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Abstract

We gather experimental evidence related to the question of deciding whether a smooth
plane quartic curve has a rational point. Smooth plane quartics describe curves in genus
3, the first genus in which non-hyperelliptic curves occur. We present an algorithm that
determines a set of unramified covers of a given plane quartic curve, with the property that
any rational point will lift to one of the covers. In particular, if the algorithm returns the
empty set, then the curve has no rational points. We apply our algorithm to a total of 1000
isomorphism classes of randomly-generated plane quartic curves.
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Chapter 1

Introduction

1.1 Historical motivation

Descent methods have been a part of number theory since the time of Pierre de Fermat.
Fermat developed the method of infinite descent to prove that certain equations have no
positive integral solutions. For instance, consider the following result:

Theorem 1.1. There is no solution in positive integers to the equation

y2 = (2x2 + 3)(11x2 + 16). (1.1)

Fermat’s idea is to show that the existence of an integral solution would imply the existence
of a smaller integral solution. In this way we can form an infinitely decreasing sequence of
positive integers n1 > n2 > · · · > 0, which is of course impossible.

This particular equation has no integral, or even rational solutions. In a way, that makes
(1.1) even easier to prove. The proof still requires a non-trivial step, however: we need what
we will name in Chapter 3 a covering collection. As a result, the proof is still deemed to be
based on descent.

Definition 1.2. We say that a curve C over Q is everywhere locally solvable if C(R) 6= ∅
and C(Qp) 6= ∅ for all primes p.

An equation that describes a curve that is not everywhere locally solvable obviously has
no solution (see Section 2.6). However, for (1.1), one can relatively straightforwardly prove
that the curve C : f(x) = 0, where f(x) = (2x2 + 3)(11x2 + 16) = f1(x)f2(x), is everywhere
locally solvable.
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Due to the Hasse–Weil bound (see Section 2.10), we need only consider the primes dividing
the discriminant 16896 = 29 · 3 · 11 of f . The bound gives that genus 1 curves over finite
fields with at least 3 elements must have a point. If the curve is smooth, then Hensel-lifting
gives that the reduction of C has a non-singular point, so by Hensel’s Lemma C(Qp) is
non-empty.

Inspection then allows us to find points in C(Qp), for p = 2, 3, 11. We see also that C(R) 6= ∅
since the leading coefficient of f is positive. So C is everywhere locally solvable, and the
proof of Theorem 1.1 is necessarily a little more involved.

Proof of Theorem 1.1 (Sketch). Let C be defined as above. We show that C(Q) = ∅; the
result then follows a fortiori. The resultant resx(f1, f2) = 1, so any point in C(Q) must
come from a rational point on a curve

Dd :

2x2 + 3z2 = dy2
1,

11x2 + 16z2 = dy2
2,

(1.2)

for some d ∈ {±1}, with y = dy1y2. To clarify, any rational-valued point (x, y) on C

corresponds to a solution in coprime integers to (1.1), for some d. This means that x and
z are coprime. Since the resultant resx(f1, f2) = 1, the two expressions 2x2 + 3z2 and
11x2 + 16z2 have no common factors. So each of these expressions must be a square, or the
negative of a square.

Since f1(ξ) = f2(ξ) > 0 for all ξ ∈ R, we have D−1(R) = ∅. For d = 1, we can show that
D1(F3) = ∅, so D1(Q3) = ∅. So for all d ∈ {±1}, Dd is not everywhere locally solvable.
Therefore, C(Q) = ∅.

Descent methods were employed once again in the early 20th Century, as Louis Mordell
proved what is now known as the Mordell–Weil theorem, in the case of elliptic curves
defined over number fields.

Theorem 1.3 (Mordell, 1922). Let K be a number field and let E/K be an elliptic curve.
Then the group E(K) is finitely generated.

Proof. See Silverman [30, ch. 8].

The key idea here was to split the proof into two parts, the “weak Mordell–Weil theorem”
(see [30, ch. 8 §1]), and an infinite descent using so-called height functions (see [30, ch. 8
§§3-6]) satisfying various properties.
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The following result, adapted from [30, ch. 10 Proposition 1.4], makes up a part of the proof
of this case of the weak Mordell–Weil theorem.

Proposition 1.4 (2-Descent). Let E/K be an elliptic curve given by a Weierstrass equation

E : y2 = (x− e1)(x− e2)(x− e3) (1.3)

for some e1, e2, e3 ∈ K. Then there is a group homomorphism

δ : E(K)→ (K∗/K∗2)2 (1.4)

defined by

(x, y) 7→



(x− e1, x− e2) x 6= e1, e2(
e1−e3
e1−e2

, e1 − e2
)

x = e1(
e2 − e1,

e2−e3
e2−e1

)
x = e2

(1, 1) x =∞,

(1.5)

with ker δ = 2E(K).

Proof. See Silverman [30, ch. 10 Theorem 1.1].

We shall provide an analogous setup in the case of a plane quartic curve C/K, and use this
to obtain information about the rational points C(K).

1.2 Recent developments

In their joint paper [4] of 2008, Bruin and Stoll apply descent methods to the case of
curves of genus 2 over Q, given by equations of the form y2 = f(x) with f a square-free
polynomial of degree 5 or 6, with integral coefficients of absolute value at most 3. They
exhibit rational points on 70% of their sample size of almost 200000 isomorphism classes of
curves, and descent methods allow them to prove the non-existence of rational points on all
bar 1492 of the remaining 58681 curves. To these 1492 curves they apply a “Mordell–Weil
sieve” computation, which rules out the existence of rational points on all but 42 curves.
Assuming standard conjectures on L-series and the Birch and Swinnerton-Dyer conjecture,
they are able to deduce the non-existence of rational points on these 42 curves as well.

In a second paper published the following year [5], the two authors provide further details
of this so-called “two-cover descent” method in the context of hyperelliptic curves. They
demonstrate how to determine a set of unramified covers of a given hyperelliptic curve,
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such that any rational point will lift to one of the covers. We call such a set a covering
collection. They discuss applications of their method to curves with known rational points,
and to curves of genus one. They provide statistics on their experimental data, using these
to provide heuristics on how frequently one can expect curves of genus two to have an
everywhere locally solvable two-cover.

Bruin, Stoll and Poonen address the question of curves of genus three in their 2016 article
[3]. This article provides unified description of explicit descent computations, subsuming all
previous examples. It also gives the first examples of such computations applied to genus
three curves without requiring special geometric properties.

1.3 Goal

In this thesis, we apply descent methods to a large collection of smooth plane quartic
curves to prove, where possible, that they have no rational points. Smooth plane quartics
describe curves in genus 3, the first genus in which non-hyperelliptic curves occur. Indeed,
the numerical computations described in this thesis are the first larger-scale systematic
investigation of the success rate of using descent methods to prove the non-existence of
rational points on non-hyperelliptic curves.

We concentrate on curves that have all their bitangents defined over Q. This situation
is analogous to that of hyperelliptic curves with all their Weierstrass points defined over
Q. An interesting contrast is that such hyperelliptic curves automatically have rational
points, so trying to prove otherwise is futile. On the contrary, only a small proportion
of the non-hyperelliptic curves we consider have rational ponts, and two-cover descent as
described in [2] is surprisingly often successful in proving so. Indeed, over a data set of 1000
isomorphism classes of plane quartic curves, we find rational points on 177 of the curves.
Two-cover descent allows us to conclude that all of the remaining 823 curves do not have
rational points. See Chapter 6 for further discussion of our findings.

1.4 Roadmap

In Chapter 2 we clarify our notation and provide the theoretical background necessary to
present and explain our two-cover descent setup.

Chapter 3 is where we present our setup. We prove the results needed to ensure the success
of our routines.
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In order to carry out our experiments, we need some way to generate plane quartic curves
together with their bitangents. In Chapter 4 we show how one can do this using classical
algebraic-geometric constructions.

In Chapter 5 we explain the specific design choices we have made in implementing the
procedures described in Chapters 3 and 4.

Finally, in Chapter 6 we provide our experimental results, and briefly describe the next
steps we could take to further improve these results.

1.5 Electronic data

Please see the accompanying electronic resources at
https://github.com/danlewis92/quartic-curves

for a complete list of all curves considered together with the algorithms that should make
it relatively easy to check the computations. The file TestCurves.m lists all the curves,
represented by a sequence of 9 numbers in the interval {−20, . . . , 20}. The file Curves.m

provides a minimal model (see [32]) for each of these curves. In the file routines.m we
include all our algorithms in machine-readable format for MAGMA [1].
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Chapter 2

Background

In this chapter we briefly review some notions in algebraic number theory and algebraic
geometry that are essential to the work in this thesis. For a more comprehensive treatment,
we refer the reader to [21, chs. 1,2] and [13, chs. 2,3].

2.1 Notation

We write k[x, y, z] for the multivariate polynomial ring over a field k in variables x, y, z.
This polynomial ring naturally carries the structure of a k-vector space. We write k[x, y, z]n
for the subspace consisting of homogeneous polynomials of total degree n.

Throughout this thesis, we let k denote an algebraic closure of a field k, and k∗ denote the
unit group of k.

We write P2 for projective 2-space over k (see Hartshorne [13, ch. 1 §2]). The set of k-
rational points of P2, denoted P2(k), is the set of 1-dimensional k-subvectorspaces of k3,
which can be represented as (k3\{(0, 0, 0)})/ ≡, where (x0, y0, z0) ≡ (x1, y1, z1) if the matrix(
x0 y0 z0

x1 y1 z1

)
is of rank smaller than 2. See Hartshorne [13, ch. 2 §2] for further details of

the Proj construction. Varieties in P2 are then irreducible subsets of the form

Z(T ) = {P ∈ P2 : f(P ) = 0 for all f ∈ T},

for some set T of homogeneous elements of k[x, y, z], equipped with the induced topology.
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Thanks to Hilbert’s Nullstellensatz we can distinguish varieties by looking at their k-points,
so in what follows we can avoid explicitly talking about schemes and define things in terms
of point sets over k.

2.2 Curves and rational points

Definition 2.1. A projective plane curve C is a projective variety of dimension one. The
k-rational points form a non-empty set

C(k) =
{

(x : y : z) ∈ P2(k) : f(x, y, z) = 0
}
, (2.1)

defined by some non-constant polynomial f ∈ k[x, y, z]. Typically, we will write

C : f(x, y, z) = 0, (2.2)

for this leaves no ambiguity. The degree of C is simply the degree of f . A smooth curve is
one whose points are all non-singular.

Definition 2.2. We say that a projective plane curve C is defined over k if its defining
polynomial f ∈ k[x, y, z]. In this case the set of k-rational points of C, denoted C(k), is
defined as

C(k) = C(k) ∩ P2(k). (2.3)

The simplest class of examples to consider is conics, those curves of degree two.

Example 2.3. Let C1 be the projective plane curve with defining equation

C1 : x2 + y2 = −z2. (2.4)

It is straightforward to see that C1(Q) = ∅, for indeed C1(Q) ⊆ C1(R) = ∅, since the squares
of real numbers are non-negative.

