
 
 

Rule Formation in Simulation-Based Discovery 
Learning: Optimized Clustering based on 

Levenshtein Edit Distance 

by  

Teeba Obaid  

M.Ed., Athabasca University, 2016  

B.A., Kwantlen Polytechnic University, 2009  

Thesis Submitted in Partial Fulfillment of the  

Requirements for the Degree of  

Doctor of Philosophy  

in the  

Educational Psychology Program   

Faculty of Education  

© Teeba Obaid 2024  

SIMON FRASER UNIVERSITY  

Spring 2024  

Copyright in this work is held by the author. Please ensure that any reproduction or 

re-use is done in accordance with the relevant national copyright legislation. 

 



 ii 

  
Declaration of Committee  
 
Name:   Teeba Obaid  

Degree:   Doctor of Philosophy  
 
Title:  Rule Formation in Simulation-Based Discovery Learning: 

Optimized Clustering based on Levenshtein Edit Distance 
 
Committee:   Chair:  John Nesbit 

Professor, Education 

Philip H. Winne  
Supervisor  
Professor, Education  

Tenzin Doleck    
Committee Member  
Assistant Professor, Education  

Engida Gebre 
Examiner  
Associate Professor, Education  
 
Gregory Thomas 
External Examiner   
Professor, Faculty of Education 
University of Alberta 
 

 

 

 

 

 



 iii 

Ethics Statement 

 

 
 

 
 
 
 
 
 
 



 iv 

Abstract  

This study investigates how tools for formulating rules affect learning in a simulation of 

series electric circuits. Computer simulations can enhance exploratory learning but pose 

challenges to testing hypotheses, designing experiments, and interpreting data. I 

analyzed students' engineering tactics and search strategies in a simulation 

supplemented with tools guiding how to formulate rules. Participants were randomly 

assigned to a control or one of two experimental groups. Detectable strategy differences 

between groups were observed. Sequence analysis, leveraging Levenshtein edit 

distance, K-means clusters, silhouette coefficient, and generalized median method, 

revealed unique learning paths labeled Reinforced Confirmers, Dual-mode Strategy 

Diversifiers, Multi-strategy Jugglers, Self-regulated Revisers, and Methodical Integrators. 

This research contributes insights about effective instructional strategies for discovery 

learning in simulations, particularly how to improve knowledge integration and self-

regulated learning in complex scientific domains. 

 

Keywords: Simulation learning; discovery learning; knowledge integration; Levenshtein 

edit distance; K-means clustering; generalized median string; silhouette coefficient; 

electric circuits 
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Chapter 1. General Overview and Purpose of 
Study 

1.1. Introduction  

 

Simulation-based discovery learning uses computer simulations to promote 

exploratory learning and comprehension of intricate concepts like electric circuits and 

Ohm's law (Ma & Nickerson, 2006; Quellmalz et al., 2012). These systems’ immersive 

virtual environment provides opportunities for learners to engage with scientific 

phenomena, design experiments, and test hypotheses. They have shown a potential to 

enhance conceptual understanding in domains like chemistry, allowing learners to 

visualize molecular structures and processes (Khan, 2011; Ma & Nickerson, 2006). 

However, despite appealing potential, learners using simulations for inquiry learning often 

encounter difficulties in testing hypothesis, designing experiments, interpreting data, and 

regulating their learning processes (de Jong et al., 1988; Friedler et al., 1990; Krajcik et 

al., 2000; Kuhn et al., 2000; Lewis et al., 1993; Njoo & de Jong, 1993; White, 1993, 

Bodemer, 2004). Bodemer (2004) found dynamic and interactive visualizations did not 

add much value over static ones, corroborating challenges that learners face in these 

areas. These challenges have been particularly noticeable in learning about series 

electric circuits, a topic notorious for its complexity and associated student 

misconceptions (Obaid et al., 2023a). 

 

Insufficiently exploring alternative conditions and gathering limited evidence often 

leads to a poor understanding of the relationships between current, resistance, and 

voltage drop in series electric circuits. Occasionally, further misconceptions arise 

(Chambers et al., 1994; Obaid, 2023a). These difficulties not only depress motivation for 

learning but also hinder integrating domain-specific knowledge (Minstrell, 2000; Schauble 

et al., 1991). I agree with Bodemer’s (2004) view: these difficulties are exacerbated in 

simulation-based learning environments when learners struggle to progress through 

stages of scientific inquiry. In this context, prior studies highlighted learners' comparative 

testing and inference-making are important to realize learning gains during simulation-

based discovery learning (Obaid et al., 2023a). Bodemer's (2004) study supports this 
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argument, as the effectiveness of active information integration was particularly evident 

for questions requiring transformation from graphical to textual representations. 

 

Novice learners also encounter other challenges. Unless provided without 

appropriate guidance, they may rely on random search procedures or endure excessive 

cognitive load, leading to suboptimal learning (Kalyuga, 2011). Such challenges 

underscore the necessity for well-designed instructional methods in educational settings. 

In response to these challenges, there has been a growing adoption of computer-based 

learning environments, particularly interactive simulations. These simulations are 

designed to represent multi-step procedures and abstract concepts in a more engaging 

and understandable manner. The rationale behind this approach is to stimulate active 

learner engagement and encourage constructive learning processes, as suggested by de 

Jong & van Joolingen (1998), Rieber et al. (2004), and Schnotz et al. (1999). The aim is 

to cultivate deeper domain knowledge by enabling students to actively engage in 

scientific reasoning. This includes defining problems, formulating hypotheses, designing 

and executing experiments, and evaluating results. However, despite their potential, 

these simulations present their own set of challenges, as noted by Bodemer (2004), 

particularly in the stages of hypothesis formulation and data evaluation.  

 

Moreover, the use of dynamic visualizations in these simulations, while intended 

to enhance learning, can sometimes contribute to the very challenges they seek to 

mitigate. Specifically, such visual elements can lead to cognitive overload or hinder self-

regulated learning, as indicated by Lowe (1999) and Schnotz et al. (1999). Additionally, 

the integration of multiple types of external representations, such as text and images, 

often proves difficult for students. This difficulty can lead to disjointed knowledge 

structures, a concern echoed by Ainsworth (1999), Larkin & Simon (1987), and Mayer 

(1997, 2001). While there are supports designed to ease these challenges, their 

effectiveness has shown mixed results in empirical studies (van Joolingen & de Jong, 

1991; Leutner, 1993; Njoo & de Jong, 1993; Swaak et al., 1998). A notable factor in 

these mixed outcomes is the learners' prior knowledge, or lack thereof, which is crucial 

for engaging effectively with complex visualizations, as discussed by Leutner (1993), 

Lowe (1999), and Schauble et al. (1991). This study investigates methods to reduce 

these challenges for learners using the WISE domain 

(https://wise.berkeley.edu/preview/unit/37434/node37) and the PhET electric circuit 

simulation (https://phet.colorado.edu/sims/html/circuit-construction-kit-dc/latest/circuit-
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construction-kit-dc_all.html) to investigate and learn about Ohm’s law. I designed a 

bespoke rule formation tool to provide an interactive context for learners to explore 

electric circuits and test rules describing Ohm’s law. This study delves into how learners’ 

cognition and metacognition influence knowledge integration and self-regulated learning, 

and the potential to ameliorate misconceptions and foster effective hypothesis testing. 

The research underscores the critical role of scaffolding and guidance in rule formation, 

knowledge integration, and self-regulated learning, offering insights for future 

instructional design in similar educational settings.  
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Chapter 2. Literature Review  

2.1. Overview 

 

In chapter 2, I delve into several topics that provide essential context for 

addressing our research question. Firstly, I explore discovery learning and its applicability 

within simulation-based contexts, setting the stage for understanding how students 

engage with learning in this context. The integration of engineering approaches, aligned 

with the Next Generation Science Standards (NGSS), is another focal point, directly 

relevant to our research question as it investigates how students construct simulation 

circuits and plan investigations. Additionally, the discussion on search strategies in 

discovery learning underscores their importance in guiding learners during hypothesis 

generation and variable manipulation, critical aspects of problem-solving within 

simulation-based learning environments. I also examine heuristics, their benefits, and 

limitations, highlighting their relevance to the research question by exploring interventions 

that leverage heuristics to enhance learning within simulation-based contexts. 

Furthermore, this section addresses the selection of evidence for testing hypotheses, a 

core element of scientific discovery learning, and its connection to students' engineering 

and search strategies within simulation-based learning. I delve into the concept of rule 

formation in discovery learning, particularly in computer models and simulations, directly 

connecting to the research question by showcasing how students generate, apply, and 

modify rules to understand scientific phenomena. Self-regulated learning is introduced as 

an essential aspect that intertwines with rule formation in simulation-based discovery 

learning, highlighting the active role of students in their learning process. Finally, 

knowledge integration (KI) is discussed, emphasizing the merging of ideas for better 

comprehension, with direct relevance to the research question as KI explores how the 

rule formation tool aids students in making sense of observations and integrating new 

ideas. In essence, chapter 2 provides a comprehensive framework that connects these 

key topics to our research questions, offering insights into how students engage with 

simulation-based discovery learning and the factors and interventions influencing their 

learning paths and knowledge integration. 

2.2. Discovery Learning and Simulation 
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Inquiry-based learning offers a robust framework for exploring the dynamics of 

how students form rules in simulation-based environments. Within this domain, discovery 

learning emerges as a particularly influential subset. Rooted in constructivist principles, 

discovery learning entrusts learners with the responsibility of navigating and interacting 

with learning materials to independently identify patterns and causal relationships, as 

highlighted by Reid et al. (2003). While inquiry-based learning can involve guided 

exploration based on questions, discovery learning particularly emphasizes positioning 

learners at the heart of the process, allowing them to uncover these patterns with minimal 

guidance, as emphasized by Alfieri et al. (2011). This educational approach reflects a 

gradual shift away from explicit instruction toward exploration and invention (Lazonder & 

Harmsen, 2016). In this study, I use inquiry learning to describe the environment and the 

instructional tasks to guide eliciting, distinguishing, and revising ideas through exploration 

tasks, prediction tasks, and investigation tasks; and I use discovery learning to refer to 

the cognitive process facilitated by the inquiry environment. 

 

Notwithstanding the potential of discovery learning, the literature reveals an 

ongoing debate regarding its efficacy and limitations (Hmelo-Silver et al., 2007; Kirschner 

et al., 2006). Central to these discussions are discrepancies regarding the optimal 

structure and guidance for discovery tasks. Key aspects of guidance, such as timing, 

directiveness, and content, are debated, alongside the suitability of discovery learning 

across various learning contexts. Additionally, there is a discourse on balancing the 

demands of discovery learning with cognitive load considerations. The term 'discovery 

learning' itself remains broadly and inconsistently defined, primarily revolving around the 

notion of learners independently discovering target information or developing 

understanding from provided materials (Bruner et al., 1956). 

 

Starting in the 1950s, research laid the groundwork for comparing discovery 

learning methods with other instructional forms, asserting the importance of self-guided 

comprehension (Bruner et al., 1956). More recent meta-analyses have elucidated 

conditions under which discovery learning, particularly in its assisted form, can 

outperform explicit instruction (Alfieri et al., 2011). While unassisted discovery learning 

has shown mixed results, enhanced discovery learning, featuring elements of scaffolding 

and guidance, has proven generally favorable compared to other instructional forms. This 

research deliberately focuses on discovery learning despite the ongoing debate and shift 

toward a framework labeled structured inquiry. The choice is informed by literature, 
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including Alfieri et al. (2011), which illustrates that discovery learning, when effectively 

scaffolded, can foster more profound learning achievements. This nuanced 

understanding guides this study's approach, integrating elements of guidance within the 

discovery learning framework to balance autonomy with support, reflecting the mixed 

results in the efficacy of purely unassisted discovery learning. 

 

While traditional explicit instruction might more efficiently promote acquiring facts, 

knowledge gleaned through discovery learning tends to endure longer and seep deeper 

into learners' values, cognitive skills, and self-constructed understanding (Dewey, 1910). 

This learning approach aligns well with the interactive, immersive nature of simulation-

based learning, potentially enhancing the benefits of discovery learning. Moreover, the 

critical role of active engagement and learners' experiment design cannot be 

understated, especially in simulation-based discovery learning, where learners grapple 

with complex virtual environments (Chambers et al., 1994; de Jong & van Joolingen, 

1998). 

 

Discovery learning, while promising, can sometimes lead to learners feeling 

overwhelmed or failing to achieve the intended learning outcomes. This emphasizes the 

importance of carefully balancing discovery learning strategies. Reid et al. (2003) 

identified several difficulties learners encounter in scientific discovery learning (SDL), 

such as challenges in generating and adapting hypotheses, poorly designed 

experiments, difficulties in data interpretation, and problems with regulating the discovery 

learning process. These challenges highlight the need for sufficient support or scaffolding 

to facilitate effective discovery learning activities. SDL typically involves problem-solving 

activities and performing scientific experiments, comprising three main processes: 

representing problems and generating hypotheses, testing hypotheses through valid 

experiments, and reflectively abstracting and integrating discovery experiences (Reid et 

al., 2003). 

 

Existing literature underscores the importance of worked examples and timely 

feedback in discovery learning environments, given inherent limitations of human working 

memory (Sweller et al., 1998). Furthermore, theory suggests effective discovery learning 

requires learners to engage constructively with the task and generate ideas beyond the 

given information (Kirschner et al., 2006). Reid et al. (2003) echo this, noting the quality 
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of learner engagement with experimental activities significantly influences rule discovery 

and understanding. 

 

Reid et al. (2003) proposed three types of learning support: interpretative support, 

experimental support, and reflective support. Interpretative support focuses on assisting 

learners with knowledge access and activation, hypothesis generation, and construction 

of coherent understandings. It plays a crucial role in activating relevant knowledge, 

enhancing problem representation, promoting hypothesis generation, and facilitating 

access to the knowledge base (Reid et al., 2003). Experimental support, on the other 

hand, aims to aid learners in the systematic and logical design of scientific experiments, 

prediction, observation, and conclusion drawing. While the overall effects of experimental 

support were less clear in Reid et al.'s (2003) study, it was found to have a positive effect 

on learners' intuitive understanding when supplemented by interpretative support. 

Experimental support alone did not significantly improve learners' experimental activities 

or overall learning outcomes, potentially due to the age of the participants (12-13 years 

old) (Reid et al., 2003). Nevertheless, the study underscored the importance of 

experimental activities that effectively guide learners to the correct rule, as these 

activities led to better outcomes in experiment design indices and the principle 

knowledge test. 

 

Discovery learning coupled with simulation have been identified as potent 

teaching methods, with research indicating that discovery-based instruction enhances 

learning outcomes (Alfieri et al., 2011). Computer simulations have also been found to 

foster understanding of scientific concepts (Chambers et al., 1994; de Jong & van 

Joolingen, 1998). Yet, the critical role of active engagement and learners' experiment 

design cannot be understated, especially in simulation-based discovery learning, where 

learners grapple with complex virtual environments (Strand-Cary & Klahr, 2008). 

 

Careful instructional design is required to ensure simulation and discovery tasks 

are well-structured, meaningful, and manageable. Learners need to be adequately 

supported throughout the process to ensure they do not become overwhelmed or 

confused. This involves offering appropriate scaffolding and feedback, as well as 

adjusting the level of guidance based on individual learner’s needs. The study by Correia 

et al. (2019) further supports the importance of scaffolding and support in simulation-

based discovery learning. Their research focused on using the PhET simulation to teach 



 8 

gas laws on the submicroscopic level to secondary school students. The study 

incorporated a computer-assisted scaffolding system along with the simulation to 

facilitate conceptual understanding. The findings demonstrated that the combination of 

the scaffolding system and the simulation facilitated learners' conceptual comprehension 

of gas behavior on the submicroscopic level. Students reported positive learning 

experiences and highlighted the helpful features of the program, such as pop-up 

explanations, images, model explorations, guiding questions, diagrams, and feedback. 

 

It is argued that with proper structure and guidance, the efficacy of discovery 

learning can be enhanced (Mayer, 2004; Alfieri et al., 2011). This involves optimizing the 

type and quality of support provided to learners, promoting better experiment design and 

rule discovery outcomes (Reid et al., 2003). By employing simulation-based discovery 

learning and utilizing a bespoke IF-THEN rule formation tool designed for this research, 

my study aims to enhance learning outcomes and promote the development of deep 

understanding of electric circuits. The tool aligns with Reid et al.'s (2003) findings 

regarding the importance of experimental support, providing structured guidance to 

facilitate the discovery learning process. 

 

By leveraging the benefits of discovery learning and simulation-based 

environments, the intervention researched in this study provides learners with an 

interactive and immersive context intended to foster active engagement and the 

exploration of complex concepts. This approach aligns with constructivist principles, 

placing the learner at the center of the learning process. The study aims to contribute to 

the ongoing discourse around discovery learning, especially in a simulation-based 

environment, by exploring the role of experimental support and interpretative support in 

rule discovery. Through careful instructional design and the utilization of the IF-THEN 

rule formation tool, our research strives to shed light on the optimal conditions for 

successful discovery learning and provide actionable insights for educators and 

instructional designers in the field. Moving beyond the traditional approach of leaving 

learners to their own devices in simulation settings, this research underscores the 

imperative of structured support for deepening learners' understanding of relationships 

and enhancing their inferencing skills. This focus elevates the study's significance, 

advocating for a more guided learning experience within discovery and simulation-based 

education. 
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2.3. Engineering Approaches in Learning  

 

In the context of the Next Generation Science Standards (NGSS) and the article 

by NGSS Lead States (2013), "engineering practices" refer to specific actions and skills 

students should engage to develop understanding of engineering principles and 

practices. These practices are an integral part of the NGSS framework, designed to 

integrate engineering into science education.  

 

The NGSS identifies eight engineering practices students should participate in to 

enhance their knowledge and skills in engineering (NGSS Lead States, 2013). These 

practices serve as a foundation for students' engagement in the engineering design 

process and their ability to think and problem-solve like engineers. The eight engineering 

practices are (NGSS Lead States, 2013): 

 

1. Defining problems: Students should be able to identify and define problems within 

the context of engineering design challenges. They should also be capable of 

establishing criteria for and constraints on potential solutions. 

2. Developing and using models: Students should be proficient in creating and 

utilizing models to represent and simulate real-world systems or processes that 

are relevant to engineering design. 

3. Planning and carrying out investigations: Students should engage in planning and 

conducting investigations to gather data and evidence for designing and 

improving engineering solutions. 

4. Analyzing and interpreting data: Students should possess the ability to analyze 

and interpret data collected from investigations, identify patterns, and 

relationships, and make evidence-based decisions in engineering design. 

5. Designing solutions: Students should demonstrate competence in developing and 

refining engineering designs using scientific and engineering knowledge, while 

considering factors such as criteria (specific requirements or standards that the 

design must meet), constraints, and trade-offs. 

6. Engaging in argument from evidence: Students should construct arguments 

based on evidence and scientific reasoning to justify their engineering design 

decisions. 
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7. Constructing explanations and designing solutions: Students should be proficient 

in constructing explanations and designing solutions based on scientific and 

engineering principles.  

8. Obtaining, evaluating, and communicating information: Students should be able to 

gather, evaluate, and communicate relevant information and data to support 

engineering design solutions. They should also engage in scientific and technical 

communication. 

 

These engineering practices form the foundation for students' engagement in the 

engineering design process and their ability to develop a deeper understanding of 

engineering concepts and applications. By integrating these practices into science 

education, NGSS aims to foster critical thinking, creativity, and innovation among 

students (NGSS Lead States, 2013). 

 

The application of engineering practices in this study was operationalized as 

"engineering approaches," which involved students' construction of simulation circuits 

and planning and carrying out investigations through comparative selections of variables. 

Additionally, the "searching strategies" were described as the process of forming rules 

during simulation learning. These engineering approaches reflect the NGSS engineering 

practices of "developing and using models" (practice 2) and "planning and carrying out 

investigations" (practice 3) using the electric circuit simulation and the rule-formation tool. 

 

By incorporating these engineering approaches, this study provides students with 

opportunities to actively engage in the engineering design process and develop their 

understanding of engineering concepts and applications. The rule formation tool 

designed for this research and the PhET electric circuit simulation allow students to 

explore relationships between current, resistance, and voltage, analyze data, and make 

evidence-based decisions. 

 

Furthermore, this study's focus on the impact of engineering approaches and 

search strategies on knowledge integration and self-regulated learning highlights the 

importance of understanding how students navigate the engineering design process and 

apply knowledge acquired in a simulated learning environment. This investigation 

contributes to the broader knowledge base on effective integration of engineering 
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practices and simulation-based learning approaches, offering insights into instructional 

strategies that enhance students' critical thinking and problem-solving skills as engineers. 

 

2.4. Search Strategies in Discovery Learning  

 

Discovery learning is an instructional approach that emphasizes learners' active 

engagement in exploring and uncovering new knowledge. Central to the discovery 

learning process is the use of effective search strategies, which guide learners in 

manipulating variables and generating hypotheses to induce rules. The study by Bruner 

et al. (1956) serves as a foundational work in investigating learners' strategies for 

inducing rules through variable manipulation within a simulation-based context. 

 

Bruner et al. (1956) identified and classified different search strategies employed 

by learners during discovery learning. These strategies include confirmation redundancy, 

simultaneous scanning, successive scanning, focus gambling, and conservative 

focusing. In confirmation redundancy, learners test alterations of the same instance 

repeatedly, seeking confirmation of a hypothesis. Simultaneous scanning involves 

considering all attributes simultaneously and eliminating or ruling out as many 

hypotheses as possible, optimizing for the most informative choice, while successive 

scanning entails attending to one attribute at a time. Conservative focusing involves 

changing only one attribute on each trial to investigate a single hypothesis, whereas 

focus gambling entails changing all but one attribute in each trial. 

 

The study conducted by Farris and Revlin (1989) shed light on various search 

strategies employed by learners and their implications for the discovery learning process. 

By analyzing sequences of prediction, confidence measures, problem identification, rule 

formation, and knowledge integration, the researchers identified pathways through which 

learners built, revised, and integrated their understanding of concepts. These findings 

highlight the significance of search strategies in facilitating the formation and integration 

of rules during simulation-based discovery learning. The researchers found students 

consistently employed a disconfirmation strategy when assessing hypotheses in the rule 

discovery task. This strategy generates counterexamples that would be false if the 

hypothesis was true. However, when students were also required to generate 

hypotheses, they used a counterfactual inference strategy. This strategy assumes the 
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hypothesized rule was false and generated examples consistent with an alternative 

hypothesis. While both strategies involve attempting to falsify a hypothesis, the 

disconfirmation strategy focuses on finding explicit contradictions to the hypothesis, while 

the counterfactual inference strategy involves assuming the falsity of the hypothesis and 

exploring alternative scenarios to assess its plausibility. The disconfirmation strategy 

directly targets the hypothesis, whereas the counterfactual inference strategy considers 

hypothetical conditions to evaluate the hypothesis indirectly. The results suggested that 

the selection of the hypothesis testing strategy depended on the logical requirements of 

the task and the desirability of the outcomes. 

 

The study by Farris and Revlin (1989) contributes to understanding search 

strategies in discovery learning, emphasizing the importance of employing effective 

hypothesis testing strategies. It highlights the role of disconfirmation and counterfactual 

reasoning in facilitating the evaluation and generation of hypotheses during the rule 

discovery process. These strategies can enhance the formation and integration of rules 

during simulation-based discovery learning. 

 

Klahr and Dunbar (1988) further expanded understanding of search strategies in 

discovery learning by proposing the dual search model of scientific discovery. Their 

studies involved subjects in a simulated scientific discovery context, aiming to uncover 

how a new function worked. They identified two main strategies for generating new 

hypotheses: searching the hypothesis space and searching the experiment space. 

