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Abstract

This thesis consists of five distinct chapters; each considers various applications within the
domain of big data. In the opening chapter, an application of genetics is presented. It
discusses how to simulate exome-sequencing data for 150 families from a North American
admixed population, containing at least four members affected with lymphoid cancer. These
data encompass details regarding the ascertained families, along with information about
single-nucleotide variants found in the exome of the affected family members.

The subsequent chapters focus on sports analytics through the lens of big data applica-
tions. In the second chapter, the expected goals concept is extended to limited overs cricket
where ideas are illustrated using the economy rate statistic. The approach is based on the
estimation of batting outcome probabilities given detailed data on each ball that is bowled
in a match. Through the utilization of machine learning techniques, estimation of batting
outcomes is carried out. From the analysis, distinctions between men’s and women’s T20
cricket are observed. One such finding is that there is a higher frequency of sixes occurring
in the men’s game than in the women’s game.

In the third chapter, the focus shifts to examining the issue of pace of play in soccer. In
this study, the key question revolves around whether employing a fast-paced playing style
offers an advantageous strategy in the game. This is a question that remains insufficiently
addressed in both soccer and hockey. The investigation is enabled through the utilization of
tracking data which provides the locations of players measured at frequent intervals (i.e. 10
times per second). The chapter begins by formulating a definition of pace. In this study, we
use methods of causal inference to investigate the relationship between pace in soccer and
shots. The analysis reveals that maintaining a higher pace than the opponent throughout
a match results in an advantage of approximately two additional shots per game.

The fourth chapter entails an assessment of the optimal locations for throw-ins in soccer.
The investigation is also enabled through the utilization of tracking data which provides the
locations of players measured at frequent intervals (i.e. 10 times per second). The methods
for the investigation are necessarily causal since there are confounding variables that impact
both the throw- in location and the result of the throw-in. A simple causal analysis indicates
that on average, backwards throw-ins are beneficial and lead to an extra 2.5 shots per 100
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throw-ins. We also observe that there is a benefit to long throw-ins where on average, they
result in roughly 4.0 more shots per 100 throw-ins. These results are confirmed by a more
complex causal analysis that relies on the spatial structure of throw-ins.

The last chapter proposes increasingly complex models based on publicly available data
involving rally length in tennis. The models provide insights regarding player characteris-
tics involving the ability to extend rallies and relates these characteristics to performance
measures. The analysis highlights some important features that make a difference between
winning and losing, and therefore provides feedback on how players may improve. Bayesian
models are introduced where posterior estimation is carried out using Markov chain Monte
Carlo methods.

Keywords: Family Studies; Exome Sequencing; Lymphoid Cancer; Ascertained Pedigrees;
Sports Analytics; Player Tracking Data; Causal Inference; Machine Learning
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Chapter 1

Introduction

1.1 Introduction

I am Nirodha Epasinghege Dona, originally from Sri Lanka. Since my early days at school,
I developed a strong passion for mathematics. This was because, it consistently enhanced
my logical thinking skills and the ability to engage in research. With this interest, I always
believed that mathematics would shape my path in the future. As I grew older and able
to plan my future, I found my enthusiasm directed towards statistics. Furthermore, I was
drawn to being a researcher and to the unique position it offers as an educator to share
knowledge and explore the world. I took my first step towards becoming a researcher in
statistics, when I graduated from the University of Colombo with First Class honors for
the B.Sc. (Hons) degree in statistics. The subjects I took during my degree enhanced my
drive towards being a researcher. I was drawn towards analyzing data, finding patterns,
fluctuations and the explorations behind it. This field of study broadened my view of the
world and allowed me to find my path to success. The next step of my academic life was
getting an M.Sc. degree and it was one of the best decisions that I have ever made in my
life. I was selected as a graduate student in the Department of Statistics at the University of
Manitoba. This helped me to grow up not only with the knowledge of statistics but also with
lots of life experiences. During my master’s studies, I was motivated to continue my studies
and I applied for a PhD in statistics at Simon Fraser University. I got the opportunity of
being a PhD candidate and I started my research studies in the field of genetics. I gained
lots of skills and enjoyed my work in research. After two years, I wanted to shift my research
interest to the field of sports analytics. As a researcher and a statistician, I believe we are
capable to handle any field of studies to achieve the objectives that interest us. This thesis
is a perfect example of this belief because it is a combination of these two areas of expertise.