Example 2.4. Let C2 be the projective plane curve with defining equation

C2 : x2 + y2 = 3z2. (2.5)

Again C2(Q) = ∅, but the proof take a little more work this time. First, note that every
point P ∈ P2(Q) can be represented by coordinates P = (x : y : z), with x, y, z ∈ Z and
gcd(x, y, z) = 1. Now, the only squares modulo 3 are 0 and 1, so consideration of the cases
forces x ≡ y ≡ 0 (mod 3). But then looking modulo 9 we see that z2 ≡ 0 (mod 3), which
implies that z ≡ 0 (mod 3). So our coordinates x, y, z have a common factor of 3. This
contradiction forces C2(Q) = ∅.
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Perhaps these examples suggest that computation of rational points is a routine task, but
they are somewhat contrived. For many curves, much more powerful arguments are needed
to conclude anything about the set C(Q). Two-cover descent methods provide one such
means, and we will turn our focus to them in Chapter 3, but we should first turn our
attention to the classical results of Hasse and Minkowski. For this, we follow Cohen [7, ch.
5].

2.3 Ostrowski’s theorem

Recall (from e.g. [21, p.116]) that an absolute value on a field k is a map

| · | : k → R≥0 (2.6)

satisfying each of the following three properties:

• |x| = 0 ⇐⇒ x = 0,

• |xy| = |x||y|,

• |x+ y| ≤ |x|+ |y|.

Example 2.5. • The trivial absolute value on k is that for which |x|triv = 1 for all
x 6= 0.

• For each prime p ∈ Z>0, we have a p-adic absolute value on Q:

∣∣∣∣pnab
∣∣∣∣
p

=

0 if a = 0,

p−n if a, b 6= 0, a, b ∈ Z, p - a, p - b.
(2.7)

We write vp
(
pn ab

)
= n. This vp is the p-adic valuation.

• We also have the standard absolute value on Q, denoted | · | or | · |∞, for it corresponds
to the infinite place ∞:

|x|∞ = max{x,−x}. (2.8)

For simplicity, we shall define two valuations to be equivalent via an algebraic criterion,
and follow this with a topological remark. Neukirch [21, pp.116-117] argues in the opposite
direction.

Definition 2.6. Two absolute values | · |1 and | · |2 on k are equivalent if and only if there
exists a real number s > 0 such that

|x|1 = |x|s2 (2.9)

8



for all x ∈ k.

Remark 2.7. If we define the distance between two points x, y ∈ k by

d(x, y) = |x− y|, (2.10)

then we make k into a metric space and a fortiori a topological space. It then follows that
two absolute values are equivalent if they define the same topology on k; see [21, p. 117].

We may now present one formulation of Ostrowski’s theorem, which motivates why in
Section 2.6 we only consider the completions Qp (for primes p) and R of Q.

Theorem 2.8 (Ostrowski). Every non-trivial absolute value | · | on Q is equivalent to either
| · |p for some prime p ∈ Z>0, or | · |∞.

Proof. Neukirch proves a stronger statement [21, pp. 124-125], from which the above theo-
rem follows as an immediate corollary.

2.4 Invariants of plane quartic curves

In his 1987 paper [8], Jacques Dixmier classified seven algebraic invariants of projective
plane quartic curves. More recently, Toshiaki Ohno completed the classification [22], defining
six further invariants, for a total of 13. Lercier et al. have since then implemented these
invariants in MAGMA [18]. We make use of their code to distinguish isomorphism classes
of the curves we generate, and thereby ensure we are considering sufficiently many non-
isomorphic curves.

Of the Dixmier–Ohno invariants, the one we shall make the most use of is the discriminant,
which was known to Salmon [27]. We denote the discriminant I27, in keeping with Dixmier’s
notation. Note that I27 is defined for any plane quartic curve, and I27(f) 6= 0 if and only if
f describes a smooth plane quartic curve.

The genus g of a smooth plane curve of degree d is given by the genus–degree formula

g = 1
2(d− 1)(d− 2). (2.11)

In particular, smooth plane quartic curves all have genus 3.

9



2.5 The reduction of an equation for a curve

In this section we define what it means for primes to be of good/bad reduction for a given
curve. See Silverman [30, §VII.2] for a more detailed treatment, restricted to the case of
elliptic curves.

Let D be a smooth projective curve, defined over Q, with defining equation

D : G(x, y, z) = 0, (2.12)

for some non-constant polynomial G ∈ Q[x, y, z]. As we saw in Example 2.4, we may scale
(2.12) such that D is defined by a polynomial with integer coefficients. The resulting equa-
tion can be considered over Fp. We denote this variety by D̃, so

D̃ : g(x, y, z) = 0, (2.13)

for some non-constant polynomial g ∈ Fp[x, y, z]. If D̃ is a non-singular variety over Fp,
then we say D has good reduction at the prime p.

Remark 2.9. If D̃ describes a singular variety over Fp, it may still be the case that there
exists another equation of the form (2.13) that describes a curve D′ that is isomorphic to D
over Q and has good reduction at p. In that case the curve D over Q can still be considered
to have good reduction. In the rest of this thesis, we will consider only a single defining
equation for any particular curve and restrict our notion of good reduction to that of the
equation given.

Proposition 2.10. Let f ∈ Z[x, y, z] be a defining polynomial for a smooth plane quartic
curve C over Q. Then I27(f) ∈ Z, and for any prime p that does not divide I27(f), we have
that C has good reduction at p.

Proof. First, note that I27(f) is an integer polynomial expression in the coefficients of f , so
it follows that I27(f) is an integer as well.

Let f̃ ∈ Fp[x, y, z] be the coefficient-wise reduction of f modulo p. Since I27(f) is just a
polynomial combination of coefficients, we have that I27(f̃) ≡ I27(f) (mod p). If p does not
divide I27(f) then I27(f̃) 6= 0, so it describes a smooth curve over Fp. It follows that C has
good reduction at p.

For polynomials f as in Proposition 2.10, we refer to primes p that divide I27(f) as primes
of bad reduction. As we saw in Remark 2.9, it is only our chosen equation that has bad
reduction at p.
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2.6 The local–global principle

Ostrowski’s theorem classifies all the completions of Q: they are R and Qp, for all primes
p. Our principal concern is whether a projective plane curve C has rational points. It is
immediately true that

C(k) 6= ∅ =⇒ C(kv) 6= ∅, (2.14)

for any place v of k. The contrapostive implication, therefore, says that if at any place v of
k we have C(kv) = ∅, then C(k) = ∅.

Definition 2.11. If for some place v of k we have C(kv) = ∅, then we say that C has a
local obstruction at v to having rational points.

There are certain varieties for which the converse of (2.14) holds:

Definition 2.12. We say that a quadratic form q represents 0 in k if there exists a nonzero
x ∈ kn such that q(x) = 0,

Theorem 2.13 (Hasse–Minkowski). Let q be a quadratic form in n variables with coeffi-
cients in Q. Then q represents 0 in Q if and only if it represents 0 in every completion of
Q.

Proof. See Cohen [7, §5.3].

Remark 2.14. The theorem also holds true in the more general case of quadratic forms on
a number field k, as Hasse showed in a series of papers in 1924 [14, 15].

Definition 2.15. We say that the Hasse principle holds for a certain collection C of varieties
if for all X ∈ C we have that if X(kv) 6= ∅ for all places v of k, then X(k) 6= ∅.

Example 2.16. It is well-known (see, for example [4, §1] and [16, Theorem A.4.3.2.]) that
the Hasse principle holds for curves of genus 0.

Remark 2.17. The Hasse principle does not hold for curves of higher genus. Moreover,
these higher genus curves tend to have points everywhere locally. Indeed, Poonen and Stoll
estimate that roughly 87% of genus 2 hyperelliptic curves have points everywhere locally
[25, §9].

The following example, due to Selmer, illustrates how the Hasse principle may fail. We
paraphrase Cohen’s presentation of the example [7, Corollary 6.4.12].

Example 2.18. Let C be the projective plane curve with defining equation

C : 3x3 + 4y3 + 5z3 = 0. (2.15)

11



Figure 2.1: The line x = −0.5 is bitangent to the cardioid (x2 + y2 − 2x)2 = 4(x2 + y2) at(
−1

2 ,±
√

3
2

)
.

Then C(Qv) 6= ∅ for any place v of Q, but C(Q) = ∅.

Proof. See Cohen [7, Corollary 6.4.12].

2.7 Bitangents, syzygetic quadruples and Aronhold sets

Let C be a projective plane curve. A bitangent to C is a line that is tangent to C at two
points. Figure 2.1 provides a concrete example.

The language of divisors (see Hartshorne [13, II, §6]) and intersection cycles (see Fulton [11,
ch. 5, §§1,5]) allows us to formalise the definition to match that in [3, §12.2]:

Definition 2.19. A bitangent to a quartic plane curve C is a line l ⊂ P2 such that the
intersection l · C is 2βl for some βl ∈ DivC.

In the case of plane quartic curves, we are indebted to Julius Plücker for the following
classical result.

Theorem 2.20 (Plücker). Smooth plane quartic curves have precisely 28 bitangents.

Remark 2.21. This theorem is analogous (see Geiser [12]) to that of Plücker’s contemporaries
Cayley and Salmon, who proved that a smooth cubic surface over an algebraically closed
field contains 27 lines.

12



Figure 2.2: The Trott curve (2.16) is shown, together with 7 of its 28 bitangents [26]. The
remaining 21 occur in precisely the same manner, with 7 bitangents emanating from each
of the other 3 components.

Remark 2.22. Note that it is not necessary for the 28 bitangents to a plane quartic curve
to lie in the real plane. We say a bitangent is real if it is defined by a linear form with real
coefficients. Michael Trott (see Figure 2.2) provided a straightforward example of a plane
quartic curve with all 28 bitangents real [34], namely

C : 144(x4 + y4)− 225(x2 + y2) + 350x2y2 + 81 = 0. (2.16)

Bruin et al. recall the classical definition of a syzygetic quadruple as a set of four bitangents
{l1, . . . , l4} that satisfy any of three equivalent conditions [3, §12.2]. For present purposes,
we only need one of these:

Definition 2.23. A four-element set {l1, . . . , l4} of bitangents to C is called a syzygetic
quadruple if there is a conic Q ⊆ P2 (possibly reducible) such that

βl1 + · · ·+ βl4 = Q · C. (2.17)

Remark 2.24. One can show (see for example [3, §12.2] or [9, §6.2.1]) that if C is a plane
quartic curve, then there are precisely 315 distinct syzygetic quadruples of bitangents. More-
over, each pair of bitangents is part of 5 syzygetic quadruples.

Definition 2.25. A syzygetic triple is a 3-element set formed by removing one element
from a syzygetic quadruple.

13



Proposition 2.26. Any syzygetic triple can be completed to a syzygetic quadruple in only
one way.

Proof. Suppose otherwise, so we have a syzygetic triple {`1, `2, `3} and distinct bitangents
`i, `j with

`1`2`3`i = d1p
2
1 + cif,

`1`2`3`j = d2p
2
2 + dif,

where ci, di ∈ k∗ and pi, f ∈ k[x, y, z]. Then, in k(C), we have

`i
`j

= d1p
2
1

d2p2
2

=
(√

d1
d2

p1
p2

)2

. (2.18)

While the left-hand expression `i
`j

is a degree 4 function on C, we obtain on the right-hand
side the degree 2 function p1

p2
on C. Thus, we see that the curve C is hyperelliptic, and this

is a contradiction since C is a plane quartic curve.

Definition 2.27. If a finite set {l1, . . . , ln} of bitangents to C does not contain a syzygetic
triple as a subset, we call the set azygetic. We call an azygetic set {l1, . . . , l7} of seven
bitangents an Aronhold set, or Aronhold system.

We will refer to an Aronhold set {l1, . . . , l7} with each li(x, y, z) ∈ Q[x, y, z] as a rational
Aronhold system.

