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Abstract

In this thesis, we present a novel network architecture using an encoder-decoder neural
network, inspired by Lusch et al. [15], to directly obtain the eigenfunctions of the Koopman
operator, which globally linearize the dynamics of nonlinear systems. By extending this
approach to account for control inputs, we enable the application of well-established control
synthesis techniques for obtaining optimal policies, while ensuring that control constraints
remain convex for globally optimal solutions. This method overcomes the limitations of
traditional Koopman operator approximations and provides improved prediction and control
performance. We demonstrate the efficacy of our approach on a range of simulated controlled
dynamical systems and show its potential for real-world applications in fields like robotics,
and process control.

Keywords: Koopman operator; Deep Neural Networks; Linear Model Predictive Control
(MPC); System identification; Controlled dynamical systems
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Chapter 1

Introduction

1.1 Background

Controlled dynamical systems play a crucial role in numerous applications, including robotics,
aerospace, and process control [13]. The inherent complexity of these systems often arises
from their nonlinear nature, which complicates system modeling, prediction, and control [4].
Consequently, researchers have sought methods to linearize nonlinear systems to leverage
the benefits of linear control techniques and simplify optimization problems related to op-
timal control [10].

The Koopman operator, introduced by Bernard Koopman in 1931 [11], has gained trac-
tion in recent years. Koopman’s idea is to globally linearlize nonlinear systems by represent-
ing their dynamics in a linear form within an infinite-dimensional function space [4]. Despite
its potential, traditional methods for approximating the Koopman embedding function and
Koopman operator, such as Dynamic Mode Decomposition (DMD)[22], have encountered
various challenges, including difficulties in capturing the intricate dynamics of complex sys-
tems, leading to suboptimal predictions [24].

With the advent of deep learning techniques, neural networks have exhibited remarkable
success in modeling intricate systems across diverse domains [23]. Encoder-decoder archi-
tectures, in particular, have demonstrated potential in addressing the limitations of con-
ventional Koopman-based approaches by learning the eigenfunctions responsible for global
linearization directly [15]. These networks offer the possibility of more accurate and robust
predictions, as well as improved control performance [6].

1.2 Goal

The primary objective of this research is to develop an effective data-driven method for
finding linear dynamical models for controlled nonlinear systems by extending the work of
Lusch et al. [15], who used a deep neural network to directly learn the eigenfunctions of the
Koopman operator, circumventing the need for prior knowledge of system dynamics. We
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aim to further improve the methodology by incorporating control inputs within the modi-
fied encoder-decoder architecture to obtain a linear representation of controlled dynamical
systems while preserving the convexity of the optimization problem associated with optimal
control.

1.3 Methodology

The proposed methodology involves an encoder-decoder network that maps the system state
to a latent space in which the system dynamics are linear. By adjusting the architecture of
the neural network to include control inputs, we obtain a linear representation of a controlled
dynamical system [13, 6]. We demonstrate the effectiveness of our approach through two
numerical simulations involving the 4-D car system, Pole-cart, and a complex industrial
system involving a gas pipeline.
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Chapter 2

Background

2.1 Koopman Operator

The Koopman operator, first introduced by Bernard Koopman in 1931 [11], is a linear
operator that provides a powerful framework to study nonlinear dynamical systems. The
idea behind the Koopman operator is to transform a nonlinear system into an infinite-
dimensional linear system using an eigenfunction. This in turn allows for the application of
linear analysis techniques to understand and control the underlying nonlinear dynamics in
a discrete-time setting [17]. Consider a discrete-time nonlinear dynamical system described
by:

xk+1 = f(xk), (2.1)

where x ∈ Rn is the state vector and f : Rn → Rn is a smooth vector field. The Koopman
operator, denoted by K, is defined to act on a function g : Rn → Rm, as follows:

(Kg)(xk) = g(f(xk)) = g(xk+1). (2.2)

In other words, the Koopman operator advances the function g one step forward along
the system’s trajectory. The key insight behind the Koopman operator is that, although the
system’s dynamics are nonlinear, the operator itself is linear. This linearity enables the use
of powerful linear analysis techniques, such as eigenfunction analysis, to study the system’s
behavior [10]. (Kg)(x) represents the action of the Koopman operator on the function g.
The Koopman operator K is a linear operator, but it acts on the space of observables
(functions like g) rather than directly on the state space. It means that if you first apply
the nonlinear system dynamics f to the state x, and then apply the function g to the result,
this composition is the same as what the Koopman operator does to the function g.

To represent the nonlinear dynamics in a linear framework, the Koopman operator relies
on the concept of eigenfunctions. An eigenfunction ψ of the Koopman operator is a function
that satisfies the following equation:

3



Kψ(x) = ψ(f(x)) = λψ(x), (2.3)

where λ is the corresponding eigenvalue. By finding a suitable set of eigenfunctions, one
can construct a global linearization of the nonlinear dynamics in the form of the eigende-
composition of the linear map. Based on Eq. (2.2), a set of eigenfunctions ψ(x) would form
the eigenbasis for the codomain of g(·); thus in practice, and as we will do in this thesis,
the linear map K can be represented in Jordan canonical form without loss of generality.
However, identifying these eigenfunctions analytically is often infeasible for most systems,
which has led to the development of various numerical approximation methods, such as
Dynamic Mode Decomposition (DMD) [22] and Extended Dynamic Mode Decomposition
(eDMD) [24]. In the next section we will talk about how a network architecture is fomulated
to satify the framework of the Koopman Operator.

2.2 Learning Lifting Functions

Eigenfunctions play a crucial role in the study of nonlinear dynamical systems through the
Koopman operator framework. By finding a suitable set of eigenfunctions, one can construct
a global linearization of the nonlinear dynamics. However, identifying these eigenfunctions
analytically is often infeasible for most systems, which has led to the development of various
numerical approximation methods.

Dynamic Mode Decomposition (DMD) is a popular method to approximate the eigen-
functions of the Koopman operator [22]. DMD operates by fitting a linear combination
of exponentials to a set of time-ordered data snapshots. The DMD modes, which are the
eigenvectors of the matrix formed from the data snapshots, serve as approximations to the
Koopman operator’s eigenfunctions. However, DMD relies on the assumption that the un-
derlying dynamics are linear and can result in poor approximations for strongly nonlinear
systems.

Extended Dynamic Mode Decomposition (eDMD) extends DMD by including a dictio-
nary of nonlinear basis functions [24]. The basis functions are used to project the state
space onto a higher-dimensional space, where the dynamics are more likely to be linear,
and then DMD is applied to this higher-dimensional space. The resulting eDMD modes are
better approximations of the Koopman eigenfunctions compared to the DMD modes, but
the choice of basis functions requires some prior knowledge of the system’s dynamics.

Recently, deep learning techniques have been employed to learn the eigenfunctions of the
Koopman operator directly from data, offering a more flexible and data-driven approach [15].
By leveraging deep neural networks, researchers can bypass the need for prior knowledge
of system dynamics and obtain improved approximations of the Koopman operator. In this
approach, an encoder-decoder architecture is used to map the system’s state to a latent
space in which the dynamics are linear, as highlighted by the central component of Figure
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Figure 2.1: Network architecture to identify spectral properties of uncontrolled dynamical
systems, highlighting the central role of the linear transformation in the latent space for
enforcing linear system dynamics.[15]

2.1. The neural network is trained to minimize the reconstruction error between the original
state and the decoded state after the linear evolution in the latent space, which is facilitated
by the learned linear transformation K(Λ) that acts on the encoded state yt, resulting in
the forward propogated state yt+1.

The general form of the deep learning approach to learn the Koopman eigenfunctions
can be described as follows. Given a dataset of state trajectories x(t), the goal is to learn
an encoding function φ : Rn → Rm and a decoding function ϕ : Rm → Rn, such that the
following holds:

ϕ(φ(xt)) ≈ xt. (2.4)

ϕ(Kφ(xt)) = ϕ(φ(xt+1)). (2.5)

Here, φ(xt) maps the state xt to the latent space, yt, and ϕ maps the latent represen-
tation back to the original state space. By training the neural network to minimize the
reconstruction error, the encoder function φ effectively learns to approximate the Koopman
eigenfunctions. Along with the eigenvalues, K(Λ), produced from the auxiliary network Λ,
to propogate forward in time the dynamics of the latent space, provide a powerful tool for
the analysis and prediction of nonlinear dynamical systems.