Sport and genetics are both interesting fields that significantly impact on human ability
and potential. In sports analytics, we are interested in analyzing player movements, player
statistics, game outcomes and evaluate team strategies, etc.. These analyses permit to make
evidence-based decisions and gain a deeper understanding of player and team dynamics. In
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genetics, data analyses consider identifying variations and associations between genes and
traits. These analyses help to identify genetic factors associated with diseases, individual
differences, and evolutionary history.

Both of these areas require the management and analysis of substantial amounts of
data. In both domains, the ability to effectively handle big data is essential as it enables the
extraction of valuable insights that contribute to decision-making and research progress.
The applications that are discussed in this thesis, enhance the capability of handling big
data and drive deeply into the analysis of significant discoveries that contribute to both
fields. The following subsection explains the layout of the thesis corresponding to my PhD
journey.

1.2 Organization of the thesis

Not including the introduction, this thesis is structured into five independent chapters. The
underlying thread that ties these chapters together is the exploration of big data challenges.
Within the domains of sports and genetics, we identify research questions and address them
through the application of statistical analysis and computational techniques. The following
is the sequence of chapters presented in this thesis.

Chapter 2 presents simulated exome-sequencing data for 150 families from a North
American admixed (i.e. mixed ancestry) population, ascertained to contain at least four
members affected with lymphoid cancer. These data include information on the ascertained
families as well as single-nucleotide variants on the exome of affected family members. We
provide an outline of the simulation process, accompanied by references to the relevant
software scripts used in the procedure. The resulting data are useful to identify genomic
patterns and disease inheritance in families with multiple disease-affected members. This
chapter has been peer-reviewed and published as the following research article:

• Epasinghege Dona, N., & Graham, J. (2022). Datasets for a simulated family-based
exome-sequencing study. Data in Brief, 42, 108311. https://doi.org/10.1016/
j.dib.2022.108311

Note that this article, unlike others in this thesis, does not contain a Discussion section in
accordance with the specific requirements outlined by the journal for data reports.

Chapter 3 is dedicated to quantifying the economy rate within limited-over cricket by us-
ing the concept of expected goals in soccer. In cricket, the economy rate of a bowler is defined
as the average number of runs conceded by a bowler for each over bowled. This statistic
proves invaluable in assessing a bowler’s performance. A lower economy rate is typically
regarded as advantageous, signifying that the bowler is giving away fewer runs per over,
thus contributing to their effectiveness on the field. However, when calculating the economy
rate, the element of luck associated with players’ performance is not completely eliminated.

2



Therefore, we introduce the statistic, "Expected Economy Rate" (xER), which attempts to
eliminate the influence of luck on players’ performance within the cricket context. Through
this study, our findings indicate that, xER could potentially be a more reliable statistic than
the conventional economy rate and it is particularly valuable for inexperienced players who
do not have a long statistical history. This chapter has been peer-reviewed and published
as the following research article:

• Epasinghege Dona, N., Nguyen, R., Gill, P.S. and Swartz, T.B. (2022). Expected
economy rate. Studies of Applied Economics, 40(1), 1-14.

Chapter 4 discusses how pace of play impacts the game of soccer. The examination of
pace within soccer represents an unexplored topic. The reason for this is pace is a funda-
mental element of a team’s playing style, which is difficult to quantify since it depends on
the unique dynamics of each team. In order to measure team dynamics, we need to consider
the actions of multiple players in teams whose movements are based on both time and space.
By utilizing tracking data, we can evaluate player movements and capture essential team
dynamics, enabling us to measure the pace of play in soccer. In this study, we quantify
pace and assess whether it is an advantageous strategy that teams can adopt within the
framework of their playing style. To achieve this objective, we define two quantities that
measure the pace and can be calculated using the readily available player tracking data.
We use causal inference methods to investigate the relationship between pace and shots.
Through this study we found that maintaining a higher pace than the opponent throughout
a match provides an advantage of around two additional shots per game. This chapter has
been peer-reviewed and published as the following research article:

• Epasinghege Dona, N. and Swartz, T.B. (2023). A causal investigation of pace of play
in soccer. Statistica Applicata - Italian Journal of Applied Statistics, 35(1), Article 6.

