here, we skip the age and population
subscripts, x and i, in Yt and yt to simplify the notations. We also introduce and define
mathematical notations for clarity in subsequent derivations:

• f
Yn+1|Ỹ (yn+1|ỹ): the predictive probability density function, providing the conditional

probability density of Yn+1 at yn+1 given observations Ỹ = ỹ.

• πΛ(λx): the prior probability mass function of Λ at λx, representing the initial belief
about the possible values of Λ before observing any data.

• πΛ|ỹ(λx|ỹ): the posterior probability mass function, the conditional probability density
of Λ at λx given Ỹ = ỹ, representing our updated belief about Λ after observing the
data Ỹ = ỹ.

To calculate the mean of the predictive distribution, the Bayesian estimate, we begin by
deriving the predictive probability density function of Yn+1 at yn+1 given Ỹ = ỹ. Depending
on whether Ỹ is an independent or dependent random vector, we distinguish two cases.

Case 1: Ỹ is an independent random vector

f
Yn+1|Ỹ (yn+1|ỹ) =

f
Ỹ , Yn+1

(ỹ, yn+1)
f

Ỹ
(ỹ)

=
∑

x fỸ , Yn+1|Λ(ỹ, yn+1|λx) · πΛ(λx)
f

Ỹ
(ỹ)

ind.=
∑

x

∏n+1
t=1 fYt|Λ(yt|λx) · πΛ(λx)

f
Ỹ

(ỹ)

=
∑

x fYn+1|Λ(yn+1|λx) · f
Ỹ , Λ(ỹ, λx)

f
Ỹ

(ỹ)
2
=
∑

x fYn+1|Λ(yn+1|λx) · πΛ|Ỹ (λx|ỹ) · f
Ỹ

(ỹ)
f

Ỹ
(ỹ)

=
∑

x

fYn+1|Λ(yn+1|λx) · πΛ|Ỹ (λx|ỹ). (3.9)

Case 2: Ỹ is a dependent random vector

2Applying Bayes’s theorem, we can derive f
Ỹ |Λ(ỹ|λx) · πΛ(λx) = f

Ỹ , Λ(ỹ, λx) = πΛ|Ỹ
(λx|ỹ) · f

Ỹ
(ỹ).
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f
Yn+1|Ỹ (yn+1|ỹ) =

f
Ỹ , Yn+1

(ỹ, yn+1)
f

Ỹ
(ỹ)

=
∑

x fỸ , Yn+1|Λ(ỹ, yn+1|λx) · πΛ(λx)
f

Ỹ
(ỹ)

(B.3)=
∑

x{[∏n
t=1 fYt+1|Yt, Λ(yt+1|yt, λx)] · fY1|Λ(y1|λx)} · πΛ(λx)

f
Ỹ

(ỹ)

=
∑

x fYn+1|Yn, Λ(yn+1|yn, λx) · {[∏n−1
t=1 fYt+1|Yt, Λ(yt+1|yt, λx)] · fY1|Λ(y1|λx)} · πΛ(λx)

f
Ỹ

(ỹ)

(B.3)=
∑

x fYn+1|Yn, Λ(yn+1|yn, λx) · f
Ỹ |Λ(ỹ|λx) · πΛ(λx)

f
Ỹ

(ỹ)

=
∑

x fYn+1|Yn, Λ(yn+1|yn, λx) · f
Ỹ , Λ(ỹ, λx)

f
Ỹ

(ỹ)

=
∑

x fYn+1|Yn, Λ(yn+1|yn, λx) · πΛ|Ỹ (λx|ỹ) · f
Ỹ

(ỹ)
f

Ỹ
(ỹ)

=
∑

x

fYn+1|Yn, Λ(yn+1|yn, λx) · πΛ|Ỹ (λx|ỹ). (3.10)

Next, building upon the insights from Equations (3.9) and (3.10), we can derive the Bayesian
estimate under each case as follows:

Case 1: Ỹ is an independent random vector

E
[
Yn+1|Ỹ = ỹ

]
=
∫
yn+1 · fYn+1|Ỹ (yn+1|ỹ) dyn+1

(3.9)=
∫
yn+1 ·

[∑
x

fYn+1|Λ (yn+1|λx) · πΛ|Ỹ (λx|ỹ)
]
dyn+1

=
∑

x

[∫
yn+1 · fYn+1|Λ (yn+1|λx) dyn+1

]
· πΛ|Ỹ (λx|ỹ)

=
∑

x

[E (Yn+1|Λ = λx)] · πΛ|Ỹ (λx|ỹ). (3.11)
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Case 2: Ỹ is a dependent random vector

E
[
Yn+1|Ỹ = ỹ

]
=
∫
yn+1 · fYn+1|Ỹ (yn+1|ỹ) dyn+1

(3.10)=
∫
yn+1 ·

[∑
x

fYn+1|Yn, Λ (yn+1|yn, λx) · πΛ|Ỹ (λx|ỹ)
]
dyn+1

=
∑

x

[∫
yn+1 · fYn+1|Yn, Λ (yn+1|yn, λx) dyn+1

]
· πΛ|Ỹ (λx|ỹ)

=
∑

x

[E (Yn+1|Yn, Λ = λx)] · πΛ|Ỹ (λx|ỹ). (3.12)

Observing the results of Equation (3.11) and (3.12), we need to calculate E(Yn+1|Λ =
λx) = θx, i for the independent case and E(Yn+1|Yn, Λ = λx) = θx, i for the dependent
case. As outlined in the previous section, the value of θx, i depends on the model chosen.
In the independent case, the potential candidates include θRW

x, i , θRW P J
x, i , and θRW IT J

x, i , while
the dependent case includes θRW DT J

x, i as a candidate. The other component is the posterior
distribution, defined by Bayes’ Theorem as πΛ|Ỹ (λx|ỹ) = fỸ , Λ(ỹ, λx)/fỸ (ỹ). The numerator
and denominator can be derived as follows:

fỸ , Λ(ỹ, λx) = fỸ |Λ(y1, y2, . . . , yn|λx) · πΛ(λx) if ind.=
[

n∏
t=1

fYt|Λ (yt|λx)
]

· πΛ(λx) (3.13)

and

fỸ (ỹ) =
∑

x

fỸ |Λ(y1, y2, . . . , yn|λx) · πΛ(λx) if ind.=
∑

x

[
n∏

t=1
fYt|Λ (yt|λx)

]
· πΛ(λx). (3.14)

Now, to explore further into random variable Λ for population i, we assume that Yt|(Λ =
λz) follows a density fYt|Λ(yt|λz) for t = 1, 2, . . . and z = xL, . . . , xU , which varies depending
on the selected model. For the Random Walk (RW) model, Yt|(Λ = λz) follows a normal
density function characterized by a set of parameters, Ωz, i = {αz, i, σz, i}. In this case, the
mean and variance of the normal distribution are (αz, i − 1

2σ
2
z, i) and σ2

z, i, respectively. In
contrast, the models incorporating jumps (RWPJ, RWITJ, and RWDTJ) exhibit a mixture
normal distribution characterized by a set of parameters, Ωz, i = {αz, i, σz, i, ηz, i, µz, i, sz, i}.
The values of Ωz, i under each model are governed by the realization of the risk parameter
Λ = λz and can be estimated using the observation ỹz, i = (yz, 1, i, yz, 2, i, . . . , yz, n, i).

Assuming that a mortality vector ỹx, i = (yx, tL+1, i, . . . , yx, tU , i) is observed from Ỹx, i =
(Yx, tL+1, i, . . . , Yx, tU , i), the parameters for age x and population i, Ωx, i, can be estimated
using maximum likelihood estimation. The Bayesian estimates, as given by Equations (3.11)
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and (3.12), take the following specific form:

θ̂BS
x, i = Ê[Yx, n+1, i|Ỹx, i = ỹx, i]

=
xU∑

z=xL

θ̂z, i · πΛ|Ỹx, i
(λz|ỹx, i)

=
xU∑

z=xL

θ̂z, i ·
fỸx, i, Λ(ỹx, i, λz)
fỸx, i

(ỹx, i)

=



xU∑
z=xL

θ̂z, i ·
πΛ(λz) ·

tU∏
t=tL+1

f(yx, t, i|Ω̂z, i)

xU∑
w=xL

πΛ(λw) ·
tU∏

t=tL+1
f
(
yx, t, i|Ω̂w, i

) , Case 1,

xU∑
z=xL

θ̂z, i · πΛ(λz) · f(yx, tL+1, i, yx, tL+2, i, . . . , yx, tU , i|Ω̂z, i)
xU∑

w=xL

πΛ(λw) · f(yx, tL+1, i, yx, tL+2, i, . . . , yx, tU , i|Ω̂w, i)
, Case 2,

(3.15)

where Case 1 is for the RW, RWPJ and RWITJ models based on an independent random
vector Ỹx, i, whereas Case 2 is for the RWDTJ model based on a dependent random vector
Ỹx, i, and their corresponding density functions, f , can be referred to Equations (B.1), (B.2),
and (B.3) in the Appendix B for the RWPJ, RWITJ and RWDTJ models, respectively.

Regarding the prior probability function, πΛ(λz), in Equation (3.15), Lin and Tsai (2022)
propose two options for the prior probability function:

1. Uniform Distribution: It assumes that Λ is uniformly distributed over all study ages
with πΛ(λz) = 1/m for z = xL, . . . , xU , where m = xU − xL + 1.

2. Introducing population size: This approach introduces population size information
for age x in year tU (the last year of the fitting year span [tL, tU ]) and the study
population i to construct the prior probability function πΛ.