Participants labeled Experimenters conducted experiments to test hypotheses and 

explored the experiment space, while Theorists searched the hypothesis space for an 

appropriate frame and proposed new hypotheses within the same frame. The 

Experimenters' goal was to discover the correct rule through systematic exploration of the 

experiment space. On the other hand, Theorists relied on prior knowledge and induction 

from outcomes to generate hypotheses. The results indicated Theorists tended to reach 

a solution faster than Experimenters. Their focus on searching the hypothesis space and 

leveraging prior knowledge allowed them to generate more plausible hypotheses, leading 

to more efficient discovery. In contrast, Experimenters, who relied on exploration of the 

experiment space, conducted a larger number of experiments to test hypotheses. The 

findings of Klahr and Dunbar (1988) highlight the importance of search in two problem 

spaces, the hypothesis space and experiment space, in scientific reasoning. Their 

proposed model offers a framework for understanding hypothesis formation and scientific 
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discovery. The model emphasizes the interaction between learners’ hypothesis 

generation, experimental design, and hypothesis evaluation. By incorporating the findings 

of Klahr and Dunbar (1988), this study recognizes the interaction between the hypothesis 

space and experiment space, as students navigate the complexities of variable 

manipulation and hypothesis generation. The simulation and the rule formation tool 

developed for this research provide a rich context for investigating learners’ engineering 

approaches and search strategies. Students engage in constructing circuits and reading 

measurements to uncover relations involving current, resistance, and voltage. The rule 

formation tool allows students to specify hypotheses in the form of IF-THEN rules, 

facilitating their exploration of variables and predictions. 

 

Together, the studies by Bruner et al. (1956), Farris and Revlin (1989), and Klahr 

and Dunbar (1988) provide valuable insights into the search strategies employed by 

learners during discovery learning. Effective search strategies enable learners to 

manipulate variables systematically, test hypotheses, and discover underlying rules and 

principles. By employing a range of search strategies, learners can explore different 

possibilities, consider multiple attributes, and engage in deep and meaningful learning. 

 

In conclusion, investigations of search strategies in the context of discovery 

learning deepen our understanding of learners' approaches and their impact on 

knowledge integration and self-regulated learning. By building upon the existing 

literature, this study aims to improve our understanding of search strategies and their 

implications for effective instructional design and practice in discovery learning 

environments. 

2.5. Heuristics and Discovery Learning 

 

Heuristics play a significant role in discovery learning as evidenced by studies 

done by MacGregor and Cunningham (2008) and Strand-Cary and Klahr (2008) 

demonstrating the importance of heuristic searches in problem-solving situations within a 

discovery learning context. These heuristics, often considered as "rules of thumb," aid 

learners in dealing with complex problem-solving situations by providing cognitive tools to 

facilitate decision making. In recent literature, there's an understanding that teaching 

universal discovery learning techniques before embarking on the actual learning activity 

may have significant limitations. Scholars like Hodson (1998) argue that scientific 
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methods aren't monolithic but rather vary depending on specifics of a science domain. 

This implies transfer from a general teaching scenario to a specialized context may not 

always happen seamlessly. Given the crucial role of heuristics in the learning process, 

integrating built-in support systems in learning environments becomes essential. Such 

support offers cognitive tools to learners, functioning to scaffold the learning process, 

whether by externalizing learning operations or structuring the task at hand (Lajoie & 

Derry, 1993; van Joolingen, 1999). Tools such as dedicated notebooks that aid 

structured note-taking, data manipulation tools, and explicit step-by-step forms are 

commonly integrated into learning environments to guide learners (Shute & Glaser, 1990; 

van Joolingen & de Jong, 1997). 

 

Heuristics can enhance decision-making in discovery learning, particularly when 

exhaustive analysis of the problem or the context isn't possible due to incomplete 

information. However, it is essential to also teach the limitations of heuristics as they can 

sometimes lead to incorrect decisions. For instance, the heuristic VOTAT (vary one thing 

at a time), a principle related to experimental design, may not be effective in situations 

with interacting variables where it becomes necessary to change more than one variable 

simultaneously (Tsirgi, 1980; Zohar, 1995). Sanders et al. (2000) provided an inventory 

of heuristics suitable for simulation-based discovery learning environments. These 

heuristics, while specific enough to guide in specific instances, are general enough to be 

useful across multiple simulations. Some examples of these heuristics include: 

simplifying the problem, identifying and slightly modifying hypotheses, setting 

expectations, varying one thing at a time (VOTAT), and keeping track of what is being 

done. 

 

The application of heuristics can be categorized into two main approaches: 

implicit and explicit. Implicit heuristics are subtly integrated into a learning environment, 

guiding learners through cues and guidance (van Joolingen & de Jong, 1997). These 

may result in successful behavior within the learning environment but can't be expected 

to translate to other domains or situations. On the contrary, explicit heuristics are 

explicitly and directly presented to learners, possibly fostering greater understanding and 

facilitating their application across different domains (Sanders, Bouwmeester, & Blanken, 

2000). 
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 A study explored the effectiveness of these two heuristic strategies within the 

context of a scientific discovery learning environment (Veermans et al., 2006). While both 

methods demonstrated significant gains in learners' domain knowledge, there were 

notable differences in learners' responses to these two approaches. In particular, the 

explicit heuristic condition proved more favorable for learners with lower initial domain 

knowledge. The study also revealed learners in the explicit heuristic condition tended to 

display more self-regulatory behavior, suggesting they incorporated the heuristics into 

their existing knowledge structures. By doing so, learners were better equipped to make 

decisions, evaluate their actions, and adjust their strategies autonomously. This ability to 

self-regulate and adapt reflects the depth with which the heuristics were internalized, 

highlighting their transformative potential when deeply embedded within the learners' 

cognitive framework. 

 

In the current study, heuristics play a pivotal role as learners are guided to form 

rules within a simulation-based discovery learning setting. This environment harnesses a 

bespoke rule formation tool to aid students in crafting IF-THEN rules during the 

exploration phase of the study. The tool's usage, intertwined within the task of 

investigating current and voltage drop in series circuits, signifies a core aspect of the 

research. The students' iterative process of selecting the same value or changing values 

of variables, formulating and testing hypotheses within the simulation, and subsequently 

refining their rules, closely echoes heuristic principles within discovery learning (Sanders 

et al., 2000). The heuristics highlighted by Sanders et al. (2000) guide learners' decisions 

and actions within multifaceted, multi-step situations, akin to our simulation-based 

discovery learning environment. Analogous to the way heuristics assist learners in 

making informed decisions in the complex terrain of scientific discovery (Veermans et al., 

2006), this study’s IF-THEN rule formulation tool aims to support students in 

systematically orchestrating their experiments within the simulation. The current study 

seeks to understand how students' engineering approaches and search strategies in rule 

formation impact knowledge integration and self-regulated learning.  

 

Research from Sanders et al. and Veermans et al. underlines the potential of 

explicitly integrating heuristics in the design of simulation-based learning environments, 

and emphasizes the value of guiding mechanisms within these simulations. Such 

insights, paired with burgeoning evidence on the utility of tools to assist students in 

systematically structuring discovery learning, prompted this study to conceptualize two 
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distinct intervention approaches. The first intervention is grounded in the idea that a 

combination of tools might offer a more enriched experience. Thus, the decision table, 

facilitating the crafting of variable combinations and subsequent focused trials, is paired 

with rule boxes that automatically generate rules, aiming for a deeper, more 

comprehensive decision-making process. In contrast, the second intervention posits that 

perhaps a singular tool, in this case, the rule box, might suffice in guiding students 

efficiently, without the need for the added layer of the decision table. This distinction is 

critical. By having two separate interventions, the study can explore the incremental 

value, if any, brought about by the decision table. Is the combination of tools in the first 

intervention significantly more beneficial than just the rule box in the second? Or do 

students fare just as well with a more streamlined, singular tool? The ultimate aim is to 

discern which setup, be it multi-tooled or singular, best amplifies the effectiveness of 

heuristics within simulation environments. 

2.6. Selecting Evidence to Test Hypotheses 

 
Developing and testing hypotheses are crucial components of scientific discovery 

learning. The process of hypothesis testing involves forming hypotheses and gathering 

evidence to test and refine them (Klayman & Ha, 1987; Langley et al., 1987; Mahoney, 

1976; Nisbett & Ross, 1980; Polya, 1954; Popper, 1959; Swann, 1984; Wason & 

Johnson-Laird, 1972). One commonly used task to study hypothesis testing strategies is 

the rule discovery paradigm introduced by Wason (1960). In this task, participants are 

presented with an initial set of items generated by a specific rule and are required to 

determine the underlying rule. Through multiple trials, participants propose new sets of 

items and receive feedback on whether their sets fit the rule, refining their hypotheses 

(Wason, 1960). 

 

While many strategies are employed in hypothesis testing, one frequently 

observed approach is the positive test strategy. In this method, individuals tend to test 

instances they believe should align with the rule, often overlooking instances that 

contradict the hypothesized rule. This observation does not negate the diverse strategies 

identified by Bruner et al. (1956) but highlights one specific trend seen in certain learning 

contexts (Klayman & Ha, 1987). However, the positive test strategy has its limitations, 

such as confirmation bias and a narrow focus on instances that align with the 

hypothesized rule. Consequently, it often leads to hypotheses that fail to consider 
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alternative possibilities (Wason, 1960). This tendency towards confirmation bias can 

result in individuals becoming overconfident in their incorrect rules (Wason, 1960). 

 

Successful rule discovery involves considering alternative hypotheses and testing 

them (Klayman & Ha, 1987). By exploring different possibilities and testing alternative 

hypotheses, individuals enhance the process of hypothesis revision (Wason, 1960; 

Klayman & Ha, 1987). Notably, participants successful in rule discovery tasks 

demonstrate a greater tendency to direct their tests towards distinguishing explicit 

alternative hypotheses (Klayman & Ha, 1987). 

 

In the current study, although the rule formation tool does not explicitly ask 

students to state their hypotheses, the process of making predictions and providing 

reasons indirectly aligns with hypothesis development and testing. Using the rule 

formation tool, students engage in a form of hypothesis testing by making predictions for 

each comparative trial. While a hypothesis offers a general explanation or assertion 

about potential relationships between variables, a prediction is a more specific statement 

about what will happen under particular conditions, based on that hypothesis. They 

formulate expectations about the relationship between the selected variables and the 

resulting current and voltage drop. The reasons provided for their predictions serve as 

justifications for their hypotheses or anticipated outcomes. The iterative nature of the tool 

allows students to refine their predictions and potentially modify their hypotheses based 

on previous comparative trials. The process of comparing their predictions with the actual 

measurements and analyzing their findings can be seen as a form of hypothesis testing 

and revision. 

 

In the context of simulation-based discovery learning, incorporating insights from 

previous research on hypothesis testing provides a valuable framework for interpreting 

findings. The positive test strategy commonly observed in rule discovery tasks highlights 

the need to consider limitations of this strategy, including confirmation bias and a narrow 

focus on instances that fit the hypothesized rule (Wason, 1960; Klayman & Ha, 1987). 

Therefore, this study will explore how students' engineering approaches and search 

strategies relate to these patterns of hypothesis testing. 

 

Furthermore, this study is designed to investigate the role of alternative 

hypotheses and tests of alternatives in the context of rule formation during simulation-
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based discovery learning. By examining whether students who successfully integrate 

knowledge and demonstrate self-regulated learning engage in more frequent and earlier 

testing of alternatives, insights can be gained into the importance of these factors for 

effective hypothesis testing and revision. 

 

Moreover, the findings of this study can inform instructional design in simulation-

based learning environments. By incorporating insights from previous research (Klayman 

& Ha, 1987), this study on rule formation in electric circuit learning can shed light on how 

students' engineering approaches and search strategies influence their hypothesis 

testing behaviors, knowledge integration, and self-regulated learning. These findings 

have potential to guide instructional practices that encourage students to adopt effective 

hypothesis testing approaches, thereby fostering a more comprehensive understanding 

of complex phenomena in simulation-based discovery learning environments. 

 

In line with the importance of hypothesis testing, Brockbank and Walker's (2023) 

research on self-explanation provides additional insights into the learning process. Their 

findings suggest engaging in self-explanation enhances learning by directing attention 

and cognitive resources toward evidence that supports good explanations. This involves 

considering information that is broad, abstract, and consistent with prior knowledge, 

facilitating discovery and generalization. The rule formation tool in this study, while not 

directly seeking mechanistic explanations, engages students in creating comparative 

trials, making predictions, and rationalizing their choices. This encourages them to 

consider variable relationships and aligns with the overarching aim of fostering 

explanatory processes. Even without explicit prompts for mechanistic insights, the tool 

might lead students to make abstract references and think more generally. 

 

While Brockbank and Walker’s (2023) experiments found explanation did not 

significantly impact hypothesis evaluation, it is important to note that in the tool used in 

the current study, evaluation remains an integral part of the iterative hypothesis testing 

process. In their study, participants in both the explanation and description conditions 

rated the target rule higher than other rules, indicating a general tendency to prioritize the 

correct rule regardless of whether they explained or described the evidence. However, in 

the context of the rule formation tool learners used in the current study, evaluation plays 

a crucial role. As students progress through different trials, they engage in an iterative 

process of hypothesis testing and evaluation. They develop hypotheses regarding the 
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relationship between the constant and changing variables, make predictions based on 

those hypotheses, and subsequently compare their predictions with the actual findings of 

current and voltage drop. 

2.7. Rule Formation in Discovery Learning 

 

Computer models and interactive simulations can be potent tools in science 

education, offering students dynamic depictions of intricate scientific phenomena. They 

let students manipulate, explore, and observe system behaviors, enhancing their 

understanding. Central to harnessing these models effectively is the concept of rule 

formation. Klahr and Nigam (2004) and Wiese and Linn (2021) emphasized that rule 

formation, whether through direct instruction or discovery learning, is pivotal in early 

science instruction. It is vital for learners' cognitive development and grasping scientific 

concepts.  

 

Rule formation in the context of computer models and interactive simulations 

plays a critical role in facilitating students' engagement with scientific concepts and 

phenomena. The rules operationalized by a model define the relationships, interactions, 

and constraints that dictate how the system or phenomenon behaves. By comprehending 

and manipulating these rules, students can develop a deeper understanding of the 

scientific principles and mechanisms at play.  

 

Wiese and Linn (2021) explored the importance of understanding rule formation in 

students' interactions with computer-based simulations of scientific models. The study 

aimed to decipher how students perceive and utilize the foundational rules that drive 

these computer simulations to bolster their understanding of scientific phenomena. To be 

clear, by "rules," the study refers to the fundamental principles or behaviors that a 

simulation or model adheres to, while "model" refers to the entire simulation itself. The 

model is essentially the manifestation of multiple rules. Wiese and Linn devised a 

computational modeling inventory to assess students' computational thinking skills, 

specifically in rule formation. One key component of this inventory was the rule sorting 

task. Here, students were presented with a set of proposed rules and asked to sort them 

into two categories: rules used by the computer and rules not used by the computer. In 

essence, students were not directly programming; instead, during the rule sorting task 

presented by Wiese and Linn, students were tasked with deducing the operational rules 
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of the computer model. This deduction was based on the patterns, outcomes, and 

changes they could directly observe or interact with when running the simulation. 

Presented with a set of rules written in plain language, which highlighted key model 

behaviors and common misconceptions, students sorted rules into two categories: rules 

used by the computer and rules not used by the computer. These rules, crafted to be 

understandable by middle school students, were centered on the object behaviors of the 

model and were devoid of specific code references. Thus, rather than engaging with or 

manipulating actual code, students interpreted how the model behaved under certain 

conditions, attempting to discern the foundational rules that governed these evident 

behaviors. The researchers used two models, the plant growth model and the global 

climate model, for the Rule Sorting task. For the plant growth model, students were 

instructed to run the model for 4 weeks with the light on and then turn the light off. This 

allowed them to observe the behaviors targeted by the rule sorting questions, such as the 

increase in total glucose made when the light is on and the decrease in total glucose 

stored when the light is off. Similarly, for the global climate model, students were 

instructed to run the model first without greenhouse gasses and then press the "Run 

Factory" button to observe the behaviors related to greenhouse gasses.  

 

The results of the rule sorting task showed students had varying levels of success 

in identifying the model rules. Students were most successful in identifying rules that 

manifested in clear, visible behaviors when the model ran, deemed “directly observable 

in the model,” or those that the model clearly contradicted. For example, rules like "When 

infrared radiation hits a greenhouse gas, it will change direction" in the global climate 

model or "Total glucose used always increases" in the plant growth model were more 

likely to be sorted correctly. However, students struggled with sorting rules that referred 

to variables not included in the model or understanding the distinction between a 

scientific concept and its operationalization in the model.  

 

The study found some students thought a model could follow contradictory rules, 

indicating a lack of understanding of the consistency required in a model's behavior. 

Students also had difficulty distinguishing between a science concept and the way it is 

operationalized in a model. They often believed models included more variables than 

they actually did, leading to misconceptions about the accuracy and representation of 

models. Furthermore, the study revealed students had difficulty recognizing emergent 

patterns in models. Emergent patterns refer to complex outcomes or behaviors that arise 



 21 

from the combined interactions of the model's rules, often leading to phenomena that 

aren't explicitly outlined by any single rule. They often accepted redundant rules that 

were not necessarily part of the model but were consistent with the observed behaviors. 

This lack of distinction between necessary rules and emergent patterns hinders students' 

understanding of how complex system behaviors can arise from simple underlying rules. 

Overall, the rule sorting task provided insights into students' understanding of computer 

models and their ability to recognize the underlying rules and behaviors. The findings 

highlight the importance of helping students connect observable behaviors in models with 

the underlying rules and distinguish between scientific concepts and their 

operationalization in models. The results of the Rule Sorting task indicated that students 

could thoughtfully engage with the concept of model rules but also revealed difficulties 

with decomposition, algorithms, and abstraction in models.  

 

Wiese and Linn also incorporated new rule questions, which prompted students to 

consider the effects of implementing new, hypothetical rules in the model. "New rule" 

questions asked students to imagine how a modified (and scientifically incorrect) 

computer model would behave if certain rules were altered or added. It is important to 

note that students were not physically altering the actual code but were rather 

speculating on the effects of hypothetical changes to the rules governing the model. 

These questions aimed to prompt students to engage with incorrect ideas and assess 

their understanding of the science content.  

 

The findings suggested allowing students to change the rules in a model could 

help them see the connections between model rules and behaviors, thus improving their 

computational thinking and understanding of the underlying science. Students were 

asked to make predictions about how the new rule would change the model's behavior 

and then observe the actual effects of the new rule. This approach aimed to deepen 

students' science understanding and encourage meaningful engagement with the 

modified model. By comparing students' responses to typical questions (related to correct 

models) and new rule questions (related to modified models), the researchers 

investigated whether different question types elicited different kinds of ideas. The typical 

questions focused on explaining relationships between variables portrayed in the models, 

while the new rule questions asked students to reason through how the modified model 

would behave. For example, in the global climate model, a typical question asked 

students to explain the relationship between greenhouse gasses and temperature, while 
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a New Rule question asked what would happen if solar radiation always bounced off 

Earth's surface. Students could reason that, in the modified model where the new rule 

dictates that all solar radiation is reflected, the temperature would be much colder than in 

the original model. Similarly, in the chemical reactions model, a typical question asked 

students to explain the relationship between molecular movement and temperature, while 

a New Rule question asked how the formation of water would be affected if single 

hydrogens bonded with each other whenever they collided. The new rule questions 

delved into the mechanisms behind the phenomena in the models and challenged 

students to draw conclusions from animations. Correct responses to these questions 

indicated that students noticed crucial details and understood why certain phenomena 

occurred in the models. 

 

Building upon the work of Wiese and Linn, the present study aims to further 

explore the concept of rule formation, specifically in the context of simulation-based 

discovery learning. This study focuses on the construction of series electric circuits using 

a physics simulation and an if-then rule formation tool. Students will interact with a 

physics simulation and an if-then rule formation tool to generate, apply, and modify rules 

that help them understand scientific phenomena in this domain. Simulation-based 

discovery learning serves as a platform for students to interact with dynamic and 

interactive models of series electric circuits, gaining hands-on experience and developing 

an intuitive understanding of the underlying scientific principles. The if-then rule formation 

tool complements the simulation by allowing students to formulate rules based on their 

observations and reasoning, further deepening their understanding and engagement with 

the topic. Similar to Wiese and Linn's New Rule questions, the if-then rule formation tool 

in this study prompts students to imagine and explore modified scenarios within the 

electric circuit simulation. By modifying the circuit's components or parameters, students 

can investigate the effects of changing the underlying rules or conditions on the circuit's 

behavior. This approach not only encourages students to engage with incorrect or 

alternative ideas but also provides an opportunity for them to deepen their understanding 

of the relationships involving current, resistance, and voltage. 

 

2.8. Self-regulated Learning 
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The importance of self-regulated learning (SRL) in shaping learners' abilities to 

take control of their learning process has been widely acknowledged in educational 

research. This study, exploring rule formation in simulation-based discovery learning is 

firmly rooted in the concepts of SRL. 

 

 In SRL, learners constantly make decisions about their learning pathways, 

manage their attention, select learning strategies, and review their understanding (Winne, 

2022). They are seen as agentic, meaning that they are actively involved in their learning 

process. This engagement and ownership over the learning process echoes Bandura's 

(1997) concept of agency, part of the theoretical grounding of SRL. Winne (2022) 

proposes self-regulated learning can be seen as learners doing learning science, a 

perspective that builds upon the works of Bandura (1997) and Ericsson and Harwell 

(2019) among others. Essentially, learners are positioned as scientists conducting 

experiments on their learning processes, observing, monitoring, and adjusting their 

cognitive operations to optimize their learning outcomes. 

 

Simulation-based discovery learning, the focus of this study, aligns with the 

concept of SRL by positioning learners as active agents who make decisions and 

construct knowledge in a simulated environment. Moreover, the IF-THEN rule tool 

integrates with Winne's (2023) proposition of learners doing learning science, enhancing 

their ability to apply the scientific method in their learning process. 

 

Winne (2022) emphasizes that developing productive SRL requires deliberate 

practice, which can be supported through learning analytics based on data generated by 

learners with strong correspondence to theoretical constructs, i.e., tracing those 

constructs. Trace data and learning analytics offer a means for learners to track their 

learning process, enabling self-regulation and fostering a deeper understanding of how 

they learn.  

 

The application of a physics simulation and an IF-THEN rule tool in this study can 

potentially facilitate deliberate practice thus strengthening the learners’ SRL capabilities. 

Furthermore, these tools may help address the challenges learners often face, such as 

misconceptions, lack of data, and inadequate analytical methods (Winne, 2022).  
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Winne (2022) proposes a framework consisting of three models: the SMART 

model (searching, monitoring, assembling, rehearsing, translating) of cognitive 

operations, the COPES model (conditions, operations, product, evaluations, standards) 

of learning tasks, and the AEIOU (attributions, efficacy expectations, incentives, outcome 

expectations, utility) model of reasoning about learning as a motivated event. These 

models provide a structure for understanding and measuring SRL within a simulated 

environment like that used in this study. 

 

The study's IF-THEN rule tool operationalizes the link between operations and 

products of the COPES model and also aligns with the SMART operations model. It 

allows learners to manipulate information and execute operations to produce desired 

learning outcomes. This could lead to the enhancement of learners' self-regulation skills 

and their ability to understand and manipulate conditions within their learning 

environment. The simulation augmented by the IF-THEN tool for proposing rules may 

also provide an environment for learners to practice and inferencing operations. For 

example, learners engage in searching when they explore the simulated environment 

and identify relevant information. They rehearse when they repeat experiments or 

scenarios to confirm the validity of their if-then rules. They translate when they convert 

their observations into IF-THEN rules. In essence, the simulation-based discovery 

learning process exemplifies the self-regulated learning as learners doing a learning 

science model. 