2.3 Koopman Operator Meets Linear Control

The Koopman operator has been increasingly utilized for the analysis and control of nonlin-
ear dynamical systems, as it allows for the construction of a linear representation of these
systems. This linear representation not only enables the application of well-established lin-
ear control techniques, such as Linear Quadratic Regulator (LQR), to inherently nonlinear

5



systems [13], but also greatly simplifies the implementation of Model Predictive Control
(MPC). In the context of MPC, utilizing a linear model representation significantly reduces
computational complexity, making the optimization problem easier and faster to solve.

One approach to control synthesis for nonlinear systems using the Koopman operator
involves first finding a linear representation of the controlled system dynamics, and then
applying MPC to this linear representation. Korda and Mezić [13] proposed a method using
Extended Dynamic Mode Decomposition (eDMD) to approximate the Koopman operator
for controlled systems, and subsequently performing MPC on the linearized system. The
main challenge with this method lies in the selection of appropriate basis functions for
eDMD, which requires prior knowledge of the system’s dynamics.

Another approach was proposed by Proctor et al. [21], who used diffeomorphisms to
identify the controlled model in the lifted space, and then performed MPC on the linearized
model. This method is particularly tailored for systems governed by Lagrangian dynamics,
and its application is limited for systems involving Eulerian dynamics, such as fluid flow.

Recently, deep learning has been employed to learn the eigenfunctions of the Koopman
operator directly from data, offering a more flexible and data-driven approach [15]. This
approach can be extended to account for control inputs in the neural network architec-
ture, enabling the application of MPC on the linear representation obtained by the neural
network. The resulting encoder function serves as an approximation of the Koopman eigen-
functions, and the linear dynamics in the latent space can be utilized for control synthesis,
while ensuring convexity of the optimization problem associated with the control policy.

Formally, given a controlled dynamical system of the form xt+1 = Axt + But, where
x ∈ Rn is the state, u ∈ Rp is the control input, and f : Rn × Rp → Rn represents
the nonlinear system dynamics, the conventional MPC optimization problem is often non-
convex due to the nonlinear nature of f , posing significant challenges for real-time control:

min
u0,...,uN−1

N−1∑
k=0

l(xk, uk) +m(xN )

subject to:

xk+1 = f(xk, uk), k = 0, . . . , N − 1

x0 = x(t)

uk ∈ U , k = 0, . . . , N − 1,

(2.6)

where N is the prediction horizon, l(xk, uk) is the stage cost, m(xN ) is the terminal cost,
and U represents the control constraints.

However, by employing the Koopman operator framework, we seek to find a linear
representation of the system dynamics in the lifted space, such that yt+1 = Ayt + But,
where y ∈ Rm is the transformed state, and A ∈ Rm×m, B ∈ Rm×p are the system matrices
in the lifted space. In this lifted space, the MPC optimization problem becomes:
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min
u0,...,uN−1

N−1∑
k=0

l(yk, uk) +m(yN )

subject to:

yk+1 = Ayk +Buk, k = 0, . . . , N − 1

y0 = φ(x(t))

uk ∈ U , k = 0, . . . , N − 1,

(2.7)

where yk is the state in the lifted space at step k, φ : Rn → Rm is the encoding mapping
the original state space to the lifted space, l(yk, uk) is the stage cost, and m(yN ) is the
terminal cost in the lifted space, with U remaining as the control constraints. This transfor-
mation results in a convex optimization problem, which simplifies the computational task
and enhances the applicability of MPC for real-time control.

By using the Koopman operator-based linear representation of the controlled system,
the nonlinear optimization problem associated with MPC can be transformed into a convex
optimization problem, allowing for the efficient computation of globally optimal control poli-
cies. This approach has the advantage of overcoming the limitations of traditional Koopman
operator approximations and offers improved prediction and control performance. Moreover,
it eliminates the need for prior knowledge of the system’s dynamics, as the Koopman eigen-
functions are learned directly from data.

However, it is important to note that the success of the Koopman-based MPC approach
largely depends on the quality of the linear representation obtained for the controlled system.
In cases where the Koopman operator approximation is poor, the resulting control policy
may not perform well on the original nonlinear system. Therefore, further research is needed
to improve the approximation techniques and develop more robust control synthesis methods
that take into account the potential uncertainties in the linear representation.

Korda and Mezić’s Methodology Overview

Korda and Mezić’s approach in [13] describes some of the state of the art research in applying
Koopman operator to linearly control non-linear dynamical systems, this requires extending
the Koopman operator to controlled systems. The primary steps in their methodology are:

1. Extended State Space: Control inputs are incorporated into the state space, re-
sulting in an extended state space that encompasses both states and control inputs.

Given the original state space of the system as x ∈ Rn and the control inputs as
u ∈ Rp, the extended state space is defined as:

x̃ =
[
x

u

]
∈ Rn+p (2.8)
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This extended state space x̃ is then used in the approximation of the Koopman oper-
ator, enabling the application of linear control techniques to the inherently nonlinear
system.

2. Koopman Operator Approximation: Utilizing Extended Dynamic Mode Decom-
position (eDMD), they approximate the Koopman operator for this extended state
space. The Koopman operator here linearly evolves observables (functions of the state)
even for nonlinear systems.

Given the extended state space x̃ which includes both the state and control inputs, the
Koopman operator K is approximated using eDMD. The operator acts on observables
g(x̃), which are functions of the extended state space:

Kg(x̃) = g(F(x̃)) (2.9)

Here, F represents the extended dynamical system, and K linearly evolves these ob-
servables even though the underlying system dynamics F are nonlinear.

3. Model Predictive Control (MPC): The linearized dynamics obtained through
the Koopman operator are then used in MPC. This linear representation allows the
formulation of the MPC problem as a convex optimization, akin to linear systems.

This methodology offers a novel way to apply linear control techniques, like MPC, to nonlin-
ear systems by leveraging the linearizing capabilities of the Koopman operator, but require
the knowledge of lifting functions (or observables g) mentioned in [24], here we aim to learn
this function, namely φ.

In summary, the application of the Koopman operator to controlled dynamical systems
has shown promising results, enabling the use of linear control techniques for nonlinear sys-
tems. The main challenge lies in obtaining accurate linear representations of the controlled
system dynamics and designing efficient control algorithms that exploit the benefits of the
Koopman framework while addressing its limitations.
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Chapter 3

System Identification & Control

3.1 4D Extended Dubins Car Model

4D extended Dubins car model as a controlled system was selected as a baseline to repre-
sent whether a simple system with fully known nonlinear dynamics could be captured and
controlled using our methodology. The 4D extended Dubins car model is a widely used kine-
matic model for wheeled vehicles in control and robotics applications, especially pertinent
to path planning, motion control, and obstacle avoidance tasks. This model simplifies the
representation of a vehicle’s motion by capturing its essential nonlinear dynamics.

The state of the vehicle is defined by the vector

x =


x

y

θ

v

 (3.1)

where x and y denote the coordinates of the vehicle’s center of mass in a global reference
frame, θ is the vehicle’s heading angle, and v is its longitudinal velocity.

The evolution of the state is described by the following set of differential equations:

ẋ = v cos(θ), (3.2)

ẏ = v sin(θ), (3.3)

θ̇ = ω, (3.4)

v̇ = a. (3.5)

The control inputs for the system are the angular velocity ω and the longitudinal ac-
celeration a, which govern the changes in orientation and speed of the vehicle, respectively.
Here, ω represents the vehicle’s turning rate, while a is the rate of change of the vehicle’s ve-
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locity. Thus, the state transitions, defined as ẋ, ẏ, θ̇, v̇, are influenced directly by the control
inputs ω and a.

