
Efficient, Interpretable Robot Learning
via Control-Theoretic Approaches

by

Xubo Lyu

M.Sc., Beihang University, 2018
B.Sc., Northeastern University at Qinhuangdao, 2015

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

© Xubo Lyu 2024
SIMON FRASER UNIVERSITY

Spring 2024

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Xubo Lyu

Degree: Doctor of Philosophy

Thesis title: Efficient, Interpretable Robot Learning via
Control-Theoretic Approaches

Committee: Chair: Hang Ma
Assistant Professor, Computing Science

Mo Chen
Supervisor
Assistant Professor, Computing Science

Ye Pu
Committee Member
Assistant Professor, Department of Electrical and
Electronic Engineering
University of Melbourne

Ke Li
Committee Member
Assistant Professor, Computing Science

Jason Peng
Examiner
Assistant Professor, Computing Science

Inna Sharf
External Examiner
Professor
Department of Mechanical Engineering
McGill University

ii

Abstract

The realization of robotic intelligence requires the robots to autonomously sense, plan and
control themselves within unknown environments. With the advancements in machine learn-
ing and deep neural networks, learning-based approaches have demonstrated great potential
in enabling robots to accomplish complex tasks by actively learning from data. Reinforce-
ment Learning (RL), as a representative technique, empowers robots to learn skills from
interactive experiences of the environment via high-dimensional states and observations.
However, learning-based approaches can suffer from data inefficiency, making it costly and
unrealistic to apply them to real-world physical systems. Additionally, learning-based ap-
proaches lack formal mathematical tools for the analysis and interpretation of the learning
results. In contrast, the long-established, classical control-theoretic approaches can model
and derive control policies for dynamical systems in a data-efficient way and are equipped
with well-developed theories for system and control analysis. However, they often oper-
ate under the assumption of having prior knowledge about the system dynamics and the
environment and are limited to small-scale problems with low-dimensional state space.

In this dissertation, we aim to combine the control-theoretic principle with modern learning-
based approaches to achieve an efficient and interpretable robot learning process while scal-
ing up the classical control techniques. In chapter 3, we provide methods to improve learning
efficiency with control-based value functions in the subspaces of high-dimensional problems
that the learning-based approaches are tasked to solve. These value functions are efficiently
computed via control approaches and can be seamlessly integrated into the learning pro-
cess as novel reward and baseline functions. Then in chapter 5, we study the multi-agent
centralized learning efficiency under the hierarchy framework and show that a conditional
policy coupled together a special form of trajectory can achieve efficient asynchronous, hi-
erarchical decision-making. In chapter 4, we incorporate a linear controller and a linear
latent model into the gradient-driven end-to-end optimization over contrastive latent rep-
resentation space, making the learned system and control explainable as well as extending
the classical control from low to high-dimensional complex nonlinear scenarios.

Keywords: Robotics; Reinforcement Learning; Control Theory;

iii

Dedication

To my parents Baoling Yang and Shunchang Lyu, my sister Linlin Lyu, and my grandma
Yueting Zhang. Also to my wife Lili Liu, and our beloved baby Glenn. And to my lovely
neice and nephew Dayue, Darui.

iv

Acknowledgements

I would like to express my heartfelt gratitude to the many people who have played a pivotal
role in my Ph.D. journey. Without their support, encouragement, and contributions, the
completion of this thesis would not have been possible.

First and foremost, I express my profound thanks to my advisor, Prof. Mo Chen, whose
expertise, mentorship, patience, and rationality have deeply shaped and improved my aca-
demic growth. Meanwhile, I extend my heartfelt gratitude to my co-adviser, Prof. Ye Pu,
who has devoted invaluable guidance throughout my Ph.D. journey.

I would like to extend my sincere appreciation to the esteemed members of my thesis
committee: Prof. Jason Peng, Prof. Manolis Savva, Prof. Inna Sharf, and Prof. Hang Ma for
their honored presence, valuable insights, and critical review. Your expertise and unwavering
support have greatly enriched the quality of this thesis.

To my lab mates and colleagues at Simon Fraser University Multi-Agent Robotics Sys-
tem Lab and the University of Melbourne, including but not limited to Site Li, Rakesh
Shrestha, Seth Siriya, Hanyang Hu, Joe Zhang, Payam Nikdel, Mohammad Mahdavian,
Sahar Leisiazar, Pedram Agand, Jack Thomas, Geoff Nagy, Michael Lu, Minh Bui, Jimin
Rhim, Atefeh Sahraee, Salar Asayesh, Tara Toufighi, Sriraj Meenavilli and many others.
I am grateful for the time we spent together. The fun time, stimulating discussions, and
collaborative spirit have made this journey more enriching and enjoyable. I’m also thankful
to the industrial collaborators Amin Banitalebi Dehkordi and Yong Zhang, who provided
guidance and support for my research.

I’d like to especially thank my friends whom I met in Vancouver, Kai Zhao, Zhenqi Zhu,
Anjian Li, Zhitian Zhang, and their families. They gave me invaluable warmth and support
when I first stepped onto this new place.

Finally, I express my profound thanks to my family for their continuous encouragement
and understanding during the challenges of this endeavor. In many ways, they are the reason
I persevere. My gratitude also goes to all those whose names may not appear here but who
have supported me in various ways. Thank you all!

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Learning- and Control-Based Methods . 1
1.2 Thesis Overview . 3

2 Background 5
2.1 Reinforcement Learning . 5

2.1.1 Markov Decision Process . 5
2.1.2 Value Functions and Value Iteration 6
2.1.3 Policy Gradient Methods . 7

2.2 Optimal Control . 9
2.2.1 Time-to-Reach (TTR) Problem . 10
2.2.2 Linear Quadratic Regulator Problem 11
2.2.3 Model Predictive Control (MPC) . 12

2.3 Koopman Operator Theory . 13
2.3.1 Classical Koopman Control . 14
2.3.2 Deep Learning-Based Koopman Control 15

2.4 Multi-Agent Hierarchical RL . 17
2.4.1 Multi-Agent RL . 17
2.4.2 Options Framework . 18

vi

2.4.3 Multi-Agent Centralized Option Selection 19

3 Data-Efficiency and Exploration via Control-Based Value Functions 20
3.1 Chapter Overview and Related Work . 20
3.2 Time-To-Reach Value Function as Learning Reward 23

3.2.1 Preliminary . 23
3.2.2 Method . 23
3.2.3 Results . 28

3.3 Optimal Control Values as Policy Gradient Baseline 32
3.3.1 Related Work . 33
3.3.2 Method . 35
3.3.3 Results . 38

3.4 Chapter Summary . 48

4 Scalable and Interpretable Learning-Based Control 49
4.1 Chapter Overview and Related Work . 49

4.1.1 Koopman-Based Control. 51
4.1.2 Contrastive Representation Learning. 51
4.1.3 Relations to Our Work. 51

4.2 Task-Oriented Koopman-Based Control with Contrastive Encoder 51
4.2.1 Problem Formulation . 51
4.2.2 Contrastive Encoder as Koopman Embedding Function 53
4.2.3 Linear Matrices as Koopman Operator 53
4.2.4 End-to-End Learning for Koopman Control 55

4.3 Results . 56
4.3.1 Task Environments . 56
4.3.2 Result Analysis . 56
4.3.3 Comparison with Other Methods . 58
4.3.4 Comparison with Other MBRL Methods 61
4.3.5 Comparison with Other Encoders and Losses 61
4.3.6 Ablations Study of Hyper-parameters 62
4.3.7 Real-World Evaluation . 62

4.4 Chapter Summary . 63

5 Efficient Multi-Agent Centralized Learning with Asynchronous Options 64
5.1 Chapter Overview and Related Work . 64
5.2 A Conditional-Reasoning Approach for Multi-Agent Centralized Learning

over Asynchronous Options . 66
5.2.1 Problem Formulation . 66
5.2.2 Centralized MAPG over Asynchronous Options 67

vii

5.2.3 Option-Level Joint Trajectory . 68
5.2.4 Conditional Centralized Policy . 68
5.2.5 Algorithm . 69
5.2.6 An Extended Use-Case . 70

5.3 Results . 71
5.3.1 Task Specifications . 71
5.3.2 Implementation and Baselines . 73
5.3.3 Performance Comparison with Baselines 73
5.3.4 Performance Comparison with a state-of-the-art method 74
5.3.5 Centralized Learning: Fully v.s. Partially 75

5.4 Chapter Summary . 75

Bibliography 77

viii

List of Tables

Table 3.1 A list of available robot system models. A 3D Dubins car has three
states – position (x, y) and its heading angle (θ), describing the dy-
namics of a simple differential-wheeled robot. Its 5D extended version
involves speed v and turn rate ω as additional states. A 4D bicycle
model describes the motion of a four-wheeled vehicle with positions,
heading and specifically steering angle. For quadrotors, the 6D planar
model focuses on 2D plane motion with states of positions, velocities,
and 1-axis rotation. The 6D rotation model focuses on the 3-axis rota-
tion without translation while a simple point-mass model focuses solely
on 3D translation without any rotational dynamics. 26

Table 3.2 TTR function computational load. ‘Decomposed’ means we need to
decompose the approximate model into subsystems in order to reduce
computational cost. 28

Table 3.3 Reward functions tested in this work. I: set of intermediate states; G:
set of goal states; C: set of collision states. d(·): generalized distance
function involving angle. 30

Table 3.4 Comparison of the goal- and trap-reaching rate of quadrotor trap avoid-
ance task. 44

Table 3.5 Mean and standard deviation of system state transitional errors (over
10 rollouts) between using the lo-dim control-theoretic model and tar-
get, simulation model after applying the same control sequences from
the same initial state. The error is calculated based on Euclidean dis-
tance of 2D positions (unit: meters). 46

Table 3.6 Mean and standard deviation of evaluated return of final policy trained via
our method and standard PPO with various levels of entropy-based exploration. 47

Table 3.7 Cosine similarity is used to measure the closeness between the estimated pol-
icy gradient and the true gradient. Our method computes a more correct
gradient direction (larger cosine similarity at any sample size level) w.r.t.
true gradient, showing its effectiveness in providing better guidance on policy
updates. 47

ix

Table 4.1 Total control cost and its variation under different levels model error
using MO-Kpm and our method. 58

Table 4.2 Manually tuned and learned Q matrices for latent LQR, and their
associated control costs. 59

Table 4.3 Our method achieves comparable control cost to CURL while providing
more interpretable information about the system. 60

Table 4.4 Ablation results of final cost and model-fitting error regarding LQR
solving iteration and Koopman latent state dimension. The asterisk
refers to the parameter used in this work. 63

Table 5.1 Available agent options for two tasks. Options are discrete. j is the
index of jars from the WF task. h ∈ {0,1,2} is the tool index and
w ∈ {0,1} is the index of waiting Turtlebot from TD task. Options
have varying low-level time lengths depending on their termination
conditions and properties. 73

Table 5.2 Performance comparison with Mac-DQN, a state-of-the-art asynchronous
option-based MAPG method using Q-value-based, off-policy optimiza-
tion. 75

Table 5.3 Performance comparison between partially centralized and centralized
learning. Both use asynchronous options. 75

x

List of Figures

Figure 3.1 TTR functions at different heading angles for a simple car model.
The TTR function describes the minimum arrival time under as-
sumed system dynamics and is effectively used for reward shaping in
robotic RL tasks. 21

Figure 3.2 Overview of TTR-based reward shaping method 24
Figure 3.3 State definition of a simulated car. Left: full RL state with true

MDP model. Right: 3D lo-dim state of the approximate model. . . 25
Figure 3.4 Performance comparison of three different reward functions on the

car example under three model-free RL optimization algorithms:
DDPG, TRPO, and PPO. All results are based on the mean of five
runs. 29

Figure 3.5 Visualization of quadrotor’s sequential movement after learning from
TTR-based reward. The trajectory is connected by a combination of
the same quadrotor at a few different time snapshots. As shown in the
picture, the quadrotor has learned to make use of physical dynamics
(tilt) to reach the target as soon as possible 31

Figure 3.6 Performance comparison between TTR, distance, and sparse-based
rewards on quadrotor using three different model-free algorithms.
The results are based on an identical evaluation setting as a car ex-
ample and are concluded from five runs as well. Our TTR-based re-
ward achieves the best in terms of efficiency and performance. Left:
success rate comparison under DDPG algorithm Middle: success
rate comparison under TRPO algorithm Right: success rate com-
parison under PPO algorithm . 31

xi

Figure 3.7 Frequency histograms of (x, z, ψ) during different learning stages on
quadrotor task. Top row: log probability density vs. ψ; bottom row:
(x, z) heatmap. Only the TTR-based reward leads to near-complete
trajectories in the (x, z) heatmap between iterations 20 and 40, when
the other rewards still involve much exploration. Also, the shift (cir-
cled in red on Fig. 3.7c) of log probability density towards the target
θ at 0.75 rad occurs only when TTR-based reward is used, which
suggests TTR function is guiding learning effectively. 32

Figure 3.8 Overview of our method. Left: We propose a novel baseline func-
tion for policy gradient RL. Our method involves extracting RL info
from the robot and environment, which is used to formulate an as-
sociated optimal control problem. Subsequently, we compute the op-
timal control value function and used it as a baseline for the policy
gradient RL. Right: The RL info encompasses crucial aspects of the
RL problem, including robot types, RL full state, task reward, and
more. This RL info serves to form the key components of an optimal
control problem, which include the robot system model, objectives,
and constraints. Techniques like Model Predictive Control (MPC)
can then be employed to compute the value function, which can be
utilized as an RL baseline. 34

Figure 3.9 Car navigation environment . 39
Figure 3.10 The car navigation reward performance 39
Figure 3.11 The optimal control value heatmap for car navigation 40
Figure 3.12 Policy advantage estimation w/ and w/o OC baseline. We halt at 150

iterations as it adequately demonstrates the substantial difference in
advantage estimation between the two methods. 41

Figure 3.13 Comparison with other forms of baseline function. The curves show
the mean value of episodic reward. Their standard deviations (not
shown here) are within reasonable range without affecting the com-
parison. 41

Figure 3.14 Ablation study of OC baseline method 42
Figure 3.15 Quadrotor trap avoidance task environment and reward performance 44
Figure 3.16 Mean reward of policy trained via our method but with different levels of

noise between hi-dim and lo-dim state mapping. Data are averaged over 5
runs on the car navigation task. 45

Figure 3.17 2D positional trajectory of MPC and RL controller. MPC uses a lo-dim
model for planning and executes its control in target simulation while RL
controller uses our value-based warm-starting method to learn from pure
simulated experiences. Red blocks are obstacles, green block is the goal. . 46

xii

Figure 4.1 Overview of our method. We adopt an end-to-end RL framework
to simultaneously learn a Koopman model and its associated con-
troller. The Koopman model includes a contrastive encoder as the
embedding function and a linear matrix as the operator. The Koop-
man controller is integrated into the loop as a differentiable LQR
solution process to derive step optimal control and allow for the
gradient-based update. We optimize the entire loop by considering
the task cost as the primary objective and incorporating contrastive
and model prediction losses as auxiliary objectives. 52

Figure 4.2 Dynamical system behaviors obtained by learned Koopman controller. 57
Figure 4.3 Mean and standard deviation of error between reference cost and our

controller cost during learning. 57
Figure 4.4 Distribution maps of 2D data points projected via tSNE from latent

trajectories. z_next denotes true trajectories while z_pred denotes
predicted trajectories using learned Koopman model. 58

Figure 4.5 Learned Q matrix. Horizontal and vertical axes represent the rows
and columns of a 50× 50 diagonal matrix. 59

Figure 4.7 Relations of learned weights in latent Q matrix and original pixel
states . 60

Figure 4.6 Pole-zero plot of true and learned latent CartPole systems. 60
Figure 4.8 Comparison with well-known model-based RL methods. 61
Figure 4.9 Comparison with autoencoder and varying losses. 61
Figure 4.10 Snapshots of real robot curved trajectory at different time stamps

(seconds). 63

Figure 5.1 An illustration of synchronous and asynchronous option execution.
Each node refers to a state. Each arrow refers to a low-level action.
A sequence of nodes in red, green, or blue refers to executing one
option. The gray nodes are waiting states for option synchronization.
An asynchronous strategy is more efficient and requires much fewer
low-level waiting steps. 65

xiii

Figure 5.2 The structure of our method. Left: an example of the option-level
joint trajectory where two agents take their options asynchronously.
Observations sκ, sκ+1, ... are joint observations of all agents at option
step κ, κ+1, ... when at least one agent’s option is terminated. Option
oκ,oκ+1, ... are joint options at each option step. Batches of these
trajectories are used as training data to optimize the conditional
centralized policy. Right: The formation of centralized conditional
policy π̂θ where θ is the policy parameter. This policy is used to
generate the required joint options for a subset of agents Uκ to form
the option-level trajectories. 67

Figure 5.3 (a) Water Filling task, top and front view. Water levels are in yellow.
The positions of the three jars are circled in white, pink, and green.
Two robots are in the middle space (red dashed box). (b) Tool De-
livery task with one Fetchbot (gray) and two Turtlebots (green and
blue). Red dots are available at middle waypoints for transitions, and
the brown rectangle is a desk for passing tools. The progress bar on
the top right represents the current task stage. 71

Figure 5.4 Centralized policy learning using asynchronous option-based (ours),
synchronous option-based as well as low-level action-based methods
on (a) Water Filling and (b) Tool Delivery task. All experimental
results are summarized over 5 runs with random seeds. During each
training epoch, we gather a fixed number of low-level samples and
extract option-based trajectory data from them to update the policy.
The variation of starting reward levels in (a) is attributed to the
use of different option termination strategies, which can impact the
number of option steps included in a trajectory. Thus, the variation
in trajectory length influences the cumulative reward attained. . . 74

xiv

Chapter 1

Introduction

Robots are revolutionizing how we live and work. Whether it is the ever-present cars for daily
transportation, drones soaring above for surveillance and photography, or the precision of
robotic arms in industrial assembly, alongside the versatile quadruped and humanoid robots
offering a range of services, these machines consistently contribute to improved efficiency,
safety, and a notable reduction in human error in every facet of our lives.

Depending on the level of autonomy, robots can be roughly categorized as non-autonomous,
semi-autonomous, and fully-autonomous. Non-autonomous robots, like human-driven cars,
require extensive manual control. Semi-autonomous robots, such as industrial robot arms,
can be programmed by pre-defined rules to finish repetitive tasks and require human inter-
vention for adaptation. Fully-autonomous robots, exemplified by self-driving vacuums and
cars, possess the capability to self-maintain, actively sense their environment, and indepen-
dently perform tasks without the need for human intervention.

Achieving fully-autonomous robots is the hallmark of robotic research, and the road
toward it is promising yet challenging. One critical concern is that autonomous robots
need to adapt themselves to dynamic and a priori unknown environments. They must also
react reasonably based on rich, high-dimensional sensory observations (e.g. from cameras,
Radars, and LiDARs) of the surrounding environment. For instance, self-driving cars must
properly navigate under ever-changing conditions, from different types of roads, unexpected
construction, and crowded pedestrian areas, to diverse weather and lighting patterns. These
dynamic environmental factors are impossible to predict in advance and can vary every day.
Thus, it is infeasible to design decision rules for such infinite, real-time situations manually.

1.1 Learning- and Control-Based Methods

One way to enable the adaptation of autonomous robots in a dynamic and complex envi-
ronment is to allow them to self-learn knowledge and skills from a large amount of prior
data or experiences within various environments. That is also referred to as robot learn-
ing. Reinforcement Learning (RL), as a representative robot learning paradigm, is one type

1

of machine learning technique specially designed for the decision-making and skill acqui-
sition of autonomous robots. It has been demonstrated to be a powerful technique for
many highly complex robot control problems on drones, quadruped robots, manipulators
[94, 60, 96, 35, 102, 173, 150, 128, 101, 55, 70]. RL enables a robot to learn strategies from
historical data which is generated through robot-environment interactive experiences. It
has the advantage of dealing with problems with potentially high-dimensional states and
observations and is capable of directly learning a control policy mapping between states and
actions. Despite the advantages, RL also suffers from several issues. One of them is data
inefficiency, i.e., it requires an impractically large number of training samples to acquire
specific behavioral policy, especially when learning purely from ordinary experiences from
scratch. This is costly and even unrealistic in many robotic scenarios. Another issue lies
in the learning process and outcomes being encapsulated within a “black box” due to the
extensive use of parameterized structure (e.g. neural networks), which results in a lack of
explainability. This means we are unable to gain insights into the reasons behind or the
mechanisms through which the robotic system achieves specific performance levels.

In contrast to data-driven robot learning, classical control-theoretic approaches, exem-
plified by optimal control, stand out as an analytical, computational framework for modeling
and solving robot control problems. These approaches have been widely used in develop-
ing autonomous systems for decades, with numerous well-known control techniques such as
Linear Quadratic Regulator (LQR), Model Predictive Control (MPC), Reachability Anal-
ysis, etc [152, 20, 26, 105, 106, 153, 24, 113, 92]. Unlike RL methods that learn control
policy from prior data, classical control approaches solve problems with explicitly defined
objectives and conditions analytically or numerically without the need for data. Therefore,
classical control is data-efficient in solution finding and allows for theoretical analysis of the
system and solution. Moreover, the theory behind classical control-theoretic approaches has
been well-established for decades thus providing good interpretability for its computational
process and outcomes. However, classical control usually operates under the assumption
that the known, accurate system and environment model is available, which limits their
uses to problems with relatively low-dimensional states and perfect system knowledge.

Given the pros and cons of learning and control techniques, in this dissertation, we
seek the combinational methods to inherit the benefits of both, that is, combining the
control-theoretic principle with modern learning-based approaches to achieve an efficient
and interpretable robot learning process while scaling up the classical control techniques.
The presence of control provides us with approximate system priors for reduced sample
complexity, guided RL exploration, and theoretical analysis while the presence of learn-
ing enables direct control policy optimization over high-dimensional, sensory states and
observations, which is widely used in modern robot systems like self-driving cars. In this
dissertation, we will focus on reinforcement learning and optimal control to be the typical
learning-based and control-based approaches respectively.

2

1.2 Thesis Overview

The work presented in this thesis explores the combinational use of learning- and control-
based methods for robot control. The findings showcase improved data efficiency and inter-
pretability in learning, along with improved scalability on classical control. We start with
a review of fundamental concepts in reinforcement learning and optimal control in Chapter
2. Then, the following chapters are organized as follows.

Chapter 3: Efficient Learning via Control-Based Value Functions. One type of
RL method, also known as model-free RL, learns control policies from scratch purely based
on the interactive environment data. Though flexible to be applied to realistic robot control
problems with high-dimensional (hi-dim), continuous states, and observations, it tends to
be very data-inefficient and sometimes with poor exploration of the environment. In this
chapter, we present two works to incorporate optimal control-based value functions into the
learning process to alleviate its data inefficiency and enhance the exploration. We do this
by first identifying a relatively lower-dimensional (lo-dim) optimal control (OC) problem
from the given hi-dim RL problem. This OC problem summarizes key system dynamics and
environment information in a lo-dim subspace and allows efficient offline computation of its
value function in a data-free way. Then this OC value function can be used in the RL process
as an informative reward or baseline function. Even though the OC problem and its related
models are lo-dim and approximate in terms of the given hi-dim RL problem, we show
that its value function is still helpful in improving the data efficiency and exploration of the
learning process. Our methods can be extended to involve more task-specific information and
easily incorporated into any RL algorithm as an add-on without altering the RL structure
and are compatible with other techniques that may facilitate the RL process.

Chapter 4: Scalable and Interpretable Learning-Based Control. A key limi-
tation of classical control methods is their poor scalability when applied to hi-dim robot
control problems, primarily stemming from the computational complexity associated with
non-linearity, and at times, non-convexity of the problem objective function and system
model, especially with the use of neural networks. In this chapter, we explore the use of
Koopman Operator Theory [64, 13], a mathematical framework of using linear-evolving
latent representation and model to describe a nonlinear dynamical system, in the RL pro-
cess. We present task-oriented Koopman-based control that utilizes end-to-end RL as well
as a contrastive state representation to simultaneously learn the latent embedding, a lin-
ear Koopman operator, and the associated LQR controller. With the learned linear latent
system model and its LQR controller, our work scales optimal control from low to high-
dimensional, complex nonlinear systems, including pixel-based tasks and a real robot with
lidar observations. Meanwhile, our method provides extra interpretability to the learning
process due to the linear constraints of the learned model and controller. For example, we

3

can conduct stability and controllability analysis on the learned linear latent dynamical
system to gain insights into the best choice of latent state dimensions.