Chapter 5 considers the exploration of identifying the optimal target throw-in location
in the context of soccer. Our primary focus in this study is to assess whether backward
or forward throw-ins are advantageous, as well as to evaluate the benefits of utilizing long
or short throw-ins. With the availability of tracking data, we investigate these ideas by
using causal inference techniques. In this chapter, we begin by presenting a causal analysis
pertaining to the optimal locations for throw-ins in relation to the position of the throw-in
on the pitch. This is achieved through three distinct approaches. The initial two approaches
are straightforward, involving the definition of binary variables for backward/forward throw-
ins and short/long throw-ins. Finally, we consider both of these aspects in a comprehensive
analysis that is based on a fully spatial analysis. This chapter has been reviewed, revised
and resubmitted for publication:

• Epasinghege Dona, N. and Swartz, T.B.(2023). A causal investigation of throw-ins in
soccer. Under review at IMA Journal of Management Mathematics.
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In this thesis, we investigate big data application across diverse sports. In the final
chapter, Chapter 6, the focus is centered around the sport of tennis. It considers how
the length of rallies in tennis provides insights into player characteristics. We define three
different models that estimate tennis characteristics. The initial phase involves developing
a straightforward model to assess overarching tennis characteristics and how they differ
between men’s and women’s matches, as well as between first and second serves. Then
in the second model, we consider the examination of both serve and rally characteristics
in relation to specific players of interest. Lastly, we expand our analysis to explore how
extending rallies serves as a pivotal component of achieving success in the realm of tennis.
This chapter is under preparation for submission to a journal.
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Chapter 2

Datasets for a Simulated
Family-Based, Exome-Sequencing
Study

2.1 Introduction

We present simulated exome-sequencing data for 150 families from a North American ad-
mixed population, ascertained to contain at least four members affected with lymphoid can-
cer. These data include information on the ascertained families as well as single-nucleotide
variants on the exome of affected family members. We provide a brief overview of the sim-
ulation steps and links to the associated software scripts. The resulting data are useful to
identify genomic patterns and disease inheritance in families with multiple disease-affected
members.
Specifications Table

Subject Biostatistics
Specific subject
area

Exome sequencing

Type of data Plain text files and PLINK files containing simulated
genetic-sequence and pedigree data in exome-sequencing
of 150 families ascertained to contain at least four mem-
bers affected with lymphoid cancer.

How data were ac-
quired

Simulations done with software SLiM and with R pack-
ages SimRVPedigree and SimRVSequences.

Data format Raw
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Description of data
collection

Extended pedigrees ascertained for at least four mem-
bers affected with lymphoid cancer in a simulated North-
American admixed population.

Data source loca-
tion

Simon Fraser University

Data accessibility Repository name: Simulated exome-sequencing data for
a family study of lymphoid cancer (Zenodo).
Data identification number: 10.5281/zenodo.6499208
Direct URL to data: https://zenodo.org/record/6499208
Source code repository:https://github.com/SFUStatgen
/SeqFamStudy.
This GitHub Repository is also archived on Zenodo at
https://zenodo.org/record/6505385.

Value of the Data

• Next-generation sequencing data from families ascertained to contain multiple rel-
atives diagnosed with the same disease can identify rare, causal DNA variants. For
example, whole-exome sequencing data has been used to prioritize several rare variants
for further investigation in large multi-generational pedigrees ascertained for multiple
cases of bipolar disorder Cruceanu et al. (2013).

• Data from realistic simulations has the potential to advance the understanding of
genomic patterns of disease inheritance, while avoiding costly recruitment of ascer-
tained families and issues of patient confidentiality. Simulated data are easily shared,
enabling researchers who analyse sequences collected from ascertained families to test
and evaluate different methods.

• We present simulated exome-sequencing data in 150 families ascertained to contain
four or more relatives affected with lymphoid cancer. These data should be useful for
evaluating genomic patterns and disease inheritance in ascertained families, and for
validation and bench-marking of statistical analysis methods in family-based sequenc-
ing.