 

Furthermore, learners' engagement with the rule tool and physics simulation 

potentially aligns with the AEIOU model. By interacting with these tools, learners could 

possibly heighten their awareness of motivations related to their learning, thereby 

expanding topics of their metacognition.  

 

Moreover, this study's design, which incorporates a physics simulation and an IF-

THEN rule tool, is instrumental in gathering trace data about learners' SRL behaviors. 

This design aligns with Winne's (2023) emphasis on the importance of data in 

understanding and promoting SRL. The generated trace data can help identify patterns, 

assess the effectiveness of SRL strategies, and support the development of tailored 

learning analytics. 
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The challenges Winne (2022) highlights, particularly in relation to learners' lack of 

expertise in applying the scientific method, erratic records of their learning, and the 

shortcomings of the data available for guiding metacognition, could be potentially 

addressed through the use of technology-enabled learning environments like the physics 

simulation tool and the IF-THEN rule formation tool. 

 

The IF-THEN rule formation tool used in this study is a direct application of the 

outcome expectation concept discussed in Winne's paper. As learners interact with the 

physics simulation, they form and refine if-then rules based on their observations and 

experiences. These if-then rules essentially form the "theories" that the learners, as 

"scientists", use to understand and predict the behavior of the simulated system. The 

practice of creating these rules, testing them, and refining them can be seen as a form of 

deliberate practice, which Ericsson & Harwell (2019) argue is necessary for the 

development of expertise. 

 

The study’s use of rule formation logs could help capture comprehensive data 

about learners' actions and decisions in the simulated environment, which would address 

the problem of "erratic records about how they learn." This data could provide insights 

into the SMART operations enacted by learners, the conditions under which they occur, 

and the efficacy of these operations in producing the desired learning outcomes. The 

data could also be used to create future personalized feedback and recommendations to 

guide learners in their SRL processes. 

 

2.9. Knowledge Integration  

 

This study is primarily anchored in the framework of Knowledge Integration (KI), a 

concept that underscores the importance of unifying multiple ideas to develop a coherent 

understanding. KI, as emphasized by Linn and Eylon (2011), plays a crucial role in 

science learning and instruction. They propose leveraging the rich repository of ideas 

students already possess about any science subject and encouraging active engagement 

and inquiry. The KI approach also posits students benefit more from interacting with 

inquiry-based models and tools than from conventional lecture and textbook-based 

methods (Bransford et al., 1999; Linn & Eylon, 2006; Linn, Lee, Tinker, Husic, & Chiu, 

2006). It values student-initiated inquiry and builds upon the ideas students develop 
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independently. This approach argues that giving students control over their learning 

allows for more informative feedback about their understanding, particularly when they 

systematically investigate each variable and their interactions. For instance, a common 

misconception that metals are naturally cold can be addressed through the KI process. 

Eliciting students' pre-existing ideas is a crucial first step toward more nuanced 

understanding. By gathering these responses, the KI process benefits from a wide array 

of ideas, utilizing this collective knowledge to help students critically evaluate and refine 

their observations. The KI approach uniquely emphasizes an instructional design that 

recognizes the richness and diversity of students' ideas, prompting learners to assess 

new concepts, use evidence to compare differing viewpoints, and choose the most viable 

alternatives, all while fostering a continuous reflective process throughout their lifetime. 

 

Linn and Eylon (2011) outline a general KI instructional pattern involving four 

processes: eliciting ideas, adding ideas, discovering, distinguishing ideas, and reflecting 

on ideas. This pattern informs the instructional design in this study, and is grounded in 

research on how students develop and refine their understanding of the natural world. It 

recognizes the richness and diversity of students' ideas and encourages them  

 

Obaid et al. (2023b) also highlighted how learners frequently struggle to sustain 

conceptual links between disparate ideas, resulting in a fragmented understanding where 

learners fail to perceive the interconnectedness of various concepts. Furthermore, they 

noted a tendency among learners to retain invalid ideas even after exposure to correct 

ones, impeding the KI process by preventing learners from fully embracing new, accurate 

knowledge. Lastly, learners often struggle to build upon partial or incomplete links 

between ideas, limiting their ability to integrate knowledge. 

 

Given the challenges identified by Obaid et al. (2003b), this study introduces a 

rule-formation tool within the context of simulation-based discovery learning. This tool is 

designed to function as a facilitator, aiding students in making sense of their 

observations, establishing connections with new ideas, distinguishing these from their 

existing concepts, and building upon partial links. 

 

In line with this, the KI framework was utilized in our study to enhance the 

understanding of electric circuits. This framework guides students to reflect on their 

existing ideas and experiences, apply these ideas, and progressively integrate new 
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knowledge. The aim is to leverage the rich repository of student’s ideas and promote 

their active engagement in the learning process. Within this theoretical context, the rule 

formation tool is envisioned as a facilitator, guiding students in making sense of their 

observations, connecting with new ideas, and distinguishing these from their existing 

concepts.  

2.10. Bridging Gaps in the Literature 

 

In this section, I highlight the gaps in the existing literature and establish the 

connections between these gaps and our research questions. To begin, the literature on 

discovery learning and simulation-based inquiry-based learning has provided valuable 

insights into learners’ ability to identify patterns and causal relationships independently, 

without strong guidance, and the transition from explicit instruction to exploration. 

However, there remains a debate regarding the efficacy and limitations of discovery 

learning, with differing views on its structure and guidance. These gaps in understanding 

effects of discovery learning, especially in simulation-based environments, form a 

foundational gap that this research seeks to address by examining the role of supports in 

rule discovery. 

 

Moving on to the integration of engineering approaches in learning, the Next 

Generation Science Standards (NGSS) provide a framework for fostering critical thinking 

and innovation in students. While NGSS outlines engineering practices, there is a need 

to explore how these practices are integrated into simulation-based learning. This 

connection between NGSS and the integration of engineering approaches in simulation-

based learning represents another significant gap that this study aims to fill by 

investigating how students navigate the engineering design process. 

 

Search strategies in discovery learning have been extensively studied, 

uncovering various hypothesis testing strategies and their implications for learning. 

However, there is a need to delve deeper into how these strategies interact with the use 

of simulation and rule formation tools in a learning context. This gap underscores the 

relevance of this research, which explores students' engineering and search strategies in 

relation to hypothesis testing patterns within simulation-based learning. 
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Heuristics, often referred to as "rules of thumb," have shown promise in aiding 

complex problem-solving in discovery learning. However, the literature lacks a 

comprehensive exploration of the integration of heuristics within simulation-based 

discovery learning environments. This gap in understanding the effectiveness of 

heuristics in simulations aligns with this study's focus on heuristic principles and 

interventions in a simulation-based context. 

 

Furthermore, the literature on selecting evidence to test hypotheses, a 

fundamental aspect of scientific discovery learning, highlights the importance of 

considering learners’ positive test strategies and their exploration of alternative 

hypotheses. These insights reveal a gap in understanding how these strategies interact 

with engineering approaches and search strategies within simulation-based learning, a 

gap that this research seeks to bridge by examining distinct learning paths.  

 

Rule formation when learners interact with computer models and simulations has 

been explored in various contexts, but there is limited research on its application in 

simulation-based discovery learning, particularly in the context of electric circuits. This 

gap in knowledge integration between rule formation and simulation-based learning 

informs my research focus on rule formation in electric circuits and its impact on students' 

understanding.  

 

Self-regulated learning (SRL) plays a critical role in learner agency, yet there is a 

need to understand how SRL may be facilitated within simulation-based discovery 

learning. This gap in comprehending the relationship between SRL and rule formation in 

simulations aligns with this research, which emphasizes the active role of students in 

their learning process and the use of a rule formation tool to enhance SRL. 

 

Lastly, the literature on knowledge integration (KI) underscores its significance in 

science learning but often lacks a detailed exploration of how KI can be supported within 

simulation-based learning environments. This gap in the application of KI principles within 

simulations aligns with my research's use of a rule formation tool to assist students in 

connecting and differentiating between existing and new ideas in the context of electric 

circuits.  

 



 29 

In summary, the gaps identified in the literature highlight the need for a 

comprehensive investigation into how engineering approaches, search strategies, 

heuristics, hypothesis testing, rule formation, self-regulated learning, and knowledge 

integration interact within simulation-based discovery learning. My research questions 

address these gaps. 

 

RQ 1. What progress in engineering approaches, search strategies, and integrating ideas 

do students make while using the electric circuit simulation in the control condition versus 

rule formation conditions? 

 

RQ 2. What distinct learning paths do students take as they engage with the electric 

circuit simulation in the control condition versus rule formation conditions? 
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Chapter 3. Methodology  

3.1. Participants  

Data for this study were collected during the COVID-19 pandemic. I initially 

recruited a total of 71 undergraduate students from Simon Fraser University (SFU), 

Kwantlen Polytechnic (KPT), and the University of British Columbia (UBC). The study 

was advertised using university-wide email lists, with participants volunteering their time 

in return for $30 compensation. Ethics approval was obtained prior to recruitment from 

each of the aforementioned institutions. The selection process yielded a convenience 

sample, predicated on the participants' availability and willingness to engage, as 

opposed to a random sampling methodology. The pretest utilized a knowledge 

integration rubric, which classifies responses into six levels: 0 (blank response), 1 (off-

task response), 2 (non-scientific idea), 3 (partial link), 4 (one valid link), and 5 (two or 

more valid links). In this study, participants scoring 0, 1, or 2 on the pretest were 

specifically included in the research sample. These scores indicate either no 

understanding or minimal understanding of series electric circuits and Ohm's law, 

suggesting a substantial gap in their foundational knowledge likely to have been 

introduced during high school education. Out of the 71 undergraduates initially recruited 

for the study, 60 participants met these criteria, demonstrating the significant 

educational need within this group. This observation emphasizes the notion that content 

widely expected to have been taught and learned in high school does not necessarily 

persist into undergraduate studies. Consequently, the selection process was 

intentionally designed to include these individuals, aiming to identify those who could 

most benefit from the educational interventions and thereby establishing a clear 

baseline for evaluating the interventions' impact on conceptual understanding. By 

strategically focusing on individuals demonstrating the greatest potential for conceptual 

growth, the study excluded participants with higher pre-test scores from further analysis. 

This approach led to a final sample of 60 students (N = 60) with low pretest scores being 

included in the data analysis, consisting of 40 students from UBC, 10 from SFU, and 10 

from KPU. Participants were randomly assigned to three conditions of Control (n = 20), 

Experimental 1 (n = 20), and Experimental 2 (n = 20). The distinction between the two 

experimental groups lies in the intervention tools provided. Specifically, Experimental 

group 1 was given the Decision Table and Rule Induction intervention tool, while 
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Experimental group 2 solely received the Rule Induction intervention tool. Following the 

session, all participants were requested not to disclose experiment details to others. 

3.2. Ethics  

The ethics application, along with its accompanying document(s), underwent a 

thorough review by the Simon Fraser University Research Ethics Board (REB). The 

procedures were subsequently approved based on the ethical standards pertaining to 

research involving human participants. Each participant was provided with a 

comprehensive consent form, clearly outlining the purpose of the study, and they 

subsequently signed it to indicate their informed agreement to participate. The consent 

form informed participants about the use of a digital platform for the unit of instruction, 

the Web-based Inquiry Science Environment (WISE), which is hosted on a server at the 

University of California (UC) Berkeley and risks associated because data were stored 

outside Canadian borders subject to United States information protection laws. 

3.3. Materials and Instrumentation   

 

Participant behavior was recorded through a combination of a desktop screen 

recorder and a Zoom camera. The former captured voice recordings and on-screen 

interactions with the simulation, including note-taking activities, while the latter recorded 

facial expressions. Open broadcaster software was the chosen screen recorder software, 

and the researcher operated it. 

3.3.1. Simulation-Activity Tasks  

3.3.1.1. Terminology 

 

Participants received concise definitions of key terms such as circuit, series vs. 

parallel circuits, current, resistor, resistance, voltage, voltage drop, voltmeter, and 

ammeter. They could revisit these terms at any point during the session by clicking on 

the WISE screen's "Refresh your memory" button. 

3.3.1.2. Pre and Post Tests  
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Six pretest and six identical posttest questions were administered, with a total of 

10 minutes allowed for answering all six questions (see Appendix A). Questions about 

current and voltage drop in series electric circuits were presented to participants via the 

WISE platform. The format of each question followed a similar structure: 

1. Presentation of a scenario or a technical description: Scenario questions began 

with a scenario describing the creation and testing of circuits. For instance, one 

scenario described a person named Cannice who created Circuit A and observed 

a particular outcome related to voltage drop. Another person named Amy posed a 

question or inquiry about a different, related circuit (Circuit B). The initial character 

then draws a conclusion based on their earlier observations or evidence. 

Technical questions provided a technical description of a circuit setup, detailing 

component attributes and posing a question about the expected behavior of the 

circuit. 

2. Display of circuit diagrams: Circuit diagrams were displayed under each question. 

3. Multiple choice question (MCQ) format: Participants were instructed to select the 

best answer from three options, labeled A, B, and C. For instance, in the scenario 

involving Cannice and Amy, the options were: A. Cannice’s conclusion is correct; 

B. Cannice’s conclusion is incomplete; and C. Cannice’s conclusion is incorrect. 

4. Short answer explanation: Immediately following the MCQ, participants were 

asked to explain their selected choice of A, B, or C. 

3.3.1.3. Orientation Task  

 

Participants were instructed to respond to questions on the WISE platform and 

were given an instructional video with an overview of the electric circuit simulation 

interface before they interacted with the simulation. This was intended to reduce the 

cognitive load of interacting with the novel environment. 

3.3.1.4. Electric Circuit Tasks 

The tasks were structured in three phases: exploration, prediction, and 

investigation. The nature of the tasks varied based on these phases, and detailed 

instructions were provided to guide participants through each phase, including exploring 

basic relationships, predicting outcomes, investigating simulations, and using tools. 

 

1. Exploration Phase: All participants were asked to investigate a schematic of a 
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simple series circuit including one battery and one bulb. Using a simulation, they 

were tasked with replicating the circuit and determining the relationships between 

resistance and current, voltage and current, and resistance and voltage drop. 

Before progressing to the subsequent phase, the tutor verified that each 

participant had accurately identified and understood these relationships.  

 

2. Prediction Phase (without simulation):  

a. Control Group: Participants were instructed about the goal (Figure 3.1) 

and how to use the provided drawing tool shown (Figure 3.2). They were 

guided to create circuits and predict the corresponding changes in current 

and voltage drop. The drawn circuits were to be added by the participants 

to the WISE environment notebook (Figure 3.3). Their subsequent task 

involved writing as many predictions as possible about the current and 

voltage drop for each drawn circuits, following a specific format as shown 

in Figure 3.4.  

 

Figure 3.1 Control Group Prediction Phase: Goal Instructions 

 
 

Figure 3.2 Control Group in Prediction Phase: Drawing Tool Instruction 



 34 

 
Figure 3.3 Control Group in Prediction Phase: Add to Notebook 

 
Figure 3.4 Control Group in Prediction Phase: Subsequent Task 
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b. Decision Table and Rule Induction Intervention Group (Experimental 

group 1): This group was briefed on the goal (Figure 3.5), and examples 

were provided to devise comparative trials (Figure 3.6) and generate rules 

(Figure 3.7). They were given an example of an IF-THEN rule with 

highlighted variables for current and voltage drop (Figure 3.8). Their task 

involved using the given empty tables to create as many comparative trials 

as possible by identifying constant and changing variables (Figure 3.9). 

They added these comparative trials to the WISE environment notebook, 

prepared by the researcher. 

 

Figure 3.5 Experimental Group 1 in Prediction Phase: Goal Instruction 



 36 

 
Figure 3.6 Experimental Group 1 in Prediction Phase: Example of Comparative 
Trials 

 
 

Figure 3.7 Experimental Groups in Prediction Phase: Example of Generating Rules 



 37 

 

 
 

Figure 3.8 Experimental Groups in Prediction Phase: Example of Variables 
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Figure 3.9 Experimental Groups in Prediction Phase: Subsequent Task 

 

 
 

c. Rule Induction Intervention Group (Experimental group 2): This group was 

briefed on the goal (Figure 3.10) and examples were provided to generate 

rules (Figure 3.7). Mirroring the other intervention group, they were offered 

an example of an IF-THEN rule regarding current and voltage drop, with 

the variables highlighted for clarity (Figure 3.8). Upon reviewing these 

examples, they were instructed to develop numerous comparative trials by 

discerning the constant and changing variables in order to predict current 

and voltage drop (Figure 3.9). They added these comparative trials to the 

notebook within the WISE environment. 

 

Figure 3.10 Experimental Group 2 in Prediction Phase: Goal Instruction 
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3. Investigation Phase:  

 

a. Control Group: Participants were prompted to outline their simulation 

testing plans and predict the possible changes in current (increase, 

decrease, no change) and voltage drop (increase, decrease, no change) 

(Figure 3.11). They then used the simulation to test these predictions, with 

the findings recorded in the WISE environment notebook.  

 
Figure 3.11 Control Group in Investigation Phase: Tasks 



 40 

 
b. Decision Table and Rule Induction Intervention Group (Experimental 

group 1): Participants were instructed to examine their plans and 

predictions using the Decision Tool and the simulation (Figure 3.12). They 

were provided with an instructional video demonstrating how to utilize the 

Decision Table and Rule Induction Tool in tandem with the simulation. 

They were then asked to use the Decision-Tool Webpage and the 

simulation to plan their testing conditions, establish rules, and test their 

predictions.  

Figure 3.12 Experimental Group 1 in Investigation Phase: Tasks 
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c. Rule Induction Intervention Group (Experimental group 2): Much like the 

previous group, these participants were also given an instructional video, 

guiding them on how to use the Rule Induction Tool and the simulation 

together (Figure 3.13). They were then asked to use these tools to plan 

their testing conditions, create rules, and test their predictions. 

 

Figure 3.13 Experimental Group 2 in Investigation Phase: Tasks 

 



 42 

3.3.2. Simulation-Activity Tools  

3.3.2.1. Simulation Tool 

 

All participants were provided with a physics simulation sourced from the PhET 

free online collection of educational simulations, which was embedded in the WISE 

website (Figure 3.14). This simulation (https://phet.colorado.edu/en/simulation/circuit-

construction-kit-dc), enabled students to investigate DC electric circuits using key 

components such as batteries, bulbs, resistors, wires, voltmeters, and ammeters. It 

included all the necessary items for circuit construction and a workspace that allowed 

participants to drag, drop, and interconnect the items to form various circuits. Moreover, 

the simulation facilitated taking measurements critical to understanding relationships 

involving current, resistance, and voltage drop.  

 
Figure 3.14 A Sample of Electric Circuit Construction in PhET Simulation 

 

3.3.2.2. Drawing Tool 

 

 The Drawing Tool was utilized during the prediction phase for the Control group 

(Figure 3.15). Instead of relying on direct simulation results, students were prompted to 

draw a series of electrical circuits using any or all components (such as wires, batteries, 

and bulbs) and predict the ensuing current and voltage drop. They were then instructed 

to add these drafted circuits to a notebook (Figure 3.3) in the WISE environment.  
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1. Stamp Tool: Students could choose from available circuit components such as 

wires, batteries, and bulbs and place these onto the workspace for the 

construction of personalized circuits. 

2. Select Tool: Students could select specific components after positioning them in 

the circuit workspace, relocate them, and resize them by clicking and dragging 

one end of the component.  

3. Text Tool: By selecting the text size and clicking on the workspace, students 

could assign values for each component.  

4. Undo/Redo Tools: These tools provide corrective options during the design 

process. The Undo Tool allowed students to reverse previous actions, and the 

Redo Tool reinstated undone actions.  

5. Delete Tool: This tool allowed removing unwanted components from the design.  

 

For each devised circuit, students were required to note predictions in a designated 

answer box (Figure 3.4). 

 

Figure 3.15 Control Group in Prediction Phase: Drawing Tool 
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3.3.2.3. Simple Tables 

 
This tool was utilized during the prediction phase for both intervention groups 

(Figure 3.16). Without returning to the simulation, students were prompted to generate as 

many comparative trials as possible using provided tables. Each table encompassed four 

columns, designated for constant variables, changing variable(s), current prediction and 

reasons, and voltage drop prediction along with reasons. Each comparative trial 

consisted of two rows, corresponding to a trial’s compared design respectively. 

 

Figure 3.16 Experimental Groups in Prediction Phase: Comparative Tables  
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3.3.2.4. Decision-Based Automated Rule-formation Tool (DART) 

 

I conceptualized and developed this tool to offer heuristic support in the process 

of discovery and to generate data regarding students' selective search methodologies 

(Figure 3.17). DART offers several distinct features:  

 

1. A List of Relevant Variables: This feature lists all variables that could be 

manipulated in designing a circuit. 

2. A Decision Table: In this table, students craft combinations of variables to design 

trials and identify which variables in comparative trials remain constant and which 

ones differ.  

3. Rule Boxes: These boxes automatically generate a IF-THEN rule as students 

develop a decision table. They identify parameters of a rule: 'For all constant 

variables', 'IF', 'Then (Prediction and Findings)'. The prediction and finding boxes 

within the rule box contain drop-down menus from which students can select 

values to describe the behaviors of current and voltage drop. Additionally, for the 

prediction and finding boxes, students are provided a space to document their 

reasoning.  

 

As students progress through various trials employing the rule-formation tool, they 

engage in an iterative hypothesis testing process. Each comparative trial offers students 

a chance to test their hypotheses by choosing constant and changing variables, then 

making predictions regarding current and voltage drop. By comparing their predictions 

with the actual findings, students gather evidence to evaluate the validity of their 

hypotheses.  

 

The heuristic support supplied by this tool could underscore students’ 

uncertainties and enable them to engage in rule-based selective searching, a process 

often performed ineffectively by most adults (Wason, 1960, 1983). 

 
Figure 3.17 Experimental Group 1 in Investigation Phase: Decision Table + 
Induction Rule 
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3.3.2.5. Rule-Formation Tool (RT) 

During the investigation phase, students involved in Experimental group 2 

employed a rule formation tool to establish IF-THEN rules (Figure 3.18). This group, 

unlike experimental group 1, was required to identify the variables for the comparative 

trials independently. A part of the tool labeled 'FOR ALL CONSTANT VARIABLES' 

denoted the control conditions. Other sections labeled 'IF' and 'THEN' provided students 

with the capacity to detail a hypothesis in terms of a prediction and findings. The 

prediction and finding fields in the tool included drop-down menus from which students 

could select values pertaining to current and voltage drop. 

 

Figure 3.18 Experimental Group 2 in Investigation Phase: Induction Rule 
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3.3.3. Coding 
 

The coding process involved analyzing students' responses in the pre- and post-

test according to a knowledge integration rubric. The rubric assigns scores from 0 (blank 

response) to 5 (multiple valid links): off task = 1; non-normative/irrelevant terminology use 

= 2; partial = 3; 1 valid link = 4; 2 or more valid links = 5. 

 

I coded participants’ engineering approaches to selecting variables and search 

strategies by inspecting their designed comparative trials simulated during the 

investigation phase. Each comparative trial compared two designs in which values for 

variables were selected relative to each other.  

 

To represent engineering approaches (i.e., variable selection), I developed a 

dictionary. Each entry within the dictionary represented a different engineering approach, 

and each approach contained a nested dictionary of comparative trials. Within each 

comparative trial, attributes reflected the specific variables chosen for that trial. The 

dictionary's structure is outlined in Figure 3.19. An example of how instances, 

comparative trials, and attributes might be populated is as follows in Figure 3.20. 