Chapter 5: Efficient Multi-Agent Centralized Learning over Asynchronous
Options. In this chapter, we primarily deal with the efficiency of multi-agent centralized
learning. Specifically, we consider the problem where multiple robots coordinate in a central-
ized manner among a set of discrete higher-level actions (i.e. actions encompassing multiple
primitive steps), also known as options [134]. One issue of this setup is that multi-robot
option executions are often asynchronous, that is, agents may select and complete their op-
tions at different time steps. This may cause inefficiency in centralized learning, as a subset
of robots may complete their options earlier, resulting in unnecessary waiting times for the
others which is a potential waste of time. Therefore, we proposed a conditional reasoning
approach that can employ multi-agent centralized policy gradient RL asynchronously over
options. With our method, the centralized robots can make decisions more efficiently: they
do not need to make synchronous decisions (e.g. waiting for the others to complete the
options), but make decisions whenever they need them, without interfering with the oth-
ers. We demonstrate the effectiveness of our method on several option-based multi-agent
cooperative tasks through empirical validation.

4

Chapter 2

Background

The works in this thesis mainly investigate the combinational methods of reinforcement
learning and optimal control, which enables a more efficient, interpretable learning process
as well as scalable control capability. In this chapter, we provide a review of fundamen-
tal concepts related to our works, ranging from reinforcement learning, optimal control,
Koopman operator theory as well as option-based multi-agent reinforcement learning, and
introduce the notations that we will be using in the following chapters.

2.1 Reinforcement Learning

Our works use reinforcement learning (RL) as the framework for learning-based robot con-
trol. In this section, we briefly introduce the related concepts of RL methods. RL is a sub-
field of machine learning that focuses on the decision-making process of intelligent agents
interacting with an environment, aiming to optimize their long-term cumulative rewards.
To do this, RL methods enable agents (e.g. robots) to learn behaviors through a trial-and-
error process and reward (or penalize) an agent’s behaviors to make them more likely to be
repeated (or avoided) in the future.

2.1.1 Markov Decision Process

RL is typically formulated as a process where an agent interacts with an environment,
which is mathematically modeled as a Markov decision process (MDP). In a typical MDP,
the interactions between the agent and environment are organized into episodes. At the
beginning of each episode, the agent starts in an initial state s0 ∈ S sampled from an
initial state distribution s0 ∼ p (s0), where S denotes the state space of the MDP. At each
discrete time step k1, the agent observes states sk ∈ S and selects an action ak ∈ A from
its policy ak ∼ π (ak | sk). The action ak is then executed within the environment, resulting
in a new state sk+1 and a scalar reward rk = r (sk,ak, sk+1) in response, where sk+1 is

1In this thesis, we denote discrete time step as k, continues time step as t.

5

sampled from the MDP dynamics sk+1 ∼ p (sk+1 | sk,ak) and rk reflects the desirability
of the state transition in the context of given task and is usually heuristically determined.
This interaction process can repeat up to a time horizon of T (could be infinite) and form
a trajectory τ = (s0,a0, r0, s1, . . . , sT−1,aT−1, rT−1, sT). The objective is to find an optimal
policy π∗ maximizing the expected discounted return J(π),

π∗ = arg max
π

J(π) (2.1)

J(π) = Eτ∼p(τ |π) [R(τ)] = Eτ∼p(τ |π)

[
T−1∑
k=0

γtrk

]
, (2.2)

where p(τ |π) = p (s0) ∏T−1
k=0 p (sk+1|sk,ak)π (ak|sk) is the distribution of trajectories induced

by a policy π. R(τ) = ∑T−1
k=0 γ

trk is the trajectory return, γ ∈ [0, 1] is a discount factor.

2.1.2 Value Functions and Value Iteration

An optimal policy can be found indirectly by first estimating its performance, namely, the
value of the policy. Value function is a fundamental concept in RL and serves as a crucial
component in almost every RL method. The value function estimates a policy’s expected
return when one initiates from every possible state and/or action and continues to follow
this particular policy indefinitely. As shown in Eq. (2.3), the on-policy state value function
V π(s) gives the estimated expected return if you start in state s and always act according
to policy π, while the optimal state value function V ∗(s) did the same except one always
acts according to the optimal policy π∗ (i.e. replacing π with π∗) in the environment,

V π(s) = Eτ∼p(τ |π,s0=s) [R(τ)]

Qπ(s,a) = Eτ∼p(τ |π,s0=s,a0=a) [R(τ)] .
(2.3)

Similarly, the on-policy state-action value function Qπ(s,a), commonly referred to as the
Q-function, estimates a policy’s expected future return from acting a at state s and then
following π for all future timesteps, while its optimal version uses the optimal policy.

All these value functions obey special self-consistency equations called Bellman equations
[11]. The basic idea behind the Bellman equations is that the value of the starting state is
the reward one expects to get from being there, plus the value of wherever one lands next,

V π(s) = Ea∼π(a|s),s′∼p(s′|s,a)
[
r(s,a, s′) + γV π (

s′)]
,

Qπ(s,a) = Es′∼p(s′|s,a)
[
r(s,a, s′) + γEa′∼π(a′|s)

[
Qπ

(
s′,a′)]]

,
(2.4)

6

where s′ and a′ are the next state and action after s and a. The optimal version is

V ∗(s) = max
a

Es′∼p(s′|s,a)
[
r(s,a, s′) + γV ∗ (

s′)]
,

Q∗(s,a) = Es′∼p(s′|s,a)

[
r(s,a, s′) + γmax

a′

[
Qπ

(
s′,a′)]]

,
(2.5)

and the right-hand side of the Bellman equation is also known as the Bellman backup.
Bellman equation can be used iteratively to compute the optimal value function, result-

ing in the classical method named value iteration. It uses dynamic programming to maintain
an approximate value function and iteratively improves it until convergence.

Vi+1(s)← max
a

{∑
s′

p
(
s′ | s,a

) {
r

(
s,a, s′) + γVi

(
s′)}}

(2.6)

where i is the number of iterations. Value iteration starts at i = 0 and V0 as a guess of the
value function. It then iterates, repeatedly computing Vi+1 for all states s, until it converges
to V ∗. One can then derive the optimal control policy as follows:

π∗(s) = arg max
a

{∑
s′

p
(
s′ | s,a

) {
r

(
s,a, s′) + γV ∗ (

s′)}}
, ∀ s ∈ S. (2.7)

With the strong theoretical guarantee of convergence, value iteration is efficient in solving
RL problems with lo-dim state and action spaces, especially when these spaces can be
represented in discrete, tabular form. Similarly, state action value function Q(s,a) also can
be used in the value iteration method, shown in Eq. (2.8). The good thing about Q(s,a) is
that it has an explicit representation of the value at each state-action pair, making it easy
to derive the optimal policy even if the transition model P (s′ | s,a) is not available.

Q∗(s,a)← Es′∼p(s′|s,a)

[
r(s,a, s′) + γmax

a′
Q∗ (

s′,a′)]
(2.8)

Estimating the value function V (s) or Q(s,a) and then deriving the optimal policy from
them is one of the mainstream methods of RL, named value-based method. More variants
of are exemplified by SARSA [111, 131], TD(λ) [131], and Q-learning [131].

2.1.3 Policy Gradient Methods

Other than the value-based method, an alternative yet powerful RL method is to directly
search and optimize the policy within the policy space, without estimating the value function
beforehand, which therefore is named the policy-based method.

One typical policy-based method that is mostly used in this thesis is the policy gradient
method [133]. The policy gradient method iteratively updates the parameters of a policy via
gradient ascent using an empirical estimate of the gradient of the policy’s expected return

7

to its parameters ∇πJ(π). To optimize the policy directly, we usually represent the policy
via a set of parameters θ as a parameterized policy πθ. To optimize the policy directly with
regard to the aforementioned objective J(πθ) = Eτ∼p(τ |πθ)R(τ), we utilize iterative gradient
ascent, where the policy parameters are updated at ith iteration with learning rate α by:

θi+1 = θi + α∇θJ (πθ)|θi
. (2.9)

In practice, we need an expression for the policy gradient which we can numerically
compute. This involves two steps: 1) deriving the analytical gradient of policy performance,
which turns out to have the form of an expected value, and then 2) forming a sample
estimate of that expected value, which can be computed with data from a finite number of
agent-environment interaction steps. From the results of [133, 160], the policy gradient can
be derived and estimated in an expectation form:

∇θJ (πθ) = ∇θEτ∼p(τ |πθ)R(τ)

= ∇θ
∫
τ
p(τ | πθ)R(τ)

=
∫
τ
∇θp(τ | πθ)R(τ)

=
∫
τ
P (τ | πθ)∇θ log p(τ | πθ)R(τ)

= Eτ∼p(τ |πθ)∇θ log p(τ | θ)R(τ)

≈ 1
|D|

∑
τ∈D

T∑
k=0
∇θ log πθ (ak | sk)R(τ),

(2.10)

where we can estimate it with a sample mean by collecting a set of episodes D = {τi}i=1,...,N

where each episode is obtained by letting the agent act in the environment using the policy
πθ and |D| is the number of trajectories in D. In practice, the return R(τ) in Eq. (2.10) can
be replaced by various other choices and result in different policy gradient methods.

R(τ)←
T∑

k′=k
γk

′−kr (sk′ ,ak′ , sk′+1)− b(sk′) (2.11)

R(τ)← r(sk,ak, sk+1) + γV πθ (sk+1)− V πθ (sk), (2.12)

where Eq. (2.11) leads to policy gradient with general baseline functions b(·) while Eq. (2.12)
leads to actor-critic method. These choices lead to the same expected value for the policy
gradient and help to reduce the variance of the gradient estimate. Schulman et al. later pro-
posed Generalized Advantage Estimation (GAE) [119], which is the most advanced return
and widely used in various policy gradient algorithms such as REINFORCE [160], TRPO

8

[117], and PPO [120]. The state value function in Eq. (2.12) can be estimated by

V i = arg min
V

E(sk,rk,s′
k)∼D

[
(yk − V (sk))2

]
, (2.13)

where yk = rk + γV i−1 (s′
k) is a target value that estimates the expected return of sk, and

is computed using the value function from the previous iteration V i−1. This method for
computing target values is referred to as a single-step bootstrap, and multi-step variants of
bootstrapping, such as TD(λ) [254], can also be used.

2.2 Optimal Control

The thesis explores integrating control-based solutions to enable an efficient learning process.
In this section, we introduce related concepts about optimal control problems and methods.
Optimal control is a fundamental discipline that determines the optimal control strategy for
a given system with known dynamics, such that a certain optimality criterion is achieved.
The optimality criterion is usually represented by a cost function that depends on both
the system’s states and the control inputs, meanwhile constrained by the system dynamics
(a.k.a. model). In continuous cases, the objective of optimal control is to establish a set of
differential equations that describe the trajectories of the control inputs in such a way as
to minimize the cost function. In discrete cases, the objective is to find a control sequence
over a horizon of time steps to minimize the cost function.

Differently from RL, optimal control involves a known cost function and dynamical sys-
tem model, allowing for mathematical computation of its optimal solution using analytical
or numerical methods, without the necessity of learning from environmental data. Math-
ematically, a (continuous) optimal control problem is defined by the dynamics function
ẋ(t) = f(x(t),u(t)) at continuous time t for the state x(t) and control input u(t) as well
as an objective function J over the trajectory x(·) and u(·) over the entire time horizon tf .
x(t) ∈ Rnx and u(t) ∈ Rnu are real-valued vectors at all t with dimensions nx, nu.

J(x(·),u(·)) = h(xtf) +
∫ tf

0
l(x(t),u(t), t)dt (2.14)

ẋ(t) = f(x(t),u(t)) for all t (System Dynamics constraint)

x(0) = x0 (Initial state)
(2.15)

The term l(x(t),u(t), t) is known as the instantaneous cost (or running cost) which is
accumulated over time and h(xtf) is terminal cost. They should be chosen to be nonnegative
and to penalize certain undesirable states, velocities, or controls. The goal of optimal control

9

is to find state-control trajectories {x(t),u(t) : 0 ≤ t ≤ tf} such that J is minimized:

x⋆(·),u⋆(·) = arg min
x(·),u(·)

J(x(·),u(·)) such that

ẋ(t) = f(x(t),u(t)) for all t (System Dynamics constraint)

x(0) = x0 (Initial state)

(2.16)

A variety of behaviors can be specified in this framework by modifying the instantaneous
cost. For example, (1) trajectory tracking for a trajectory xD(t) can be implemented by
penalizing squared error l(x(t),u(t), t) = ∥x(t)− xD(t)∥2, (2) minimizing effort can be
defined in terms of a control penalty ∥u(t)∥2, (3) minimum time to hit a target xtgt could
be implemented as an indicator function I [x ̸= xtgt] where I[·] is 1 if the condition is true,
and 0 otherwise, (4) obstacle avoidance can be implemented by a repulsive barrier that
decreases to 0 when the distance to the closest obstacle d exceeds some minimum buffer
distance dmin and increases to infinity as the distance shrinks to 0. One common form of this
barrier is l(x(t),u(t), t) = 1/d2 − 1/d2

min when d < dmin and l(x(t),u(t), t) = 0 otherwise.
Optimal control problem can also be formulated as a discrete version [141] where the

continuous time is replaced by a sequence of discrete time steps, which allows for numeri-
cal approximation and computation. However, the core concepts and components are still
the same. Depending on the different forms and meanings of cost functional and system
dynamics, several types of optimal control problems used in this thesis are illustrated.

2.2.1 Time-to-Reach (TTR) Problem

Many applications in engineering deal with minimum time control problems, whose goal is
to compute a control function that is capable of steering a dynamical system from a given
initial state to a desired target configuration in the shortest possible time [75, 168, 30].
In this case, the time needed to reach the target is considered a cost function. Hence, a
minimum-time problem can be recast in the form of an optimal control problem.

A TTR problem is formally defined as a two-player-zero-sum differential game following
the continuous system dynamics ẋ(t) = f(x(t),u(t),d(t)). A formal definition of the TTR
problem is about finding the time to reach the target Γ ∈ Rn with a compact boundary from
any starting point at x = x(0) when player I wants to maximize the time, while player II
uses a strategy to minimize the time with knowledge of player I’s current and past decisions
[168]. To this end, we begin by introducing the mathematical notion of the time to reach a
closed target with a compact boundary, given player I’s strategy as control u(·) and player
II’s strategy as disturbance d(·) over the entire trajectory horizon of the system,

Tx[u(·),d(·)] = min{t | x(t) ∈ Γ}, (2.17)

10

We use du to denote the control of player II d(t) with knowing the strategy of the control
u(t) of player I. Then, we have a differential game problem

ϕ(x) := min
d(·)

max
u(·)
Tx[u(·),du(·)], (2.18)

where ϕ(·) is called the lower value function of the differential game problem. In this pa-
per, we assume that the minimum and the maximum in Eq. (2.18) exist. Under this as-
sumption, the capturability set C∗ = {x ∈ Rn | ϕ(x) < +∞} coincides with the state space
Rn. Applying the dynamic programming principle, we can derive the following stationary
Hamilton-Jacobi-Isaacs (HJI) equation with viscosity solution is the value function ϕ of the
differential game Eq. (2.18):

H(x,∇ϕ(x)) = 0, in C∗\Γ

ϕ(x) = 0, on Γ,
(2.19)

where H denotes the Hamiltonian defined by

H(x,p) = min
a

max
b

{
−p⊤f(x, a, b)− 1

}
. (2.20)

Detailed derivations and discussions are presented in [7, 9, 34]. The viscosity solution ϕ(·) of
Eq. (2.19) is the so-called time-to-reach function, and it is a weak solution that is consistent
and unique in the domain. Having the lower value function ϕ as the HJI viscosity solution
guarantees that the numerical approximation we found for the viscosity solution will be the
one for the lower value function due to the viscosity solution’s uniqueness and consistency.
Mathematical tools from [93, 168] have been developed to solve Eq. (2.19) efficiently. The
TTR problem can reduce to a uni-variate optimization that is only dependent on mind(·)

or maxu(·) where Eq. (2.19) becomes a Hamilton-Jacobi-Bellman (HJB) equation.

2.2.2 Linear Quadratic Regulator Problem

The simplest class of optimal control problems is Linear Time-Invariant (LTI) systems with
its costs defined in a quadratic form of state x and control u, which is called the LQ problem.
The solution to the LQ problem is provided by the linear–quadratic regulator (LQR). The
optimal control for this problem can be determined analytically as a closed-form function
of the states. LQR problem has finite/infinite and discrete/continuous variations, and we
only discuss the infinite-horizon discrete LQR here.

Consider a discrete-time linear system with a quadratic cost described by

xk+1 = Axk + Buk (2.21)

11

J =
∞∑
k=0

(
(xk − x̄)⊤Q(xk − x̄) + u⊤

k Ruk
)
, (2.22)

where x̄ is the desired goal state. Q and R are positive semi-definite symmetric matrices
respectively. The magnitude of entries of Q penalizes error from the desired state, and the
magnitude of entries of R penalizes control effort. The optimal control at each time step k
can be shown to be a linear function of xk,

uk = −K(xk − x̄), (2.23)

where the LQR gain K =
(
R + B⊤PB

)−1 (
B⊤PA

)
is computed as a function of an un-

known matrix P. P is a unique positive definite solution to the discrete-time algebraic
Riccati equation (DARE) [140]

P = A⊤PA−A⊤PB(R + B⊤PB)−1B⊤PA + Q. (2.24)

Numerical methods are available for solving the Riccati equation for P. One simple way is
to iteratively update P following Eq. (2.24) from the right-hand side to the left-hand side
for many iterations until P converges. The significance of this LQR controller is that the
performance metric is made explicit rather than implicit. Moreover, it gives a closed-form
globally-optimal solution for any linear dynamical system model specified by A,B, so if
more information is gathered that yields a better estimate for A and B, the LQR method
can be applied directly to obtain the optimal gains.

2.2.3 Model Predictive Control (MPC)

MPC method is a process for solving the optimal control problem by deriving a closed-
loop controller from open-loop trajectories. Generally speaking, it simply replans a new
trajectory starting from the sensed state at each step. It executes some small portion of
that trajectory, senses the new state, and then replans again. By repeating this process,
MPC can cope with unexpected disturbances by dynamically calculating paths to return
to desirable states. MPC can handle very complex, nonlinear system dynamics and general
forms of the cost function, alongside unequal or equal constraints.

12

To define the MPC process, consider an optimal control problem in discrete time, where
we have the control loop operating at rate ∆t and a time horizon T = N∆t for optimization,

minx0:N+1,u0:N h (xN+1) + ∑N
k=0 l (xk,uk)

subject to: x0 = x̂0,

xk+1 = xk + f (xk,uk) ∆t, ∀k = 0, . . . , N,
g (xk,uk) ≤ 0 ∀k = 0, . . . , N,
xlb ≤ xk ≤ xub, ∀k = 0, . . . , N,
ulb ≤ uk ≤ uub, ∀k = 0, . . . , N,
gterminal (xN+1) ≤ 0,

(2.25)

where f is the system dynamics, g is general constraints of the problem, and xlb,xub,ulb,xub

are state and control ranges. MPC process performs the following steps:

1. Sense the current state xc as initial state.

2. Compute a finite-horizon optimal trajectory x0:T ,u0:T with initial state x0 = xc.

3. Only execute the first control uc = u0:∆t for t ∈ [0,∆t).

4. Repeat from step 1.

Nonlinear programming methods such as direct collocation and interior point method
(e.g. IPOPT solver [149]) are often used to solve MPC problems. As employed in practice,
MPC is a moderately complex procedure, and from a theoretical perspective, it is difficult to
analyze and prove stability and convergence properties. However, with careful tuning, MPC
can be an extremely high-performing and practical nonlinear optimal control technique.
There are several design decisions of note when implementing such an MPC controller: (1)
The time step ∆t must be long enough to allow the computation in step 2 to find an optimal
trajectory. (2) The time horizon T used in step 2 is an important variable because it should
be long enough for MPC to benefit from predictive lookahead, but not too long such that
computation time exceeds ∆t. (3) Model mismatch between the true system’s dynamics and
the model used in the optimizer will, in general, degrade MPC performance.

2.3 Koopman Operator Theory

The thesis explores using learning to enable scalable optimal control with interpretable
learning outcomes. We leverage Koopman operator theory and its related methods to achieve
this. The Koopman operator theory [64], first introduced in 1931, has recently emerged as
a leading framework for obtaining linear representations of nonlinear dynamical systems
from data. Its core idea is based on Koopman’s finding that a nonlinear dynamical sys-
tem may be represented by an infinite-dimensional linear operator acting on the space of

13

measurement functions of the system state. This ability to embed nonlinear dynamics in a
linear framework is particularly promising, as powerful and comprehensive techniques for
linear systems analysis and control can be used for the prediction, estimation, and control
of nonlinear systems.

Consider a discrete-time dynamical system that allows for external inputs:

xk+1 = f (xk,uk) , (2.26)

where x ∈ Rnx and u ∈ Rnu . Define the Koopman embedding function Ψ(xk,uk) where
Ψ : Rnx × Rnu → RnΨ . The Koopman operator with control inputs K is given by:

KΨ(x,u) ≜ Ψ(f(x,u), ∗). (2.27)

where ∗ indicates a choice of definition with ∗ = u indicating the input is dynamically
evolving while ∗ = 0 indicating the input does not evolve but only affects the state evolution.
In the thesis, we assume ∗ = 0 and the Koopman operator is only attempting to propagate
the observable functions at the current state and inputs to the future observable functions
on the state, such that KΨ(xk,uk) ≜ Ψ(f(xk,uk),0). In practice, a common choice of
Ψ(x,u) is to decouple its state and control component [124, 170]:

Ψ(x,u) =
[
Ψx(x) Ψu(u)

]⊤
, (2.28)

where Ψx(·) is a state-dependent function, Ψu(·) is a control-dependent function and in this
work, we assume it is identically linear to control Ψu = u. By merging Eq. (2.28), (2.27),
(2.26) and letting latent state and control representation to be z = Ψx(x) and v = Ψu(u),
we have a linear dynamical model in the latent space z ∈ Rnz and v ∈ Rnv :

Ψ(xk+1,0) =
[
A B

] [
Ψx(x) Ψu(u)

]⊤
=⇒ zk+1 = Azk + Bvk, (2.29)

where K =
[
A B

]
. Now Eq. (2.29) becomes our familiar linear system over the latent space

that allows well-established linear control and analysis, despite the considered discrete-time
dynamical system f is nonlinear. However, the Koopman operator requires the embed-
ding function to be infinite-dimensional, which is not realistic from a practical standpoint.
Therefore, the Koopman operator is usually approximated with a linear finite-dimensional
embedding function in a data-driven way.

2.3.1 Classical Koopman Control

Extended Dynamical Mode Decomposition (EDMD) [158] is one of the representative clas-
sical methods for Koopman control. To approximate the Koopman operator, it chooses

14

embedding function Ψ(x,u) as a set of user-defined scalar-valued functions:

Ψ(x,u) = [ψ1(x,u), ψ2(x,u), . . . ,] . (2.30)

Next, the relation described by Eq. (2.27) is now given as

Ψ (xk+1,uk) = KΨ (xk,uk) + e (xk,uk) . (2.31)

where e (xk,uk) is a residual (approximation error). Note that the matrix K advances Ψ
forward one-time step. Assuming that the total number of trajectories of the system has
been collected such that

X = [x1,u1, . . . ,xN−1,uN−1,xN ,uN ,xN+1] , (2.32)

where N is the number of recorded data points. The matrix K can be computed in a
least-squares approach, where K is determined by

min 1
2

N−1∑
i=1
∥e (xi,ui) ∥2 = min

K

1
2

N−1∑
i=1
∥Ψ (xi+1,ui)−Ψ (xi,ui) K∥2. (2.33)

Solving the least-squares problem yields

K = G†M (2.34)

where † denotes the Moore-Penrose pseudoinverse and

G = 1
N

N−1∑
i=1

Ψ (xi,ui)⊤ Ψ (xi,ui) ,

M = 1
N

N−1∑
i=1

Ψ (xi,ui)⊤ Ψ (xi+1,ui) .

Note that the computational burden of this approach grows as the dimension of Ψ
increases. The approach generally yields a better approximation as the dimension of Ψ
increases. Furthermore, the number of data points and their distribution across the state
space will have a large effect on the computed K matrix. The recorded data points need not
come from a single trajectory nor be sequential [157]. Multiple trajectories and trajectories
with missing data points can be used. The only requirement is the sum of residuals given
in Eq. (2.31) be defined by consecutive states (xk,xk+1) spaced equally in time.

