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Abstract 

Drowsiness is a state of impaired awareness or decreased consciousness related to a 

desire or inclination to sleep and difficulty in remaining alert [1]. It is considered one of the 

leading causes of truck accidents in the mining industry, causing irrecoverable economic, 

health, and life losses. An intelligent prognosis system can help the mining industry save 

the operator's life and expensive mining instruments. Despite the significant progress in 

drowsiness detection in recent years, the reliable early prognosis of drowsiness is still 

challenging. Electrocardiogram (EEG) base drowsiness detection method is a reliable 

approach that may be implemented by applying wearable devices [3]. This research aims 

to discover accurate fractal dimension and entropy algorithms that can be applied to EEG 

signals to compute reliable and effective indices for early drowsiness prognosis. Our 

approach takes advantage of chaotic quantifiers, including fractal dimension and entropy 

indices for feature extraction from EEG signal during the alert to a drowsy state transition. 

To accomplish this, a thorough analysis and evaluation were undertaken to examine the 

sensitivity and robustness of chaotic indicators, which included five fraction dimension 

algorithms and four main entropy approaches in terms of their capacity to forecast early 

drowsiness. According to the extracted feature evaluation, Higuchi and Katz's fraction 

dimension, Fuzzy and Permutation entropy indices perform better in discriminating alert 

and drowsy states. In this study, we utilized the fusion of different indicators for the 

proposed classifier. We trained and tested an SVM classifier that provided high 

performance by selecting a compact set of features that offer the greatest differentiability 

between the alert and drowsy states. Experiment results reveal that based on four fractal 

dimensions and entropy fusion, our strategy improves classification performance in 

distinguishing between the alert and drowsy states, with an accuracy of 96.30%. 

Keywords: Chaos; Drowsiness; EEG, Nonlinear Analysis, Fractal Dimension, Entropy   
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation 

Mining is a US$700+ billion industry that uses large machinery to excavate and 

transport commodity materials [53]. Most mining industry equipment, such as mining haul 

trucks and excavators, require significant investments; for instance, mining trucks cost 

around US$4 million each, and shovels around US$10 million each [53]. Any human error 

could be a significant obstacle to companies' profitability that utilizes such machinery as 

they cause unexpected equipment downtime and losses. Humans operate most mining 

equipment, and their monotonous and repetitive tasks lead the operators to fall asleep. In 

open-pit mines, drowsiness-related accidents alone account for about 65% of truck driving 

accidents [79]. The company's assets' total loss is around US$22.6 billion, and operator 

lives are not replaceable [78, 79]. The lack of real-time drowsiness monitoring and 

prognosis in the mining industry can cause irrecoverable losses. If drivers and industrial 

operators are warned in time, about 90% of drowsiness-related accidents may be avoided 

[79]. Hence, an intelligent drowsiness prognosis system is vital in the mining industry to 

save the operator's life and expensive mining instruments. 

Current research on drowsiness detection can be grouped into three main 

categories: vehicle-based, behavioural-based, and physiological-based measurements. 

Behaviour-based and vehicle-based drowsiness detection methods are unreliable and 

lose their effectiveness outside laboratory settings due to environmental circumstances, 

road geometry, and driving conditions [3]. Meanwhile, they detect drowsiness when the 

driver starts to sleep, which is often too late to prevent an accident, so they are not 

considered early drowsiness prognosis tools [7]. Physiological-based measurements use 

physiological parameters such as heart rate, respiration rate, blood pressure, and brain 

signals to detect drowsiness. The brain's electrical signals (electroencephalogram – EEG) 

strongly correlate with drowsiness and are considered reliable and precise drowsiness 

indicators [14]. Among the mentioned techniques, drowsiness prognosis using EEG signal 

is a golden key. Current drowsiness detection methods utilize linear EEG analysis, 

whereas the brain signals are nonstationary and nonlinear [6]. Linear analysis of brain 
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signals in some applications, ignores EEG signals' nonlinear behaviour that leads to 

reliability and accuracy loss in drowsiness prediction [7]. 

In this thesis, we propose research to develop an accurate, wearable, and cost-

effective drowsiness forecasting system that utilizes nonlinear data processing using 

chaos theory for the mining industry. 

1.2. Current Drowsiness Detecting Techniques 

This section reviews drowsiness detection systems and discusses current 

research activities in this area. To date, a wide range of research and many methods have 

been proposed to detect drowsiness, which can be grouped into four categories: 

subjective, vehicle-based, behavioural-based, and physiological-based measurements.  

Further classification is summarized in Figure 1.1. The following section will review 

different methodologies, such as Karolinska Sleeping Scale (KSS), with their pros and 

cons.  

      
Figure: 1-1.  Drowsiness Detection classification and methodologies, subjective, 
vehicle-based, behavioural-based, and physiological-based measurements. 
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1.2.1. Subjective Measures 

Researchers determine the level of drowsiness by asking human subjects 

questions verbally or through questionaries. This assessment relies on the individual's 

experience to evaluate the drowsiness's intensity. Subjective measurement is entirely 

assessed by individual feedback to alert the person, so it is not considered a real-time 

assessment tool. The Karolinska Sleeping Scale (KSS) is the most used measure in 

subjective measurements [12]. 

1.2.2. Vehicle-based Measurements 

This method is based on the driving performance evaluation utilizing the steering 

wheel and acceleration pedal measurements. These measurements estimate the 

probability of drowsiness by measuring the deviation from lane position, movement of the 

steering wheel, and force on the acceleration pedal [13, 14]. In Steering Wheel Movement 

(SWM), an angle sensor is embedded, and the slight variations in wheel correction are 

evaluated to find drowsiness [15]. Standard Deviation of Lane Position (SDLP), or the 

amount that subjects swerve within their driving lane, employs an external camera to track 

the vehicle swerving from the lanes to assess the driver's drowsiness [18]. In Vehicle-

based technology, the path's position may be affected by environmental circumstances 

and road geometry, which could consequently cause errors in the SWM and SDLP 

detection software. Furthermore, SWM and SDLP usually happen at the late drowsiness 

stage when it is too late to avoid an accident. These technologies are unreliable and lose 

their effectiveness in a real environment [19]. 

1.2.3. Behaviour-based Measurements 

The behaviour-based measurement depends on the driver's concentration level 

during driving. The first sign of drowsiness is associated with reduced eye blinking and 

rapid lateral eye movements [2]. This measurement generally is based on the driver's 

abnormal behaviours, such as eye blinking duration and frequency, yawning, facial 

expression, and head position [22, 23, 24]. Behaviour monitoring utilizes video cameras 

and image processing sensors to detect the driver's abnormal behaviours. Environment 

and driving conditions can affect optical measurements and image processing, so they 

are not considered reliable [20]. The studies show that using glasses during driving or 
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changing the intensity of light inside or outside the vehicle may dramatically increase the 

number of false alarms in this method [21]. 

1.2.4. Physiological-based Measurements 

The earlier described drowsiness detection methods have an essential drawback, 

limiting their usage in practice. All the mentioned techniques can detect drowsiness when 

the driver starts to sleep, which is often too late to prevent an accident. As a result, they 

are not considered as early drowsiness prognosis tools. In drowsiness prediction, the time 

to alert the driver is vital. 

The first sign of drowsiness and noticeable alternation appears in the physiological 

signals like heart rate, respiration rate, blood pressure, and brain signals [25]. Several 

types of research have been done on electrocardiogram (ECG), electromyogram (EMG), 

electroencephalogram (EEG) and electrooculogram (EOG) for drowsiness detection [18]. 

The most noticeable physiological alterations occur in the brain during drowsiness, and 

EEG signals strongly correlate with drowsiness [11]. EEG signals are considered a reliable 

and precise drowsiness indicator [11, 25]. Two frequency components of the 

Electroencephalography signal (Delta and Theta components) increase significantly [25], 

while heart rate [26], while respiratory rate [27], and blood oxygen concentration [29] 

decrease in drowsy drivers. Although the other physiological signal-based methods are 

reliable, the EEG is one of the most predictive and consistent techniques for early 

drowsiness detection [19]. 

1.3. Comparison of Current Techniques 

In Vehicle-based technology, the position of the path may be affected by 

environmental conditions and road geometry, which could lead to errors. Behaviour-based 

drowsiness detection however, is hard to develop robust computer vision algorithms to 

detect faces and eyes with different colours and weather and lighting conditions [18]. Due 

to the aforementioned flaws in vehicle and behavior-based techniques, they are 

considered unreliable for drowsiness detection. Furthermore, they usually detect 

drowsiness at the late stage when it is too late to avoid an accident. These two methods 

do not involve drivers in the process; therefore, they are less intrusive. The physiological 

approach for drowsiness detection is entirely independent of environmental condition 
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changes. One of the problems with this method is collecting biological data, e.g., EEG 

signals from the drivers, which may not always be feasible. EEG signals are the primary 

means for the drowsiness level's prognosis, as mentioned in the previous sections. This 

technique was not feasible for drowsiness detection as it required wet sensors and wires 

to collect and transfer brain signals. New EEG technology advancements, including dry 

sensors and wireless technologies like Bluetooth, make drowsiness detection more 

feasible and affordable during real-world tasks. Although several EEG-based techniques 

have been proposed for drowsiness detection, several improvements must still be 

considered and accepted in practice. In the proposed work, with the emergence of dry 

EEG sensors for detecting brain signals and Bluetooth technology for transferring the EEG 

data wirelessly, the intention is to develop a sensory system for drowsiness detection. In 

comparison, EEG-based detection techniques are the most reliable methods for the 

prognosis of drowsiness nowadays [11, 25]. 

1.4.  Brain Anatomy and Electroencephalography (EEG) 

The brain is divided into three main parts: cerebrum, cerebellum, and brainstem, 

as illustrated in Figure 1.2 [54]. 

 

Figure 1-2. Brain Anatomies  

The cerebrum is the most substantial and vital portion of the human brain, primarily 

associated with thoughts, movements, emotions, and motor functions. The cerebrum has 

two hemispheres: right and left. Each hemisphere is sub-structured into four lobes: frontal, 

parietal, occipital, and temporal [6]. The frontal lobe handles personality, emotions, 

problem-solving, motor development, reasoning, planning, parts of speech, and 

movement. The parietal lobe manages sensation (e.g., pain, touch), sensory 
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comprehension, recognition, the perception of stimuli, orientation, and movement. The 

occipital lobe controls visual processing, and the temporal lobe deals with identifying 

auditory stimuli, speech, perception, and memory. The cerebellum is situated at the head’s 

lower back and is responsible for motor control, sensory perception, and coordination. The 

auto-brain functions, including breathing, consciousness, movements of the eyes and 

mouth, and the relaying of sensory messages (pain, heat, noise, etc.), heartbeat, blood 

pressure, and hunger, are controlled by the brainstem that is located at the bottom of the 

brain and connects the cerebrum to the spinal cord [6]. 

The nerve cells in the brain are called neurons, and their electrochemical 

properties enable them to communicate with one another through electrical signals. 

Electrical activities, which arise from the human brain, are the signatures of neural cell 

activities and include important complex information about brain function [55]. The brain's 

electrical activity can be recorded using Electroencephalography (EEG) by placing 

electrodes on specific locations over the scalp. EEG signals are initiated by summating 

the synchronous electrical activity of thousands or millions of cortical neurons with similar 

spatial orientation and spread out to the scalp surface [8]. The EEG signal is broadly 

utilized to study brain functions. 

1.5. EEG Rhythms: 

 The signals are typically presented in the time domain; however, the frequency is 

considered one of the most critical measures for assessing clinical EEGs. Usually, the 

EEG signal amplitude in a healthy adult is between 1 to 100 μV, with a frequency range 

of 1 Hz to about 100 Hz — with an adequate frequency bandwidth of less than 50 Hz. [8]. 

The EEG is usually characterized by (1) rhythmic activity and (2) transients. EEG 

waveforms' rhythmic activities are subdivided into five bandwidths known as alpha, beta, 

theta, delta, and gamma in clinical practice [55]. 

Delta (0.5–4 Hz): This waveform is the highest amplitude and lowest in frequency 

and is seen in adults in slow-wave sleep, known as non-REM sleep (stage 3). This 

waveform originates in the central cerebrum and is most active in the right parietal lobe of 

healthy people. The delta frequency source is localized in the thalamus, which is essential 

in regulating sleep, wakefulness, and consciousness [7]. 
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Theta (4–8 Hz): Theta activity has a frequency range of 4–8 Hz. Theta frequencies 

increase with increasing emotional stress, mostly frustration or disappointment and 

occasional task difficulty [9]. Theta frequencies may be seen momentarily during normal 

wakefulness but become noticeable during drowsiness in adults [8]. Theta activity occurs 

in healthy infants and children, but high theta activity in awake adults may signal abnormal 

and pathological conditions [8]. Theta can be recorded from all over the cortex. 

Alpha (8–13 Hz): The frequency range between 8 and 13 Hz with an approximate 

sinusoidal structure is known as alpha activities. Alpha waves are mainly seen in healthy 

persons, in a non-sleeping relaxation state and with closed eyes [7, 8]. The activities 

responsible for the Alpha waves are present mainly in the occipital region and reflect 

sensory, motor, and memory functions. Alpha waves are utilized for meditation and 

attention level measurements. 

Beta (13–30 Hz): Beta band activity indicates 13–30 Hz frequency range. Beta 

frequencies are more predominant when an individual experiences active thinking, 

concentration, excitement, or panic instead of normal states. They are generated in the 

frontal and central portions of the brain [9]. 

Gamma (>30 Hz): The frequency ranges over 30 Hz are called Gamma activities. 

These brain activity frequencies are enigmatic, and researchers d where precisely in the 

brain they originate from and what functionalities they represent. A group of researchers 

suggests that Gamma waves serve as a carrier frequency for binding various sensory 

impressions. Simultaneously, some argue that Gamma frequency is a by-product of other 

neural processes, such as eye movements [9]. The Gamma waves infrequently appear, 

especially during event-related potential (ERP) tasks and diseases. The gamma waves 

are most dominant in the front central region of the brain.  
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Figure 1-3. Frequency Bands over 1 Second [2] 

1.6. EEG Signal Analysis 

Despite the efforts of scientists from around the world, the human brain remains 

the body's greatest mystery. Several experimental techniques have been developed over 

the past few decades to gain insight into the brain's structure and function: functional 

magnetic resonance imaging (fMRI), positron emission tomography (PET), near-infrared 

spectroscopy (NIRS), electroencephalography (EEG), magnetoencephalography (MEG), 

etc. EEG and MEG are the only neuroimaging techniques that directly and non-invasively 

record the synchronous oscillations of pyramidal neurons in the cortex [16]. The EEG 

signals represent brain rhythms and move from the source to the electrodes without delay, 

known as real-time signals. The EEG signals represent the brain's dynamic, pathological 

states or psychiatric disorders. Many advanced signal-processing algorithms have been 

used to analyze brain rhythms. Different relevant features of a specific application could 

be extracted from the EEG signal through signal-processing methods to diagnose brain 

disorders. Moreover, brain disorders and diseases like epilepsy, autism, depression, and 

Alzheimer's could be diagnosed at an early stage by analyzing brain signals [17]. As 
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mentioned earlier, EEG signals contain unique information about brain activities at 

different brain states, like wakefulness or drowsiness and can be utilized for drowsiness 

detection [82]. 