• Our data and simulation scripts answer important calls in genetic epidemiology Riggs
et al. (2021) for the reuse of existing datasets to compare statistical methods and
maximize benefit from research investment and for the sharing of source code and
simulated data sets in public repositories to facilitate reuse and reproducibility.
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2.2 Data Description

This article describes data simulated according to the work-flow in Figure 2.1 and available
in the following files:

• SLiM_output.txt - a 6.3GB text file that contains exome-wide, single-nucleotide vari-
ant (SNV) sequences for an American-admixed population of 53876 individuals gen-
erated under an American-admixture demographic model Browning et al. (2018) with
the genetic simulation software SLiM Haller and Messer (2019).

• SLiM_output_chr8&9.txt - a 1.3GB text file that contains the SLiM-simulated data
above for all source populations as well as the American-admixed sub-population,
but only for chromosomes 8 and 9. The total number of individuals in each source
population is displayed in Table 2.2.

• sample_info.txt - a 37.8KB text file giving pedigree information for the disease-
affected individuals and individuals connecting them along a line of descent, for all
150 pedigrees. The file contains a total of 1247 individuals, 686 of whom are disease-
affected. The remaining 561 individuals in the file connect affected individuals within
a pedigree along a line of descent.

• Genotypes.zip - a 5.4MB zip-file that contains 22 chromosome-specific text files of
genotypes for rare variants (RVs) on the exome. RVs are defined to be SNVs with
population minor-allele frequencies less than 0.01. The RV genotypes are reported in
gene-dosage format, as 0, 1 or 2 copies. These files are summarized in Table ?? below.

• SNVmaps.zip - a 2.5MB zip-file that contains 22 chromosome-specific text files giving
SNV information. The contents of this zip-file is summarized in Table 2.4 below.

• familial_cRV.txt - a 2.4KB text file that contains information about the causal RVs
(cRVs) in all 150 ascertained pedigrees. Three of the 150 pedigrees are “sporadic"; i.e.,
all affected individuals have sporadically occurring disease.

• study_peds.txt - a 552.7KB text file that contains the 150 pedigrees ascertained to
contain four or more relatives affected with lymphoid cancer.

• PLINKfiles.zip - a 2.8MB zip-file that contains PLINK .fam, .bim and .bed files for
all 22 of the chromosomes.

• Chromwide.Rdata - a 217MB .Rdata file that can be used as an intermediate file to
save the user substantial time when running the associated RMarkdown script for the
simulation. We recommend loading Chromwide.Rdata into your R work-space rather
than generating it from scratch.
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Simulate SNV data for
pedigree founders


Specify the demographic model


Create recombination map for SLiM


Simulate ascertained
pedigrees

Simulate SNV data for
affected individuals in

pedigrees 

Select causal variants


Simulate genetic data for affected
pedigree members

Simulate population genetic data with
SLiM


SLiM_output.txt

1 2

3

Read and process SLiM data in R

study_peds.txt

Generate data files


Ascertain a pedigree


 Simulate pedigrees on the Compute
Canada cluster


Examine the simulated pedigrees 


Figure 2.1: Work-flow for simulating the exome-sequencing data for ascertained pedigrees.
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ID: 2 ID: 1 

 (1918 − 2006)

 onset age: 86

ID: 3 

 (1937 − 1960)

ID: 4 

 (1938 − 1992)

 onset age: 45

ID: 6 ID: 5 

 (1941 − 2010)

ID: 11 ID: 7

 age: 63

ID: 8 

 (1957 − 1984)

 onset age: 21

ID: 9 

 (1958 − 2000)

ID: 10

 age: 50

 onset age: 40

ID: 15 

ID: 12 

 (1985 − 2007)

ID: 13 

 (1985 − 2003)