However, as noted by Lin and Tsai (2022), there is no clear evidence supporting the su-
periority of one approach over the other. Therefore, in this project, we directly adopt the
uniform distribution as our proxy for the prior probability function.

This derived Bayesian slope from Equation (3.15) can then be incorporated into Equa-
tion (3.8) to facilitate mortality forecasting. Observing Equation (3.15), we note that it
calculates a weighted average of the original θ̂x, i s, defined in the previous section, across
all study ages within the year range [tL, tU ]. It places more emphasis on contributions from

20



ages that yield higher posterior probabilities at λz, while conversely assigning less weight
to those with lower posterior probabilities at λz. In the numerical analysis section, we will
use a prefix of "BS-" to represent the Bayesian slopes. Specifically, we will use θ̂BS−RW

x, i ,
θ̂BS−RW P J

x, i , θ̂BS−RW IT J
x, i , and θ̂BS−RW DT J

x, i to distinguish among our four models that in-
corporate the Bayesian framework.

3.3.2 Hierarchical Bayesian model for multiple populations

In this subsection, we generalize the Bayesian model to a hierarchical Bayesian model, which
not only incorporates the co-movement across ages but also considers multiple populations
to refine the slope. Following Lin and Tsai (2022), the available mortality data are stratified
into hierarchical levels. The topmost level encompassed multiple population groups, rep-
resented by I populations (1, 2, . . . , I). For example, mortality data might originate from
populations with different genders and countries. Moving down one level, the focus could
be placed on a specific individual population. Drilling down further, mortality data for
the study ages xL, . . . , xU could be observed. At the bottom level, the mortality vector
ỹx, i = (yx, tL+1, i, . . . , yx, tU , i) for each age within that population is observed.

Recalling in the previous subsection, the introduction of the risk parameter Λ aimed to
capture the co-movement across different ages within a single population. To extend this
concept and account for co-movement across multiple populations, the hyperparameter Ψ
is also introduced. Denote πΛ, Ψ (λz, ψj) = πΛ|Ψ (λz|ψj) · πΨ(ψj) the joint prior probability
of (Λ, Ψ) at (λz, ψj). We assume that λz for age z = xL, . . . , xU is equally likely selected,
given Ψ = ψj for population j. Similarly, ψj for j = 1, . . . , I is also equally likely chosen.
In other words, both Λ|Ψ and Ψ are assumed to be uniformly distributed with πΛ|Ψ = 1/m
and πΨ(ψj) = 1/I for z = xL, . . . , xU and j = 1, . . . , I. Therefore, πΛ, Ψ(λz, ψj) = 1/(m · I)
is uniform over the age-population product space [xL, xU ] × [1, I].

Assuming a mortality vector ỹx, i = (yx, tL+1, i, . . . , yx, tU , i) is observed from Ỹx, i =
(Yx, tL+1, i, . . . , Yx, tU , i), the hierarchical Bayesian estimate, similar to Equation (3.15) for

21



the Bayesian estimate, takes the following specific form:

θ̂HBS
x, i = Ê

[
Yx, n+1, i|Ỹx, i = ỹx, i

]
=

I∑
j=1

xU∑
z=xL

θ̂z, j · π(Λ, Ψ)|Ỹx, i
(λz, ψj |ỹx, i)

=
I∑

j=1

xU∑
z=xL

θ̂z, j ·
fỸx, i, Λ, Ψ (ỹx, i, λz, ψj)

fỸx, i
(ỹx, i)

=



I∑
j=1

xU∑
z=xL

θ̂z, j · πΛ,Ψ (λz, ψj) ·
tU∏

t=tL+1
f(yx, t, i|Ω̂z, j)

I∑
h=1

xU∑
w=xL

πΛ,Ψ(λw, ψh) ·
tU∏

t=tL+1
f(yx, t, i|Ω̂w, h)

, Case 1,

I∑
j=1

xU∑
z=xL

θ̂z, j · πΛ,Ψ(λz, ψj) · f(yx, tL+1, i, yx, tL+2, i, . . . , yx, tU , i|Ω̂z, j)

I∑
h=1

xU∑
w=xL

πΛ,Ψ(λw, ψh) · f(yx, tL+1, i, yx, tL+2, i, . . . , yx, tU , i|Ω̂w, h)
, Case 2,

(3.16)

where Case 1 is for the RW, RWPJ and RWITJ models based on an independent random
vector Ỹx, i, whereas Case 2 is for the RWDTJ model based on a dependent random vector
Ỹx, i, and their corresponding density functions, f , can be referred to Equations (B.1), (B.2),
and (B.3) in the Appendix B for the RWPJ, RWITJ and RWDTJ models, respectively.

As demonstrated in Equation (3.16), the hierarchical Bayesian estimate can be expressed
as a weighted average of the slopes θ̂z, js, with the weights equal to the posterior probabilities,
π(Λ, Ψ)|Ỹx, i

(λz, ψj |ỹx, i), for all ages and populations. Consistent with the Bayesian estimate,
we propose four slope candidates of θ̂HBS

x, i based on the nature of the jump: θ̂HBS−RW
x, i ,

θ̂HBS−RW P J
x, i , θ̂HBS−RW IT J

x, i , and θ̂HBS−RW DT J
x, i , which will be used for reference in the

following chapters. Similarly, by replacing the slope θ̂x, i in Equation (3.8) with θ̂HBS
x, i in

Equation (3.16), we can obtain the logarithm of the predicted central death rate in year
tU + τ for age x and population i under the hierarchical Bayesian (HBS) model.
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Chapter 4

Numerical Illustrations

The mortality data used in this section is sourced from the Human Mortality Database
(HMD, www.mortality.org), covering the study ages ranging from 25 to 84 for both male
and female populations. The numerical illustration consists of four main parts:

1. Apply the Bayesian model with four jump models to analyze a single population
(I = 1), considering both genders of the US, the UK, and Japan separately.

2. Apply the hierarchical Bayesian model to assess two populations (I = 2), exploring
potential co-movements between both genders of each country.

3. Apply the hierarchical Bayesian model to assess six populations (I = 6), exploring
potential co-movements between both genders of the US, the UK, and Japan.

4. Conduct a global analysis, expanding the study to 32 populations (I = 32), including
16 countries worldwide. To comprehensively assess forecasting performance, employ
three different grouping methods:

(a) One-group method: Consider each of the 32 populations individually.
(b) Two-group method: Classify 32 populations into two groups: developed countries

and developing countries.
(c) Three-group method: Classify 32 populations into three groups: North America,

Oceania-Asia, and Europe.

As specified in Chapter 3, consistent data lengths across populations are essential for
multi-population analysis. One of our goals is to capture jump phenomena in the dataset.
To achieve this, we leverage all accessible data, selecting a shared time interval universally
available across different countries. The data intervals for the first and second analyses are
presented in Table 4.1. Due to data availability limitations in each country, adjustments
are necessary for the starting years in the third and fourth analyses. In the third analysis
with I = 6, the starting year of the training data is set to 1947; for the fourth analysis with
I = 32, the starting year is adjusted to 1951.
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Table 4.1: Age-year data windows for single/two-population modeling.
Country Forecast Years

10 years 20 years 30 years

US
Training Set [25, 84] × [1933, 2010] [25, 84] × [1933, 2000] [25, 84] × [1933, 1990]
Test Set [25, 84] × [2011, 2020] [25, 84] × [2001, 2020] [25, 84] × [1991, 2020]

UK
Training Set [25, 84] × [1900, 2010] [25, 84] × [1900, 2000] [25, 84] × [1900, 1990]
Test Set [25, 84] × [2011, 2020] [25, 84] × [2001, 2020] [25, 84] × [1991, 2020]

Japan
Training Set [25, 84] × [1947, 2010] [25, 84] × [1947, 2000] [25, 84] × [1947, 1990]
Test Set [25, 84] × [2011, 2020] [25, 84] × [2001, 2020] [25, 84] × [1991, 2020]

4.1 Comparisons of models for a single population

In this section, we analyze the predictive accuracy of various mortality models, including
LC, LCr, BS-RW, BS-RWPJ, BS-RWITJ, and BS-RWDTJ, specifically for both genders of
the US, the UK, and Japan. Figure 4.1 for 10 years of forecast presents a subset of slopes
for each model plotted against age x for the age-year windows [25, 84] × [tL, 2010], where
tL varies by country due to data availability, and the details can be referred to Table 4.1.

The analysis in Figure 4.1 reveals negative slopes for all study ages in both genders of
the US, the UK, and Japan, indicating that all ages and populations can expect a decrease
in the projected central death rates over time. The specific rate of improvement, as indi-
cated by the steepness of the negative slope, varies. A steeper slope implies faster decline
in mortality rates. In each country (US, UK, Japan), females exhibit a more rapid rate of
improvement compared to males. Generally, Japan experiences the fastest decline, followed
by the UK, and then the US.