3.1.1 Data Generation

The generation of a high-quality dataset is crucial for the development and validation of
control algorithms. In this study, we focus on the construction of a dataset that encapsulates
feasible trajectories for the 4D extended Dubins car model. This process involves leveraging
the concept of differential flatness, which allows for a systematic approach to trajectory
planning by transforming the nonlinear dynamics into an equivalent linear representation.

Differential flatness is a property of some nonlinear control systems whereby all states
and inputs of the system can be expressed as algebraic functions of a set of flat outputs
and a finite number of their derivatives. A system is said to be differentially flat if there
exists a set of outputs, known as flat outputs, which can be used to express the state and
input variables of the system. Moreover, these flat outputs and a finite number of their
derivatives are sufficient to capture the full dynamics of the system. Mathematically, for a
general nonlinear system, if it is differentially flat, we can describe its states x and inputs
u as:

x = Fx(η, η̇, η̈, . . . ), (3.6)

u = Fu(η, η̇, η̈, . . . ), (3.7)

where η denotes the flat outputs, and Fx and Fu are functions that map these flat outputs
and their derivatives to the system’s state and input vectors, respectively.

Applying this to the dynamics of the 4D extended Dubins car model, we consider the
system’s states x and inputs u as follows:

x =


x

y

θ

v

 , u =
[
ω

a

]
(3.8)

For this particular system, the flat outputs are the position coordinates x and y. The
rest of the states and inputs can be derived from these flat outputs:
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θ = fθ(x, y, ẋ, ẏ, ẍ, ÿ, . . . ) = arctan 2(ẏ, ẋ), (3.9)

v = fv(x, y, ẋ, ẏ, ẍ, ÿ, . . . ) =


ẋ

cos(θ) if cos(θ) ̸= 0
ẏ

sin(θ) if cos(θ) = 0
, (3.10)

ω = fω(x, y, ẋ, ẏ, ẍ, ÿ, . . . ) = ÿ · ẋ− ẍ · ẏ
v2 , (3.11)

a = fa(x, y, ẋ, ẏ, ẍ, ÿ, . . . ) = ẋ · ẍ+ ẏ · ÿ
v

. (3.12)

These functions, fθ, fv, fω, and fa, map the flat outputs and their derivatives to the
system’s orientation θ, velocity v, angular velocity ω, and acceleration a. The explicit form
of these functions is derived based on the dynamics of the 4D extended Dubins car and the
constraints imposed by its physical capabilities.

If such functions exist, the 4D car model is differentially flat. By selecting suitable smooth
functions for the flat outputs x(t) and y(t) that satisfy the initial and final positions of the
car, we can generate feasible trajectories for the entire system. These trajectories respect
the car’s dynamics and constraints since they are derived from the flat outputs and their
derivatives.

In this project, the dataset for the 4D extended Dubins car model is generated using
Bezier curves, exploiting the differential flatness property. The Bezier curves are parame-
terized by a variable t within the range [0, 1], and for each trajectory, the control points are
selected to ensure compliance with the car model’s dynamics and constraints.

The dataset is generated by solving a linear system of equations using the constraints, xc

and yc, defined in the flat output space as described in algorithm 1. The resulting trajectories
are then used to compute the state and control trajectories for the car model.

In the context of Bezier curve trajectory generation, M is a matrix representing the
basis functions of the Bezier curve, structured for the constraints at specific points along
the trajectory. b0 and b1 are vectors of coefficients for the Bezier curves in the x and y

dimensions, respectively. The system of equations to solve for these coefficients is given by:

M · b0 = xc, (3.13)

M · b1 = yc. (3.14)

These equations ensure that the resulting Bezier curves adhere to the specified constraints
in the x and y dimensions.

Bezier Curve and Dataset Generation:

• Trajectories: We synthesized 70 trajectories with Bezier curves, parameterized by
t ∈ [0, 1]. Each trajectory comprises 1000 data points, n, resulting in a total dataset
of 70,000 points.
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• Constraints: Each Bezier curve adheres to constraints within the Cartesian coordi-
nates x, y ∈ [−1.5, 1.5], ensuring the feasibility of the trajectories in accordance with
the car model’s dynamics.

• Data Generation: For each value of t, the positions x(t) and y(t) were computed,
alongside other state and control variables, derived using the differential flatness prop-
erty.

Algorithm 1 Generating Dataset using Differential Flatness
1: while n > 1 do
2: Define x and y constraints along with matrix M
3: Solve for coefficients of basis functions b0 and b1
4: Compute x, y, ẋ, ẏ, ẍ, and ÿ from b0 and b1
5: Compute θ and v trajectories
6: Correct v when cos(θ) ≈ 0
7: Compute control trajectories ω and a
8: Update n
9: end while

3.2 Cart Pole

3.2.1 Dynamics

The Cart Pole problem is a classic control theory problem. The problem consists of a pole
mounted on a cart that can move along a horizontal track. The pole is attached to the
cart with a pivot point that allows the pole to rotate freely. The goal is to balance the
pole vertically by applying forces to the cart. The system is inherently unstable, and the
challenge is to design a controller or learn a policy that can keep the pole upright while
possibly keeping the cart within certain bounds or moving it to a desired position.

In the Cart Pole problem, the system is typically described by a set of nonlinear dif-
ferential equations that represent the dynamics of the cart and the pole. The state of the
system consists of four variables: cart position, cart velocity, pole angle (measured from the
vertical axis), and pole angular velocity. The control input is the horizontal force applied
to the cart.

The states of the system are defined as follows:

x =


x1

x2

x3

x4

 =


x

ẋ

θ

θ̇

 (3.15)
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The given equations of motion are

(M +m)ẍ+ bẋ+mlθ̈ cos θ +mlθ̇2sinθ = F (3.16)

(I +ml2)θ̈ +mgl sin θ = −mlẍ cos θ (3.17)

The system dynamics for (v, ω) are implicitly written as:
[
M +m ml cos θ
ml cos θ I +ml2

] [
v̇

ω̇

]
=

[
−bv +mlω2 sin θ + F

−mgl sin θ

]
(3.18)

Therefore the discretized dynamics are given as a system of equations, a ∗ x = b:
1 0 0 0

m+M 0 0 Mlcos(x3)
0 0 1 0
0 mlcos(x3) 0 I +Ml2

 ∗

x

ẋ

θ

θ̇

 =


x2

−dx2 +mlx2
4sin(x3) + u

x4

−mglsin(x3)

 (3.19)

3.2.2 Data Generation

Cart Pole data was generated using a Nonlinear programming (NLP) with the multiple
shooting method. Using an NLP to solve for trajectories, given random initial states, allows
us to create feasible control trajectories to reach the desired final state. The following Dy-
namics and values for variables were used.

M = 0.5
m = 0.2
l = 0.3
I = 0.006
d = 0.1
g = 9.81
The NLP control problem is defined as the following:

min
∫ T

t=0
F 2(t) dt

s.t

ẋ = f(x, u)

|F (t)| ≤ ubound

|X1| ≤ 1

x(0) = [x1(0), 0, x3(0), 0]

x(T ) = [x1(T ), 0, π, 0]

(3.20)
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Where for this specific experiment the setting were T = 5, ubound = 2, x1(0) ∈ [−1, 1],
x1(T ) ∈ [−1, 1], and x3(0) ∈ [−0.125π, 0.125π]. Algorithm 2 defines the process for gener-
ating the dataset.

Algorithm 2 Cart Pole Data Generation
1: Define time horizon t, number of control intervals N
2: Requre dynamics from 3.19
3: Solve the NLP stated in 3.20
4: Extract optimal values for x and u

3.3 Oil & Gas transport Pipeline

Pipelines play a vital role in the transportation of various resources such as clean water,
natural gas, and liquid hydrocarbons across long distances, ensuring safe and efficient de-
livery [19]. In the context of oil and gas pipelines, pump stations equipped with variable
frequency drives (VFDs) are crucial in maintaining the desired flow rate in accordance
with the given schedule. Operators adjust the pumps to meet the demand, and machine
learning approaches can be employed to analyze large datasets of pipeline historians, iden-
tifying trends and detecting anomalies. Consequently, automated real-time solutions can be
developed to optimize overall costs and minimize carbon footprint [18].