EEG signal processing consists of three stages: pre-processing, feature 

extraction, and classifying [16]. In general, the raw EEG data is collected by utilizing 

electrodes on the scalp non-invasively. As the electrodes pick up other sources' electrical 

activity, extracting useful information from complex EEG waveforms is essential. Brain 

signal artifacts are signals recorded on the electroencephalogram that is not cerebral in 

origin and can be divided into physiological and non-physiological [56]. First, the 

physiological artifacts generated by the patient's body include cardiac, gloss kinetic, 

muscle, eye movement, respiratory, and pulse artifacts, among many others [56]. The 

second group is external sources of artifacts like the movement of electrodes or headsets, 

power lines, swaying, and swinging artifacts. Artifacts should be detected and removed to 

improve the interpretation of EEG signals. 

The first step in brain signal processing is called pre-processing. In the pre-

processing stage, all artifacts and noises are removed from raw data to improve the signal-

to-noise ratio and facilitate the EEG signal processing. 

Measured data is usually not preferred for analysis because of the complexity and 

the extensive data dimension. The interpretation of those signals is not always 

straightforward due to their nature or the underlying physiological system that creates the 

signal. As a result, feature extraction methods have been developed to identify different 

signal characteristics accurately [106]. The next step in brain signal processing is feature 

extraction. The essential features are extracted as indices for EEG signal analysis, and 

data dimension reduction is made in this stage. Classification of brain signals requires an 

accurate and robust feature detection process in both time and frequency domains [31]. 

The EEG signal feature extraction methods are generally divided into two main 

categories: linear (frequency-domain analysis) and nonlinear (time-domain analysis). 

Linear analysis of EEG signals comprises frequency analysis such as Fourier and Wavelet 

Transforms and parametric modelling like autoregressive models. Linear algorithms are 

applied successfully to solve some problems. Fast Fourier Transformation (FFT) and 

Wavelet Transformation (WT), commonly used for signal analysis, are good choices for 
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stationary signals. However, neurophysiologic processes are often nonstationary and 

nonlinear by nature [47]. It is widely accepted that the EEG signals are nonstationary and 

have a nonlinear dynamic [8, 47]. Regardless of the good results associated with the linear 

analysis in some EEG studies, the EEG signals' analysis loses reliability and accuracy in 

many cases by ignoring the nonlinear behaviour. 

The nonlinear dynamical algorithms using chaos theory have been applied to many 

areas, including medicine and biology [8]. The EEG signals demonstrate the nervous 

system's chaotic actions and are increasingly researched to expose features that linear 

methods cannot measure [6, 34]. Drowsiness generates periodic impacts in EEG signals, 

affecting chaotic behaviour [34]. Chaotic quantifiers such as the entropy, fractal 

dimension, and Lyapunov Exponent would be changed due to this effect. These 

quantifiers could serve as valuable indices for drowsiness prediction and lead to a reliable 

and accurate prognosis method compared to current technologies. 

1.7. Research Objectives 

 This study utilizes nonlinear data processing using chaos theory to analyze the 

EEG data for drowsiness prognosis. This study's main objective is to evaluate and identify 

an appropriate and relevant set of nonlinear features to prognosis drowsiness states from 

the EEG signals. The final goal of this project was to create a low-cost, minimally-

component, reliable, and quick drowsiness prediction system. 

The proposed research intends to perform a nonlinear time series analysis on 

EEG signals for drowsiness prognosis. More specifically, the work presented herein has 

the following objectives: 

• Characterization of alert and drowsy EEG signals using chaotic indicators during 

the transition from alert to a drowsy state  

• Evaluation of a set of chaotic indicators in the prognosis of drowsiness 

• Comparison and validation of the performance of the proposed nonlinear 

approach  
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• Identification of the classifier inputs to classify EEG signals from the extracted 

features with a classifier  

1.8. Thesis outline 

This thesis consists of seven chapters. Chapter 2 consists of dynamical systems 

and chaos theory and introduces the basic concepts of system dynamics and dynamic 

system analysis. Chapter 3 studies the feature extraction process using complexity 

measures in the nonlinear analysis. The concepts of complexity measures, including 

fraction dimension and entropy, are described in detail. Chapter 4 briefly review the 

dynamical EEG analysis and quantifiers that measure the chaotic behaviour of EEG 

signals in different applications, emphasizing drowsiness detection. The experimental 

setup, data acquisition and methodology are discussed in chapter 5. Chapter 6 presents 

the result of the chaotic quantifiers in EEG signal analysis during the transition from alert 

to drowsy state as feature extraction methods, comparing their performances for 

drowsiness prognosis, and finally, recommending the most suitable method for 

drowsiness feature extraction based on their performances. Finally, the selected fusion 

features are applied to a SVM classifier to prognosis the drowsiness and its accuracy 

investigated in different cases. Based on the achieved experimental results, the proposed 

model is proven to be in good agreement with theoretical assumptions.    Lastly, Chapter 

7 provides concluding remarks and recommendations for future research. 
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Chapter 2.  
 
 Dynamical Systems and Chaos theory 

This chapter introduces the basic concepts of system dynamics and dynamic 

system analysis.  

2.1. Dynamical System 

Dynamics is defined as the systematic study of how things change over time [30]. 

It is a mathematical model that describes the temporal development of a system. A 

dynamical system is characterized by its state and dynamics. The states of a dynamical 

system are variables that fully describe the system's dynamics. A point in m-dimensional 

space can characterize the state of an m variables system. This space is known as the 

system’s state space (or phase space). Each state is a component in the state-space 

vector. The state space of a system is valid if all influential variables of the system are 

known. System dynamics are represented by laws or equations describing how the 

system’s state changes over time. A dynamical system is linear if all the corresponding 

equations which describe system dynamics are linear otherwise, it is nonlinear [30].  

In dynamic system analysis, it is essential to understand what happens in system 

evolution with time and how the starting conditions influence the system's behaviour [50]. 

Over time, the following states' sequence defines a curve in the phase-space called 
trajectory [51]. The trajectory will converge to a state-space subspace at a steady state; 

this subspace is a geometrical object called the system attractor. Trajectories from all 

possible initial conditions are attracted to the attractor. Attractors give us an image of the 

system's dynamic. A sample of attractors and trajectories are shown in Figure 2.1 [57]. 
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Figure 2.1 Trajectory and Attractor [57] 

2.2. Attractor Types and Corresponding Dynamic 

According to the resulting geometrical object, attractors can be categorized into 

four groups [50, 51]: 

• Steady-State (Fixed-Point). The attractor converges to a point (steady state) for all 

the initial conditions unless the system is disturbed from the outside. 

• Limit-Cycle. The attractor is a closed one-dimensional curve in the system's state 

space, representing a periodic motion. 

• Limit Torus. Attractor has a complex donut-like form (in an integer dimension). It 

represents a quasi-periodic motion with a superposition of different periodic 

dynamics with incommensurable frequencies. 

• Strange or Chaotic. Chaos is one type of nonlinear dynamics resulting in complex 

attractors with fractal geometry. The dynamics corresponding to a strange attractor 

is deterministic chaos, i.e., the same initial conditions converge to the same final 

state, but the final state is very different for minor changes to initial conditions [52]. 

As a result, chaotic dynamics can only be predicted for short periods.  

Examples of the four basic types of attractors are shown in Figure 2.2 [52] 
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Figure 2.2: Types of Attractors in nonlinear Systems: (A) Steady-State (fixed-point) 
Attractor, (B) Limit-Cycle Attractor, (C) Limit Torus (or Quasi-
periodic) Attractor, and (D) Chaotic (or Strange) Attractor. [52] 

To begin, chaos is typically understood as a mathematical property of a dynamical 

system and a state of disorder [33]. Determinism is the philosophical belief that every 

event or action is the unavoidable result of previous events and actions, so every event or 

action may be predicted entirely in advance. If a system is deterministic, the system's 

future states are predictable. Linear ordinary differential equations usually model 

deterministic systems. The precise values of state variables at the initial moment and the 

exact values of systems parameters are needed in such a model. 

Most traditional science deals with deterministic and predictable phenomena. In 

contrast, chaos theory deals with nonlinear systems that are predictable for a while and 

then appear to become random [42]. Chaos theory embodies three main principles [34]: 

• Extreme sensitivity to the initial condition 
• Cause and effect are not proportional 
• Nonlinearity 

 
Chaos happens when a system has extreme sensitivity to initial conditions. It 

means two arbitrarily nearby points (states) in such a system will rapidly evolve toward 

very different positions; in other words, significantly different future trajectories [34]. 

Edward Lorenz named the sensitivity to initial conditions the "butterfly effect" in his first 
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paper about chaos [42]. Chaotic systems are mathematically deterministic but impossible 

to predict, and it is more evident in the long-term behaviour than the short-term behaviour 

of systems. Deterministic chaos is the paradoxical phenomenon of unpredictable 

behaviour in indeterministic dynamical systems [34]. The main difference between chaos 

and noise has a root in predictability. Generally, noise is random, structureless, and 

unpredictable, while chaos naturally encompasses structure and is predictable [34]. 

Robert L. Devaney formulated a generally used mathematical definition to categorize a 

dynamical system as chaotic. He says a chaotic system must have the following properties 

[16]: 

• it must be sensitive to initial conditions 
• it must be topologically mixed 
• it must have dense periodic orbits 

 

2.3. State-Space Reconstruction 

Successful reconstruction of the state space will result in an adequate system 

analysis. The idea of dynamic system modelling is simple and somewhat from a high level. 

Consider a general differential equation [34]: 

(dx/dt) = F (x, t) (1) 

In this equation, x is a time-series data and function of time, which could be 

measured. To discover the model, we need to know about F and develop a way to figure 

it out. 

Known systems are modelled with some equations. Suppose we do some 

dynamics of the electromagnetic wave. In that case, we might write down Maxwell's 

equations, or if we are looking at quantum mechanics, we write those in the Schrodinger 

equation, so all these scenarios prescribe F to discover the system’s dynamic. For a wide 

range of systems in real life, such as biological systems, the nature of undelaying 

dynamics is unknown, and it is hard to obtain a set of differential equations at some macro 

scale for them [34]. Here, the idea is to measure a system and try to back out or infer what 

governing equations produced that time-series data. It is essential when we cannot 

measure the system's full state and discover the system model [34]. A dynamic model for 
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these systems can be achieved with a top-down approach, beginning with observing the 

system's output and working back to state space, attractors, and properties. 

Packard et al.[60] brought up a new method of state-space reconstruction in 1980. 

They presented real-time series modelling in a multidimensional state-space [60]. The 

method utilized to develop the state-space reconstruction of a dynamic system from the 

time series is also known as the time series embedding. Therefore, applying nonlinear 

methods to embed the time series in a phase space with an appropriate dimension is 

crucial. 

The time-delay approach is the most practical procedure for reconstructing the 

state-space for nonlinear dynamical EEG analysis [34]. 

Let Xt  be an instantaneous measure of the dynamical system, i.e., a sample of the 

time series obtained by sampling a given system variable [30]. 

In the time-delay approach, in an m-dimensional state-space such as: 

Xt = (xt, xt+ , …, xt+(m−1))  (2)  

The time difference between the state vector xt's successive components is the lag 

or delay time,  and m is the embedding dimension. Time-delay embedding begins with a 

single time series of observations. For reconstructing an m-dimensional vector, m 

consecutive values of the time series are taken for the vector's m coordinates. This 

procedure is repeated for the following m values of the vectors' time series in the system's 

state-space. The embedding vectors' sequence forms the system attractor as t increases 

in the state space [44]. The time-delay embedding procedure is shown in Figure 2.3 [52] 

and Figure 2.4 



17 

 

Figure 2.3 Schematic Explanation of Time-Delay Embedding [52] 

 

Figure 2.4 Schematic Explanation of Time-Delay Embedding. 

The time lag , and the embedding dimension, m, are the two key parameters, so 

choosing these parameters is vital for the nonlinear analysis of the EEG waveform [30]. 

Different choices of m and  yield different reconstructed trajectories. Consequently, 

wrong choices result in inappropriate outcomes. Fell et al. [45] have proven the significant 

effect of embedding the time series in a state-space with proper dimension in nonlinear 

analysis. They proposed the saturation of the correlation dimension method for calculating 

the precise embedding dimension. This algorithm is utilized by most of the current 

research in the nonlinear analysis of biosignals. 
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A practical method is to select  equal to the time interval. The time series' 

autocorrelation function (or the mutual information) has dropped to 1/e of its initial value 

[43]. Fraser and Swinney have presented a recursive method of calculating mutual 

information [80]. They proved that the first minimum in the mutual information provides the 

best available systematic criterion for choosing time delays for phase portraits [80]. The 

optimum estimation of m is achieved by repeating the correlation dimension analysis for 

increasing the value of m until the result no longer changes [52]. 

The selection of m and  are interdependent so that the optimum pick  may 

depend on the value of m and vice versa. The product of   and (m- ), called the 

embedding window, is critical. Taken suggested that  should be selected so that the 

highest frequency in the signal can be sampled and m in a way that the embedding window 

equals the wavelength of the lowest frequencies. This method is not any worse than 

methods that are more sophisticated and use time-consuming algorithms [16]. 

 

2.4. Linear Dynamic Analysis 

Most linear dynamic analysis methods fall into three main categories: frequency 

domain, time domain, and time-frequency domain. Frequency domain analysis is a 

practical method for quantitative signal analysis and is used broadly for linear systems. 

Frequency domain analysis also referred to as spectrum analysis, is the practical 

method of transforming a complex signal into simpler parts in the frequency domain. A 

complex signal in the time domain is technically described as a sum of many individual 

frequency components. Spectrum analysis is called a process that quantifies various 

measurements, such as amplitudes, powers versus frequency, or phase. The most widely 

used term in frequency analysis is power, which indicates the strength of a specific 

frequency in the signal. Higher power means that the signal includes a specific frequency 

to a higher amount. Frequency domain analysis can be applied to the entire signal or a 

short signal segment. Spectrum analysis is well-suited for periodic signals. The best way 

to analyze the non-periodic signal is by transforming it into periodic components that fall 

into Fourier Transform. The Fourier Transform of a signal includes all original signal 

information in a different form. The Fourier Transform maintains two primary elements of 

signal amplitude and phase of each frequency component. Discrete Fourier Transform 

(DFT) is used for discrete signals that run on signal samples and delivers a mathematical 
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estimate of the full integral solution. The DFT is regularly implemented by an efficient 

algorithm called the Fast Fourier Transform (FFT). 