Figures 4.2 and 4.3 present analyses of the Bayesian posterior distribution Λ given
Ỹ = ỹx, i for both genders of three countries with various jump models, using the same age-
year windows as in Figure 4.1. By applying the Bayesian theory to calculate the posterior
probabilities πΛ|Ỹ (λz|ỹx, i) for age z = 25, . . . , 84 with x = 25 and x = 84, respectively, we
examine the posterior probabilities πΛ|Ỹ (λz|ỹx, i). As expected, the largest values occur at
z = x = 25 and z = x = 84, respectively, supporting the hypothesis that the distribution
behind the observation ỹx, i is most likely from density f with parameter set Ωx, i under each
jump model. Figures 4.2 and 4.3 also display posterior likelihoods πΛ|Ỹ (λz|ỹx,i) for other
ages z. The results align with the notions introduced in Chapter 3. The Bayesian estimates
are derived by calculating a weighted average over all corresponding slope values of θ̂RW −∗

z,i ,
which is explicitly represented as θ̂BS−∗

x, i = ∑84
z=25 πΛ|Ỹ (λz|ỹx, i) · θ̂RW −∗

z, i
2 for age x and the
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Figure 4.1: Slope against age x for the US, the UK, and Japan

study population i

To assess and compare the predictive performance of different models, the Mean Ab-
solute Percentage Error (MAPE), a commonly used statistical metric, is employed. The
forecasting error is measured by quantifying the percentage difference between the observed
one-year death probabilities (q’s) and the corresponding projected one-year death probabil-
ities (q̂’s). To be more specific, considering an age-year window [xL, xU ] × [tU + 1, T2] for
population i, with a fitting age-year window [xL, xU ] × [tL, tU ], the MAPE is defined as
follows:

MAPE[xL, xU ]×[tL, tU ]
[tU +1, T2], i = 1

(T2 − tU ) × (xU − xL + 1)

T2−tU∑
t=1

xU∑
x=xL

∣∣∣∣∣ q̂x, tU +t, i − qx, tU +t, i

qx, tU +t, i

∣∣∣∣∣ .
2The asterisk (*) is used to collectively represent the four models throughout the text, streamlining

references to RW, RWPJ, RWITJ, and RWDTJ.
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Figure 4.2: πΛ|ỹ(λz|ỹx, i), x = 25, 84, against age z, for males of the US, the UK, and Japan

This formula quantifies the average percentage difference across the specified age-year win-
dow, providing a comprehensive evaluation of forecasting performance.

To comprehensively assess forecasting performance, the average of MAPE[xL, xU ]×[tL, tU ]
[tU +1, T2],i

across a series of fitting age-year windows [xL, xU ] × [tL, tU ], tL = T1, T1 + 1, . . . , tU − 22,
is calculated. Initially, we employ the training data time interval defined in Table 4.1 to
estimate parameters, predict mortality rates, and calculate the MAPE[xL, xU ]×[tL, tU ]

[tU +1, T2], i on the
test set. At each iteration, the first column of data points for the smallest fitting year
are discarded, and the process of estimating parameters, predicting mortality rats, and
calculating the MAPE[xL, xU ]×[tL, tU ]

[tU +1, T2], i on the test set is repeated. This iterative process con-
tinues until only 23 columns of data points for 23 fitting years remain for modeling. The
retention of these data points is crucial to ensuring the quality of maximum likelihood es-
timation. Finally, we calculate the average of the MAPE[xL, xU ]×[tL, tU ]

[tU +1, T2], i values to obtain the
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Figure 4.3: πΛ|ỹ(λz|ỹx, i), x = 25, 84, against age z, for females of the US, the UK, and Japan

AMAPE[xL, xU ]
[tU +1, T2], i, with its specific mathematical definition provided below.

AMAPE[xL, xU ]
[tU +1, T2], i = 1

(tU − 22 − T1 + 1)

tU −22∑
tL=T1

MAPE[xL, xU ]×[tL, tU ]
[tU +1, T2], i .

Table 4.2 lists the values of Avg-6, Avg-23, and AMAPE[25, 84]
[tU +1, 2020], i for single population

i (i = 1, 2, . . . , 6) across three distinct forecasting periods. The smallest values in each
column are highlighted in bold. Typically, a longer forecasting period corresponds to a
larger AMAPE[25, 84]

[tU +1, 2020], i value. To conduct a thorough comparative analysis, the classic
Lee-Carter (LC) model and its adjusted version, denoted as LCr, are also included for
comparisons. The LCr model is designed to avoid jump-off bias by adjusting the intercept
from the fitted value ln(m̂LC

x, tU , i) to the observed value ln(mx, tU , i). This adjustment not

3Avg-6 denotes the average AMAPE across six populations, including all combinations of gender and
country, whereas Avg-2 represents the average AMAPE across both genders of each country.
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Model Avg-6 Avg-2 US-M US-F Avg-2 UK-M UK-F Avg-2 Japan-M Japan-F
Panel A: tU = 2010 for forecasting year span [2011, 2020]
LC 12.42 12.21 12.78 11.63 17.03 19.97 14.08 8.01 8.21 7.82
LCr 8.14 10.18 10.87 9.48 7.02 6.88 7.16 7.21 7.20 7.22
BS-RW 7.87 10.04 10.70 9.38 6.72 6.39 7.05 6.85 6.89 6.82
BS-RWPJ 7.51 10.04 10.39 9.69 5.85 5.62 6.07 6.65 6.70 6.61
BS-RWITJ 7.36 9.76 10.13 9.38 5.77 5.70 5.85 6.56 6.65 6.46
BS-RWDTJ 7.46 9.94 10.30 9.58 5.80 5.66 5.95 6.65 6.58 6.72
Panel B: tU = 2000 for forecasting year span [2001, 2020]
LC 16.36 12.02 12.47 11.58 24.91 30.86 18.96 12.14 9.21 15.08
LCr 11.22 11.23 11.23 11.23 12.99 15.57 10.41 9.44 6.55 12.33
BS-RW 10.29 10.63 10.75 10.51 11.19 13.49 8.88 9.04 5.82 12.26
BS-RWPJ 9.41 9.97 10.45 9.50 11.02 13.11 8.92 7.23 5.57 8.89
BS-RWITJ 9.91 10.46 10.65 10.28 11.05 12.93 9.17 8.20 5.57 10.84
BS-RWDTJ 9.79 10.40 10.60 10.19 11.03 12.83 9.24 7.94 5.59 10.29
Panel C: tU = 1990 for forecasting year span [1991, 2020]
LC 22.34 14.86 15.43 14.29 30.74 40.07 21.41 21.42 17.07 25.76
LCr 18.57 13.82 13.56 14.08 21.68 26.27 17.09 20.22 16.46 23.99
BS-RW 17.15 13.21 12.97 13.45 18.49 22.46 14.53 19.76 16.25 23.27
BS-RWPJ 14.68 10.18 10.62 9.74 14.45 17.86 11.05 19.41 15.50 23.31
BS-RWITJ 15.22 10.03 11.04 9.02 16.70 20.33 13.08 18.93 15.04 22.83
BS-RWDTJ 14.93 9.98 10.84 9.12 15.69 18.84 12.53 19.12 15.20 23.04

Table 4.2: AMAPE[25, 84]
[tU +1, 2020], i(%) for I = 1

only results in significantly improved forecasting performance in most cases compared to
the classic LC model but also facilitates a specific examination of the impact of the slope
on forecasting mortality rates. Among the models LCr, BS-RW, BS-RWPJ, BS-RWITJ,
and BS-RWDTJ, all sharing the same intercept (ln(mx, tU , i)), the BS-RWPJ model exhibits
superior performance in long-term (20 and 30 years) forecasting, achieving the lowest Avg-6,
while the BS-RWITJ model generally demonstrates accurate forecasting for a short-term
period (10 years) by providing the smallest Avg-6. These results highlight that RWPJ and
RWITJ provide more precise slopes for mortality forecasting compared to other models
in a single-population test. Diving into the details, there are exceptions to this general
trend. For instance, in the 30-year forecast period for Japan, the BS-RWITJ model slightly
outperforms the BS-RWPJ model, and in the 10-year forecast period for Japan males, the
BS-RWDTJ model exhibits a slight superiority over the BS-RWITJ model. In almost all
scenarios, models incorporating jumps generally yield lower AMAPE[25, 84]

[tU +1, 2020], i compared
to the LC, LCr, and BS-RW (models without considering jumps) models, emphasizing the
importance of incorporating jump components into a model.
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4.2 Comparisons of models for multiple populations

This subsection employs the hierarchical Bayesian theory to comprehensively compare the
forecasting performance for multiple populations. Ten models are evaluated, including the
random walk with drift model and its three extended models incorporating jump compo-
nents, and six Lee-Carter-based models (JK, CI, and ACF, along with their corresponding
JKr, CIr, and ACFr; refer to Appendices A.1.1-A.1.3). Table 4.3 presents a test with I = 2,
considering both genders of a country for each of the US, the UK, and Japan, while Table 4.4
conducts a test with I = 6, encompassing all six populations. Similar to the single population
test, both Tables 4.3 and 4.4 display the values of Avg-6, Avg-2, and AMAPE[25, 84]

[tU +1, 2020], i

for three different forecasting periods, with the smallest value being highlighted in bold in
each column.

Similar to the classical Lee-Carter model, adjusting the intercept from the fitted value
ln(m̂LC

x, tU , i) to the observed value ln(mx, tU , i) for JKr, CIr, and ACFr models significantly re-
duces the AMAPE[25, 84]

[tU +1, 2020], i in most cases. This ensures that all models forecast mortality
rates starting from the same baseline (intercept), allowing us to focus solely on which model
produces more accurate slopes to better capture the downward mortality trend compared to
the others. Among the ten models, either the HBS-RWDTJ or HBS-RWITJ model exhibits
the superior performance in terms of Avg-6 in Table 4.3. To elaborate, the HBS-RWDTJ
model achieves the lowest Avg-2, and Avg-6, and AMAPE[25, 84]

[tU +1, 2020], i for the 10-year and
30-year forecast period with few exceptions. The HBS-RWPJ and HBS-RWITJ models also
exhibit promising results, delivering overall lower Avg-2 and Avg-6 values compared to other
models without jumps. Generally, the models incorporating jump components yield lower
AMAPE[25, 84]

[tU +1, 2020], i values, except for the 10-year and 20-year forecasts for US females, as
well as the 20-year forecasts for UK females and Japan males.