We are working with an energy company’s pipeline and pumping facilities in North-
eastern Alberta, which is designed to support its Oil Sands Plant. The 16-inch Oil Sands
Pipeline (OSPL) transports high-quality crude products and diesel fuel to markets in or
near Edmonton, Alberta, connecting to other pipelines and markets across Canada and the
U.S. The system’s maximum operating capacity is estimated to be 1060 m3/hr when fully
powered, sufficient to handle the additional product delivered from the Oil Sands Plant.
The seven pump stations along the OSPL pipeline, named HS, WR, GL, NB, and SF, are
capable of transporting natural gas liquids (NGL) extracted by the Olefins Project to the
Fractionation Facility [20].

Our approach showcases the application of deep learning techniques for system identi-
fication and optimization of the pipeline operations. By learning the underlying dynamics
of the system, we can provide optimal solutions for meeting the schedule while minimiz-
ing power consumption. This not only results in cost savings for the company but also
contributes to reducing the environmental impact of the operation. The proposed method
offers an innovative approach to managing complex pipeline systems, demonstrating the po-
tential benefits of integrating machine learning and control theory in real-world applications
[7].
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Figure 3.1: Structure of gas pipeline stations and corresponding VFD’s

3.3.1 Problem Statement

The operation and management of pipeline systems, particularly those involving the trans-
portation of valuable resources such as natural gas and liquid hydrocarbons, pose a unique
set of challenges for operators. In the context of the generic energy company’s pipeline and
pumping facilities in Northeastern Alberta, operators must deal with several key aspects of
the system to ensure efficient and cost-effective transportation.

The operators are responsible for managing the flow rates across the pipeline in accor-
dance with the given schedule. This schedule consists of specific flow rate targets that must
be met at various points along the pipeline. The operators receive the schedule and other
relevant information, such as the pressure, temperature, and viscosity of the transported
fluids, as well as the environmental conditions and external factors that may impact the
pipeline operation. The operators must then adjust the pumps at each pump station, which
are equipped with variable frequency drives (VFDs), to achieve the desired flow rates.

The challenges faced by the operators in managing the pipeline system stem from the
complexity and nonlinearity of the underlying dynamics, as well as the uncertainty and
variability of the external factors. Furthermore, the large-scale nature of the pipeline systems
often makes it difficult for the operators to make real-time adjustments and respond quickly
to the changing conditions. The lack of precise, real-time information and the need for
manual intervention increase the risk of suboptimal decisions, resulting in increased costs
and environmental impacts.

In light of these challenges, there is a clear need for innovative approaches that can
facilitate the management of pipeline systems by providing the operators with accurate, real-
time information and automated decision-making tools. Such approaches should be capable
of handling the complex dynamics of the pipeline systems, accounting for the uncertainty
and variability of the external factors, and optimizing the overall operation in terms of cost,
efficiency, and environmental impact.

3.3.2 Data from Historian

Historian and Supervisory Control and Data Acquisition (SCADA) systems are essential
tools for monitoring, controlling, and managing industrial processes and infrastructure.
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SCADA systems are responsible for real-time data collection, process control, and commu-
nication between different devices and equipment, while historian systems store and manage
the historical data generated by SCADA systems. The data collected by these systems is
typically time-stamped and can be used for trend analysis, performance evaluation, and
decision-making.

The data format in historian and SCADA systems often consists of a time series, with
data recorded at regular intervals. In the case of the pipeline system, data is collected
every 1 second. This high-resolution data allows for accurate monitoring and analysis of
the system’s behavior, enabling operators to make informed decisions and optimize the
pipeline’s operation.

The state and control variables for the pipeline system can be represented in the following
table:

Table 3.1: State and control variables for the pipeline system
State Variables Control Variables
Flowrate HS Frequency

WR Frequency
GL Frequency
NB Frequency
SF Frequency

The state variable in this pipeline system is the flowrate, which represents the volume
of fluid transported through the pipeline per unit of time. The control variables are the
frequencies of the pumps at each pump station, namely HS, WR, GL, NB, and SF. By
adjusting these frequencies, the operators can control the flowrate and meet the desired
schedule while optimizing the system’s performance in terms of energy consumption and
environmental impact.

3.4 Network Architecture

The method for formulating a general representation of the Koopman Operator is presented
in [15]. This formulation is of a general Neural Network architecture that enables learning
of a nonlinear uncontrolled dynamical system. Here, we expand upon the ideas presented
in [15] to propose a Neural Network architecture that is amenable to globally linearizing a
controlled system.

3.4.1 Latent Space Linear System Parametrization

Jordan Canonical Form:
Instead of working with an arbitrary matrix A to describe the system dynamics, we

employ the Jordan canonical form, which can be obtained from any matrix A through a
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similarity transform. The Jordan canonical form, denoted here as K(λ), is the matrix A,
formed as a block diagonal matrix composed of Jordan blocks Ji. The block diagonal matrix
K(λ) is defined as:

K(λ) =


J1 0 . . . 0
0 J2 . . . 0
...

... . . . ...
0 0 . . . Jk

 , (3.21)

where each Jordan block Ji either corresponds to a real eigenvalue or a pair of complex
conjugate eigenvalues. For real eigenvalues, λi, Jordan blocks will be of the form:

Ji =


λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
... . . . ...

0 0 0 . . . λi

 . (3.22)

while complex conjugate eigenvalues, B(µ, ω), and I2, the identity matrix of size 2x2, will
be of the form:



Bi(µ, ω) I2 · . . . 0
0 Bi(µ, ω) I2 . . . 0
· · · . . . ·
· · · Bi(µ, ω) I2

0 · · . . . Bi(µ, ω)


(3.23)

To account for this change, we adjust the Jordan block form [8] for complex eigenvalues as
follows:

B (µ, ω) = µ

[
cos(ω) sin(ω)
−sin(ω) cos(ω)

]
(3.24)

This representation is particularly powerful for systems analysis because it allows us to
decouple the system into independent modes, each of which can be analyzed and controlled
separately. In the context of our work, leveraging the Jordan canonical form simplifies the
design of the Neural Network by providing a linear structure in the latent space that is
reflective of the intrinsic dynamical properties of the system.

Full Encoder-Decoder Architecture

This architecture is a direct extension to the one presented in [15], and incorporates the
control input of the dynamical system.
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Figure 3.2: Proposed network architecture to identify controlled dynamical systems

Initially, the original state xt is lifted to its extended state as yt = φ(xt). yt is then
propagated through time by the K(λ) matrix, which is an equivalent representation of A
matrix in (3.25) giving us Ayt. To achieve the true extended state evolved through time, yt+1,
we solve for it with the addition of the output from the B matrix: yt+1 = K(λ)yt + But.
The matrix represented by B is a single-layer network that has no activation function.
The original state xt+1 is recovered through the decoder: xt+1 = ϕ(yt+1). This modified
architecture allows us to have a full closed-loop solution for identifying linear models of
controlled dynamical systems.
Training Procedure:
Xt, the original state is lifted to yt = φ(xt), the extended state. yt is fed through the learnt
linear Dynamics A and B

yt+1 = Ayt +But (3.25)

To achieve the true extended state evolved through time, yt+1. The original state xt+1 is
recovered through the decoder: xt+1 = ϕ(yt+1).

Hyperparameters:

l : Layers in network l ∈ R
w : Weight matrices
r : Number of real eigenvalues in lifted space r ∈ R
im : Number of imaginary eigenvalues in lifted space im ∈ R
Sp : Number of horizon shifts of state.
T : Number of horizon shifts middle of lifted state.
Tr : Trajectory length
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Components:

Data (X): Training Data of total length n containing both state, S, and corresponding
control sequences, U , for all trajectories. S ∈ Rn×s, U ∈ Rn×u.