2.4.1. The Definition of the Fourier Transform 
The mathematical representation of the Fourier Transform (FT) of a function 𝑓(𝑥) 

is 𝐹(𝜔). The FT function is defined as: 

𝐹(𝜔) =  ∫ 𝑓(𝑥)𝑒−𝑖𝜔𝑥𝑑𝑥
∞

−∞
 (3) 

Similarly, the inverse of the FT is defined as: 

𝑓(𝑥) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑖𝜔𝑥𝑑𝜔

∞

−∞
 (4) 

Where 𝑖 =  √−1 and 𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 (a.k.a. the Euler's formula). 

If we consider 𝑓(𝑥) as the input data from a signal, the FT function, 𝐹(𝜔), is the 

spectrum of the signal (summation of sinusoids). The FT is often expressed in terms of 

"FT pairs," relating to the frequency domain's time-frequency domain. The general form 

for FT pairs can be written as 𝑓(𝑥) ↔ 𝐹(𝜔) or 𝐹(𝑓(𝑥)) = 𝐹(𝜔). 

2.4.2. Discrete Fourier Transform (DFT) 
The Discrete Fourier Transform (DFT) is used when we have a discrete and 

periodic signal. The DFT can be described by using an arbitrary sequence, 𝑎𝑛 for values 

of 𝑛 = 0, 1, 2, 3 … 𝑁 − 1, and 𝑎𝑛 = 𝑎𝑛+𝑗𝑁 for all values of 𝑛 and 𝑗, where 𝑁 is the period. 

The general formula for DFT is defined as: 

𝐴𝑘 = ∑ 𝑊𝑁
𝑘𝑛𝑎𝑛

𝑁−1
𝑛=0  (5) 

Where 𝑊𝑁 = 𝑒−𝑖
2𝜋

𝑁  For 𝑘 = 0,1,2,3 … 𝑁 − 1 (the "Nth roots of unity"). These roots of 

unity are points on the complex unit circle located in the complex plane. 

Since each point on the circle is 2𝜋

𝑁
 radians apart, a clockwise rotation of an angle 

can be achieved when multiplying by 𝑊𝑁. A complete rotation or no rotation is 2𝜋 radians. 

Each frequency-domain sequence, 𝐴𝑘, is the Discrete Fourier Transform (DFT) of the 

time-domain frequency sequence, 𝑎𝑛which is made up of 𝑁 complex numbers. The 

equation for inverse DFT is: 

𝑎𝑛 =
1

𝑁
∑ 𝑊𝑁

−𝑘𝑛𝐴𝑘
𝑁−1
𝑘=0  (6) 

A significant drawback of Fourier Transforms, in general, is that the analysis is 

helpful for stationary signals. This means the FT of a signal where the frequencies are the 

same over time can be correlated to an exact time. However, for a signal where the 

frequencies are continually changing, such as nonstationary signals like the "chirping" 
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signal, FT will not give information about the specific times when these frequencies occur 

[4]. 

2.4.3. The Fast Fourier Transform (FFT) Algorithm 
Fast Fourier Transform (FFT) examines how similar the signal is to sine waves 

consisting of specific pure frequencies. The more similar the signal is to the sine wave, 

the larger the matching score. For instance, the FFT compares signal data with a 60 Hz 

sine wave. If the signal data were identical to the sine wave, FFT would return a perfect 

matching score. FFT analyzes the entire frequency content in a signal. The stronger a 

specific frequency, the higher the likelihood. 

By continuing the analysis of Discrete Fourier Transform using the two-point DFT 

and the 4-point DFT to 8 points, 16 points, and so on until 2𝑟  points, we arrive at the Fast 

Fourier Transform (FFT) algorithm for computing the DFT. Computing DFT for any 𝑁 

number of points requires 𝑂 ∗ (𝑁2) the number of summations. The DFT is calculated 

using 𝑂 ∗ (𝑁𝑙𝑜𝑔𝑁) summations when employing the FFT algorithm. The DFT is broken 

down into 𝑙𝑜𝑔2𝑁 stages, consisting of 𝑁

2
 butterfly computations. 

2.4.4. Quantitative EEG Analysis for Drowsiness Detection 
Studies on the EEG signal showed that drowsiness could be detected using the 

EEG power spectrum [82, 83]. Many researchers concluded that the Alpha and Theta 

bands' power spectrum analysis is very useful for drowsiness detection. There is a 

significant increase in the Alpha and Theta power bands when the transition happens from 

an alert state to a drowsy state. In the alert state, alpha activity is deficient, while in relaxed 

or drowsy conditions, alpha activity is gradually increased. Different studies have 

introduced power spectrum analysis of the α, β, β/α, θ/β, (α + β)/θ and (θ + α)/( α + β) of 

the EEG signal as an indicator for drowsiness prediction. Among these indicators, the (α 

+ β)/θ is the most useful indicator to evaluate drowsiness [83]. 

2.5. Nonlinear Dynamic Analysis 

Nonlinear time series analysis is the best methodology for understanding the 

dynamics of such systems. The nonlinear dynamic analysis involves two main steps [34]: 

• Reconstruction of the dynamics of state space from observations 

• Characterization of the resulting attractor through nonlinear dynamic measures 

 



21 

Once these measures have been computed, this information can be used as 

characteristic features of the analyzed signals in the corresponding application. State 

space reconstruction of a dynamical system from observations briefly has been explained 

in section 2.4.  The characterization of the resulting attractor and nonlinear measures will 

be discussed in the next chapter in detail.  
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Chapter 3.  Chaotic Indicators (Complexity 
measures) 

In signal processing, a feature represents a unique property, a detectible quantity, 

and a functional component gained from a signal segment. The primary purpose of feature 

extraction is to shrink the data volume and obtain the essential information embedded in 

the signal. Feature extraction simplifies signal processing by reducing the amount of data 

while keeping the critical information that accurately describes a vast data set. Employing 

feature extraction minimizes the complexity of implementation and relives the need to 

compress the information. The signal feature extraction methods are generally divided into 

two main categories: linear and nonlinear. The theoretical background of EEG feature 

extraction analysis based on the dynamical system approach is provided in this chapter. 

The next step after reconstructing the corresponding attractor in the state-space is 

to characterize it using nonlinear indicators. Different measures can be used to 

characterize attractors and then the system's corresponding dynamics.  Different 

nonlinear indicators characterize reconstructed equivalent attractors' properties and the 

system's corresponding dynamics in the state-space more precisely [30]. Nonlinear 

indicators are classified as measures of system complexity and stability. Measuring the 

complexity of a time series may provide essential insights into the operation of the 

investigated system.  

3.1. Complexity measures: 

Complexity measures represent a system's predictability and regularity. A chaotic 

system possesses two unique characteristics: predictability and regularity. Predictability 

characterizes the temporal evolution of a dynamical system's states, whereas regularity 

specifies its trajectory's pattern repetitions. Predictability is the chaotic system's process, 

while regularity is its output [130]. Two subcategories of predictability approaches exist 

spatial and temporal dimensionality. Spatial dimensionality needs a reconstruction of the 

time series state space before evaluating its predictability, while temporal dimensionality 

characterizes a dynamical system's predictability directly from the signal time series. 

Correlation dimension and Lyapunov exponents are two main spatial dimensionality 

measures that will be described in detail later [130].  While spatial dimensionality 
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approaches measure signal complexity by characterizing attractor properties, temporal 

dimensionality methods interpret time series as a geometric object. Higuchi’s fractal 

dimension (HFD), Petrosian fractal dimension (PFD) and Katz’s fractal dimension (KFD) 

are the three leading temporal dimensionality indices in characterizing nonlinear systems 

dynamics that estimate FD directly from the time series [130]. 

Methods that capture a dynamical system's regularity evaluate repetitive time 

series patterns. Most of these metrics belong to the entropy family of statistics, which 

measures a system's uncertainty. Regularity indices describe a dynamical system's 

regularity by approximating the uncertainty of its trajectory inference [130]. Approximate 

entropy (ApEn), sample entropy (SampEn), FuzzyEn and permutation entropy (PermEn) 

are the main regularity complexity measures. Costa et al. (2002) presented multiscale 

entropy to evaluate the multiscale spatiotemporal complexity of physiological signals 

(MSE). This index is obtained by computing SampEn, FuzzyEn and, PermEn on multiple 

scales derived from the original signal [131].  Figure 3.1 demonstrate different complexity 

measures categories.  

 

Figure 3-1  Complexity measures categories 

Various complexity measurements have been devised to compare time series and 

discriminate between periodic, chaotic, and random behaviour. These measurements are 

used on DNA, evolutionary sequences, morphology, development, manufacturing, 

information systems vulnerability analysis and medical systems [103]. It has been stated 
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that the complexity measure of heart and brain data may discriminate between healthy 

and ill patients and can even anticipate a heart attack or epileptic episode [104]. Entropies, 

Fractal dimensions, and Lyapunov exponents are the three main types of complexity 

parameters. Profound relationships exist between these quantities, all defined for typical 

dynamical systems. [85]. In the following sections, we address the three most basic 

complexity measurements. 

3.2. Fractal Dimension  

A fractal is a mathematical term to describe an object made of several self-similar 

objects [84]. The magnification of these objects in various scales shows a similar structure. 

Self-similarity is a typical property of fractals and is a key feature in characterizing them 

[85]. Self-similarity is categorized into two groups strict self-similarity and statistical self-

similarity. Strict self-similarity exists only in artificially generated mathematical objects. The 

parts of a natural object can be like the whole object on average; therefore, it possesses 

statical self-similarity [85]. Another feature to characterize the fractals is the fractal 

dimension. For sets that describe regular geometric shapes, the topological dimension 

(TD) is used, such as dimension zero for point, dimension one for line, dimension two for 

the area and dimension three for volume. The theoretical fractal dimension of fractal sets 

exceeds its topological dimension, and the traditional topological dimension is not suitable 

for measuring the dimensions of fractals, so the concept of a fractal dimension is employed 

to characterize fractals [88].  Fractal dimensions can have non-integer values that show a 

set fills its space qualitatively and quantitatively differently from regular geometric sets. A 

fractal dimension equal to 1.4 indicates that it fills space more than ordinary lines but less 

than surfaces.   Fractal dimension (FD) is considered an index to characterize the fractal 

patterns or sets, which quantifies their irregularity or complexity as a ratio of the change 

in detail to the change in scale [86]. Nowadays, fractal dimensions are utilized in the 

economy, medicine, biology, physiology, and engineering to characterize systems. The 

scaling relationships are defined mathematically by the general scaling rule in equation:  

𝑁 = 𝜀−𝐷 (7) 

where N is the number of segments, ɛ is the scaling factor, and D is the fractal 

dimension. The value of the D fractal dimension can be found with equation:  
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−𝐷 =
log 𝑁

log 𝜀
   (8)    

The dimension shows the complexity of dynamics (the degrees of freedom), so it is 

essential in nonlinear time series analysis to estimate the underlying attractor's dimension 

[16]. The signal fractal dimension computation is a fast and helpful technique for transient 

detection. The fractal dimension calculating algorithms are applied directly in the time 

domain, significantly saving the algorithm time-run [87]. Many methods have been 

proposed for computing the fractal dimension of the attractor. Among them, the following 

most prominent measures can be highlighted.  

3.2.1.   Correlation Dimension: 

The correlation dimension (D2) is one of the primary measures for the attractor's 

fractal dimension and an efficient technique for obtaining experimental data dimension 

[46]. The correlation dimension usually is a non-integer value larger than one in chaotic 

systems and reveals the increased complexity of system dimensionality. Grassberger and 

Procaccia [49] proposed an algorithm to estimate D2 values of the experimental time 

series. The idea is to construct a correlation function C(r) that measures the probability of 

pairwise points on the orbit closer together than r in the state-space. The radial distance 

around each reference point xi in the state-space is named r. 

𝐶(𝑟) = lim
𝑁→∞

1

𝑁(𝑁−1)
∑ ∑ 𝜃(𝑟 − |𝑥𝑖 − 𝑥𝑗|)𝑁−1

𝑗=𝑖+1
𝑁−1
𝑖=0  (9) 

N is the number of data points (the length of the reconstructed attractor) and Ѳ is 

the Heaviside function. D2 is calculated using the fundamental definition [30]: 

𝐷2 = lim
𝑟→0

(
log 𝐶(𝑟)

log(𝑟)
) (10) 

The vital feature of the Grassberger and Procaccia algorithm is that, for an 

adequately high embedding dimension m, the slope of a linear scaling region of log 

(Cr)/log (r) is an estimate of the correlation dimension D2 [52]. As mentioned earlier, the 

maximum estimation (sufficiently high) of m can be achieved by repeating the correlation 

dimension analysis to increase the value of m until the result no longer changes. This 

event is known as saturation of the correlation dimension with increasing the embedding 

dimension. 
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3.2.2.  Large Lyapunov Exponent (LLE) 

The Lyapunov Exponent (λ) measures a system's sensitivity to initial conditions. 

There are two main varying processes in a chaotic attractor: (i) expansion process, in 

which the trajectories diverge exponentially fast from similar initial conditions, and (ii) 

folding process, in which the trajectories will have to turn back into it as time changes [30]. 

The Lyapunov Exponent determines the exponential divergence or convergence of nearby 

trajectories in state-space. In other words, it is the average rate of expansion or folding 

within an attractor [31]. Therefore, λ reflects the system's dynamical behaviour, whereas 

the attractor dimension indicates its static properties. When a system evolves from a set 

of initial conditions within radius d0 in the phase plane, after time t, the trajectories' 

divergence is characterized by 

𝑑 = 𝑑02𝜆𝑡 (11)  

Lyapunov Exponent λ corresponds to the average rate of the trajectories' 

divergence. The positive Lyapunov Exponents imply that the system's future state with an 

unclear initial condition is not predictable and denotes a loss of the system's information. 