ID: 14

 age: 25

ID: 16

 age: 14

affected

proband

RVstatus

Reference Year: 2020

Figure 2.2: An example pedigree (pedigree 39 out of 150). The legend identifies affected
individuals, the proband, and the cRV status of the individuals. Disease-affected individuals
have solid shading in the upper-left third of their symbol (IDs 1, 4, 8 and 10). The proband
(ID 10) has shading in the lower portion of their symbol. Individuals carrying a causal
genetic variant (IDs 1, 4, 7, 9, 10, 12 and 13) have shading in the upper-right portion
of their symbol. The birth year and the death year of dead individuals are displayed in
parentheses. The age of the individuals who are alive at the end of the reference year
of 2020 displays under their symbol. Any individual with disease onset before the end of
the reference year has a disease-onset year given under their symbol. Following standard
practice in medical genetics, individuals who have died as of the reference year have slashes
through their symbols. The age of the individuals who are alive at the end of the reference
year displays under their symbol. Any individual with disease onset before the end of the
reference year has a disease-onset year given under their symbol.
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Figure 2.2 shows an example family (family ID 39 out of 150) from study_peds.txt.
This family contains 16 individuals across 4 generations, 4 of whom are affected (IDs 1,
4, 8 and 10). Across all 150 families, the family size varies between 8 and 207 individuals
(see Figure 2.3), the number of affected members varies between 4 and 8 individuals (see
Figure 2.4) and the number of generations varies between 1 and 7 (see Figure 2.6). Further,
as the number of generations increases, so does the pedigree size (see Figure 2.7). Note
that, due to high computational cost, we did these calculations only for a single set of
150 pedigrees. However, we can increase the number of replications in this simulation and
a detailed description about how users can generate more pedigrees can be found in our
second supplementary material.
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Figure 2.3: Distribution of pedigree size.

Figure 2.4 suggests that the size of the pedigrees is uncorrelated with the number of
affected members. Also, as expected and shown in Figure 2.5, so-called “sporadic" pedigrees,
in which all affected members have sporadically occurring disease (family IDs 72, 95, 103),
tend to be larger than non-sporadic pedigrees.

The above data files have been created by simulation, performed in three major steps
as outlined in Figure 2.1 and implemented in the RMarkdown files provided as supplemen-
tary materials. These supplementary materials are contained in Appendix A, Appendix B
Appendix C and Appendix D. The RMarkdown files to simulate the data are:

• Supplementary Material 1-A: Simulate SNV sequence data for pedigree founders. Con-
tains the code and methods to get the SLiM_output.txt file.
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Figure 2.4: Distribution of pedigree size by number of affected members.
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Figure 2.5: Distribution of pedigree size in pedigrees with genetic and sporadically occurring
disease.
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Figure 2.6: Distribution of number of generations in pedigrees.
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Figure 2.7: Distribution of pedigree size by the number of generations.
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• Supplementary Material 1-B: Combining Source Populations with the American-Admixed
Population in SLiM. Contains the code and methods to get the SLiM_output_chr8&9.txt
file.

• Supplementary Material 2: Simulate ascertained pedigrees. Contains the code and
methods to get the study_peds.txt file.

• Supplementary Material 3: Simulate SNV data for affected individuals in pedigrees.
Contains the code and methods to get the data files sample_info.txt, Genotypes.zip,
SNVmaps.zip familial_cRV.txt and PLINKfiles.zip. Also contains a detailed de-
scription of the formats of these files.

Population size
African 14475

European 35815
Asian 48765
Admix 53876
Total 152931

Table 2.2: Source Population sizes.

Chromosome 1 2 3 4 5 6 7 8
No. of RVs 19393 14132 11634 8096 9681 10137 9653 7107

Chromosome 9 10 11 12 13 14 15 16
No. of RVs 8061 8356 10629 10150 4266 6108 6977 7536

Chromosome 17 18 19 20 21 22
No. of RVs 10168 3474 10298 5007 2185 4305

Table 2.3: Number of rare variants (RVs) in each genotype text file.

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13
Pathway RVs 4 90 12 15 24 38 23 50 0 28 5 0 0
No. of cRVs 1 18 4 3 7 7 5 8 0 6 2 0 0

Chromosome 14 15 16 17 18 19 20 21 22
Pathway RVs 0 0 8 19 30 6 0 37 18
No. of cRVs 0 0 3 3 5 0 0 3 5

Table 2.4: Number of rare variants in apoptosis sub-pathway and number of causal rare
variants (cRVs) in SNV map files.