Encoder (φ): Dimensions of Encoder weights in each of m layers, li, are defined by s, w,
and k. l1 ∈ Rs×w1 , l2 ∈ Rw1×w2 , . . . , lm ∈ Rwm−1×k

Decoder (ϕ): Dimensions of Decoder weights in each of m layers, li, are defined by s, w,
and k. l1 ∈ Rk×w1 , l2 ∈ Rw1×w2 , . . . , lm ∈ Rwm−1×s

Matrix A (A): A matrix of lifted linear space dynamics. A ∈ Rk×k. A is represented as
a block diagonal matrix given r, im. as defined in section blank.

Matrix B (B): B matrix of lifted linear space dynamics. B ∈ Rk×u

Following the extensions proposed to the framework by Lusch et al. [15], our loss func-
tions integrate control actions into the learning process. The total loss function is a weighted
sum of individual loss components, as shown in Equation 3.26.

• Reconstruction Loss (Lrecon): This loss term, defined in Equation 3.27, measures
the accuracy of the Koopman autoencoder in reconstructing the state x. It ensures
the mapping φ and its inverse ϕ are consistent, meaning the original state can be
accurately reconstructed from its encoded representation.

• Prediction Loss (Lpred): Described by Equation 3.28, this loss assesses the predictive
capability of the Koopman operator. Over a prediction horizon of Sp, it compares the
actual future states xm+1 with those predicted by applying the learned dynamics,
which involves both the Koopman matrix K and control inputs u through the input
matrix B.

• Linearity Loss (Llin): Presented in Equation 3.29, this term encourages the learned
dynamics to be linear in the transformed space. It aims to minimize the difference
between the Koopman operator applied iteratively to the initial encoded state and
the encoded state at each subsequent time step.

The architecture facilitates closed-loop identification of controlled dynamical systems by
learning to map the current state xt to an extended state yt using the lifting function
φ, and then propagating this state through time using the learned dynamics matrix A and
control input matrix B. The updated state yt+1 is a result of the Koopman operator applied
to yt and adjusted by the control inputs through B. The next original state xt+1 is then
recovered by decoding yt+1 through ϕ.

The total loss is a composite measure that takes into account the reconstruction quality,
the accuracy of predictions, the linearity of the learned dynamics, and the influence of
control inputs. The hyperparameters α1, α2, and α3 allow for balancing the importance of
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these different aspects during training. Moreover, the term ∥W∥22 in Equation 3.26 acts as a
regularizer for the weights of the neural network to mitigate overfitting by penalizing large
weights. The α setting for our testing were set at: α1 = 1.0, α2 = 0, and α3 = 0.00001

Ltotal = α1(Lrecon + Lpred) + Llin + α2Linf + α3∥W∥22 (3.26)

Lrecon = ∥ (x1 − ϕ(φ(x1))) ∥2 (3.27)

Lpred = 1
Sp

Sp∑
m=1
∥xm+1 − ϕ(Kmφ(x1) +

m∑
n=1

Kn−1Bum−n+1)∥2 (3.28)

Llin = 1
T − 1

T −1∑
m=1
∥φ(xm+1)− (Kmφ(x1) +

m∑
n=1

Kn−1Bum−n+1)∥2 (3.29)

Each term in the total loss function plays a crucial role in ensuring the model not
only accurately represents the system dynamics but also responds appropriately to control
inputs.

3.4.2 Training Procedure for System Identification Network

The algorithm for the system identification (System ID) network training is designed to
learn a representation of the dynamical system which accounts for control inputs. The
procedure iteratively updates the parameters of the network to minimize the reconstruction
error and capture the dynamics accurately. The steps are as follows:

1. Initialization: The Encoder (φ), and the decoder (ϕ), and the matrices A and B

are initialized with their respective weights. The dataset X is composed of state and
control input pairs (xt, ut) and their subsequent states xt+1.

2. Data Preparation: The training data xtrain is formed from the trajectories in the
dataset X and is batched according to a specified batch size.

3. Training Loop: The network enters a training loop which continues until the recon-
struction error is below a threshold ϵ.

• For the first 2 Epochs of training, the network parameters are updated with
respect to only the reconstruction loss (Lrecon). This encourages the network to
learn a faithful representation of the current state without considering future
predictions or influence of control inputs.

• After 2 Epochs have completed, the parameters are updated with respect to the
total loss (Ltotal) which incorporates the predictive capability with control input
influence Lpred, linearity enforcement Llin, along with the reconstruction error
Lrecon.
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• At each step, the total error, Ltotal, is computed to monitor the training progress
and serve as a stopping criterion if error is above a pre-set threshold.

Overall, the algorithm provides a structured method for the network to learn not just to
reconstruct the current state, but also to predict the evolution of the system’s state given
control inputs, thus enabling it to model controlled dynamical systems effectively.

Algorithm 3 System ID network Training
Require: l, w, r, im, Sp, T, Traj

1: φ← wφ

2: ϕ← wϕ

3: A← wA

4: B ← wB

5: X ← Data = {(xt, ut), xt+1}nt=1
6: xtrain ← X formed by Tr, Sp and T
7: while Error ≤ ϵ do
8: if epoch ≤ 2 then
9: wφ, wϕ, A,B ← Updated wφ, wϕ, A,B w.r.t Lrecon

10: else if epoch ≥ 2 then
11: φ, ϕ,A,B ← Updated wφ, wϕ, A,B w.r.t Ltotal
12: Error ← Ltotal
13: end if
14: if Error ≥ ϵ then
15: Exit
16: end if
17: end while

3.5 Control

Following the detailed exposition of the training process for the Koopman operator neural
network, we transition to the practical application of the trained network in control tasks.
The network, now equipped to approximate the complex dynamics of the system within
a linear framework, forms the backbone of the control algorithm we are about to discuss.
This section elucidates the steps involved in deploying the trained neural network to achieve
effective control over the system’s trajectory. The algorithm leverages the Koopman oper-
ator’s linear representation of the nonlinear dynamics, enabling us to apply linear control
techniques to inherently nonlinear systems. We provide a comprehensive walkthrough of
the algorithm, ensuring a clear understanding of its execution and application in real-world
control scenarios. Both 4D extended Dubins car and Cart Pole are controlled using this
control methodology.

In algorithm 4, the procedure for controlling dynamical systems through a learned linear
approximation of their behavior. The approach leverages the pre-trained neural network that
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models the system’s dynamics via the Koopman operator, enabling the use of linear control
techniques.

• Initialization: We begin by loading a trained neural network denoted as N . This
network has encoded within it the Koopman operator representation of the system’s
dynamics, allowing us to abstract the nonlinear system as a linear one in a higher-
dimensional space.

• The mappings φ, A, and B are then extracted from N . Here, φ represents the ob-
servable function, which maps the state x into the Koopman space. Matrices A and B
define the linear dynamics in the Koopman space, corresponding to the state transition
and control matrices, respectively.

• The Trajectory to be tracked is defined as Track, with the initial state x0 set to the
first element of this trajectory.

• The algorithm enters a loop that iterates over the length of the trajectory. For each
iteration:

– The reference output yref is determined for the current time step, extending over
the control horizon.

– The initial output y0 in the Koopman space is obtained by applying the observ-
able function φ to the current state x0.

– A Quadratic Program (QP) is solved to determine the control input u that
minimizes the cost function, defined in terms of the reference trajectory, the
current state, and the linear dynamics.

– The true dynamics function f is then used to update the state xi based on the
current state x0 and the control input u. This step accounts for the real-world
application where the model’s predictions are used to inform control actions.

– The state variable x0 is updated to the new state xi, and the process repeats.

• The loop continues until the end of the trajectory is reached, thereby ensuring the
system tracks the desired path as closely as possible.

This algorithm effectively combines the predictive power of neural networks with the
efficiency of linear control methods. By doing so, it provides a robust approach to control
complex, nonlinear systems in a computationally tractable manner.