Such a system is also known to be chaotic [32]. When an exponent is negative, the 

trajectories converge to a common fixpoint. Zero exponent entails that the orbits maintain 

their relative positions and are on stable attractors [33]. Theoretically, m Lyapunov 

Exponent can be calculated for an m-dimensional state-space. The maximum value of λ 

is called the Largest Lyapunov Exponent (LLE). LLE is of special importance since it 

identifies chaotic dynamics and periodic signals. Several algorithms have been proposed 

for calculating LLE [31, 34, 35]. Rosenstein et al. (1993) developed a simple and 

straightforward approach to estimate the LLE of the reconstructed state without fitting a 

model to the experimental data [33]. This algorithm calculates the average increase of 

inter-vector differences starting from pairs of nearest neighbours. It can be defined as the 

following formula: 

1 = lim
𝑡→0

1

𝑡
log2

𝑙𝑡

𝑙0
   (12) 

Here 1 is the Largest Lyapunov Exponent (bit/Sec), t is a small-time (Sec), l0 is a 

small distance between two points on the attractor, and lt is the distance between the same 

after a short time t [30]. The two distances are averaged over many pairs of nearest 



27 

neighbours. This procedure also includes calculating a series of values t so that lt can be 

plotted as a function of t on a logarithmic plot. Whenever the plot demonstrates a linear 

scaling area, the slope estimates . 

 

3.2.3. Katz’s Fractal Dimension (KFD) 

Katz's fractal dimension is obtained directly from the time series and defined as 

[88]:  

𝐷 =
log (𝐿)

𝑙𝑜𝑔(𝑑)
 (13) 

Where L is the total sum of distances between successive points (length of the curve), 

and d is the Euclidean distance between the first point of the sequence and the point of 

the sequence that provides the furthest distance. Calculating the FD with this formula is 

dependent on the units of measurement used; therefore, Katz proposed a normalization 

to resolve this problem as expressed below: 

𝐹𝐷𝐾𝑎𝑡𝑧 =
log (𝐿)

log (
𝑑

𝑎
)

=
log (𝑛)

log(
𝑑

𝐿
)+log (𝑛)

 (14) 

where a is the average of the Euclidean distance between successive points of the 

sample and n number of steps in the series n=L/a [88]. 

3.2.4. Higuchi’s Fractal Dimension (HFD) 

Higuchi's method [91] is a popular time domain technique for identifying the fractal 

features of complex non-periodic, non-stationary physical data [87, 92]. This technique 

can precisely determine the time series' fractal dimension. Even in noisy, nonstationary 

data, it is practical, quick to execute, and can quickly arrive at precise and stable estimates 

of fractal dimensions [10]. The term "Higuchi fractal dimension" (HFD) refers to the fractal 

dimension determined using the Higuchi method.  The procedure for the method is given 

below. Consider x(1), x(2),…, x(N), the time sequence to be analyzed. Construct k new 

time series 𝑋𝑘
𝑚 defined as: 
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𝑋𝑘
𝑚 = {𝑥(𝑚), 𝑥(𝑚 + 𝐾), 𝑥(𝑚 + 2𝑘), . . . . , 𝑥(𝑚 + 𝑖𝑛𝑡[

𝑁−𝑘

𝑘
]. 𝑘)}            (15)                            

for m=1,2,3,…, kmax 

Where m indicates the initial time value, k indicates the discrete time interval between 

points (delay), kmax is a free parameter, and int represents the integer part of the enclosed 

value [91]. For each of the curves or time series 𝑋𝑘
𝑚 constructed, the average length Lm(k) 

is computed as: 

𝐿𝑚(𝑘) =
∑ |𝑥(𝑚+𝑖𝑘)−𝑥(𝑚+(𝑖−1)𝑘)|(𝑁−1)

[
𝑁−𝑚

𝑘
]

𝑖=1

𝑖𝑛𝑡[
𝑁−𝑚

𝑘
].𝑘

 (16) 

where N is the total length of the data sequence x and  (𝑁−1)

𝑖𝑛𝑡[
𝑁−𝑚

𝑘
].𝑘

 is a normalization 

factor. An average length is computed for all time series having the same delay (or 

scale) k as the mean of the k lengths Lm(k) for m=1,2,3,…,k   L1(k),…Lkmax(k)  

𝐿(𝑘) = ∑ 𝐿𝑚(𝑘) (17) 

The slope of the best-fitting linear function through the data points {(𝑙𝑜𝑔
1

𝑘
,  𝑙𝑜𝑔 𝐿(𝑘))} is 

defined as the Higuchi fractal dimension of the time series X [90, 91].  

The calculated HFD depends on the length of the time series and is affected by an 

internal tuning factor Kmax that plays a crucial role in the estimation of HFD.  One drawback 

of utilizing the Higuchi method is that parameters must be employed, and improper 

parameter selection results in the erroneous calculation of fractal features [94]. 

Although the approach has been utilized for decades and is frequently used 

today, there is no agreement on the best way to identify the optimum kmax parameters. 

Several studies have been conducted to address the issue of proper tuning factor kmax 

selection. Accardo et al. [95] used the Higuchi method in their research of 

electroencephalograms and found the best pair of electrodes (kmax, N). They tested with 

kmax = 3-10 on time series with lengths ranging from N = 50 to 1000 and determined that 

kmax = 6 was the best value [95].  
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3.2.5.  Petrosian’s Fractal Dimension (PFD) 

A fast algorithm to calculate the fractal dimension of a signal was introduced by 

Petrosian. This estimation is the fractal dimension of a binary sequence originally defined 

by Katz [88]. Signals are usually analog and should be translated into binary series. There 

are four main algorithms to derive this binary sequence. The most practical method is 

called the Petrosian D algorithm [95]. First, the consecutive samples in the time series are 

subtracted. Next, the binary sequence is formed by assigning a ‘1’ for every difference 

that exceeds a standard deviation magnitude, and a ‘0’ is given otherwise. The FD is then 

computed as [95]: 

𝐷 =
log10 𝑛

log10 𝑛  + log10(
𝑛

𝑛+0.4𝑁∆
)
 (18) 

where n is the length of the sequence (number of points), and N∆ is the number of sign 

changes in the generated binary sequence. 

 

3.3.  Entropy  

Entropy analysis has gotten much attention among the vast number of nonlinear 

dynamical methods in recent decades. It evaluates the complexity, or irregularity, of time 

series. Many studies have proven its wide suitability in time series of limited length, short 

length, or even concise length [96].  

Entropy came from a discipline called thermodynamics, a branch of physics. It was initially 

proposed as a state function of a thermodynamic system that depends only on the current 

state while independent of how the state is obtained. It was later found that this 

macroscopic concept meant uncertainty or irregularity that microscopically measures the 

probable number of microscopic states in which the system can be arranged [97]. 

As a measure of disorder or uncertainty in the data, information entropy was first 

introduced by Shannon in 1949 [75]. Entropy is the diminishing rate of the necessary 

information for future state estimation, expressed in bits per second. Generally, an 

attractor’s information loss rate states its entropy [34]. In information theory, the 

information source's uncertainty and the probability distribution of the draw samples are 
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measured by entropy [76]. Since entropy states uncertainty, it can indicate the level of 

chaos in the system. A higher entropy measure denotes more uncertainty and a higher 

chaotic system [16]. 

In the field of time series analysis, this concept sparked the idea of evaluating the 

unpredictability of the evolution of dynamic systems, especially the Kolmogorov entropy 

of time series (or Kolmogorov-Sinai entropy, a special case of Kolmogorov entropy with 

time lag being equal to unity) [107]. The Kolmogorov-Sinai entropy algorithm was sensitive 

to noise, making it impossible for real-world applications. An approximate entropy 

algorithm with reasonable robustness to noise and relatively stable for medium-time series 

was proposed by Pinkus in 1991[113]. However, this method had unreliable performance 

in short-length data and strong dependence on input parameters, so investigators 

proposed other methods to improve its performance. Entropy analysis has been attracting 

increasing attention in the recent two or three decades. Many different entropy methods 

have been introduced to quantify the signal's complexity with various applications to date. 

Shannon entropy, Maximum entropy, Renyi's entropy [42], Kolmogorov Sinai entropy [38], 

Approximate entropy [39], Sample entropy [41], Fuzzy entropy, and Permutation entropy 

are some of the entropy algorithms in chronological order. These estimators are 

categorized as Embedding entropies. Embedding entropies measure the uncertainty of 

the signal directly in the time series to estimate the entropy. Spectral entropy [40] assesses 

the energy distribution and utilizes the signal's power spectrum's amplitude components 

as the probabilities in entropy calculations [58]. 

In the following subsections, important and practical entropy measurements, 

including Approximate Entropy (ApEn), Sample Entropy (SampEn), Fuzzy Entropy 

(FuzzyEn), and Permutation entropy (PermEn), will be briefly introduced.  

3.3.1 Approximate entropy (ApEn) 

Approximate entropy (ApEn) is a well-known measurement for chaos and 

quantifies the system's complexity, irregularity, and unpredictability. Pincus introduced it 

as an indicator of system complexity to assess the time series’ irregularity without previous 

knowledge about the data source [39]. It is defined as the logarithmic likelihood that 

calculates how the close data sets' patterns will remain closed for the following comparison 

with a longer pattern [73]. A time series with many repetitive patterns has a low ApEn; a 
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process with fewer predictable patterns has a higher ApEn. The minimum value for ApEn 

is 0, suggesting an entirely predictable sequence. A high value of ApEn indicates random 

and unpredictable variation, whereas a low value of ApEn indicates regularity and 

predictability in a time series. ApEn has been used to characterize the degree of 

randomness in the physiologic time series [39]. ApEn is less sensitive to noise, useful in 

short-length data calculations, and resistant to short, strong transient interferences like 

spikes [81]. These prominent features make ApEn attractive for use in physiological signal 

processing. ApEn's application is spreading rapidly, especially for real-time applications 

[81]. 

For a time-series of N points 𝑢= 𝑢(𝑖), 1 ≤ i ≤ N, its m-dimension state space 

representation 

𝑥𝑚(𝑖) = {𝑢(𝑖), 𝑢(𝑖 + 𝜏), … , 𝑢(𝑖 + (𝑚 − 1)𝜏)} (19) 

where 1 ≤ i ≤ N − m 𝜏  and 𝜏 is the time delay parameter, which, together with the 

dimension parameter m, determines how well the state space reconstruction of the 

dynamical system is. To quantify whether two vectors, namely, 𝑥𝑚(𝑖) and 𝑥𝑚(𝑗), are 

similar, the Chebyshev distance between the two vectors is calculated as follows: 

𝑑[𝑥𝑚(𝑖), 𝑥𝑚(𝑗)] = max (|𝑢(𝑖 + 𝑘) − 𝑢(𝑗 + 𝑘)|)  (20) 
0≤k≤m−1 

 

In ApEn, the percentage of the vectors  𝑥𝑚(𝑗) that are within r of 𝑥𝑚(𝑖)  is calculated 

by the    𝐶𝑖
(𝑚)(𝑟) =

𝑁𝑖
(𝑚)

(𝑟)

𝑁−𝑚𝜏
   where 𝑁𝑖

𝑚(𝑟) indicates the number of j’s that meet 𝑑𝑖,𝑗 ≤ 𝑟 , and 

1 ≤ j ≤ N − mτ. And then, the average of the percentage over 1 ≤ i ≤ N − mτ after the 

logarithmic transform is defined by  

𝜑𝑚(𝑟) =
1

𝑁−𝑚𝜏
∑ log 𝐶𝑖

(𝑚)
(𝑟)𝑁−𝑚𝜏

𝑖=1  (21) 

Similarly, 𝜑(𝑚+1)(𝑟) is defined after increasing the dimension to m + 1. Then, the ApEn 

value of the time-series u can be calculated by [84]: 

𝐴𝑝𝐸𝑛(𝑚, 𝜏, 𝑟) = 𝜑𝑚(𝑟) − 𝜑(𝑚+1)(𝑟) (22) 
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 Two parameters, r, and m must be specified before the ApEn calculation. m is the vector's 

embedding dimension to be formed, and r is the affective filter (a threshold), which typically 

has values pegged to the standard deviation of the sequence. Usually, r = 20% of the 

standard deviation of the amplitude values and m = 2 [98]. Cm(r) is a correlation integral 

that should be calculated in the following equation. 

3.3.2.  Sample Entropy (SampEn) 

Dependent on record length is one of the ApEn method’s drawbacks and is usually 

lower than predicted for short records. Another disadvantage of ApEn is its inconsistency 

[98]. To address the shortcomings of ApEn, sample entropy (SampEn) was offered as a 

replacement for ApEn by omitting self-matches, improving computation time by half in 

contrast to ApEn. SampEn has the benefit of being consistent and essentially independent 

of record length [98]. 

For a time series of N points u = u(i), 1 ≤ i ≤ N, its m-dimension state space 

representation 

 𝑥𝑚(𝑖) = {𝑢(𝑖), 𝑢(𝑖 + 𝜏), … , 𝑢(𝑖 + (𝑚 − 1)𝜏)}  (23) 

where 1 ≤ i ≤ N − m 𝜏 and 𝜏 is the time delay parameter, which, together with the 

dimension parameter m, determines how well the state space reconstruction of the 

dynamical system is. In SampEn, self-matches are excluded when calculating the 

percentage of the vectors 𝑥𝑚(𝑗) that are within r of 𝑥𝑚(𝑖), 

by    𝐴𝑖
(𝑚)(𝑟) =

𝑁𝑖
(𝑚)

(𝑟)

𝑁−𝑚𝜏−1
   where 𝑁𝑖

𝑚(𝑟) indicates the number of j’s that meet di,j ≤ r, 

and 1 ≤ j ≤ N – m 𝜏,  j ≠ i.   The average the percentage 𝐴𝑖
(𝑚)

(𝑟) over 1 ≤ i ≤ N − m 𝜏 is 

defined by: 

𝜑𝑚(𝑟) =
1

𝑁−𝑚𝜏
∑ log 𝐴𝑖

(𝑚)
(𝑟)𝑁−𝑚𝜏

𝑖=1  (24) 

Similarly, 𝜑(𝑚+1)(𝑟) is defined after increasing the dimension to m + 1. The 

probability that the two sub-sequences match for m points and the probability of a match 

for m+1 points, where r is the tolerance for accepting matches, give the sample entropy, 
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defined as the average over multiple templates of the log ratio of A/B [99]. Then, the 

SampEn value of the time-series u can be calculated by [98]: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝜏, 𝑟) = ln
𝜑(𝑚)(𝑟)

𝜑(𝑚+1)(𝑟)
  (25) 

Parameters m and r must be defined according to criteria of error, signal properties and 

expected entropy values and are dependent on the properties of the signal under exam 

[99]. Sample entropy is independent of the recording length and displays relative 

consistency under various conditions. 

3.3.3 Fuzzy Entropy (FuzzyEn) 

ApEn and SampEn both utilize a Heaviside function to compare the similarity of 

vectors, a two-state binary classifier in which vectors are either close or not close. 