 

Figure 3.19 Engineering Approaches Hierarchical Structure 

 

 
 
Figure 3.20 Coding Engineering Approaches 
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In analyzing the participants' data, a set of codes was developed by the 

researcher to categorize various search strategies. These codes, presented in Table 3.1, 
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were used to systematically categorize each search strategy evident in the data. While 

the majority of the codes were derived based on the observed patterns and nuances of 

the participants' actions, the Rule Generation category specifically drew inspiration from 

Bruner's discovery search strategies. 

 
Table 3.1 Codes for Search Strategies 

Category Definition Codes 

Action 
Variables 

Taking actions such as making 
predictions, performing confidence 
measures, identifying a problem, and 
generating rules for current and voltage 
drop in each comparative trial. 
 

Initiating distinct comparative trials in the 
investigation phase compared to the 
exploration phase 

● No action 
● New comparative trial 
● No new comparative trial 

Prediction 

  

Predicting the current & voltage drop for 
each comparative trial 

● Use same rule from 
preceding rule 

● Fill up gaps from 
preceding rule 

Confidence 
Measure 

Verifying/falsifying prediction of current & 
voltage drop after testing comparative 
trials in simulation 

● Falsify prediction 
● Verify prediction 

Problem 
Identification 
  

Identifying unexpected outcomes in 
current & voltage drop and finding ways to 
change the outcome 

● Identify a problem 

Rule 
Generation 
  

Encountering the sequences of confirming 
and/or infirming contingencies in the 
previous rules to form new rules for the 
current & voltage drop 

● Confirmation redundancy 
● Successive scanning 
● Simultaneous scanning 
● Conservative Focusing 
● Focus gambling 

 

Two raters, both experienced in the application of the KI rubric across multiple 

science-related research studies, independently coded the data. Prior to coding, they 

engaged in a series of discussions to ensure a comprehensive understanding of the 
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rubric and the coding scheme for engineering approaches and search strategies. During 

these discussions, they also clarified any ambiguities in the rubric and made any 

necessary revisions to ensure consistency in coding. After independent coding, the two 

raters compared their results to identify discrepancies and discussed any disagreements 

until a consensus was reached. To quantify the consistency between the raters, inter-

rater reliability was calculated using Cohen's kappa coefficient. A strong inter-rater 

reliability was achieved, κ = 0.81. 

3.3.3. Data Analysis 

3.3.3.1. Levenshtein Edit Distance 

 
I utilized Levenshtein edit distance to analyze sequences of student engineering 

approaches, search strategies, and ideas generated in post-test. The Levenshtein edit 

distance is a metric that measures the degree of similarity between two strings of text or 

sequences of ideas, making it an ideal method for this investigation. You might think of 

the Levenshtein edit distance as a measure of how much effort it would take to transform 

one string of ideas into another. In applying this method, I adopted a unit cost for 

operations, meaning each operation—whether a replacement, insertion, or deletion—had 

an equal cost of 1. This choice was made to simplify the analysis while capturing the 

essence of the students' strategy shifts. This method has been widely applied in fields 

such as linguistics and bioinformatics to identify similar strings or sequences.  

 

The adoption of the Levenshtein edit distance as the metric for analyzing 

similarity was driven by the unique nature of the dataset—sequences of actions and 

responses—which are not adequately handled by traditional distance measures such as 

Euclidean or Manhattan distances. These conventional measures are well-suited for 

numerical or categorical data but fall short when dealing with the intricacies of sequence 

comparison (Géron, 2019). An alternative approach could have been the use of other 

sequence comparison algorithms like the Hamming distance. However, the Hamming 

distance is limited to sequences of the same length, making it less versatile than the 

Levenshtein edit distance for this study's varied sequence lengths (Navarro, 2001). The 

Levenshtein distance, capable of comparing sequences of different lengths and 

considering the order of elements, offers a more suitable and nuanced measure for this 

study's requirements. 



 51 

Consider the following example in Table 3.2, which compares the search strategy 

strings of Student 1 and Student 2: 

 
Table 3.2 Sample Sequences of Search Strategies for Student 1 and Student 2  

Student 1 Student 2 Levenshtein edit distance 

New comparative trial New comparative trial - 

Prediction Current: Fill up 

gaps 

Prediction Current: Fill up 

gaps 

- 

Prediction Voltage Drop: 

same rule 

Prediction Voltage Drop: 

same rule 

- 

Confidence Current: verify 

prediction 

Confidence Current: falsify 

prediction 

Replace 

Confidence Voltage Drop: 

verify prediction 

Confidence Voltage Drop: 

falsify prediction 

Replace 

No action No action - 

Rule Current: Successive 

scanning 

Rule Current: Successive 

scanning 

- 

Rule Voltage Drop: 

Successive scanning 

Rule Voltage Drop: 

Simultaneous scanning 

Replace 

Post-test: Voltage Drop 

partial 

Post-test: Voltage Drop non-

normative 

Replace 

Post-test: Current partial Post-test: Current partial - 

 
From this comparison, we can calculate a Levenshtein edit distance of 4 between the 

strings of Student 1 and Student 2. This distance represents the minimum number of 

replacements required to transform the search strategy string of Student 1 into that of 

Student 2. Such analysis enables us to quantitatively compare and contrast the 

sequence of search strategies employed by different students in the study. 

3.3.3.2. Sequence Clustering using K-Means and Levenshtein Edit Distance 

 
In this study, sequence clustering was performed using the K-means algorithm 

provided by the scikit-learn library (version 0.23) in Python 3.8. I utilized K-means 
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clustering of the Levenshtein edit distances to group participants according to similarities 

in the sequences of their engineering approaches, search strategies, and KI posttest 

responses. Clusters exhibit represent similarity in the values of these variables.  

 

The K-means clustering algorithm was chosen for its proven efficacy in 

partitioning data into clusters, such that each data point belongs to the cluster with the 

nearest mean (Géron, 2019). Alternatives such as hierarchical clustering were 

considered. Hierarchical clustering, while advantageous for its dendrogram output 

providing a visual representation of cluster formations, does not necessitate specifying 

the number of clusters a priori (Géron, 2019). Compared to this methods, K-means 

demands a predetermined cluster count, offers a balance of simplicity, computational 

efficiency, and the flexibility to adapt to the use of non-traditional distance measures such 

as the Levenshtein edit distance. 

 

K-means clustering begins by randomly assigning initial centroids to define 

clusters. These centroids are then iteratively adjusted by redistributing data points based 

on their distance to the current centroids and recalculating the centroids according to the 

updated cluster members. This process continues until a steady state is reached where 

centroids no longer shift. 

 

In the conventional implementation of the K-means algorithm, similarity measures 

such as Euclidean or Manhattan distance are employed, which are particularly suited for 

numerical or categorical data. However, given the distinctive nature of the dataset in this 

study— sequences of actions and responses from participants—I adopted the 

Levenshtein edit distance as the metric to be analyzed for similarity. The application of 

Levenshtein edit distance in K-means clustering varies from the use of Euclidean or 

Manhattan distances. In the traditional numeric-based K-means clustering, a centroid is 

defined as a central location within each cluster and is initially assigned at random. Each 

data point is then ascribed to the cluster whose centroid is the nearest, using a distance 

measure such as Euclidean distance. However, when deploying K-means clustering on 

sequence data and utilizing Levenshtein distances, the concept of a centroid is adapted. 

Here, a "centroid" retains its role as a central point within each cluster, but is defined as a 

representative sequence that best encapsulates or summarizes the sequences within 

that cluster. The initial centroids were determined automatically by the K-means 

algorithm, without manual intervention, based on the Levenshtein edit distances among 
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the sequences. During the assignment phase, each sequence in the dataset is compared 

to these centroid sequences through the Levenshtein distance. A sequence is assigned 

to the cluster whose centroid has the smallest Levenshtein distance to the sequence—

that is, the centroid sequence that requires the fewest edits to transform into the dataset 

sequence. In the subsequent update phase, centroids are recalculated after all 

sequences have been ascribed to clusters. This entails identifying a new representative 

sequence for each cluster that minimizes the aggregate Levenshtein distance to all other 

sequences within that cluster. This new centroid could either be an existing sequence 

from the dataset or a novel sequence derived from cluster sequences, frequently 

determined through a process known as multiple sequence alignment.  

 

This cycle of assigning sequences to clusters and recalculating centroids is 

iterated until the centroids cease to change, or the magnitude of change falls beneath a 

predefined threshold. Although this approach effectively employs the strengths of 

Levenshtein distance for sequence comparison in K-means clustering, it is noteworthy 

that it can be more computationally intensive due to the complexities involved in 

calculating Levenshtein distances and recalibrating the centroids. 

3.3.3.3. Optimizing Cluster Numbers using Silhouette Coefficient 

 
For optimal clustering, determining the ideal number of clusters is crucial. There 

are several techniques to determine this number, such as the Elbow Method, the Gap 

Statistic, and the Silhouette Coefficient. The Elbow Method and Gap Statistic are often 

used, but they can sometimes provide ambiguous results, depending on the structure of 

the data (Bies et al., 2006). In contrast, the Silhouette Coefficient provides a more 

consistent and robust measure of cluster quality, leading to its selection for our study 

(Géron, 2019). 

 

The Silhouette Coefficient computes the average distance between each data 

point and all other points within the same cluster (intra-cluster distance, denoted as ‘a’) 

and compares it with the average distance between each data point and all other points 

in the nearest different cluster (inter-cluster distance, denoted as ‘b’). Here, nearest 

different cluster means the cluster whose average distance to a data point is the 

smallest, but it's not the cluster to which the data point is currently assigned. The 

Silhouette Coefficient (s) for a single sample is then calculated as follows: s = (b - a) / 
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max(a, b). This value is calculated for each data point in the dataset and then averaged 

to determine the Silhouette Coefficient for the entire dataset. The Silhouette Coefficient 

ranges from -1 to +1. A high value near +1 indicates that the data point is well-matched 

to its own cluster and poorly matched to neighboring clusters, signifying a well-defined 

cluster structure and a suitable choice of the number of clusters. 

 

In visualizing the Silhouette Coefficient a silhouette plot, provides a graphical 

representation of each cluster. Each data point is represented by a line, with its length 

determined by the Silhouette Coefficient value for that datum. This plot depicts the extent 

to which each data point matches its own cluster compared to other clusters. It helps to 

visually assess the quality of clustering, the cohesion within clusters, and the separation 

between them (Figure 3.21). As illustrated in Figure 3.21, in the silhouette diagram for n-

clusters = 5 and n−clusters = 6, each cluster is represented by a silhouette shape. The 

height of each silhouette shape corresponds to the number of data points contained 

within that cluster, while its width indicates the sorted silhouette coefficients of the data 

points in that cluster; a wider silhouette implies better clustering. The vertical dashed 

lines in the diagrams denote the average silhouette coefficient for each set of clusters. 

The relative position of data points to this dashed line offers critical insights. Specifically, 

if many data points in a cluster don't reach or surpass this line, it indicates that those data 

points might be closely aligned with data from other clusters, thereby suggesting a lack of 

distinctness for that cluster. In contrast, when the majority of data points in a cluster 

largely surpass the dashed line, moving towards a coefficient of 1.0, it is indicative of a 

well-defined cluster. For instance, within the k = 6 silhouette diagram, there's a notable 

presence of data points in cluster 0 with negative silhouette coefficients, hinting that 

these might be more appropriately placed in another cluster. However, the k = 5 diagram 

presents a more coherent clustering pattern, as seen by most data points in its clusters 

surpassing the dashed line, hinting at more distinct groupings. 

 

Figure 3.21 Sample Silhouette Diagrams for Various Values of k 
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3.3.3.4. Generalized Median String 

 
The Levenshtein Median, also known as the string median or the sequence 

median, generalizes the concept of the median to sequences or strings. The Levenshtein 

Median, derived from a set of strings, represents a string (or sequence) that either exists 

within the initial collection or emerges as a completely new string not present in the 

original set. This characteristic aligns with Kohonen's (1985) generalized median, where 

the median does not necessarily have to be a member of the original set. Instead, the 

defining feature of the Levenshtein Median, consistent with Kohonen's perspective, is its 

unparalleled ability to minimize the total Levenshtein distance in relation to all other 

strings in the collection. Kohonen further elucidates that while a median can sometimes 
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be found within the existing set, termed a 'set median', there are instances where it may 

manifest as an entirely new sequence. In this study, this concept was vital in identifying 

sequences that, on average, require the fewest modifications to match any other 

sequences within their cluster, offering profound insights into the core or 'center' of each 

cluster. 

 

The Levenshtein Median was employed post-clustering to identify the most 

representative sequence within each established cluster of participants' engineering 

approaches, search strategies, and ideas. This process substantially aids in the 

interpretation of our clustering results.  

 

Here is a general description of the algorithm to find the Levenshtein median:  

1. Given a set of strings S = {s₁, s₂, ..., sₙ}, the Levenshtein median, denoted as M, 

is the string that minimizes the sum of Levenshtein distances to all other strings in 

S.  

2. Start with an initial estimate of M, which can be any string from the set S.  

3. Iterate the following steps until convergence or a stopping condition is met:  

a. Calculate the Levenshtein distance between M and each string s ᵢ in S. 

b. Update M as the string that minimizes the sum of distances obtained in 

step 3a. 

4. Once the algorithm converges or the stopping condition is met, the resulting M is 

considered the Levenshtein median. 

 

This method actively seeks to formulate a sequence, either from S or a novel one, 

that ensures the least aggregate distances from every other sequence in the collection. 

The direct calculation of the median string without employing any iterative optimization 

strategies has limitations in terms of computational efficiency and may not always yield 

the most accurate representation. 

 

Using an iterative optimization strategy, such as the greedy algorithm, in 

Levenshtein Median is useful for several reasons. Firstly, it allows for a more refined 

search process, exploring different candidate strings and iteratively improving their total 

distance. This iterative approach helps in finding a better approximation of the true 

median and increases the likelihood of identifying the most representative string within 

the set. 
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The limitation of a simple Levenshtein Median, without iterative optimization 

strategies, is that it may produce suboptimal results. It might select a string that is not the 

most accurate representative of the set due to limited exploration of the solution space. 

Without iterative optimization, the method is restricted to a single computation, potentially 

missing out on better alternatives. 

 

The greedy algorithm, employed in the Levenshtein.median() function of the 

python-Levenshtein package, addresses this limitation. By iteratively refining the 

candidate string, the greedy algorithm continuously improves the total distance to other 

strings in the set. It performs a step-by-step optimization, always selecting the locally 

optimal choice at each iteration. This approach ensures a more thorough exploration of 

the solution space, leading to a better approximation of the Levenshtein Median. 

 

In this study, I adopted the greedy iterative algorithm provided by the python-

Levenshtein package. This approach allowed efficiently computing an approximate 

generalized median string for each cluster. By using the greedy algorithm, I could identify 

the most representative sequence within each cluster, capturing the essence of 

participants' engineering approaches, search strategies, and ideas.
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Chapter 4. Results  

4.1. RQ 1. What progress in engineering approaches, search 
strategies, and integrating ideas do students make while using 
the electric circuit simulation in the control condition versus rule 
formation conditions?  

4.1.1 Descriptive Statistics  

 
Pretest scores for the concept of current, out of a total score of 5, indicated that 

the Control group had a mean score of M = 1.45, with a standard deviation of SD = 0.86. 

The Experiment 1 group (Decision Table and Rule Induction) exhibited a mean score of 

M = 1.65, with a standard deviation of SD = 0.65, while the Experiment 2 group (Rule 

Induction) displayed a mean score of M = 1.15, with a standard deviation of SD = 0.96.  

 

Pretest results for the concept of voltage drop, out of a total score of 5, indicated 

that the Control group achieved a mean score of M = 1.8, with a standard deviation of SD 

= 0.6. The Experiment 1 group, which utilized the Decision Table and Rule Induction 

intervention, reported a mean score of M = 1.5, with a standard deviation of SD = 0.87. 

Meanwhile, participants in the Experiment 2 group, receiving the Rule Induction 

intervention, had a mean score of M = 1.2, with a standard deviation of SD = 0.98. 
 

Table 4.1 illustrates the descriptive statistics for engineering approaches and 

Table 4.2 illustrates the descriptive statistics for search strategies. Table 4.1 presents 

descriptive statistics for the various engineering approaches adopted by the students 

across the three conditions: Control, Decision Table & Rule Induction, and Rule 

Induction. Similarly, Table 4.2 provides the descriptive statistics for the search strategies 

employed by the students. For each student in the study, I identified and counted the 

occurrences of each engineering approach and search strategy during the task. These 

counts were then used to calculate the mean (M) and standard deviation (SD) for each 

approach and strategy within each condition, providing a quantitative overview of the 

engineering strategies and search behaviors utilized by the students. This method of 
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analysis allowed me to discern patterns and variations in the adoption of different 

engineering approaches and search strategies across the various conditions. 

 

Table 4.1 Mean and Standard Deviation for Engineering Approaches 

  Control 
N = 20 (1-20) 

Decision Table & 
Rule Induction 
N = 20 (21-40) 

Rule Induction 
N = 20 (41-60) 

  M SD M SD M SD 

1 bulbs equal 0.75 0.79 0.85 0.67 1.47 1.17 

2 bulbs equal 0.7 0.86 1.25 0.91 0.89 0.94 

1 vs. 2 bulbs different 0.05 0.22 0.5 0.76 0.53 0.84 

Battery voltage equal 1.05 1.05 2.55 1 2.11 1.05 

Battery voltage different 0.45 0.51 0.05 0.22 0.79 0.71 

Resistance change: 1 or 2 
bulbs 

0.45 0.60 0.55 0.69 0.47 0.84 

Resistance change: 2 
bulbs 

0.05 0.22 0.45 0.83 0.21 0.42 

Resistance equal: 2 bulbs 
different value 

0.4 0.75 0.7 0.92 0.42 0.61 

Resistance equal: 2 or 1 
vs. 2 bulbs same value 

0.25 0.44 0.2 0.41 0.47 0.77 

Resistance equal: 1 bulb 0.35 0.49 0.7 0.57 1.26 1.05 

Resistance equal: 2 bulbs 
different value & position 

0 0 0.1 0.31 0.11 0.32 

Ammeter equal: 
after/before 1 or 2 bulb 

0.85 0.59 1.15 0.81 1.74 1.10 

Ammeter different: before 
vs. after 1 or 2 bulbs 

0.45 0.76 0.95 0.69 1.16 0.69 

Ammeter different: on 
high/low of 2 bulb 

0.2 0.52 0.5 0.51 0 0 

Voltmeter equal: 1 bulb or 
2 bulbs or battery 

0.95 0.76 2.1 1.17 2.47 1.17 

Voltmeter equal: 2 bulbs 0 0 0.05 0.22 0.16 0.50 

Voltmeter different: high 
vs. low resistance 2 bulbs 

0.3 0.57 0.5 0.69 0.47 0.61 
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Voltmeter different: high 
vs. low resistance 2 bulbs 
vs. battery 

0.15 0.37 0.1 0.31 0.11 0.46 

No action 0.25 0.55 0 0 0 0 

  
Table 4.2 Mean and Standard Deviation for Search Strategies 

  Control 
N = 20 (1-20) 

Decision Table & 
Rule Induction 
N = 20 (21-40) 

Rule Induction 
N = 20 (41-60) 

  M SD M SD M SD 

No action 1.75 1.68 0.55 0.51 0.79 0.42 

No new comparative trial 0.6 0.5 0 0 0 0 

Prediction Current: same 
rule 

0.8 0.52 1.25 1.02 2.05 1.47 

Prediction Voltage Drop: 
same rule 

0.95 0.89 1.65 0.99 1.68 1.34 

Confidence Current: verify 
prediction 

0.95 0.6 1.65 1.04 2.21 1.32 

Confidence Voltage Drop: 
verify prediction 

0.8 0.62 1.9 1.21 1.89 1.24 

Rule Current: Confirming 
Redundancy 

0.75 0.55 0.3 0.66 0.47 0.61 

Rule Voltage Drop: 
Confirming Redundancy 

0.55 0.6 0.2 0.52 0.16 0.37 

Post-test: Current non-
normative 

0.65 0.49 0.1 0.31 0.11 0.32 

Post-test: Voltage Drop 
non-normative 

0.65 0.49 0.05 0.22 0.05 0.23 

New comparative trial 0.4 0.5 1 0 1 0 

Prediction Current: Fill up 
gaps 

0.5 0.89 1.35 0.99 0.84 0.6 

Prediction Voltage Drop: 
Fill up gaps 

0.35 0.67 0.95 0.83 1.21 0.71 

Confidence Current: falsify 
prediction 

0.35 0.59 0.95 0.76 0.68 0.48 

Confidence Voltage Drop: 
falsify prediction 

0.3 0.73 0.7 0.66 1 0.58 



 61 

Identify problem: goal 
stated 

0.15 0.37 0.45 0.51 0.21 0.42 

Rule Current: 
Simultaneous scanning 

0.1 0.45 0.85 0.81 1.42 1.07 

Rule Voltage Drop: 
Simultaneous scanning 

0.25 0.64 1.05 0.69 0.74 0.45 

Rule Current: Successive 
scanning 

0.1 0.31 0.85 0.49 0.84 0.37 

Rule Voltage Drop: 
Successive scanning 

0.1 0.31 0.8 0.62 1.21 0.79 

Rule Current: Focus 
gambling 

0.25 0.44 0.15 0.37 0.11 0.32 

Rule Voltage Drop: Focus 
gambling 

0.25 0.44 0.3 0.47 0.26 0.45 

Rule Current: Conservative 
Focusing 

0.2 0.52 0.45 0.69 0.05 0.23 

Rule Voltage Drop: 
Conservative Focusing 

0.1 0.31 0.2 0.41 0.16 0.37 

Post-test: Current partial 0.15 0.37 0.35 0.49 0.53 0.51 

Post-test: Voltage Drop 
partial 

0.15 0.37 0.45 0.51 0.58 0.51 

Post-test: Current 1 Valid 
link 

0.05 0.22 0.1 0.31 0.32 0.48 

Post-test: Voltage Drop 1 
Valid link 

0.1 0.31 0.2 0.41 0 0 

Post-test: Current 2 Valid 
links 

0.15 0.37 0.45 0.51 0.05 0.23 

Post-test: Voltage Drop 2 
Valid links 

0.1 0.31 0.3 0.47 0.37 0.5 

 

Figure 4.1 and Figure 4.2 illustrate the frequencies of each variable among the 

Control group, Experimental 1 group (using the decision table and induction rule tool), 

and Experimental 2 group (using the induction rule tool). 