2.3.2 Deep Learning-Based Koopman Control

The embedding function Ψ(·) provides intrinsic coordinates that globally linearize nonlinear
dynamics. Thus, finding an appropriate embedding function is the key to Koopman control.

15

Despite the immense promise of Koopman embeddings, Obtaining Ψ(·) has proven difficult
in all but the simplest systems as it is usually unknown and has to be summarized from
data. Classical methods such as EDMD require manual effort to select a set of nonlinear
basis functions, but often less accurate and scalable to complex systems. As the prevalence of
deep learning, the use of multi-layer neural networks is capable of representing any arbitrary
function, including the desired Koopman embedding function. Therefore, deep learning-
based approaches have recently been widely applied to find Koopman embeddings and
operators for control. Koopman embedding function Ψ and operator K are two components
represented by neural networks (NNs). Following Eq. (2.28), we can have

Ψ(x,u) =
[
Ψψ(x) Ψφ(u)

]⊤
, (2.35)

where ψ and φ are NNs parameters. In practice, multi-layer feed-forward networks are often
used. The objective is to identify key intrinsic latent embedding Ψψ and Ψφ for state and
control, along with dynamical system coefficients K. Normally, there are three high-level
requirements for the network, which correspond to three types of loss functions used in the
network training. Here, we assume Ψφ(u) = u.

• Intrinsic latent states that are useful for reconstruction. We seek to identify a few
latent states z = ψ(x) where the dynamics evolve, along with an inverse x = ψ−1(z)
so that the state x may be recovered. This can be achieved using an autoencoder
structure [6], where ψ is the encoder and ψ−1 is the decoder. The dimension Dim(z)
of the auto-encoder subspace is a hyperparameter of the network, and this choice may
be guided by knowledge of the system. Reconstruction accuracy of the auto-encoder
is achieved using the following loss:

∥∥x− ψ−1(ψ(x))
∥∥2.

• Linear dynamics. To discover the Koopman embedding function Ψ(·), we learn the
linear dynamics K =

[
A B

]
on the latent states, i.e., zk+1 = Azk + Buk. Linear

dynamics are achieved using the following loss: ∥ψ (xk+1)−Aψ (xk)−Buk∥2. More
generally, the linear prediction can be enforced over m time steps.

• Future state prediction. Finally, the intrinsic latent states must enable future state
prediction. Specifically, we identify linear dynamics in the matrix K. This corresponds
to the loss

∥∥xk+1 − ψ−1 (Aψ (xk) + Buk)
∥∥.

After identifying the latent linear dynamics for the considered nonlinear system, any
classical control methods such as LQR and MPC can be subsequently used to derive the
control over the latent space.

16

2.4 Multi-Agent Hierarchical RL

The last work of the thesis investigates the efficiency of multi-agent centralized learning
over higher-level options. In this section, we briefly describe the related basics of multi-
agent learning and options framework.

2.4.1 Multi-Agent RL

RL can be extended to involve multiple robots. Specifically, multi-agent RL (MARL) ad-
dresses the sequential decision-making problem of multiple autonomous agents that operate
in a common environment, each of which aims to optimize its long-term return by interact-
ing with the environment and other agents [14, 172]. Unlike single-agent RL, MARL requires
that the system state evolution and the reward received by each agent are influenced by
the joint actions of all agents. Many important real-world tasks are multi-agent by nature,
such as taxi coordination [81], and supply chain management [41].

Based on the MDPs of the single-agent case, one direct generalization of MDP that cap-
tures the intertwinement of multiple agents is Markov games (MGs) [123]. Originating from
the seminal work [82], the framework of MGs has long been used in the literature to develop
MARL algorithms. Formally. a Markov game is defined by a tuple

(
N,S,

{
Ai

}
, p,

{
ri

}
, γ

)
,

where i = 1, 2, ..., N and N is the number of agents. At time step k, each agent i executes
an action aik from its action space Ai, according to the system state sk belonging to the
state space S. The system then transitions to state sk+1 following the system transition
probability p(sk+1 | sk,ak), where ak := a1

k × · · · × aNk . Then each agent receives individual
reward ri (sk,ak, sk+1). The goal of agent i is to optimize its long-term reward, by find-
ing the policy πi : S → Ai such that aik ∼ πi (· | sk). Correspondingly, the value-function
V i : S → R of agent i is defined as follows,

V i(s) := E

∑
k≥0

γkri (sk,ak, sk+1) | aik ∼ πi (· | sk) , s0 = s

 (2.36)

Depending on the relationship and objective of agents, MARL methods can be fully
cooperative, fully competitive, and a mix of the two. In this thesis, we mainly discuss the
cooperative setting, where agents collaborate to optimize a common long-term return. Two
common agent types, that is heterogeneous and homogeneous, are often used in cooperative
MARL. Homogeneous agents affiliated with the environment hold the same policy. The
policy gives out different actions based on the agent’s observation. Heterogeneous agents
require each to maintain its policy, which can accept different environment observation
dimensions or output actions with diverse dimensions. Methods for solving a MARL problem
can be categorized by their learning styles:

17

• Independent Learning [137]. The key idea is to establish an independent policy for
each agent from the multi-agent system and train it using RL, ignoring other agents
and system states. Based on this idea, if every agent learns its policy independently,
we can obtain a set of policies that jointly solve the task. However, it can suffer from
instability arising from the non-stationarity of the environment induced by simulta-
neously learning and exploring agents.

• Centralized Training Decentralized Execution (CTDE): In this setting, agents are
trained together in a centralized manner where they can access all available informa-
tion, including the global state, other agents’ status, and rewards. However, during
the execution stage, agents are forced to make decisions based on their local observa-
tions, without access to centralized information or communication. Centralized critic
[171, 37] and value decomposition [108, 129] are two main techniques used in CTDE.

• Fully Centralized: In this class, all agents and their action spaces are combined into
one, and a standard RL pipeline is used to update a joint policy or Q-value function.
For instance, a five-agent discrete control problem can be transformed into a single-
agent multi-discrete control problem.

2.4.2 Options Framework

We now describe important concepts related to hierarchical reinforcement learning (HRL),
especially the Options Framework [134], which defines a two-level hierarchy, and introduces
options as temporally extended actions. The term “options” is meant as a generalization
of primitive “actions” used in standard RL. In contrast to a primitive action that is often
executed over one time step, the execution of an option typically requires multiple time steps.
We now define options under the single-agent setup. o are defined as triples ⟨Io, βo, πo⟩,
where Io ⊆ S is the initiation state set and βo : S → [0, 1] is the (stochastic) option
termination condition. πo(a | s) : S → A is a deterministic option policy that selects
primitive actions to achieve the target of the option. A higher level policy µ(o | s) determines
which option to select at state s. At state sk ∈ Io, µ selects option ok, then the next action
ak according to πo is executed, and the state transition to sk+1 to see if the option is
terminated or continues the ak+1. On reaching the termination condition in state sT , an
agent can select a new option based on µ from the set O (sT) := {o | sT ∈ Io}.

The Bellman equation can be generalized to option framework [134]. For any Markov
policy µ(o | s), the state-value function can be written

V µ(s) = E
{
rk+1 + · · ·+ γζrk+ζ + γζV µ (sk+ζ) | I(µ, s, k)

}
=

∑
o∈Os

µ(o | s)
[
r(s,o, s′) +

∑
s′

p(s′ | s,o)V µ (
s′)] (2.37)

18

where ζ is the duration of the first option selected by π(o | s), I(o, s, k) denotes the event
of o being initiated in state s at time k. Similar generalizations can be done for optimal
state/state-action value functions. The objective of option-based RL is to find µ that maxi-
mizes the long-term expected return over the choices of options. In practice, options can be
given as fixed temporal action sequences by a system designer, or they can be also learned
within the RL task.

2.4.3 Multi-Agent Centralized Option Selection

The options framework was originally discussed for single-agent cases but can be used for
multi-agent scenarios. Due to options’ nature of varying time length, when determined and
executed in a centralized way by multiple agents, options have to be organized with ter-
mination strategies to be synchronized. This is because the centralized controller makes
decisions for all agents at the same time step [165, 164]. Typically, three termination strate-
gies ηany, ηall, and ηcontinue were introduced and analyzed in [32]. In ηany termination scheme,
When any one agent completes an action, all other agents interrupt their options, and the
next decision epoch occurs when a new joint option needs to be selected. In ηall scheme,
When an agent completes an option, it waits (takes the idle action) until all the other
agents finish their current options. Then, the next decision epoch occurs and all the agents
choose the next joint option together. Both termination strategies require all the agents to
choose their options at every decision epoch synchronously. In ηcontinue termination scheme,
the other agents whose activities have not terminated are not interrupted, and only those
agents whose options have terminated select new options. In this termination strategy, only
a subset of the agents choose new options at each decision epoch, given the options being
performed by the other agents.

The three termination strategies can be used in centralized multi-agent learning over
options. Synchronous schemes such as ηany and ηall can be directly used but either break
the completeness of options or cause inefficient option execution due to a subset of agents
waiting for the others. Asynchronous strategy ηcontinue is ideal as it allows agents to execute
decisions independently even under a centralized learning setup. However, it is still unclear
how to apply asynchronous terminations in centralized scenarios for multi-agent RL.

19

Chapter 3

Data-Efficiency and Exploration
via Control-Based Value Functions

This chapter is based on my papers “TTR-Based Reward for Reinforcement Learning with
Implicit Model Priors” [87]1, and “Optimal Control-Based Baseline for Guided Exploration
in Policy Gradient Method” (originated from [89]2, revised and resubmitted to ICRA23)
written in collaboration with Site Li, Seth Siriya, Ye Pu, and Mo Chen.

3.1 Chapter Overview and Related Work

Sequential decision-making is a fundamental problem faced by any autonomous agent in-
teracting extensively with the environment [83]. RL and optimal control are two essential
tools for solving such problems. RL trains an agent to choose actions that maximize its
long-term accumulated reward through trial and error and can be divided into model-free
and model-based variants [103]. Optimal control, on the other hand, assumes the perfect
knowledge of system dynamics and produces control policy through analytical computation.

Model-free RL has been successful in many fields such as games and robotics [121, 118,
78, 132, 116, 74], and allows control policies to be learned directly from high-dimensional
inputs by mapping observations to actions. Despite such advantages, model-free methods
often require an impractically large number of trials to learn desired behaviors. Data ineffi-
ciency is a fundamental barrier impeding the adoption of model-free algorithms in real-world
settings, especially in the context of robotics [99, 45, 97].

To address the problem of data inefficiency in model-free RL, various techniques have
been proposed. “Deep exploration” [99] samples actions from randomized value function in
order to induce exploration in the long term. Count-based exploration [138] extends near-
optimal algorithms into high-dimensional state space. On the other hand, several recent pa-
pers refactor the structure of RL in order to utilize data more efficiently [146, 147, 97, 12, 36].

1Supplementary contents: https://sites.google.com/view/ttrpapersupp
2Supplementary contents: https://sites.google.com/view/mbbpapersupp

20

https://sites.google.com/view/ttrpapersupp
https://sites.google.com/view/mbbpapersupp

Figure 3.1: TTR functions at different heading angles for a simple car model. The TTR
function describes the minimum arrival time under assumed system dynamics and is effec-
tively used for reward shaping in robotic RL tasks.

In particular, curriculum-based approaches [12, 36] learn progressively over multiple sub-
tasks where the initial task is used to guide the learner so that it will perform better on the
final task. Hierarchical Reinforcement Learning (HRL) [146, 147, 97] involves decomposing
problems into a hierarchy of sub-problems or sub-tasks such that higher-level parent tasks
invoke lower-level child tasks as if they were primitive actions.

Model-based RL uses an internal model (given or learned) that approximates the full
system dynamics [5, 1, 32]. A control policy is learned based on this model. This significantly
reduces the number of trials in learning and leads to fast convergence. However, model-
based methods are heavily dependent on the accuracy of the model itself, thus the learning
performance can be easily affected by the model bias. This is challenging especially when
one aims to map sensor inputs directly to control actions, since the evolution of sensor
inputs over time can be very difficult to model.

Optimal control is a formal mathematical optimization technique that utilizes analytical
or numerical methods to solve well-defined objectives and adhere to system constraints. It
is considered “classical” as it has been substantially applied to control many autonomous
systems for decades. For example, the authors in [80] apply optimal control on a two-joint
robot manipulator in order to find a robust control strategy. The authors in [152] realize the
real-time stabilization for a falling humanoid robot by solving a simplified optimal control

21

problem. In addition, there are numerous other applications in mobile robotics and aerospace
[25, 21, 17, 22]. In general, optimal control does not require any data to generate an optimal
solution if the system model is known, but cannot scale to models with high-dimensional
state space due to modeling difficulty and computational complexity.

In this chapter, we propose methods that improve learning efficiency and exploration
from the control-theoretic perspective. In Sec. 3.2, a Time-To-Reach (TTR) reward shaping
approach is proposed to integrate optimal control into model-free RL to reduce the sample
complexity of learning. This is accomplished by incorporating into the RL algorithm a
TTR-based reward function, which is obtained by solving a Hamilton-Jacobi (HJ) partial
differential equation (PDE), a technique that originated in optimal control. A TTR function
maps a robot’s internal state to the minimum arrival time to the goal, assuming a model of
the robot’s dynamics. In the context of reward function in RL, intuitively a smaller TTR
value indicates a desirable state for many goal-oriented robotic problems.

To accommodate the computational intractability of computing the TTR function for
a high-dimensional system such as the one used in the RL problem, an approximate, low-
dimensional system model that still captures key dynamic behaviors is selected for the
TTR function computation. As we will demonstrate, such an approximate system model is
sufficient for improving the data efficiency of policy learning. Therefore, our method avoids
the shortcomings of both model-free RL and optimal control. Unlike model-based RL, our
method does not try to learn and use a full model explicitly. Instead, we maintain a looser
connection between a known model and the policy improvement process in the form of a
TTR reward function. This allows the policy improvement process to take advantage of
model information while remaining robust to model bias.

Our approach can be modularly incorporated into any model-free RL algorithm. In par-
ticular, by effectively infusing system dynamics in an implicit and compatible manner with
RL, we retain the ability to learn policies that map sensor inputs directly to actions. Our
approach represents a bridge between traditional analytical optimal control approaches and
the modern data-driven RL and inherits the benefits of both. We evaluate our approach on
two common mobile robotic tasks and obtain significant improvements in learning perfor-
mance and efficiency. We choose Proximal Policy Optimization (PPO) [118], Trust Region
Policy Optimization (TRPO) [121], and Deep Deterministic Policy Gradient (DDPG) [78]
as three representative model-free algorithms to illustrate its modularity and compatibility.

22

3.2 Time-To-Reach Value Function as Learning Reward

3.2.1 Preliminary

We briefly introduce the concepts of approximate system models and the time-to-reach
function. Consider the following dynamical system in Rn,

ẋ(t) = f(x(t),u(t)) (3.1)

where f(·) is the system dynamics of a TTR problem that can be extracted from a given
RL problem. We call it approximate as it is usually a simplification of the true RL MDP
model p(s′ | s,a). Here, x(t) and u(t) are the state and control of this approximate system
model. The TTR problem involves finding the minimum time it takes to reach a goal from
any initial state x, subject to the system dynamics in Eq. (3.1). We assume that f(·) is
Lipschitz continuous. Under these assumptions, the dynamical system has a unique solution.
The common approach for tackling TTR problems is to solve a Hamilton-Jacobi (HJ) partial
differential equation (PDE) corresponding to system dynamics and this approach is widely
applicable to both continuous and hybrid systems [175, 168, 136]. Mathematically, the time
it takes to reach a goal Γ ∈ Rn using a control policy u(·) is

Tx[u] = min{t|x(t) ∈ Γ}, (3.2)

and the TTR function with only one player taken into account is defined by

ϕ(x) = min
u
Tx[u]. (3.3)

Through dynamic programming, we can obtain ϕ by solving the following HJ PDE:

max
u
{−∇ϕ(x)⊤f(x,u)− 1} = 0 (3.4)

ϕ(x) = 0 ∀x ∈ Γ (3.5)

Detailed derivations and discussions are presented in [8, 10]. Normally the computational
cost of solving the TTR problem is too expensive for systems with higher than five dimen-
sional state. However, model simplification and system decomposition techniques partially
alleviate the computational burden in a variety of problem setups [93, 15]. Well-studied level
set-based numerical techniques [168, 136, 93, 15] have been developed to solve Eq. (3.4).

3.2.2 Method

Model-free RL algorithms have the benefit of being able to learn control policies directly
from high-dimensional state and observation; however, the lack of data efficiency is a well-
known challenge. In this work, we alleviate this issue by implicitly utilizing a simplified

23

system model to provide a useful “model-informed” reward in an important subspace of the
full MDP state. This way we produce policies that are as flexible as those obtained from
model-free RL algorithms, and accelerate learning without altering the model-free pattern.

In this section, we explain the concrete steps of applying our method, as shown in
Fig. 3.2. The RL problem under consideration is represented by an MDP given by p(s′ | s,a),
as explained in Section 2.1.1; this MDP is in general unknown. Choosing an approximate
system model f(·) that captures key dynamic behavior is the first step; this step is explained
in Section 3.2.2. Using this approximate system model, we compute the TTR function ϕ(·),
and then apply a simple transformation to it to obtain the reward function r(·) that is used
in RL; this is fully discussed in Section 3.2.2. Finally, any model-free RL algorithm may be
used to obtain a policy that maximizes the expected return.

Figure 3.2: Overview of TTR-based reward shaping method

Model Selection

“Model selection”3 here refers to the fact that we need to pick an (approximate) system
model for the robotic task to compute the corresponding TTR function. This model should
be relatively low-dimensional so that the TTR computation is tractable but still retains key
behaviors in the dynamics of the system. Before the detailed description of model selection,
it is necessary to clarify some terminology used in this section. First, we use the phrase
“full MDP model” to refer to p(s′ | s,a), which drives the true state transitions in the RL
problem. The full MDP model is often inaccessible since it is an underlying model behind the
simulator or real world and captures the high-dimensional state inputs including both sensor
data and the robot’s internal state. Second, we will use the phrase “approximate system
model” to refer to f(·). It does not necessarily accurately reflect the real state transitions
of the problem we are solving. The approximate system model should be low-dimensional
to simplify the TTR computation while still capturing key robot physical dynamics.

The relation between the full MDP model and the approximate system model is formal-
ized by their state spaces, as shown in Eq. (3.6), where the approximate system state x is a
projection onto an axis-aligned subspace of the full MDP state s. The projection may have
various forms but in this work, we assume a simple case where x includes a subset of state

3Note that “model selection” here has a different meaning from machine learning validation.

24

components of s.
s = (x, x̂) (3.6)

Here the full state s refers to the entire high-dimensional state in the full MDP model
p(s′ | s,a), and x refers to the state of the approximate system model f(·) which evolves
according to Eq. (3.1). For clarity, we also define x̂, which are state components in the
full MDP model but are not part of x. For example, in the simulated car experiment, the
full state s contains the internal states of the car, including the position (x, y), heading θ,
speed v, and turn rate ω. In addition, eight laser range measurements d1, . . . , d8 are also
part of the state s. These measurements provide distances from nearby obstacles. As one
can imagine, the evolution of s can be very difficult if p(s′ | s,a) is impossible to obtain,
especially in a priori unknown environments. The state of the approximate system, denoted
x, contains a subset of the internal states (x, y, θ, v, ω), and evolves according to Eq. (3.1).
In particular, for the simulated results in this work, we choose the Dubins Car model to be
the approximate system dynamics:

ẋ =

ẋ

ẏ

θ̇

 =

v cos θ
v sin θ
ω

 (3.7)

As we show in the simple car example, such simple dynamics are sufficient for improving
the data efficiency of model-free RL. With this choice, the remaining states are denoted
x̂ = (v, ω, d1, . . . , d8). Fig. 3.3 illustrates this example. Note that in general, the control a
and u of the two systems do not have to be the same: u could be a projection of a.

Figure 3.3: State definition of a simulated car. Left: full RL state with true MDP model.
Right: 3D lo-dim state of the approximate model.

How does one choose a good approximate model f(·)? It is important to note that
f(·) needs not to be directly derived from the target RL full MDP model p(·). In addition,
f(·) and p(·) do not necessarily need to have rigorous mathematical relations. In fact, f(·)
can be empirically selected from the available robot system models in classical control

25

Robot Type Robot System Model

Car-like system
3D Dubins car [33]

5D extended Dubins car [112]
4D bicycle model [38]

Quadrotor
6D planar quadrotor [87]
6D rotation model [135]

3D point mass model [110]

Table 3.1: A list of available robot system models. A 3D Dubins car has three states –
position (x, y) and its heading angle (θ), describing the dynamics of a simple differential-
wheeled robot. Its 5D extended version involves speed v and turn rate ω as additional
states. A 4D bicycle model describes the motion of a four-wheeled vehicle with positions,
heading and specifically steering angle. For quadrotors, the 6D planar model focuses on 2D
plane motion with states of positions, velocities, and 1-axis rotation. The 6D rotation model
focuses on the 3-axis rotation without translation while a simple point-mass model focuses
solely on 3D translation without any rotational dynamics.

theory, where various useful mathematical models are already well-defined and widely used,
as shown in Table 3.1. We identify a proper f(·) according to the robot type and state space
of the RL problem on hand. Despite being abstracted and simplified from true dynamics,
f(·) usually allows efficient optimal control computation and the associated solution (e.g.
TTR value function) can be useful in mitigating the sample inefficiency of pure RL search
and exploration.

In general, we may choose x such that a reasonable explicit, closed-form ODE model
f(·) can be derived. Such a model should capture the evolution of the robotic internal state.
One motivation for using an ODE is that the real system operates in continuous time, and
computing the TTR function for continuous-time systems is a solved problem for sufficiently
low-dimensional systems. Note that if a higher-fidelity model of the car is desired, one may
also choose the following 5D ODE approximate system model instead:

ẋ =

ẋ

ẏ

θ̇

v̇

ω̇

=

v cos θ
v sin θ
ω

αv

αω

(3.8)

In this case, we would have x = (x, y, θ, v, ω), and x̂ = (d1, . . . , d8). Note that the choice
of an ODE model representing the real robot may be very flexible, depending on what
behavior one wishes to capture. In the 3D car example given in Eq. (3.7), we focus on
modeling the position and heading of the car to be consistent with the goal. However, if
speed and angular speed are deemed crucial for the task under consideration, one may also
choose a more complex approximate system given by Eq. (3.8). To re-iterate, a good choice

26

of approximate model is computationally tractable for the TTR function computation and
captures the system behaviors that are important for performing the desired task.

TTR Function as Approximate Reward

In this section, we discuss how the reward function r(s,a, s′) of the given RL problem can
be shaped based on the TTR function. For simplicity, we ignore a and denote it as r(s),
although a simple modification to the TTR function can be made to incorporate actions into
the reward function. Since s is often in high dimensional space with sensor measurements
involved, it is often unclear how to determine a proper reward for s. As a result, simple
reward functions such as sparse and distance rewards are sometimes used.

However, this can be easily resolved in our approach by viewing r(·) as a function of x,
the state of the approximate system model we have chosen before. As mentioned earlier,
x is a subset of full state s. In our method, the TTR function ϕ(x) defined in Eq. (3.3) is
transformed slightly to obtain the reward function for full MDP state s:

r(s) = r(x, x̂) =

−ϕ(x) s ∈ I

1000 s ∈ G

−400 s ∈ C

(3.9)

By definition, ϕ(x) is non-negative and ϕ(x) = 0 if and only if x ∈ Γ. Thus, we use −ϕ(·) as
the reward because the state with a lower goal-arrival time should be given a higher reward.

As shown in Eq. (3.9), we set positive reward for goal states G and negative reward for
collision states C. Note that the TTR-based reward can also be extended to have obstacles
taken into account, or to satisfy any other design choices if required. For intermediate states
that are neither obstacles nor goals, TTR function ϕ(·) directly provides a useful reward
signal in an important subspace of the full MDP state. This is significant since the associated
rewards for these intermediate states are usually quite difficult to manually design, and the
TTR reward does not require any manual fine-tuning. This way the RL agent learns faster
compared to not having a useful reward in the subspace, and can quickly learn to generalize
the subspace knowledge to the high-dimensional observations. For example, positions that
are near obstacles correspond to small values in LiDAR readings, and thus the agent would
quickly learn these observations correspond to bad states.