However, this may not accurately capture the borders between classes, particularly in 

biological data, where the distinctions between classes may be fuzzy. FuzzyEn was 

proposed to overcome this issue using a fuzzy function instead of the Heaviside function 

to calculate the similarity degree between vectors [13]. FuzzyEn has been used to 

evaluate various types of biomedical data since its inception, including electromyograms, 

EEGs, gait, and heart rate variability [101]. Comparative studies show that the FuzzyEn 

method results surpass the ApEn and SampEn. In addition, new research reveals that 

FuzzyEn is a robust entropy estimator when missing samples are present in the 

biomedical signals being analyzed [101]. 

Given N data points from a time series {x(n)} = x(1), x(2), . . . , x(N), FuzzyEn can be 

calculated using the following algorithm [100]: 

For 1 ≤ i ≤ N - m + 1, form m-vectors 𝑥𝑚(1)…𝑥𝑚(𝑁 − 𝑚 + 1) defined as: 

𝑥𝑚(𝑖) = {𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + (𝑚 − 1))} − 𝑥0(𝑖)  (26) 

These vectors represent m consecutive x values, commencing with the ith point, with the 

baseline (𝑥𝑜(𝑖) =
1

𝑚
∑ 𝑥(𝑖 + 𝑗)𝑚−1

𝑗=0 ) removed. 



34 

Define the distance between vectors 𝑥𝑚(𝑖)and 𝑥𝑚(𝑗), 𝑑𝑖𝑗,𝑚, as the maximum absolute 

difference between their scalar components. Given n and r, calculate the similarity degree 

𝑑𝑖𝑗,𝑚 of the vectors 𝑥𝑚(𝑖)and 𝑥𝑚(𝑗) with a fuzzy function: 

𝐷𝑖𝑗,𝑚 = exp (
−(𝑑𝑖𝑗,𝑚)

𝑛

𝑟
)  (27) 

Define the function 𝜑𝑚as: 

𝜑𝑚(𝑛, 𝑟) =
1

𝑁−𝑚
∑ (

1

𝑁−𝑚−1
∑ 𝐷𝑖𝑗,𝑚

𝑁−𝑚
𝑖=1,𝑗≠𝑖

𝑁−𝑚
𝑖=1 )  (28) 

We increase the dimension to m + 1, form vectors 𝑥𝑚+1(𝑖) and, subsequently, obtain the 

function 𝜑𝑚+1 

For time series with a finite number of samples N, FuzzyEn can be estimated with the 

following equation [100]: 

𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑚, 𝑛, 𝑟, 𝑁) = 𝑙𝑛𝜑𝑚(𝑛, 𝑟) − 𝑙𝑛𝜑𝑚+1(𝑛, 𝑟) (29) 

 

3.3.4 Permutation entropy (PermEn)   

Permutation entropy (PermEn) is a reliable time series tool that quantifies the 

complexity of a dynamic system by capturing the order relations between values in a time 

series and extracting a probability distribution of the ordinal patterns [110]. It defines a 

permutation vector π by indexing its elements in ascending order for every signal motif of 

length m. Then, the frequency of each permutation pattern πj (1 ≤ j ≤ m!) is computed, and 

the PermEn of the original time series is defined by the Shannon entropy of permutation 

patterns [110].  

The permutation entropy of a signal x is defined as: 

𝐻 = − ∑ 𝑝𝑖(𝜋) log2 𝑝𝑖(𝜋)𝑚!
𝑖=0   (30) 

where the sum runs over all m! permutations 𝜋 of order m. This is the information 

contained in comparing m consecutive values of the time series. It is clear that 0≤ 𝐻(m)≤ 

log2(𝑚!) where the lower bound is attained for an increasing or decreasing sequence of 
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values, and the upper bound for a completely random system where all n!  possible 

permutations appear with the same probability. The embedded matrix Y is created by: 

𝑦(𝑖) = [𝑥𝑖 , 𝑥𝑖+𝜏, … , 𝑥𝑖+(𝑚−1)𝜏]  (31) 

𝑌 = [𝑦(1), 𝑦(2), … , 𝑦(𝑁 − (𝑚 − 1))𝜏]𝑇 (32) 

𝜏 is the embedding time delay, and 𝑚 is the embedding dimension. The maximum value 

of H(m) can be obtained as log2 𝑚! when all the symbol sequences have the same 

probability distribution as Pl=1/m!. Therefore, the permutation entropy of order m can be 

normalized as: 

𝑃𝑒𝑟𝑚𝐸𝑛𝑚,𝑛𝑜𝑟𝑚 =
1

log2 𝑚!
∑ 𝑝𝑖(𝜋) 𝑙𝑜𝑔2 𝑝𝑖(𝜋)𝑚!

𝑖=0   (33) 

Among its main features, the PermEn approach [110]: 

• It is non-parametric and is free of restrictive parametric model assumptions. 

• It is robust with noise, computationally efficient, flexible, and invariant with 

nonlinear monotonic transformations of the data. 

• Relies on the notions of entropy and symbolic dynamics. 

• Accounts for the temporal ordering structure (time causality) of a given time 

series of real values. 

• Allows the user to unlock the complex dynamic content of nonlinear time series. 
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Chapter 4. Literature review - Nonlinear Dynamical 
EEG Analysis and Support Vector Machine (SVM)  

This chapter will briefly review the dynamical EEG analysis in different 

applications, emphasizing drowsiness detection.  

Most physiological knowledge is based on linear system theory. It is a 

contemporary challenge to identify characteristics from physiological signals or time 

series. Attempts have been made to mine the data using frequency-domain and time-

frequency analysis. However, the outcomes of these conventional procedures have not 

been entirely satisfying [96]. One explanation might be that those that these methods 

could catch are generally also visually recognizable, which is not the case with 

physiological data. The important physiological or illness aspects may be hidden below 

signal oscillations.   

Researchers from interdisciplinary fields have proposed the concept of nonlinear 

dynamical analysis in recent decades. Chaotic behaviour is perceived in many dynamic 

biological systems, and there is strong empirical evidence of chaotic behaviour at every 

level of biological organization, including the nervous system [89]. Grassberger and 

Procaccia's algorithm facilitated applying the element of chaos theory to various 

observations. The nonlinear time series analysis introduced a new landmark and 

established a new interdisciplinary field of nonlinear brain dynamics. The nonlinear 

methods are the best tool to analyze the processes within the nervous system, regardless 

of whether they are ion channel activity, neuronal, population, or network activity [89].  

Biomedical signals such as EEG are naturally short, non-linear, and noisy, resulting from 

traditional signal processing methods (linear time series analysis) that can be skewed by 

noise and not promising [59, 64]. The early years of nonlinear analysis of the brain were 

roughly between 1985 and 1990. The first study of nonlinear EEG analysis of neural 

activity was done in 1985 by Rapp et al. Simultaneously, Babloyantz et al. reported chaotic 

dynamics of brain activity during the sleep cycle [60]. Over the past 20 years, many studies 

have looked at chaos in brain signals [63]. 

Fractal geometry is a prominent feature of deterministic chaos. In chaotic systems, 

a subset of the phase space known as a strange attractor possesses a fractal structure 

characterized by self-similarity and non-integer dimension. The fractal dimension of a 
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signal represents a powerful tool for transient detection. This feature is used to identify 

and distinguish physiologic states in electroencephalograms and frequently is used in 

EEG signal processing for different applications. A variety of algorithms are available for 

the computation of fractal dimensions.  

Among the various nonlinear analysis methods, entropy algorithms have a variety 

of applications in biomedical signal processing [3]. Many different entropy algorithms have 

been introduced in the literature over the years, and all rely on detecting chaotic or regular 

behaviour in biomedical signals. Entropy methods have shown great promise in analyzing 

electroencephalogram (EEG) signals. This is mainly caused by the high complexity of the 

human brain and the nonlinear interactions between neurons, which results in the 

EEG signal whose dynamics can be characterized in better detail using entropy 

algorithms.  

The EEG signal is affected by numerous events, including epilepsy, Alzheimer, 

coma/anesthesia, depression, schizophrenia, meditation, fatigue, sleep, and drowsiness. 

Much research has been conducted to characterize EEG signals in these events during 

the last decade. Reviewing the results of this research allows us to understand better 

methods that pave the way for the proper use of complexity measures in early drowsiness 

diagnosis. The following sections will describe the effects of some of the main events on 

the EEG signal and the outcomes of nonlinear EEG signal analysis in these events.  

4.1.1. Epilepsy and Seizure detection  

Epilepsy is a brain disorder where normal neuronal activity gets affected and is 

one of the most important applications for nonlinear EEG analysis. Babloyantz and 

Destexhe were the first to study the nonlinear seizure analysis [52]. They reported that the 

correlation dimension of this seizure was substantially lower than the dimension of a 

normal EEG. Iasemidis et al. and Swiderski et al. found that the Largest Lyapunov 

Exponent during epileptic seizures decreases and can be used for predicting seizures 

[52,37]. Several studies for nonlinear seizure prediction were proposed, involving Studies 

on Approximate entropy (ApEn) [112,113,114,115], Permutation entropy (PermEn) 

[N106,107,108,109,110], Sample entropy (SampEn) [118,122], and Fuzzy entropy 

(FuzzyEn) [122,123] provide evidence that absence of epilepsy can be effectively 

distinguished. 
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4.1.2. Alzheimer 

Jeong et al. further utilized nonlinear parameters to identify brain disorders such 

as Alzheimer's [77]. They measured the correlation dimension and the first positive 

Lyapunov exponent of the EEGs in patients and healthy control subjects. They showed 

that Alzheimer's patient's EEG has a significantly lower correlation dimension and the first 

positive Lyapunov Exponent than the healthy control subjects [32]. Most studies show that 

Alzheimer’s disease (AD) is typically associated with a loss of EEG complexity. Fan et al. 

(2018) and Yang et al. (2013) reported that multi-scale entropy (MSE) is sensitive to the 

severity of AD symptoms [125,126]. Their research proved that entropy significantly 

declined from moderate to severe AD stages. Samantha Simons et al. (2018) utilized fuzzy 

entropy to analyze the AD patient's EEG signals, and they found that AD patients had 

significantly lower FuzzyEn values than control subjects [124]. 

4.1.3. Anesthesia 

Another application of entropy measures is monitoring the depth of anesthesia. 

Watt and Hameroff (1988) were the first to propose the utility of nonlinear EEG analysis 

as a tool for measuring anesthetic depth [120]. Widman et al. (2000) discovered a 

relationship between the correlation dimension and the estimated sevoflurane 

concentration in the brain [122]. Van den Broek's doctoral dissertation (2003) confirmed 

the correlational dimension's usefulness as an estimate of anesthetic depth [123]. 

 Rezek et al. (2004) successfully demonstrated the practicality of entropy 

measures for characterizing the various phenomenon from the EEG signals by applying 

stochastic complexity features on EEG signals during periods of anesthesia [35]. Liang et 

al. (2015) compared twelve entropy indices, including approximate entropy (ApEn), 

sample entropy (SampEn), Fuzzy entropy, and permutation entropy (PE) measures in 

monitoring the depth of anesthesia. They found that permutation entropy performed best 

in tracking EEG changes associated with different anesthetic states and that approximate 

entropy and sample entropy performed best in detecting burst suppression [116]. 

https://pubmed.ncbi.nlm.nih.gov/?term=Simons%20S%5BAuthor%5D
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4.1.4. Sleep  

As mentioned earlier, the first study on nonlinear analysis of the human EEG was 

done with sleep recordings data, which was done by Babloyantz et al. in 1985 [72]. This 

study concluded that the more profound the sleep, the lower the brain dynamics 

complexity, and the dimension is the smallest [60]. Since that time, sleep has become 

significant research focused on nonlinear dynamics. Many researchers have focused on 

measuring the correlation dimension and the Largest Lyapunov Exponent during the 

different sleep stages. 

In the fundamental nonlinear analysis of healthy adults' sleep EEG signals, the 

correlation dimension (D2) has been consistently reported to decrease from wake to sleep 

in different stages and increase during rapid eye movement sleep (REM) [66, 67, 70, 71, 

72, 73, 74]. 

Fell et al. studied 15 normal subject EEG in the sleep stages one to five and 

measured the Largest Lyapunov Exponent during the different sleep stages in 1993 [68]. 

They found statistically significant differences between the values of the Lyapunov 

Exponent for different sleep stages. The overall outline of these studies is that deeper 

sleep stages are always linked with a lower complexity as represented by lower  

Shannon entropy, permutation entropy, spectrum entropy, approximate entropy 

(ApEn), sample entropy (SampEn), and multiscale entropy (MSE) are some of the entropy 

analyses that have been studied in sleep EEG signals [16]. ApEn, SampEn, and MSE are 

the three main methods commonly used for EEG entropy analyses. Regardless of the 

different entropic methods, all the study results are consistent and report that the entropy 

of sleep EEG signals declines from wake-to-sleep stages one to three and rises during 

REM for healthy adults [76]. Figure 4.1 demonstrates reported trends of fractal-based and 

entropy-based outcomes for different sleep stages. 
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Figure 4-1: Reported Trends of Fractal- and Entropy-based Outcomes for Different 
Sleep Stages [76] 

4.1.5. Drowsiness 

This section examines the work done on drowsiness detection, with a particular 

emphasis on the used features. 

Belakhdar et al. [140] employed spectral analysis (FFT) on the α band with an ANN 

classifier and achieved an average accuracy of approximately 88.80%. Correa et al. [141] 

used frequency and time-frequency domains, including FFT and DWT, for feature 

extraction with ANN classifiers and achieved an 83.6% drowsiness detection accuracy 

rate. Chen et al. [142] achieved 76% accuracy in drowsiness detection using γ, γ/α, θ, θ/γ, 

γ/(α+β+γ), and γ/θ EEG features with Karolinska Sleepiness Scale (KSS) as the ground 

truth and SVM classifier. Hu et al. [143] employed α, β, γ, and frequency domain statistics 

in addition to EOG signal characteristics. Using binary ground truth labels, the authors 

could detect drowsiness with an accuracy of 75%.  Picot et al. [144] utilized α, β, and 

power spectrum features along with an EOG signal with three levels of ground truth data 

that were labelled by experts and achieved an accuracy of 80.6%. Liu et al. [145] applied 

ApEn and Kolmogorov entropy of the α, β, γ, and θ frequency bands with the KSS Stanford 

sleepiness scale for labelling the ground truth data, and 84% accuracy has been achieved 

with a hidden Markov model classification. Chaudhuri and Routray [146] employed just 

three ApEn, SampEn, and modified SampEn entropies as features for fatigue detection. 