 
Figure 4.1 Count of Comparative Trials for Engineering Approaches among Control 
and Experimental Groups 
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Figure 4.2 Count of Comparative Trials for Search Strategies among Control and 
Experimental Groups 
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4.1.2. Dunn’s Test and Spearman Correlation Coefficient 

 
 This investigation centered around a set of thirty search strategy variables, crucial 

to the hypothesis that, by utilizing a decision table and a dynamic rule induction tool, 

individuals could strategically plan actions based on their comparative selection of 

conditions. The thirty search strategy variables are:  

● No action  

● New comparative trial  

● No new comparative trial  

● Prediction Current: same rule 

● Prediction Voltage Drop: same rule  

● Prediction Current: Fill up gaps  

● Prediction Voltage Drop: Fill up gaps  

● Confidence Current: verify prediction  

● Confidence Voltage Drop: verify prediction  
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● Confidence Current: falsify prediction  

● Confidence Voltage Drop: falsify prediction  

● Identify problem: goal stated  

● Rule Current: Confirming Redundancy  

● Rule Voltage Drop: Confirming Redundancy  

● Rule Current: Simultaneous scanning  

● Rule Voltage Drop: Simultaneous scanning  

● Rule Current: Successive scanning  

● Rule Voltage Drop: Successive scanning 

● Rule Current: Focus gambling  

● Rule Voltage Drop: Focus gambling  

● Rule Current: Conservative Focusing  

● Rule Voltage Drop: Conservative Focusing  

● Post-test: Current non-normative  

● Post-test: Voltage Drop non-normative  

● Post-test: Current partial  

● Post-test: Voltage Drop partial  

● Post-test: Current 1 Valid link  

● Post-test: Voltage Drop 1 Valid link 

● Post-test: Current 2 Valid links  

● Post-test: Voltage Drop 2 Valid links 

Upon examining these variables using the Shapiro-Wilk test, none adhered to the 

assumption of normality, a key prerequisite for ANOVA. The non-normal distribution of 

data in this study could be attributed to the intrinsic characteristics of the search strategy 

variables, which were predominantly categorical or ordinal in nature. These variables 

often recorded scores at lower ends of the spectrum, predominantly 0 and 1, with some 

variables extending to values up to 5 but not higher. Given these variables' limited range 

and the tendency for scores to aggregate at the lower end of the scale, the resulting 

distributions deviate from the normality typically expected in continuous data. This 

aggregation effect, particularly pronounced due to the variables' discrete and constrained 

scoring system, likely contributed to the observed departure from normal distribution 

patterns. Since the assumptions for performing ANOVA are not met, it is appropriate to 

use a non-parametric test. Consequently, Dunn's test was selected for this analysis. It is 

a post-hoc test that can be used to compare the mean ranks of three or more groups 

when the assumption of normality is violated or when the data is ordinal. It is a good 
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alternative to ANOVA in such situations. To mitigate the potential for elevated Type I 

error due to numerous comparisons, I employed the Benjamini-Hochberg procedure, 

modifying the significance level for every statistical analysis in this section. As a result, 

the p-values presented have been adjusted considering these multiple tests. 

 

Spearman correlation coefficient (calculated by the spearman r function from 

scipy.stats) is a measure of rank correlation. This means that it assesses monotonic 

relationships between two variables using the ranks of the values rather than the values 

themselves. This is particularly appropriate for data where the relationship might not be 

linear, or when the data is not normally distributed. I calculated the Spearman correlation 

for each variable separately between two groups (Control and Experimental). I looked at 

whether the ranks of the values for a given variable are similarly ordered in both the 

control group and the experimental group. 

 

4.1.2.1. Search Strategies for Experimental 1 (Decision Table and Induction 
Rule Tool) vs. Control 

 

Dunn's test was conducted to compare the differences between the Control and 

Experimental group 1 (see Figure 4.3, Table 4.3). The correlation between the Control 

and Experimental 1 groups for search strategy variables was computed using 

Spearman's rho, and the effect size was rank-biserial correlation.  

 

Statistically detectable differences were found in the 'No action' condition, z = 

3.25, p < .001, with a negative correlation (r = -.26), and a large effect size (rs = 1.00). 

For the 'No new comparative trial' condition, results were significant, z = 3.52, p < .001, 

with a positive correlation (rs = N/A), and a large effect size (r = 1.00). In the 'New 

comparative trial' condition, results were also statistically detectable, z = -3.52, p < .001, 

with a positive correlation (rs = N/A), and a large effect size (r = 1.00).  

 

For the prediction variables, significant differences were found for 'Prediction 

Voltage Drop: same rule' (z = -2.14, p = .02, rs = .13, r = 1.00), 'Prediction Current: Fill up 

gaps' (z = -3.65, p < .001, rs = .01, r = 1.00), 'Prediction Voltage Drop: Fill up gaps' (z = -

2.80, p < .001, rs = .17, r = 1.00). However, for the 'Prediction Current: same rule' 
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condition, there was no significant difference, z = -0.46, p = .60, with a negative 

correlation (rs = .10), and a large effect size (r = 1.00).  

 

 For the confidence variables, the results of 'Confidence Current: verify prediction' 

(z = -2.11, p = .02, rs = .14, r = 1.00), 'Confidence Voltage Drop: verify prediction' (z = -

2.52, p = .01, rs = .11, r = 1.00), 'Confidence Current: falsify prediction' (z = -2.84, p < 

.001, rs = .27, r = 1.00), and 'Confidence Voltage Drop: falsify prediction' (z = -2.56, p < 

.001, rs = .25, r = 1.00) conditions were statistically detectable.  

 

For problem identification and rule formation variables, statistically detectable 

differences were found for 'Identify problem: goal stated' (z = -2.16, p = .01, rs = .00, r = 

1.00), 'Rule Current: Confirming Redundancy' (z = 2.68, p < .001, rs = .10, r = 1.00), and 

'Rule Voltage Drop: Confirming Redundancy' (z = 2.06, p = .01, rs = .04, r = 1.00). There 

were also significant differences observed for 'Rule Current: Conservative Focusing' (z = 

-1.70, p = .02, rs = .15, r = 1.00). However, the 'Rule Current: Focus gambling' condition 

showed no significant difference (z = 0, p = 1.00, rs = .25, r = 1.00), and 'Rule Voltage 

Drop: Focus gambling' condition was also not significant (z = -0.81, p = .29, rs = .37, r = 

1.00). Similarly, the 'Rule Voltage Drop: Conservative Focusing' condition showed no 

significant difference (z = -1.08, p = .08, rs = .13, r = 1.00). 

 

For the post-test variables, the 'Post-test: Voltage Drop non-normative' and 'Post-

test: Current non-normative' conditions, results were significantly different, z = 3.25, p < 

.001, rs = .17, r = 1.00, and z = 3.52, p < .001, rs = .35, r = 1.00, respectively. Similarly, 

significant differences were found for 'Post-test: Current 2 Valid links' (z = -2.16, p = .01, 

rs = .00, r = 1.00), and 'Post-test: Voltage Drop 2 Valid links' (z = -1.62, p = .02, rs = .17, r 

= 1.00). However, for the 'Post-test: Current partial' condition, no significant difference 

was observed (z = -1.08, p = .15, rs = .28, r = 1.00), and 'Post-test: Voltage Drop partial' 

also showed no significant difference (z = -1.08, p = .17, rs = .36, r = 1.00). Furthermore, 

no significant differences were found for 'Post-test: Current 1 Valid link' (z = -0.27, p = 

.55, rs = .08, r = 1.00), and 'Post-test: Voltage Drop 1 Valid link' (z = -0.54, p = .38, rs = 

.67, r = 1.00). 

 
Figure 4.3 Dunn’s Test Comparisons: Control vs. Experimental 1 (Decision Table 
and Rule Formation) 
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Table 4.3 Significant P-values Comparing Control vs. Experimental 1 (Decision 
Table and Rule Formation) for Each Variable 

 

Variable P-
value 

Effect 
Size 

Z-
score 

Correlation Correlation 
Sign 

No action 0 1 3.25 0.26 Negative 
No new comparative trial 0 1 3.52 N/A Positive 

New comparative trial 0 1 -3.52 N/A Positive 

Prediction Voltage Drop: same rule 0.02 1 -2.14 0.13 Positive 

Prediction Current: Fill up gaps 0 1 -3.65 0.01 Positive 

Prediction Voltage Drop: Fill up gaps 0 1 -2.8 0.17 Negative 
Confidence Current: verify prediction 0.02 1 -2.11 0.14 Negative 

Confidence Voltage Drop: verify 
prediction 

0.01 1 -2.52 0.11 Positive 

Confidence Current: falsify prediction 0 1 -2.84 0.27 Negative 
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Confidence Voltage Drop: falsify 
prediction 

0 1 -2.56 0.25 Negative 

Identify problem: goal stated 0.01 1 -2.16 0 Positive 

Rule Current: Confirming Redundancy 0 1 2.68 0.1 Negative 

Rule Voltage Drop: Confirming 
Redundancy 

0.01 1 2.06 0.04 Positive 

Rule Current: Simultaneous scanning 0 1 -2.61 0.34 Positive 
Rule Voltage Drop: Simultaneous 
scanning 

0 1 -3.73 0.21 Positive 

Rule Current: Successive scanning 0 1 -3.81 0.11 Positive 
Rule Voltage Drop: Successive 
scanning 

0 1 -3 0.2 Positive 

Rule Current: Conservative Focusing 0.02 1 -1.7 0.15 Positive 

Post-test: Voltage Drop non-normative 0 1 3.25 0.17 Positive 

Post-test: Current non-normative 0 1 3.52 0.35 Negative 
Post-test: Current 2 Valid links 0.01 1 -2.16 0 Positive 

Post-test: Voltage Drop 2 Valid links 0.02 1 -1.62 0.17 Negative 

 

4.1.2.2. Search Strategies for Experimental 2 (Induction Rule Tool) vs. 
Control 

 

Dunn's test was conducted to compare the differences between the Control and 

Experimental group 2 (see Figure 4.4 & Table 4.4). The correlation test used was 

Spearman's rho, and the effect size test used was rank-biserial correlation.  
The Dunn's test showed a significant positive correlation in the "No action" 

variable (Z = 2.11, p = .01, rs = 0.43, r = 1), while the "No new comparative trial" variable 

also revealed a significant positive correlation (Z = 3.52, p < .001, r = 1). Similarly, the 

"New comparative trial" (Z = -3.52, p < .001, r = 1) showed significant positive correlation. 

 

For the prediction variables, "Prediction Current: same rule" variables showed a 

statistically detectable positive correlation (Z = -2.62, p < .001, rs = 0.3, r = 1). However, 

the "Prediction Voltage Drop: same rule" variable, while exhibiting a positive correlation, 

did not reach a statistically detectable difference (Z = -1.73, p = .06, rs = 0.38, r = 1). On 

the other hand, the "Prediction Current: Fill up gaps" variable revealed a significant 

negative correlation (Z = -2.19, p = .01, rs = 0.43, r = 1). Nevertheless, significant positive 
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correlations were observed in the "Prediction Voltage Drop: Fill up gaps" (Z = -3.67, p < 

.001, rs = 0.09, r = 1). 

 

For the confidence variables, the "Confidence Current: falsify prediction" revealed 

a significant negative correlation (Z = -1.99, p = .02, rs = 0.1, r = 1). Nevertheless, 

significant positive correlations were observed in the "Confidence Current: verify 

prediction", "Confidence Voltage Drop: verify prediction", and "Confidence Voltage Drop: 

falsify prediction" variables (Z = -3.18, p < .001, rs = 0.59, r = 1; Z = -2.54, p = .01, rs = 

0.12, r = 1; and Z = -3.91, p < .001, rs = 0.26, r = 1, respectively).  

 

For the problem identification and rule formation variables, the "Identify problem: 

goal stated" variable showed a positive correlation but was not statistically detectable (Z 

= -0.54, p = .38, rs = 0.25, r = 1), while the "Rule Current: Confirming Redundancy" 

variable demonstrated a significant positive correlation (Z = 1.91, p = .03, rs = 0.07, r = 

1). The "Rule Voltage Drop: Confirming Redundancy" variable revealed a significant 

negative correlation (Z = 2.2, p = .01, rs = 0.19, r = 1). Positive correlations were also 

found in the "Rule Current: Simultaneous scanning", "Rule Voltage Drop: Simultaneous 

scanning", "Rule Current: Successive scanning", and "Rule Voltage Drop: Successive 

scanning" variables, all of which were statistically detectable (Z = -4.25, p < .001, rs = 

0.19, r = 1; Z = -2.87, p < .001, rs = 0.22, r = 1; Z = -3.79, p < .001, rs = 0.17, r = 1; and Z 

= -4.25, p < .001, rs = 0.13, r = 1, respectively). In contrast, the "Rule Current: Focus 

gambling" variable showed a negative correlation (Z = 0.54, p = .38, r = 0.17, r = 1), while 

the "Rule Voltage Drop: Focus gambling" variable demonstrated a positive correlation (Z 

= -0.27, p = .71, rs = 0, r = 1). The "Rule Current: Conservative Focusing" variable 

revealed a negative correlation (Z = 0.27, p = .55, rs = 0.08, r = 1), and the "Rule Voltage 

Drop: Conservative Focusing" variable showed a positive correlation (Z = -0.54, p = .3, rs 

= 0.55, r = 1). 

 

For the post-test variables, the 'Post-test: Current non-normative' condition, a 

positive correlation was found (r = .28, z = 2.98, p < .001, rs = 1.00). In the 'Post-test: 

Current partial' condition, results were statistically detectable (r = .14, z = -1.89, p = .02, 

rs = 1.00) and showed a positive correlation. Similarly, for the 'Post-test: Voltage Drop 

partial' condition, a significant difference was found (r = .10, z = -2.16, p = .01, rs = 1.00), 

but the correlation was negative. For the 'Post-test: Current 1 Valid link' condition, the 

results showed a negative correlation (r = .15, z = -1.35, p = .04, rs = 1.00), signifying a 
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detectable difference. However, the 'Post-test: Voltage Drop 1 Valid link' condition was 

not significantly different (z = 0.54, p = .15, rs = 1.00), with a positive correlation being 

unable to be calculated. Further, for the 'Post-test: Current 2 Valid links' condition, there 

was no significant difference (r = .69, z = 0.27, p = .55, rs = 1.00), with a positive 

correlation. Conversely, the 'Post-test: Voltage Drop 2 Valid links' condition was 

significantly different (r = .31, z = -1.62, p = .02, rs = 1.00), with a positive correlation. 

 

Figure 4.4 Dunn’s Test Comparisons: Control vs. Experimental 2 (Rule Formation) 

 

 
 
Table 4.4 Significant P-values Comparing Control vs. Experimental 2 (Rule 
Formation) for Each Variable 

 

Variable P-
value 

Effect 
Size 

Z-
score 

Correlation Correlation 
Sign 

No action 0.01 1 2.11 0.43 Positive 

No new comparative trial 0 1 3.52  Positive 

New comparative trial 0 1 -3.52  Positive 
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Prediction Current: same rule 0 1 -2.62 0.3 Positive 

Prediction Current: Fill up gaps 0.01 1 -2.19 0.43 Negative 
Prediction Voltage Drop: Fill up gaps 0 1 -3.67 0.09 Positive 

Confidence Current: verify prediction 0 1 -3.18 0.59 Positive 

Confidence Voltage Drop: verify 
prediction 

0.01 1 -2.54 0.12 Positive 

Confidence Current: falsify prediction 0.02 1 -1.99 0.1 Negative 
Confidence Voltage Drop: falsify 
prediction 

0 1 -3.91 0.26 Positive 

Rule Current: Confirming Redundancy 0.03 1 1.91 0.07 Positive 
Rule Voltage Drop: Confirming 
Redundancy 

0.01 1 2.2 0.19 Negative 

Rule Current: Simultaneous scanning 0 1 -4.25 0.19 Positive 

Rule Voltage Drop: Simultaneous 
scanning 

0 1 -2.87 0.22 Positive 

Rule Current: Successive scanning 0 1 -3.79 0.17 Positive 

Rule Voltage Drop: Successive 
scanning 

0 1 -4.25 0.13 Positive 

Post-test: Voltage Drop non-normative 0 1 3.25 0.17 Positive 

Post-test: Current non-normative 0 1 2.98 0.28 Positive 
Post-test: Current partial 0.02 1 -1.89 0.14 Positive 

Post-test: Voltage Drop partial 0.01 1 -2.16 0.1 Negative 
Post-test: Current 1 Valid link 0.04 1 -1.35 0.15 Negative 

Post-test: Voltage Drop 2 Valid links 0.02 1 -1.62 0.31 Positive 

 

4.1.2.3. Search Strategies for Experimental 1 vs. Experimental 2 

 
Dunn's test was conducted to compare the differences between the Experimental 

group 1 and Experimental group 2 (see Figure 4.5 & Table 4.5). The correlation test used 

was Spearman's rho, and the effect size test used was rank-biserial correlation.  

 

In the Dunn's test analysis comparing Experimental 1 and Experimental 2 groups, 

the variable "No action" showed a significant positive correlation (Z = -1.62, p = .05, r = 1, 

rs = 0). There was no available p-value or correlation for the "No new comparative trial" 

and "New comparative trial" variables; however, they demonstrated a large effect size (r 

= 1). 
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For prediction variables, a significant negative correlation was found in "Prediction 

Current: same rule" (Z = -2.03, p = .03, r = 1, rs = 0.17), while the variables "Prediction 

Voltage Drop: same rule" and "Prediction Current: Fill up gaps" both showed a significant 

positive correlation (Z = 0.34, p = .72, r = 1, rs = 0.1; and Z = 2.19, p = .02, r = 1, rs = 

0.01, respectively). The "Prediction Voltage Drop: Fill up gaps" variable showed a 

positive correlation but was not statistically detectable (Z = -0.89, p = .34, r = 1, rs = 0.14) 

 

For the confidence variables, "Confidence Current: verify prediction" and 

"Confidence Voltage Drop: verify prediction" revealed a negative correlation, but neither 

were statistically detectable (Z = -1.41, p = .14, r = 1, rs = 0.36; and Z = 0.05, p = .95, r = 

1, rs = 0, respectively). For "Confidence Current: falsify prediction," a positive correlation 

was shown, but it was not statistically detectable (Z = 1.42, p = .11, r = 1, rs = 0.3). In 

contrast, "Confidence Voltage Drop: falsify prediction" demonstrated a negative 

correlation without a statistically detectable difference (Z = -1.11, p = .21, r = 1, rs = 

0.05). 

 

Further in the analysis, the variables "Rule Current: Confirming Redundancy" and 

"Rule Voltage Drop: Confirming Redundancy" revealed a negative correlation, but neither 

reached a statistically detectable difference (Z = -0.92, p = .25, r = 1, rs = 0.19; and Z = 

0.04, p = .95, r = 1, rs = 0.18, respectively). A significant positive correlation was 

observed for "Identify problem: goal stated" (Z = 1.62, p = .05, r = 1, rs = 0). For the 

variables "Rule Current: Simultaneous scanning" and "Rule Voltage Drop: Simultaneous 

scanning," a significant negative correlation and a significant positive correlation were 

found respectively (Z = -2.06, p = .03, r = 1, rs = 0.11; and Z = 1.76, p = .04, r = 1, rs = 

0.11, respectively). The variables "Rule Current: Successive scanning," "Rule Voltage 

Drop: Successive scanning," "Rule Current: Focus gambling," and "Rule Voltage Drop: 

Focus gambling" all showed positive correlations, but none were statistically detectable 

(Z = 0.22, p = .77, r = 1, rs = 0.1; Z = -2.1, p = .02, r = 1, rs = 0.27; Z = 0.54, p = .38, r = 

1, rs = 0.25; and Z = 0.54, p = .5, r = 1, rs = 0.06, respectively). A significant positive 

correlation was found for "Rule Current: Conservative Focusing" (Z = 1.93, p = .01, r = 1, 

rs = 0.2), while the "Rule Voltage Drop: Conservative Focusing" variable showed a 

negative correlation but did not reach statistically detectable difference (Z = 0.54, p = .44, 

r = 1, rs = 0.24). 
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For the post-test variables, the "Post-test: Voltage Drop non-normative" variable, 

a negative correlation was observed, but it was not statistically detectable (Z = 0, p = 1, r 

= 1, rs = 0.05). The "Post-test: Current non-normative" variable demonstrated a negative 

correlation as well, but also without a statistically detectable difference (Z = -0.54, p = .3, 

r = 1, rs = 0.1). The variables "Post-test: Current partial" and "Post-test: Voltage Drop 

partial" showed negative correlations, but neither reached a statistically detectable 

difference (Z = -0.81, p = .34, r = 1, rs = 0.31; and Z = -1.08, p = .21, r = 1, rs = 0.38, 

respectively). For "Post-test: Current 1 Valid link", there was a negative correlation but it 

was not statistically detectable (Z = -1.08, p = .12, r = 1, rs = 0.22). Conversely, "Post-

test: Voltage Drop 1 Valid link" showed a detectable difference with a positive correlation 

(Z = 1.08, p = .04, r = 1). Furthermore, “Post-test: Current 2 Valid links” variable showed 

a detectable difference with a negative correlation (Z = 2.43, p < 0.01, r = 1, rs = 0.23). 

 
Figure 4.5 Dunn’s Test Comparisons: Experimental 1 vs. Experimental 2 

 

 
 

Table 4.5 Significant P-values for Experimental 1 vs. Experimental 2 
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Variable P-value Effect 
Size 

Z-score Correlatio
n 

Correlation 
Sign 

No action 0.05 1 -1.62 0 Positive 

Prediction Current: same rule 0.03 1 -2.03 0.17 Negative 
Prediction Current: Fill up gaps 0.02 1 2.19 0.01 Positive 

Identify problem: goal stated 0.05 1 1.62 0 Positive 
Rule Current: Simultaneous scanning 0.03 1 -2.06 0.11 Negative 

Rule Voltage Drop: Simultaneous 
scanning 

0.04 1 1.76 0.11 Positive 

Rule Voltage Drop: Successive 
scanning 

0.02 1 -2.1 0.27 Positive 

Rule Current: Conservative Focusing 0.01 1 1.93 0.2 Positive 

Post-test: Voltage Drop 1 Valid link 0.04 1 1.08 N/A Positive 

Post-test: Current 2 Valid links 0 1 2.43 0.23 Negative 

 

4.1.2.4. Comparing the Three Groups 

 
Figure 4.6 shows that the following variables are detectably different between 

Control vs. Experimental 1 but are not detectably different between Control vs. 

Experimental 2:  

● Prediction Voltage Drop: same rule 

● Confidence Current: verify prediction 

● Confidence Voltage Drop: verify prediction 

● Confidence Current: falsify prediction 

● Confidence Voltage Drop: falsify prediction 

● Identify problem: goal stated 

● Rule Current: Confirming Redundancy 

● Rule Voltage Drop: Confirming Redundancy 

● Rule Current: Conservative Focusing 

● Post-test: Voltage Drop non-normative 

● Post-test: Current non-normative 

● Post-test: Current 2 Valid links 
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Furthermore, the variables that are detectably different in both Control vs. Experimental 

group 1 and Experimental group 1 vs. Experimental group 2 are the following (Figure 

4.6): 

● No action 

● Prediction Current: same rule 

● Prediction Current: Fill up gaps 

● Identify problem: goal stated 

● Rule Current: Simultaneous scanning 

● Rule Voltage Drop: Simultaneous scanning 

● Rule Voltage Drop: Successive scanning 

● Rule Current: Conservative Focusing 

● Post-test: Current 2 Valid links 

 

Figure 4.6 Dunn’s Test Comparisons: Control vs. Experimental 1, Control vs. 
Experimental 2, and Experimental 1 vs. Experimental 2 
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4.2. RQ 2. What distinct learning paths do students take as they 
engage with the electric circuit simulation in the control 
condition versus intervention conditions? 

4.2.1. Sequence Analysis between Control and Experimental Conditions 

 
Figure 4.7 shows the Silhouette scores against the values of clusters. Among 

different clusters, k = 5 has the highest silhouette score average while k = 2 has the 

lowest silhouette score average (Figure 4.7). Among different clusters k = 5 has the least 

negative values. Figure 4.8 is the graphical Silhouette Coefficient clustering that shows 

that k = 5 has no negative values. Thus, I selected k = 5 as the optimal number of 

clusters. 

 

 After testing different numbers of clusters, five clusters showed more inter-cluster 

similarity and intra-cluster dissimilarity (Figure 4.9).  