In Table 4.4 for I = 6, the HBS-RWDTJ model displays the lowest Avg-2, Avg-6, and
AMAPE[25, 84]

[tU +1, 2020], i values, with a few exceptions, in the 10-year and 30-year forecasting
periods. In the 20-year forecasting, the HBS-RWDTJ model also generally outperforms other
models in terms of the Avg-6 and Avg-2 values, but AMAPE[25, 84]

[tU +1, 2020], i favors the HBS-
RWPJ or HBS-RWITJ model for some cases. Overall, the models with jump components
tend to dominate this test with a few exceptions, including 10-year forecasting for US females
and 20-year forecasting for UK females, as well as 30-year forecasting for both genders of
Japan. Summarizing the results from Tables 4.3 and 4.4, the models with jump components
exhibit the lowest Avg-6, Avg-2, and AMAPE[25, 84]

[tU +1, 2020], i values in most cases. However,
in certain cases for female populations, the models without jump components may surpass
those with jump components.
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Model Avg-6 Avg-2 US-M US-F Avg-2 UK-M UK-F Avg-2 Japan-M Japan-F
Panel A: tU = 2010 for forecasting year span [2011, 2020]
JK 12.93 12.68 12.54 12.83 17.31 20.76 13.87 8.80 9.01 8.58
JKr 8.17 10.19 11.03 9.34 7.04 6.86 7.23 7.29 7.28 7.30
CI 12.40 12.09 12.78 11.39 17.03 19.97 14.09 8.10 8.21 7.98
CIr 8.11 9.96 10.87 9.05 7.08 6.88 7.28 7.29 7.20 7.38
ACF 12.43 11.91 12.94 10.88 17.16 19.91 14.42 8.21 8.72 7.70
ACFr 8.14 10.17 10.83 9.52 7.03 6.79 7.28 7.22 7.27 7.16
HBS-RW 7.71 10.03 10.55 9.50 6.66 6.37 6.95 6.44 6.47 6.40
HBS-RWPJ 7.43 10.25 10.49 10.01 5.97 5.71 6.22 6.06 6.11 6.01
HBS-RWITJ 7.35 10.11 10.35 9.87 5.93 5.72 6.14 6.00 6.02 5.97
HBS-RWDTJ 7.29 9.89 10.26 9.52 5.80 5.67 5.93 6.19 6.02 6.37
Panel B: tU = 2000 for forecasting year span [2001, 2020]
JK 16.87 13.63 12.96 14.30 25.10 31.71 18.48 11.90 9.14 14.65
JKr 11.21 11.27 11.13 11.42 12.99 15.59 10.40 9.37 6.61 12.13
CI 16.33 12.11 12.47 11.76 24.89 30.86 18.93 11.99 9.21 14.76
CIr 11.17 11.31 11.23 11.40 13.02 15.57 10.48 9.18 6.55 11.81
ACF 16.41 11.89 13.04 10.73 25.33 31.43 19.23 12.00 9.04 14.96
ACFr 11.16 11.06 11.35 10.77 12.97 15.29 10.65 9.44 6.53 12.34
HBS-RW 10.02 10.63 10.92 10.34 10.91 13.07 8.76 8.51 6.42 10.59
HBS-RWPJ 10.05 10.60 10.63 10.56 10.89 12.90 8.88 8.66 6.97 10.36
HBS-RWITJ 10.00 10.81 10.91 10.71 10.87 12.77 8.97 8.33 6.57 10.08
HBS-RWDTJ 10.25 10.92 11.39 10.46 10.94 12.89 8.99 8.90 6.92 10.87
Panel C: tU = 1990 for forecasting year span [1991, 2020]
JK 22.51 15.40 15.86 14.93 30.71 40.16 21.27 21.43 17.28 25.58
JKr 18.53 13.72 13.49 13.94 21.63 26.16 17.10 20.25 16.68 23.82
CI 22.17 14.51 15.43 13.60 30.76 40.07 21.46 21.24 17.07 25.40
CIr 18.39 13.46 13.56 13.36 21.71 26.27 17.15 20.01 16.46 23.57
ACF 22.41 14.84 15.81 13.88 30.76 38.72 22.80 21.64 17.32 25.96
ACFr 18.60 13.79 13.65 13.94 21.71 25.87 17.54 20.30 16.55 24.05
HBS-RW 16.69 11.93 11.58 12.28 18.14 21.77 14.50 20.01 18.40 21.62
HBS-RWPJ 13.69 10.67 11.06 10.27 17.28 21.12 13.44 13.13 9.55 16.70
HBS-RWITJ 13.97 10.71 11.86 9.55 18.00 21.66 14.33 13.21 11.45 14.96
HBS-RWDTJ 12.75 10.00 10.90 9.09 15.85 19.59 12.10 12.42 10.74 14.10

Table 4.3: AMAPE[25, 84]
[tU +1, 2020], i(%) for I = 2

4.3 Three grouping analyses of models for multiple popula-
tions worldwide

In the previous subsection, mortality data from the US, the UK, and Japan are used as
representatives of America, Europe, and Asia, respectively. In this section, we extend the
application of the hierarchical Bayesian models with jump components to include mortality
data from an additional 14 countries, resulting in a total of 17 countries. These countries
include Canada and the US for North America; Australia and Japan for Oceania-Asia; Swe-
den, Finland and Norway for North Europe; Belgium, Ireland, Netherlands and the UK for
West Europe; France, Spain and Switzerland for South Europe; and Bulgaria, Czechia and
Hungary for East Europe. The selection of these countries is constrained by the complete-

30



Model Avg-6 Avg-2 US-M US-F Avg-2 UK-M UK-F Avg-2 Japan-M Japan-F
Panel A: tU = 2010 for forecasting year span [2011, 2020]
JK 10.94 11.52 12.07 10.98 10.67 12.59 8.75 10.61 7.89 13.33
JKr 8.14 10.06 11.25 8.88 6.99 7.07 6.92 7.37 7.31 7.43
CI 9.72 11.63 12.55 10.71 9.42 10.94 7.90 8.11 8.82 7.40
CIr 7.89 9.77 10.99 8.55 6.63 6.70 6.56 7.27 7.88 6.65
ACF 9.72 11.20 12.13 10.28 9.52 11.91 7.12 8.45 8.56 8.34
ACFr 7.98 9.98 10.95 9.02 6.77 6.61 6.93 7.18 7.34 7.02
HBS-RW 7.96 10.53 11.15 9.90 6.64 6.39 6.88 6.72 7.18 6.27
HBS-RWPJ 8.00 10.42 10.83 10.01 7.26 6.99 7.52 6.33 6.59 6.07
HBS-RWITJ 8.02 10.28 10.66 9.89 7.35 7.05 7.66 6.43 6.68 6.18
HBS-RWDTJ 7.70 10.20 10.62 9.77 5.96 5.68 6.24 6.94 8.48 5.40
Panel B: tU = 2000 for forecasting year span [2001, 2020]
JK 14.47 12.54 12.99 12.09 16.92 20.14 13.71 13.95 10.24 17.66
JKr 10.74 10.86 10.80 10.91 11.70 14.34 9.06 9.67 6.70 12.63
CI 12.99 11.67 12.08 11.26 15.18 17.37 12.99 12.12 9.46 14.78
CIr 10.65 11.06 11.16 10.96 11.76 14.37 9.14 9.13 6.69 11.58
ACF 12.60 11.00 11.00 11.01 15.41 19.58 11.23 11.37 7.19 15.56
ACFr 10.30 11.03 11.11 10.94 10.77 13.13 8.41 9.11 5.91 12.31
HBS-RW 9.44 10.96 11.20 10.72 9.73 11.82 7.64 7.63 6.00 9.26
BS-RWPJ 9.55 10.65 10.62 10.68 9.70 11.05 8.34 8.32 6.00 10.63
HBS-RWITJ 9.60 10.67 10.61 10.72 9.61 10.78 8.43 8.52 6.20 10.84
HBS-RWDTJ 9.30 11.05 11.19 10.90 9.51 10.88 8.15 7.35 5.90 8.80
Panel C: tU = 1990 for forecasting year span [1991, 2020]
JK 19.59 14.75 14.21 15.30 22.44 26.68 18.19 21.57 17.53 25.61
JKr 17.02 13.68 13.68 13.69 17.69 20.09 15.29 19.68 16.19 23.18
CI 17.55 13.24 14.49 11.99 22.36 26.32 18.41 17.04 13.48 20.60
CIr 15.51 12.72 13.82 11.62 18.97 21.94 15.99 14.83 11.99 17.67
ACF 18.61 13.83 15.11 12.55 20.60 26.82 14.38 21.41 16.92 25.89
ACFr 17.02 13.81 15.11 12.52 17.00 20.30 13.70 20.23 16.43 24.03
HBS-RW 15.39 11.69 11.29 12.09 16.47 17.26 15.67 18.00 14.55 21.45
HBS-RWPJ 15.44 11.75 10.59 12.91 16.37 17.14 15.60 18.20 14.95 21.46
HBS-RWITJ 15.47 11.36 10.68 12.03 16.55 17.18 15.93 18.50 14.93 22.08
HBS-RWDTJ 14.10 10.64 10.29 10.99 15.46 17.79 13.12 16.20 12.71 19.70

Table 4.4: AMAPE[25, 84]
[tU +1, 2020], i(%) for I = 6

ness of mortality data in the Human Mortality Database. These countries provide the most
complete and continuous data throughout the study window [25, 84] × [1950, 2020]. The 17
selected countries are classified into distinct groups based on specific criteria. We assess the
forecasting performance of the hierarchical Bayesian jump models through three grouping
analyses. Following that, the models are utilized to analyze trends in the average expected
yearly mortality changes worldwide.