NMPC Control For 4D Extended Dubins Car Model

Having delineated the linear control approach using the Koopman operator neural network,
we will compare the performance with a Nonlinear Model Predictive Control (NMPC) of
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Algorithm 4 Linear controller using Koopman Neural Network
1: Initialize: Load Trained Network: N
2: φ← φ from N
3: A← A from N
4: B ← B from N
5: Track ← Trajectory to be tracked
6: x0 ← Track(0)
7: for i← 1 to Trajectory length do
8: yref ← Track[i : i+ horizon]
9: y0 ← φ(x0)

10: u←Solve QP(y0, yref , A,B)
11: xi ← f(x0, u) ▷ f(x, u) is the true dynamics
12: x0 ← xi

13: end for

4D extended Dubins car. The objective is to highlight the differences in performance and
efficiency between our proposed linear MPC and a more traditional NMPC approach, which
utilizes the known system dynamics.

The Nonlinear Model Predictive Control (NMPC), described in algorithm 5 for the 4D
extended Dubins car is designed to compute control inputs that minimize the deviation
from a desired trajectory over a given prediction horizon.

The algorithm begins with the definition of the target trajectory, which the 4D extended
Dubins car aims to follow, and a prediction horizon, which sets the timeframe for the
trajectory optimization. The state x and control u sequences are initialized to prepare
for the optimization process, which seeks to minimize a predefined cost function C that
quantifies the difference between the predicted states and the target trajectory points.

An optimization problem is then formulated, wherein the cost function is subjected to
the dynamics of the 4D extended Dubins car, represented by the function f . This function
describes how the state of the car evolves over time in response to applied control inputs.
The integral within the dynamic constraints captures the continuous nature of the system’s
evolution between discrete time points.

A numerical optimization solver, such as the Interior Point OPTimizer (IPOPT), is
utilized to solve this problem. The solver iteratively adjusts the control sequence to find
the minimum cost, respecting the dynamics and any constraints imposed on the states and
controls.

Once the optimal control sequence is computed, it is applied to the 4D extended Dubins
car model incrementally. At each step, the state of the car is updated using the dynamic
function f , which ensures that the car’s motion adheres to its physical capabilities and the
applied controls. This process repeats for the length of the prediction horizon, continually
adjusting the car’s trajectory towards the target.
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By iteratively solving this optimization problem and applying the resulting controls, the
NMPC algorithm steers the 4D extended Dubins car along a path that closely follows the
desired trajectory, effectively handling the system’s nonlinear characteristics.

Algorithm 5 Nonlinear Model Predictive Control for 4D extended Dubins car
1: Given: A 4D extended Dubins car model, target trajectory Tr, and prediction horizon
N .

2: Objective: Minimize the cost function C tracking the trajectory.
3: Initialize state X and control u trajectories with dimensionality according to N .
4: Initialize the dynamics function f representing the 4D extended Dubins car.
5: Optimization Problem: Formulate the NMPC as
6:

min
u
C(x, u) =

N∑
k=1
∥Xk − Trajk∥2

subject to
7:

xk+1 = xk +
∫ tk+1

tk

f(xk, uk) dt, k = 1, . . . , N − 1

8: with appropriate initial conditions and state/control constraints.
9: Solve the optimization problem using a solver (e.g., IPOPT).

10: for i← 1 to N do
11: Apply the optimal control Ui to the 4D extended Dubins car car model.
12: Update the state Xi using the dynamics function f .
13: end for

3.6 Limitations and advantages of network design

3.6.1 Limitations

The method discussed presents a viable methodology for system identification of controlled
dynamical systems. However, it is crucial to acknowledge its inherent limitations to fully
understand its applicability and scope.

One of the primary limitations of this approach arises from the fact that state constraints
are not directly accommodated by the lifted Koopman representation[5, 12]. The lifting
process translates the nonlinear dynamics into a higher-dimensional linear space, which
simplifies the computation but does not inherently account for constraints in the original
state space[16]. For example, if we consider state constraints as they may be placed in
equation 2.6 as xk ∈ X , k = 0, . . . , N − 1, One state constraint can be given as X1 ≤ 0,
it is not straightforward to translate these into the lifted space as φ(X1)) ≤ 0, since φ(X1)
does not necessarily preserve the structure of X1. This can be expressed as:

ϕ(X1) ≰ 0⇒ X1 ≰ 0 ∀x ∈ φ(x), (3.30)
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where (x) is in the original state space, and is insinuated by equation 2.4.

3.6.2 Benefits

Despite the aforementioned limitation, the Koopman-based system identification approach
yields several benefits that make it a robust model, especially when integrated with rein-
forcement learning (RL) frameworks.

• RL Model Training: The system identification portion of this method can serve
as an effective model for RL to train on[3], allowing RL algorithms to learn optimal
control policies by leveraging the predictive accuracy of the linear Koopman model.

• No Need for Exploration: Unlike traditional RL which requires extensive explo-
ration of the state space, the Koopman method[21] can identify system dynamics
without the need for such exploration. This is due to the method’s ability to lift the
system into a space where linear dynamics suffice to describe the evolution of states
over time.

• Convexity and Efficiency: The linearity of the Koopman model renders the prob-
lem convex[14], making it computationally efficient as convex problems have globally
optimal solutions that can be found efficiently[2]. This efficiency is a stark contrast
to solving non-linear models, which can be computationally intensive and may only
guarantee local optima.

• Analytical Clarity: Linear models facilitate easier analysis and interpretation of
the system’s characteristics[1]. For instance, the eigenvalues of the learned dynamics
matrix A provide insight into the system’s stability, a property that is much more
challenging to assess in non-linear systems[9].

λ(A)⇒
{

stable if |λi| < 1∀i
unstable otherwise

(3.31)

In conclusion, while the Koopman-based approach to system identification has its limi-
tations, particularly with state constraints, its benefits in terms of computational efficiency,
ease of analysis make it a powerful tool for modeling and controlling dynamical systems.
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Chapter 4

Results

Research Question and Objectives

This research seeks to answer a crucial question in the realm of control systems: Can non-
linear systems be accurately modeled as linear systems, such that they can be effectively
controlled using a linear Model Predictive Control (MPC) framework? The primary objec-
tives of this study are twofold. First, to train neural network models on various systems,
notably the 4D extended Dubins car, cart pole, and a gas pipeline, ensuring that these mod-
els can replicate the dynamics of the actual systems. Second, to validate the performance
of these trained models under a linear MPC loop formulated as a Quadratic Programming
(QP) problem.

Methodology Overview

To address the research question and achieve our objectives, the following methodology was
adopted:

For both 4D extended Dubins car & Cart Pole Systems, true dynamics are available. We
began by training multiple neural network models on these systems. Post training, control
was performed via a linear MPC loop, formulated as a QP defined algorithm 4, and were
tested for their capability to track a predetermined trajectory or target respectively. This
served not only as a validation of the neural network model’s accuracy but also showcased
the viability of our overarching approach.

Gas Pipeline System

Unlike the 4D extended Dubins car and Cart Pole systems, the true dynamics for the gas
pipeline are not available. However, given its real-world significance and complexity, it served
as an essential testbed for our methodology. Neural network models were trained on this
system, and their performance was evaluated based on the training and validation errors.
Drawing parallels from the success observed in the 4D extended Dubins car and Cart Pole
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Figure 4.1: Trajectory tracked by controller using Koopman representation of 4D extended
Dubins car

systems, this segment provides a projection of the real-world applicability and potential
benefits of the proposed methodology.

With the methodologies set and systems analyzed, the subsequent sections will delve
into the detailed results obtained from each system, providing insights, comparisons, and
implications of the findings.