2.8 Morphisms

In this section we discuss non-constant morphisms between smooth projective curves. The
key result to recall from Hartshorne [13, I, Theorem 4.4] is that, for C and D smooth
projective curves over k, there is a bijection

{non-constant morphisms φ : D → C} ←→ {k-algebra homomorphisms φ∗ : k(C)→ k(D)}.
(2.19)

The degree of a morphism φ is then simply the degree of the field extension induced by the
pullback φ∗.

If deg(φ) = 1, then φ is invertible and φ−1 is a non-constant morphism C → D . In this
case, C and D are called birationally equivalent (often simply birational), or isomorphic —
see [29, ch.2 §3.1] as for why the terminology is interchangeable in this setting.
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The following definitions are adapted from [30, §II.2, X.2].

Definition 2.28. The set of isomorphisms from C to itself over k forms a group, the auto-
morphism group Autk(C) of C over k. We write Aut(C) = Autk(C). Suppose that φ : D → C

is a non-constant morphism. We write Aut(D/C) for the subgroup of automorphisms τ ∈ D
such that φ ◦ τ = φ. If # Aut(D/C) = deg(φ), then φ is called a Galois cover and we write
Gal(D/C) = Aut(D/C).

Definition 2.29. A curveD over k that is isomorphic to C over k by a morphism φ : D → C

(but not necessarily over k) is called a twist of C. We write Twist(C/k) for the set of twists
of C modulo isomorphisms over k.

In order to state the Riemann–Hurwitz formula, we need first recall the definition of the
ramification index eP (φ) of a morphism φ : D → C at a point P ∈ D(k). Recall first from
Fulton [11, ch. 3, §2 Theorem 1] that P is non-singular if and only if the local ring OP (D)
is a discrete valuation ring. More generally, a scheme (resp. variety) is normal if all of its
local rings are integrally closed domains [13, II, §3].

Let φ : D → C be a non-constant morphism of curves over k. Let P ∈ D(k) and Q = φ(P ) ∈
C(k). Let tQ ∈ k(C) be a local parameter at Q; that is, tQ generates the maximal ideal mQ

of the local ring OQ(C) ⊂ k(C).

Definition 2.30. We define the ramification index eP (φ) of φ at P as eP (φ) = ordP (φ∗(tQ)).
We say φ is ramified at P if eP (φ) > 1.

Remark 2.31. If char(k) = 0, then
∑
P∈φ−1(Q) eP (φ) = deg(φ).

Remark 2.32. Morphisms are ramified at only finitely many points.

Theorem 2.33 (Hurwitz). Let φ : D → C be a non-constant morphism of smooth curves
over a field k of characteristic 0. Then

2(genus(D)− 1) = 2 deg(φ)(genus(C)− 1) +
∑

P∈D(k)

(eP (φ)− 1). (2.20)

2.9 The Chevalley–Weil theorem

The following theorem, due to Chevalley and Weil, is crucial to our methods. We borrow
the statement as presented in [16, §C.5].

Theorem 2.34 (Chevalley–Weil). Let φ : X → Y be an unramified covering of normal
projective varieties defined over a number field k. Then there exists a finite extension K/k
such that φ−1(Y (k)) ⊂ X(K).
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2.10 The Hasse–Weil bound

Weil extended Hasse’s bound on the number of points on an elliptic curve over a finite
field to the case of curves of higher genus. The result, a corollary of his proof of the Weil
conjectures (see [27, §V.2]) in the case of curves, is as follows:

Theorem 2.35. Let C/Fq be a smooth, projective, geometrically irreducible curve of genus
g ≥ 1 defined over a finite field. Then

|#C(Fq)− (q + 1)| ≤ 2g√q. (2.21)

2.11 A multidimensional Hensel’s lemma

Hensel’s lemma is a fundamental result in p-adic analysis. For the usual statement and
proof, see for instance [17, Theorem 3]). For our purposes in Section 3.6, we shall require
the following multidimensional analogue:

Theorem 2.36 (Multidimensional Hensel’s lemma). Let f(x, y) ∈ Zp[x, y], and suppose

1. vp(f(0, 0)) ≥ r, for some integer r ≥ 1, and

2. vp
(
∂
∂xf(0, 0)

)
= 0.

Then for any y0 ∈ pr Zp (mod pr+1) there exists a unique x0 ∈ pr Zp (mod pr+1) such that
f(x0, y0) = 0.

Proof. Write
f(x, y) = a00 + a10x+ a01y +

∑
i+j≥2

aijx
iyj . (2.22)

Our two assumptions tell us that a10 6≡ 0 (mod p) and vp(a00) ≥ r. Since we are specifying
f(x0, y0) = 0, we can rewrite (2.22) in the form

x0 = (−a10)−1

a00 + a01y0 +
∑
i+j≥2

aijx
i
0y
j
0

 . (2.23)

Since y0 ∈ pr Zp (mod pr+1), we have vp(xi0y
j
0) ≥ r when i+ j ≥ 2, and so

vp

 ∑
i+j≥2

aijx
i
0y
j
0

 ≥ 2r ≥ r + 1. (2.24)
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Thus, we can recover x0 uniquely, modulo pr+1, as

x0 = (−a10)−1 (a00 + a01y0) . (2.25)

Corollary 2.37. Let f(x, y) ∈ Zp[x, y], and suppose

1. vp(f(x0, y0)) ≥ r, for some integer r ≥ 1, and

2. vp
(
∂
∂xf(x0, y0)

)
= 0.

Then for any y1 ∈ y0 + pr Zp (mod pr+1) there exists a unique x1 ∈ x0 + pr Zp (mod pr+1)
such that f(x1, y1) = 0.

Proof. Apply Theorem 2.36 to f̃(x, y) = f(x− x0, y − y0).

Remark 2.38. See, for instance, Eisenbud [10, §7.7] for an even more general statement.

2.12 The Jacobian variety

The definition of the Jacobian variety JacC of a curve C is rather involved. We only have a
passing need for it, and we only require a few of its properties. In this section we give a very
brief description, without proofs, of the properties we need. See Milne [20], for instance, for
a fuller description.

Fix an algebraic extension field L of k, so k ⊆ L ⊆ k. We characterise the Jacobian as a
dimension g = genus(C) abelian variety over k such that

JacC(L) ∼= Pic0(C/k)Gal(k/L). (2.26)

We should, therefore, explain briefly what an abelian variety is.

Definition 2.39. [20, §1] A group variety over k is a variety V over k together with
morphisms

m : V × V → V,

inv: V → V,

and an element ε ∈ V (k) such that the structure on V (k) defined by m and inv is that of a
group with identity element ε. A complete group variety (see [13, II.4]) is called an abelian
variety.
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Chapter 3

Two-cover descent

In this chapter we introduce two-cover descent. This is a procedure that in many cases allows
one to prove that a curve has no rational points. The method is described for hyperelliptic
curves in [4] and [5], and in [3] for non-hyperelliptic genus 3 curves: the case of interest to
us. For technical details, we refer to [3].

3.1 Setup

Let C be a smooth projective plane curve with defining equation

C : f(x, y, z) = 0,

for some homogeneous degree 4 polynomial f ∈ Z[x, y, z], together with equations `1, . . . , `7 ∈
Z[x, y, z] defining an Aronhold set of bitangents (see Definition 2.27). In the following de-
scription, we may take k = Q, Qp or R — all fields of characteristic zero.

We define a partial map

δ : C(k) 99K
(
k∗/k∗2

)6

P 7→
(
`1(P )
`7(P ) , . . . ,

`6(P )
`7(P )

)
. (3.1)

The description given here is valid only for points P ∈ C(k) for which `i(P ) 6= 0 for all
i ∈ {1, . . . , 7}. This is why δ is only, for now, a partial map. We will see in the next section
how the existence of syzygetic quadruples allows one to extend the domain of definition of
δ to all of C(k).
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In fact, for each place v ∈ k, we have the following commutative diagram, which is funda-
mental to the two-cover descent method.

C(Q)
(
Q∗ /Q∗2

)6

C(Qv)
(
Q∗v /Q∗2v

)6
.

δ

ρv

δv

(3.2)

The vertical maps arise from the inclusion Q ↪→ Qv.

3.2 Using the syzygetic relations

In order to extend the partial map given in (3.1) to a well-defined map on all of C(k), we
need a way of evaluating the map at points P ∈ C(k) for which some bitangent from the
Aronhold set vanishes: `α(P ) = 0, with α ∈ {1, . . . , 7}. Fortunately, the syzygetic quadruples
we introduced in Section 2.7 provide precisely such a tool.

Suppose `α(P ) = 0. As we saw in Section 2.7, there are 315 syzygetic quadruples, and
necessarily the bitangent `α features in 45 of these.

In what follows, we refer to such a quadruple as {`α, `i, `j , `k}, and assume further that
`i(P ) 6= 0, `j(P ) 6= 0 and `k(P ) 6= 0. We can always find such a quadruple, for `α(P ) =
0 =⇒ `i(P ) 6= 0 for all i 6= α (else the point P would be a contact point of two distinct
bitangents, forcing P to be singular).

Since this quadruple is syzygetic, on k[x, y, z]/(f) we have the congruence

`α`i`j`k ≡ dc2 (mod f), (3.3)

for some d ∈ k∗ and c ∈ k[x, y, z]. Thus, working modulo squares, we can recover

`α ≡ d`i`j`k (mod �). (3.4)

Therefore, we replace `α(P ) = 0 with

˜̀
α(P ) ≡

`α(P ) (mod �), if `α(P ) 6= 0,

d`i(P )`j(P )`k(P ) (mod �), if `α(P ) = 0.
(3.5)
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3.3 Explicit description

Next we explicitly describe a family of two-covers Dδ to our curve C. While we shall not
use this model explicitly in our computations, it helps for the theoretical understanding of
the procedure and for the correctness proof of our method. We follow closely the approach
in [5, §3], defining our two-covers in the same way, but providing commentary.

We consider smooth plane quartics, and we write the projective model as

C : f(x, y, z) =
∑

i+j+k=4
aijkx

iyjzk = 0, (3.6)

with coefficients aijk ∈ k.

Definition 3.1. A two-cover is a non-singular absolutely irreducible cover D of C such
that

• D/C is unramified and Galois over k,

• Autk(D/C) ∼= (Z /2Z)6 (where here the exponent of six arises as 2g = 2× 3 = 6).

Remark 3.2. By a cover D of C, we mean there is a non-constant morphism φ : D → C,
but our notation suppresses the covering map φ. Moreover, the condition that the cover be
absolutely irreducible means that D is irreducible over k.

We construct a two-cover of C as follows, working in the affine patch A2
2 given by specialising

z = 1. First, precisely as in (3.3), for each i ∈ {1, . . . , 6} we augment the pair `i, `7 with
two more bitangents `j , `k, say, to form a syzygetic quadruple, so on k[x, y, z]/(f) we have

`i`j`k`7 ≡ dic2
i (mod f), (3.7)

with di ∈ k∗ and ci ∈ k[x, y, z]. This enables us to define, for each i ∈ {1, . . . , 6}, a smooth
projective curve Dδi , where δi ∈ k∗ is a representative of a class modulo squares, with affine
model

Dδi :



δi`i(x, y, 1) · `7(x, y, 1) = u2
i

`j(x, y, 1) · `k(x, y, 1) = diδiv
2
i ,

uivi = ci(x, y, 1),

f(x, y, 1) = 0,

(3.8)

together with maps

πi : Dδi → C

(x, y, ui, vi) 7→ (x : y : 1). (3.9)
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Theorem 3.3. Each covering curve Dδi is an unramified, degree 2 cover of C.