Their experiment was labelled into seven fatigue states. Utilizing SVM, they achieved 86% 

accuracy. Zou et al. [147] used the multiscale PE, multiscale SampEn, and multiscale 

FuzzyEn with ground truth labels based on Li’s subjective fatigue scale. The accuracy 

achieved was 88.74%. 
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Mardani and colleagues have measured Higuchi's and Petrosian's fractal 

dimensions of the EEG signal, and they reported that the extracted features could 

discriminate between alertness and drowsiness. It is prominent in most EEG channels 

[75]. Figure 4.2 shows extracted features, Higuchi, and Petrosian fractal dimensions of the 

EEG signal for trials in alertness and drowsiness level [75].  They achieved an accuracy 

rate of drowsiness detection of about 83.3% using an ANN classifier. 

 

Figure 4-2: Mean of Higuchi and Petrosian Fractal Dimensions of EEG Signal for 
Trials in Alertness and Drowsiness Level [75] 

Min et al. [127], Hu et al.  [138], and Zhang et al. [129] used ApEn, and SampEn 

for fatigue detection, and the results were promising.   

In conclusion, many publications have conducted sleep studies analyzing the EEG 

with characterizing measures. In particular, the authors have studied sleep stages and 

normal and pathological conditions. Despite much research on sleep stages and fatigue, 

a few studies have been done on drowsiness EEG signal analysis with nonlinear 

techniques. The complexity measure changes of EEG signal during the transition from 

alert to the drowsy state are unknown. Their ability to distinguish between alertness and 

drowsiness has yet to be studied. 

In this research, the compelling goal is to bring state-of-the-art technologies to 

mining trucks for rapid and accurate prediction and drowsiness monitoring. According to 

the literature review and researched EEG signals, chaotic indicators are efficient tools for 

analyzing EEG signals in different applications. This study evaluates the usability and 
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effectiveness of the chaotic quantifiers of EEG signals to develop an early drowsiness 

prognosis system, including predictability and regularity indices on drowsiness prognosis. 

The potential of forecasting drowsiness is explored and attempted in this work by 

dynamically reconstructing the EEG signals and assessing them by a set of nonlinear 

features. Furthermore, this study makes an effort to analyze EEG signals with nonlinear 

methods and evaluate the drowsiness states. This research studies the different 

techniques of applying nonlinear time series analysis methods for EEG signals to prove 

that concepts initiated from the theory of nonlinear dynamics can characterize the 

drowsiness and appropriateness for drowsiness prognosis. Compared with a single index, 

the fusion of indices is a better way to achieve complementarity among different signal 

features and obtains a more comprehensive expression of the signal.  

 

4.2. Classifiers- Support Vector Machines 

The main objective of this study is to develop an intelligent, reliable, and effective 

drowsiness prognosis system. So far, the nonlinear feature extraction methods of EEG 

signals are discussed in the previous section. The last step to developing an intelligent 

system is applying these indices to classifiers. Then, the classifiers use the extracted 

features as inputs. In this work, we propose to use support vector machine classifiers. 

The theory of these classifiers is discussed in this section. 

Support vector machines (SVM) are supervised learning models with algorithms 

that analyze data and identify patterns [133]. SVM is a helpful tool for classification 

problems. An SVM training algorithm builds a model that shows the training samples as 

points in space from a set of training samples belonging to one of two groups. The points 

are mapped so that the samples from the two categories are split by an optimal 

hyperplane, creating the largest gap possible between samples from the distinct 

categories. A new set of samples can then be mapped to the same space and classified 

based on which side of the hyperplane they lie. 

4.2.1.  Linear SVM  

Given a set of training data 𝐷, a set of 𝑛 points of the form  
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                                           𝐷 = {(𝑥𝑖, 𝑐𝑖 )|𝑥𝑖 ∈ 𝑅𝑝, 𝑐𝑖 ∈ {−1, 1}}𝑖=1
𝑛    (34)  

where each 𝑥𝑖 is a P-dimensional real number or vector and 𝑐𝑖 is the label 

indicating the class to which the point 𝑥𝑖 belongs. The goal is to find the maximum 

margin hyperplane that divides the points with 𝑐𝑖 = −1 from those with 𝑐𝑖 = 1 [133]. A 

hyperplane can be written as the set of points 𝑥 satisfying 𝑤. 𝑥 − 𝑏 = 0 

where ∙ denotes the dot product. 𝑤 is a surface normal vector perpendicular to 

the hyperplane. The offset of the hyperplane from the origin along 𝑤 is given by 

                                                               𝑏

‖𝑤‖
   (35) 

To maximize the margin between the parallel hyperplanes separating the two 

classes of data, 𝑤 and 𝑏 are chosen such that 𝑤. 𝑥𝑖 − 𝑏 = −1  and 𝑤. 𝑥𝑖 − 𝑏 = 1 

For linearly separable data, the two hyperplanes can be chosen so that no points 

lie between them, and then the distance between them can be maximized [135]. The 

distance between the two hyperplanes is given by 2

‖𝑤‖
 so the term to minimize is ‖𝑤‖. To 

prevent data points from falling into the margin, a constraint is added such that 𝑤. 𝑥𝑖 −

𝑏 ≤ −1  or 𝑤. 𝑥𝑖 − 𝑏 ≥ 1  for 𝑥𝑖 of the two classes. These can be rewritten as 

 𝑐𝑖(𝑤. 𝑥𝑖 − 𝑏) ≥ 1, 1 ≤ 𝑖 ≤ 𝑛   

The SVM training optimization problem is therefore given by  

𝑚𝑖𝑛𝑤,𝑏‖𝑤‖ (36) 

subject to 𝑐𝑖(𝑤. 𝑥𝑖 − 𝑏) ≥ 1  

 See Figure 3.2 for a graphical example of SVM training. 
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Figure 4-3 SVM training to find the optimal hyperplane (solid black line) 
separates the samples from two classes (orange and blue circles) with maximum 
margin. Circles represent support vectors with outlines 

4.2.2.  Soft margin SVM  

In cases where no hyperplane can separate the data points from the two 

categories, a soft margin approach can be used to create a hyperplane that splits the 

points as effectively as possible while maximizing the distance to the nearest adequately 

split data points. [134]. The slack variables 𝜀𝑖 are introduced, which measure the degree 

of misclassification of each 𝑥𝑖. Equation 8 then becomes  

                                      𝑐𝑖(𝑤. 𝑥𝑖 − 𝑏) ≥ 1 − 𝜀𝑖  , 1 ≤ 𝑖 ≤ 𝑛  (37) 

The objective function thus changes as the optimization now involves a tradeoff 

between a large margin and a small error. For a linear penalty function, the optimization 

problem becomes  

𝑚𝑖𝑛𝑤,𝜀
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1   (38) 

subject to 

𝑐𝑖(𝑤. 𝑥𝑖 − 𝑏) ≥ 1 − 𝜀𝑖 , 𝜀𝑖 ≥ 0 



45 

where 𝐶 is the constant cost coefficient.  

The solution 𝑤 can also be represented as a linear combination of the training 

points:  

𝑤 = ∑ 𝛼𝑖𝑥𝑖𝑛𝑖
𝑛
𝑖=1   (39) 

Substituting for 𝑤 in (9) and (10) gives an equivalent optimization problem over 𝛼𝑖 

instead of 𝑤. This is known as the dual form and is given by  

𝑚𝑎𝑥𝑎𝑖
∑ 𝑎𝑖 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑖,𝑗 𝑐𝑖𝑐𝑗(𝑥𝑖. 𝑥𝑗)𝑛

𝑖=1  (40) 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶 and ∑ 𝛼𝑖𝑐𝑖
𝑛
𝑖=1 = 0 

4.2.3.  Nonlinear SVM  

In the case of non-linearly separable data, a nonlinear classifier can be created 

by applying kernel functions [134]. The original data points are mapped to a higher-order 

feature space, and (13) can be written as  

𝑚𝑎𝑥𝑎𝑖
∑ 𝑎𝑖 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑖,𝑗 𝑐𝑖𝑐𝑗𝑘(𝑥𝑖, 𝑥𝑗)𝑛

𝑖=1   (41) 

where 𝑘(𝑥𝑖,𝑥𝑗) is the kernel function representing the inner dot product of the 

training points 𝑥𝑖 and 𝑥𝑗. Different kernel functions can be applied by mapping 𝑘(𝑥𝑖, 𝑥𝑗) to 

different functions. One widely used kernel is the Gaussian or RBF (radial basis function) 

kernel, with the following mapping:  

                                      𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖−𝑥𝑗‖
2

), 𝛾 > 0  (42)  

4.2.4.  Parameter selection  

The effectiveness of an SVM classifier depends on the selection of the kernel, 

the kernel’s parameters, and the soft margin cost 𝐶. For the Gaussian kernel, the two 

parameters 𝛾 and 𝐶 are often selected by a grid search with exponentially growing 

sequences of 𝛾 and 𝐶 [134]. The combination of the parameters which gives the best 

accuracy is selected for training.  

4.2.5.  Performance evaluation of SVM classifiers  
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Accuracy, precision, and sensitivity are all statistical measures of the 

performance of a binary classification test. All possible outcomes of such a test can be 

represented by a confusion matrix, as shown in Figure 3.3. For example, the following 

equations provide precision, sensitivity, and accuracy [133]:  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
true positive 

true positive+false positive 
  (43)   

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
true positive 

true positive+false negative 
  (44)   

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
true positive+true negative 

true positive+false positive
 +𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

 (45)    

 

Figure 4-4 Confusion matrix 

              Precision Eq(43) is defined by the proportion of true positives to all 

positive results (true positives and false positives) or the significance of the positive 

classification. Recall Eq(44), or sensitivity, on the other hand, is defined as the 

proportion of positive samples that are correctly classified. In other words, it measures 

the test’s ability to detect positives.  Sensitivity is defined as the proportion of correctly 

categorized positive samples. In other words, it indicates the test's capacity to detect 

positive results [134]. Ultimately, accuracy Eq(45)   is the proportion of true results, both 

true positives, and true negatives, in the set. 
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The F1 score attempts to strike a balance between precision and recall. It 

ranges from 0 to 1 and indicates a classifier's precision and reliability. The higher the F1 

score, the better the model's performance. F1 score is the harmonic mean of Precision 

and Recall and gives a better measure of the incorrectly classified cases than the 

Accuracy Metric. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = (
𝑅𝑒𝑐𝑎𝑙𝑙−1+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1

2
)

−1

= 2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
  (46) 

To summarise the differences between the F1-score and the accuracy, 

• Accuracy is used when the True Positives and True negatives are more 

important, while F1-score is used when the False Negatives and False Positives 

are crucial. 

• Accuracy can be used when the class distribution is similar, while F1-score is a 

better metric when there are imbalanced classes, as in the above case. 

• In most real-life classification problems, imbalanced class distribution exists; 

thus, F1-score is a better metric to evaluate our model. 
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Chapter 5. Experimental setup and Data 
Acquisition  

 

This study aims to evaluate the usability and effectiveness of the chaotic 

quantifiers of EEG signals on the prognosis of drowsiness. This research has focused on 

external, non-invasive technologies without ill effects on the tissue being examined. Based 

on this approach, we have utilized an available off-the-shelf EEG recording device (Brain 

link EEG system) with a dry sensor measurement system. We have developed algorithms 

associated with the field of chaotic systems to analyze the measured EEG data for 

drowsiness prognosis. The system's performance in drowsiness prognosis has been 

tested and compared by nonlinear methods. Most previous studies utilized the early first 

collected EEG signals as alert state and compared it with drowsy state data. Still, it is 

essential to study the EEG signal data during the transition from alert to drowsy state to 

get precise results. Detecting the transitions from an alert state to a drowsy state is a 

challenging assignment. The next step is to demonstrate the capability of the device to 

detect drowsiness in a real-life scenario. We believe that this system will lead to an 

increase in the performance of drowsiness prognosis. 

5.1. Study Subjects 

The Simon Fraser University ethical committee approved the recruitment of human 

subjects for this study (study #30000343). Human subjects were recruited from the 

students of SFU. Twenty-six volunteers participated in this study. The group consisted of 

one female and six males (20-50 years old). They had no history of sleep disorder or 

alcohol abuse. People were asked to normally sleep at least 24 hours before the data 

recording and take no soporific medications at least three days before the test. 

5.2. Proposed System 

Figure 5.1 depicts a block diagram of the human-interactive drowsiness prognosis 

system. The system comprises signal acquisition and data processing, which includes 

pre-processing, feature extraction, feature selection, and classification. 
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Figure 5-1: Proposed system block diagram 

5.3. Data Acquisition System 

Future systems should utilize wearable devices with fewer electrodes as much as possible 

to minimize the cost and processing time. According to studies [136,137], multi-channel 

systems do not provide a significant advantage over single-channel systems, indicating 

the viability of a system with improved wearability compared to existing systems involving 

multiple electrodes. Considering these outcomes, we employed a single-channel data 

acquisition system for EEG signal collection in this study. This research uses the Brain 

link EEG system from Macrotellect, Ltd. to record the EEG signal (Figure 5.2). 

 

Figure 5-2 Brainlink EEG System (http://lp2.macrotellect.com/) 
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Brain link EEG has three dry electrodes with a 500 Hz sampling rate. Various 

studies [138,139] clearly show that channel FP1 is the most effective channel for 

identifying driver fatigue and drowsiness. Pertaining these findings, we utilized the 

FP1 sensor in our research. We needed long-time recordings of EEG data, so we 

embedded and fixed the sensors in a cap and a blue tooth system transferred the 

collected data to the computer (Figure 5.3).  

 

Figure 5-3 Acquisition system fix in cap 

              Placements of recorded channels have been shown in Fig 5.4 

 

Figure 5-4 EEG Sensors placement 

Figure 5.5 shows the utilized EEG data recording system, which contains a wireless 

EEG cap and a laptop. The EEG cap is powered by a 3.6 V 2600-mAh lithium-ion 

battery and incorporates a sensory input and processing unit. The captured analog 

data from the sensory input unit are converted to digital data by the sensory processing 

unit’s built-in 12-bit analog-to-digital converter and stored in the static random-access 

memory. Then, the digital data are processed for noise and 50 Hz removal by the 32-
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bit processor on the sensory processing unit. The pre-processed data are wirelessly 

transmitted to the laptop via a Bluetooth Low-Energy (BLE) module. The captured data 

is recorded on a laptop hard disc through an interface software (Nero View) provided 

by the Brainlink device.  