4.1 4D Extended Dubins Car

4.1.1 Network settings and MPC control results

The comparison between the desired trajectory and the trajectory resulted from the ap-
plication of our proposed control method is illustrated in 4.1 and 4.2. Both figures show
trajectories that are tracked by our proposed methodologies, however 4.1 was enlarged to
showcase the precision of the tracking. The ’Original Trajectory’ represents the target tra-
jectory, while the "Predicted Trajectory" delineates the path computed by the linear MPC
using the trained neural network model. The x and y axis describes the x and y position of
4D extended Dubins car respectively. The proposed control methodology exhibits promising
performance by tracking the target trajectory with high fidelity. The plots visually demon-
strate the efficacy of the control strategy, with the controlled tracking (in blue) closely
following the target trajectory (in red) across different state variables like position (x, y),
steering angle (theta), and velocity. The close adherence of the two paths underscores the
model’s capability in capturing the nonlinear dynamics of the 4D extended Dubins car.
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Figure 4.2: Other test Trajectories tracked by controller using Koopman representation of
4D extended Dubins car
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Figure 4.3: State variables tracked for trajectory shown in Figure 3.2

Further examination of individual state tracked for the control performed in Figure 4.1
presents a granular view of the controller’s performance. The specific states for the tracked
trajectory are shown in Figure 4.3. The graphs showcase the different states being tracked
over time in the x-axis, and their respective value in the y-axis, revealing the nuanced
behavior of each state and offering insights into the controller’s precision and responsiveness
to track each of the specific states.

The neural network was trained with the following set of parameters, listed in Table 4.1.
The architecture was defined to accommodate the complexity of the system dynamics.

The error as described in equation 3.26 achieved during training was 8.70 × 10−5, in-
dicating the model’s ability to learn the system dynamics accurately. The Mean Absolute
Error (MAE) test error, computed as the average discrepancy across the tracked states and
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Table 4.1: Neural network training parameters for 4D extended Dubins car.
Parameter Value
Sp: Number of shifts 7
T : Number of shifts middle 7
r: Number of real 10
im: Number of complex pairs 10

the entire trajectory length, was 0.001323. This demonstrates a satisfactory generalization
of the network to unseen data.

The results obtained suggest that the linearization approach for non-linear systems,
when combined with neural network models, can be a robust method for controlling complex
dynamics. The low error values, both in training and testing, coupled with the precise
trajectory tracking exhibited by the 4D extended Dubins car, bolster the hypothesis that
linear MPC frameworks can indeed manage non-linear systems effectively.

4.1.2 Linear controller with trained koopman network vs. NMPC

In the results presented, we observe a close parallel in the trajectory tracking performance
between the Nonlinear Model Predictive Control (NMPC), shown in Figure 4.4 and our
proposed linear control approach using the Koopman operator neural network shown in
Figure 4.1, for the same target trajectory. Despite the NMPC’s advantage of being furnished
with the system’s true dynamics, our linear controller demonstrates a remarkable ability
to track the desired trajectory with comparable precision. The trajectories depicted in the
attached figures reveal that the linear controller not only successfully approximates the
nonlinear behavior of the system but also maintains a trajectory that is tightly aligned with
that of the NMPC. This congruence is especially noteworthy considering the linear controller
operates on a learned representation of the system, essentially a high-dimensional linear
abstraction, rather than direct nonlinear modeling. The outcome underlines the efficacy of
the Koopman operator framework in synthesizing complex dynamical behaviors and poses
a compelling argument for its use as a viable alternative to traditional nonlinear control
strategies in certain applications.

4.1.3 Linear controller with linear regression and polynomial basis func-
tions

A baseline approach to modeling the dynamics of a 4D extended Dubins car is via polynomial
basis functions is proposed. The methodology entails generating an enhanced dataset that
encapsulates the nonlinear dynamics of the system through a polynomial transformations
of the state variables.
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Figure 4.4: NMPC control of 4D extended Dubins car model with true dynamics given
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Dataset Generation

Given the state, variables of the Dubins car: x, y, θ, and v, polynomial basis functions up to
the third degree are constructed. Analogously to our methodology, these polynomial basis
functions effectively act as our lifting function φ. This results in a set of features, each a
polynomial combination of these state variables:

Original State Variables: x, y, θ, v

0th Degree: 1

1st Degree: x, y, θ, v

2nd Degree: x2, y2, θ2, v2, xy, xθ, xv, yθ, yv, θv

3rd Degree: x3, y3, θ3, v3, x2y, x2θ, x2v, xy2, . . .

(and other combinations up to the third degree) ∈ R20

These features form the new state, z ∈ R35, and are then used to train a linear regression
model to predict the subsequent state variables one time step, t+ 1, ahead. Relative to our
most successful implementation using our methodology, the lifted space y ∈ R20 is much
smaller relative to z ∈ R35.

Model Training

The model is trained using a linear regression algorithm without an intercept to ensure that
the zero state corresponds to zero control input. Given the enhanced state, z, and control
data, u, the model is trained to predict the subsequent state variables.

z = state data,

u = control data,

X =
[
z

u

] (4.1)

The linear regression model predicts the next state variables zt+1 based on the current
state and control data, X. The model is defined as:

zt+1 = W ·Xt (4.2)

The Mean Squared Error (MSE) loss function for training is defined as:

MSE = 1
N

N∑
t=1
∥zt+1 −W ·Xt∥2 (4.3)
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where:

• N is the number of data points.

• zt+1 is the actual next state.

• W is the weight matrix combining A and B.

• Xt is the combined state and control data at time t.

The objective of the training process is to minimize this MSE loss function, leading to the
determination of the optimal matrices A and B.

The error as described in equation 4.3 achieved during training was 0.101, which is very
high compared to the error calculated using our methodology: 8.70× 10−5. Validation error
was 0.124.

Given the state data z ∈ Rn, where n is 35 and the control data u ∈ Rp, where p is
2, the combined data matrix X and the learned weight matrix W from the regression are
represented as:

X =
[
z

u

]
, W =

[
A

B

]
(4.4)

Here, after training, the matrix W is partitioned into two matrices:

A ∈ Rn×n (corresponding to state data z),

B ∈ Rn×p (corresponding to control data u).

The matrices A and B are used for the optimal control of the system.

Control Loop and Results

Upon deploying the trained model within the control loop described in equation 2.7, unex-
pected behavior was observed. The controller’s outputs and the system’s states exhibited
rapid escalation. This outcome suggests potential issues in the model or control loop design,
which can be attributed to several factors such as model overfitting, numerical instability,
or discrepancies between the trained model’s assumptions and the actual system dynamics.

The red dots in Figure 4.5 represents the resulting states generated by the controller. The
system quicky becomes unstable and is not able to adhere to the trajectory to be tracked.
The learned model fails to capture the dynamics of the system such that it may be used in
a stable and robust manner under control. The divergence between the controller’s outputs
and the ideal trajectory underscores the shortcomings of a polynomial basis function based
approach to modelling a system to be used under control. This shows a need for learning
lifting functions for the Koopman operator using more robust methods.
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Figure 4.5: Comparison of Polynomial basis model controller outputs against the ideal
trajectory.

4.1.4 Finding the correct network parameters for MPC

During the course of evaluating the performance of various neural networks within a Model
Predictive Control (MPC) loop, several interesting insights emerged. The networks’ capabil-
ities were gauged based on their hyperparameter settings namely number of shifts, number
of shifts middle, and latent space size which define the prediction horizon in real and lifted
spaces, and the size of the lifted space, respectively.

The training phase results, depicted in Figure 4.6, illustrate a spectrum of training
errors across various hyperparameter configurations. A key observation here is that a lower
training error does not necessarily equate to superior performance during MPC testing.
This is underscored by two particular networks (highlighted in green in 4.7), which, despite
their differing training errors, both succeeded in satisfactorily tracking the target trajectory
under MPC. Of these, one network emerged as superior; however, it exhibited a higher
testing error in the MPC loop.

Furthermore, the hypothesis that networks trained with a longer prediction horizon
(number of shifts and number of shifts middle) would inherently yield better MPC perfor-
mance was not substantiated by the empirical evidence. This indicates that the ability to
predict further into the future does not automatically translate to more effective control
actions when integrated into the MPC framework.