In order to prove Theorem 3.3, we will require the following lemma:

Lemma 3.4. Suppose D → C is a degree 2 morphism of smooth curves and that k(D) =
k(C)(√g) for some nonzero g ∈ k(C). If Q ∈ C(k) and ordQ(g) is even, then D/C is
unramified over Q.

Also, note that the property of a morphism being unramified is stable under base extension
[31, Lemma 02GA], so we may pass to the algebraic closure: D → C is unramified if and
only if D(k) → C(k) is unramified. Let P ∈ D and Q ∈ C with π(P ) = Q. Then the
pullback π∗ : k(C)→ k(D) induces an injection of local rings

OC,Q ⊂ OD,P , (3.10)

and, taking completions,
ÔC,Q ⊂ ÔD,P . (3.11)

Since C is smooth, we may realise ÔC,Q ∼= k((T )) as the formal Laurent series in a uni-
formiser T at Q (see [29, ch. 2, §2.2]).

Proof of Lemma 3.4. Write ordQ g = 2m, for m ∈ Z. Then

√
g = Tm

√
c2m + c2m+1T + c2m+2T 2 + . . . (3.12)

= Tm
√
c2m

√
1 + c2m+1

c2m
T + c2m+2

c2m
T 2 + . . ., (3.13)

with c2m 6= 0.

In each case, we take a square root of a Laurent series with constant term 1, and such a series
is a perfect square in k((T )). Thus, we see that g ∈ k((T )) ∼= ÔC,Q and so ÔC,Q ∼= ÔD,P .
Thus for any uniformiser T at Q, the ramification index

eP (π) = ordP (π∗T ) = 1, (3.14)

and so the cover is unramified.

Proof of Theorem 3.3. To reduce the number of subscripts, we write D = Dδi and π = πδi .
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The cover π : D → C induces a morphism of function fields

π∗ : k(C)→ k(D) ∼= k(C)
(√

δi`i
`7

)
(3.15)

g 7→ g ◦ π.

Consider an arbitrary point Q = [X : Y : 1] ∈ C(k). Then, looking at (3.8), only the first
equation provides any new information: combined with the third equation, we recover the
second equation. The coordinate ui is a root of a univariate quadratic polynomial over k,
for a maximum of 2 possibilities. The third equation then specifies vi uniquely. Thus the
degree of the cover is 2.

Now, since `i and `7 are bitangents, we have

ordQ

√
`i
`7
∈ {−4,−2, 0, 2, 4}. (3.16)

Thus, we may apply Lemma 3.4 to complete the proof.

Now, as we did in (3.8), we define, for each δ = (δ1, . . . , δ6) ∈ (k∗)6, a smooth projective
curve Dδ with affine model

Dδ :



δi`i(x, y, 1) · `7(x, y, 1) = u2
i , i ∈ {1, . . . , 6},

`j(x, y, 1) · `k(x, y, 1) = diδiv
2
i , i ∈ {1, . . . , 6},

uivi = ci(x, y, 1), i ∈ {1, . . . , 6},

f(x, y, 1) = 0.

(3.17)

Proposition 3.5. Dδ/C is a two-cover.

Proof. The extension

k(Dδ) = k(C)
(√

δ1`1
`7

, . . . ,

√
δ6`6
`7

)
(3.18)

is a compositum of unramified quadratic extensions (by Lemma 3.4), and therefore is also
unramified. Furthermore, the six automorphisms σj : Dδ → Dδ given by σ∗j (uj) = −uj and
σ∗j (ui) = ui for i 6= j generate a group in Autk(Dδ/C) that is isomorphic to (Z /2Z)6.
Last, we require that Dδ is absolutely irreducible. That is, we are to show that (3.18) is a
field extension of degree 64 over k. So we need to show that the square roots in (3.18) are
independent. Since the bitangents `1, . . . , `7 form an Aronhold set, there are no syzygetic
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triples among them. We use the result in [3, Corollary 5.3(a)] that every class in JacC [2]
can be written as a difference of contact points of bitangents. We see that the syzygetic
quadruples generate the relations modulo squares, and so the absence of syzygetic triples
forces the square roots to be independent.

Proposition 3.6. The Dδ/C are twists of one another.

Proof. It is straightforward to check that the isomorphism class of Dδ as a cover of C only
depends on the square classes of the δi. Therefore, if we write 1 = (1, 1, 1, 1, 1, 1), then we
see that over k(

√
δ1, . . . ,

√
δ6) we have that Dδ is isomorphic to D1. It follows that over k,

all Dδ are isomorphic.

So now we have a collection of twists Dδ/C. If it is true that any rational point on C has
a rational preimage on one of the covers Dδ, then we call such a set of covers a covering
collection. This motivates us to prove the following result:

Proposition 3.7. The Dδ form a covering collection.

Proof. Suppose the curve C has a k-rational point P ∈ C(k). If we let P = (x, y, 1) and
δ(P ) = (δ1(P ), . . . , δ6(P )) =

( ˜̀1(P )
˜̀7(P ) , . . . ,

˜̀6(P )
˜̀7(P )

)
, then we can rearrange the equations (3.17)

defining Dδ to solve for ui and vi for each i ∈ {1, . . . , 6}. Note that ui = 0 will occur if `i = 0
or `7 = 0, and vi = 0 is possible otherwise. We conclude that P ∈ C(k) has a k-rational
preimage on Dδ(P ).

Remark 3.8. Now we have a covering collection Dδ over k. Applying the Chevalley–Weil
theorem, we see that the Dδ are all isomorphic over a finite extension field K/k. We may
therefore conclude that there are only finitely many Dδ in our covering collection. We spell
out this argument explicitly below.

We define Cov(2)(C/k) as the covering collection Dδ.

Remark 3.9. Geometric class field theory (see Serre [28, §2]) gives that over k, there is
only one isomorphism class of two-covers for a given curve C. It follows that we can view
Cov(2)(C/k) as the set of isomorphism classes of two-covers of C over k.

Lemma 3.10. Suppose that Dδ(1) and Dδ(2) both have a rational point above the same point
P ∈ C(k). Then Dδ(1) and Dδ(2) are isomorphic.
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Proof. Say Q1 ∈ Dδ(1)(k) and Q2 ∈ Dδ(2)(k) with πδ(1)(Q1) = πδ(2)(Q2) = P = (x, y, 1) ∈
C(k). From the defining equations (3.17) of the Dδ(α) , we see that for i ∈ {1, . . . , 6} we have

δ
(1)
i `i(x, y, 1) · `7(x, y, 1) = (u(1)

i )2, (3.19)

δ
(2)
i `i(x, y, 1) · `7(x, y, 1) = (u(2)

i )2.

So, working modulo squares, we see that

δ
(1)
i ≡ `i(x, y, 1) · `7(x, y, 1) ≡ δ(2)

i (mod �), (3.20)

and so the result follows.

Remark 3.11. Lemma 3.10 implies that the map δ : C(k) → (k∗/k∗2)6 can be interpreted
as a map C(k) → Cov(2)(C/k), sending P ∈ C(k) to the unique two-cover of the form Dδ

that has a rational preimage above P .

The next definition and proposition will play an important part in our method.

Definition 3.12. The (two-)Selmer set Sel(2)(C/k) ⊂ Cov(2)(C/k) is the set of isomor-
phism classes of everywhere locally solvable two-covers of C:

Sel(2)(C/k) =
{

(φ : D → C) ∈ Cov(2)(C/k) : D(kv) 6= ∅ for all places v of k
}
. (3.21)

Proposition 3.13. If Sel(2)(C/k) = ∅, then C(k) = ∅.

Proof. Suppose Sel(2)(C/k) = ∅ but P ∈ C(k). By Remark 3.11, we have a map C(k) →
Cov(2)(C/k), sending P ∈ C(k) to the two-cover, φ say, that has a rational preimage above
P . Then φ ∈ Sel(2)(C/k), so the Selmer set is non-empty. This contradiction completes the
proof.

The following results allow us to pinpoint precisely which δ we are to include to make up
a finite covering collection. Let S be the set of primes containing 2 and the primes of bad
reduction for the curve C. Then

ZS = Z
[

1∏
p∈S p

]
, (3.22)

and, writing s = #S,
Z∗S /Z∗2S = 〈−1, p1, . . . , ps〉 ∼= µs+1

2 , (3.23)

where µ2 = {±1} denotes the second roots of unity. Note that, as abelian groups, we have
µ2 ∼= F2.
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Lemma 3.14. We have

Z∗S /Z∗2S = {α ∈ Q∗ /Q∗2 : vp(α) ≡ 0 (mod 2) for all p 6∈ S}. (3.24)

Proof. Let α ∈ {α ∈ Q∗ /Q∗2 : vp(α) ≡ 0 (mod 2) for all p 6∈ S}. By the unique factorisa-
tion of integers, write α = ±qe1

1 . . . qerr with qi ∈ Z prime and ei ∈ Z. Then

qi 6∈ S ⇐⇒ ei ≡ 0 (mod 2)

⇐⇒ α ≡ ±pf1
1 . . . pfss (mod �), with fi ∈ {0, 1}

⇐⇒ α ∈ Z∗S /Z∗2S .

Theorem 3.15. Suppose that f ∈ Zp[x, y, z], where p is an odd prime that does not divide
I27(f). Let C : f(x, y, z) = 0 be the smooth plane quartic curve defined by f , and suppose
that `1, . . . , `7 is an Aronhold system of bitangents defined over Q. If P ∈ C(Qp), then all
components of δ(P ) have even valuation at p.

Proof. Let `j , `k be a pair of bitangents such that `i, `j , `k, `7 form a syzygetic quadruple,
for some 1 ≤ i ≤ 6. This means that restricted to C, we have `i`j`k`7 = dici(x, y, z)2, for
some di ∈ Q∗p and ci ∈ Qp[x, y, z]. Our assumptions imply that C has good reduction at p, so
the 28 bitangents of C must reduce to distinct bitangents over Fp as well, and their contact
points are distinct. In particular, we have that vp(di) = 0. It follows that the parities of
vp(`i(P )/`7(P )) and vp(`j(P )/`k(P )) agree. Furthermore, we have that the reduction of P
can be a contact point of at most one bitangent modulo p, so at most one of these valuations
is nonzero. It follows that δ(P ) has only even valuation components.

Remark 3.16. We will need the special case of the theorem with f ∈ Z[x, y, z] and P ∈ C(Q).

Corollary 3.17. If S is the set of primes containing 2 and the primes of bad reduction,
then {Dδ : δ ∈ (Z∗S /Z∗2S )6} is a finite covering collection for C over Q.

Proof. Suppose a prime p 6∈ S. Then p is an odd prime that does not divide I27(f). So, by
Remark 3.16, if P ∈ C(Q), then all components of δ(P ) have even valuation at p. Thus we
can conclude by Lemma 3.14 that each of these components is an element of Z∗S /Z∗2S .

To prove that the Selmer set (defined in (3.21)) is finite, we require the following lemma:

Lemma 3.18. Suppose δ = (δ1, . . . , δ6) ∈ (k∗)6 has a component of odd valuation at a
prime p of good reduction. Then Dδ(Qp) = ∅.
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Proof. Suppose there exists a Qp-rational point Q ∈ Dδ(Qp). Then Q lies above a Qp-
rational point P ∈ C(Qp). But then Theorem 3.15 implies that all components of δ(P ) have
even valuation at p, contradicting our hypothesis.

Theorem 3.19. The two-Selmer set Sel(2)(C/Q) is finite.