 

Figure 5-5 EEG data recording system 

5.4. Virtual Environment and Data Collection Procedure 

Data collection was done in a virtual condition where subjects could feel 

drowsiness. For this reason, participants were asked to sit relaxed on a chair in 

front of a computer in a quiet room with normal luminosity while playing a simple 

driving game to simulate real-world driving conditions until they fell asleep. The 

laptop’s video camera recorded the volunteer’s face for the EEG data collection to 

determine the exact drowsiness (drowsy state) in the data. By comparing the 

recorded video with the EEG data in each period, awake or drowsiness stats can 

easily be identified. The EEG data acquisition system was synchronized with a 

webcam to determine the drowsy state properly.   The drowsy state event was 

marked with visual drowsiness signs, such as slow eye blinks, long eye blink 

duration, head nodding, or falling asleep. It should be noted that a self-reported 

drowsy condition was also used to validate the drowsy condition.  Some previous 

studies used subjective sleepiness questionnaires to verify the drowsiness state, 

which is not an appropriate and reliable technique as the measures in this method 

change from individual to individual.  The biological brain data (EEG) in the form 

of MATLAB® readable files were collected in the waking state before sleep. Figure 

5.6 shows the virtual environment and data collection system. 
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Figure 5-6 Data collection environment 

In the following Figure 5.7, two photos of the alert and drowsy states of the 

participant are extracted from recorded video during the data collection. 

 

Figure 5-7 Alert and drowsy states  

  

5.5. Data Preprocessing 

EEG epoching is a procedure in which specific time-windows are extracted from 

the continuous EEG signal. These time windows are called “epochs”, and usually 

are time-locked with respect an event e.g., a visual stimulus. Alert datasets 

consisted of segments from surface EEG recordings carried out on twenty-five 

healthy volunteers using a Macrotellt Brain link EEG system. Volunteers were 
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relaxed in an awake state with their eyes open. The drowsy EEG data were 

recorded from the same volunteers when they started to be drowsy. By comparing 

the recorded video and self-reported drowsy condition time with the EEG data the 

drowsiness observation time in data can easily be identified. In order to have 

sufficient samples in calculating the entropy and fractal dimension as it discussed 

in chapter 3 the epochs length were selected 180 sec. Two epochs, each 

containing single-channel EEG segments of 180-sec duration, were composed for 

the study. The data were analyzed for 180 seconds before the observed drowsy 

event and 180 seconds after drowsiness. The sampling frequency was 500 Hz with 

a 12-bit resolution. The first 180 sec of data corresponds to an alert state, and the 

second 180 sec states the drowsy state.  These epochs were selected and cut out 

from continuous EEG recordings after visual inspection for artifacts, e.g., due to 

muscle activity or eye movements. EEG signal epoching for awake and drowsy 

states are given in Figure 5.8. 

 

Figure 5-8 EEG signal epoching  

In this research, we have analyzed the alert and drowsy states in EEGs using 

various nonlinear characteristic measures as follows: 

• Fractal analysis:  

o Correlation Dimension (CD) 

o Large Lyapunov Exponent (LLE) 

o Higuchi’s Fractal Dimension (HFD)  

o Petrosian’s Fractal Dimension (PFD) 

o Katz’s Fractal Dimension (KFD) 

• Entropy analysis: 

o Approximate Entropy (ApEn) 
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o Sample Entropy (SampEn) 

o Fuzzy Entropy (FuzzyEn) 

o Permutation Entropy (PermEn) 

 
The characteristics measures are computed using a running window method, as 

given in Figure 5.9. The sliding observation window is shown in a dark-red frame, which 

moves through the data as the measures are computed. The data points inside this sliding 

window are used for feature calculation as the window moves through the data. Therefore, 

the observation window continuously collapses, and the new observation window's 

characteristic measure is computed for the data. In our analysis, we have used the window 

size to be 1500 samples with an overlap of 500 samples between consecutive windows. 

The window size of 1500 samples corresponds to more than three sec of the signal, and 

we have used an overlap of 500 samples considering the nonstationarity of the signal. 

Hence there will be 90 such windows per dataset. 

 

Figure 5-9 Sliding Window 
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Chapter 6. Results and Discussions 

This chapter's primary purpose is to discuss the result of the recommended nonlinear EEG 

feature extraction methods in chapter three, comparing their performances for drowsiness 

prognosis, and finally, recommending the most suitable method for drowsiness feature 

extraction based on the performance. 

6.1. Fractal Dimension Analysis 

After a review of the methods available in the literature (Chapter three and four) for the 

analysis of the fractal-like behaviour of the EEG directly in the time domain, we selected 

five widely used algorithms for the estimation of the fractal dimension of waveforms, 

Correlation Dimension (CD), Large Lyapunov Exponent (LLE), Higuchi’s Fractal 

Dimension (HFD), Petrosian’s Fractal Dimension (PFD), Katz’s Fractal Dimension (KFD).  

6.1.1. Chaotic Invariants Analysis  

The new time series data (x(t), x(t +), x(t + 2), . . .,x(t + (m- 1) )) were created 

from the time series data by the time shift method. 

The optimum embedding parameters are m and  are calculated using the method 

described in Chapter two. As mentioned in chapter two, the best approach to 

calculate the embedding dimension in practical applications is Grassberger and 

Procaccia algorithm. In this approach correlation dimension (D2) is calculated for 

various embedding dimensions, and the minimum embedding dimension (m) is 

selected when the correlation dimension saturates; then, the minimum embedded 

dimension plus one is selected as the optimum embedding dimension for system 

analysis.  The graph of D2 vs. m for awake and drowsy EEG is shown in Figure 

3.12. 

D2 saturates at msat = 7; hence the value of the optimum embedding dimension is 

considered m=8  
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Figure 6-1 Variation of correlation dimension for different embedding dimensions 

The mutual information function method was utilized for  calculation. As 

mentioned in chapter two, the optimum  could be extracted from mutual 

information function plot in different time lags.  The mutual information function for 

awake and drowsy EEG is illustrated in Figure 6.2 and Figure 6.3. The figures 

show that average mutual information reaches its first minimum in  = 5. 

 

Figure 6-2 AMI of Awake EEG signal 

 

Figure 6-3 AMI of Drowsy EEG signal 

         Figure 6.4 displays the 3-D plot of the reconstructed attractor of the awake 

EEG signal with a time delay of  = 5.  Figure 6.5 illustrates the 3-D reconstruction 

of the drowsy EEG.  
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Figure 6-4 Phase-space plot of awake EEG signal 

 

Figure 6-5 Phase-space plot of drowsy EEG signal 

6.1.2. Fractal Dimension Result 

Each algorithm described in Chapter 3 for fractal dimension calculation was 

implemented in MATLAB. The FD of the EEG signals is computed using a sliding window 

approach. An overlapping sliding window with a size of 1500 samples with 500 samples 

overlap is used. A total of 25 records were analyzed from alert to drowsy state transition 

subjects. As the sliding window moves, FDs are calculated for each data point that falls 

within the window, and the mean is used to calculate the signal's FD. Table 6.1 shows the 

results of the FD analysis of EEGs in alert and drowsy states.  
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Table 6.1 FD analysis of EEG in alert and drowsy states 

Chaotic Measures Alert state Drowsy state p-value 

CD 7.2568 ± 0.3667 6.8451 ± 0.182 <0.05 

LLE 0.6112 ± 0.0114 0.5945 ± 0.0219 <0.05 

HFD 1.7359 ± 0.0223 1.6403 ± 0.0159 <0.05 

PFD 1.2952 ± 0.0144 1.2703 ± 0.0153 <0.05 

KFD 1.9753 ± 0.0216 1.9026 ± 0.0174 <0.05 

 

Figure 6.6 provides a box plot for each indicator in alert and drowsy states. These results 

are consistent with Table 6.1 and reveal that all fractal dimension indices generally 

declined monotonically with transitioning from the alert to a drowsy condition. All indices 

are effective in terms of qualitative discrimination of awake and drowsy states in EEG 

signal analysis. However, there are quantitative differences between alert and drowsy 

indices since each method’s concepts are separate. Statistical analysis with a t-test (p< 
0.05) indicates statistical significance supporting our results.    

 

Figure 6-6 Box plot for fractal dimension indicators in alert and drowsy states. 

The results of the fractional dimension analysis of the EEG signal from subject number 20 

throughout the whole data collection session are depicted in Figures 6.7 to Figure 6.11 
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respectively for Correlation dimension, Lyapunov exponent, Petrosian fractal dimension, 

Higuchi fractal dimension and Katz fractal dimension. 

 

Figure 6-7 Correlation dimension analysis of full sesion EEG signal for subject #20  

 

Figure 6-8 Lyapunov exponent analysis of full sesion EEG signal for subject #20  
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Figure 6-9 Petrosian FD analysis of full sesion EEG signal for subject #20  

 

 

Figure 6-10 Higuchi FD analysis of full sesion EEG signal for subject #20  
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Figure 6-11 Katz FD analysis of full sesion EEG signal for subject #20  

 

6.1.3. Correlation Dimension (CD) 

Figure 6.12 and Figure 6.13 demonstrate the variation of correlation dimension (CD) of 

twenty-five different EEG subjects for alert and drowsy states. The results indicate that the 

correlation values are higher for alert states with mean and SD values of 7.2568 ± 0.3667, 

compared with the CD values of the drowsy EEG signals of 6.8451 ± 0.182. This shows 

that the drowsy EEG signal’s complexity is less than the alert state. This shows that the 

degree of complexity decreases gradually from the alert to a drowsy state. The results 

agree with the studies [36] on dimension analysis of EEG that dimensionality reduces from 

awake to sleep. Statistical analysis with a t-test (p< 0.05) indicates statistical significance 

supporting our results.  
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Figure 6-12: Mean value of CD in alert 
and drowsy states  

 

Figure 6-13 Variation of CD mean value 
in twenty-five EEG 
subjects. 

6.1.4. Large Lyapunov Exponent (LLE) 

Figure 6.13 and Figure 6.14 d shows the variation of the large Lyapunov exponent 

(LLE) of twenty-five different EEG subjects for alert and drowsy states. The results of LLE 

are comparable to those observed for CD, as depicted in Figure 6.14. Table 5.1 reveals 

that the LLE of drowsy EEG (0.5945 ± 0.0219) is less than the LLE of alert EEG (0.6112 

± 0.0114). This indicates that LLE decreases during drowsiness due to the brain's 

processing flexibility. This suggests that the drowsy EEG has less complexity and fewer 

independent functional brain processes than the alert state.  Positive values for LLE are 

found in all subjects, indicating chaotic activity. 
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Figure 6-14 Mean value of LLE in alert 
and drowsy states. 

 

Figure 6-15 Variation of LLE mean 
value in twenty-five 
subjects 

6.1.5. Higuchi, Petrosian, and Katz’s Fractal Dimension  

Figure 6.16 and Figure 6.17 shows the variation of Higuchi’s Fractal Dimension 

(HFD) in alert and drowsy EEG. Identical results were obtained for Petrosian’s Fractal 

Dimension (PFD) and Katz’s Fractal Dimension (KFD), illustrated in Figures 6.18, 6.19, 

6.20, and 6.21, respectively. The results of the Higuchi, Petrosian, and Katz algorithms in 

table 6.1 indicate a similar trend of decreased FD value for drowsy state EEG compared 

to alert state EEG.  The reduction in FD values characterizes the decrease of brain system 

complexity for drowsy subjects. FD changes associated with brain states are more critical 

than FD values. 

 

Figure 6-16  Mean value of HFD in alert 
and drowsy states. 

 

Figure 6-17  Variation of the HFD value 
in twenty-five subjects. 
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6.2. Entropy Analysis 

In addition to the benefits of employing entropy metrics, there are other unresolved 

issues [128]. A typical objective in investigations of biomedical data is to discriminate 

between two states of a system. Categorizing pathological and nonpathological data 

utilizing entropy measurements is one of them.  Classification and selecting appropriate 

data ranges must be better understood [129]. As mentioned in chapter 4, a total of four 

  

 

Figure 6-18  Mean value of PFD in alert 
and drowsy states. 

 

Figure 6-19  Variation of the PFD mean 
value in twenty-five 
subjects. 

 

 

Figure 6-20  Mean value of KFD in alert 
and drowsy states. 

 

Figure 6-21  Variation of the KFD mean 
value in twenty-five 
subjects. 
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entropy features, including Approximate entropy (ApEn), Sample entropy (SampEn), 

Fuzzy entropy (FuzzyEn), and Permutation entropy (PermEn), are selected to analyze 

their performances in drowsiness prognosis application. These four methods have their 

advantages. FuzzyEn and PE are less sensitive to signal quality and calculation length 

[133]. FuzzyEn can resolve greater detail in time series and has a more precise theoretical 

definition than ApEn and SampEn [134]. Entropy analysis of twenty-five subjects’ EEG 

signals during the transition from alert to the drowsy state has been conducted and tested. 

We used a sliding window size of 1500 samples with an overlap of 500 samples between 

consecutive windows. The window size of 1500 samples corresponds to three sec of the 

signal. A statistical analysis of entropy features was conducted to determine the 

significance of the distinction between alert and drowsy states. All the selected entropy 

methods were statistically tested using Analysis of Variance (ANOVA) [132].  Table 6.2 

presents the mean and standard deviation (SD) values of these entropies for two different 

alert and drowsy states of EEG.  

Table 6.2 Mean and standard deviation values for entropies in alert and drowsy 
states 

Entropy Measures Alert state Drowsy state p-value 

ApEn 1.2531±0.072 1.1237±0.086 <0.001 

SampEn 1.652±0.231 1.3324±0.271 <0.001 

FuzzyEn 0.5865±0.023 0.5105±0.034 <0.001 

PermEn 0.6286±0.014 0.5586±0.024 <0.001 

 

Figure 6.22 provides a box plot for each indicator in alert and drowsy states. These results 

are consistent with Table 6.2 and reveal that all entropy indices generally declined 

monotonically with transitioning from the alert to a drowsy condition. All indices are 

effective in terms of qualitative discrimination of awake and drowsy states in EEG signal 

analysis. However, there are quantitative differences between alert and drowsy indices 

since each method’s concepts are separate. Statistical analysis with a t-test (p< 0.001) 
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indicates statistical significance supporting our results.   

 

Figure 6-22 Box plot for entropy indicators in alert and drowsy states. 

6.3. Discussion and Feature Selection 

Feature extraction and selection are different; feature extraction creates new 

features from functions of the original features, while feature selection returns a subset. 

The process of selecting a subset of relevant and effective features (predictors) for use in 

model construction or classifier is referred to as feature selection. Feature selection 

techniques simplify models, reduce training time, and avoid dimensionality.  

Even though each fractal dimension and entropy method has theoretical 

advantages regarding the characterization of EEG data, we must evaluate the functional 

performance from various aspects to select the more reliable and accurate feature as 

classifier input. We assessed these methods concerning accuracy, efficiency 

(computational time), and prediction time. 
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6.3.1. Fractal measures assessments 

6.3.1.1 Comparison of accuracy: 

The Katz algorithm has a higher FD value for drowsy and alert EEG than other 

methods. Katz and Higuchi’s algorithms perform better in discriminating drowsy EEG from 

alert EEG. As shown in Figures 6.6 and 6.23, the margin between the mean FD values of 

alert and drowsy when using the Petrosian and LLE algorithms is minimal, making it 

difficult to distinguish between alert and drowsy states. Even though the mean FD value 

of the correlation dimension for the alert is high, the results are inconsistent. 