To further reduce the computational complexity of solving the PDE for more compli-
cated system dynamics (e.g. a quadrotor), we may apply system decomposition methods
established from the optimal control community [93, 15, 16] to obtain an approximate TTR
function without significantly impacting the overall policy training time. Particularly, we
first decompose the entire system into several sub-systems potentially with overlapping
components of state variables, and then efficiently compute the TTR for each sub-system.
We utilize Lax-Friedrichs sweeping-based [168] to compute the TTR function. As shown in

27

Table 3.2, the computation time of TTR functions is negligible compared to the time it
takes to train policies.

3.2.3 Results

In order to illustrate the benefits of our TTR-based reward shaping method, we now present
two goal-oriented tasks through two different mobile robotic systems: a simple car and a
planar quadrotor. Each system is simulated in Gazebo [61], an open-source 3D physical
robot simulator. Also, we utilize the Robot Operating System (ROS) for communication
management between the robot and the simulator. For each task, we compare the perfor-
mance between our TTR-based reward and two other conventional rewards: sparse and
distance-based rewards. For each reward function, we use three representative model-free
RL algorithms (DDPG, TRPO, and PPO) to demonstrate that TTR-based reward can be
applied to augment any model-free RL algorithm.

We select sparse and distance-based rewards for comparison with our proposed TTR-
based reward because they are simple, easy to interpret, and easy to apply to any RL
problem. These reward functions are consistent across our two simulated environments,
shown in Table 3.3. We formulate the distance-based reward as general Euclidean distance
involving position and angle because the tasks we consider involve reaching some desired
set of positions and angles, shown in Table 3.3. By choosing different weights λ, the angle
is assigned different weights. For both examples, we choose four different weights, λ ∈
{0, 0.1, 1, 10}. The sparse reward is defined to be 0 everywhere except for goal states (1000
reward) or collision states (−400 reward).

Task Model Computation Time Decomposed
Simple Car Eq. (3.7) 5 sec No

Planar Quadrotor Eq. (3.10) 90 sec Yes

Table 3.2: TTR function computational load. ‘Decomposed’ means we need to decompose
the approximate model into subsystems in order to reduce computational cost.

Simple Car Example

The car model is widely used as a standard testbed in motion planning [61] and RL [155]
tasks. Here we use a “turtlebot-2” ground robot to illustrate the performance of the TTR-
based reward. The state and observation of this example are already discussed at 3.2.2.
The car starts with randomly sampled initial conditions from the starting area and aims to
reach the goal region without colliding with any obstacle along the trajectory. Specifically,
we set goal states as G = {(x, y, θ)|3.7 m ≤ x ≤ 4.3 m; 3.7 m ≤ y ≤ 4.3 m; 0.45 rad ≤
θ ≤ 1.05 rad}. The TTR-based reward for this simple car task is derived from a lower-

28

Figure 3.4: Performance comparison of three different reward functions on the car example
under three model-free RL optimization algorithms: DDPG, TRPO, and PPO. All results
are based on the mean of five runs.

dimensional approximate car system in Eq. (3.7) which only considers the 3D vector (x, y, θ)
as state and angular velocity ω as control.

Fig. 3.4 compares the performance of TTR-based reward with sparse and distance-
based rewards under three different model-free algorithms. The success rate after every
fixed number of training episodes is considered a qualitative assessment. In general, the
car system is simpler and more stable and thus obtains a relatively higher success rate
among different reward settings compared to the quadrotor task (shown later in Fig. 3.6).
In particular, TTR-based reward leads to a high success rate (mostly over 90%) consistently
with all three learning algorithms. In contrast, sparse reward leads to poor performance with
PPO, and distance-based reward leads to poor performance with DDPG.

Note that despite the better performance from certain distance-based rewards, the choice
of appropriate weight for each variable is non-trivial and not transferable between different
tasks. However, TTR-based reward requires little human engineering to design and can be
efficiently computed once a low-fidelity model is provided.

The TTR function for the model in Eq. (3.7) is shown in Fig. 3.1 to convey the usefulness
of TTR-based reward more intuitively. Here, we show the 2D slices of the TTR function at
four heading angles, θ ∈ {−π/4, 0, π/2, 3π/4}. The green star located at the upper-right of
each plot is the goal area. The car starts moving from the lower-middle area. Note that the
2D slices look different for different heading angles according to the system dynamics, with
the contours expanding roughly in the opposite direction to the heading slice.

Planar Quadrotor Example

A Quadrotor is usually considered difficult to control mainly because of its nonlinear and
under-actuated dynamics. In the second experiment, we select a planar quadrotor model
[42, 125], a popular test subject in the control literature, as a relatively complex mobile
robot to validate that the TTR-based reward shaping method still works well even on the

29

Sparse Distance TTR

r(s) =

0
1000
−400

r(s) =

−d(·)∗

1000
−400

r(s) =

−ϕ(x)∗ s ∈ I
1000 s ∈ G
−400 s ∈ C

∗d(·) =

√

(x− xg)2 + (y − yg)2 + λ(θ − θg)2 Simple Car√
(x− xg)2 + (z − zg)2 + λ(ψ − ψg)2 Planar Quadrotor

∗ϕ(x): TTR function defined in a subspace of s

Table 3.3: Reward functions tested in this work. I: set of intermediate states; G: set of goal
states; C: set of collision states. d(·): generalized distance function involving angle.

highly dynamic and unstable system. “Planar” here means the quadrotor only flies in the
vertical (x-z) plane by changing the pitch angle without affecting the roll and yaw angle.

The approximate system model has 6D internal state x = (x, vx, z, vz, ψ, ω), where
x, z, ψ denote the planar positional coordinates and pitch angle, and vx, vz, ω denote their
time derivatives respectively. The dynamics used for computing the TTR function are given
in Eq. (3.10). The quadrotor’s movement is controlled by two motor thrusts, T1 and T2.
The quadrotor has mass m, moment of inertia Iyy, and half-length l. Furthermore, g de-
notes the gravity acceleration, CvD the translation drag coefficient, and CψD the rotational
drag coefficient. Similar to the car example, the full state s contains eight laser readings
extracted from the “Hokoyu_utm30lx” ranging sensor for detecting obstacles, in addition
to the internal state s̃. The objective of the quadrotor is to learn a policy, mapping from
states and observations to thrusts, that leads it to the goal region.

ẋ =

ẋ

v̇x

ż

v̇z

ψ̇

ω̇

=

vx

− 1
mC

v
Dvx + T1

m sinψ + T2
m sinψ

vz

− 1
m (mg + CvDvz) + T1

m cosψ + T2
m cosψ

ω

− 1
Iyy
CψDω + l

Iyy
T1 − l

Iyy
T2

(3.10)

The environment for this task is shown in Fig. 3.5. The obstacles are fixed. The goal
region is G = {(x, z, ψ)|3.5 m ≤ x ≤ 4.5 m; 8.5 m ≤ z ≤ 9.5 m; 0.45 rad ≤ ψ ≤ 1.05 rad}.
The quadrotor’s starting condition is uniformly-randomly sampled from {(x, z)|2.5 m ≤ x ≤
3.5 m; 2.5 m ≤ z ≤ 3.5 m} (green area in Fig. 3.5) and the starting pitch angle is randomly
sampled from {ψ| − 0.17 rad ≤ ψ ≤ 0.17 rad}.

Fig. 3.6 shows the performance of TTR-based, distance-based, and sparse reward un-
der optimization from DDPG, TRPO, and PPO. With TTR-based reward, performance
is consistent over all model-free algorithms. In contrast, sparse and distance-based rewards
often do not lead to quadrotor stability and consistency of performance. For example, under
sparse and distance-based rewards, performance is relatively good under TRPO, but very

30

Figure 3.5: Visualization of quadrotor’s sequential movement after learning from TTR-
based reward. The trajectory is connected by a combination of the same quadrotor at a few
different time snapshots. As shown in the picture, the quadrotor has learned to make use
of physical dynamics (tilt) to reach the target as soon as possible

Figure 3.6: Performance comparison between TTR, distance, and sparse-based rewards on
quadrotor using three different model-free algorithms. The results are based on an iden-
tical evaluation setting as a car example and are concluded from five runs as well. Our
TTR-based reward achieves the best in terms of efficiency and performance. Left: success
rate comparison under DDPG algorithm Middle: success rate comparison under TRPO
algorithm Right: success rate comparison under PPO algorithm

31

poor under DDPG. In terms of learning efficiency, TTR-based reward achieves a success
rate of greater than 90% after 3 iterations (approximately 90K time steps) regardless of the
model-free algorithm. This is the best result among the three reward functions we tested.

(a) Sparse reward (b) Distance reward (the best λ) (c) TTR-based reward

Figure 3.7: Frequency histograms of (x, z, ψ) during different learning stages on quadrotor
task. Top row: log probability density vs. ψ; bottom row: (x, z) heatmap. Only the TTR-
based reward leads to near-complete trajectories in the (x, z) heatmap between iterations
20 and 40, when the other rewards still involve much exploration. Also, the shift (circled in
red on Fig. 3.7c) of log probability density towards the target θ at 0.75 rad occurs only when
TTR-based reward is used, which suggests TTR function is guiding learning effectively.

To further illustrate the effectiveness of our approach, Fig. 3.7 shows statistics of po-
sitional (x, z) and angular variables ψ during early learning stages using the three reward
functions over three ranges of learning iterations. Note that we choose distance-based re-
ward with λ = 10 since it’s the best one among all tested distance-based reward variants.
The 2D histograms show the frequency of (x, z) along trajectories in training episodes as
heatmaps while the 1D histograms show the frequency of ψ as log probability densities.
Note that the second column of each subplot (from iteration 20 ∼ 40) represents transitory
behaviors before the quadrotor successfully learns to perform the task. Fig. 3.7c shows that
the desired angular goal (ψ = 0.75 rad) has higher probability density (circled in red), which
means TTR-based reward does provide effective angular local feedback. Furthermore, heat
maps for TTR-based reward (Fig. 3.7c) are concentrated around plausible trajectories for
reaching the goal, while heat maps for the other rewards are more spread out. This shows
that TTR-based reward is providing dynamics-informed guidance.

3.3 Optimal Control Values as Policy Gradient Baseline

Deep reinforcement learning has achieved remarkable success in robotics [117, 120, 79, 58].
One of the key techniques behind the success is the policy gradient method. It uses gradient
descent to directly optimize a parameterized control policy with sampled task data, enabling
effective learning of high-dimensional and continuous policies but yielding gradient estimates
with high variance.

32

The baseline function is a commonly used component in the policy gradient methods
to mitigate its high variance of gradient estimates [43, 53]. A baseline is typically a state-
dependent function subtracted from the observed total reward, also called return, resulting
in a shifted return. This shifted return yields an unbiased estimate of the gradient with
reduced variance. A baseline can have various choices, including the value-based [117, 120,
44], gradient norm-based [102], and trajectory-based forms [28].

Previous research on baseline [44, 102, 84, 161, 28] has primarily focused on mitigating
gradient variance. While reducing variance is essential, it may not be adequate to ensure
policy success, given the challenges of insufficient guidance and exploration in sparse feed-
back environments. Although other methods exist to tackle these challenges, there is lim-
ited research that addresses them specifically from the perspective of the baseline function.
Therefore, we aim to investigate a novel aspect of baseline, particularly its role in addressing
the problem of inefficient exploration in RL.

In this section, we introduce a novel, optimal control-based baseline to provide guided
exploration for policy gradient methods. The baseline is obtained by solving a value function
for an optimal control problem. This problem stems from the original RL task, from where
a cost function and a coarse mathematical model are identified to approximately describe
the objective and the robot system involved in the RL task. This allows the use of optimal
control techniques for efficient value computation. Then the value function of the optimal
control problem can be used as the baseline for the policy gradient method to solve the
RL task. The key insight here is that the optimal control value function can offer essential
prior information related to the RL task, such as the robot system dynamics, thus providing
guided exploration for policy gradient RL.

We empirically evaluate our method using the standard policy gradient algorithm on a
variety of robot learning tasks and provide a thorough analysis of the baseline’s effect on
guided exploration, particularly under sparse reward setups.

3.3.1 Related Work

Baselines in Policy Gradient RL

Various baselines have been proposed in policy gradient RL to mitigate its high variance of
gradient estimate. A foundational study [43] established the theoretical bounds of estimated
gradient variance induced by commonly used baselines such as the value function. To further
lower the variance, recent studies have expanded the range of baseline forms, such as separate
baselines for every coefficient of the gradient [102], Taylor expansion of the off-policy critic
as baseline [44], state-action dependent baselines [84, 149], and a trajectory correlation-
based baseline [28]. However, most baselines are designed for variance reduction while the
potential role of baseline in other aspects, such as providing guided exploration for policy
learning, is less studied.

33

Robot System Models from Control Theory

Classical control theory provides mathematical models for a range of robots based on their
physical dynamics. For example, the Dubins car model [18, 23, 19] simplifies the motion of
vehicles by assuming constant speed and position-steering. The extended Dubins car model
[112, 87] allows variable speeds and turning rates, providing a more realistic representation.
Both models are often used to describe differential-wheel robots and four-wheeled vehicles.
In addition, the planar quadrotor model [20, 56] simplifies the quadrotor motion from 3D
to 2D plane and the attitude model focuses solely on 3-axis rotational behavior [135] while
point-mass model [110] only focuses on translation. Various other models, such as those for
landing robots [73], and pendulum-like systems [100] are available. These models provide
simplified abstractions of complex real-world robot models but still capture vital system
priors with the potential to enhance modern robot learning methods, such as RL.

Figure 3.8: Overview of our method. Left: We propose a novel baseline function for policy
gradient RL. Our method involves extracting RL info from the robot and environment,
which is used to formulate an associated optimal control problem. Subsequently, we compute
the optimal control value function and used it as a baseline for the policy gradient RL.
Right: The RL info encompasses crucial aspects of the RL problem, including robot types,
RL full state, task reward, and more. This RL info serves to form the key components of an
optimal control problem, which include the robot system model, objectives, and constraints.
Techniques like Model Predictive Control (MPC) can then be employed to compute the value
function, which can be utilized as an RL baseline.

Relations to Our Work

Our work falls into the realm of introducing a novel baseline for policy gradient RL. Unlike
prior work which focused on reducing gradient variance, this new baseline prioritizes pro-
viding valuable guidance in a subspace of the RL full state space during policy learning.
Furthermore, our baseline is formed by utilizing the value function derived from an associ-
ated optimal control problem. It innovatively leverages well-developed robot system models
from control theory to incorporate essential robot priors to provide guidance exploration
for policy gradient RL.

This section describes the process of designing an optimal control-based baseline. It
starts by extracting the key RL info from the RL task to form an associated optimal control

34

problem. Then the value function of this optimal control problem is computed and serves
as a baseline for policy gradient RL to solve the original RL task, as shown in Fig. 3.8.

3.3.2 Method

Extraction of RL Info

A given RL problem often has key information characterizing its core aspects, which is
denoted as RL Info in this work. There are in total four common components of RL info:
robot type, state space, task reward, and environment constraints. This info can be extracted
from the given robot and environment setup.

1. Robot Type. Robots can have diverse types, like cars, quadrotors, landing robots, etc.

2. RL State Space. RL’s full state often includes the physical state of the robot such
as its position and velocity as well as sensory observation such as pixels or LiDAR
readings. This state could be high-dimensional.

3. Task Reward. It is numerical feedback provided to the robot at each time step to
evaluate the robot’s actions.

4. Environment Constraints. Typical constraints include factors such as maximum episode
length, the valid range of state and action spaces, and physical limitations such as
obstacles in the navigation task.

Formulation of Optimal Control Problem

Once the RL info mentioned above is obtained, an associated optimal control problem can be
formed, which consists of three primary components: robot system model, optimal control
objective, and related constraints.

Robot System Model. In control theory, there are many known models developed
based on the physical dynamics of robot systems. Despite being abstracted and simplified
from true dynamics, these models allow efficient optimal control computation and have
the potential to be used in RL problems to mitigate its data inefficiency especially when
the RL environment model is unknown and hard to learn. Thus, we aim to leverage those
control theory models to calculate an optimal control value function, which can be used as
a baseline function for policy gradient RL to provide guidance.

The robot system model is a mathematical equation describing robot physical dynamics
and can be represented by a state-space Ordinary Differential Equation (ODE), denoted
by ẋ(t) = f(x(t),u(t)) where x(t) and u(t) are the state and control of an optimal control
problem at continuous time t and f(·, ·) is the model function. Finite difference schemes
such as the Forward Euler Method can be applied to this ODE to obtain its discrete version
xk+1 = f(xk,uk), where k is the discrete time step.

35

This model can be heuristically selected from control theory based on RL info. To do
that, we first categorize the robot system by its type (e.g., car-like, quadrotor, or others) to
select a set of candidate models, referring to Table. 3.1. Then we assess candidate models
with the following two criteria:

1. The components of optimal control state x ∈ Rxn should be a subset from the com-
ponents of RL full state s ∈ Rsn , where Rxn is the subspace of Rsn .

2. The RL task reward r(·) can be written in terms of the components of x, that is
r(s) := r(x). This criterion is typically met when the RL task reward is sparse and
related to a limited set of states.

Optimal Control Objective. The optimal control objective specifies the desired out-
come that an optimal control problem aims to achieve while satisfying the robot system
model. It is often described in Eq. (3.11) as the minimization of cumulative cost subject to
the system model constraint,

min
u0:T −1

T−1∑
k=0

c(xk,uk)

s.t. xk+1 = f(xk,uk) for k = 0, . . . , T − 1
(3.11)

where c(xk,uk) is the step cost function defined over optimal control state xk and control
input uk at each discrete time step k, and xk+1 = f(xk,uk) is the discrete-time robot system
model. The key to deriving this objective is to find the appropriate cost function. Note
that despite the presence of the RL reward, its direct utilization as the cost in Eq. (3.11) is
generally impractical due to the potential difficulty in obtaining an optimal control solution.

The cost function c(xk,uk) has multiple choices. One common choice is set-point track-
ing, where the cost can be defined by penalizing the error between the current and desired
state whilst optionally minimizing the control effort

c(xk,uk) = αex(xk,G) + βeu(uk), (3.12)

where ex(·) and eu(·) are state and control error functions. To use this cost function, we
assume the existence of a goal region G from the original RL problem. For instance, ex can
be expressed as the Euclidean distance between 2D positions in navigation tasks while eu

can be expressed as l2-norm of control input ∥uk∥2. The cost function coefficients α, β can
be flexibly adapted to obtain optimal control solutions.

Optimal Control Constraints. This includes additional limitations that must be
obeyed when solving an optimal control problem. Typical constraints include the range of
state space, the initial state, and the positions of obstacles in a collision-avoidance scenario.
Those constraints can be added to the optimal control problem to rectify the solution.

36

Calculation of Optimal Control Value Function

We use Model Predictive Control (MPC) to solve the formulated optimal control problem
and obtain the associated optimal control value function. MPC [105, 54] is a well-known
control technique that repeatedly iteratively solves the optimization problem, and is used
as a representative optimization method in this work.

We first uniformly generate many initial states from the optimal control state space.
With these initial states and objective function Eq. (3.11), MPC produces a set of feasible
trajectories, denoted by {τj |j = 0, 1, 2, ..., N}, where N is the number of trajectories and
each trajectory has a horizon of length Hj . From each trajectory τj , we select every state
xjm, which is the mth state of the jth trajectory and compute its value V oc(xjm) following
Eq. (3.13), where i is sum index.

V oc (
xjm

)
= ∑Hj

i=m γ
i−mr(xjm) (3.13)

This value sums up the discounted reward of each state along the whole trajectory span,
where the γm means the discount factor of mth step of the trajectory. Given the states and
their corresponding values, we form a discrete dataset D = {(xjm, V oc(xjm)) | ∀j,m}. Then,
we can employ any regression model (e.g. neural network) to fit a continuous value function
V oc based on D for arbitrary states.

Optimal Control Baseline for Policy Gradient RL

The optimal control value function calculated above can be directly used in the policy
gradient RL as the baseline function. Particularly, we consider a generic form of policy
gradient RL that involves Generalized Advantage Estimation [119] given by Eq. (3.14). Gλk
is the TD(λ) return [130] considering the weighted average of n-step returns for n = 1, 2, ...∞
via parameter λ. πθ is the RL parameterized policy that selecting action ak based on the
state sk at each time step k. The baseline function, denoted as b(sk), can take various forms,
such as the widely used on-policy value function.

∇θJ (πθ) = E
τ∼πθ

[
T∑
k=0
∇θ log πθ (ak | sk)

(
Gλk − b(sk)

)]
(3.14)

In this work, we simply use the optimal control value function to be a novel form of
baseline function: b(sk) = V oc(xk), where xk is extracted from sk. We integrate it into
Eq. (3.14) to estimate policy gradient ∇θJ (πθ) for optimizing policy πθ to solve the robot
learning task. This optimal control-based baseline can address challenging robot learning
tasks with limited reward feedback, ensuring sufficient exploration.

37

3.3.3 Results

In this section, we present results on the performance of the proposed method and name
our method as “OC baseline”.

Demo Example: Differential-Drive Car Navigation

We first evaluate our method on a simulated TurtleBot [4], which resembles a differential
drive car navigating in an unknown environment with multiple static obstacles. The car aims
to learn a collision-free control policy via trial and error to move from a starting area to a
goal area. We use the Gazebo simulator [62] to build the robotic system and environment
for the target RL problem, as shown in Fig. 3.9.

Following the steps described in the methodology, the original RL problem provides
info to form the optimal control baseline: (1) robot type is a car, (2) RL full state is
s = (x, y, θ, v, ω, d1, ..., d8), which are 2D position, heading angle, current speed, current
turning rate, and eight-dimensional lidar sensory data. (3) RL task reward is shown in
Eq. (3.15), where G refers to the goal area, C the collision area and I intermediate area
involving neither collision nor goal. All these areas are with regard to 2D position p = [x, y]⊤.

r(s) =

0 (x, y) ∈ I

+1000 (x, y) ∈ G

−400 (x, y) ∈ C

(3.15)

Environment constraints include start area Γ, goal area G, obstacle area O, and map
size. According to the robot type and key state variables of RL reward, we choose the 3D
Dubins car model [33] as an abstraction of the true robot as it captures the 2D positional
states and the simplest car motion which is computationally efficient. Its ODE is defined
as:

ẋ = g(x,u) =

ẋ

ẏ

θ̇

 =

v cos(θ)
v sin(θ)
ω

 ,
where state x = [x, y, θ]⊤ and control input u = [ω]⊤, v is the constant speed.

Then we construct the objective function according to Eq. (3.11). As we discussed before,
the key step here is designing a proper cost function. In the optimal control problem, the cost
function should be designed based on the goal of the related RL problem and its reward
function. In this task, the goal is to navigate the car to the goal area, so a typical cost
function can be the 2D distance between the robot and the goal. As the distance to the
goal decreases, the cost becomes smaller, otherwise, the cost becomes larger. A commonly
used mathematical expression of such cost function can be in the quadratic form, written
as follows, where pk is the 2D position at step k and p∗ is the goal position, Q and R are

38

coefficients of state and control to describe their relative importance weights.

min
u0:H−1

H−1∑
k=0

[
(pk − p∗)⊤ γk+1Q (pk − p∗) + ω⊤

k Rωk
]

s.t. xk+1 = f(xk,uk)

initial state x0 ∈ Γ

final state xH ∈ G

pk /∈ O

∀pk ∈ map area.

(3.16)

The value function can be calculated based on Eq. (3.16). Particularly, we use the IPOPT

Figure 3.9: Car navigation environment Figure 3.10: The car navigation reward perfor-
mance

MPC solver [162] to solve 800 feasible trajectories with each trajectory having 140 step
states, building associated state-value dataset D = {(xi, V oc(xi)) | i = 0, 1, 2, ..., 112000}
following Eq. (3.13). We then use a simple MLP neural network as a regression model to fit
a continuous value function V oc(x). Finally, we utilize V oc(x) as the baseline function for
a typical policy gradient algorithm PPO [120], following Eq. (3.14) to address the learning-
based navigation task.

As depicted in Fig. 3.9, our method effectively learns a collision-free, goal-reaching policy.
The policy is able to navigate cautiously through open spaces, skillfully avoid obstacles,
and ultimately reach the desired goal along the trajectory in pink. Fig. 3.10 shows the
car navigation training results that are summarized across 10 different trials. The curves
show the mean reward and the shaded area represents the standard deviation of all trials.
As depicted in the figure, as training iterations progress, the cumulative reward steadily
increases and continues to rise until a gradual convergence towards a stable value. At 300
iterations the reward stabilizes around 800, which implies that the agent may have learned
a relatively effective and stable policy.