For the one-group analysis, we adopt an approach similar to the one detailed in Table
4.4. This analysis involves mortality data for both genders across 17 countries (I = 34).
The forecasting performances of the hierarchical Bayesian models, with and without jump
components, are evaluated in comparison to the underlying Lee-Carter-Based models. To
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facilitate a comprehensive comparison, the averages of the AMAPE[25, 84]
[tU +1, 2020], i values across

34 populations (i = 1, 2, . . . , 34) are first calculated and then presented in Panel A of Ta-
ble 4.5, where the HBS-RWITJ model outperforms all other models in terms of the average
AMAPE[25, 84]

[tU +1, 2020], i across forecasting intervals of 10, 20, and 30 periods.

For the two-group analysis, the selected 34 populations are divided into two groups
based on their development status: developing and developed. Developing countries com-
prised Bulgaria, Czechia, and Hungary, while developed countries included Canada, the US,
Australia, Japan, Belgium, Switzerland, Spain, Finland, France, Ireland, Netherlands, Nor-
way, Sweden, and the UK. Panel B (B1 and B2) of Table 4.5 summarizes the averages of
AMAPE[25, 84]

[tU +1, 2020], i values for forecasting across both groups and three forecasting periods.
In Panel B1 for the developed countries, the HBS-RWITJ model outperform all other mod-
els. In Panel B2 for the developing countries, the HBS-RWITJ model shows a slightly higher
average of AMAPE[25, 84]

[tU +1, 2020], i compared to the HBS-RWDTJ model in the 20-year forecast
period; however, the performance gap is minimal, emphasizing that the HBS-RWITJ model
remains competitive overall.

For the three-group analysis, the 34 countries are grouped, based on geographic re-
gions, into three categories: the North America group, including Canada and the US;
the Oceania-Asia group, comprising Australia and Japan; and the Europe group, con-
sisting of the remaining countries. Panel C (C1 to C3) presents the respective averages
of AMAPE[25, 84][tU + 1, 2020], i for each group. Analyzing these values, the HBS-RWITJ
model also generally outperforms all other models. However, in the North America group,
its averages of AMAPE[25, 84][tU + 1, 2020], i for the 20-year and 30-year forecasts is slightly
higher than the other two jump models, but the difference is minimal. It is noteworthy that,
in the 30-year forecast for the Oceania-Asia group, the model without a jump component
(the HBS-RW model) achieves the smallest average of AMAPE[25, 84]

[tU +1, 2020], i.

As observed in the preceding test, all the hierarchical Bayesian models demonstrate
superior performance compared to the Lee-Carter-based models. Furthermore, the mod-
els incorporating jump components generally outperform those without jump components.
The subsequent analysis focuses on evaluating the patterns in the averages of the expected
yearly mortality changes across 34 populations by refitting the hierarchical Bayesian mod-
els, both with and without jump components, and using the mortality data across the same
three grouping analyses. More precisely, we re-estimate θHBS−∗

(x, i, tU ) by using a shifting win-
dow of [25, 84] × [tU − 30, tU ], rolling it forward by one year at a time from tU = 1980 to
tU = 2020. Throughout this iterative process, we repeatedly conduct model fitting, yielding
a series of θ̂HBS−∗

x, i, tU
values for each model. These values represent the expected yearly changes

in the logarithm of the central death rate beyond each year tU for age x and population
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Model HBS-RW HBS-RWPJ HBS-RWITJ HBS-RWDTJ JK JKr CI CIr ACF ACFr
tU Panel A: 34 populations under one-group method
2010 11.61 11.87 11.51 11.76 16.03 12.38 13.02 12.31 13.62 12.35
2000 17.41 18.45 16.68 19.82 25.37 20.76 21.16 20.59 21.88 20.28
1990 23.35 25.78 21.17 23.49 29.40 28.95 29.25 29.49 28.62 28.79
tU Panel B1: Developed-country group under two-group method
2010 11.46 11.73 11.37 11.65 14.90 12.20 12.78 12.14 13.09 12.17
2000 16.30 17.44 15.86 19.62 22.01 18.99 19.72 18.92 20.17 18.82
1990 19.84 22.91 19.09 21.55 25.05 24.29 25.17 25.27 24.37 24.46
tU Panel B2: Developing-country group under two-group method
2010 12.63 12.80 12.58 12.70 14.24 12.78 15.51 14.57 15.39 13.04
2000 25.14 24.14 22.78 22.52 26.25 24.76 30.54 30.89 26.62 26.63
1990 45.85 39.79 35.31 37.50 47.05 46.55 49.89 50.89 48.25 49.13
tU Panel C1: North American group under three-group method
2010 9.75 9.54 9.45 9.67 11.65 9.86 11.27 9.61 11.35 9.83
2000 10.55 10.68 10.40 10.39 12.76 11.13 11.82 11.16 11.51 11.13
1990 11.19 11.16 11.20 11.33 14.54 13.21 14.03 13.46 14.05 13.02
tU Panel C2: Oceania-Asia group under three-group method
2010 7.34 7.67 7.19 7.74 10.80 8.40 9.96 8.39 9.47 8.16
2000 10.04 11.76 9.78 11.27 15.43 12.35 14.22 12.25 13.64 11.86
1990 16.30 18.47 16.80 17.84 21.21 19.00 19.93 19.19 20.23 18.70
tU Panel C3: Europe group under three-group method
2010 12.49 12.82 12.42 12.85 16.20 13.25 13.71 13.23 14.42 13.28
2000 20.06 20.98 19.05 22.31 27.52 23.05 23.53 23.19 24.55 22.72
1990 27.18 28.69 24.25 26.78 32.55 32.46 31.61 32.15 31.95 32.37

Table 4.5: Averages of AMAPE[25, 84]
[tU +1, 2020], is (%) for three grouping methods.

i, under each model. At each time step, the average of θ̂HBS−∗
x, i, tU

is calculated across ages x
from 25 to 84, which can be expressed mathematically as θ̄HBS−∗

i, tU
= (1/60)∑84

x=25 θ̂
HBS−∗
x, i, tU

for population i within the fitting year span [tU − 30, tU ]. Besides, we calculate θ̄HBS−∗
i, tU

for each time step from year 1980 to 2020 for every model and illustrate the results from
Figures 4.4 to 4.21.

From Figures 4.4 to 4.21, we observe that the θ̄HBS−∗
i,tU

values tend to be negative for all
populations throughout the considered periods, with only a few exceptions. The first excep-
tion is in Figure 4.9; the HBS-RW model exhibits three positive θ̄HBS−∗

i,tU
values in Hungary

males around year 1995, while the HBS-RWPJ, HBS-RWITJ, and HBS-RWDTJ model
show negative values, though very close to zero. This suggests that the models with jump
components expect a slightly higher mortality improvement compared to models without
jump components. Another exception is in the developing countries of two-group analysis
(see Figure 4.15). Interestingly, for both genders from approximately year 1985 to 2000, all
four models display positive θHBS−∗

i,tU
values. Specifically, the hierarchical Bayesian method

incorporates a mechanism to adjust the impact of study ages within a group of populations
on a specific age and population. This adjustment accounts for co-movements across ages
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and populations.

As illustrated in Figure 4.9, Hungary male population shows subtle positive θHBS−∗
i,tU

val-
ues. It seems that Hungary male population has a relatively worse improvement in mortality
rates compared to other populations within the group, where the overall trend indicates bet-
ter mortality improvement. As a result, the subtle positive value in this context is somewhat
diluted by the prevailing trend of superior mortality improvement in the group. On the con-
trary, observing from Figure 4.15 which includes only six populations, the absence of other
populations dilutes the impact results in Hungary populations displaying larger θHBS−∗

i ,tU

values compared to Figure 4.9. Furthermore, other populations in the developing country
group, including both genders of Bulgaria and Czechia, appear to be affected by Hungary
populations, leading to positive θHBS−∗

i, tU
values.

Moreover, a consistent trend of convergence towards -0.02 is observed in θ̄HBS−∗
i, tU

for
all four models, regardless of the grouping approach used. This trend holds across various
analyses, except for instances involving both genders of the US population as seen in Fig-
ures 4.4, 4.10 and 4.16. Interestingly, both one-group and two-group analyses reveal that,
regardless of the model type, the average mortality improvement for the US populations
tends to worsen, deviating by approximately -0.02 to -0.01. However, the three-group anal-
ysis, which only includes both genders of the US and Canada (I = 4) within the North
America group, highlights a stronger influence of the US populations on Canada popu-
lations. Consequently, the final θHBS−∗

i, tU
for Canada populations deviates from the overall

trend, exhibiting a decrease of -0.02. From an economic perspective, Becker et al. (2005)
argued that GDP is commonly used as a proxy to assess the quality of life for individuals
in different countries, with welfare being influenced by life expectancy. This suggests that
life expectancy can be considered a strong indicator of the quality of life. Additionally, they
explained that rapid improvement in mortality rates in developing countries is fueled by
mortality improvements in developed countries driven by advancements on the frontier of
medical technology. Developing countries can adopt technology and knowledge at relatively
lower costs, contributing to their own mortality improvements. The results of our two-group
analysis in this study consistently align with this phenomenon. Over the same time span
(e.g., 1995 to 2020), the trends in mortality rate improvement in developing countries ex-
hibit a steeper trajectory compared to that in developed countries, which indicates a more
pronounced improvement in mortality rates during this specific time period. Regarding the
ongoing mortality improvement and convergence to -0.02, our findings align with the em-
phasis by Lin and Tsai (2022) that mortality rates worldwide have been improving over
the past decades and are expected to continue doing so, but they converge to a constant
level irrespective of the efforts humans put into medical breakthroughs, living environment
improvement, and so on.
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Figure 4.4: θ
HBS
i,tU