 

Figure 4.7 Silhouette Scores for Clusters for all Groups (N = 60) 
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Figure 4.8 Graphical Silhouette Coefficient Clustering for all Groups (N = 60) 

 
 

Figure 4.9 K-means Cluster for all Groups (N = 60) 
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Figure 4.10 shows the median strings (the most representative strings of 

engineering approaches) for all the clusters from the Control, Experimental 1, and 

Experimental 2 groups. Figure 4.11 displays the median strings (the most representative 

strings of search strategies and knowledge integration) for all five clusters identified 

across the Control, Experimental 1, and Experimental 2 groups.  

 

Figure 4.10 K-means Clusters and Generalized Median Strings for Engineering 
Approaches of all Groups (N = 60) 
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Figure 4.11 K-means Clusters and Generalized Median Strings for Search 
Strategies of all Groups (N = 60) 

 



 80 

 

4.2.2. Cluster 1 

 
The engineering approaches of cluster 1 are displayed in Figure 4.10, and the 

search strategies of this cluster are presented in Figure 4.11. In the investigation phase, 



 81 

the participants within Cluster 1 did not initiate any new comparative trials. Instead, they 

mirrored the trials tested in the exploration phase. Predictions were initially made for the 

current and voltage drop in the comparative trials, based on rules identical to the ones 

used in the previous exploration phase trial. As an example, participant A from Cluster 1 

expressed, “I will test a circuit with a 10V battery and a 5-Ohm resistor to determine the 

current and potential difference when I increase the resistance. I predict that the current 

will decrease, but the potential difference will remain constant.” 

 

Following these predictions, the anticipated current and voltage drop values were 

verified. It is noteworthy to mention that during this phase of investigation, no specific 

actions related to problem identification were documented. When forming rules, Cluster 1 

consistently used the “confirmation redundancy” strategy for both current and voltage 

drop. This involved the repeated testing of alterations of the same instance for both 

parameters in search of hypothesis confirmation. 

 

The post-testing stage revealed non-normative ideas in voltage drop and current, 

suggesting potential discrepancies that the cluster failed to accurately anticipate. For 

example, Participant A in Cluster 1 responded to the post-test question by stating, 

“Current has a negative relationship with resistance; even though my circuit only had one 

resistor instead of two, increasing the ohms in that resistor decreased the value in the 

ammeter reading.” Furthermore, they responded to a question comparing Circuit A (with 

an ammeter before the bulb) and Circuit B (with an ammeter after the bulb), stating, “In 

my circuit with one resistor, the current dropped as the resistance increased. This means 

that the reading on the ammeter will be greater before the resistance in the circuit than 

after the resistance. Given that the current is moving clockwise and the resistors are on 

the left in Circuit B, this suggests that the current will be less than it was in Circuit A.” 

Regarding the voltage drop, the participant incorrectly asserted, “The voltage drop is 

independent of the resistance.” These responses suggested a limited exploration of 

current and voltage drop in a circuit with one bulb, as opposed to experiments involving 

multiple bulbs with varying resistance values and different ammeter and voltmeter 

placements. 

4.2.3 Cluster 2 
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The engineering approaches of cluster 2 are displayed in Figure 4.10, and the 

search strategies of this cluster are presented in Figure 4.11. During the investigation 

phase, Cluster 2 participants exhibited a proactive approach by initiating fresh 

comparative trials. Their initial predictions for the current and voltage drop during the first 

comparative trial were rooted in principles derived from the preceding stage. For 

instance, Participant B hypothesized that there would be a change in the current before 

and after the resistor in a series circuit containing a single resistor. This speculation was 

based on their earlier explorations, with Participant B noting, “Previous simulation 

showed that current decreased in proportion with ohm value.” These predictions were 

subsequently subjected to falsification of the current and verification of the voltage drop. 

Despite their active start, they failed to identify any problems during this stage, a pattern 

that was also observed in Cluster 1. 

 

In the initial trial, Cluster 2 participants utilized distinct rule generation strategies 

when examining current. Specifically, they applied a ‘successive scanning’ strategy, 

implying an evaluation approach that assessed attributes individually. However, for the 

voltage drop, they adopted a ‘simultaneous scanning’ approach, indicating a method that 

evaluated all attributes collectively and dismissed some based on available evidence. 

This doesn't imply that the attribute itself (in this case, attributes related to voltage drop) 

is entirely discarded from the pool of attributes, but rather, it is dismissed as a defining 

characteristic of the current hypothesis in the initial trial. 

 

In the second trial, the current predictions followed the established rule, while the 

voltage drop predictions adapted to fill gaps from the previous rule. These new 

predictions underwent verification, and further rule formation was observed. This time, 

‘simultaneous scanning’ was applied to the current and ‘successive scanning’ to the 

voltage drop, an inversion of the strategies used in the first trial. 

 

Post-test results revealed only a partial alignment with the standard norms, 

indicating some deviation in both current and voltage drop. For instance, Participant B 

from Cluster 2 established a partially correct link about current, stating, “The placement 

of the ammeter does not affect the current.” However, they inaccurately added, “Adding 

more resistors to a series circuit leads to a decrease in current and differences in current 

in the resistors. The resistor with 10 Ohms is less than the resistor with 50 ohms. So the 

current will be increased in the 10 Ohms conductor as compared to the 50 Ohms 



 83 

conductor.” They also made a partially correct statement about voltage drop, indicating, 

“The voltage drop will be the same as the battery voltage,” but incorrectly added, 

“Resistors do not impact the voltage drop.”  

 

In conclusion, Cluster 2 participants employed distinct strategies in rule 

generation, underscoring varied approaches to managing and predicting current and 

voltage drop. The observed deviations from expected outcomes in the post-test phase 

across both clusters suggest potential areas for refining the predictive models or rules. 
 

4.2.4. Cluster 3 

 
The engineering approaches of cluster 3 are displayed in Figure 4.10, and the 

search strategies of this cluster are presented in Figure 4.11. During the investigation 

phase, participants in Cluster 3 initiated novel comparative trials distinct from the 

exploration phase. However, problem identification did not feature in the trials.  

 

In the first trial, they set out to compare the effect of using different numbers of 

bulbs on resistance. They kept the battery voltage constant and manipulated the 

placement of the ammeter and voltmeter either before or after the bulbs, or across the 

battery or bulbs. They also employed previously comprehended rules to predict current 

and voltage drop, showcasing their ability to apply learned concepts in a new context. 

These predictions were then verified, affirming their understanding. Throughout these 

trials, the problem identification did not occur. However, they adopted simultaneous 

scanning for current and successive scanning for voltage drop, diverse scanning rules 

that enhanced their understanding of current and voltage drop in the circuit. 

 

In Trial 2, participants modified the setup by placing two identical bulbs in the 

circuit while keeping the battery voltage constant. The ammeter and voltmeter placement 

remained the same as in Trial 1. They maintained the same predictive rules as before 

and verified their predictions, further solidifying their understanding. Here, they 

introduced confirmation redundancy in their approach, suggesting an investigative 

method to repeatedly test the same instance. 
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As they moved into Trial 3, participants adjusted the placement of the ammeter, 

marking a shift from the previous two trials. While keeping the bulb configuration, battery 

voltage, and resistance similar to Trial 2, they wanted to understand how ammeter 

placement affects current readings. They maintained the same predictive rule for voltage 

drop but transitioned to the “fill up gaps” strategy for current prediction, indicating an 

effort to address any incomplete understanding from the preceding rule. They confirmed 

their voltage drop prediction but falsified the current prediction during the confidence 

measure phase, signifying new insights into the behavior of current within the circuit. 

 

In Trial 4, participants returned to a single bulb configuration, keeping the battery 

voltage constant while varying resistance. The ammeter was placed differently from the 

previous trials, continuing the exploration of its impact on current readings. For rule 

generation, the focus gambling strategy was introduced for current, suggesting 

concurrent exploration of various attributes related to the current. 

 

Finally, in Trial 5, participants reverted to their initial engineering approaches, 

predictive rules, and verification strategies. They also returned to employing confirmation 

redundancy for both current and voltage drop. This pattern implied they were reiterating 

the rules they found most accurate or consistent throughout their trials. However, their 

post-test results indicated only a partial understanding of voltage drop and one valid link 

in comprehending current. For instance, Participant C offered one valid link about 

current, stating: “No matter where you place the ammeter in the circuit, the reading will 

always be the same. In two different circuits where the ammeter was placed before and 

after the bulb, the current before and after the bulbs were the same.” This was 

juxtaposed with an incorrect understanding of current in a series circuit: “The strength of 

the current will experience a greater decrease through the first resistor (50 ohms) than 

through the second resistor because the greater the resistance, the greater the decrease 

in strength of current flowing out of the end of the resistor. I did not get the chance to test 

this through the trials.” For the voltage drop, Participant C from Cluster 3 offered a partial 

link: “The voltage drop is unaffected by the factor of resistors as the value is the same as 

the battery, and the battery is unaffected", which is partially accurate because they 

realize the total resistance of two bulbs with different resistance value will be equal to the 

voltage of the battery. However, they wrongly assumed that the voltage drop for each 

bulb with different resistance value would be identical, adding: “I'm not quite sure, given 

that I didn't test what would happen to the voltage drop if you only increased the 
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resistance.” This underscores the students' capability to establish correlations between 

varied concepts, albeit full integration of knowledge necessitates further cultivation. 

 

 Both clusters 3 and 2 showed an understanding of the rules of predicting and 

verifying the current and voltage drop in the electric circuit simulation. However, Cluster 3 

demonstrated a more diverse application of rule generation strategies and a higher level 

of knowledge integration in the post-test, indicated by the presence of a valid link. On the 

contrary, Cluster 2 demonstrated an approach that involved addressing gaps in 

predictions, indicating a more iterative learning process, but their post-test results 

indicated only partial knowledge integration. Future instructional strategies should aim to 

foster knowledge integration and encourage diverse rule generation strategies in 

students to enhance their understanding of electric circuits. 
 

4.2.5. Cluster 4 

 

The engineering approaches of cluster 4 are displayed in Figure 4.10, and the 

search strategies of this cluster are presented in Figure 4.11. During the investigation 

phase, Cluster 4 participants engaged in a series of comparative trials, demonstrating 

distinctive strategic modifications from the exploration phase. 

 
During Trial 1, the participants adeptly employed existing knowledge to predict 

current, employing the "fill up gaps from preceding rule" strategy. For example, 

Participant D resolved to examine the current both before and after the resistor, as 

opposed to placing the ammeter strictly before or after the resistor as in the exploration 

phase. Participant D predicted that the current would remain consistent before and after 

a resistor in a series circuit with a single bulb due to constant resistance. Concurrently, 

they adopted the preceding rule for predicting the voltage drop. The subsequent 

verification of both the current and voltage drop predictions reinforced confidence in their 

hypotheses. In terms of rule generation, the participants employed successive scanning 

for the current and simultaneous scanning for the voltage drop, indicating an efficient 

process of hypothesis elimination. 

 

In Trial 2, participants maintained the same predictive and verification approaches 

for current and voltage drop as in Trial 1. However, a strategic shift in the rule generation 
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phase was observed as they transitioned to confirmation redundancy for current and 

simultaneous scanning for voltage drop. The use of confirmation redundancy was to 

affirm their understanding of the impact of ammeter placement on the current within a 

series circuit with a single bulb. This strategic interchange suggests the participants' 

experimentation with different approaches to decipher patterns or relationships in the 

data. 

 

In Trial 3, a divergence from the previous two trials was observed as participants 

engaged in “filling up gaps” and falsified the current and voltage drop predictions, 

indicating an openness to reevaluating assumptions. During this trial, the number of 

bulbs was increased to compare a single bulb with two bulbs in a series circuit, keeping 

the ammeter placement constant while altering the voltmeter placement. The participants 

predicted that the current in a circuit with two bulbs would vary due to increased overall 

resistance. In tandem, they predicted no change in the voltage drop when the voltmeter 

is placed across one bulb versus two bulbs. However, after testing their hypothesis, they 

falsified their prediction. The use of successive scanning was evident for both current and 

voltage drop during rule generation, demonstrating a continued engagement with 

hypothesis testing and falsification. 

 

By Trial 4, the participants refined their approach further, testing the current on 

higher and lower resistance bulbs within a series circuit encompassing two bulbs with 

different resistance values. Predictions and verifications proceeded as before, while the 

rule generation phase was marked by the adoption of conservative focusing for current 

and simultaneous scanning for voltage drop. 

 

Post-test evaluations showcased participants’ partial comprehension of voltage 

drop, while they established two valid links for current. For instance, Participant D 

acknowledged, “In a series connection, the current remains the same irrespective of the 

positioning of the ammeter,” and they remarked that "the current across the resistor stays 

the same even if the value of resistance changes in a series connection. “Nonetheless, 

Participant D demonstrated a partial understanding of voltage drop, correctly stating 

initially that the “voltage drop was equal to the amount of volts in the battery,” but later 

providing incorrect assertions about the voltage drops across resistors of different 

resistances. 
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Participants in Cluster 4 exhibited flexibility and self-regulation across the trials, 

grappling with the complexities of understanding current and voltage in electric circuits. 

This was reflected in their evolving search strategies and engineering approaches. 

However, incomplete links of ideas, particularly relating to voltage drop across resistors 

of varying resistances, point to areas where further instruction or practice could be 

beneficial. 
 

4.2.6. Cluster 5 

 
The engineering approaches of cluster 5 are displayed in Figure 4.10, and the 

search strategies of this cluster are presented in Figure 4.11. In Cluster 5, the students 

conducted new comparative trials. In the first trial of the investigation phase, the students 

prediction regarding current was derived from preceding rules, indicating an ability to 

build upon previous knowledge. However, their prediction regarding voltage drop 

changed from the preceding rule in the exploration phase. For instance, Student E 

predicted that: “there is a difference in voltage drop” when manipulating the number of 

bulbs from one to two and placing the voltmeter across one bulb versus two bulbs. After 

testing this prediction, they found there was no change in the voltage drop. Confidence 

measures post-simulation illustrated their ability to both affirm and challenge their 

predictions. They verified their prediction for the current, while concurrently 

demonstrating critical reasoning by falsifying their prediction for the voltage drop. The 

students’ capacity to revise and align their understanding based on the evidence at hand 

was thus demonstrated. Additionally, they identified a specific problem, signifying their 

capacity to focus their learning around particular objectives or challenges. In terms of rule 

generation strategies, the students adopted a differentiated approach for the current and 

voltage drop. The strategy of simultaneous scanning was employed for the current, 

wherein all attributes were considered concurrently, facilitating the elimination of certain 

hypotheses. For the voltage drop, they adopted the successive scanning method, 

focusing on one attribute at a time. 

 

In the subsequent trial, the students consistently affirmed their predictions for both 

the current and voltage drop, indicating their progressive understanding of the electric 

circuit's behavior. The rule-generation strategies for both current and voltage drop 
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showed a change in one attribute at a time (i.e., successive scanning), implying a degree 

of consistency in their approach.  

 

In the final trial, the students continued their prediction strategy to fill the gaps 

from the preceding rule. For instance, Participant E tried to bridge the gap in the previous 

rule by predicting “there is a difference in voltage drop because I am changing the value 

of each bulb” and predicting “there is a difference in current because I am changing the 

resistance of each bulb” in a circuit with 2 bulbs. Unlike the other cluster of students, they 

identified problems as to why they did not observe a change in voltage drop when they 

manipulated the resistance of 1 bulb in a series circuit; how they may change the voltage 

drop in a series circuit; and how they may change the current in different locations and 

resistances of a series circuit. For example, Participant E identified the goal, sub-goals, 

and obstacle to achieve the goal state:      

Wait, how would I plot this if I wanted to change the resistance? [goal] Okay so if 

two bulbs, each set at a different value, current after both of the bulbs will be 

decreased because it’ll go through the first one and then decrease [sub-goals]. 

Oh well, it’s gonna decrease no matter what but I don’t know if it’ll decrease more 

than it already does I guess [obstacle].    

Concurrently, they demonstrated a measure of discernment in their confidence by 

falsifying their prediction for the current and verifying the voltage drop. A notable 

evolution in their rule-generation strategy was observed, shifting towards conservative 

focusing. This change involves investigating a hypothesis by altering a single attribute on 

each trial, thus reflecting a more systematic approach to problem-solving. 

 

The students' post-test responses indicated their successful knowledge 

integration. They exhibited the ability to make multiple valid links concerning the current 

and voltage drop. For instance, Participant E made multiple valid links about the current, 

saying, "Current does not change from its relative position between the resistor and the 

battery. Current is the same throughout a circuit regardless of its position according to 

the number of resistors present and the value of voltage in the formula Current = 

Voltage/Resistance. The current will drop for the whole circuit, but remains the same for 

each resistor in the circuit." Additionally, Participant D provided multiple valid links about 

the voltage drop, saying, "The voltage drop would be the same among the 2 light bulbs 

assuming the resistance and the voltage remain constant but if the light bulbs had 
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different resistance then the voltage drops would be different. The voltage drop across all 

sources of resistance will equal 30 volts because that is what the battery provides. 

Voltage drop is affected by resistance, if there is more resistance the voltage drop will be 

higher. Voltage drop across a resistor is equal to the ratio of that resistors' resistance to 

the total resistance in the series circuit (40/60 > 20/60)."  

 

In sum, students in Cluster 5 demonstrated a progression in their problem-solving 

abilities, displaying consistency and flexibility in adjusting their strategies based on their 

findings. 

 

4.2.7. Sequential Analysis within Each Group (Control, Experimental 1, and 
Experimental 2) 

 

 I analyzed the patterns in the sequential use of search strategies among different 

clusters within Experimental group 1, Experimental group 2, and the Control group. The 

sequential analysis of the three clusters presented intriguing findings on the use of 

strategies, such as prediction, confidence measures, no action vs. problem identification, 

and rule formation.  

 

Figure 33 shows the Silhouette scores against the values of clusters for the 

Control group. Among different clusters, k = 3 has the highest silhouette score average 

while k = 2 has the lowest silhouette score average (Figure 4.12). Among different 

clusters k = 3 has the least negative values. Figure 4.13 is the graphical Silhouette 

Coefficient clustering that shows that k = 3 has no negative values. Thus, I selected k = 3 

as the optimal number of clusters. After testing different numbers of clusters, 3 clusters 

showed more inter-cluster similarity and intra-cluster dissimilarity (Figure 4.14).  

 

Figure 4.12 Silhouette Scores for Control Group (N = 20)  
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 Figure 4.13 Graphical Silhouette Coefficient Clustering for Control Group (N = 20) 

 

 
Figure 4.14 K-Means Cluster for Control Group (N = 20) 
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 Figure 4.15 shows the Silhouette scores against the values of clusters for 

Experimental 1 group. Among different clusters, k = 3 has the highest silhouette score 

average while k = 2 has the lowest silhouette score average (Figure 4.15). Among 

different clusters k = 3 has the least negative values. Figure 4.16 is the graphical 

Silhouette Coefficient clustering that shows that k = 3 has no negative values. Thus, I 

selected k = 3 as the optimal number of clusters. After testing different numbers of 

clusters, 3 clusters showed more inter-cluster similarity and intra-cluster dissimilarity 

(Figure 4.17).  

 

Figure 4.15 Silhouette Scores for Experimental 1 Group (N = 20)  
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Figure 4.16 Graphical Silhouette Coefficient Clustering for Experimental 1 Group 
(N = 20) 
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Figure 4.17 K-Means Cluster for Experimental 1 Group (N = 20) 

 
 Figure 4.18 shows the Silhouette scores against the values of clusters for 

Experimental 1 group. Among different clusters, k = 3 has the highest silhouette score 

average while k = 2 has the lowest silhouette score average (Figure 4.19). Among 

different clusters k = 3 has the least negative values. Figure 40 is the graphical Silhouette 

Coefficient clustering that shows that k = 3 has no negative values. Thus, I selected k = 3 

as the optimal number of clusters. After testing different numbers of clusters, 3 clusters 

showed more inter-cluster similarity and intra-cluster dissimilarity (Figure 4.20).  

 

Figure 4.18 Silhouette Scores for Experimental 2 Group (N = 20)  
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 Figure 4.19 Graphical Silhouette Coefficient Clustering for Experimental 2 Group 
(N = 20) 

 

 



 95 

Figure 4.20 K-Means Cluster for Experimental 2 Group (N = 20) 

 

4.2.7.1. Experimental Group 1 

 
Figure 4.21 displays the clusters in Experimental group 1. In this group, Cluster 1 

displayed a tendency towards 'Fill up gaps' in the first trial, followed by 'same rule' in the 

subsequent trial. 'Falsify' and 'verify' were interchangeably used as confidence measures. 

'Successive scanning' and 'Simultaneous scanning' appeared as the main rule 

formations. Similar patterns were observed in Cluster 2 and 3 with noticeable differences 

in problem identification and rule formation strategies. For instance, Cluster 2 

incorporated 'Identify problem: goal stated' in trial 1 and used a variety of rule formation 

strategies such as 'Focus gambling' and 'Conservative Focusing'. In Cluster 3, a 

consistent 'Fill up gaps' prediction approach was utilized across all trials with an 

alternating confidence measure strategy. In the post-test, Cluster 1 showed a partial 

understanding of Voltage Drop and Current. Cluster 2 managed to establish one valid 

connection for Voltage Drop and two for Current. Meanwhile, Cluster 3 was able to 

construct two valid connections each for Voltage Drop and Current. 
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Figure 4.21 K-Means Clusters and Generalized Median Strings for Search 
Strategies of Experimental 1 (N = 20) 

 

 
 

4.2.7.2. Experimental Group 2 

 

Figure 4.22 showcases the clusters in Experimental group 2. The patterns 

observed in Experimental group 2 deviated slightly from those in group 1. Cluster 1 from 

group 2 paralleled Cluster 1 from group 1, although the confidence measures shifted in 

the second trial where 'falsify' was specifically applied to 'Voltage Drop'. Cluster 2 

showcased a more consistent prediction strategy with 'same rule' and 'Fill up gaps' being 

applied interchangeably across trials. In addition, 'Confirming Redundancy' was 

employed as a rule formation strategy in trial 3. Cluster 3, interestingly, witnessed a 
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similar approach as Cluster 1 with an extra use of 'Conservative Focusing' in the final 

trial. During the post-test, Cluster 1 only exhibited a partial understanding of Voltage Drop 

and Current. Cluster 2 also demonstrated a partial grasp of Voltage Drop but managed to 

form one valid connection for Current. In contrast, Cluster 3 succeeded in forming two 

valid links for Voltage Drop, but showed only a partial comprehension of Current. 

 

Figure 4.22 K-Means Clusters and Generalized Median Strings for Search 
Strategies of Experimental 2 (N = 20) 

 
 

4.2.7.3. Control Group 

 

Figure 4.23 presents the composition of clusters within the Control group. The 

Control group, however, exhibited a more pronounced difference in their search strategy 
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patterns. Cluster 1 did not undertake a new comparative trial in trial 0, which differed from 

Experimental groups. The 'same rule' approach was adopted in prediction while 'verify' 

was consistently used for confidence measures. Moreover, 'Confirming Redundancy' was 

the predominant rule formation strategy. This differs significantly from Cluster 2 where 

'No action' was repeatedly taken, suggesting a lack of active search strategies employed 

by this cluster. The empirical analysis suggests varied patterns of strategy usage across 

the clusters within each group. Some clusters favored certain strategies, such as 'same 

rule' for prediction, while others exhibited more variability. The presence of unique 

approaches within clusters, such as the 'No action' strategy observed in the Control 

group, further emphasizes the diversity of search strategies within these groups. These 

findings shed light on the dynamic interplay of strategies and provide insights into how 

these methods are applied and alternated in different experimental settings. Future 

research should consider these patterns to understand the factors influencing these 

strategic choices and to further explore the impact of these strategies on the outcomes of 

the tasks undertaken. In the post-test, Cluster 1's understanding of Voltage Drop and 

Current was classified as non-normative. Cluster 2 exhibited a partial understanding of 

Voltage Drop, while its comprehension of Current was also classified as non-normative. 