39

Analysis of Guided Exploration

We conduct analysis on the primary benefit of our method in offering guided exploration
for policy gradient RL. We illustrate a 2D plane value heatmap which is calculated from the
Dubins Car optimal control problem. From Fig. 3.11, we can identify value distribution from
any initial state to the goal. Regions with darker red colors correspond to higher values.
The square concaves correspond to obstacles, denoting significantly lower values as they are
to be avoided. With this value function as an RL baseline, it captures the state value priors
related to the collision-free, goal-reaching areas in the 2D subspace of the RL full state,
thereby providing valuable guidance for policy learning.

Figure 3.11: The optimal control value heatmap for car navigation

We also investigate the cause of exploration by analyzing the advantage estimation in
the car example. The advantage Aπ(s,a) is a function that drives the policy update in
policy gradient RL by measuring how much better an action a’s return than the baseline
and is defined by Aπ(sk,ak) = Gλk − b(sk) in Eq. (3.14). In Fig. 3.12, we depict advantage
estimation with/without the OC baseline (i.e. on-policy value function V π as baseline),
averaging every 10 iterations. With the OC baseline, policy gradient RL maintains a wider
range of advantage estimation during the early learning stage. Conversely, without the OC
baseline, the advantage estimation gradually narrows around zero. This indicates that the
OC baseline consistently drives the exploration of diverse actions when initial actions are
unfavorable (A ≤ 0), while without OC baseline, the policy may get stuck in undesired local
optima due to negligible advantage estimates, as V π(sk) will be gradually fitted to Gλk .

40

Figure 3.12: Policy advantage estimation w/ and w/o OC baseline. We halt at 150 iterations
as it adequately demonstrates the substantial difference in advantage estimation between
the two methods.

Figure 3.13: Comparison with other forms of baseline function. The curves show the mean
value of episodic reward. Their standard deviations (not shown here) are within reasonable
range without affecting the comparison.

41

Compare with Other methods

We compare with existing methods on the car navigation problem. Particularly, we select
three other baseline functions and denote them by V π [120], Stein [84] and Qprop [44].
V π is the on-policy value function and is widely used as the baseline for actor-critic RL
algorithms. Stein refers to a state-action dependent baseline based on the Stein Identity
while Qprop refers to a baseline derived from a Taylor expansion of the off-policy critic.
The comparative analysis, as depicted in Fig. 3.13, highlights the superior performance of
our OC baseline, particularly in terms of achieving the highest average episodic reward.
Our findings suggest that while baseline functions aimed at variance reduction are effective
in many scenarios, they may not always provide feasible control solutions, especially when
dealing with tasks with sparse rewards and requiring more guidance.

Ablation Study

We perform an ablation study to showcase the importance of the OC baseline by comparing
the success rates of policies learned in the car navigation task with and without it. We
choose PPO as the base policy gradient method and augment it with the OC baseline.
By default, PPO uses an on-policy value function V π as its baseline. In Fig. 3.14, with OC
baseline, the robot continuously improves its policy and finally acquires a collision-free, goal-
reaching policy with a success rate of around 100%. In contrast, the standard PPO, which is
used without the OC baseline, struggles to develop effective behaviors. This indicates that
the RL trial-and-error exploration is data-inefficient and the policy can get stuck to local
optima when reward is sparse, but the OC baseline utilizes system and task priors from the
associated optimal control problem to improve policy learning.

Figure 3.14: Ablation study of OC baseline method

42

From another perspective, it is worth noting that the control solution obtained from
the associated optimal control problem is usually not directly applicable to the original RL
problem. This gap arises because the chosen robot system model is typically an abstraction
and simplification of the actual, unknown robot model, plus the optimal control input space
may differ from the RL action space.

Applied OC baseline to Quadrotor Task

This method has also been extended to a more complex Quadrotor trap avoidance task, as
shown in Fig. 3.15. We use a detailed planar quadrotor simulated by the Robot Operating
System (ROS) [107] as a complex robot. Controlling a quadrotor is notoriously difficult due
to its under-actuated nature. This experiment aims to confirm that our method remains
effective even when the robot learning task involves a highly dynamic and unstable system.

The quadrotor receives RL full state s = (x, vx, z, vz, ψ, ω, d1, ..., d8), where x, z, ψ are
the planar positional coordinates and pitch angle, and vx, vz, ω denote their time derivatives
respectively. It also contains eight sensor readings extracted from the laser rangefinder for
obstacle detection. m is the mass of quadrotor, g is gravity, CvD and CϕD are drag coefficients
and Iyy is the rigid body inertia based on y-axis. The quadrotor intends to learn a policy
mapping from full RL states to its two thrusts F1 and F2 to reach a goal while avoiding the
trap. We use a sparse reward function for this task, where Tr is the trap area.

r(s) =

0 (x, y) ∈ I

+1000 (x, y) ∈ G

−400 (x, y) ∈ C

+100 (x, y) ∈ Tr

(3.17)

This task is challenging because, without effective guided exploration, the quadrotor
tends to learn a policy that leads it to the trap instead of the goal, due to the positive trap
reward and nearby position, which is easily reachable by gravity.

To compute the OC baseline, we choose a 6D planar model [87] as the simplified abstrac-
tion of the fully planar quadrotor, shown in Eq. (3.18). The corresponding MPC problem
for this task is similar to Eq. (3.16), but adding an extra term −(pk− p̂∗)⊤γk+1W(pk− p̂∗)
as the penalty of trap-reaching to the cost function, where p̂∗ is the center position of trap

43

and W is penalty coefficients.

ẋ =

ẋ

v̇x

ż

v̇z

ψ̇

ω̇

=

vx

− 1
mC

v
Dvx + F1

m sinψ + F2
m sinψ

vz

− 1
m (mg + CvDvz) + F1

m cosψ + F2
m cosψ

ω

− 1
Iyy
CψDω + l

Iyy
F1 − l

Iyy
F2

(3.18)

Fig. 3.15 depicts the environment and quadrotor’s trajectories by executing policies
learned with (blue dashed line) and without (red dashed line) our method. We use PPO
as the base policy gradient method. With OC baseline, the robot learns the desired goal-
reaching policy otherwise can easily lead to a trap-reaching policy without our baseline.

Figure 3.15: Quadrotor trap avoidance task environment and reward performance

The training results of this experiment are demonstrated in Fig. 3.15, indicating that
in the quadrotor trap avoidance task, the final cumulative reward stabilizes at around 900.
Table. 3.4 shows our method has an increasing goal-reaching rate as learning progresses
while the normal RL without our baseline has an increasing trap-reaching rate. This result
indicates that our method indeed provides guided exploration for the RL process. In this
“Trap-Goal” example, although the “Trap” provides a positive reward as a good incentive
for RL, The OC baseline perceives that the “Goal” region provides even better rewards so
that the policy is optimized toward a global optimal direction towards the goal.

Method Succ rate ↑ Trap rate ↓
PPO w/o OC baseline 0.13 0.65

PPO w/ OC baseline (ours) 0.87 0.02

Table 3.4: Comparison of the goal- and trap-reaching rate of quadrotor trap avoidance task.

44

Analysis: Robustness to Model Misspecification and State Mapping

Figure 3.16: Mean reward of policy trained via our method but with different levels of noise between
hi-dim and lo-dim state mapping. Data are averaged over 5 runs on the car navigation task.

We further test the robustness of our method to model misspecification via inaccurate
mapping. In Fig. 3.16, we perturb the state mapping between hi-dim and lo-dim with
different levels of random noise to include state uncertainty. This will potentially have
the effect of increasing the model mismatch, thereby reducing the optimality of the lo-dim
controller. Particularly, for each hi-dim observation, we add noise to its lo-dim corresponding
state to make its lo-dim value prediction less accurate. The inaccurate lo-dim value is used
for the hi-dim baseline term during the whole learning process. We show that our method
can resist certain levels of state noise. In Fig. 3.16, a noise coefficient of 0.05 and 0.1
means we add a Gaussian noise with the specified standard deviations to the lo-dim state
(x, y, θ). Even under such disturbances, we observe significant progress in policy performance
(brown and red curves), close to the reference level. Moreover, with 0.2 radians, a relatively
large random noise to heading angle θ ∈ [−π, π], our method still acquires around 200
rewards which are equivalent to around 50% success rate of the goal-navigation. As the
noise level continues to increase, the policy training becomes worse due to very inaccurate
value estimation.

Analysis: Model-Mismatch affects Low-Level Controller

The model mismatch between the selected mathematical model f(s,a) and the target sim-
ulation model p(s′|s,a) (both over lo-dim state x) is a notable feature of our application
scenarios. We investigate it quantitatively based on a quadrotor navigation task, and show
its effect on the direct use of a lo-dim MPC controller. We first numerically measure the sys-
tem state transitional error over multiple control steps between using f(s,a) and p(s′|s,a),

45

as shown in Table. 3.5. It turns out the state transitional error becomes significant after 10
control steps (i.e. quadrotor’s positional state error increases to 1.14m, 2 times greater than
the vehicle size 0.5m). In Fig. 3.17, we further show an actual control trajectory of an MPC
controller running in target simulation but using selected model f(s,a) for prediction. It
turns out the model mismatch affects the control performance a lot and a good MPC con-
troller designed based on lo-dim model f(s,a) may not work well in the target environment
with model p(s′|s,a) (green curve, collisions to obstacle). In contrast, our method trains an
RL controller directly from the target environment in a model-free way and ends up with a
successful trajectory towards the goal.

1 Step 5 Steps 10 Steps
Car 0.095 ± 4.1% 0.391 ± 5.5% 0.518 ± 6.5%

Quadrotor 0.542 ± 3.8% 0.836 ± 7.2% 1.144 ± 5.3%

Table 3.5: Mean and standard deviation of system state transitional errors (over 10 roll-
outs) between using the lo-dim control-theoretic model and target, simulation model after
applying the same control sequences from the same initial state. The error is calculated
based on Euclidean distance of 2D positions (unit: meters).

Figure 3.17: 2D positional trajectory of MPC and RL controller. MPC uses a lo-dim model for
planning and executes its control in target simulation while RL controller uses our value-based
warm-starting method to learn from pure simulated experiences. Red blocks are obstacles, green
block is the goal.

Analysis: Better than Enhanced Exploration

To investigate whether a simple exploration strategy can work similarly well to our method,
we compare our method with standard PPO with its exploration enhanced by different levels
of policy entropy. We do this because entropy is easily generalizable to many methods, and
has been shown to be effective in a variety of problems. We vary the ratio of the entropy
term in the PPO loss function and choose its coefficient to be in the range of [0, 0.1], a

46

PPO w/ Entropy Coeff PPO w/ MBB0.01 0.02 0.05 0.10
Car -12 ± 15 -52 ± 21 -32 ± 22 -24 ± 37 678 ± 63

Trap-Goal 44 ± 51 48 ± 33 65 ± 20 50 ± 40 929 ± 77

Table 3.6: Mean and standard deviation of evaluated return of final policy trained via our method
and standard PPO with various levels of entropy-based exploration.

typical maximum range often used for PPO. We summarize results on car navigation and
trap-goal examples in Table. 3.6. It clearly indicates that increasing exploration in a simple
fashion does not significantly improve policy performance. This is because entropy only
provides undirected, “uniformly directed” exploration, which sometimes is not sufficient to
drive the policy update towards a specific goal-reaching direction. In contrast, our method
uses the lo-dim value function that provides directed exploration via an advantage function
that can inform correct policy gradient direction to the actual goal (see Fig. 3.11, 3.12
and Table. 3.7), rather than uniform exploration. This was clearly evident in the Trap-
Goal example. The car navigation example with sparse reward has many obstacles and
is constantly without effective exploration, which results in conservative behaviors (e.g.
moving nowhere and obtaining 0 reward) when the agent only explores in an undirected
manner.

Analysis: Correctness of Policy Gradient Estimation

Sample Size Cosine Similarity
PPO PPO w/ OC Baseline

27 0.238 0.331
29 0.422 0.615
211 0.674 0.858
213 0.855 0.961
215 0.914 0.982

Table 3.7: Cosine similarity is used to measure the closeness between the estimated policy gradi-
ent and the true gradient. Our method computes a more correct gradient direction (larger cosine
similarity at any sample size level) w.r.t. true gradient, showing its effectiveness in providing better
guidance on policy updates.

We further investigate policy gradient estimation, in particular the gradient’s direction,
to offer more insights into the cause of global guidance. Specifically, we quantify the closeness
between the estimated and true policy gradient using cosine similarity. We use an early stage
policy, one that visits the trap and goal roughly equally often, to compute the “true” policy
gradient over a significantly large number of samples Nmax = 102400 ≈ ∞ via Eq. (3.14)
without any b(·). Then we estimate the policy gradients via Eq. (3.14) using two baselines:
V π(·) and V oc(·) respectively over various sample sizes. Finally, we calculate cosine similarity

47

between estimated and “true” gradients and summarize results in Tab. 3.7. We find that
with b(·) = V oc(·), our method can provide a better approximation of policy gradient, even
when the number of samples is low, indicating its ability to implicitly direct the policy
gradient towards the globally-optimal region in a data-efficient way.

3.4 Chapter Summary

In this chapter, we first propose TTR-based reward shaping to alleviate the data inefficiency
of model-free RL on robotic tasks. The advantages of the TTR reward are: (1) It can be
derived efficiently from the TTR value function within the RL subspace. (2) It encodes
the minimization of goal-reaching time while taking into account essential robot dynamics,
proving valuable in a wide range of robotic learning scenarios demanding rapid task com-
pletion. (3) It is easy to implement and can be used as a wrapper for any model-free RL
algorithm as it does not alter the original RL structure. (4) It requires little human engi-
neering. Moreover, by altering the Hamilton-Jacobi equations Eq. (3.4), TTR-based reward
can easily involve the consideration of obstacles and disturbances. It can also be generalized
to a reward predictor for various environments.

Secondly, we introduce a novel baseline function for policy gradient RL. The baseline
is derived from the optimal control value function, which is computed based on an optimal
control problem defined in the RL subspace and is formed to be closely related to the target
RL task. We demonstrate that this control-based baseline can ensure guided exploration
to improve policy gradient RL especially when the task has sparse and insufficient reward
feedback. We further show this baseline function is a better alternative than entropy-based
exploration and its guidance is robust to model misspecification. From this work, we open
a new perspective on the utility of the baseline function.

48

Chapter 4

Scalable and Interpretable
Learning-Based Control

This chapter is based on my paper “Task-Oriented Koopman-Based Control with Contrastive
Encoder” [88]1 written in collaboration with Hanyang Hu, Seth Siriya, Ye Pu, and Mo Chen.

4.1 Chapter Overview and Related Work

Robot control is crucial in robotics and finds applications in various domains. Nonlinear and
linear control are two primary approaches in robot control. Nonlinear control [126, 71, 31]
is suitable for complex systems when a good nonlinear dynamical model is available. But
such a model is not easy to obtain and the nonlinear computation can be sophisticated
and time-consuming. Linear control [142, 76, 109] is relatively simple to implement and
computationally efficient for systems with linear, simple dynamics, but can exhibit poor
performance or instability in realistic systems with highly nonlinear behaviors. Based on
Koopman operator theory [64], Koopman-based control [57, 104, 143, 51] offers a data-
driven approach that reconciles the advantages of nonlinear and linear control to address
complex robot control problems. It transforms the (unknown) nonlinear system dynamics
into a latent space in which the dynamics are (globally) linear. This enables efficient control
and prediction of nonlinear systems using linear control theory.

Numerous studies have been done on Koopman-based control and they typically follow
a two-stage model-oriented process [51, 124, 69]. The first stage is to identify a Koopman
model – that is, a globally linear model – from system data, which involves finding a
Koopman operator and its associated embedding function to represent linearly evolving
system dynamics in the latent space. Classical methods use matrix factorization or solve
least-square regression via pre-defined basis functions, while modern methods leverage deep
learning techniques [85, 124, 51, 69, 163, 144], such as deep neural networks (DNNs) and
autoencoder frameworks, to enhance Koopman model approximation. In the second stage,

1Supplementary contents: https://sites.google.com/view/kpmlilatsupp

49

https://sites.google.com/view/kpmlilatsupp

a linear controller is designed over the latent space based on the Koopman model. Various
optimal control methods for linear systems, including Linear Quadratic Regulator (LQR)
[91, 69, 124] and Model Predictive Control (MPC) [2, 59, 65, 144], have been employed.

The model-oriented approach in the aforementioned works prioritizes Koopman model
accuracy for prediction rather than control performance. While it allows the model to be
transferred and reused across different tasks, it has certain limitations. Firstly, it involves a
sequential two-stage process, where the performance of the controller is highly dependent on
the prediction accuracy of the Koopman model. Thus, slight prediction inaccuracies of the
learned model can significantly degrade the subsequent control performance. Secondly, even
if the model is perfect, the cost function parameters for the linear controller (e.g. Q and R
matrices in LQR controller) need careful manual tuning in both observed and latent space
in order to have good control performance. These challenges are particularly pronounced in
problems with high-dimensional state spaces, thus restricting the applicability of Koopman-
based control to low-dimensional scenarios.

In this work, we propose a task-oriented approach with a contrastive encoder for Koopman-
based control of robotic systems. Unlike existing works that prioritize the Koopman model
for prediction, our task-oriented approach emphasizes learning a Koopman model with the
intent of yielding superior control performance. To achieve this, we employ an end-to-end
reinforcement learning (RL) framework to simultaneously learn the Koopman model and
its associated linear controller over latent space within a single-stage loop. In this frame-
work, we set the minimization of the RL task cost to be the primary objective, and the
minimization of model prediction error as an auxiliary objective. This configuration has
the potential to alleviate the aforementioned limitations: (1) RL optimization provides a
dominant, task-oriented drive for controller update, reducing its reliance on accurate model
identification. (2) Manual tuning of cost function parameters is unnecessary as they can be
learned implicitly along with the controller in the end-to-end loop.

More specifically, we adopt a contrastive encoder as the Koopman embedding function
to learn the linear latent representation of the original nonlinear system. In contrast to the
commonly-used autoencoder, we demonstrate the contrastive encoder as a preferable alter-
native, delivering latent embedding that is well-suited for our end-to-end learning, especially
in high-dimensional scenarios such as pixel-based control. To design the Koopman controller,
we develop a differentiable LQR solution process, which serves as the linear controller over
the latent system derived from the Koopman operator. This process is gradient-optimizable,
allowing us to integrate it into our end-to-end RL framework and optimize controller pa-
rameters through gradient backpropagation. We empirically evaluate our approach through
simulations across various tasks, demonstrating superior control performance while main-
taining accurate Koopman model prediction. We compare our approach with two-stage
Koopman-based control and pure RL method, providing a comprehensive assessment.

50

4.1.1 Koopman-Based Control.

B.O. Koopman [64] laid the foundation for analyzing nonlinear systems through an infinite-
dimensional linear system via the Koopman operator. Subsequent works proposed efficient
computation algorithms such as dynamical mode decomposition (DMD) [114, 115] and
extended DMD (EDMD) [158, 159] to approximate the Koopman operator from observed
time-series data. Recent research has expanded the Koopman operator theory to controlled
systems [104, 157], and explored its integration with various control techniques such as
LQR [13], MPC [65, 2, 66, 59], pulse control [127]. The emergence of deep learning has
further enhanced the learning of Koopman embedding and operator using neural networks
and autoencoders [85, 163], enabling their integration with optimal control [51, 124, 144].

4.1.2 Contrastive Representation Learning.

Contrastive representation learning has emerged as a prominent approach in self-supervised
learning in computer vision and natural language processing [29, 98, 27, 52, 67, 174, 77],
where it employs an encoder to learn a latent space where the latent representation of
similar sample pairs are proximate while dissimilar pairs are distant. Recent works have
extended contrastive learning to RL for robot control. Particularly, CURL [72] learns a
visual representation for RL tasks by matching embeddings of two data-augmented versions
of the raw pixel observation in a temporal sequence. The use of a contrastive encoder on
RL enables effective robot control directly from high-dimensional pixel observations.

4.1.3 Relations to Our Work.

Our work falls into the realm of using deep learning for Koopman-based control. In con-
trast to existing two-stage approaches [51, 124] involving model identification and controller
design, we propose a single-stage, end-to-end RL loop that simultaneously learns the Koop-
man model and controller in a task-oriented way. We also draw inspiration from the use
of contrastive encoder [72], and specifically tailor it as Koopman embedding function for
nonlinear systems with physical states and pixel observations. Our approach enhances the
Koopman-based control to be used in high-dimensional control tasks beyond traditional
low-dimensional settings.

4.2 Task-Oriented Koopman-Based Control with Contrastive
Encoder

4.2.1 Problem Formulation

Consider an optimal control problem over a nonlinear, controlled dynamical systems

min
u0:T −1

∑T−1
k=0 c (xk,uk) subject to xk+1 = f (xk,uk) , (4.1)

51

Figure 4.1: Overview of our method. We adopt an end-to-end RL framework to simultane-
ously learn a Koopman model and its associated controller. The Koopman model includes
a contrastive encoder as the embedding function and a linear matrix as the operator. The
Koopman controller is integrated into the loop as a differentiable LQR solution process to
derive step optimal control and allow for the gradient-based update. We optimize the entire
loop by considering the task cost as the primary objective and incorporating contrastive
and model prediction losses as auxiliary objectives.

where state x evolves at each time step k following a dynamical model f , and we aim to find
a sequence of control u0:T to minimise the cumulative cost c(xk,uk) over T steps. Koopman
operator theory [64, 104] allows the lifting of original state and input space x ∈ X; u ∈ U to
a infinite-dimensional latent embedding space z ∈ Z via a set of scalar-valued embedding
functions Ψ : (X,U)→ Z, where the evolution of latent embedding zk = Ψ(xk,uk) can be
globally captured by a linear operator K, as shown in Eq. (4.2).

KΨ (xk,uk) ≜ Ψ (f (xk,uk) ,uk+1) (4.2)

Identifying the Koopman operator K and the embedding function Ψ is the key to Koopman-
based control. In practice, K is often approximated using a finite-dimensional matrix K,
and the choice of Ψ is typically determined through heuristics or learning from data. Recent
research [51, 124] has established the convention that employ neural networks ψ(·) to encode
state x, and define the Koopman embedding function Ψ(x,u) =

[
ψ(x) u

]
. Correspond-

ingly, K is decoupled into state and control components, denoted by matrices A and B,
to account for ψ(x) and u respectively. This results in a linear time-invariant system with
respect to ψ(x) and u, shown in Eq. (4.3), facilitating linear control analysis and synthesis.

KΨ(xk,uk) =
[
A
B

] [
ψ(xk) uk

]
= Aψ(xk) + Buk = ψ(xk+1) (4.3)

52

The goal of Koopman-based control is to identify the Koopman operator K =
[
A B

]⊤
,

the embedding function ψ(x) and a linear controller u = π(x) to minimise the total cost.

4.2.2 Contrastive Encoder as Koopman Embedding Function

Deep neural networks are extensively employed as flexible and expressive nonlinear approx-
imators for learning Koopman embeddings in a latent space. Inspired by the success of
contrastive learning, we adopt a contrastive encoder to parameterize the embedding func-
tion ψ(·). Specifically, for each state xi in the data batch B = {xi | i = 0, 1, 2, ...}, we create
its associated query sample xqi and a set of key samples xki that include positive and negative
samples x+

i and {x−
j | j ̸= i}. x+

i is generated by using different versions of augmentations
on xi, while {x−

j | j ̸= i} are generated by applying similar augmentations for all the other
states: B\{xi} = {xj | j ̸= i}.

Following [52, 72], we use two separate encoders ψθq and ψθk
to compute the latent

embeddings: zqi = ψθq (xqi), z+
i = ψθk

(x+
i) and z−

j = ψθk
(x−
j). Then we compute the InfoNCE

loss over data batch B based on Eq. (4.4) as the contrastive loss Lcst to update encoders
parameters θq, θk, as well as W which is a learnable parameter matrix to measure the
similarity between query and key samples. Two encoders ψθq and ψθk

are used for contrastive
loss computation, but eventually only ψθq serves as the Koopman embedding function, and
we simplify it notation as ψθ. We use t = (z,u, z′, r, d) to denote a tuple with current and
next latent state z, z′, action u, reward r(·) = −c(·) and done signal d.