for the North American group under the one-group method

Figure 4.5: θHBS
i,tU

for the Oceania-Asia group under the one-group method
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Figure 4.6: θHBS
i,tU

for the North Europe group under the one-group method

Figure 4.7: θHBS
i,tU

for the West Europe group under the one-group method
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Figure 4.8: θHBS
i,tU

for the South Europe group under the one-group method

Figure 4.9: θHBS
i,tU

for the East Europe group under the one-group method
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Figure 4.10: θHBS
i,tU

for the North American group under the two-group method

Figure 4.11: θHBS
i,tU

for the Oceania-Asia group under the two-group method
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Figure 4.12: θHBS
i,tU

for the North Europe group under the two-group method

Figure 4.13: θHBS
i,tU

for the West Europe group under the two-group method
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Figure 4.14: θHBS
i,tU

for the South Europe group under the two-group method

Figure 4.15: θHBS
i,tU

for the East Europe group under the two-group method
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Figure 4.16: θHBS
i,tU

for the North American group under the three-group method

Figure 4.17: θHBS
i,tU

for the Oceania-Asia group under the three-group method
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Figure 4.18: θHBS
i,tU

for the North Europe group under the three-group method

Figure 4.19: θHBS
i,tU

for the West Europe group under the three-group method
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Figure 4.20: θHBS
i,tU

for the South Europe group under the three-group method

Figure 4.21: θHBS
i,tU

for the East Europe group under the three-group method
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Chapter 5

Conclusions

This project incorporates jump components into the random walk with drift model and
applies the hierarchical Bayesian theory to modeling of mortality rates for single popula-
tions and multiple populations. The studied four models, based on the random walk with
drift framework, can be categorized into no jump, permanent jump, independent and tran-
sitory jump effects, and dependent and transitory jump effects. These models are applied
to the data from the US, the UK, and Japan, representing the Americas, Europe, and Asia,
respectively. To validate the predictive performance, these models are compared with the
classical Lee-Carter model (for a single population) and its three extensions (JK, CI, and
ACF) for multiple populations.

Subsequently, we expand our dataset by adding data from 14 additional countries, bring-
ing the total to 17. We then conduct a comprehensive performance evaluation of the hi-
erarchical jump models using three grouping analyses. Tables 4.2 to 4.5 demonstrate that
the hierarchical models with jumps typically outperform the model without jump compo-
nents and the Lee-Carter-based models. Among them, the HBS-RWITJ model generally
produces the lowest AMAPE[25, 84]

[tU +1, 2020], i values in most cases, while the HBS-RWPJ and
HBS-RWDTJ models achieve the lowest AMAPE[25, 84]

[tU +1, 2020], i values in a few instances. Our
findings indicate that, in most cases, the models incorporating jump components produce
the lowest AMAPE[25, 84]

[tU +1, 2020], i values. However, for some specific female populations, the
model without jump components may surpass those with jump components.

Finally, applying three grouping analyses to observe the averages of expected improve-
ment rates per year in the logarithm of central death rate for all 17 countries, we find that
mortality rate improvements in developing countries tend to be faster than in developed
countries over the same time period. Additionally, except for the US, the expected improve-
ment rates for all other countries eventually converge to an average about 2%.
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The hierarchical Bayesian models inherit the advantages of the hierarchical Bayesian
framework. It aims to address potential inconsistencies in the Lee-Carter model resulting
from its two-stage model fitting procedures. Simultaneously, it introduces the co-movement
across ages and multiple populations within a highly flexible framework. This flexible ap-
proach allows the inclusion of mortality data for any combination of ages and populations,
and further assigns weights (the posterior probabilities) to corresponding slope estimates
from the random walk with drift models, with or without jump components. The weighted
average, called the Bayesian estimate, is then used to generate mortality forecasts for all
study ages and populations through a linear function. The introduction of jump models
enables the consideration of the impact of extreme events on mortality rates. Our project
supports adding trajectory jump effects into the hierarchical Bayesian model, specifically the
HBS-RWITJ or HBS-RWDTJ model, both of which achieve the lowest AMAPE[25, 84]

[tU +1, 2020], i

values in most conducted tests. From a practical perspective, we favor the HBS-RWITJ
model due to its computational efficiency. The model estimation process for the HBS-RWITJ
model is simpler compared to the HBS-RWDTJ model, where the likelihood involves a se-
ries of iterative processes, resulting in slower computational efficiency. In conclusion, our
proposed model builds upon the hierarchical Bayesian framework, inheriting its capacity to
model dependencies among mortality rates for multiple populations. Notably, we address
the limitation of not accounting for adverse mortality risk. Empirical results demonstrate
that the models with jump components effectively enhance predictive performances in most
cases.
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Appendix A

Lee-Carter (LC) based model

A.1 Classical Lee-Carter (LC) model

Lee and Carter (1992) introduced the Lee-Carter model for a single population i, with the
logarithm of the central death rate, ln(mx, t, i), for age x in year t and population i defined
as follows:

ln(mx, t, i) = αx, i + βx, i · kt, i + εx, t, i, x = xL, . . . , xU , t = tL, . . . , tU ,

where αx, i is the average age-specific mortality factor, kt, i is the time-varying index, βx, i

represents the age-specific reaction to kt, i, and the model errors εx, t, i for all t are indepen-
dent and identically distributed, capturing age-specific effects that are not accounted for in
the model.

The imposed two constraints, ∑tU
t=tL

kt, i = 0 and ∑xU
x=xL

βx, i = 1, lead to the estimates of
αx, i and kt, i as α̂x, i = ∑tU

t=tL
ln(mx, t, i)/(tU − tL + 1) and k̂t, i = ∑xU

x=xL
[ln(mx, t, i) − α̂x, i],

respectively. Furthermore, β̂x, i is achieved by regressing the residual [ln(mx, t, i) − α̂x, i] on
the time-varying index for mortality prediction, k̂t, i, without including a constant term;
and {k̂t, i : t = tL, tL + 1, . . . , tU } is assumed to follow a random walk with a drift model:
k̂t, i = k̂t−1, i + θLC

i + ϵt, i, where the time-varying index errors ϵt, i for t = tL + 1, . . . , tU are
independent and identically distributed, and are also independent of the model errors. The
drift parameter θLC

i for population i can be derived as

θ̂LC
i = 1

tU − tL

tU∑
t=tL+1

(k̂t, i − k̂t−1, i) = k̂tU , i − k̂tL, i

tU − tL
=

xU∑
x=xL

ln(mx, tU , i) − ln(mx, tL, i)
tU − tL

,

that is, the time-varying index for year tU + τ is projected as k̂tU +τ, i = k̂tU , i + τ · θ̂LC
i ,

τ = 1, 2, . . .. Therefore, the logarithm of the projected central death rate for age x in year
tU + τ and population i can be expressed as a linear function as follows:

ln(m̂LC
x, tU +τ, i) = α̂x, i + β̂x, i · (k̂tU , i + τ · θ̂LC

i ) = ln(m̂LC
x, tU , i) + (β̂x, i · θ̂LC

i ) · τ, τ = 1, 2, . . . ,
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with intercept ln(m̂LC
x, tU , i) = α̂x, i + β̂x, i · k̂tU , i and slope (β̂x, i · θ̂LC

i ). To assess the impact
of the slope on predicting mortality rates, the intercept within the Lee-Carter model is
adjusted. The adjustment replaces the fitted value, ln(m̂LC

x, tU , i), with the observed value,
ln(mx, tU , i), effectively preventing jump-off bias. The adjusted LC model is denoted by the
LCr model.

A.2 Joint-k (JK) Lee-Carter model

Carter and Lee (1992) proposed a joint-k model designed to consider the co-movement
among mortality rates across multiple populations. The logarithm of central death rates,
ln(mx, t, i), representing age x in year t and population i, is formulated by incorporating the
time-varying index kt, i = kt for i = 1, . . . , I into the classical Lee-Carter model.

ln(mx, t, i) = αx, i + βx, i · kt + εx, t, i, i = 1, . . . , I, x = xL, . . . , xU , t = tL, . . . , tU ,

where αx, i is the average age-specific mortality factor, kt, i represents the common time-
varying index in year t, βx, i is the age-specific reaction to kt, i, and the model errors εx, t, i

for all t are independent and identically distributed, capturing age-specific effects that are
not accounted for in the model.

The two constraints, ∑tU
t=tL

kt = 0 and ∑I
i=1

∑xU
x=xL

βx, i = 1, give the estimates of αx, i

and kt as α̂x, i = ∑tU
t=tL

ln(mx, t, i)/(tU − tL + 1) and k̂t = ∑I
i=1

∑xU
x=xL

[ln(mx, t, i) − α̂x, i],
respectively. Furthermore, β̂x, i is achieved by regressing the residual [ln(mx, t, i) − α̂x, i]
on the common time-varying index, k̂t, without including a constant term, and {k̂t : t =
tL, tL+1, . . . , tU } is assumed to follow a random walk with a drift model: k̂t = k̂t−1+θJK +ϵt,
where the time-varying index errors ϵt, i for t = tL+1, . . . , tU are independent and identically
distributed, and are also independent of the model errors. The drift parameter θJK can be
derived as:

θ̂JK = 1
tU − tL

tU∑
t=tL+1

(k̂t − k̂t−1) = k̂tU − k̂tL

tU − tL
.