Proof. We saw in Remark 3.11 that we can identify two-covers φ ∈ Cov(2)(C/Q) with
vectors δ = (δ1, . . . δ6) ∈ (Q∗ /Q∗2)6. We need to show that only finitely many of these two-
covers are everywhere locally solvable. To do so, we show that the 2-Selmer set Sel(2)(C/Q),
which we now view as a subset of (Q∗ /Q∗2)6, lies in the finite set (Z∗S /Z∗2S )6.

Identify φ ∈ Sel(2)(C/Q) with δ ∈ (Q∗ /Q∗2)6. Since φ ∈ Sel(2)(C/Q), we have Dδ(Qv) 6= ∅
for all places v of Q. Then Lemma 3.18 implies that all components of δ must have even
valuation at primes of good reduction for C. So, for all i ∈ {1, . . . , 6}, we have vp(δi) ≡ 0
(mod 2) for each p 6∈ S. Thus, by Lemma 3.14, each δi ∈ Z∗S /Z∗2S , and the result follows.

We saw in Proposition 3.5 that the compositum k(C)
(√

δ1`1
`7
, . . . ,

√
δ6`6
`7

)
is unramified and

of degree 26 = 64. So the Riemann–Hurwitz formula (2.20) gives

genus(Dδ) = 64(3− 1) + 1 = 129. (3.25)

Let p be a prime of good reduction for C, so p - I27(f). We have a reduction map

Dδ(Qp)→ D̃
(p)
δ (Fp), (3.26)

where D̃(p)
δ (Fp) is the reduction (introduced in Section 2.5). Now we reduce each of the

equations (3.17) defining Dδ modulo p, and argue precisely as in the proof of Theorem 3.15.
So, if all components of δ have even valuation at p, then we can conclude that all points in
Dδ(Qp) reduce to non-singular points. It follows that D̃(p)

δ (Fp) has only non-singular points.
So by Hensel lifting, any point in D̃(p)

δ (Fp) lifts to a point in Dδ(Qp).

The above observation allows us to prove the following proposition.

Proposition 3.20. If p is a good prime satisfying

√
p+ 1
√
p
> 258 = 2× genus(Dδ), (3.27)

and δ has components of even valuation at p, then Dδ(Qp) 6= ∅.
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Proof. The Hasse–Weil bound (2.21) for the number of points on a non-singular curve over
a finite field of cardinality q implies that if q satisfies the inequality (3.27) with q in place of
p, then the reduction D̃(q)

δ (Fq) has a non-singular point. So if p is a good prime satisfying
(3.27), then D̃(p)

δ (Fp) has a non-singular point. Since this point lifts to a point in Dδ(Qp),
we see then that Dδ(Qp) 6= ∅.

It follows that we can only have Dδ(Qp) = ∅ for primes p of bad reduction — of which there
are only finitely many — or for primes satisfying p < 2582 = 66564. For any particular p,
testing whether Dδ(Qp) is empty can be decided in finite time (see Bruin [2, §5] for the
relevant algorithms). Therefore, for each Dδ it is a finite computation to check whether Dδ

has points everywhere locally, and hence whether δ ∈ Sel(2)(C/Q). By Corollary 3.17, we
know that we only have to consider the finitely many candidates δ ∈ (Z∗S /Z∗2S )6.

We saw that if p > 66564 = 2582, then #D(p)
δ (Fp) > 0, and so we conclude that δ lies

in the local image δp(C(Qp)). Thus, for good primes larger than 66553, we see — with no
computation necessary — that the local image consists of all the unramified δ. Moreover,
for any prime p ≤ 66553, including the good primes, it is in principle possible that the local
image provides non-trivial information; that is, consists of fewer than all of the unramified
elements.

3.4 Practical considerations for avoiding combinatorial ex-
plosion

With Proposition 3.7, we have an explicit covering collection for smooth plane quartics over
Q with a rational Aronhold system. With the procedures in Sections 5.4 and 5.5, we show
that the local image δv(C(Qv)) can be computed in finite time for any place v. Furthermore,
from Theorem 2.35, we see that for finite places v of residue characteristic larger than 66564
where C has good reduction, the local image consists of the full unramified part. That gives
us, at least in theory, a procedure to compute Sel(2)(C/Q):

Let S be the set of primes containing 2 and the primes of bad reduction. Let T be the set of
S together with all the primes below 66564. To determine Sel(2)(C/Q), we can enumerate
all δ ∈ (Z∗S /Z∗2S )6 and check if ρv(δ) ∈ δv(C(Qv)) for all v ∈ T , where ρv is as defined in
(3.2).

This procedure has the severe practical problem that the set (Z∗S /Z∗2S )6 is usually too
large to enumerate completely. We need a way to identify a subset that is small enough
to enumerate. In this section we discuss how to do this. We use that (Z∗S /Z∗2S )6 can be
considered as an F2-vector space. Instead of working with the images δv(C(Qv)) as sets, we
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consider the F2-vector spaces they generate, and determine the F2-vector space of (Z∗S /Z∗2S )6

that is the intersection of the inverse images under ρv. As an added benefit, we find that
the F2-vector space spanned by δv(C(Qv)) is often easier to determine than the set itself.

In (3.1) we defined a map δv : C(Qv) 99K (Qv /Q∗2v )6, and we saw in Section 3.2 how to
extend this to a map on all of C(Qv). We can, in fact, extend the map δv to Div(C/Qv) by
linearity. The idea is as follows. For a divisor D =

∑
nPP , we define δv(D) =

∏
P δv(P )nP .

Not all divisors defined over Qv can be represented as a sum of points on C defined over
Qv, but [3, §6.2.2] explains how, by taking norms in appropriate ways, we can deal with
this appropriately. This yields a group homomorphism

δv : Div(C/Qv)→ (Q∗v /Q∗2v )6. (3.28)

Furthermore, [3, Prop. 6.4] shows that this map (denoted there by C̃) is trivial on principal
divisors, so we obtain a homomorphism

δv : Pic(C/Qv)→ (Q∗v /Q∗2v )6. (3.29)

Because we assume that C(Qv) is non-empty, we can identify JacC(Qv) with Pic0(C/Qv) ⊂
Pic(C/Qv) and restrict δv.

Fact 3.21. The resulting map

δv : JacC(Qv)→ (Qv /Q∗2v )6, (3.30)

is a group homomorphism, with kernel 2 JacC(Qv).

Remark 3.22. Technically, we should still be referring to δv : JacC(Qv) → (Qv /Q∗2v )6 as a
partial map, as it is only defined for those divisor classes that can be represented by divisors
over Qv. However, if C(Qv) 6= ∅ then this is true for all divisor classes, while if C(Qv) = ∅
then we need not consider the map δv at all.

Observe now that we know precisely the size of the local image δv(JacC(Qv)):

Proposition 3.23. The local image δv(JacC(Qv)) forms a subspace of (Q∗v /Q∗2v )6 with

dimF2 δv(JacC(Qv)) = dimF2 JacC [2](Qv) + 3 log2 |2|v. (3.31)

Proof. This is a restatement of [24, Lemma 12.10] with k = Q and p = 2 (in their paper
they consider curves with defining equations of the form yp = f(x)).
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For a point P0 ∈ C(Qv) we fix an Abel-Jacobi map u : C(Qv) → JacC(Qv) given by Q 7→
[Q− P0]. It now follows we get a commutative diagram

C(Qv) (Qv /Q∗2v )6

JacC(Qv) (Qv /Q∗2v )6,

δv

u u′

δv

(3.32)

where u′ is translation over δv(P0).

It follows that δv(C(Qv)) ⊂ δv(P0) + δv(JacC(Qv)). Therefore, we see that the F2-vector
space spanned by δv(C(Qv)) lies in the vector space spanned by δv(P0) and δv(JacC(Qv)).

Since we know the size of δv(JacC(Qv)), it can often be determined without an exhaustive
search. For instance, if we can find a finite set of points {P0, P1, . . . , Pm} ⊂ JacC(Qv) such
that

〈δv(Pi)δv(P0) : i = 1, . . . ,m〉

has the expected dimension, then this span equals JacC(Qv). In practice, one finds that
often the set of contact points of the bitangents that happen to be Qv-valued points has
this property.

Write Wv = δv(C(Qv)). A key observation is that

Sel(2)(C/Q) =
⋂
v∈S

ρ−1
v (Wv) ⊂

⋂
v∈S
〈ρ−1
v (Wv)〉 =

⋂
v∈S

ρ−1
v 〈Wv〉. (3.33)

where the intersections are taken over all places v ∈ S, including the infinite place. In
particular,

Sel(2)(C/Q) ⊂
⋂
v∈S

ρ−1
v 〈Wv〉. (3.34)

While ρ−1
v 〈Wv〉 is not finite-dimensional, we can reduce the problem to a finite one with the

observation that the Selmer set is supported on S-units, as we saw in the proof of Theorem
3.19, so we can refine (3.2) to

C(Q)
(
Z∗S /Z∗2S

)6

C(Qv)
(
Q∗v /Q∗2v

)6
.

δ

ρv

δv

(3.35)
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Now
Sel(2)(C/Q) ⊂

⋂
v∈S

ρ−1
v 〈Wv〉. (3.36)

and this time the right-hand-side is finite-dimensional, and so can be computed using F2-
linear algebra. We detail the process in the next section.

3.5 Span computations

As we saw in Section 3.4, we should next compute

V =
⋂
v∈S

ρ−1
v (span(Wv)), (3.37)

working with spans to prevent combinatorial explosion.

Note that we can now view the 2-Selmer set as the subset

Sel(2)(C/Q) = {w ∈ V : ρv(w) ∈Wv ∀v ∈ S} ⊆ V. (3.38)

It follows, therefore, that

V = ∅ =⇒ Sel(2)(C/Q) = ∅ =⇒ C(Q) = ∅. (3.39)

In practice, we may quite easily compute span(Wp) for some p ∈ S′ = {q1, . . . , qs′} ⊆
S \ {∞}: if the span of the p-adic contact points of the bitangents has dimension six (nine
for p = 2), then this makes up the whole span. So, we compute

#(Z∗S /Z∗2S )6 = 26(s+1) (3.40)

as a trivial upper bound on the size of the 2-Selmer set. We tighten the bound by computing

Vv = (Z∗S /Z∗2S )6 ∩ ρ−1
v (span(Wv)). (3.41)

In particular, we compute the sizes of

V∞ = (Z∗S /Z∗2S )6 ∩ ρ−1
∞ (span(W∞)), (3.42)

(for details, see Section 5.5), and

V∞,q1 = V∞ ∩ ρ−1
q1 (span(Wq1)) = V∞ ∩ Vq1 , (3.43)
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and, for i = 2, . . . , s′,

V∞,q1...,qi = V∞,q1...,qi−1 ∩ ρ−1
qi (span(Wqi)) = V∞ ∩ Vq1 ∩ · · · ∩ Vqi . (3.44)

Thus we construct a descending chain

Sel(2)(C/Q) ⊆ V ⊆ V∞,q1,...,qs′ ⊆ · · · ⊆ V∞,q1 ⊆ V∞ ⊆ (Z∗S /Z∗2S )6. (3.45)

If there exists an i such that V∞,q1,...,qi = 0, then we conclude via (3.39) that C(Q) = ∅.
In practice, though, this has never occured. We can, however, reduce the bound further
by computing local images at small primes, as we explain in the following sections. If we
include all primes p < 66564, we will obtain the best possible bound. In practice, however,
computing only at primes p < 50 will usually suffice.