2.3 Experimental Design, Materials and Methods

To acquire these data, we simulated exome sequences in pedigrees ascertained to have four
or more relatives affected with lymphoid cancer, according to the work-flow summarized in
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Figure 2.1. The simulation involved three major steps which we describe in the subsections
below.

2.3.1 Simulate SNV data for pedigree founders

Simulating the exome sequences in ascertained pedigrees requires SNV sequences for pedi-
gree founders. We assume these founders are sampled randomly from an American-Admixed
population, which we simulate with the evolutionary simulation package SLiM Haller and
Messer (2019). To mimic exome sequencing, we simulate genome-wide sequences of exons
only. A detailed account of this part of the simulation is provided in Supplementary Material
1-A.

As shown in Figure 2.1, simulating the founder sequences involves three steps. First, we
provide a recombination map to SLiM giving the exon positions in chromosomes. We use
the create_SlimMap() function in the SimRVSequence Nieuwoudt et al. (2020) R package
for this task.

Second, we specify a demographic model for the American-Admixed population Brown-
ing et al. (2018) because our work is motivated by a family-based exome-sequencing study
of lymphoid cancer in a North American population Jones et al. (2017). The American- Ad-
mixture demographic model of Browning et al. (2018) is compiled in stdpopsim, a standard
library of population-genetic simulation models Adrion et al. (2020).

Finally, we use the Compute Canada cluster (http://www.computecanada.ca) to avoid
the computational cost of running this large simulation on a personal computer. The batch
scripts that we ran on the cluster can be found in the first supplementary materials. The
resulting SNV data for pedigree founders is used as an input to simulate the SNV data for
affected pedigree members in the third step of our work flow, described below.

2.3.2 Simulate ascertained pedigrees

The second step of our workflow is to simulate ascertained pedigrees with disease-affected
relatives. We simulated 150 pedigrees ascertained to contain four or more relatives affected
with lymphoid cancer using the SimRVPedigree R package Nieuwoudt et al. (2018). A
complete description of this step of the workflow can be found in our Supplementary Material
2. As the simulation is time-consuming, we use the Compute Canada cluster. The final
outcome of this step is a set of ascertained pedigrees in which to generate exome-sequencing
data for the third and final step of the workflow, described next.

2.3.3 Simulate SNV data for affected individuals in pedigrees

To simulate exome-sequencing data for the affected members of ascertained pedigrees, we
use the outcomes from the previous two steps of the workflow, together with the gene-
dropping functions in the SimRVSequences R package Nieuwoudt et al. (2020). These func-
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tions require sparse matrices of SNV sequences but, unfortunately, the population size and
number of SNVs is too large to accommodate within a single sparse matrix. Therefore, we
create the sparse matrices chromosome-by-chromosome. A complete description of how we
implemented this final step of our workflow can be found in Supplementary Material 3.

As shown in the Figure 2.1, we divide this step into four sections. First we read the SLiM-
simulated sequencing data into R and process them chromosome-by-chromosome. Then we
select the rare variants (RVs) in genes on an apoptosis sub-pathway as candidates for causal
rare variants (cRVs), as described in Nieuwoudt et al. (2020). Specifically, we use the apop-
tosis sub-pathway centered about the TNFSF10 gene in the UCSC Genome Browser’s Gene
Interaction Tool. This sub-pathway contains 23 genes: DAP3, CFLAR, CASP10, CASP8,
TNFSF10, CASP3, MAP3K1, TNF TNFRSF10A, FOXO3, IFNGR1, CYCS, TNFRSF10B,
TNFRSF11B, FAS, FADD, TRADD, TP53, RALBP1, BCL2, BAX, IFNAR1, IFNGR2 and
BID. These genes and their chromosomal locations are provided in the hg_apopPath data
set of the SimRVSequences package. Among the SNVs in this pathway, cRVs are selected
from population singletons, on the basis of their absolute selection coefficients, until the
cumulative probability of a sequence carrying any cRV is 0.001.