A pivotal finding is that there seems to be an optimal region of hyperparameter config-
urations where the network not only learns effectively but also translates that learning into
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Figure 4.6: 3D plot of 4D extended Dubins car training runs showcasing Error vs. Hyper-
parameters.

successful trajectory tracking within the MPC. This sweet spot must be identified through
empirical testing, as it is not readily apparent through training error metrics alone.

These insights emphasize the complexity of designing neural networks for control tasks.
It is not sufficient to minimize training error; one must also consider the network’s capacity
to generalize to new situations, as encountered in the testing phase under MPC. This
may involve a trade-off between the accuracy of predictions and the robustness of control
performance.

4.2 Cart Pole

Two samples of the control tasks are shown below to validate the control methodology:

1. Bringing the pole to a vertical position (θ = 0) while keeping the cart at the origin
(x = 0), shown in Figure 4.9.

2. Bringing the pole to a vertical position (θ = 0) at a specified cart position (x = 1),
shown in Figure 4.8.

Both tasks begin with the system at rest, with initial conditions set to zero for all state
variables. The error as described in equation 3.26 achieved during training for the model
that was successful in performing control was 7.35× 10−3.
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Figure 4.7: 3D plot of 4D extended Dubins car Testing runs based of pass/fail criteria under
control

Figure 4.8 and Figure 4.9 illustrate the trajectories of the state variables during the
control tasks. The results demonstrate the system’s capability to reach and maintain the
specified target states under the guidance of the MPC with the trained models.

The trajectory plots show that for both tasks, the control objectives are met successfully.
In the first scenario, the cart remains stationary at the origin, while in the second, it moves
to and stabilizes at the desired position of x = 1. These outcomes versatility and reliability
of our control methodology in handling the nonlinear dynamics of the Cart Pole system.

The relavant parameters set are represented in Table 4.2.

Table 4.2: Neural network training parameters for 4D extended Dubins car.
Parameter Value
Sp: Num shifts 10
T : Num shifts middle 10
r: Num real 30
im: Num complex pairs 30

4.2.1 Finding the correct network parameters for MPC

In the preceding analysis of the 4D extended Dubins car, we observed the nuanced relation-
ship between training errors of neural networks and their subsequent performance under
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Figure 4.8: Trajectory tracked by controller using Koopman representation of Cart Pole to
x = 1

Figure 4.9: Trajectory tracked by controller using Koopman representation of Cart Pole to
x = 0
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Figure 4.10: 3D plot of Cart Pole training runs showcasing Error vs. Hyperparameters

Model Predictive Control (MPC). This section extends the investigation to the Cart Pole
system, to discern whether similar patterns emerge.

The Cart Pole results, consistent with our findings from the 4D extended Dubins car
analysis, reinforce the assertion that a low training error is not a definitive predictor of
efficacy in control tasks. And very large values for the hyperparameter also does not ensure
effective control. The singular network that succesfully controlled the system did so possibly
due to an alignment between its predictive capabilities and the dynamical intricacies of the
Cart Pole system under the MPC regime.

These experiments, along with the 4D extended Dubins car example, provide robust
evidence supporting the effectiveness of our MPC methodology in achieving accurate and
stable control across various systems.

4.3 Gas Transportation Pipeline

In the pursuit of robust control systems, leveraging what we understand from 4D extended
Dubins car and Cart Pole systems, we examine the error of a gas pipeline control system
to establish the efficacy of the methodology. The analysis yields error values from equation
3.26 for the gas pipeline system in the range of 0.009 to 0.027, varying with the selected
parameters. This translates approximately to a 98%-95% accuracy.
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Figure 4.11: 3D plot of Cart Pole Testing runs based of pass/fail criteria under control

The error margins observed for the gas pipeline system are within an acceptable range.
Notably, the granular variations in error with respect to shifts in parameter space suggest
that the model is responsive to tuning, which is indicative of a well-defined parameter
landscape.

The collected data substantiates our confidence in the chosen methodology’s potential to
precisely engage control mechanisms. As we progress toward the implementation phase, the
nuanced understanding of the error dynamics will serve as a compass for further refinement,
ultimately enhancing the control system’s efficacy.

4.3.1 Post-Training Validation and Hyperparameter Optimization

Integration with Plant Operations

The transition from a simulated environment to real-world application involves close col-
laboration with the plant operators. The advanced control system will interface with the
Supervisory Control and Data Acquisition (SCADA) system, assimilating real-time data
to make informed decisions. Operators will input the desired trajectory, aligning with the
delivery schedules, into the control system. The system will then generate recommended set
points for the various control parameters.

These recommendations are not to be autonomously enacted but rather serve as ad-
visements subject to operator validation. This step is critical to ensure that the suggested
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Figure 4.12: 3D plot of Gas Pipeline training runs showcasing Error vs. Hyperparameters

control actions align with the practical and safety considerations inherent in plant opera-
tions. The operators’ expertise and experience will play a pivotal role in the iterative process
of hyperparameter tuning, ensuring that the system’s performance is not only theoretically
sound but also pragmatically viable.

Iterative Improvement

Through an iterative process, the feedback from the plant operators will contribute to
the fine-tuning of the model’s hyperparameters. This hands-on approach allows for the
accommodation of the plant’s unique characteristics and operational contingencies. The
objective is to refine the system to a point where it exhibits high reliability and precision,
thus providing a reliable decision-support tool for the plant operators.

The ultimate goal of this phase is to harmonize the theoretical model with practical
operability, thereby enhancing the efficiency and safety of the gas pipeline system. This
phase is not the conclusion but rather an ongoing journey towards perpetual improvement
and adaptation to evolving operational demands.
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Chapter 5

Conclusion

This study has explored the intricacies of utilizing the concept of Koopman operator within
neural networks to perform system identification across diverse dynamical systems such as
4D extended Dubins cars, Cart Pole, and gas transportation pipelines systems. And perform
control tasks for 4D extended Dubins cars, and Cart Pole within Linear Model Predictive
Control frameworks . Our empirical investigation has provided valuable insights into the
efficacy of modelling non-linear systems as linear representation, and the limitations that
come when placed under control given the relationship between training errors of the trained
neural networks and their performance in control tasks.

5.0.1 Summary of Findings

Our results clearly demonstrate that while minimizing training error is important, it is not
the sole indicator of a successful control system. We’ve identified that a balance between
prediction accuracy and control robustness is crucial, particularly when generalizing to new
situations. The sweet spot of hyperparameter values was found to be critical for optimal
performance, necessitating empirical testing beyond theoretical predictions.

5.0.2 Significance of the Research

The findings underscore the complexity of designing neural networks that not only predict
accurately but also control effectively. This is exemplified by the successful application of
MPC in the Cart Pole control tasks, where the trained models facilitated the system to
reach and maintain specified target states reliably, And in 4D extended Dubins car, where
the controller effectively tracks the target trajectory just as well as a NMPC with the true
dynamics provided.

5.0.3 Implications for Control System Design

The research suggests that a nuanced understanding of the error dynamics and hyperpa-
rameter tuning is essential for the development of robust control systems. The observed
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consistency across different systems solidifies our methodology as a versatile approach in
the face of non-linear dynamics.

5.0.4 Future Work

Future Research

Further research could expand upon the integration of Koopman-based system identification
with reinforcement learning algorithms, potentially overcoming the limitations associated
with state constraints. Additionally, exploring the adaptability of our methodology to other
complex systems could unveil more universal applications.

Validation of Gas Pipeline

The next steps in order to test the viability of our method in a real-world application, we
will be validating the performance of the neural networks trained to solve the gas pipeline
control problem.

5.0.5 Final Thoughts

In conclusion, the combination of neural networks and MPC holds significant promise for the
advancement of control systems in various applications. By bringing the advantages of linear
systems in control applications and leveraging the learning capabilities of neural networks.
Our methodological approach, while not without its limitations, offers a compelling avenue
for efficient and effective system control, striking a balance between the depth of machine
learning and the precision of traditional control theory.
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Appendix A

Code

https://github.com/Sriraj-Meenavilli/Koopman_Control.git
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