Lcst = Et∼B log

 exp(zqi
⊤
Wz+

i)
exp(zqi

⊤
Wz+

i) + ∑
j ̸=i exp(zqi

⊤
Wz−

j)

 (4.4)

Different encoder structures and augmentation strategies are required to handle system
states depending on how they are represented. For pixel-based states, we adopt convolutional
layers as the encoder structure and apply random cropping for augmentation [52, 72]. For
physical states, we utilize fully connected layers as the encoder structure and augment the
states by adding uniformly distributed, scaled random noise as defined in Eq. (4.5). x|·|

refers to element-wise absolute of x.

∆x ∼ U(−ηx|·|, ηx|·|); x+ = x + ∆x (4.5)

4.2.3 Linear Matrices as Koopman Operator

Koopman operator describes linear-evolving system dynamics over the latent embeddings
and is denoted by a matrix K. Following Eq. (4.3), we decompose K into two matrices A
and B, representing the state and control coefficient of a linear latent dynamical system.

zk+1 = Azk + Buk (4.6)

53

To learn A and B, we optimise a model prediction loss Lm, which is described by Mean-
Squared-Error (MSE) as defined in Eq. (4.7). ẑk+1 is the latent embedding obtained through
contrastive encoder at k+1 step. It supervises the predicted latent embedding at k+1 step
from Eq. (4.6).

Lm = Et∼B∥ẑk+1 −Azk −Buk∥2; ẑk+1 = ψθ(xk+1) (4.7)

Given Koopman embeddings z = ψθ(x) and its associated linear latent system param-
eterized by K =

[
A B

]⊤
shown in Eq. (4.6), Koopman-based approaches allow for linear

control synthesis over latent space Z.

Algorithm 1: Iterative solution of DARE
1: Set the total number of iterations M
2: Prepare current A,B, Q,R; initialise PM = Q.
3: for m = M,M − 1,M − 2, ..., 1 do
4: Pm = A⊤Pm+1A−A⊤Pm+1B(R + B⊤Pm+1B)−1B⊤Pm+1A + Q
5: end for
6: Compute linear gain: G = (B⊤P1B + R)−1B⊤P1A
7: Generate optimal control for latent embedding z:

u∗ = −Gz
Formally, consider the LQR problem in Koopman latent space that can be formulated

as Eq. (4.8) where Q and R are state and control cost matrices. In practice, we choose
to represent Q and R as diagonal matrices to maintain their symmetry and positive defi-
niteness. The LQR latent reference, denoted as zref, can be obtained from ψ(xref) if xref is
provided. Alternatively, zref can be set to 0 in the latent space if xref is not available. This
is particularly useful in cases where the LQR problem does not have an explicit, static goal
reference, such as controlling the movement of a cheetah.

min
u0:T −1

T−1∑
k=0

[
(zk − zref)⊤ Q (zk − zref) + u⊤

k Ruk
]

subject to zk+1 = Azk + Buk, (4.8)

Solving the LQR problem in Eq. (8) involves solving the Discrete-time Algebraic Riccati
Equation (DARE). One way this can be done is to take a standard iterative procedure
to recursively update the solution of DARE until convergence, as shown in Algo. 1. In
practice, we find performing a small number of iterations, typically M < 10, is adequate to
obtain a satisfactory and efficient approximation for the DARE solution. Thus, we build a
LQR control policy πLQR over Koopman latent embedding z while dependent on a set of
parameters A,B,Q,R, as described by Eq. (4.9).

u ∼ πLQR(z|G) ≜ πLQR(z|P1,A,B,R) ≜ πLQR(z|A,B,Q,R) (4.9)

54

Together with z = ψθ(x), Eq. (4.9) implies that the Koopman control policy πLQR is
differentiable with respect to the parameter group Ω = {Q,R,A,B, ψθ} over the input x.
Therefore, this process can be readily used in our gradient-based, end-to-end RL framework.
During learning, we follow Algo. 1 to dynamically solve an LQR problem (4.8) at each step
k with current parameters Ω to derive a control uk for the robot. To optimize the controller
πLQR towards lowering the task-oriented cost, we adopt a efficient off-policy RL algorithm,
soft actor-critic (SAC) [47], to maximize the objective of Eq. (4.10) via off-policy gradient
ascent over data sampled from batch buffer B. Q1, Q2 are two Q-value approximators used
in SAC. In principle, any other RL algorithms can also be utilized.

Lsac = Et∼B

[
min
i=1,2

Qi(z,u)− α log πsac(u | z)
]

; z = ψθ(x) (4.10)

4.2.4 End-to-End Learning for Koopman Control

Algorithm 2: End-to-End Learning for Koopman Control
1: Initialise Koopman control parameters Q,R,A,B, ψθ
2: Reset task environment E .
3: Initialise a data replay buffer D.
4: for i = 0, 1, 2, ... do
5: Collect new roll-outs τ from E by running policy πLQR following Algo. 1.
6: Save τ to D and sample a batch of data B from D.
7: Compute Lsac,Lcst,Lm based on B.
8: Update Ω = {Q,R,A,B, ψθ} based on Lsac.
9: Update ψθ and A,B based on Lcst and Lm respectively.

10: end for
We summarise the previous discussions and present the end-to-end learning process

for task-oriented Koopman control with contrastive encoder, as illustrated in Fig. 4.1 and
Algo. 2. The Koopman learning process is off-policy for better data efficiency.. We repeatedly
collect batches of trajectory data from task environment E and utilise three objectives to
update the parameter group Ω = {Q,R,A,B, ψθ} at each iteration. We take the RL task
loss Lsac as defined in Eq. (4.10) to be the primary objective to optimise all parameters
in Ω for achieving better control performance on the task. Meanwhile, we use contrastive
learning Lcst and model prediction Lm losses as two auxiliary objectives, as defined in
Eq. (4.4) and Eq. (4.7), to regularise the parameter learning. Lcst is used to update ψθ(·) to
ensure a contrastive Koopman embedding space, while Lm is used to update A,B to ensure
an accurate Koopman model in the embedding space.

55

4.3 Results

We present simulated experiments to mainly address the following questions: (1) Can our
method achieve desirable Koopman control performance for problems involving different
state spaces with different dimensionalities? (2) Are we able to obtain a well-fitted globally
linear model in the latent space? For all control tasks, we assume the true system models
are unknown.

4.3.1 Task Environments

We include three robotic control tasks with varying dimensions in their state and control
spaces from DeepMind Control Suite Simulator [139]: (1) 4D CartPole Swingup. The
objective of this task is to swing up a cart-attached pole that initially points downwards
and maintain its balance. To achieve this, we need to apply proper forces to the cart. This
task has 4D physical states of cart-pole kinematics as well as 1D control. (2) 18D Cheetah
Running. The goal of this task is to coordinate the movements of a planar cheetah to
enable its fast and stable locomotion. It has 18D states describing the kinematics of the
cheetah’s body, joints, and legs. The 6D torques are used as a control to be applied to the
cheetah’s joints. (3) Pixel-Based CartPole Swingup. The CartPole swingup task with
third-person-view images as the robot states.

4.3.2 Result Analysis

We report the results in Fig. 4.2, 4.3, 4.4 to demonstrate the effectiveness of our method.
Fig. 4.3 shows the Koopman controller’s performance by comparing its evaluation cost with
the reference cost at various learning stages. The reference cost, obtained from [72], is con-
sidered the optimal solution to the problem. All experiments are tested over 5 random
seeds. Across all three tasks, our method can eventually reach within 10% of the refer-
ence cost and continues to make further processes. This indicates our method is generally
applicable to both simple, low-dimensional systems and very complex systems involving
high-dimensional physical and pixel states. Fig. 4.2 showcases dynamical system behav-
iors by running a learned Koopman controller. The state evolution and temporal visual
snapshots of the three tasks illustrate the successful control achieved by our method.

Fig.4.4 shows the Koopman model’s prediction accuracy in the latent space. We employ
t-SNE [145] to project the latent trajectories from 50D latent space onto a 2D representa-
tion for improved visualization. The plot in Fig. 4.4 shows the true and predicted states
from trajectories consisting of 1000 steps. Significant overlapping and matching patterns
are observed in the distribution of the data points for the 4D CartPole and 18D cheetah
systems. This, plus the model prediction error, indicates the potential of utilizing a glob-
ally linear latent model to capture the state evolution in both simple and highly complex
nonlinear systems. However, for pixel-based CartPole control, the projected states do not

56

(a) Controlled states of 4D CartPole system

(b) Visualization of pixel-based CartPole control.

(c) Visualization of cheetah 18D control.

Figure 4.2: Dynamical system behaviors obtained by learned Koopman controller.

(a) 4D CartPole swingup (b) 18D cheetah running (c) Pixel-based CartPole

Figure 4.3: Mean and standard deviation of error between reference cost and our controller
cost during learning.

57

(a) 4D CartPole swingup with
mean model error: 2.72× 10−3

(b) 18D cheetah running with
mean model error: 8.10× 10−2

(c) Pixel-based CartPole with
mean model error: 3.71× 10−1

Figure 4.4: Distribution maps of 2D data points projected via tSNE from latent trajectories.
z_next denotes true trajectories while z_pred denotes predicted trajectories using learned
Koopman model.

perfectly match, suggesting difficulties in accurately modeling the pixel space. Nevertheless,
our method still achieves good control performance, even with slight modeling inaccuracies.
This highlights the advantage of our approach where the controller is less affected by the
model.

4.3.3 Comparison with Other Methods

Ours vs. Model-Oriented Koopman Control

We compare our method with model-oriented Koopman control (MO-Kpm), which often
requires a two-stage process of Koopman model identification and linear controller design.
We compare with the most recent work [124] and conduct analysis through the 4D CartPole-
swingup task.

Model Error MO-Kpm TO-Kpm (Ours)
Total Cost Cost Variation Total Cost Cost Variation

∼ 10−4 -188.10 - -872.18 -
∼ 10−3 -107.67 42.75% -846.88 2.90%
∼ 10−2 -64.32 40.27% -784.01 7.42%

Table 4.1: Total control cost and its variation under different levels model error using MO-
Kpm and our method.

Controller More Robust to Model Inaccuracy. Table. 4.1 presents the performance
of the Koopman controller under varying levels of Koopman model accuracy. MO-Kpm
experiences a rapid increase in total control cost with slightly increasing model error. In
contrast, our method demonstrates superior and consistent control performances, indicating
its better control quality as well as less dependency on the model’s accuracy. This advan-
tage arises from designing the controller primarily based on task-oriented costs rather than
relying heavily on the model. Thus, our method is applicable not only to low-dimensional

58

systems but also to more complex and high-dimensional scenarios, such as the cheetah and
pixel-based CartPole, where MO-Kpm cannot obtain a reasonable control policy.

Figure 4.5: Learned Q matrix.
Horizontal and vertical axes
represent the rows and columns
of a 50× 50 diagonal matrix.

MO-Kpm Total Cost
Q1 = Diag(84.12, 62.07, 65.79, 0.04, 0.04, 0, ...) -188.10
Q2 = Diag(0.01, 10, 10, 0.01, 0.01, 0, 0, ...) -109.23
Q3 = Diag(10, 60, 60, 0.01, 0.01, 0, 0, ...) -70.65
Q4 = Diag(10, 60, 60, 10, 10, 0.1, 0.1, ...) -124.80

TO-Kpm (Ours) Total Cost
Q is shown on the right -846.88

Table 4.2: Manually tuned and learned Q matrices for
latent LQR, and their associated control costs.

Automatic Learning of Q Matrix in Latent Space. One major challenge of MO-
Kpm is the difficulty in determining the state weight matrix Q for the latent cost function
(Eq. (4.8)), especially for latent dimensions that may not have direct physical meanings.
This challenge can lead to poor control performance, even when the identified model is
perfect. Table. 4.2 compares the control costs obtained from several manually tuned Q
matrices under the best-fitted Koopman model (10−4 level) with the learned Q using our
method. Our approach enables automatic learning of Q over latent space and achieves the
best control performance.

Ours vs. CURL

We compare our method with CURL [72], a model-free RL method that uses a contrastive
encoder for latent representation learning and a neural network policy for control.

System Analysis using Control Theory. Our method differs from CURL in that
we learn a linear Koopman model, whereas CURL does not. The presence of a Koopman
model (parameterized by A,B in Eq. 4.6) allows us to analyze the system using classical
control theory and provides insights for optimizing the controller design. For the CartPole
system, we perform stability analysis on both the 50D latent and the 4D true systems, and
draw the pole-zero plots in Fig. 4.6. We find that the learned system demonstrates the same
inherent instability as the true system, with the true system’s poles accurately reflected in
the poles of the latent system (overlapping blue and red dots).

We also analyze the controllability of the learned latent system and find its matrix rank
as 6, which indicates that a latent dimension of 50 results in excessive uncontrollable states.
Using this information, we apply our method with a lower-dimensional 6D latent space
and can maintain the same control and model performance. Further decreasing the latent
dimension to 4 leads to degraded control performance, suggesting that the controllability

59

Figure 4.7: Relations of learned weights in latent Q matrix and original pixel states

matrix rank is a valuable clue for controller design. This demonstrates the benefit of having
an interpretable representation of the state space.

Figure 4.6: Pole-zero plot of true
and learned latent CartPole sys-
tems.

Latent System Dimensions Total Cost Model Error
Dim(Z) = 50 -846.88 7.76× 10−3

Dim(Z) = rank(WZ) = 6 -834.18 6.3× 10−3

Dim(Z) = 4 -253.80 5.4× 10−2

CURL Control Performance -841 -

Table 4.3: Our method achieves comparable control
cost to CURL while providing more interpretable in-
formation about the system.

Interpretable Q Matrix in Latent Space. One key distinction of our method from
CURL is the utilization of a structured LQR policy in the latent space. In Fig. 4.7, we
illustrate that the LQR policy parameters, especially the Q matrix, can capture the relative
significance weights of latent embedding and their relationship to the original pixel states.

We take the pixel-based CartPole task as an example. The larger diagonal elements in
the learned Q matrix correspond to visual patches that contain the CartPole object, which
provides interpretable information that captures useful latent information related to the
CartPole object’s area in the image is crucial for achieving a good controller.

60

(a) Cart-Pole with Pixel Obsv (b) Cart-Pole with 4D state (c) Cheetah with 18D state

Figure 4.8: Comparison with well-known model-based RL methods.

4.3.4 Comparison with Other MBRL Methods

To benchmark our approach against established model-based RL methods, we select two
widely recognized methods: PlaNet [48] and Dreamer (Version 2) [49]. This comparison
spans three tasks. Remarkably, across all three tasks, our method demonstrates a clear su-
periority over PlaNet in terms of both data efficiency and peak performance. Additionally,
our method achieves competitive performance with Dreamer-v2 in two Cart-Pole experi-
ments, along with comparable data efficiency in cheetah running tasks. It’s important to
note that this comparable performance is achieved while our method learns a globally linear
model, whereas Dreamer employs a much larger nonlinear network to approximate a world
model. Therefore, our approach achieves a substantial reduction in both computational de-
mands and structural complexity while not compromising control performance too much.
It is also worth noting that our approach stands out from commonly used Model-Based
RL methods as it’s rooted in Koopman theory, offering the advantage of enabling control
theory analysis for the system.

4.3.5 Comparison with Other Encoders and Losses

(a) Cart-Pole with Pixel Obsv (b) Cart-Pole with 4D state (c) Cheetah with 18D state

Figure 4.9: Comparison with autoencoder and varying losses.

We perform experiments to validate our selection of the contrastive embedding function.
To achieve this, we replace the contrastive encoder with a canonical autoencoder (AE), a

61

commonly used method for learning condensed representations from high-dimensional obser-
vations. Specifically, we utilize the AE along with two types of loss functions: one involving
only reconstruction loss, and another involving a combination of reconstruction and one-step
prediction loss. Importantly, we keep all other aspects of our method unchanged. Results
are based on 3 random seeds.

As shown in Figure. 4.9, our approach achieves comparable control performance with
the use of AE. This aligns with the notion that autoencoder excels in reconstructing and
representing pixel-based observations. However, when tasks involve non-pixel observations,
such as normal states, our approach still maintains significant control efficiency and per-
formance, while the AE-based structure struggles to learn a useful policy even with ample
data. Particularly, we observed that the AE with only reconstruction loss slightly outper-
forms the one employing the combined loss, but still falls short of achieving the performance
obtained by our method using the contrastive encoder. These results provide validation for
our choice of contrastive embedding function within our approach.

4.3.6 Ablations Study of Hyper-parameters

We undertook an ablation study involving key parameters of the LQR solving iteration and
Koopman embedding dimension. Results are the mean over 3 random seeds and summarized
in Table. 4.4.

We found that our approach remains robust regardless of the specific number of itera-
tions used for the LQR solution, as long as it falls within a reasonable range. This suggests
that achieving a certain level of precision in solving the Riccati Equation contributes posi-
tively to both policy and linear model learning. We also studied the impact of varying the
latent embedding dimensions for the encoder. Our findings indicate that using a smaller di-
mension that aligns with the encoder’s intermediate layers yields consistently good results,
while excessively increasing the embedding dimension (d=100) can diminish control per-
formance. One reason could be the reduced approximation capabilities of the encoder due
to inappropriate high latent dimension. It might also be because the latent state becoming
overly sparse and failing to capture crucial information for effective control.

4.3.7 Real-World Evaluation

In this real robot task, we deploy our algorithm trained from the Gazebo simulator to the
turtlebot3 burger ground robot. We use 2D Lidar measurements as well as the odometry
information as observation, and the linear LQR policy generates the linear and angular
velocities as control. We aim to control the robot to navigate through a narrow curved
path without any collisions. We directly transfer the trained policy (which is trained with
only 40 episodes and each episode contains around 700 steps) to the hardware without any
fine-tuning, indicating the applicability of our approach to a real robot.

62

LQR iteration Latent Dimension
iter=3 iter=5* iter=10 d=30 d=50* d=100

CartPole pixel control cost -863 -873 -835 -848 -873 -813
model error 0.075 0.058 0.269 0.165 0.058 0.038

CartPole state control cost -751 -762 -769 -777 -762 -667
model error 0.00047 0.00031 0.00042 0.00043 0.00031 0.0002

cheetah run control cost -436 -464 -448 -477 -464 -235
model error 0.732 0.862 0.842 0.653 0.862 0.046

Table 4.4: Ablation results of final cost and model-fitting error regarding LQR solving
iteration and Koopman latent state dimension. The asterisk refers to the parameter used
in this work.

(a) 4s (b) 9s (c) 15s (d) 20s (e) 26s (f) 29s (g) 30s

Figure 4.10: Snapshots of real robot curved trajectory at different time stamps (seconds).

4.4 Chapter Summary

In this work, we propose task-oriented Koopman-based control with a contrastive encoder
to enable simultaneous learning of the Koopman embedding, model, and controller in an
iterative loop which extends the application of Koopman theory to high-dimensional, com-
plex systems. The significance of this work lies in (1) It reduces the reliance of controller
design on a well-identified model by prioritizing the task cost as the main objective for
controller learning, which, for the first time to the best of our knowledge, extends the clas-
sical Koopman control from low to high-dimensional, complex nonlinear systems, including
pixel-based tasks and a real robot with lidar observations. (2) It enhances the interpretabil-
ity of the learning process, which is usually not fully addressed. Specifically, it integrates a
linear classical controller and a linear latent model into the RL loop, enabling the theoreti-
cal analysis (e.g. stability, controllability) of the acquired system model via control theory.
It also allows for the interpretability of part of the learning process, such as the relations
between latent control coefficients Q and the learned behaviors).

63

Chapter 5

Efficient Multi-Agent Centralized
Learning with Asynchronous
Options

This chapter is based on my paper “Asynchronous, Option-Based Multi-Agent Policy Gradi-
ent: A Conditional Reasoning Approach” [86]1 written in collaboration with Amin Banitalebi-
Dehkordi, Mo Chen, and Yong Zhang.

5.1 Chapter Overview and Related Work

Cooperative multi-agent problems are common in the real world. For example, a team of
warehouse agents must coordinate their behaviors for efficient cargo handling, or a group of
robots to achieve a common goal in a team-based game. In these cases, agents’ actions and
outcomes affect each other, thus a centralized controller is often needed to learn a policy
that takes the joint observation of all agents as input and outputs a joint action for all
agents [46, 40, 167].

To efficiently learn a cooperative, centralized policy, multi-agent policy gradient (MAPG)
methods have been widely applied and have many successful applications [108, 37, 171, 156,
154, 151]. One key feature of MAPG methods is that they normally require robots to per-
form low-level actions at a low-level time scale: an action only lasts one time step and
multiple agents choose their actions synchronously at every time step. Although low-level
actions can be useful, they are not always practical for solving complex problems especially
those with large state and action space. This is because relying solely on low-level actions
may lead to a combinatorial explosion, where there are too many possible actions to search,
making it difficult to find an optimal policy.

To improve policy search efficiency, hierarchical reinforcement learning (HRL) has been
developed and widely adopted [90, 68, 134, 39, 166]. HRL breaks down complex tasks into

1Supplementary contents: https://sites.google.com/view/mahrlsupp

64

https://sites.google.com/view/mahrlsupp

smaller subtasks to reduce the problem’s complexity, making it easier to search for policies.
This is especially helpful for long-term reasoning tasks with sparse reward feedback. One
typical approach of HRL is the options framework [134], which employs options to optimize
policies. Options are higher-level combinations of primitive actions that enable agents to
perform actions over an extended duration. The use of options effectively reduces search
space size and improves policy learning efficiency and generalisability [169, 148, 128].

In order to effectively address complex cooperative problems, it is advantageous to em-
ploy the option framework in MAPG methods for centralized learning. However, a significant
challenge arises from the inconsistency between asynchronous option execution and central-
ized decision-making. This inconsistency results from the fact that options have varying
low-level time lengths, leading to their selection and completion across all agents occurring
at different time steps, that is, “asynchronicity” of multi-agent option execution. While
preserving asynchronicity can enable a realistic and efficient option execution strategy, as
illustrated in Fig. 5.1, it also poses an obstacle to MAPG methods in determining when and
how to optimize a joint control policy and sample new options from it for all agents. Specif-
ically, under asynchronicity, the joint option sampled from a centralized policy may not be
fully executed. For example, at a given low-level time step, only a subset of agents may
need to choose new options, while others do not. Therefore, it is unclear how to properly
evaluate policy gradients for policy training.

Figure 5.1: An illustration of synchronous and asynchronous option execution. Each node
refers to a state. Each arrow refers to a low-level action. A sequence of nodes in red, green,
or blue refers to executing one option. The gray nodes are waiting states for option syn-
chronization. An asynchronous strategy is more efficient and requires much fewer low-level
waiting steps.

Several attempts [165, 169, 50, 3, 164] have been made to address the aforementioned
challenge, but they have limitations. Specifically, these attempts can be classified into two
categories: synchronous and asynchronous approaches. Synchronous approaches [169, 50]
force all agents’ options to be synchronized at certain low-level time steps. For example,
they either use ηany strategy that interrupts unfinished options when any one of the agents

65

finishes its option, or use ηall strategy that waits until all agents’ options to finish. Then
the standard MAPG method can be applied to make centralized decisions as if they are
working on synchronous actions with an “extended step”. However, this type of approach
destroys asynchronicity and eliminates the option completeness as well as its benefits of low-
level temporal abstraction. In contrast, Christopher et al. [3, 164] proposed an alternative,
asynchronous solution. It allows the use of ηcontinue strategy: a subset of agents choose new
options while the others continue their ongoing options. They achieve this by aligning multi-
agent options via a specially designed sequence filtering process. This method preserves
asynchronicity but is only compatible with value-based algorithms (e.g., Deep Q-Network
(DQN)[95]), not policy gradient algorithms.

In this work, we propose a novel, conditional reasoning approach to enable centralized
learning of MAPG over asynchronous options. To achieve this, we first introduce a special
type of trajectory named “option-level joint trajectory”, which combines multi-agent inde-
pendent trajectories into one single joint trajectory. This trajectory allows multiple robots to
reason and plan at an option level while preserving efficient, asynchronous option execution.

To generate such a trajectory for policy training, we formalize a conditional centralized
policy that only selects a subset of options for those agents who require new options but
conditions its policy distribution on the currently executing options. In this way, we address
the inconsistency between option asynchronicity and centralized decision-making. As a re-
sult, our method can seamlessly adapt MAPG from action to option-wise while fitting it into
centralized learning. Our method is simple and can be easily implemented as an add-on to
standard, action-based policy gradient algorithms, such as MAPPO [171], to extend its use
over asynchronous options. We validate the effectiveness of our method on two option-based
multi-agent cooperative learning tasks.