We then simulate exome sequences for the affected individuals in the 150 ascertained
pedigrees by using the SimRVSequences R package. The sim_RVstudy() function of this
package simulates genetic sequence data in pedigrees, but expects only a single population
database of sequences as an argument in the form of a sparse matrix of SNV haplotypes and
an associated mutation data frame. Unfortunately, we cannot use sim_RVstudy() without
modification because the number of individuals and RVs in our American-admixed popula-
tion is too large. The fundamental problem is that the population sequences of RVs cannot
be contained in a single sparse matrix without exceeding the memory capacity of R. We
therefore modify sim_RVstudy() and various supporting functions in the SimRVSequences
package to handle chromosome-specific databases as described in the Supplementary Ma-
terial 3.

Finally, we deliver our data in human-readable flat-file formats. We use the simu-
lated data to create a .sam file containing information about genotyped individuals in
the ascertained pedigrees, chromosome-specific .geno files containing RV genotypes and
chromosome-specific .var files containing information about RVs. The data files are in flat-
file format and also in PLINK file formats Purcell et al. (2007). These text and PLINK file
formats are discussed in the Supplementary Material 3.
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Chapter 3

Expected Economy Rate

3.1 Introduction

Expected goals (xG) is a concept that has gained rapid adoption in professional sport,
particularly in soccer. The statistic xG attempts to quantify what is most likely to have
happened in a match given the opportunities that occurred during the match. For example,
imagine that Team A drew with Team B with the scoreline 1-1 but the expected goals
for the match was 3.8 to 0.5 in favour of Team A. In this case, one would conclude that
Team A outplayed Team B, and that Team B was fortunate to achieve the draw. Therefore,
xG provides a measure of dominance in matches, and attempts to remove what might be
described as the “luck” element of sport. Not only does xG describe match dominance, but
xG is predictive of future results.

Although xG is intuitive, its calculation is viewed as a black-box procedure from the
point of view of the general public. For this reason, and for the technical underpinnings
used in the calculation of expected goals, xG falls under the category of advanced analytics.
Further, the “black-boxness” of xG is magnified since there are many implementations of
xG, and these implementations are typically proprietary. In soccer and hockey, the basic
idea behind xG is that there are scoring opportunities on the field and the rink, respectively.
The scoring opportunities have associated goal scoring probabilities where goals resulting
from shots that are further away and taken from more extreme angles are less probable.
These probabilites are summed over the opportunities for each team, leading to the team’s
xG. The literature that does exist concerning xG is mostly found on blog sites, Twitter
feeds and conference proceedings. Some of the more detailed contributions related to xG
include Pollard, Ensum and Taylor (2004), Rudd (2011), Macdonald (2012), Decroos et al.
(2018) and Fernández, Bornn, and Cervonne (2019).

In this chapter, we introduce the the concept of xG to limited overs cricket in the context
of the economy rate statistic. In limited overs cricket, the economy rate for a bowler is defined
as the average number of runs conceded per over where there are six balls per over. The
average is typically calculated over a match, a series, a year or a career. For illustration,
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we consider economy rate based on a match in which case the economy rate for a bowler
is defined as 6*(the number of runs conceded in a match) divided by the number of balls
bowled by the bowler in the match. Smaller values of the economy rate are indicative of
good bowling.

The development of xER (expected economy rate) is conceptually simple. Based on the
characteristics of a ball that has been bowled, we estimate the probabilities of the 8 batting
outcomes: wicket, 0 runs, 1 run, 2 runs, 3 runs, 4 runs, 5 runs and 6 runs where we note
that there is negligible probability of scoring 3 runs and 5 runs. Using obvious notation, we
define the expected economy rate in a match for a bowler as

xER = (6/M)
M∑

i=1
(ei + pi(1) + 2pi(2) + 3pi(3) + 4pi(4) + 5pi(5) + 6pi(6)) (3.1)

where i corresponds to the ball number, ei is the actual number of extras accumulated on
the ith ball and M is the number of balls bowled by the bowler in the match. Analogous
to xG, xER represents the expected economy rate performance of the bowler in the match.
Whereas the pi’s in (3.1) have been estimated, we do not estimate extras. We consider
the observed extras ei as penalty terms that are directly attributable to the bowler and
are added to the expected economy rate formula. There is no luck aspect associated with
extras; bad balls are simply bad balls.