3.6 Computing the local image

In this section we set out the definitions and structure theorems that allow us to compute
the local image δv(C(Qv)). Details of the implementation are postponed to Chapter 5.

It is straightforward to provide an explicit description of C(Qp) consisting of three affine
patches in P2

Qp :

C(Qp) = {(x : y : 1) : x, y ∈ Zp, f(x, y, 1) = 0} (3.46)

∪ {(x : 1 : pz) : x, z ∈ Zp, f(x, 1, pz) = 0} (3.47)

∪ {(1 : py : pz) : y, z ∈ Zp, f(1, py, pz) = 0}. (3.48)

We require a finite, computable presentation of C(Qp) carrying sufficient information to
compute the local image δp(C(Qp). To this end, we make the following definitions.

Definition 3.24. An (affine) p-adic disc of radius p−e and centre (x1, y1) ∈ Z2
p is

(x1 +O(pe), y1 +O(pe)) = {(x, y) ∈ Z2
p : |x− x1|p ≤ p−e and |y − y1|p ≤ p−e}. (3.49)

Definition 3.25. We say that the affine p-adic disc (x1+O(pe), y1+O(pe)) is Hensel-liftable
if, writing f̃ = f(x1 + pe−1X, y1 + pe−1Y ) and normalising f̄ = 1

pv · f̃ , where

v = min{vp(a), where a runs through the coefficients of f̃}; (3.50)
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(0, 0) is a non-singular point on the reduction f̄ ≡ 0 (mod p).

So now we have a description of C(Qp): we take a collection of Hensel-liftable affine p-adic
discs that covers C(Qp). We take the discs to be sufficiently small that δp is constant on
each disc.

Lemma 3.26. Let p be an odd prime, and suppose (x1 + O(pe), y1 + O(pe)) is a Hensel-
liftable affine p-adic disc that contains at most one bitangent contact point. Then δp is
constant on the disc (x1 +O(pe), y1 +O(pe)).

Proof. If a bitangent `i does not have zeroes in the disc, then `i(x1 +O(pe), y1 +O(pe)) ∈
pvc + O(pv+1), for some v ≥ 1. So, `i is constant modulo squares on the disc: `i ≡ pvc

(mod �).

If we can compute δp on the disc using only bitangents that don’t have a zero in the disc,
we get a constant value on the disc. Otherwise, there is at most one bitangent that has a
zero in the disc. In this case, we can use syzygetic relations (precisely as in (3.5)) to avoid
using that bitangent.

Remark 3.27. For p = 2 we require smaller discs: argue as above, but this time the values
of the bitangents on the disc lie in discs of the form 2vc+O(2v+3). Again, we can take our
discs sufficiently small to ensure this is the case for all but at most one bitangent.

Remark 3.28. After obtaining a collection of Hensel-liftable p-adic discs, we can get a col-
lection of discs small enough that δp is constant in only finitely many refinement steps. In
fact, often no refinement is necessary!

Before we present the lifting algorithm in a future section, a few remarks are due regarding
the behaviour of any such method at the prime p = 2. We can write

Q∗p = {peu : u ∈ Z∗p, e ∈ Z}. (3.51)

In particular, p - u, so for p 6= 2 the Legendre symbol

(
u

p

)
:=


1, ∃a such that a2 ≡ u (mod p), and u 6≡ 0 (mod p),

−1, @a such that a2 ≡ u (mod p),

0, u ≡ 0 (mod p),

(3.52)

is nonzero. This leads us to define a map as follows.
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Lemma 3.29. When p is odd, we have an isomorphism

ϕ : Q∗p /Q∗2p
∼−→ Z /2Z×Z /2Z

peu 7→
(
e,

(
u

p

))
, (3.53)

where for α ∈ Q∗p we set e = vp(α) and u = αp−e ∈ Z∗p.

Proof. We specify the map ϕ entirely:

ϕ : Q∗p /Q∗2p
∼−→ Z /2Z×Z /2Z (3.54)

1 7→ (0, 0)

p 7→ (1, 0)

u 7→ (0, 1)

pu 7→ (1, 1).

For the case p = 2, we observe that

(Z /8Z)∗ =
{
±1̄,±3̄

} ∼= (Z /2Z×Z /2Z). (3.55)

Thus, we define the morphism in the following way.

Lemma 3.30. When p = 2, we have an isomorphism

ψ : Q∗2 /Q∗22
∼−→ Z /2Z×(Z /2Z×Z /2Z) (3.56)

2eu 7→ (e, u (mod 8)) ,

where for α ∈ Q∗2 we set e = v2(α) and u = α2−e ∈ Z∗2.

Proof. Write out the eight cases to argue precisely as in the proof of Lemma 3.29.

Last, we consider the Archimedean case v =∞.
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Lemma 3.31. We have an isomorphism

ρ : R∗ /R∗2 ∼−→ Z /2Z (3.57)

x 7→ 1
2(1− sgn(x)) =

0, if x > 0,

1, if x < 0.

Proof. All positive reals are squares, so vanish in the quotient. The other class consists of
the negative reals.
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Chapter 4

Constructing plane quartics with
all bitangents rational

In this chapter we describe how to construct smooth plane quartics with a rational Aronhold
system. The construction is based on the classic relation between del Pezzo surfaces of degree
2 and smooth plane quartic curves. We only describe the construction here to the extent
needed to carry it out. For further details we refer the reader to Dolgachev [9, chs. 6,8].

Consider a set P = {p1, . . . , p7} ⊆ P2 of seven distinct points in the projective plane. We
assume further that the points lie in general position; that is, no three of the points are
colinear and no six lie on a conic.

Consider next the linear system L of cubic curves through these points. Since the points lie
in general position, it follows that L is of dimension two and consists solely of irreducible
cubics. Any subpencil in L will have two base points outside the base locus of L. The line
spanned by these points (or the common tangents should these points coincide) is a point in
the dual plane. Thus we may identify the net L with the plane P2 in which the seven points
lie. We write L∨ for the dual variety of the linear system as a linear projective variety, and
φ for the duality map (see Dolgachev [9, §1.2.2]).

Theorem 4.1. The rational map φ : L 99K L∨ given by the linear system L is of degree 2.
It extends to a regular degree two finite map π : X → L∨ ∼= P2, where X is the blow-up of
the set P. The branch curve of φ is a smooth plane quartic C in L∨, and the ramification
curve R is the proper transform of a curve B ⊆ L of degree 6 with double points at each pi.
Conversely, given a smooth plane quartic curve C, the double cover of P2 ramified over C is
a non-singular surface isomorphic to the blow-up of 7 points p1, . . . , p7 in general position
in the plane.
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Proof. See Dolgachev [9, ch. 8].

The surface X is a del Pezzo surface of degree 2. We shall not delve very far into the theory
of del Pezzo surfaces — for that see Dolgachev [9, ch. 8] — but for present purposes we
shall make the following definitions.

We consider weighted projective space V = P(2 : 1 : 1 : 1), where V (k) is the set of nonzero
vectors in k

4 modulo the equivalence relation ∼ such that (r1 : u1 : v1 : w1) ∼ (r2 :
u2 : v2 : w2) if and only if there is a nonzero scalar λ ∈ k such that (r1, u1, v1, w1) =
(λ2r2, λu2, λv2, λw2). Algebraic subvarieties of V are defined analogously to those in ordi-
nary projective space, but now one considers weighted homogeneous ideals of the polynomial
ring k[r, u, v, w].

Definition 4.2. A del Pezzo surface of degree 2 is the variety

X : r2 = f(u, v, w), (4.1)

for some non-constant polynomial f ∈ k[u, v, w], where X ∈ P(2 : 1 : 1 : 1).

Remark 4.3. Clearly, the del Pezzo surface X defined by (4.1) is branched along f(u, v, w) =
0 as a cover of P2

uvw.

We interpret the theorem via the following commutative diagram:

X

P ⊆ P2
xyz C ⊆ P2

uvw.

σ π

φ=(f1:f2:f3)
(4.2)

Blowing up P ⊆ P2
xyz gives a morphism σ : X → P2

xyz, and π : X → P2
uvw is the regular

degree two finite map extending φ, whose existence is guaranteed by Theorem 4.1. It suffices,
therefore, for us to provide a full description of the map φ : P2

xyz → P2
uvw, explaining how

the bitangents to C arise in the construction.

Let f ∈ k[x, y, z]3 be a cubic form, so f =
∑
aijkx

iyjzk for some positive integers i, j, k
satisfying i + j + k = 3. There are ten monomials of degree 3, so if we stipulate that
f vanishes at each of the seven points of P, this leaves a 10 − 7 = 3-dimensional solution
space 〈f1, f2, f3〉. Thus we may take our rational map φ to be that given by φ = (f1 : f2 : f3).

Now we follow Dolgachev’s exposition [9, §6.3.3], emphasising the key points. Lines ` ∈ P2
uvw

are the image of non-singular elements of P2
xyz if and only if ` intersects C transversally;

that is, without tangency. Tangent lines ` ∈ P2
uvw therefore arise as the images of irreducible

cubic curves with a singularity at an element of P. Bitangents are the images of varieties
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with two singularities, which may in fact coincide, should it be an inflection bitangent. As
Dolgachev argues, the preimage in P2

uvw of a bitangent in P2
xyz is either an irreducible cubic

Fi with a double point at pi, or the union of a line pipj and the conic Kij passing through
the point pk, k 6= i, j. There are clearly 7 bitangents of the former kind, one for each of the
points pi of P, and it makes sense to denote the bitangent corresponding to Fi by `i. We
denote those bitangents corresponding to pipj +Kij by `ij . There are

(7
2
)

= 21 of these, and
so we have indeed taken account of all 28 bitangents of C.

Dolgachev argues further that the 7 bitangents we have denoted `i form an Aronhold set.
The key point, from our perspective, is that if we take points p1, . . . , p7 ∈ P2(Q), then the
bitangents we obtain are defined by Q-rational data. Thus, the bitangents themselves are
defined over Q.

4.1 Syzygetic relations

Having now labelled our bitangents systematically, we may next determine the syzygetic
relations between the bitangents.

To aid us in the combinatorics, dealing only with 2-digit positive integers, it makes sense
to rewrite the `i as `i8. Now all the bitangents are denoted by a pair of digits from the set
{1, . . . , 8}. Following Dolgachev [9, §6.1.2], who himself follows Cayley, we denote such a
pair by a line |. If two pairs share a common digit, we make them intersect. Thus we have:

• Pairs of bitangents: 210 of type || and 168 of type ∨.

– There are
(8

2
)

= 28 bitangents (as we know from Theorem 2.20), and therefore
28× 27× 1

2 = 378 pairs of bitangents.

– Of these, 28×12× 1
2 = 168 share a common digit, and the remaining 378−168 =

210 do not.

• Triples of bitangents: 420 of type t and 840 of type ||| (these are syzygetic);
56 of type 4, 1680 of type ∨| and 280 of type ⊥ (azygetic).

– There are 28× 27× 26× 1
3! = 3276 triples of bitangents.

– Of these, 28× 6× 5× 1
2 = 420 take the form t, while 28× 15× 6× 1

3 = 840 take
the form |||.

– Of the remaining 2016, 28×6×1× 1
3 = 56 take the form4, 28×12×10× 1

2 = 1680
take the form ∨|, and the remaining 28× 12× 5× 1

6 = 280 take the form ⊥.
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• Quadruples of bitangents: 105 of type |||| and 210 of type � (syzygetic).
We are not concerned with the others (see [9, §6.1.2] for details).

– 28× 15× 6× 1× 1
4! = 105 of the form ||||.