 

Figure 4.23 K-Means Clusters and Generalized Median Strings for Search 
Strategies of Control Group (N = 20) 
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Chapter 5. Discussion  
 

The primary objective of this study was to compare across various variables the 

performance of two experimental groups, namely Experimental 1 using both the decision 

table and rule induction tools and Experimental 2 using only the rule induction tool, with a 

Control group. The study's focus was investigating the progression of engineering 

approaches, search strategies, and the integration of ideas among students using an 

electric circuit simulation under different conditions: Control, decision table and induction 

rule tool, and induction rule tool conditions. The results obtained from statistical analyses, 

incorporating Dunn’s test and Spearman correlation coefficient, offered insights into the 

impacts of distinct tools and techniques on engineering approaches and search 

strategies. Furthermore, employing sequence analyses, specifically K-means clustering 

based on Levenshtein edit distance and Levenshtein median, unveiled distinct learning 

paths as students interacted with electric circuit simulations and different scaffolding 

tools. Consequently, the findings elucidated significant disparities and correlations within 

various variables across these conditions, shedding light on students' learning processes 

and strategies as they engaged with the simulation. 

  

It is imperative to note that the assumption of data normality required for ANOVA 

was not met, as indicated by the Shapiro-Wilk test for normality of residuals. 

Consequently, this led to the utilization of non-parametric tests, specifically Dunn’s test, 

as an appropriate alternative. This decision was made due to the violation of normality 

assumptions and the presence of ordinal data. Dunn's test, in this context, facilitated 

accurate mean rank comparisons among the three groups. 

  

5.1. RQ 1. What progress in engineering approaches, search 
strategies, and integrating ideas do students make while using 
the electric circuit simulation in the control condition versus rule 
formation conditions? 

  

Research Question 1 (RQ1) concerns students' uses of engineering approaches, 

search strategies, and the integration of ideas when using electric circuit simulations 
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under different instructional conditions. Results revealed noteworthy patterns and 

statistically detectable differences between the Control group and Experimental groups 1 

and 2 across various dimensions, including prediction, confidence measures, problem 

identification, rule formation, and post-test performance. These findings can be 

meaningfully contextualized within the framework of existing educational theories and 

models. 

  

In terms of problem identification and action variables, marked differences were 

observed between the Control group and Experimental group 1 using both a decision 

table and an induction rule tool. Under the 'No Action' condition, which signifies a lack of 

engagement in activities like problem identification, prediction, and confidence 

measurement, there were significant disparities between these groups. This variance 

suggests a considerable gap in the initiation of new comparative trials during the 

investigation phase, highlighting a divergence in active learning behaviors between the 

Control and Experimental group. These insights are consistent with Bruner's theory of 

discovery learning, which argues that active involvement in learning is crucial for 

knowledge acquisition (Bruner, 1961). These ideas gain further support from Winne's 

Self-Regulated Learning (SRL) model (2023), which emphasizes the vital role predictive 

tools play in facilitating students' learning process (Winne, 2022).  

 

The analysis also unveiled intriguing contrasts when comparing Experimental 

group 1, equipped with both a decision table and an induction rule tool, to Experimental 

group 2, which had only the induction rule tool at its disposal. In the context of action 

variables, both Experimental groups 1 and 2 showed significant differences in the "No 

Action" variable, thereby indicating varying levels of passive behavior between these 

groups.  

 

Overall, these patterns contribute to understanding how different instructional 

tools and conditions affect students' engagement and learning outcomes, providing 

valuable implications for educational practices. Examining prediction variables revealed 

important nuances in learning behavior across groups. Specifically, in the context of 

voltage drop, both 'Same rule' and 'Fill up gaps' variables exhibited detectable 

differences between the Control and Experimental group 1, highlighting divergent 

approaches to problem-solving. However, for electrical current, only the 'Fill up gaps' 

variable revealed a discernible difference, pointing to a detectable distinction in prediction 
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strategies. When focusing on Experimental group 2, which had access to only the rule 

induction tool, distinct patterns in search strategies emerged. For instance, when 

predicting electrical current, both 'Same rule' and 'Fill up gaps' showed marked disparities 

between this group and the Control group. Yet, for voltage drop, the difference was 

confined to the 'Fill up gaps' variable. A comparative analysis between Experimental 

groups 1 and 2 further illustrated unique patterns: 'Prediction Current: Same Rule' and 

'Prediction Current: Fill up Gaps' were significantly distinct, suggesting varied strategic 

orientations or understandings concerning current prediction. These results indicate that 

Experimental group 1, equipped with both a decision table and a rule induction tool, 

demonstrated more active and precise prediction strategies. This is congruent with 

Winne's 2023 Self-Regulated Learning (SRL) model, thereby substantiating the idea that 

certain instructional tools can significantly enhance the prediction phase of student 

learning (Winne, 2022). 

  

Upon assessing confidence measures, both 'Verifying' and 'Falsifying' conditions 

manifested detectable differences between the Control group and both Experimental 

groups 1 and 2. Specifically, for both current and voltage drop, these conditions exhibited 

significant disparities between the Control and Experimental groups. Nonetheless, the 

two experimental groups demonstrated no statistically detectable variations in confidence 

measures between them. These observations resonate with Winne's SRL model, 

asserting that cognitive tools can empower students to better regulate their cognitive 

processes, which in turn impacts their confidence (Winne, 2022). Such findings align with 

a principle from cognitive psychology which suggests that cognitive tools and strategies 

can significantly influence learners' cognitive processes and their confidence in those 

processes (Kim & Reeves, 2007). Therefore, even a single tool, such as the rule 

induction tool, can have a considerable effect on learners' confidence. Consequently, 

regardless of the distinct tools available to them, both experimental groups manifested 

comparable confidence levels, reinforcing the insights from Winne's SRL model. 

  

In the domain of rule formation, both 'Confirming Redundancy' and 'Conservative 

Focusing' variables presented discernible differences between the Control and 

Experimental group 1, particularly in the context of current. In relation to voltage drop, 

only the 'Confirming Redundancy' condition exhibited a significant difference. These 

observations align with Winne's COPES model, which emphasizes the role of "If-Then" 

outcome expectations and deliberate practice in learning (Winne, 2022; Ericsson & 
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Harwell, 2019). When comparing rule formation strategies between the Control and 

Experimental group 2, distinct patterns emerged, particularly in the strategies of 

'Confirming Redundancy' and 'Simultaneous Scanning' for both current and voltage drop. 

Additionally, the comparison between Experimental groups 1 and 2 demonstrated 

variations in several rule formation variables. These differences were particularly 

pronounced in variables such as "Identify Problem: Goal Stated," "Rule Current: 

Simultaneous Scanning," "Rule Voltage Drop: Simultaneous Scanning," and "Rule 

Current: Conservative Focusing." These divergences indicate that the two experimental 

groups employed distinct strategies in these specific aspects of rule formation, 

underscoring the role that tools play in facilitating deliberate practice crucial for the 

development of expertise (Ericsson & Harwell, 2019). Importantly, these findings lend 

support to Bruner's argument that the use of more sophisticated tools, such as the 

decision table and rule induction tool, can enrich learning by fostering a more nuanced 

understanding of rule formation strategies (Bruner, 1961). 

  

Transitioning to the post-test phase, the study revealed compelling differences in 

multiple variables between the Control and Experimental groups. Specifically, for the 

variables 'Non-normative' and 'Two valid links' in both current and voltage drop, notable 

distinctions emerged between the Control and Experimental group 1. When comparing 

the Control and Experimental group 2, differences were apparent in the 'Non-normative' 

and 'Partial' conditions, as well as with '1 Valid Link' for current. However, the '2 Valid 

Links' condition showed no significant difference. For voltage drop, detectable differences 

were evident in the 'Partial Condition' and '2 Valid Links,' but not with '1 Valid Link.' These 

findings suggest significant variations in the application of diverse search strategies for 

both current and voltage drop among the Control and Experimental group 2. In a 

comparison between Experimental groups 1 and 2, two variables stood out in post-test 

performance: "Post-test: Voltage Drop 1 Valid Link" and "Post-test: Current 2 Valid 

Links," indicating divergence in generating valid links. This reflects Novak and Treagust’s 

(2022) findings that well-constructed explanations foster connections between various 

scientific concepts. These post-test disparities reinforce Novak and Treagust's (2022) 

observation that students' comprehension and explanations tend to become more 

nuanced as they accrue experience. This evolution in understanding suggests that the 

educational tools used in the study offer diverse avenues for conceptual growth. Such 

variations in post-test outcomes are in alignment with the Knowledge Integration (KI) 
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framework proposed by Linn and Eylon (2011), further emphasizing the role of these 

tools in facilitating a more sophisticated understanding of the subject matter. 

  

In comparison to the Control group, Experimental groups 1 and 2 exhibited 

productive engineering approaches and search strategies, aligning with the idea that 

explanations evolve over time. This observation is congruent with the research 

conducted by Novak and Treagust (2022; 2018). According to McNeil and Krajcik (2011), 

an effective scientific explanation consists of three core elements: a claim, supporting 

evidence, and reasoning. Such an explanation not only connects diverse scientific 

concepts but also improves students' scientific understanding. As students gain 

experience and deepen their understanding, their explanations undergo a refinement 

process, approaching the expertise seen in practicing scientists. In this study, students in 

Experimental groups 1 and 2 were tasked with making predictions and providing the 

underlying rationale through the use of rule formation tools. They were also required to 

document their findings and reasoning post-experimentation. This iterative process of 

crafting explanations enforced students to engage more thoroughly with scientific 

concepts, echoing the findings of Fortus and Krajcik (2012) and Krajcik and Shin (2014). 

This type of evolving explanation, which incorporates more valid integrated ideas over 

time as students gain experience, can be seen in the statistically detectable differences 

between the groups in their posttest knowledge integration scores, as evaluated using 

the knowledge integration rubric. Novak and Treagust (2022) further emphasize the role 

of scaffolds in enabling students to undertake complex tasks (Quintana et al., 2004; 

Tabak, 2004; Wood, Bruner, & Ross, 1976; McNeil & Krajcik, 2011; Braaten & 

Windschitl, 2011). These findings align with these observations, where the Experimental 

1 group, equipped with a decision table and induction rule tool, and the Experimental 2 

group, provided only with the induction rule tool, demonstrated significant differences in 

multiple areas compared to the Control group. Novak further argued that constructing 

scientific explanations demands time, several exposures, and feedback (Fortus & Krajcik, 

2012; Novak & Treagust, 2018). Although the tools used in this experiment did not offer 

direct feedback, they enabled students in the experimental groups to make meaningful 

connections. Specifically, they used the decision table and the rule induction tool to build 

an integrated understanding of electric circuit simulations, thereby enhancing their overall 

performance. 
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In summary, the observed differences between the Control and Experimental 

groups in this study highlight the influence of varying tools and approaches on multiple 

facets of learning, including prediction, confidence, and rule formation, all underpinned by 

extant theories and models in the field of educational psychology and science education. 

Novak and Treagust’s (2022) suggestion that instructional materials should revisit 

previous ideas and introduce new ones (NASEM, 2019; Bransford et al., 2000; NRC, 

2012) is mirrored in this study by the tools given to the Experimental 1 and 2 groups that 

prompted them to reevaluate their predictions and adjust their claims. The absence of 

direct feedback from the tools did not prevent students from considering new ideas, 

making connections between ideas, and adjusting their claims. The observed differences 

between the Control and the Experimental groups in various variables, including posttest 

knowledge integration scores, support the effectiveness of Novak and Treagust’s (2022) 

approach in science education. 

 

5.2. RQ 2. What distinct learning paths do students take as they 
engage with the electric circuit simulation in the control 
condition versus rule formation conditions? 

 

In this sequence analysis, I strategically focus on overarching patterns of clusters 

observed across all participant groups — Control, Experimental 1, and Experimental 2 — 

as opposed to dissecting patterns specific to each group. This choice is anchored in 

several core considerations. 

 

A primary rationale stems from the numerical composition of groups in the study. 

Each group consists of only 20 participants, and analyzing these clusters in isolation 

could risk undermining the robustness of findings due to this limited sample size. By 

unifying all groups for analysis, I amplified the sample size to a total of 60 participants. 

This consolidation enhances the reliability of findings and, because instructional 

circumstances also vary, broadens perspective and enabling extracting more 

comprehensive insights into the universal pattern of clusters.  

 

The secondary impetus is derived from the common threads discernible across all 

groups despite their distinct cluster patterns. It is important to clarify that I am not 
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asserting the Control group’s cluster patterns to be identical to those in the experimental 

groups. In fact, the clusters present diverse trends reflective of the unique interventions 

each group experienced. The Control group, equipped with a drawing tool, predominantly 

exhibited non-normative ideas. Conversely, Experimental groups 1 and 2, which received 

decision tables and induction rule tools, demonstrated partial and multiple valid links. For 

instance, findings (as illustrated in Figure 4.23) revealed that the search strategy patterns 

in the Control group manifested two distinct clusters. These clusters ultimately 

culminated in either non-normative ideas on the posttest or a combination of a partial link 

with non-normative ideas. In contrast, the Experimental 1 group's search strategy 

patterns yielded three clusters (Figure 4.21). These clusters led to a range of outcomes: 

partial links for both current and voltage drop; a combination of one valid link for voltage 

drop with multiple valid links for current; and finally, multiple valid links for both current 

and voltage drop. Meanwhile, in the Experimental 2 group, search strategy patterns 

resulted in three clusters (Figure 4.22). These clusters culminated in diverse outcomes, 

including partial links; a combination of a partial link for voltage drop with one valid link for 

current; and a blend of a partial link for current and multiple valid links for voltage drop. 

These patterns were similar to the five identified clusters across all groups, further 

justifying the decision to amalgamate.  

 

Despite these individual differences, an amalgamated view allows us to identify 

shared outcomes across all groups. This approach facilitates the recognition of a 

comprehensive five-cluster structure that spans all participant groups (Figure 32). These 

clusters represent distinct sequences of search strategies and a spectrum of knowledge 

integration, from non-normative ideas, to partial links, to one partial link, and to multiple 

valid links. For example, when we examine all groups collectively, a cluster characterized 

by non-normative ideas, similar to the ones observed in the Control group, also emerges. 

Similarly, the experimental groups' patterns of partial and multiple valid links are echoed 

in the clusters identified across all groups. Upon a more holistic assessment, I identified a 

consistent pattern within the clusters across all groups. The first cluster was associated 

with non-normative ideas, the second exhibited partial links, the third revealed one partial 

link for voltage drop paired with one valid link for current, the fourth showed one partial 

link for voltage drop alongside multiple links for current, and the fifth demonstrated 

multiple valid links for both voltage drop and current. 
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Therefore, the rationale for analyzing the patterns of clusters among all groups, 

rather than within each individual group, lies in both statistical robustness provided by the 

larger sample size, and the relative consistency in the patterns of clusters found in each 

individual group as compared to those across all groups. 

 

5.2.1. Patterns of Search Strategies among Clusters 

The patterns discerned from the sequential use of search strategies across the 

five clusters reveal approaches taken by each cluster in scientific discovery. Beginning 

with the sequence of prediction, clusters 1 primarily relied on using the same rule for 

making predictions. This pattern is akin to the use of prior knowledge to predict 

outcomes, a strategy that aligns with the discovery learning principles proposed by 

Bruner (Bruner, 1961). Bruner emphasized the use of existing schemas to understand 

and predict new information, which is reflected in the prediction strategies used by 

clusters 1 and 2.  

 

However, in contrast, clusters 2, 3, 4 and 5 used a different approach to 

prediction. They implemented a 'fill up gaps' strategy, indicating the students' efforts to 

identify and address their knowledge gaps. This pattern aligns with the concept of self-

regulated learning, where learners actively engage in monitoring their learning process 

and identifying their learning needs (Zimmerman, 2000). The use of this strategy in 

clusters 3 and 5 shows a learner-centered approach that underscores self-regulation.  

 

When looking at the confidence measures (verify vs. falsify), the clusters show a 

variety of approaches. In clusters 1, 2, and 3, the students primarily used verification to 

ascertain their predictions. This aligns with the discovery learning strategy where learners 

seek to confirm their understanding through exploration and testing (Bruner, 1961). In 

contrast, cluster 4 and 5 show an instance of falsifying predictions. This reflects a critical 

approach to learning, where learners question their assumptions and understanding - a 

key component of self-regulated learning (Zimmerman, 2000).  

 

The rule formation strategies in the clusters showed significant variability. The 

‘confirmation redundancy’ strategy used in clusters 1 and 3 indicates an emphasis on 

reinforcement learning where learners repeatedly test the same instance to consolidate 

their understanding. This rule aligns with the early stages of knowledge integration, 



 107 

where learners often revert to non-normative or partially linked ideas. By repeatedly 

testing the same instance, learners are attempting to confirm and reconfirm their initial 

understanding of the phenomena. While this strategy is conducive to reinforcing specific 

understandings, it may limit learners’ ability to progress towards generating multiple valid 

links, as it restricts the exploration of new hypotheses and possibilities. However, 

repeated testing of the same instance could also signify the consolidation of a particular 

link, potentially transitioning from a partial link to a valid link. On the other hand, the 

‘successive scanning’ and ‘simultaneous scanning’ strategies used in clusters 2, 3, 4, 

and 5 align with the heuristic approach where learners use simplified strategies or "rules 

of thumb" to understand complex systems (Shah & Oppenheimer, 2008). These rules 

indicate the learners' cognitive flexibility in understanding complex systems, employed in 

Clusters 2, 3, 4, and 5. With successive scanning, learners evaluate one attribute at a 

time, aligning with the formation of a single valid link in the knowledge integration 

process. This strategy allows learners to investigate one aspect of the phenomena and 

move onto the next, promoting disconnected discoveries. In contrast, simultaneous 

scanning requires the learners to evaluate all attributes concurrently and eliminate 

attributes they feel confident about, limiting the formation of multiple valid links when not 

enough explorations are made. The ‘focus gambling’ found in Cluster 3, signifies the 

learners’ propensity to take calculated risks based on their current understanding, 

indicating more intense self-regulated learning. Learners might make assumptions or 

predictions that could lead to a breakthrough in their understanding, possibly transitioning 

from a partial link or a single valid link to multiple valid links. However, the effectiveness 

of this strategy would largely depend on the learner’s current understanding, ability to 

handle failure and adjust their strategies accordingly, and willingness to confirm their 

discoveries with further testing. Moreover, the ‘conservative focusing’ observed in 

clusters 4 and 5 is indicative of learners’ systematic approach to problem-solving, further 

supporting the application of self-regulated learning strategies. Learners applying this 

rule only change one attribute at each trial, allowing for careful observation of cause and 

effect. This aligns with the process of formulating valid links in the knowledge integration 

framework, as it promotes an iterative, step-by-step understanding of the system. 

Conservative focusing could be particularly useful in situations where learners have 

established partial links but are struggling to transition towards multiple valid links, as it 

provides a clear and focused pathway for deeper exploration. 
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The sequential analysis yielded five distinct clusters, representing different 

approaches and strategies students employed throughout the learning process. It is 

apparent that students adapted different engineering approaches and search strategies 

as they progressed through the simulations. Across all five clusters, students 

demonstrated various stages and strategies of Bruner’s discovery learning, utilizing 

engineering approaches and search strategies to test, predict, falsify and/or verify 

predictions after testing, and formulate rules within the electric circuit simulation. 

Furthermore, the sequence analysis provides insight into the students’ self-regulated 

learning processes, where the students not only learned about the content but also 

modified their learning strategies as they engaged with the simulation. The notion of 

deliberate practice in developing self-regulated learning skills, as discussed by Winne 

(2022) and supported by research (Ericsson & Harwell, 2019), is evident in the iterative 

nature of the students’ learning observed in the clusters. The students engaged in 

deliberate practice by actively making predictions, verifying them, and adjusting their 

strategies based on the outcomes they encountered during the electric circuit simulation. 

This iterative process reflects deliberate practice and adaptive learning, as the students 

continuously refined their understanding and rule formulation strategies. 

 

5.2.2. Patterns of Search Strategies in Each Cluster 

 
This study identified different learner clusters, each demonstrating unique 

cognitive models and learning paths. This aligns with Obaid et al.'s (2023b) findings, as 

they also identified varied learning paths among students based on their instructional 

conditions. The variations in learners' strategies and the influence of instructional 

conditions on learning paths are common findings across both studies. Findings and the 

results of Obaid et al. (2023b) contribute to the broader understanding of scientific 

discovery learning and knowledge integration in instructional conditions. The primary 

emphasis in both studies is on understanding students’ learning paths, the strategies 

they employ in simulation-based discovery learning, and the importance of knowledge 

integration and self-regulated learning. 

 

5.2.2.1 Reinforced Confirmers 
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This group heavily relied on the 'confirmation redundancy' rule, endeavoring to 

validate and bolster their pre-existing comprehension, without venturing into unknown 

territories to generate and implement new rules. In Cluster 1, the learners made 

predictions and sought verification using established rules. However, no evidence of 

problem identification surfaced. This suggested a type of learner who readily applied 

known rules but grappled with recognizing issues and creating novel rules, a pattern 

similarly observed in certain educational research (De Jong & van Joolingen, 1998; Klahr 

& Nigam, 2004). They exhibited a preference for the ‘confirmation redundancy’ rule, 

which according to Klahr, Chen, & Toth (2001), mirrors an initial approach in scientific 

discovery learning. The students partook in confirming redundancy, demonstrating an 

eagerness to confirm and fortify their initial understandings via repeated testing. Yet, the 

variance in post-test outcomes suggested this methodology might have confined their 

exposure to alternate perspectives or strategies. For Cluster 1, the persistent 

dependence on the ‘confirmation redundancy’ rule indicated a certain level of comfort in 

relying on previously established norms. This, however, also hinted at a deficiency in 

exploration, possibly stemming from a higher requirement for cognitive certainty, a 

characteristic tied to a lower tolerance for ambiguity and uncertainty (Furnham & Marks, 

2013). For these students, instructional cues encouraging exploration and explication of 

the advantages of making and learning from errors could prove beneficial. Bruner's 

notion of discovery learning underlines the significance of exploring diverse approaches, 

which seemed to be somewhat lacking in these clusters. According to Winne (2022), 

effective learners often engage in multiple phases of self-regulated learning, which 

includes goal setting, planning, and adapting strategies. The "Reinforced Confirmers", 

however, seem largely confined to the 'confirmation redundancy' strategy. They appear 

to lack extensive goal-setting and planning, given that they don't venture into the 

unknown and remain largely fixated on confirming existing understandings. In terms of 

monitoring, they are only concerned with confirming their pre-existing beliefs, thus lacking 

the adaptive element. Their approach aligns with Winne's notion of a more rudimentary 

form of self-regulated learning that does not fully exploit the adaptive or monitoring 

components. As a result, educational strategies should aim to urge students to explore a 

multitude of approaches. 

 

5.2.2.2 Dual-Mode Strategy Diversifiers 
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This group exhibited adaptability by effectively implementing both 'successive 

scanning' and 'simultaneous scanning' strategies in formulating rules. This indicates a 

versatility in their thought process and learning pathways. In Cluster 2, learners made 

predictions and verified these using established rules, yet, once again, significant 

problem identification was conspicuously absent. However, this cluster exhibited a 

notable distinction in its approach to rule formulation for current and voltage drop, 

demonstrating flexibility in utilizing different strategies of 'successive scanning' and 

'simultaneous scanning.' This aligns with studies (Kuhn, Garcia-Mila, Zohar, & Andersen, 

1995; Schauble, 1990) that propose that multiple strategies can coexist within the same 

individual, emphasizing the need for flexibility in learners’ thinking and approaches. 