The transition between alertness and drowsiness is crucial for drowsiness 

prognosis. We investigated the ability of FD methods to trace this point.  The absolute 

slope values (mean ± SD) of the linear-fitted polynomials vs. time were calculated for these 

indices. Figure 31 shows the changes in each index during the transition. As can be seen, 

the absolute slope value for Katz (0.433) is the largest, followed by HFD (0.392). 

 

Figure 6-23 Absolute slope of the linear-fitted polynomials vs. time for FD indices 

6.3.1.2. Comparison of drowsiness prediction time:  

Fig 6.24 shows Higuchi’s fractal dimension during the transition from an alert state 

to a drowsy state. To estimate the drowsiness prediction time before sleeping, we need to 

determine the sleep and drowsy time. The sleep time of the subject is determined by 

synchronizing the recorded movie and EEG signal. Drowsy time is defined as the time 
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when the FD amount falls below the mean. This method was employed to calculate the 

drowsiness prediction time using various FD methods, and the results are shown in Figure 

6.25. The results show that Higuchi and Katz’s algorithms outperform the other methods 

in terms of drowsiness prediction time. 

 

Figure 6-24 Higuchi fraction dimension Changes in transition from alert to a 
drowsy state 

 

Figure 6-25 Drowsiness Prediction time before sleeping for FD indices 
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6.3.1.3 Comparison of computational time: 

Table 6.3 compares the run time of the methods.  Results indicate Katz's method is 

computationally faster, while Higuchi's and Petrosian's are on the second and third orders 

of magnitude, respectively. The runtime of the CD and LLE methods is the slowest among 

the FD methods. As discussed in chapter three, spatial dimensionality, including 

correlation dimension and Lyapunov exponents, requires reconstruction of the time series 

state space to calculate fractal dimension, which increases the computational burden and 

slows the algorithm. The test computer's configuration was an Intel Core i7 CPU, at 3.40 

GHz, with 8 GB of RAM, running Windows 10 Professional operating system. 

Table 6.3 Computational time for FD Indices 

Fraction Dimension index Run time (sec) 

CD 3.68±0.356 

LLE 2.832±0.438 

HFD 0.318±0.024 

PFD 0.469±0.037 

KFD 0.243±0.018 

 

6.3.1.4.  Conclusion  

Exploring brain complexity directly in the time domain without phase space reconstruction 

would benefit EEG nonlinear analysis. According to the result and performance 

comparison of the different FD methods in the past section, direct estimation of the fractal 

dimension with Higuchi and Katz algorithms are preferable. In contrast, using the 

correlation dimension and Lyapunov exponent is discouraged due to the slow run time 

and experiment inaccuracies. Higuchi and Katz’s algorithms provide the most accurate 

values of the FD. They are computationally fast to discriminate alert and drowsy states of 

EEG signals in comparison with other FD methods. Based on these results, Katz and 

Higuchi’s methods have been chosen as the best chaotic fractal dimension indicator for 

feature extraction in drowsiness prognosis. 
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6.3.2. Entropy measures assessments 

6.3.2.1. Comparison of Accuracy: 

To examine the effectiveness of the indices to discriminate alert and drowsy 

phases, Figure 6.22 results are helpful. The overlap of PermEn and FuzzyEn values 

between the alert and drowsy states were smaller than the other indices. This means the 

PermEn and FuzzyEn have a better ability to separate these states and a greater 

robustness for prognosis. 

We investigated the ability of entropies to trace this point.  The absolute slope 

values (mean ± SD) of the linear-fitted polynomials vs. time were calculated for these 

indices. Figure 6.26 shows the changes in each index during the transition. As can be 

seen, the absolute slope value for PermEn (0.381) is the largest, followed by Fuzzy 

(0.326).  

 

Figure 6-26 Absolute slope of the linear-fitted polynomials vs. time for entropy 

indices 

6.3.2.2. Comparison of drowsiness prediction time:  

To estimate the drowsiness prediction time before sleeping, the sleep and drowsy 

time have been determined. The sleep time of the subject is specified by synchronizing 

the recorded movie with an EEG signal. Drowsy time is defined as the time when the 
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entropy value falls below the mean. This method was employed to calculate the 

drowsiness prediction time using various entropy methods, and the results are shown in 

Figure 6.27. The prediction time values of FuzzyEn (12.56 minutes) and PermEn (11.83 

minutes) were higher than other indices.  

 

Figure 6-27 Drowsiness Prediction time before sleep for Entropy indices 

 

6.3.2.3. Comparison of computational time: 

To compare the computational time performance of each index, the run time of 

each index for the same subject was calculated. The computing time for 6 min of EEG 

data compared for each index is given in Table 6.4.  

The fastest index was PermEn (0.385 ± 0.012 s). The ApEn and FuzzyEn run times 

were (1.751 ± 0.013 s) and (1.628 ± 0.037 s) respectively. The SampEn (1.751 ± 0.16 s) 

was the slowest. The test computer's configuration was an Intel Core i7 CPU, at 3.40 GHz, 

with 8 GB of RAM, running Windows 10 Professional operating system. 
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Table 6.4: The computing time for different entropy indices for 6 min data length. 

Entropy index Run time (sec) 

ApEn 1.28±0.082 

SampEn 1.751±0.016 

FuzzyEn 1.628±0.037 

PermEn 0.385±0.012 

 

6.3.2.4. Conclusion 

In this section, we investigated the performance of four entropy algorithms to 

assess the EEG signal for drowsiness prognosis, including ApEn, SampEn, FuzzyEn, and 

PermEn. Twenty-five data sets were employed as the test samples to assess the 

effectiveness of mentioned entropy indicators. To evaluation of each entropy index, four 

measures were considered.  

The boxplots of indices were used to evaluate their ability to discriminate between 

alert and drowsy states. The results indicated that PermEn performed better than the other 

indices at this level. Furthermore, the performance for estimating the point of transition 

was considered. Although all the entropy measures could distinguish between alert and 

drowsy states, the speed of transition (slope) between the two states was fastest for 

PermEn and Fuzzy, while SampEn had the slowest transition. The subsequent evaluation 

was the drowsiness prediction time before sleep. The results demonstrated that the 

FuzzyEn and PermEn indices are superior in predicting drowsiness. The last assessment 

used was the computing time and speed of the algorithm. The results indicated that the 

PermEn index is the entropy index with the fastest algorithm, and SampEn was the 

slowest. 

The excellent performance of FuzzyEn and PermEn indicates their potential 

usefulness in drowsiness prognosis.  
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6.4. SVM Classifier for drowsiness prognosis 

The characteristic measures of the EEG signals discussed in Chapter 4 are 

evaluated for suitability to do classification. The classification is done using the 

classification technique discussed in chapter 3. The four selected features in section 6.3, 
including HFD, KFD, FuzzyEn, and PermEn, are used as inputs to the classifier for 

drowsiness detection. After feature extraction, the classification is done using the SVM 

classifier to classify "alert" and "drowsy" EEG epochs automatically. The performance of 

this classifier is discussed and compared in this chapter. 

The trained SVM was tested using the testing set of EEG data to evaluate its 

accuracy in distinguishing between ‘alert’ and ‘drowsy’ EEG. The trained SVM program 

was also evaluated for its accuracy and reliability in identifying the turning point between 

alertness and drowsiness in experimental data. Data sequences corresponding to 

alertness to drowsiness transitions were extracted from the experimental dataset. Each 

sequence was divided into 10-s epoch sub-segments. The SVM program classified each 

sub-segment as alert or drowsy. These sub-segments were re-combined to find the 

turning point identified by the SVM program along the data segment. This testing method 

would measure the turning point in 10-second epoch divisions. This turning point identified 

by the SVM program would be compared to manual classification with one of three 

possible outcomes. In comparison to manual classification, the SVM program could 

identify the turning point at the same epoch as manual scoring (a "correct" predictor), 

earlier epochs (an "early" predictor) or later epochs (a "delayed" predictor). 

The four features are integrated and constructed in the input vector I = (I1; I2; I3; I4). 

Since these four vectors are 2-dimensional, we can establish an 8-dimensional input 

feature vector I. As the different features have different meanings, it is necessary to 

normalize the input feature vector by: 

𝐹𝑖 =
𝐼𝑖 − 𝜇𝑖

𝜎𝑖
 

Where 𝜇𝑖 and 𝜎𝑖 are the average and standard deviation of the i th feature. 

The dataset was randomly divided into five subsets with similar samples from each 

class to assess the classifier performance. Four subsets are utilized as training data, and 
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one subset as testing data. This procedure is performed five times. A five-fold cross-

validation technique is applied to get the optimal parameters C and g for SVM in each 

process. The classification accuracies for separate processes and the average and 

standard deviation of five times are demonstrated in Table 6.5. 

Table 6.5 classification accuracies and F1 score for separate and feature fusion 
processes 

  HFD (F1) KFD (F2) FuzzyEn (F3) PermEn (F4) F 

1 ACC 86.45 91.05 88.93 85.64 97.39 

F1Score 0.884 0.920 0.896 0.832 0.931 

2 Acc 75.21 85.38 76.38 78.42 95.36 

F1Score 0.914 0.947 0.852 0.908 0.928 

3 Acc 69.56 72.64 81.46 80.67 96.72 

F1Score 0.833 0.946 0.871 0.866 0.904 

4 Acc 84.38 81.54 80.29 82.74 95.59 

F1Score 0.886 0.915 0.931 0.896 0.929 

5 Acc 78.49 76.44 77.56 76.05 96.43 

F1Score 0.842 0.940 0.893 0.919 0.938 

Mean Acc 78.82±6.8 81.41±7.25 80.92±4.91 80.70±3.72 96.30±0.83 

 

 Table 6.5 indicates that feature fusion results in an average accuracy of %96.30, 

which is 14.89 % higher than the second-best accuracy. The average accuracies of the 

rest three input features (F1, F4, F3) are 78.82, 80.92, and 80.70, respectively. Average 

accuracy results indicate that fusion feature classification outperforms single features. The 

reduced deviation in feature fusion demonstrates that the performance of this method is 

more stable than that of a single feature.  

Several research groups have investigated driver drowsiness detection using EEG 

signals. The classification performance employed in their studies, listed in Table 6.6, 

indicates that our results based on features fusion of one electrode were superior to the 

results of many other classification methods. 
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Table 6.6 Performance comparison of the previous works. 

Author Domain Method Classifier Accuracy F1 Score 

Anitha [140] Frequency FFT SVM 87.2   0.864 

Belakhdar[137] Frequency FFT ANN 88.7  0.83 

Correa [148] Frequency 

Time-Frequency 

FFT, DWT ANN 86.7  0.889 

Correa [141] Frequency 

Time-Frequency 

FFT, DWT ANN 87.6 0.852 

Xiong [149] Time  AE & SE SVM 90 0.81 

Chai R [150] Time  Entropy ANN 88.2 0.93 

Proposed Time  FD-EN SVM 96.30 0.93 

 

The average highest recognition rate in this work was 96.30%, which could meet 

the needs of daily applications.  
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Chapter 7. Conclusion and Feature works 

7.1. Conclusion 

Truck driver drowsiness is one of the leading causes of catastrophic accidents in the 

mining industry, resulting in irreversible economic, health, and life losses. Hence, it is 

crucial to use an automated system to monitor and predict drivers’ drowsiness in the 

mining industry. Current drowsiness monitoring and detecting methods have been focused 

on vehicle and behaviour-based measurements. Several studies have been carried out 

on drowsiness detection with linear EEG analysis. Still, since the linear models cannot 

capture the underlying nonlinearity in the original signal, outcomes were unreliable. Few 

nonlinear analyses have been conducted to detect drowsiness, and all algorithms have 

been applied separately on awake and drowsy states; no study has been conducted on 

the transition from alert to drowsy state.  

In this research, EEG signals are characterized using different nonlinear measures. The 

EEG signals during the transition from alert to drowsy of subjects analyzed using the 

nonlinear time series analysis techniques expecting to extract quantitative measures that 

can reliably distinguish the EEG of an epileptic subject from that of a normal subject. The 

results of our analysis demonstrated the potential of complexity measures such as CD, 

LLE, HFD, KFD, PFD, ApEn, SampEn, FuzzyEn, and PermEn in quantifying the EEG 

signals of alert and drowsy subjects. The experimental results reveal that drowsiness 

significantly affects fractal and chaotic entropy quantifiers.  It is clearly shown that the 

values are higher for alert subjects than for drowsy subjects. The statistical results also 

support the discriminating ability of these measures in identifying alert and drowsy EEG 

signals. These measures could be used as a drowsiness indicator and serve as 

quantitative descriptors of EEG in automatically identifying drowsy EEG signals. The 

analysis of nonlinear dynamics in EEG signals serves as an aid in understanding the 

underlying physiological processes in the brain. The experimental outcomes pinpoint four 

indices from fractal and entropy measures as the most sensitive and robust features for 

drowsiness prognosis: Higuchi’s Fractal Dimension, Katz’s Fractal Dimension (KFD), 

Fuzzy Entropy (FuzzyEn) and Permutation Entropy (PermEn).  A fusion of features is 

considered for classifying EEG signals to integrate the strengths of the four proposed 

indices. The SVM architecture classifier is used for the classification of EEG signals. In 
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several experiments, the overall accuracy of the developed drowsiness prognosis system 

is about 96.30%.  

7.2. Future Work 

The research accomplished in this thesis should be continued in the following 

directions: 

• The neurobehavioral performance and awake EEG are phase-locked to the 

circadian rhythm and adjusted by the elapsed time awake. Future work should 

apply the measures to data sets from different circadian phases and validate this 

study's results. 

• The EEG datasets considered in this study are derived from the FP2 electrode of 

EEG records. Since not all electrodes carry the information of interest, 

comprehensive research should be done to identify the EEG sensor’s best 

location for the proposed technique.   

• This study is limited to a small group of subjects, and a more extensive study is 

needed to give more robust statistics. To ensure the statistical relevance of the 

results, the dataset must be expanded in future work. The results can be further 

enhanced by adjusting the hyperparameters and using larger sample sizes. 

• Due to the urgency of warning the driver of a potential hazard, future work on the 

proposed solution should include real-time feedback. This would require real-time 

data acquisition and visualization techniques, as well as rapid classification and 

feedback. The final solution must also incorporate auditory, visual, or vibratory 

feedback to alert the driver of drowsiness. 
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