– 28× 6× 5× 1
4 = 210 of type �.

• Aronhold sets: we have fixed an Aronhold set of type . There are 8 possibilities for
this — one for each of the 8 digits in {1, . . . , 8} that may have been omitted. Note
that our earlier choice to omit 8 was arbitrary.
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Chapter 5

Implementation details

In this chapter we describe the specific design choices we have made in implementing the
procedures described in Chapters 3 and 4.

5.1 Reordering the bitangents

From the description in Section 4.1 it follows that, given a labelled Aronhold set, the other
bitangents can be labelled uniquely based on the syzygetic relations. In this section we
describe how to recover such a labelling.

We ensure that `1, . . . , `7 form an Aronhold set by making sure that no triple is part of a
syzygetic quadruple. For each of the remaining bitangents `7, . . . , `28, we define a bitangent
labelling as follows.

Definition 5.1. A bitangent labelling assigns to each bitangent `j , where j ∈ {7, . . . , 28},
a 5-tuple v(j) = (a(j)

1 , . . . , a
(j)
5 ) ∈ F5

2, such that

a
(j)
i =

0, {`1, `i+1, `j} forms a syzygetic triple,

1, otherwise.
(5.1)

Remark 5.2. Suppose {`1, . . . , `7} forms an Aronhold system for C. Then v(7) = (1, 1, 1, 1, 1).

The configuration of syzygetic quadruples is essentially the same for each smooth plane
quartic, so in each case we see the same labels. Each label occurs once. Therefore, we may
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simply order the bitangents according to fixed labels. For instance, we can take

v(8) = (0, 0, 1, 1, 1), v(15) = (1, 1, 0, 0, 1), v(22) = (0, 1, 1, 1, 1),

v(9) = (1, 0, 1, 1, 0), v(16) = (1, 0, 0, 1, 1), v(23) = (1, 1, 1, 1, 0),

v(10) = (1, 1, 0, 1, 0), v(17) = (1, 1, 0, 1, 1), v(24) = (0, 0, 1, 0, 0),

v(11) = (0, 0, 0, 1, 0), v(18) = (1, 0, 0, 0, 0), v(25) = (0, 1, 0, 1, 1), (5.2)

v(12) = (1, 0, 1, 1, 1), v(19) = (0, 0, 0, 0, 0), v(26) = (0, 1, 1, 0, 1),

v(13) = (1, 1, 1, 0, 0), v(20) = (1, 0, 1, 0, 1), v(27) = (0, 1, 1, 1, 0),

v(14) = (1, 1, 1, 0, 1), v(21) = (0, 1, 0, 0, 0), v(28) = (0, 0, 0, 0, 1).

We can check that with this presentation, the action of the symplectic group Sp6(F2) —
defined as the group of transformations of V = F6

2 of determinant 1 preserving some skew-
symmetric, non-degenerate bilinear form Q : V × V → F2 — is through the permutation
group

Γ = 〈σ, τ〉 ≤ S28, (5.3)

where

σ = (1, 2)(4, 5)(8, 21)(10, 13)(11, 25)(14, 17)(16, 20)(19, 22)(24, 26)(27, 28), (5.4)

τ = (1, 3, 11)(2, 9, 21, 4, 12, 25)(5, 15, 19, 23, 26, 28)(6, 24, 27, 13, 16, 17)(7, 8, 10, 14, 18, 22).

Furthermore, with our bitangents thus labelled, we know precisely which quadruples are
syzygetic. Thus, after this relabelling, we can select syzygetic quadruples without further
computation.

5.2 Approximating C(Qp)

In Section 3.6 we introduced affine p-adic discs, and what it means for them to be Hensel-
liftable. Our lifting algorithm can then be characterised as one that tries to compute a
finite list of Hensel-liftable affine p-adic discs that cover all of C(Qp). The main (recursive)
algorithm — which we now present — then takes as input an affine f ∈ Z[x, y] and produces
as output a finite list of Hensel-liftable affine p-adic discs that cover all the Zp-valued
solutions of f(x, y) = 0. We will need this algorithm to compute local images at finite
places.
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Algorithm 1 lift – Lifting affine p-adic discs to the level of Hensel-liftability
Input: f, p, x0, y0, e

f – a bivariate polynomial in Z[x, y] describing a smooth affine curve
p – a prime
x0, y0 – integers
e – a non-negative integer

Output: Points
A list of Hensel-liftable affine p-adic discs that cover all Zp-valued solutions to f(x, y) = 0
satisfying x ≡ x0 (mod pe), y ≡ y0 (mod pe) . c.f. Definition 3.25

1: ∇f ←
(
df
dx ,

df
dy

)
2: Points ← {}
3: Wxy ← {(x, y) : x, y ∈ {0, . . . , p− 1} and f(x, y) ≡ 0 (mod p)}
4: for P in Wxy do
5: x1 ← x(P )
6: y1 ← y(P )
7: if ∃g ∈ ∇f such that g(P ) 6= 0 then
8: Add (x0 + pex1, y0 + pey1) ∈ Z2

p to Points.
9: else

10: g ← f(x1 + px, y1 + py)
11: Add the result of lift(g/ cont(g), p, x0 + pex1, y0 + pey1, e+ 1) to Points
12: end if
13: end for
14: return Points
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Further Explanation:
We loop through representatives (x1, y1) of the solutions x, y ∈ Fp to f̄(x, y) ≡ 0 (mod p).
If ∂f̄/∂x(x, y) 6≡ 0 or ∂f̄/∂y(x, y) 6≡ 0, then (x1, y1) lies p-adically close to the rational
points on L. Otherwise, we lift higher.

The idea then is to work through each of the affine patches (3.46), (3.47), (3.48). Normalise
f by writing f̃ = f/ cont(f), and compute lift(f̃, p, 0, 0, 0) in each case. Then, we obtain
3 point-sets, one for each affine patch:

P1 = {(xi +O(pei), yi +O(pei), 1)},

P2 = {(xj +O(pej ), 1, yj +O(pej )},

P3 = {(1, xk +O(pek), yk +O(pek)}.

Taking the union of these point-sets, we obtain our output list of Hensel-liftable affine p-adic
discs.

We postpone consideration of the real case C(R) until Section 5.5. For now, simply note
that there shall not be any need to go through any such expensive p-adic lifting process.

5.3 Computing d-values

We described in Section 3.2 how the existence of syzygetic quadruples {`α, `i, `j , `k} implies
that in the function field k(C) we have equalities of the form (3.3). To recover the d-values,
it is then simply a case of expanding the left-hand-side of the equality

`α`i`j`k + cf − d

 ∑
i+j≤2

aijx
iyjz2−i−j

2

= 0, (5.5)

to form a system of equations in c, d, aij . As {`α, `i, `j , `k} are syzygetic, this system has a
solution. We solve for d ∈ Q, and since we only care for the value of d modulo squares (c.f.
(3.4)), we take the square-free part of the product of the numerator and denominator of d
to obtain d̃ ∈ Z.

We see that 210 of our 315 syzygetic quadruples contain a bitangent from the Aronhold
set {`1, . . . , `7} (c.f. Section 4.1). For j = 1, . . . , 7, we pick out the syzygetic quadruples
including `j , compute and store the d-values (we called d̃ above) together with the indices
of the syzygetic triple formed by omitting `j . This list comes in useful in our local image
computations, which we next detail.
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5.4 Computing the local image at a finite place

With an approximation to C(Qp) now in hand (see Section 5.2), we continue to describe our
implementation of the two-cover descent method we set out in Section 3.1. In particular,
we now wish to compute the local image δp(C(Qp)).

Remark 5.3. Recall from Section 3.6 that the codomain of the map δv is (Q∗v /Q∗2v )6, which
can be considered as an F2-vector space. By Lemmas 3.29 and 3.30, it is isomorphic to F18

2

for v = 2, and isomorphic to F12
2 for odd finite v.

The following routine takes as input a Hensel-liftable affine p-adic disc and evaluates what
values δp takes on the points of C(Qp) that lie in the disc:

1. See if `1, . . . , `7 take well-defined values (modulo squares) on the p-adic disc. If so, we
simply determine the image via (3.1). For odd p, this means that the disc contains no
points of these bitangents.

2. Determine the values of the other 21 bitangents as well. For each i = 1, . . . , 7 for which
`i is not ostensibly constant (modulo squares) on the disc, see if there is a syzygetic
quadruple where the other three bitangents take well-defined values. Use the relations
(3.5) to replace the `i where necessary, and then compute once again via (3.1).

3. If we failed for one of i = 1, . . . , 7 in the two above steps, split the Hensel-liftable
p-adic disc of radius p−e into p Hensel-liftable discs of radius p−e−1 and repeat with
those discs.

Remark 5.4. Since the curve C under consideration is smooth, the contact points of bitan-
gents are necessarily distinct. So, if we reduce our radii sufficiently, we can ensure that no
more than one contact point lies in a p-adic disc. Thus we can deduce the value of all but
at most one of the bitangents. We conclude that step 2 listed above will always eventually
succeed.

We will shortly provide an example to clarify how the above routine works. Before that,
though, we should consider how to go about computing the local image at the infinite place
v =∞.
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5.5 Real bitangents

We deal now with the Archimedean case, where we consider the completion of Q at the
infinite place v =∞, so k = Q∞ = R. In this case we have the commutative diagram

C(Q)
(
Q∗ /Q∗2

)6

C(R)
(
R∗ /R∗2

)6
.

δ

ρ∞

δ∞

(5.6)

The idea is as before. If δ∞(C(R)) is empty, then we have a local obstruction, and so
conclude that C(Q) is empty. Otherwise, we know that the Selmer set Sel(2)(C/k) =∏
v∈S ρ

−1
v (δv(C(Qv)) lies inside ρ−1

∞ (δ∞(C(R))), so it is important we include this data
in the computations we set out in Section 3.5.

We saw in Lemma 3.31 that
R∗ /R∗2 ∼= {±1}, (5.7)

with all positive reals in one class and all negatives in the other. Thus our task is considerably
simpler in this case: there is no need to go through the expensive p-adic lifting process of
Section 3.6. Instead, we compute δ∞(C(R)) according to the following lemma, and the
resulting procedure.

Lemma 5.5. The map δ∞ is constant on the connected components of C(R).

Proof. Since bitangents to C : f(x, y, 1) = 0 are given by linear equations `i(x, y, 1) = 0,
each bitangent `i to C divides the plane A2(R) in two according to the sign of `i. Because
the bitangents have even order contact with the curve C, it follows that each component
of C(R) lies in one of these half-planes. From this we see that the sign of `i is constant on
each component of C, and so (3.1) implies the result.

Computation of δ∞(C(R)) is then simply a matter of picking a point on each connected
component. The full procedure is as follows. For simplicity we restrict our attention to the
affine patch found by setting z = 1.

1. Compute the resultant R = resx(fx, fy) ∈ R[x, y].

2. Let yi be the roots of the equations R(0, yi) = 0, and xi such that fx(xi, yi) =
fy(xi, yi) = 0. Write Pi = (xi, yi). So these are the critical points of f(x, y) as a real
function in two variables.
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3. Parametrise the lines PiPj for which f(Pi) and f(Pj) have opposite signs.

4. Compute the points Qr where f intersects the line PiPj . We obtain 2 or 4 points in
each case. In total we are guaranteed to find points on each of the real components.