Therefore, the logarithm of the projected central death rate for age x in year tU + τ and
population i under the joint-k (JK) Lee-Carter model can be expressed as a linear function
as follows:

ln(m̂JK
x, tU +τ,i) = α̂x, i + β̂x, i · (k̂tU + τ · θ̂JK) = ln(m̂JK

x, tU , i) + (β̂x, i · θ̂JK) · τ, τ = 1, 2, . . . ,

with intercept ln m̂JK
x, tU , i = α̂x, i + β̂x, i · k̂tU and slope (β̂x, i · θ̂JK). The intercept in the JK

model is adjusted, same as the LC model, from the fitted value, ln m̂JK
x, tU , i, to the observed

value, ln(mx, tU , i). The adjusted JK model is denoted as the JKr model.

A.3 Co-integrated (CI) Lee-Carter model

Li and Hardy (2011) introduced the co-integrated model that suggests a linear relationship
between the time-varying indexes of population i (i ≥ 2) and population 1 (the reference
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population). This setting requires the re-estimation of the time-varying index for population
i (i ≥ 2).

The classical Lee-Carter model is first applied to each population i, yielding the estimates
α̂x, i, β̂x, i, and k̂t, i for i = 1, . . . , I. Subsequently, a linear relationship with an error term et, i

between k̂t, 1 and k̂t, i is assumed, expressed as k̂t, i = ai + bi · k̂t, 1 +et, i. The re-estimation of
kt, i is performed through simple linear regression as ˆ̂

kt, i = âi + b̂i · k̂t, 1 with (â1, b̂1) = (0, 1).
The re-calculated estimate for the drift of the time-varying index for population i, θ̂CI

i , is
then given by

ˆ̂
θCI

i =
ˆ̂
ktU , i − ˆ̂

ktL, i

tU − tL
= b̂i · k̂tU , 1 − k̂tL,1

tU − tL
= b̂i · θ̂LC

1 , i = 1, 2, . . . , I.

Therefore, the logarithm of the projected central death rate for age x in year tU + τ and
population i under the co-integrated (CI) Lee-Carter model can be expressed as a linear
function as follows:

ln(m̂CI
x, tU +τ,i) = α̂x, i + β̂x, i · (k̂tU , i + τ · ˆ̂

θCI
i ) = ln(m̂LC

x, tU , i) + (β̂x, i · ˆ̂
θCI

i ) · τ, τ = 1, 2, . . . ,

with intercept of ln(m̂LC
x, tU , i) and a slope of (β̂x, i · θ̂CI

i ). The intercept in the CI model is
adjusted, same as the LC model, from the fitted value, ln(m̂LC

x, tU , i), to the observed value,
ln(mx, tU , i). The adjusted CI model is denoted by the CIr model.

A.4 Augmented common factor (ACF ) Lee-Carter model

Li and Lee (2005) proposed an augmented common factor that considers both commonalities
in historical experience and individual trend difference. The classical Lee-Carter model is
firstly adjusted to a common factor model by setting βx, i = βx and kt, i = kt for all
populations as

ln(mx, t, i) = αx, i + βx · kt + εx, t, i, i = 1, . . . , I, x = xL, . . . , xU , t = tL, . . . , tU .

The imposed two constraints, ∑tU
t=tL

kt = 0 and ∑I
i=1

∑xU
x=xL

wi · βx = 1, where wi is set to
1/I in this project, representing the weight for population i with the condition ∑I

i=1wi = 1,
lead to the estimates of αx, i and kt, i as α̂x, i = ∑tU

t=tL
ln(mx, t, i)/(tU − tL + 1) and k̂t =∑I

i=1
∑xU

x=xL
wi · [ln(mx, t, i) − α̂x, i], respectively. Furthermore, β̂x, i is achieved by regressing

the residual ∑I
i=1wi · [ln(mx, t, i) − α̂x, i] on the time-varying index for mortality prediction,

k̂t , without including a constant term.

Secondly, an additional factor β′
x, i · k′

t, i is added to the common factor model by Li and
Lee (2005) to incorporate the individual difference in trend. As a result, the augmented
common factor model is

ln(mx, t, i) = αx, i + βx · kt + β′
x, i · k′

t, i + εx, t, i,
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with an additional constraint, ∑xU
x=xL

β′
x, i = 1, which implies that k̂′

t, i can be determined
as k̂′

t, i = ∑xU
x=xL

[
ln (mx, t, i) − α̂x, i − β̂x · k̂t

]
, and β̂′

x, i for each age x can be achieved by
regressing [ln(mx, t, i)− α̂x, i − β̂x · k̂t] on the time-varying index for mortality prediction, k̂′

t, i,
without the constant term. Also, k̂t and k̂′

t, i follow random walks with drifts θCF and θ′ACF
i ,

respectively. The models are defined as k̂t = k̂t−1 + θCF + ϵt and k̂′
t, i = k̂′

t−1, i + θ′ACF
i + ϵt, i,

where each of the time-varying index errors ϵt and ϵt, i for t = tL +1, . . . , tU , are independent
and identically distributed. Moreover, all three error terms, εx, t, i, ϵt, and ϵt, i, are also to
be independent. The estimates of both drift parameters θCF and θ′ACF

i can be obtained as
θ̂CF = (k̂tU − k̂tL)/(tU − tL) and θ̂′ACF

i = (k̂′
tU , i − k̂′

tL,i)/(tU − tL). Therefore, the logarithm
of the predicted central death rates for age x in year tU + τ and population i under the
augmented common factor (ACF ) Lee-Carter model can be expressed as a linear function
as follows:

ln(m̂ACF
x, tU +τ,i) = α̂x, i + β̂x · (k̂tU + τ · θ̂CF ) + β̂′

x, i · (k̂′
tU , i + τ · θ̂′ACF

i )
= ln(m̂ACF

x, tU , i) + (β̂x · θ̂CF + β̂′
x, i · θ̂′ACF

i ) · τ, τ = 1, 2, . . . ,

with intercept ln(m̂ACF
x, tU , i) = α̂x, i + β̂x · k̂tU + β̂′

x, i · k̂′
tU , i and slope (β̂x · θ̂CF + β̂′

x, i · θ̂′ACF
i ).

The intercept in the ACF model is adjusted, same as the JK and CI models, from the
fitted value, ln(m̂ACF

x, tU , i), to the observed value, ln(mx, tU , i). The adjusted ACF model is
denoted by the ACFr model.
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Appendix B

Density function and log-likelihood
function

B.1 Random walk with permanent jump effects

If Nx, t+1, i = 0, random variable Yx, t, i is normally distributed with mean (αx, i − 1
2σ

2
x, i) and

variance σ2
x, i; whereas, if Nx, t+1, i = 1, random variable Yx, t, i is normally distributed with

mean (αx, i − 1
2σ

2
x, i + µx, i) and variance (σ2

x, i + s2
x, i). The probability density function of

Yx, t, i is given by

fYx, t, i(yx, t, i) = fYx, t, i(yx, t, i|Nx, t+1, i = 0) · Pr(Nx, t+1, i = 0)
+ fYx, t, i(yx, t, i|Nx, t+1, i = 1) · Pr(Nx, t+1, i = 1)

= 1√
2π σ2

x, i

exp
{

−
[yx, t, i − (αx, i − 1

2σ
2
x, i)]2

2σ2
x, i

}
· (1 − ηx, i)

+ 1√
2π (σ2

x, i + s2
x, i)

exp
{

−
[yx, t, i − (αx, i − 1

2σ
2
x, i + µx, i)]2

2 (σ2
x, i + s2

x, i)

}
· ηx, i. (B.1)

Assuming we have observations yx, tL+1, i, . . . , yx, tU , i, then the log-likelihood function can
be expressed as follows:

tU∑
t=tL+1

ln[fYx, t, i(yx, t, i)]

=
tU∑

t=tL+1
ln

 1√
2π σ2

x, i

exp
(

−
[yx, t, i − (αx, i − 1

2σ
2
x, i)]2

2σ2
x, i

)
· (1 − ηx, i)

+ 1√
2π (σ2

x, i + s2
x, i)

exp
(

−
[yx, t, i − (αx, i − 1

2σ
2
x, i + µx, i)]2

2 (σ2
x, i + s2

x, i)

)
· ηx, i

 .
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B.2 Random walk with independent transitory jump effects

The framework of RWITJ assumes an independent data structure. The derivation of the
density and likelihood of the RWITJ model can be referenced in the scenarios outlined in
Table 3.1.

fYx, t, i(yx, t, i) = fYx, t, i(yx, t, i|Nx, t, i = 0, Nx, t+1, i = 0) · Pr(Nx, t, i = 0, Nx, t+1, i = 0)
+ fYx, t, i(yx, t, i|Nx, t, i = 1, Nx, t+1, i = 0) · Pr(Nx, t, i = 1, Nx, t+1, i = 0)
+ fYx, t, i(yx, t, i|Nx, t, i = 0, Nx, t+1, i = 1) · Pr(Nx, t, i = 0, Nx, t+1, i = 1)
+ fYx, t, i(yx, t, i|Nx, t, i = 1, Nx, t+1, i = 1) · Pr(Nx, t, i = 1, Nx, t+1, i = 1)

= 1√
2π σ2

x, i

exp
{

−
[yx, t, i − (αx, i − 1

2σ
2
x, i)]2

2σ2
x, i

}
· (1 − ηx, i)2

+ 1√
2π (σ2

x, i + s2
x, i)

exp
{

−
[yx, t, i − (αx, i − 1

2σ
2
x, i − µx, i)]2

2 (σ2
x, i + s2

x, i)

}
· ηx, i (1 − ηx, i)