5.2 A Conditional-Reasoning Approach for Multi-Agent Cen-
tralized Learning over Asynchronous Options

5.2.1 Problem Formulation

Following option framework [134], we formulate a two-level, multi-agent HRL problem for
cooperatively training N agents. In the higher level, at the option time step κ (its corre-
sponding low-level time step k), an option-based joint policy π(oκ|sκ) ∈ [0, 1] needs to be
trained to determine a joint option oκ based on a joint observation sκ (under true state
sκ) for N agents. oκ = (o0

κ,o1
κ, ...oN−1

κ) and sκ = (s0
κ, s1

κ, ...sN−1
κ) are collections of each

agent i’s option and observation, where i is indexed by i = {0, 1, 2, ..., N − 1}. In the lower
level, each agent observes the local observation sik under the true state sik and takes an
action aik which is determined by the inner policy πoi

κ
(aik|sik) of current-executing option

oiκ. After all agents take their actions, the environment transits from sk to the next state
sk+1 according to p(sk+1|sk,ak) and achieve a joint reward r(sk,ak, sk+1). In our setup, the

66

transition function p(sk+1|sk,ak) is based on a low-level time step and is determined by the
simulation.

Our objective is to find the higher-level, option-based policy π(o|s), rather than the
inner policy πo over lower-level action space. Therefore, we assume the inner, action-based
policies πo of available options are given or pre-defined that are appropriate for potential
task completion. This is to say, we are not learning πo at the low level.

Figure 5.2: The structure of our method. Left: an example of the option-level joint tra-
jectory where two agents take their options asynchronously. Observations sκ, sκ+1, ... are
joint observations of all agents at option step κ, κ + 1, ... when at least one agent’s option
is terminated. Option oκ,oκ+1, ... are joint options at each option step. Batches of these
trajectories are used as training data to optimize the conditional centralized policy. Right:
The formation of centralized conditional policy π̂θ where θ is the policy parameter. This
policy is used to generate the required joint options for a subset of agents Uκ to form the
option-level trajectories.

5.2.2 Centralized MAPG over Asynchronous Options

In centralized learning, asynchronous option execution presents a problem for policy gradient
optimization. To understand the problem, let us consider Generalized Advantage Estimation
(GAE)-based policy gradient [122] shown in Eq. (5.1). It describes a centralized controller
selecting the joint action ak for all agents at the low-level time scale indexed by k. It
calculates the policy gradient of the RL objective J(πθ) over a batch of trajectories τ . Gλk
estimates the Temporal-Difference TD(λ) [130] return and Vπθ

estimates the value function
which is used as a baseline. Our question is: how to adapt Eq. (5.1), which is based on
actions, to the use of options, and apply it to learn a centralized policy?

∇θJ (πθ) = E
τ∼πθ

[
K∑
k=0
∇θ log πθ (ak | sk)

(
Gλk − Vπθ

(sk)
)]
. (5.1)

67

One trivial way is to simply substitute action-based policy π(ak|sk) with option-based
policy π(oκ|sκ) and view an option as an action with “one extended step”. In this way,
Eq. (5.1) still holds, and can be converted to base on option time κ defined by the option
termination, rather than action time k. However, this only works when multi-agent options
are forced to be synchronized (e.g. ηany or ηall) such that a joint policy can always select
new options for all agents at the same time. However, it is not applicable to many realistic
situations where the asynchronous option execution ηcontinue is preferred. In fact, the calcu-
lation for policy term π(oκ|sκ) remains a challenge when ηcontinue strategy is used, as there
is no “synchronous timing” for a joint option selection anymore. Therefore, we present a
novel solution to address it in the next section.

5.2.3 Option-Level Joint Trajectory

To train a multi-agent option-based policy in a centralized way, we require a collection of
agents’ trajectories as training data. Unlike action-level trajectory that is often defined at
a sequence of low-level time steps, here we introduce a special option-level trajectory in
Fig. 5.2. To form it, we determine specific low-level timings at when we collect joint states
and observations, joint options, and the shared reward for all agents. Those timings are
when at least one agent terminates its previous option and selects a new option, and they
will serve as option time steps in the trajectory. We refer to this process as “soft-sync”
because it synchronizes multi-agent state transitions and option selections in a soft way —
it does not actually interrupt agents’ ongoing options.

In contrast to strategies like ηany or ηall that actually interrupt robot-environment inter-
actions to have forced synchronization, “soft-sync” allows the formation of an “interruption-
free” trajectory over asynchronous options, and allows the use of a centralized policy to
jointly select options. The trajectory is formally described by Definition 1.

Definition 1. We denote τo as an option-level trajectory which is the joint trajectory for
N agents. τo = (sκ,oκ, rκ, sκ+1,oκ+1, rκ+1, ..., sκ+T) where κ, κ+1, ..., κ+T are consecutive
option steps when “soft-sync” happens. In particular, s and o are joint observation and
option: sκ = (s0

κ, s1
κ, ..., sN−1

κ) and oκ = (o0
κ,o1

κ, ...oN−1
κ). rκ is the shared step reward.

5.2.4 Conditional Centralized Policy

To achieve centralized MAPG over asynchronous options, we not only require option-level
joint trajectories τo but also a special form of policy to generate these trajectories and get
updated from them. This is because many policy gradient methods [122, 117, 171] update
policy in an on-policy way: the policy being updated is also used to generate sequential data
for training itself.

Although sampling new options for all agents from a joint policy π(oκ|sκ) at each time
step κ is the easiest approach, it is infeasible. The reason is that only a subset of agents need

68

to select new options at each option step κ of an option-level joint trajectory, while the others
need to continue with their ongoing options to maintain “interruption-free” asynchronicity.
For example, in Fig. 5.2, at option step κ + 1, agent 1 requires a new option, but agent 0
does not and continues with its ongoing option. Thus, a policy would be desirable if it could
generate joint options at each option step only for those agents who need new options while
not affecting the other agents with ongoing options.

Formally, we assume the existence of a centralized policy, denoted by π(oκ|sκ), which
takes the joint observation sκ of all agents as input and outputs a probabilistic distribution
of joint option oκ. For mathematical convenience, we introduce a new notation, Uκ, to
denote the set of agents that need to choose new options at option step κ, and Uκ to denote
the set of agents that do not need to choose new options. The corresponding joint option
for Uκ and Uκ are denoted as oUκ

κ and oUκ
κ respectively.

It turns out that we can take advantage of the concept of conditional dependency to
derive the policy distribution we need. More specifically, we formalize a joint policy π(oκ|sκ)
in an equivalent way of conditioning the option distribution of the agents in Uκ based on
the currently executing options of agents in Uκ, as is shown in Eq. (5.2).

π(oκ | sκ) = π(oUκ
κ ,oUκ

κ | sκ) ≜ π̂(oUκ
κ | oUκ

κ , sκ) (5.2)

In Eq. (5.2), we denote π̂ as a conditional policy to distinguish it from joint policy π, but
they share the same parameters. The use of π̂(oUκ

κ | oUκ
κ , sκ) allows us to sample options

only for those agents who need to select new options while maintaining uninterrupted option
executions for the others. Thus, it allows the generation of “true” asynchronous trajectory
τo. Moreover, the generated trajectories τo will be further used as training data to update
the policy itself, we thus achieve the on-policy update.

5.2.5 Algorithm

In practice, Eq. (5.2) is computationally feasible. The term π̂(oUκ
κ | oUκ

κ , sκ) is a conditional
distribution thus can be reformed via Bayes’ rule by a joint distribution π(oUκ

κ ,oUκ
κ | sκ)

and its marginalization π(oUκ
κ | sκ), as shown in Eq. (5.3).

oUκ
κ ∼ π̂(oUκ

κ | oUκ
κ , sκ) = π(oUκ

κ ,oUκ
κ | sκ)

π(oUκ
κ | sκ)

(5.3)

The joint and marginalized terms can be effortlessly represented and obtained. In many
deep RL cases, neural networks are often used to represent policy and value functions. The
joint policy πθ(oUκ

κ ,oUκ
κ | sκ) can be represented by a neural network parameterized by

θ, and its output usually stands for the main parameters of commonly-used probabilistic
distributions such as categorical or Gaussian distribution. From these standard distribu-
tions, the marginalization πθ(oUκ

κ | sκ) can also be efficiently computed. For example, the

69

marginalization of categorical distribution can be done by summing out the variables cor-
responding to the categorical distribution to obtain a new distribution over the remaining
variables. This process is illustrated in Fig. 5.2’s policy stage.

By utilizing π̂θ(oUκ
κ | oUκ

κ , sκ) as policy and running its optimization over option-level
joint trajectory τo, we can seamlessly alternate standard MAPG method in Eq. (5.1) to sup-
port the centralized training over asynchronous options, as shown in Eq. (5.4). Specifically,
the centralized critic Vπθ

(sκ) and TD(λ) return Gλκ are computed in the same way as usual,
but only based on option-level trajectory. We summarize the entire process in Algo. 3.

∇θJ (π̂θ) = E
τo∼π̂θ

[∑
κ

∇θ log π̂θ (oκ | sκ)
(
Gλκ − Vπ̂θ

(sκ)
)]

(5.4)

Algorithm 3: Asynchronous Option-Based MAPG
1: Initialize N agents. Initialize a joint policy πθ(o|s) and a value network Vϕ(s).

Randomly sample initial observation s0.
2: for iteration i = 0, 1, 2, ... do
3: Training trajectory dataset τo = {}.
4: for κ = 0, 1, 2, ..., T do
5: if Uκ ̸= ∅ (some agents choose new options) then
6: Obtain oUκ

κ and oUκ
κ , and alternate πθ(oκ | sκ) to be π̂θ(oUκ

κ | oUκ
κ , sκ) via

Eq. (5.2) and (5.3).
7: Sample oκ from π̂θ(oUκ

κ | oUκ
κ , sκ) and execute oκ.

8: Add (sκ,oκ, rκ) to τo.
9: else

10: all agents continue their ongoing options.
11: end if
12: end for
13: Update policy parameter θ via Eq. (5.4) using data from τo.
14: end for

5.2.6 An Extended Use-Case

In addition to centralized learning, our method can also be applied to another important use
case called partially centralized learning. In contrast to (fully) centralized scenarios where
global states and observations are needed to make global decisions, partially centralized
learning describes agents choosing their options based on their local observations as well as
conditioned by other agents’ options.

Partially centralized learning is useful in some realistic situations when having a fully
centralized system is impracticable. For example, broadcasting global information for all
agents can sometimes be costly and restricted by software or hardware capabilities such as
communication bandwidth and latency, especially when global information includes high-

70

dimensional observations (e.g. images or point cloud). However, by only sharing options
instead of observations, partially centralized learning can be more efficient since the op-
tion space is usually low-dimensional. In addition, knowing the options of other agents as
conditions is potentially important for local decision-making.

Formally, we have multiple policies πi, one for each agent i for option selection. Similar
to centralized learning, at each option step κ, we formulate the option selection probability
of each agent in Uκ by conditioning it on its local observation siκ as well as the currently
executing options of agents in Uκ. For agents in the set Uκ, we can simply evaluate its option
selection probability to be deterministic and equal to 1. This is because the agent does not
select a new option but naturally continues the ongoing option, thus not contributing to
the policy gradient at this option step. This is shown in Eq. (5.5).

π̂i(oiκ | oUκ
κ , siκ) =

1, if i ∈ Uκ

π(oi
κ,o

Uκ
κ |si

κ)
π(oUκ

κ |si
κ)

, otherwise. (5.5)

(a) (b)

Figure 5.3: (a) Water Filling task, top and front view. Water levels are in yellow. The
positions of the three jars are circled in white, pink, and green. Two robots are in the
middle space (red dashed box). (b) Tool Delivery task with one Fetchbot (gray) and two
Turtlebots (green and blue). Red dots are available at middle waypoints for transitions, and
the brown rectangle is a desk for passing tools. The progress bar on the top right represents
the current task stage.

5.3 Results

5.3.1 Task Specifications

We empirically evaluate our method on two cooperative multi-robot tasks featuring in
asynchronous options and long-term reasoning, following previous work [165, 164].

Water Filling (WF). As shown in Fig. 5.3a, two heterogeneous robots (a slower vehicle
and a faster drone) navigate in a large indoor room and cooperate to refill water timely for
three jars at different locations. This task is challenging as (1) the water levels in three jars

71

decrease randomly and rapidly following parameter-varying Gaussian distributions at each
low-level step k; (2) two robots have different but limited abilities: vehicle can scout and
fill water but move slowly; the drone is faster but can only scout water levels. So, robots
have to develop “real” cooperation to make use of their abilities rather than repeating rote
behaviors. For example, the drone is expected to scout the room quickly and share the most
recent water levels with the vehicle. The vehicle can choose the closest or empty jar to fill.

We use ai2thor simulator [63] to model this task and use RGB raw images as well as
important auxiliary information2 as observations. Both agents can take one-step options:
{up; down; left; right} or multi-step options: NavTo(j) where j is jar index. A vehicle
can take an extra option NavToFill(j) to reach and fill water. The low-level time steps of
NavTo(j) and NavToFill(j) depend on the robot’s speed and its distance to the target jar:
we use 0.5m/s for the vehicle and 2m/s for the drone. The reward function is defined over
the global water level of all jars in Eq. (5.6) where w(s; j) is the water level of jar indexed
by j under true state s.

r(s) =
|J |∑
j=0

(− 1.0
w(s, j) + 0.001 + 1), j = 0, 1, 2 (5.6)

Tool Delivery (TD). To validate the usefulness of our method on more complex prob-
lems, we use Tool Delivery [164], a three-agent task that requires complicated multi-stage
collaboration (Figure. 5.3b). It involves a human working on a four-stage task, requiring
assistance from a Fetchbot and two Turtlebots to search, pass, and deliver proper tools to
him at the proper stage. Only Fetchbot can search and pass tools to Turtlebots, and only
Turtlebots can deliver tools to a human. Turtlebots choose multi-step options from {Go-
ToWS; GoToTR; GetTool} to go to one of the middle waypoints (TR or WS, red dots in
Fig. 5.3b) or pick one tool. Fetchbot either searches specific tool or passes one of the found
tools to one of the waiting Turtlebots. More constraints of this task can be found in [164].

Turtlebot observes its own location, human working stage, index of carried tools, and
the number of the tools on the desk. Fetchbot observes the number of tools waiting to be
passed and the index of waiting Turtlebot. Note that neither Fetchbot nor Turtlebots is
aware of the correct tool required by a human at each stage, they have to reason about this
information via training. The agents receive a −1 reward at each low-level step, −10 when
the Fetchbot passes a tool but no Turtlebot around, and 100 for a good tool delivery to a
human. Available options for all tasks are shown in Table 5.1.

2In particular, we use (a) global water levels recently updated by any robot; (b) elapsed time steps since
water levels get updated last time.

72

Task Agent Available Options
WF Drone Up; Down; Left; Right; NavTo(j);
WF Vehicle Up; Down; Left; Right; Fill(j);

NavTo(j); NavToFill(j);
TD Turtlebot GoToWS; GoToTR; GetTool
TD Fetchbot SearchTool(h); PassTo(w)

Table 5.1: Available agent options for two tasks. Options are discrete. j is the index of jars
from the WF task. h ∈ {0,1,2} is the tool index and w ∈ {0,1} is the index of waiting
Turtlebot from TD task. Options have varying low-level time lengths depending on their
termination conditions and properties.

5.3.2 Implementation and Baselines

This section outlines the methods employed in our study, which includes our proposed
approach, baselines, and a state-of-the-art method. In all methods, a joint policy network
is used for centralized policy learning across all agents.

Our method and baselines are both adapted from MAPPO [171], a well-known, action-
based MAPG algorithm. Our method alters MAPPO to allow the use of a conditional
centralized policy and use it to sample asynchronous, option-level joint trajectories for
training. Baseline methods also use option-level trajectories as training data, but the tra-
jectories are collected synchronously. They apply use synchronous strategies such as ηany
and ηall to forcibly select options for all agents, and collect {(sκ,oκ, rκ) | κ = 0, 1, ..., T} at
every option step. We denote these methods as “sync-cut” and “sync-wait” respectively.

We include an “end2end” baseline which uses MAPPO to learn a centralized policy
purely over low-level actions rather than options. Additionally, we include a state-of-the-
art approach that is also applicable to “interruption-free”, asynchronous option-based data,
but mainly uses Q-value-based off-policy algorithms. We use mean reward over a batch of
training samples per iteration as performance criteria.

For all methods, we set the training batch size to be based on a low-level action step
instead of a high-level option step. During each training epoch, a fixed batch size of low-
level samples is collected. For the WF task, the batch size is 2000 while for the TD task,
the batch size is 200. Despite the variation in the number of option steps in a batch due
to different option termination strategies. we ensure a fair comparison of “convergence rate
v.s. sample size” (Fig. 5.4) between different methods, particularly between option-based
and action-based methods, as an option often contains more than one action.

5.3.3 Performance Comparison with Baselines

Fig. 5.4a shows the actual training progress of ours and baseline methods on the Wa-
ter Filling task. Our approach, denoted by “async(ours)”, achieves consistently increasing
mean reward and outperforms other baselines from the start to the end. This indicates the

73

(a)
(b)

Figure 5.4: Centralized policy learning using asynchronous option-based (ours), synchronous
option-based as well as low-level action-based methods on (a) Water Filling and (b) Tool
Delivery task. All experimental results are summarized over 5 runs with random seeds.
During each training epoch, we gather a fixed number of low-level samples and extract
option-based trajectory data from them to update the policy. The variation of starting
reward levels in (a) is attributed to the use of different option termination strategies, which
can impact the number of option steps included in a trajectory. Thus, the variation in
trajectory length influences the cumulative reward attained.

effectiveness of our centralized, conditional-based policy gradient on using complete asyn-
chronous options, which is beneficial to long-term planning, especially in the large indoor
environment, otherwise the interrupted options (e.g. using “sync-cut”) often give rise to
navigation failure in the middle of path and waiting other agents’ options can lead to very
inefficient exploration process (e.g. using “sync-wait”, drone has to wait for slower vehicle
and cannot scout the environment information quickly and frequently).

In Fig. 5.4b, we show the training results on the Tool Delivery task. Clearly, our approach
still acquires the highest peak reward as well as the fastest convergence rate in contrast to
the other baselines, despite more agents, stages, and cooperative structures involved. This
again indicates the advantage of being capable of running MAPG on complete, asynchronous
options over forced synchronized options. What even worse is, that without option-level
operation, the “end2end” method cannot learn any useful policy at all.

5.3.4 Performance Comparison with a state-of-the-art method

To show the effectiveness of our method not only from running complete options but also
the method itself, we present a Table. 5.2, which summarizes the results of the final policy
trained by ours and a state-of-the-art method “Mac-DQN” [164], in terms of its peak per-
formance and sample efficiency. For both methods, we use mean reward as a performance
criterion. It indicates that despite both methods using the “true” asynchronous option with-

74

out any forced synchronization, we achieve not only a comparable level of peak performance
but also much better sample efficiency than “Mac-DQN” on both tasks (3∼8x faster).

Peak Performance Training Samples
Mac-DQN Ours Mac-DQN Ours

Water Filling −287± 41 −304 ± 27 600K 200K
Tool Delivery 14.2± 0.8 17.1 ± 0.7 400K 50K

Table 5.2: Performance comparison with Mac-DQN, a state-of-the-art asynchronous option-
based MAPG method using Q-value-based, off-policy optimization.

5.3.5 Centralized Learning: Fully v.s. Partially

We evaluate the performance of policies trained by fully and partially centralized learning, as
shown in Table. 5.3. It was found that partially centralized learning achieved relatively close
performance to centralized learning in the Water Filling task, but performed significantly
worse in the Tool Delivery task. This may be because in the Water Filling task, impor-
tant task states such as the global water level can be effectively communicated between
robots and encoded in their local observations, and thus having only local observations is
sufficient for robots to navigate and search effectively. However, in the multi-stage Tool De-
livery task, more complex cooperation and global observation sharing is necessary to obtain
important task states for all agents. Therefore, using partially centralized learning is not
sufficient for making good decisions based solely on local observations. Overall, partially
centralized learning may be useful in cases where observation sharing is less critical but
option-dependency is more important, as it can reduce computational load.

Partially Centralized Centralized (Ours)
Water Filling −349± 51 −304 ± 27
Tool Delivery 4.4± 0.3 17.1 ± 0.7

Table 5.3: Performance comparison between partially centralized and centralized learning.
Both use asynchronous options.

5.4 Chapter Summary

In this work, we propose a new approach to facilitate centralized learning in the context
of MAPG with asynchronous options while preserving the asynchronous execution of these
options. To accomplish this, we introduce a unique type of trajectory known as the “option-
level joint trajectory”. This trajectory combines the individual trajectories of multiple agents
into a single, unified trajectory. To generate such a trajectory for policy training, we for-
malize a conditional centralized policy that selects a specific subset of options for agents in

75

need of new options but conditions its policy distribution on the currently executing op-
tions. This approach effectively reconciles the inconsistency between the asynchronicity of
options and centralized decision-making. Consequently, our method seamlessly adapts off-
the-shelf MAPG (e.g. MAPPO [171]) from an action-wise to an option-wise perspective. In
the current work, we use pre-defined, perfect options, but alternatively, the options can be
pre-trained offline ahead as a set of subtasks, or they can use low-level classical controllers.

76

Bibliography

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of
reinforcement learning to aerobatic helicopter flight. In Advances in neural informa-
tion processing systems, pages 1–8, 2007.

[2] Ian Abraham, Gerardo De La Torre, and Todd D Murphey. Model-based control using
koopman operators. arXiv preprint arXiv:1709.01568, 2017.

[3] Christopher Amato, George Konidaris, Leslie P Kaelbling, and Jonathan P How. Mod-
eling and planning with macro-actions in decentralized pomdps. Journal of Artificial
Intelligence Research, 64:817–859, 2019.

[4] Robin Amsters and Peter Slaets. Turtlebot 3 as a robotics education platform. In
International Conference on Robotics in Education (RiE), 2019.

[5] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted
learning for control. In Lazy learning, pages 75–113. Springer, 1997.

[6] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pages 37–49. JMLR
Workshop and Conference Proceedings, 2012.

[7] Martino Bardi, Italo Capuzzo Dolcetta, et al. Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations, volume 12. Springer, 1997.

[8] Martino Bardi, Italo Capuzzo Dolcetta, et al. Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations, volume 12. Springer, 1997.

[9] Martino Bardi and Pierpaolo Soravia. Hamilton-jacobi equations with singular bound-
ary conditions on a free boundary and applications to differential games. Transactions
of the American Mathematical Society, 325(1):205–229, 1991.

[10] Martino Bardi and Pierpaolo Soravia. Hamilton-jacobi equations with singular bound-
ary conditions on a free boundary and applications to differential games. Transactions
of the American Mathematical Society, 325(1):205–229, 1991.

[11] Richard Bellman. Dynamic programming and stochastic control processes. Informa-
tion and control, 1(3):228–239, 1958.

[12] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proc. Annual Int. Conf. Machine Learning, 2009.

77

[13] Steven L Brunton, Bingni W Brunton, Joshua L Proctor, and J Nathan Kutz. Koop-
man invariant subspaces and finite linear representations of nonlinear dynamical sys-
tems for control. PloS one, 11(2):e0150171, 2016.

[14] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), 38(2):156–172, 2008.

[15] M. Chen, S. Herbert, and C. J. Tomlin. Fast reachable set approximations via state
decoupling disturbances. In Proc. IEEE Conf. Decision and Control, 2016.

[16] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J. Tomlin. Decomposition
of reachable sets and tubes for a class of nonlinear systems. IEEE Transactions on
Automatic Control, 63(11):3675–3688, Nov 2018.

[17] Mo Chen, Jaime F Fisac, Shankar Sastry, and Claire J Tomlin. Safe sequential path
planning of multi-vehicle systems via double-obstacle hamilton-jacobi-isaacs varia-
tional inequality. In 2015 European Control Conference (ECC), pages 3304–3309.
IEEE, 2015.

[18] Mo Chen, Jaime F Fisac, Shankar Sastry, and Claire J Tomlin. Safe sequential path
planning of multi-vehicle systems via double-obstacle hamilton-jacobi-isaacs varia-
tional inequality. In 2015 European Control Conference (ECC), pages 3304–3309.
IEEE, 2015.