Similarly, this aligns with Obaid et al.'s (2023b) finding that different students have 

different learning paths that require specific prompts and strategies to aid their 

understanding. They observed that these learning paths were contingent upon 

instructional conditions, a finding echoed by the varying learning paths evident in the 

clusters of the current study based on different rule formulations. The "Dual-mode 

Strategy Diversifiers" are more adaptable in their learning paths. According to Winne's 

(2022) framework, this demonstrates an ability for more complex planning and 

monitoring. However, this cluster still lacks in problem identification, a key element of 

Winne's adaptive and monitoring phases. This suggests that while they may set initial 

goals and plans, their lack of problem identification could indicate a deficit in the 

monitoring and adapting phases of self-regulated learning. In these instances, prompts 

that encourage students to reflect on the problems they encounter or their learning 

process, as suggested by Obaid et al. (2023b) and Panadero (2017), might prove 

beneficial. 

 

5.2.2.3 Multi-Strategy Jugglers 

 
 This group implemented an array of strategies, showcasing a more intricate and 

dynamic cognitive model that traverses various strategic paths. Cluster 3 demonstrated a 

more dynamic methodology, employing a plethora of rule generation strategies. The 

group manifested the use of diverse rule formation strategies, including 'successive 

scanning,' 'simultaneous scanning,' and 'focus gambling,' and managed to attain a level 

of knowledge integration by the conclusion of the process, indicating a more 

sophisticated cognitive model. This concurs with Winne's (2018) research, suggesting 
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learners who can flexibly apply a variety of strategies are more likely to attain learning 

goals. Moreover, this cluster emphasizes the significance of self-regulated learning, 

consistent with Zimmerman's (2002) theory that self-regulation plays a pivotal role in the 

process of learning and cognitive development. This notion resonates with Bruner’s 

principles, as the students were not merely passively receiving information but were 

actively participating in the learning process. In contrast to the "Reinforced Confirmers" 

and "Dual-Mode Strategy Diversifiers," the Multi-Strategy Jugglers exhibited a superior 

level of knowledge integration in their post-test assessments. This is likely attributable to 

their expansive strategic repertoire and supports the knowledge integration framework, 

which argues that the interweaving of various ideas amplifies understanding. However, 

it's worth noting that while this group displayed characteristics of adaptive learning, the 

specific strategies they employed may not be the most efficient for complex problem-

solving or achieving higher levels of knowledge integration. In other words, the mere 

possession of multiple strategies is insufficient; the efficacy of those strategies is equally 

pivotal. As I look to the future, instructional designs should capitalize on this nuanced, 

integrated approach, especially in the context of simulation-based learning environments. 

 

5.2.2.4 Self-Regulated Revisers 

 

They showed significant elements of self-regulated learning by adjusting their 

strategy based on their success in predicting results. They recognized when a change in 

strategy was needed, emphasizing their adaptive nature. Cluster 4 displayed flexibility 

and self-regulation in their learning process. They showed an inclination to reassess their 

understanding, as observed through the falsification of voltage drop prediction. This 

critical thinking element aligns with the tenets of self-regulated learning, wherein students 

actively control their learning processes, including cognitive strategies. In Cluster 4, the 

learners demonstrated an understanding of the importance of making predictions, 

verifying these, and identifying issues when inconsistencies arise. This aligns with the 

notion of self-regulated learning as proposed by Pintrich and De Groot (1990), which 

suggests that self-regulating learners are more proficient at setting goals, monitoring 

progress, and adjusting strategies as needed. Notably, this cluster also showed the 

ability to falsify a prediction, underscoring an important aspect of self-regulated learning – 

the ability to recognize when a change in strategy is necessary (Schraw, Crippen, & 
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Hartley, 2006). Tools such as decision tables could have been beneficial here to 

systematize their rule generation process.  

5.2.2.5 Methodical Integrators 

 
These students consistently verified or falsified their predictions and switched to 

more focused and methodical approaches like 'conservative focusing' in their rule 

formation, enabling them to create multiple valid links and integrate knowledge. Cluster 5 

demonstrated an adaptive and methodical approach to learning, characterized by 

consistent verification or falsification of their predictions. In their rule formation, they 

adopted a more systematic and focused approach, switching to conservative focusing. 

The consistent application of different rule-generation strategies for current and voltage 

drop indicates a thoughtful selection process, potentially enabled by the decision table 

and rule induction tool. This behavior exemplifies effective self-regulated learning, 

leading to multiple valid links between different concepts, as indicated by their post-test 

results. This aligns with research by Linn et al. (2004) who argue that learners must be 

able to integrate and link knowledge to fully understand scientific concepts. The 

"Methodical Integrators" seem to be the epitome of Winne's (2022) self-regulated 

learners. They engage in goal setting by filling up gaps in their predictions, indulge in 

planning through multiple rule-generation strategies, and constantly monitor and adapt 

through verification or falsification of predictions. Moreover, their use of conservative 

focusing alongside other strategies aligns with Winne’s notion that effective strategy 

regulation involves choosing the most effective strategies for a given context. They are 

not just using multiple strategies; they are selectively applying the best strategies, 

resulting in more knowledge integration in the posttest. This suggests that providing 

students with structured tools to guide their learning can facilitate knowledge integration.  

 

In this study, knowledge integration, characterized by the interlinking of ideas 

from formulated rules, was found to enhance understanding, particularly in Clusters 3, 4, 

and 5. This is congruent with Obaid et al.’s (2023b) findings. They noted that when 

students successfully distinguish ideas and form a coherent integration, they exhibited 

better knowledge integration. Furthermore, both this study and Obaid et al.’s underline 

the importance of self-regulated learning. This study’s findings for Clusters 3, 4, and 5, 

which exhibit flexibility and methodical learning approaches, align well with Obaid et al.’s 
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emphasis on self-regulated learning. This suggests a consistency in the belief that self-

regulated learning fosters better knowledge integration. 

 

The study supports previous findings that learners often employ a positive test 

strategy to validate their hypotheses with fitting cases rather than non-fitting ones, as 

originally identified by Wason (1960) and later interpreted by Klayman and Ha (1987). 

This pattern was particularly observed in the "Reinforced Confirmers" cluster, where 

students exhibited a strong tendency toward confirmation redundancy, seeking to 

validate and bolster their pre-existing comprehension without venturing into uncharted 

territories to generate and implement new rules. It is worth noting, however, that utilizing 

a positive test strategy should not be seen as a lack of hypothesis-testing skills or an 

unwillingness to disprove hypotheses. Participants often engage in "limit testing," trying 

to maximize the chance of falsification within a positive testing framework.  

 

The tendencies and behaviors exhibited by this study's identified clusters 

reinforce the observation that learners often make overly restricted hypotheses, favoring 

conditions that are sufficient but not necessarily required. The most glaring example 

comes from the "Reinforced Confirmers" cluster. This group of learners favored positive 

testing, heavily relying on the 'confirmation redundancy' rule to fortify their pre-existing 

understanding. In other words, they were primarily concerned with validating their current 

knowledge rather than venturing into unexplored territories or testing their knowledge 

against counter-evidence. This behavior serves as a textbook example of learners 

creating overly restricted hypotheses, emphasizing conditions they perceived as 

sufficient, but which may not have been necessary.  

 

Similarly, the "Dual-mode strategy diversifiers" cluster, despite demonstrating 

versatility in their thought processes and rule formulation strategies, did not veer too far 

from the path of positive testing. They adeptly employed 'successive scanning' and 

'simultaneous scanning' strategies, but significant problem identification was notably 

absent. This suggests that while these learners were comfortable making predictions and 

verifying them using established rules, they showed little inclination to actively disprove 

their hypotheses or seek alternative perspectives.  

 

On the other hand, the clusters of "Self-regulated revisers" and "Methodical 

integrators" demonstrated traits of negative hypothesis testing. The "Self-regulated 
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revisers" displayed an inclination to reassess their understanding, as evident through the 

falsification of voltage drop predictions. Their learning approach indicated an active 

engagement in identifying inconsistencies and adjusting strategies based on predictive 

success - the core tenets of negative testing. The "Methodical integrators" also presented 

a blend of both positive and negative testing. They methodically and consistently verified 

or falsified their predictions, showcasing a willingness to challenge their hypotheses, 

which led to the creation of multiple valid links and effective knowledge integration.  

 

These behaviors underscore the ecological basis for learners favoring positive 

testing, as Klayman & Ha (1987) theorized. In particular, the "Reinforced Confirmers," 

with their evident discomfort venturing outside of established knowledge, possibly 

perceive false positives as more threatening, potentially destabilizing their cognitive 

certainties. This kind of learner, marked by a high requirement for cognitive certainty and 

a low tolerance for ambiguity and uncertainty, may view the risk of false positives as 

more harmful than that of false negatives, contributing to their favoring of positive 

hypothesis testing. 

 

However, successful hypothesis testing is not merely about confirmation or 

disconfirmation. Instead, as highlighted by Platt (1964) and Wason & Johnson-Laird 

(1972), it depends on the effective use of alternative hypotheses. This is something I 

observed in the "Multi-strategy jugglers" and "Self-regulated revisers" clusters. These 

participants demonstrated a higher tendency to test alternatives, doing so in almost one 

out of three trials. The less successful subjects did so in about one out of nine trials. The 

use of alternative hypotheses guided negative tests, indicating plausible target instances 

outside the current hypothesis. They also guided double negative tests by identifying 

non-target instances within the current hypothesis. Testing alternative hypotheses 

contributed to the discovery process as the falsification of a current hypothesis 

established a new one for continued investigation. Without alternatives, subjects may 

struggle to learn from falsifications. 

 

Hypothesis revision, as emphasized by Lakatos (1970, 1978), is as vital as 

hypothesis testing in rule discovery tasks. This principle was clearly demonstrated in the 

"Self-regulated revisers" and "Methodical integrators" clusters, who showed a strong 

tendency to adjust their strategies based on the success or failure of their predictions. 

Even if subjects don't voluntarily generate alternatives, they are forced to do so when 
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their current hypothesis is disproved. This highlights the importance of fostering an 

environment that encourages learners to embrace falsification and regard it as an 

opportunity to adjust and enhance their understanding. 

 

Future research should focus on how feedback informs hypothesis revisions, 

particularly considering that hypothesis testing is a process involving the identification of 

relevant features and continuous refinement of one's conceptual model of the rule or 

phenomenon.  

 

5.3. Implications of Cluster Analysis for Instructional 
Interventions 

  
The identification of distinct clusters based on learning trajectories offers insights 

for tailoring instructional interventions in simulation-based discovery learning. Each 

cluster's unique approach to prediction, confidence measures, problem identification, rule 

formation, and knowledge integration suggests specific areas where learners can benefit 

from targeted support. 

  

For example, learners in Cluster 1, characterized by heavy reliance on existing 

knowledge without much exploratory behavior, would be predicted to benefit from 

prompts encouraging alternative hypotheses and experimentation. Implementing prompts 

like "What alternative explanations could account for your observations?" and "How might 

changing the resistance impact the circuit?" could facilitate deeper engagement with the 

exploratory aspect of the learning process. 

  

Cluster 2 learners, displaying an iterative approach, presumably would benefit 

from scaffolding that prompts reflection on the connections between observations and 

predictions. Questions like "How does your observation align with or challenge your initial 

prediction?" and "What new insights can you derive from your latest trial?" could foster 

better integration of knowledge. 

  

Cluster 3 students, who maintain a consistent prediction rule while varying rule-

generation strategies, likely would find value in prompts that help identify gaps in 

understanding and encourage comprehensive rule formulation. Suggestions like 
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"Compare your current prediction to previous ones'' and "What patterns can you identify 

to formulate a more comprehensive rule?" could facilitate better rule refinement. 

 

Similarly, for Cluster 4 learners who exhibit flexibility in learning strategies, 

prompts could encourage critical reflection on strategy effectiveness. Questions such as 

"Under what conditions would you revise your prediction?" and "Can you design an 

experiment to challenge one of your rules?" may further enhance their learning process. 

  

Lastly, learners in Cluster 5, demonstrating systematic and focused behavior, 

could benefit from prompts that encourage deeper exploration and application of findings. 

Prompts like "What broader implications do your findings suggest?" and "How can you 

apply your learning to a different circuit?" could encourage extended thinking. 

 

5.4. Implications for Learning and Practice 

 

The analysis of distinct clusters based on learning trajectories not only illuminates 

effects of tailored instructional interventions but also offers insights for pedagogical 

practices in the realm of simulation-based discovery learning. 

 

The existence of distinct clusters underscores the notion that learners engage 

with simulation-based discovery learning in varied ways. This has a significant and oft-

noted implication for educational practice; there isn’t a "one-size-fits-all" approach. 

Students might benefit from a more personalized learning environment where their 

unique learning paths are recognized and nurtured. 

 

Insights from this study can be incorporated into curriculum development, offering 

educators a roadmap for weaving in targeted prompts and reflection questions 

throughout simulation-based discovery learning modules. This can ensure consistent 

reinforcement and support for students, aligning with their identified learning trajectories. 

 

Exploration and reflection emerge as key components. Encouraging students to 

actively engage with learning material and reflect on their experiences can foster deeper 

understanding. This suggests that instructional environments should embed opportunities 

for students to hypothesize, test, and rethink their ideas. 
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The clusters indicate varying degrees of metacognitive awareness and application 

in simulation-based discovery learning. Metacognitive skills, including the ability to 

evaluate one's own understanding, adjust strategies when necessary, and predict 

outcomes, are critical for effective discovery learning. Fostering these skills might 

enhance students’ learning experiences and outcomes. 

 

The findings of this research have implications for the development of educational 

resources and tools, particularly simulation-based tools. Developers should aim to create 

resources that are aligned with the principles of discovery learning and facilitate the 

development of effective search strategies and heuristics for diverse learning paths. 

Developers can use insights developed by examining different learning clusters to create 

more adaptive learning technologies that are capable of identifying learners’ tendencies 

and providing real-time, tailored support. This should not only enhance the effectiveness 

of technology-enhanced learning environments but also improve alignment of tools with 

learners’ natural learning processes. 

5.4. Limitations and Future Research Directions 

  
It is important to acknowledge the limitations of the study. Although statistically 

detectable differences were observed between the groups, caution should be exercised 

when interpreting these results. Due to the complex nature of learning and the multitude 

of factors influencing it, tools provided in this research are not the only determinant of 

learning success. Other individual and contextual factors, such as motivation and 

learning environment, can also significantly influence learning outcomes. Furthermore, 

the study was conducted within the context of learning about electric circuits. The 

generalizability of these findings to other domains within science education or other fields 

requires further investigation. 

  

In future research, it would be valuable to conduct similar studies with a larger 

sample size, or to utilize a mixed-methods approach to further understand how learners 

interact with the simulation environment. Moreover, investigating other variables, such as 

learner satisfaction and long-term knowledge retention, would add further depth to the 

understanding of simulation-based discovery learning. 
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Future research could investigate the optimization of these tools, by perhaps 

integrating adaptive features that align with the learner's pace and understanding. 

Additionally, exploring the interplay of individual differences with the tools provided could 

yield insights into how best to support diverse learners in simulation-based environments. 

The role of feedback within these environments, and how it can be employed to further 

support self-regulated learning and knowledge construction, is another avenue worthy of 

exploration. Based on the prototype sequences identified in this study, future research 

should explore the efficacy of adaptive AI tutoring dialogues that can provide 

personalized guidance and support to students based on their current stage in the 

discovery learning process. The identified patterns of sequence in each cluster can serve 

as student models for future research, particularly for creating adaptive AI tutoring 

dialogues. For instance, Cluster 1's model could benefit from AI-driven prompts 

encouraging problem identification and metacognitive thinking. Similarly, Cluster 2's 

model could benefit from prompts focused on critical reflection on the effectiveness of 

their iterative rule adjustments. Cluster 3's model could leverage AI prompts that 

stimulate further variety in rule formulation and foster problem identification. Cluster 4's 

model, with its high degree of self-regulation, might best be served with AI prompts that 

encourage critical reflection and strategy refinement. Lastly, Cluster 5's model, with its 

balance of verification, falsification, problem identification, and shifting strategies, would 

benefit from prompts that stimulate further exploration, questioning, and discovery. 

 

These findings have significant implications for educators and software 

developers. For educators, they underline the importance of providing students with tools 

that can guide them in self-regulated learning and knowledge integration. For software 

developers, these results suggest that the inclusion of decision-making tools and rule 

induction tools could enhance the educational effectiveness of simulation-based learning 

environments. 

  

5.4. Contribution to Educational Practice and Scholarly 
Significance 

 

These findings hold significance for both educators and software developers. 

Educators can leverage tools to guide students in self-regulated learning and knowledge 

integration, while software developers can enhance educational efficacy through 
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decision-making and rule induction tools. The study's theoretical implications aligning 

with Bruner's discovery learning, self-regulated learning, and the Knowledge Integration 

Framework underscore the need for multifaceted approaches in designing effective 

learning environments. 

  

First, the findings contribute to the field of education and cognitive psychology in 

several ways. The distinct sequential patterns exhibited by each cluster reflect different 

learning processes at play in simulation-based discovery learning. These processes 

correspond to the different cognitive strategies proposed by Bruner's discovery learning 

theory, such as simultaneous scanning, successive scanning, confirmation redundancy, 

focus gambling, and conservative focusing. By analyzing how these strategies unfold in 

sequence in each cluster, we gain a detailed understanding of how students navigate 

and learn from simulation-based environments. 

  

Second, the study provides insights into self-regulated learning in simulation-

based learning environments. The patterns of prediction, problem identification, rule 

formation, and post-test knowledge integration demonstrate how students monitor and 

adjust their learning strategies. For instance, in Cluster 4, the students exhibited flexibility 

and self-regulation by switching their rule formation strategies across trials, and even 

falsifying their predictions when necessary. Such behaviors indicate active engagement 

in self-regulated learning. 

  

Third, the study's findings shed light on the knowledge integration process in 

simulation-based learning. By analyzing the sequences of prediction, confidence 

measures, problem identification, rule formation, and knowledge integration, we can 

identify the pathways through which students build, revise, and integrate their 

understanding of the concepts. For example, in Cluster 5, the students demonstrated 

progressive learning and successful knowledge integration as they adapted their 

prediction and rule formation strategies over the trials, resulting in the formation of 

multiple valid links by the post-test. 

  

This study contributes to the understanding of how students engage with 

simulation-based discovery learning, particularly in forming predictions, employing 

confidence measures, and generating rules. By linking students’ strategies and 

approaches to Bruner's discovery learning, this study provides insight into how classic 
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cognitive psychology theories can still be applicable in contemporary learning 

environments. Moreover, the study contributes to the development of student models for 

creating adaptive AI tutoring dialogues. The distinct sequential patterns in each cluster 

can serve as prototypes for different types of learners. For example, a student model 

based on Cluster 1 might represent learners who heavily rely on existing knowledge 

without much exploratory behavior, while a student model based on Cluster 4 might 

represent learners who exhibit high flexibility and self-regulation. Such student models 

can inform the design of personalized instructional interventions in AI tutoring systems. 

  

Overall, this study contributes to understanding how various tools can facilitate 

learning in simulation-based environments. It also highlights the value of combining 

principles from Bruner's discovery learning strategies, self-regulated learning, the 

Knowledge Integration Framework, and cognitive psychology in designing effective 

learning environments. By applying these principles and making use of appropriate tools, 

learners can be better supported in their journey of discovery and understanding. 

  

In light of these results, scaffolding might be further explored to support the 

discovery process in educational contexts. Instructional interventions, such as decision 

tables and rule induction tools provided to experimental groups, can foster students’ 

abilities to develop and refine their rules, as shown by Quintana et al., (2004). 

Furthermore, these findings also point towards the potential of utilizing the student 

models derived from these clusters to create adaptive AI tutoring dialogues. This 

adaptive instruction can foster deeper learning by dynamically adjusting to learners' 

needs and promoting self-regulated learning. 

  

In conclusion, this study enriches understanding of diverse learning trajectories in 

simulation-based discovery learning. Through the identification of distinct clusters 

characterized by different patterns of prediction, confidence measures, problem 

identification, rule formation, and knowledge integration, the study offers valuable insights 

that can inform educational interventions and the development of adaptive learning 

technologies. The integration of theoretical perspectives, including Bruner’s discovery 

learning, self-regulated learning, and the knowledge integration framework, provides a 

multifaceted lens through which the complexities of learning in simulation-based 

environments can be better understood and supported. 
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Appendix A. Pretest and Posttest 
 

Please answer the following questions. 

These elements are used in each question: 

 
 

1. Cannice created Circuit A and tested the voltage drop. Amy asked her what would 
happen to the voltage drops in Circuit B. Based on her evidence from Circuit A, Cannice 
concluded: "In a series circuit, the voltage drop will be the same across each individual 
resistor/light bulb." 
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1.1. Select the best answer. 
A. Cannice's conclusion is correct. 
B. Cannice's conclusion is incomplete. 
C. Cannice's conclusion is incorrect. 
 
1.2. Explain why you selected A, B, or C? 
 

2. Amy created the series circuits below. Based on the evidence from Circuit A and 
Circuit B, she concluded about Circuit C: "In a series circuit, the current in each individual 
resistor/light bulb will always be different." 
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2.1. Select the best answer. 
A. Amy's conclusion is correct. 
B. Amy's conclusion is incomplete. 
C. Amy's conclusion is incorrect. 
 
2.2. Explain why you selected A, B, or C? 
 

3. Carmine created the series circuits below. Based on the evidence from Circuit A, he 
concluded about Circuit B: "the current will decrease." (Note: current is moving 
clockwise). 

 
3.1. Select the best answer. 
A. Carmine's conclusion is correct. 
B. Carmine's conclusion is incomplete. 
C. Carmine's conclusion is incorrect. 
 
3.2. Explain why you selected A, B, or C. 
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4. A battery of 9 volts (V) powers a series circuit with two resistors. One resistor has the 
value of 50 Ohms (Ω) and the other resistor has the value of 10 Ohms (Ω). What will 

happen to the current in each resistor? 

  

 
4.1. Select the best answer. 
A. The current will be reduced more in the 10 Ohms resistor. And, the current will be 
reduced less in the 50 Ohms resistor. 
B. The current will be reduced less in the 10 Ohms resistor. And, the current will be 
reduced more in the 50 Ohms resistor. 
C. The current will be the same in both resistors. 
 
4.2. Explain why you selected A, B, or C. 
 

5. In a series circuit, we have a battery of 30 volts (V) and two resistors. One resistor has 
the value of 20-ohm (Ω) and the other resistor has the value of 40-ohm (Ω). What will 

happen to the voltage drop between points A and B? 

 

  
5.1. Select the best answer. 
A. Between point A and B, the voltage will be lower than 30 volts. 
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B. Between point A and B, the voltage will be 30 volts. 
C. Between point A and B, the voltage will be higher than 30 volts. 
 
5.2. Explain why you selected A, B, or C. 
 

6. In a series circuit, we have a battery of 30 volts (V) and two resistors. One resistor has 
the value of 20-ohm (Ω) and the other resistor has the value of 40-ohm (Ω). What will 

happen to the voltage drop in the resistor with 40 ohms (Ω)? 

 
6.1. Select the best answer. 
A. Voltage drop in 40-ohm (Ω) resistor will be higher than the voltage drop in 20-ohm (Ω) 

resistor. 
B. Voltage drop in 40-ohm (Ω) resistor will be lower than the voltage drop in 20-ohm (Ω) 

resistor. 
C. Voltage drop in 40-ohm (Ω) resistor will be the same as the voltage drop in 20-ohm 
(Ω) resistor. 
 
6.2. Explain why you selected A, B, or C. 
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