5. Evaluate the Aronhold system of bitangents to f at each intersection point. Use the
isomorphism as abelian groups {±1} ∼−→ F2 to assign 0 to those bitangents eval-
uating to positive numbers, and assign 1 to their negative counterparts. Call the
resulting vector mr ∈ F7

2. Ignoring duplicates, this forms a set of vectors W =
{m11, . . . ,m71,m12, . . . ,m7t} with each mrs ∈ F7

2, and 1 ≤ r ≤ 7, 1 ≤ s ≤ t, for
some positive integer t.

6. We track the values (modulo squares) of `i/`7 at each of the intersection points: set

W̃ = {m11 +m71, . . . ,m61 +m71,m12 +m72, . . .m6t +m7t}. (5.8)

Remark 5.6. Although it is not necessary in computing the local image, it may be useful to
further compute the span of the translate of the entire set over a member, m11 +m71, say.
So

〈
≈
W 〉 = 〈m21−m11, . . . ,m61−m11,m12 +m72− (m11 +m71), . . . ,m6t +m7t− (m11 +m71)〉.

(5.9)
Remark 5.7. Proposition 3.23 allows us to check whether the local image obtained is of
the correct F2-dimension. If not, we exclude the local information at this place from our
computations, as described in Section 3.5.

Further Explanation:
ad 1–4. As Plaumann et al. [23, §1] show, plane quartic curves have at most 4 connected
components in the Euclidean topology. If we take lines joining the critical points of f(x, y)
— considered as a function in two variables — and assume that all 9 contact points lie in
the chosen affine patch A2

2, then we intersect each component at least once.

ad 5. We evaluate the bitangents at the intersection points identified in step 4. By con-
struction, the values obtained will be nonzero. Due to (5.7), we care only for the sign. The
isomorphism is given

{±1} ∼−→ F2

mi = 1
2(1− sgn(`i(x, y, 1)), (5.10)

for each i ∈ {1, . . . , 7}.

ad 6. Note that in forming W̃ we have followed an additive analogy of the construction of
(3.1), and so W̃ = δ∞(C(R)) as claimed.
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Remark 5.8. In principle, it could happen that one of the intersection points Qr is a contact
point of one of the bitangents `1, . . . , `7. In this case, one could use the syzygetic relations
to compute the value of δ∞ anyway (see Section 3.2). In practice, however, we have never
run into this problem.

5.6 A worked example

The routine suggested in the previous two sections is perhaps best illustrated by means of
an example:

Example 5.9. The plane quartic curve with minimal model

C : X4− 2X3Y + 23X2Y 2− 76X2Z2− 22XY 3 + 76XY Z2 + 16Y 4− 311Y 2Z2 + 1024Z4 = 0
(5.11)

has as bitangents:

Z = 0, 2X + 10Y − 5Z = 0,

2X − 11Y = 0, 2X + 31Y − 2Z = 0,

58X − 25Y + 38Z = 0, 6X − 75Y − 2Z = 0,

22X − 23Y + 10Z = 0, Y = 0,

62X − 47Y + 40Z = 0, 14X + 7Y + 10Z = 0,

78X − 135Y + 50Z = 0, 2X − 4Y + Z = 0,

54X − 3Y + 34Z = 0, 42X + 25Z = 0,

102X − 99Y + 70Z = 0, 122X − 125Y + 70Z = 0,

130X − 85Y + 78Z = 0, 6X − 5Y + 4Z = 0,

6X + 9Y + 10Z = 0, 14X − 14Y + 9Z = 0,

42X − 21Y + 22Z = 0, 22X + 5Y + 14Z = 0,

10X − 13Y + 10Z = 0, 18X − 15Y + 14Z = 0,

8X − 2Y + 5Z = 0, 10X − 13Y + 14Z = 0,

16X − 25Y + 12Z = 0, 14X − 35Y + 4Z = 0.

The bad primes are {2, 3, 5, 7, 13}. So this makes up our set S for computation (see Corollary
3.17). Thus #S = s = 5.

The routine takes the affine p-adic disc P = (25 + O(29), 80 + O(29), 1), and computes
`α(P ) 6= 0 for α ∈ {1, 2, 5, 6, 7}, but `3(P ) = `4(P ) = 0. In step 2 we find for `3 the
syzygetic triple {`7, `16, `17} and corresponding d-value d = −3, and for `4 the syzygetic
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triple {`7, `10, `23} with d-value d = 5. So we compute δ2(P ), with `3(P ) = 0 replaced by

˜̀3(P ) = −3 · `7(P )`16(P )`17(P ) = 5120 +O(214), (5.12)

and `4(P ) = 0 replaced by

˜̀4(P ) = 5 · `7(P )`10(P )`23(P ) = −3840 +O(213). (5.13)

We find
δ2(P ) = (0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) ∈ F18

2 . (5.14)

In full, we find 16 distinct local image vectors in F18
2 for the prime p1 = 2. In keeping with

our notation in Section 3.5, we denote by W2 the 16-element set of vectors in F18
2 obtained

in this way. We also find an explicit description of the map ρ2 : F36
2 → F18

2 , where the 36
arises as the F2-dimension of (Z∗S /Z∗2S )6, which is 6(s+ 1) = 6× 6 = 36.

In general, we obtain for each prime pi ∈ S \ {2,∞} a set of vectors in F12
2 , which we call

Wpi , accompanied by the map ρpi : F36
2 → F12

2 . Here the index i starts at 2, so p2 = 3,
p3 = 5, etc. allowing for p1 = 2.

For v =∞, we obtain a set of four vectors in F6
2:

W̃ = {(1, 0, 1, 0, 1, 1), (0, 1, 0, 1, 1, 1), (1, 1, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0)}, (5.15)

together with the corresponding map ρ∞ : F36
2 → F6

2.

Recall from Section 3.5 that
V =

⋂
v∈S

ρ−1
v (span(Wv)),

and we are to compute
Vv = (Z∗S /Z∗2S )6 ∩ ρ−1

v (Wv),

so
V∞ = (Z∗S /Z∗2S )6 ∩ ρ−1

∞ (W∞),
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and

V∞,3 = V∞ ∩ ρ−1
3 span(W3)

= V∞ ∩ V3,

V∞,3,5 = V∞,3 ∩ ρ−1
5 span(W5)

= V∞ ∩ V3 ∩ V5,

V∞,3,5,7 = V∞,3,5 ∩ ρ−1
7 span(W7)

= V∞ ∩ V3 ∩ V5 ∩ V7,

V∞,3,5,7,13 = V∞,3,5,7 ∩ ρ−1
13 span(W13)

= V∞ ∩ V3 ∩ V5 ∩ V7 ∩ V13.

We have in this case

Set (Z∗S /Z∗2S )6 V∞ V∞,3 V∞,3,5 V∞,3,5,7 V∞,3,5,7,13

F2-dimension 36 33 28 23 18 11

The set we are left with is amenable to enumeration: #V∞,3,5,7,13 = 211 = 2048.

We loop over
{δ ∈ V∞,3,5,7,13 : ρv(δ) ∈Wv for v < 50}.

We find that this set is empty, so its subset Sel(2)(C/Q) = ∅ as well. Hence we conclude via
Proposition 3.13 that here C(Q) = ∅.
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Chapter 6

Experimental results

We remarked in Chapter 3 upon how two-cover descent in many cases allows one to prove
that a curve has no rational points, and laid out in Chapter 5 precisely how we went about
such an implementation. We now present the results of these investigations.

6.1 Curve generation

We tested our implementation on 1000 randomly generated examples. We produced these
examples in the following manner.

1. We pick p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1), and randomly
select three more points p5 = (x5 : y5 : z5), p6 = (x6 : y6 : z6) and p7 = (x7 : y7 : z7)
by choosing x5, . . . , z7 uniformly randomly from {−B, . . . , B} (we used B = 20).

2. We test that p1, . . . , p7 lie in general position. If they do not, we discard the point and
generate new ones.

3. We construct a smooth plane quartic with all its bitangents defined over Q using the
procedure described in Theorem 4.1.

4. We compute the normalised Dixmier–Ohno invariants, utilising the implementation
of [18]. Should the invariants of two curves match, the two curves are isomorphic over
Q, and so we delete the latter. In fact, such a match happens very rarely: it does not
occur over our sample of 1000 curves, but larger samples do yield matches.

5. We test how many of our curves are everywhere locally solvable, using the algorithms
introduced in [2, §5].

49



6. We test if there are any obvious rational points on the curve, i.e., we see if any of the
contact points of the bitangents are rational. If so, we have determined that the curve
does have rational points.

7. We compute Sel(2)(C/Q) of this curve. If this set is empty then we have determined
that the curve has no rational points.

In order to test that the 7 points lie in general position, we need to check that no 3 points
lie on a line and no 6 lie on a conic. We do this by using the following lemmas.

Lemma 6.1. Three points (x1 : y1 : z1), (x2 : y2 : z2), (x3 : y3 : z3) lie on a line if and only
if

det


x1 y1 z1

x2 y2 z2

x3 y3 z3

 = 0. (6.1)

Proof. This is a standard result in linear algebra. See for instance Strang [33, §4.2].

Lemma 6.2. Six points {(xi : yi : zi) : i = 1, . . . , 6} lie on a conic if and only if the matrix
with rows x2

i , y2
i , z2

i , xiyi, xizi, yizi has determinant zero.

Proof. The proof is analagous to that of Lemma 6.1. Conics are defined by homogeneous
degree 2 equations

ax2 + by2 + cz2 + dxy + exz + fyz = 0. (6.2)

So if six points {(xi : yi : zi) : i = 1, . . . , 6} are coconic, applying Gaussian elimination
to the matrix with rows x2

i , y2
i , z2

i , xiyi, xizi, yizi we can force a zero column, and so the
matrix has determinant zero. Conversely, if the determinant is zero, then the rank of the
matrix is less than 6, and so we can express one column as a linear combination of the other
5. This gives an expression of the form (6.2), and so the points are coconic.

We check whether p1, . . . , p7 lie in general position by applying Lemma 6.1 to each triple of
points, and Lemma 6.2 to each of the seven subsets of six points.

6.2 Results

We checked our 1000 test curves for local solvability. There is one curve that does not have
Q2-points and there are six curves that do not have Q11-points. Interestingly, these curves
are all of good reduction at the prime p where they fail to have p-adic points.
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Over our data set of 1000 isomorphism classes of plane quartic curves (their minimal models
are listed in the file Curves.m), we exhibit the existence of rational points on 177 of the
curves. Two-cover descent allows us to conclude that all of the remaining 823 curves do not
have rational points.

Remark 6.3. Testing if any of the contact points of the bitangents are rational allows us
to relatively quickly show that C(Q) 6= ∅ in many cases. Working on a computer based on
four INTEL Core i5-4570 3.20GHz processors, we were able to generate and test the 1000
curve sample in 57 minutes.

6.3 Next steps

Our results for this 1000-curve data set were complete: we showed that either the curve has
rational points (177 cases), or does not (823 cases). No curves were left undecided. A priori,
it is however possible that a curve could have no rational points but survive a two-cover
descent: Bruin and Stoll saw this in the hyperelliptic case.

In [4], Bruin and Stoll applied a “Mordell–Weil sieve” computation to the hyperelliptic
curves surviving two-cover descent. Further details of the method, originally due to Scha-
raschkin, are available in their 2010 paper [6].

To implement a Mordell–Weil sieve routine in the non-hyperelliptic case we are concerned
with, we would require generators for JacC(Q), and a degree 1 divisor on C/Q. This in-
formation is available in [3], so a Mordell-Weil sieve approach should be practical for plane
quartic curves. It is, however, beyond the scope of this thesis, but would be an interesting
direction for future research.
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