[19] Mo Chen, Sylvia Herbert, and Claire J Tomlin. Exact and efficient hamilton-
jacobi-based guaranteed safety analysis via system decomposition. arXiv preprint
arXiv:1609.05248, 2016.

[20] Mo Chen, Sylvia L. Herbert, Haimin Hu, Ye Pu, Jaime F. Fisac, Somil Bansal, SooJean
Han, and Claire J. Tomlin. Fastrack: a modular framework for real-time motion
planning and guaranteed safe tracking, 2021.

[21] Mo Chen, Qie Hu, Jaime F Fisac, Kene Akametalu, Casey Mackin, and Claire J
Tomlin. Reachability-based safety and goal satisfaction of unmanned aerial platoons
on air highways. Journal of Guidance, Control, and Dynamics, 40(6):1360–1373, 2017.

[22] Mo Chen, Jennifer C Shih, and Claire J Tomlin. Multi-vehicle collision avoidance
via hamilton-jacobi reachability and mixed integer programming. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 1695–1700. IEEE, 2016.

[23] Mo Chen, Jennifer C Shih, and Claire J Tomlin. Multi-vehicle collision avoidance
via hamilton-jacobi reachability and mixed integer programming. In 2016 IEEE 55th
Conference on Decision and Control (CDC), pages 1695–1700. IEEE, 2016.

[24] Mo Chen and Claire J Tomlin. Hamilton–jacobi reachability: Some recent theoretical
advances and applications in unmanned airspace management. Annual Review of
Control, Robotics, and Autonomous Systems, 1:333–358, 2018.

[25] Mo Chen and Claire J Tomlin. Hamilton–jacobi reachability: Some recent theoretical
advances and applications in unmanned airspace management. Annual Review of
Control, Robotics, and Autonomous Systems, 1:333–358, 2018.

78

[26] Mo Chen, Zhengyuan Zhou, and Claire J Tomlin. Multiplayer reach-avoid games via
pairwise outcomes. IEEE Transactions on Automatic Control, 62(3):1451–1457, 2016.

[27] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International confer-
ence on machine learning, pages 1597–1607. PMLR, 2020.

[28] Ching-An Cheng, Xinyan Yan, and Byron Boots. Trajectory-wise control variates
for variance reduction in policy gradient methods. In Conference on Robot Learning,
pages 1379–1394. PMLR, 2020.

[29] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric dis-
criminatively, with application to face verification. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages
539–546. IEEE, 2005.

[30] Gabriele Ciaramella and Giulia Fabrini. Multilevel techniques for the solution of
hjb minimum-time control problems. Journal of Systems Science and Complexity,
34(6):2069–2091, 2021.

[31] Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control
using robust neural lyapunov-barrier functions. In Conference on Robot Learning,
pages 1724–1735, Auckland, New Zealand, December 2022. PMLR.

[32] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472, 2011.

[33] Lester E Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal of
mathematics, 79(3):497–516, 1957.

[34] Lawrence C Evans and Panagiotis E Souganidis. Differential games and representa-
tion formulas for solutions of hamilton-jacobi-isaacs equations. Indiana University
mathematics journal, 33(5):773–797, 1984.

[35] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter
Abbeel. Deep spatial autoencoders for visuomotor learning. In 2016 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 512–519. IEEE, 2016.

[36] Carlos Florensa, David Held, Markus Wulfmeier, and Pieter Abbeel. Reverse curricu-
lum generation for reinforcement learning. CoRR, 2017.

[37] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. Counterfactual multi-agent policy gradients. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

[38] Bruce A Francis, Manfredi Maggiore, Bruce A Francis, and Manfredi Maggiore. Mod-
els of mobile robots in the plane. Flocking and rendezvous in distributed robotics,
pages 7–23, 2016.

79

[39] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learn-
ing shared hierarchies. In International Conference on Learning Representations,
2018.

[40] Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices
in cooperative multi-agent reinforcement learning. arXiv preprint arXiv:2206.07505,
2022.

[41] Mihalis Giannakis and Michalis Louis. A multi-agent based system with big data
processing for enhanced supply chain agility. Journal of Enterprise Information Man-
agement, 29(5):706–727, 2016.

[42] Jeremy H Gillula, Haomiao Huang, Michael P Vitus, and Claire J Tomlin. Design
of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor aerobatics
in theory and practice. In 2010 IEEE International Conference on Robotics and
Automation, pages 1649–1654. IEEE, 2010.

[43] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction tech-
niques for gradient estimates in reinforcement learning. Journal of Machine Learning
Research, 5(Nov):1471–1530, 2004.

[44] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey
Levine. Q-prop: Sample-efficient policy gradient with an off-policy critic. arXiv
preprint arXiv:1611.02247, 2016.

[45] Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement
learning using sample-based search. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1025–1033. Curran Associates, Inc., 2012.

[46] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent
control using deep reinforcement learning. In Autonomous Agents and Multiagent
Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017,
Revised Selected Papers 16, pages 66–83. Springer, 2017.

[47] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
International Conference on Machine Learning (ICML), 2018.

[48] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak
Lee, and James Davidson. Learning latent dynamics for planning from pixels. In Inter-
national Conference on Machine Learning, pages 2555–2565, Long Beach, California,
US, June 2019. PMLR.

[49] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering
atari with discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[50] Dongge Han, Wendelin Boehmer, Michael Wooldridge, and Alex Rogers. Multi-agent
hierarchical reinforcement learning with dynamic termination. In Pacific Rim Inter-
national Conference on Artificial Intelligence, pages 80–92. Springer, 2019.

80

[51] Yiqiang Han, Wenjian Hao, and Umesh Vaidya. Deep learning of koopman represen-
tation for control. In 2020 59th IEEE Conference on Decision and Control (CDC),
pages 1890–1895, Jeju Island, Republic of Korea, December 2020. IEEE.

[52] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum con-
trast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 9729–9738, 2020.

[53] Thomas Hofmann, Aurelien Lucchi, Simon Lacoste-Julien, and Brian McWilliams.
Variance reduced stochastic gradient descent with neighbors. Advances in Neural
Information Processing Systems, 28, 2015.

[54] H. Hu, Y. Pu, M. Chen, and C. J. Tomlin. Plug and play distributed model predictive
control for heavy duty vehicle platooning and interaction with passenger vehicles. In
2018 IEEE Conference on Decision and Control (CDC), 2018.

[55] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged
robots. Science Robotics, 4(26):eaau5872, 2019.

[56] Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen, and Marco Pavone. Barc:
Backward reachability curriculum for robotic reinforcement learning. In Proc. IEEE
Int. Conf. Robotics and Automation, 2019.

[57] Brian Edward Jackson, Jeong Hun Lee, Kevin Tracy, and Zachary Manchester. Data-
efficient model learning for control with jacobian-regularized dynamic-mode decom-
position. In Conference on Robot Learning, pages 2273–2283, Atlanta, GA, November
2023. PMLR.

[58] Tobias Johannink, Shikhar Bahl, Ashvin Nair, Jianlan Luo, Avinash Kumar, Matthias
Loskyll, Juan Aparicio Ojea, Eugen Solowjow, and Sergey Levine. Residual rein-
forcement learning for robot control. In International Conference on Robotics and
Automation (ICRA), 2019.

[59] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
koopman eigenfunctions for control. Machine Learning: Science and Technology,
2(3):035023, 2021.

[60] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-
Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a
day. In 2019 International Conference on Robotics and Automation (ICRA), pages
8248–8254, 2019.

[61] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2004.

[62] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-
source multi-robot simulator. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2004.

81

[63] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro
Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. Ai2-thor: An
interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[64] Bernard O Koopman. Hamiltonian systems and transformation in hilbert space. Pro-
ceedings of the National Academy of Sciences, 17(5):315–318, 1931.

[65] Milan Korda and Igor Mezić. Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93:149–160, 2018.

[66] Milan Korda and Igor Mezić. Optimal construction of koopman eigenfunctions for
prediction and control. IEEE Transactions on Automatic Control, 65(12):5114–5129,
2020.

[67] Klemen Kotar, Gabriel Ilharco, Ludwig Schmidt, Kiana Ehsani, and Roozbeh Mot-
taghi. Contrasting contrastive self-supervised representation learning pipelines. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
9949–9959, virtually, October 2021. IEEE.

[68] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hi-
erarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation. Advances in neural information processing systems, 29:3675–3683, 2016.

[69] Philippe Laferrière, Samuel Laferrière, Steven Dahdah, James Richard Forbes, and
Liam Paull. Deep koopman representation for control over images (dkrci). In 2021 18th
Conference on Robots and Vision (CRV), pages 158–164, Burnaby, British Columbia,
May 2021. IEEE.

[70] Nathan O Lambert, Daniel S Drew, Joseph Yaconelli, Sergey Levine, Roberto Calan-
dra, and Kristofer SJ Pister. Low-level control of a quadrotor with deep model-based
reinforcement learning. IEEE Robotics and Automation Letters, 4(4):4224–4230, 2019.

[71] Béla Lantos and Lőrinc Márton. Nonlinear control of vehicles and robots. Springer
Science & Business Media, 2010.

[72] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning. In International Conference on Machine
Learning, pages 5639–5650, The Baltimore Convention Center, July 2020. PMLR.

[73] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[74] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444, May 2015.

[75] Ernest Bruce Lee and Lawrence Markus. Foundations of optimal control theory, vol-
ume 87. Wiley New York, 1967.

[76] Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics
and predictions: Algorithms and regret analysis. Advances in Neural Information
Processing Systems, 32, 2019.

[77] Lilian Weng. Contrastive Representation Learning. Blog article, 2021-05-31. Accessed
on 28 May 2023.

82

[78] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[79] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

[80] Feng Lin and Robert D Brandt. An optimal control approach to robust control of
robot manipulators. IEEE Transactions on Robotics and Automation, 14(1):69–77,
1998.

[81] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pages 1774–
1783, 2018.

[82] Michael L Littman. Markov games as a framework for multi-agent reinforcement
learning. In Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

[83] Michael Lederman Littman. Algorithms for sequential decision-making. Brown Uni-
versity, 1996.

[84] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-
depedent control variates for policy optimization via stein’s identity. arXiv preprint
arXiv:1710.11198, 2017.

[85] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal
linear embeddings of nonlinear dynamics. Nature communications, 9(1):4950, Novem-
ber 2018.

[86] Xubo Lyu, Amin Banitalebi-Dehkordi, Mo Chen, and Yong Zhang. Asynchronous,
option-based multi-agent policy gradient: A conditional reasoning approach. arXiv
preprint arXiv:2203.15925, 2022.

[87] Xubo Lyu and Mo Chen. Ttr-based reward for reinforcement learning with implicit
model priors. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5484–5489. IEEE, 2020.

[88] Xubo Lyu, Hanyang Hu, Seth Siriya, Ye Pu, and Mo Chen. Task-oriented koopman-
based control with contrastive encoder. In 7th Annual Conference on Robot Learning,
2023.

[89] Xubo Lyu, Site Li, Seth Siriya, Ye Pu, and Mo Chen. Mbb: Model-based baseline for
global guidance of model-free reinforcement learning via lower-dimensional solutions,
2021.

[90] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. Hierarchical
multi-agent reinforcement learning. In Proceedings of the fifth international conference
on Autonomous agents, pages 246–253, 2001.

83

[91] Giorgos Mamakoukas, Maria Castano, Xiaobo Tan, and Todd Murphey. Local koop-
man operators for data-driven control of robotic systems. In Robotics: science and
systems XV, Freiburg im Breisgau, Germany, June 2019.

[92] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory generation and control
for quadrotors. In 2011 IEEE international conference on robotics and automation,
pages 2520–2525. IEEE, 2011.

[93] Ian M. Mitchell. The flexible, extensible and efficient toolbox of level set methods. J.
Scientific Computing, 35(2):300–329, Jun 2008.

[94] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis. Human-level control through deep reinforcement learning. Nature, 518:529–533,
February 2015.

[95] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602, 2013.

[96] Artem Molchanov, Tao Chen, Wolfgang Hönig, James A. Preiss, Nora Ayanian, and
Gaurav S. Sukhatme. Sim-to-(multi)-real: Transfer of low-level robust control policies
to multiple quadrotors. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 59–66, 2019.

[97] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. In Advances in Neural Information Processing
Systems, pages 3303–3313, 2018.

[98] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[99] Ian Osband, Benjamin Van Roy, Daniel Russo, and Zheng Wen. Deep exploration via
randomized value functions. arXiv preprint arXiv:1703.07608, 2017.

[100] Jyoti Ranjan Pati. Modeling, identification and control of cart-pole system. PhD
thesis, ETH, 2014.

[101] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-
to-real transfer of robotic control with dynamics randomization. In 2018 IEEE in-
ternational conference on robotics and automation (ICRA), pages 3803–3810. IEEE,
2018.

[102] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy
gradients. Neural networks, 21(4):682–697, 2008.

[103] Athanasios S. Polydoros and Lazaros Nalpantidis. Survey of model-based reinforce-
ment learning: Applications on robotics. J. Intelligent & Robotic Systems, 86(2):153–
173, May 2017.

84

[104] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dynamic mode decom-
position with control. SIAM Journal on Applied Dynamical Systems, 15(1):142–161,
2016.

[105] Y. Pu, M. N. Zeilinger, and C. N. Jones. Inexact fast alternating minimization algo-
rithm for distributed model predictive control. In 53rd IEEE Conference on Decision
and Control, 2014.

[106] Ye Pu, Melanie N Zeilinger, and Colin N Jones. Complexity certification of the fast
alternating minimization algorithm for linear mpc. IEEE Transactions on Automatic
Control, 62(2):888–893, 2016.

[107] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating sys-
tem. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, may 2009.

[108] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for
deep multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 4295–4304. PMLR, 2018.

[109] Filippo Rinaldi, Sergio Chiesa, and Fulvia Quagliotti. Linear quadratic control for
quadrotors uavs dynamics and formation flight. Journal of Intelligent & Robotic
Systems, 70:203–220, 2013.

[110] Angel Romero, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. Model predictive
contouring control for time-optimal quadrotor flight. IEEE Transactions on Robotics,
38(6):3340–3356, 2022.

[111] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cambridge,
UK, 1994.

[112] Atefeh Sahraeekhanghah and Mo Chen. Pa-fastrack: Planner-aware real-time guaran-
teed safe planning. In 2021 60th IEEE Conference on Decision and Control (CDC),
pages 2129–2136, 2021.

[113] Sosale Shankara Sastry and Alberto Isidori. Adaptive control of linearizable systems.
IEEE Transactions on Automatic Control, 34(11):1123–1131, 1989.

[114] Peter J Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of fluid mechanics, 656:5–28, 2010.

[115] Peter J Schmid. Application of the dynamic mode decomposition to experimental
data. Experiments in fluids, 50:1123–1130, 2011.

[116] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85 – 117, 2015.

[117] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning
(ICML), 2015.

85

[118] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel.
Trust region policy optimization. In Proc. Annual Int. Conf. Machine Learning, 2015.

[119] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[120] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[121] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[122] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[123] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100, 1953.

[124] Haojie Shi and Max Q-H Meng. Deep koopman operator with control for nonlinear
systems. IEEE Robotics and Automation Letters, 7(3):7700–7707, 2022.

[125] Sumeet Singh, Anirudha Majumdar, Jean-Jacques Slotine, and Marco Pavone. Robust
online motion planning via contraction theory and convex optimization. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 5883–
5890. IEEE, 2017.

[126] Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199.
Prentice hall Englewood Cliffs, NJ, 1991.

[127] Aivar Sootla, Alexandre Mauroy, and Damien Ernst. Optimal control formulation of
pulse-based control using koopman operator. Automatica, 91:217–224, 2018.

[128] Peter Stone, Richard S Sutton, and Gregory Kuhlmann. Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[129] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls,
et al. Value-decomposition networks for cooperative multi-agent learning. arXiv
preprint arXiv:1706.05296, 2017.

[130] Richard S Sutton. Learning to predict by the methods of temporal differences. Ma-
chine learning, 3(1):9–44, 1988.

[131] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[132] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
A Bradford Book, USA, 2018.

[133] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In
Advances in neural information processing systems, 2000.

86

[134] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1-2):181–211, 1999.

[135] Zaid Tahir, Waleed Tahir, and Saad Ali Liaqat. State space system modelling of a
quad copter uav. arXiv preprint arXiv:1908.07401, 2019.

[136] Ryo Takei and Richard Tsai. Optimal trajectories of curvature constrained motion in
the hamilton–jacobi formulation. J. Scientific Computing, 54(2):622–644, Feb 2013.

[137] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the tenth international conference on machine learning, pages 330–337,
1993.

[138] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan
Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. #exploration: A study
of count-based exploration for deep reinforcement learning. In Advances in neural
information processing systems, pages 2753–2762, 2017.

[139] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas,
David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind
control suite. arXiv preprint arXiv:1801.00690, 2018.

[140] Russ Tedrake. Underactuated Robotics. 2023.

[141] Emanuel Todorov et al. Optimal control theory. Bayesian brain: probabilistic ap-
proaches to neural coding, pages 268–298, 2006.

[142] Harry L Trentelman, Anton A Stoorvogel, and Malo Hautus. Control theory for linear
systems. Springer Science & Business Media, 2012.

[143] Jonathan H Tu. Dynamic mode decomposition: Theory and applications. PhD thesis,
Princeton University, 2013.

[144] Bas van der Heijden, Laura Ferranti, Jens Kober, and Robert Babuška. Deepkoco: Effi-
cient latent planning with a task-relevant koopman representation. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 183–189,
Prague, Czech Republic, September 2021. IEEE.

[145] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[146] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals,
John Agapiou, et al. Strategic attentive writer for learning macro-actions. In Advances
in neural information processing systems, pages 3486–3494, 2016.

[147] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jader-
berg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical rein-
forcement learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3540–3549. JMLR. org, 2017.

87

[148] Florian Voigt, Lars Johannsmeier, and Sami Haddadin. Multi-level structure vs. end-
to-end-learning in high-performance tactile robotic manipulation. In Conference on
Robot Learning, pages 2306–2316. PMLR, 2021.

[149] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106(1):25–57, 2006.

[150] Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. From pix-
els to torques: Policy learning with deep dynamical models. arXiv preprint
arXiv:1502.02251, 2015.

[151] Rose E Wang, J Chase Kew, Dennis Lee, Tsang-Wei Edward Lee, Tingnan Zhang,
Brian Ichter, Jie Tan, and Aleksandra Faust. Model-based reinforcement learning for
decentralized multiagent rendezvous. arXiv preprint 2003.06906, 2020.

[152] S. Wang and K. Hauser. Realization of a real-time optimal control strategy to stabilize
a falling humanoid robot with hand contact. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 3092–3098, May 2018.

[153] S. Wang and K. Hauser. Realization of a real-time optimal control strategy to stabilize
a falling humanoid robot with hand contact. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 3092–3098, May 2018.

[154] Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. Influencing
towards stable multi-agent interactions. In Conference on robot learning, pages 1132–
1143. PMLR, 2022.

[155] D. J. Webb and J. van den Berg. Kinodynamic rrt*: Asymptotically optimal motion
planning for robots with linear dynamics. In Proc. IEEE Int.Conf. Robotics and
Automation, 2013.

[156] Julian Wiederer, Arij Bouazizi, Marco Troina, Ulrich Kressel, and Vasileios Bela-
giannis. Anomaly detection in multi-agent trajectories for automated driving. In
Conference on Robot Learning, pages 1223–1233. PMLR, 2022.

[157] Matthew O Williams, Maziar S Hemati, Scott TM Dawson, Ioannis G Kevrekidis, and
Clarence W Rowley. Extending data-driven koopman analysis to actuated systems.
IFAC-PapersOnLine, 49(18):704–709, 2016.

[158] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven
approximation of the koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25:1307–1346, 2015.

[159] Matthew O Williams, Clarence W Rowley, and Ioannis G Kevrekidis. A kernel-based
approach to data-driven koopman spectral analysis. arXiv preprint arXiv:1411.2260,
2014.

[160] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8:229–256, 1992.

88

[161] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen,
Sham Kakade, Igor Mordatch, and Pieter Abbeel. Variance reduction for policy
gradient with action-dependent factorized baselines. In International Conference on
Learning Representations, 2018.

[162] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, apr 2005.

[163] Yongqian Xiao, Xin Xu, and QianLi Lin. Cknet: A convolutional neural network
based on koopman operator for modeling latent dynamics from pixels. arXiv preprint
arXiv:2102.10205, 2021.

[164] Yuchen Xiao, Joshua Hoffman, and Christopher Amato. Macro-action-based deep
multi-agent reinforcement learning. In Conference on Robot Learning, pages 1146–
1161. PMLR, 2020.

[165] Yuchen Xiao, Weihao Tan, and Christopher Amato. Asynchronous multi-agent actor-
critic with macro-actions, 2022.

[166] Chengguang Xu, Christopher Amato, and Lawson LS Wong. Hierarchical robot navi-
gation in novel environments using rough 2-d maps. arXiv preprint arXiv:2106.03665,
2021.

[167] Ping Xuan and Victor Lesser. Multi-agent policies: from centralized ones to decen-
tralized ones. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 3, pages 1098–1105, 2002.

[168] Insoon Yang, Sabine Becker-Weimann, Mina J. Bissell, and Claire J. Tomlin. One-
shot computation of reachable sets for differential games. In Proc. ACM Int. Conf.
Hybrid Systems: Computation and Control, 2013.

[169] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical cooperative multi-
agent reinforcement learning with skill discovery. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems, pages 1566–1574,
2020.

[170] Hang Yin, Michael C Welle, and Danica Kragic. Policy learning with embedded
koopman optimal control. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Prague, Czech Republic, September 2021.

[171] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative, multi-agent games. arXiv preprint
arXiv:2103.01955, 2021.

[172] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning:
A selective overview of theories and algorithms. Handbook of reinforcement learning
and control, pages 321–384, 2021.

[173] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep
control policies for autonomous aerial vehicles with mpc-guided policy search. In
2016 IEEE international conference on robotics and automation (ICRA), 2016.

89

[174] Xuyang Zhao, Tianqi Du, Yisen Wang, Jun Yao, and Weiran Huang. Arcl: Enhanc-
ing contrastive learning with augmentation-robust representations. arXiv preprint
arXiv:2303.01092, 2023.

[175] Z. Zhou, R. Takei, H. Huang, and C. J. Tomlin. A general, open-loop formulation for
reach-avoid games. In Proc. IEEE Conf, Decision and Control, 2012.

90

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Learning- and Control-Based Methods
	Thesis Overview

	Background
	Reinforcement Learning
	Markov Decision Process
	Value Functions and Value Iteration
	Policy Gradient Methods

	Optimal Control
	Time-to-Reach (TTR) Problem
	Linear Quadratic Regulator Problem
	Model Predictive Control (MPC)

	Koopman Operator Theory
	Classical Koopman Control
	Deep Learning-Based Koopman Control

	Multi-Agent Hierarchical RL
	Multi-Agent RL
	Options Framework
	Multi-Agent Centralized Option Selection

	Data-Efficiency and Exploration via Control-Based Value Functions
	Chapter Overview and Related Work
	Time-To-Reach Value Function as Learning Reward
	Preliminary
	Method
	Results

	Optimal Control Values as Policy Gradient Baseline
	Related Work
	Method
	Results

	Chapter Summary

	Scalable and Interpretable Learning-Based Control
	Chapter Overview and Related Work
	Koopman-Based Control.
	Contrastive Representation Learning.
	Relations to Our Work.

	Task-Oriented Koopman-Based Control with Contrastive Encoder
	Problem Formulation
	Contrastive Encoder as Koopman Embedding Function
	Linear Matrices as Koopman Operator
	End-to-End Learning for Koopman Control

	Results
	Task Environments
	Result Analysis
	Comparison with Other Methods
	Comparison with Other MBRL Methods
	Comparison with Other Encoders and Losses
	Ablations Study of Hyper-parameters
	Real-World Evaluation

	Chapter Summary

	Efficient Multi-Agent Centralized Learning with Asynchronous Options
	Chapter Overview and Related Work
	A Conditional-Reasoning Approach for Multi-Agent Centralized Learning over Asynchronous Options
	Problem Formulation
	Centralized MAPG over Asynchronous Options
	Option-Level Joint Trajectory
	Conditional Centralized Policy
	Algorithm
	An Extended Use-Case

	Results
	Task Specifications
	Implementation and Baselines
	Performance Comparison with Baselines
	Performance Comparison with a state-of-the-art method
	Centralized Learning: Fully v.s. Partially

	Chapter Summary

	Bibliography