+ 1√
2π (σ2

x, i + s2
x, i)

exp
{

−
[yx, t, i − (αx, i − 1

2σ
2
x, i + µx, i)]2

2 (σ2
x, i + s2

x, i)

}
· (1 − ηx, i) ηx, i

+ 1√
2π (σ2

x, i + 2 s2
x, i)

exp
{

−
[yx, t, i − (αx, i − 1

2σ
2
x, i)]2

2 (σ2
x, i + 2 s2

x, i)

}
· η2

x, i. (B.2)

Assuming we have observations yx, tL+1, i, . . . , yx, tU , i, then the log-likelihood function can
be expressed as follows:

tU∑
t=tL+1

ln[fYx, t, i(yx, t, i)]

=
tU∑

t=tL+1
ln

 1√
2π σ2

x, i

exp
(

−
[yx, t, i − (αx, i − 1

2σ
2
x, i)]2

2σ2
x, i

)
· (1 − ηx, i)2

+ 1√
2π (σ2

x, i + s2
x, i)

exp
(

−
[yx, t, i − (αx, i − 1

2σ
2
x, i − µx, i)]2

2 (σ2
x, i + s2

x, i)

)
· ηx, i (1 − ηx, i)

+ 1√
2π (σ2

x, i + s2
x, i)

exp
(

−
[yx, t, i − (αx, i − 1

2σ
2
x, i + µx, i)]2

2 (σ2
x, i + s2

x, i)

)
· (1 − ηx, i) ηx, i

+ 1√
2π (σ2

x, i + 2 s2
x, i)

exp
(

−
[yx, t, i − (αx, i − 1

2σ
2
x, i)]2

2 (σ2
x, i + 2 s2

x, i)

)
· η2

x, i

 .
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B.3 Random walk with dependent transitory jump effects

The framework of RWDTJ takes into account dependent data structure. As two consecutive
periods are correlated, the conditional maximum likelihood estimation (CMLE) should be
employed for parameter estimation. The joint density can be derived as follows:

f(yx, tL+1, i, yx, tL+2, i, . . . , yx, tU , i)
= f(yx, tU , i|yx, tL+1, i, yx, tL+2, i, . . . , yx, tU −1, i) f(yx, tL+1, i, yx, tL+2, i, . . . , yx, tU −1, i)
= f(yx, tU , i|yx, tU −1, i) f(yx, tU −1, i|yx, tL+1, i, . . . , yx, tU −2, i) f(yx, tL+1, i, . . . , yx, tU −2, i)

...
= f(yx, tU , i|yx, tU −1, i) f(yx, tU −1, i|yx, tU −2, i) . . . f(yx, tL+2, i|yx, tL+1, i) f(yx, tL+1, i)

=
tU −1∏

t=tL+1
f(yx, t+1, i|yx, t, i) · f(yx, tL+1, i). (B.3)

Referring to Equation (3.5), the system exhibits a Markov property: when Nx, t+1, i = 0,
Yx, t, i and Yx, t+1, i are not affected by the jump component in period t+1, resulting in Yx, t, i

being independent of Yx, t+1, i. Conversely, when Nx, t+1, i = 1, both Yx, t, i and Yx, t+1, i are
simultaneously driven by the jump component in period t + 1, requiring further analyses
for different combinations of {Nx, t, i, Nx, t+1, i, Nx, t+2, i}. For clarity, f(yx, t+1, i|yx, t, i) for
t = tL + 1, . . . , tU − 1 and f(yx, tL+1, i) in Equation (B.3), with the corresponding scenarios
outlined in Tables 3.2 and 3.1, respectively, can be derived as follows:

f(yx, t+1, i|yx, t, i)
= f(yx, t+1, i|Nx, t+1, i = 0, Nx, t+2, i = 0) · Pr(Nx, t+1, i = 0, Nx, t+2, i = 0)

+ f(yx, t+1, i|Nx, t+1, i = 0, Nx, t+2, i = 1) · Pr(Nx, t+1, i = 0, Nx, t+2, i = 1)
+ f(yx, t+1, i|yx, t, i, Nx, t, i = 0, Nx, t+1, i = 1, Nx, t+2, i = 0) · Pr(Nx, t, i = 0, Nx, t+1, i = 1, Nx, t+2, i = 0)
+ f(yx, t+1, i|yx, t, i, Nx, t, i = 1, Nx, t+1, i = 1, Nx, t+2, i = 0) · Pr(Nx, t, i = 1, Nx, t+1, i = 1, Nx, t+2, i = 0)
+ f(yx, t+1, i|yx, t, i, Nx, t, i = 0, Nx, t+1, i = 1, Nx, t+2, i = 1) · Pr(Nx, t, i = 0, Nx, t+1, i = 1, Nx, t+2, i = 1)
+ f(yx, t+1, i|yx, t, i, Nx, t, i = 1, Nx, t+1, i = 1, Nx, t+2, i = 1) · Pr(Nx, t, i = 1, Nx, t+1, i = 1, Nx, t+2, i = 1)

= 1√
2π σ2

x, i

exp
{

−
[
yx, t+1, i − (αx, i − 1

2σ
2
x, i

)
]2

2σ2
x, i

}
· Pn n

+ 1√
2π (σ2

x, i + s2
x, i)

exp
{

−
[yx, t+1, i − (αx, i − 1

2σ
2
x, i + µx, i)]2

2 (σ2
x, i + s2

x, i)

}
· Pn y

+ 1√
2π (2σ2

x, i)
exp

{
−

[yx, t+1, i − (−yx, t, i + 2 (αx, i − 1
2σ

2
x, i))]2

2 (2σ2
x, i)

}
· Pn y n

+ 1√
2π (2σ2

x, i + s2
x, i)

exp
{

−
[yx, t+1, i − (−yx, t, i + 2 (αx, i − 1

2σ
2
x, i − µx, i))]2

2 (2σ2
x, i + s2

x, i)

}
· Py y n

+ 1√
2π (2σ2

x, i + s2
x, i)

exp
{

−
[yx, t+1, i − (−yx, t, i + 2 (αx, i − 1

2σ
2
x, i + µx, i))]2

2 (2σ2
x, i + s2

x, i)

}
· Pn y y

+ 1√
2π (2σ2

x, i + 2 s2
x, i)

exp
{

−
[yx, t+1, i − (−yx, t, i + (αx, i − 1

2σ
2
x, i))]2

2 (2σ2
x, i + 2 s2

x, i)

}
· Py y y,
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and

f(yx, tL+1, i) = f(yx, tL+1, i|Nx, tL+1, i = 0, Nx, tL+2, i = 0) · Pr(Nx, tL+1, i = 0, Nx, tL+2, i = 0)
+ f(yx, tL+1, i|Nx, tL+1, i = 0, Nx, tL+2, i = 1) · Pr(Nx, tL+1, i = 0, Nx, tL+2, i = 1)
+ f(yx, tL+1, i|Nx, tL+1, i = 1, Nx, tL+2, i = 0) · Pr(Nx, tL+1, i = 1, Nx, tL+2, i = 0)
+ f(yx, tL+1, i|Nx, tL+1, i = 1, Nx, tL+2, i = 1) · Pr(Nx, tL+1, i = 1, Nx, tL+2, i = 1)

= 1√
2π σ2

x, i

exp
{

−
[yx, tL+1, i − (αx, i − 1

2σ
2
x, i)]2

2σ2
x, i

}
· Pn n

+ 1√
2π (σ2

x, i + s2
x, i)

exp
{

−
[yx, tL+1, i − (αx, i − 1

2σ
2
x, i + µx, i)]2

2 (σ2
x, i + s2

x, i)

}
· Pn y

+ 1√
2π (σ2

x, i + s2
x, i)

exp
{

−
[yx, tL+1, i − (αx, i − 1

2σ
2
x, i − µx, i)]2

2 (σ2
x, i + s2

x, i)

}
· Py n

+ 1√
2π (σ2

x, i + 2 s2
x, i)

exp
{

−
[yx, tL+1, i − (αx, i − 1

2σ
2
x, i)]2

2 (σ2
x, i + 2 s2

x, i)

}
· Py y,

where
Pn n = Pr(Nx, t+1, i = 0, Nx, t+2, i = 0),
Pn y = Pr(Nx, t+1, i = 0, Nx, t+2, i = 1),
Py n = Pr(Nx, t+1, i = 1, Nx, t+2, i = 0),
Py y = Pr(Nx, t+1, i = 1, Nx, t+2, i = 1),

Pn y n = Pr(Nx, t, i = 0, Nx, t+1, i = 1, Nx, t+2, i = 0),
Py y n = Pr(Nx, t, i = 1, Nx, t+1, i = 1, Nx, t+2, i = 0),
Pn y y = Pr(Nx, t, i = 0, Nx, t+1, i = 1, Nx, t+2, i = 1),
Py y y = Pr(Nx, t, i = 1, Nx, t+1, i = 1, Nx, t+2, i = 1).

Note that the derivation of f(yx, t+1, i|yx, t, i) aligns with the previously mentioned fact that
when Nx, t+1, i = 0, Yx, t, i and Yx, t+1, i are independent each other. Therefore, there is no
need to involve yx, t+1, i in the first two terms.

Next, assuming we have observations yx, tL+1, i, . . . , yx, tU , i, then the log-likelihood function
can be calculated by taking the logarithm on Equation (B.3) as follows:

ln[f(yx, tL+1, i, . . . , yx, tU , i)] = ln[f(yx, tU , i|yx, tU −1, i) . . . f(yx, tL+2, i|yx, tL+1, i) f(yx, tL+1, i)]

=
tU −1∑

t=tL+1
ln[f(yx, t+1, i|yx, t, i)] + log[f(yx, tL+1, i)].
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