Now, xER will only be informative and useful provided that the estimated probabilities
pi in (3.1) are realistic. To motivate the approach, suppose that pi(4) = 0.5 and the actual
result of the bowled ball was a wicket. What might have happened in this scenario is that the
bowler’s delivery ought to have been exploited by the batsmen. Based on the characteristics
of how the ball was bowled, the probability of scoring four runs was high. With a ball of this
type, the bowler is typically punished. Instead, the bowler was “lucky” in the sense that
a wicket occurred. For example, perhaps a fabulous catch was made. Therefore xER is an
attempt to represent what the bowler would have achieved under ordinary circumstances
given the performance. The actual achievement is subject to both performance and the
luck/stochastic element of sport.

The utility of the xER statistic (3.1) occurs when a bowler’s actual economy rate differs
considerably from their xER statistic. For example, suppose that there is a relatively young
bowler whose actual economy rate is 8.4 but their xER = 6.6. This would signal that the
bowler has been unlucky, and that this is a player for whom team selectors should give
attention. This may be a promising bowler.

The elimination of “luck” from performance is a driving force in this research. Whereas
luck does not seem to have been addressed in cricket, luck has been investigated in other
sports analytics research. For example, luck has been explored in soccer (Sarkar and Kamath
2022), golf (Connolly and Rendleman 2008), baseball (Bailey, Loeppky and Swartz 2020),
and hockey (Weissbock 2014).
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In this chapter the probability estimates pi in (3.1) are based on detailed ball-by-ball
data. Ball-by-ball data have been utilized in various research initiatives in cricket (Swartz
2017). In these projects, ball-by-ball results and covariates have been parsed from match
commentaries provided by www.cricinfo.com. However, the ball-by-ball data used in these
investigations are not sufficiently detailed for the current investigation. In this project,
Cricket Australia has provided us with even more detailed ball-by-ball data from the
Twenty20 (T20) format. However, such data are not widely available and do not currently
exist for competitions outside of the Australian context. For this reason, the work presented
here is explored as a proof of concept. We demonstrate that the approach is feasible and
informative, and is something that can be fully developed when detailed ball-by-ball data
become widespread. With the advent of player tracking data and analyses across major
sports (Gudmundsson and Horton 2017), we expect that the availability of detailed data in
cricket is only a matter of time.

Clearly, xER can be extended to applications over series, matches, years and careers.
Also, it is clear that other standard bowling statistics such as bowling average and bowling
strike rate have xG adaptations. With respect to batting, we might similarly define xG
statistics corresponding to batting average and the batting strike rate. Many statistics have
been developed for the sport of cricket; see Swartz (2017) for a review of various measures
of player evaluation.

In Section 3.2, we describe the detailed data that have been provided by Cricket Aus-
tralia. Subjective decisions on retaining and excluding variables are part of the feature
identification process. Whereas the focus of sports analytics research has typically involved
“big” sports that involve male participation, a feature of this work is that we also analyze
women’s T20 data. This has the added benefit of assessing differences in how T20 is played
between the men’s and women’s game. In Section 3.3, we provide a description of the ran-
dom forest approach used to estimate the probabilities in (3.1). The procedure falls under
the topic of supervised learning. In Section 3.4, we investigate the quality of estimation in
various ways. For example, we examine the overall rate of correct predictions, we examine
the related confusion matrices and we qualitatively assess the variables of importance. We
also compare our random forest predictions against predictions made by two other methods
using Brier scores. We observe that the proposed estimation technique is superior to the
other methods. In Section 3.5, we apply the approach to datasets involving T20 cricket
matches. Some insights are obtained which demonstrate the potential of utilizing xER in
player evaluation. Finally, a short discussion is provided in Section 3.6.

3.2 Data

Detailed ball-by-ball data have been collected by Cricket Australia over the years 2007
through 2019. The data correspond to international matches involving the Australian na-
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tional teams (men and women) in Test, ODI and T20 formats. Data have also been collected
for Australian domestic matches such as the Big Bash competition. For illustration, we have
restricted our attention to T20 matches. There are 532 matches for the men and 725 matches
for the women. For a given match, there are an astounding 360 variables collected on every
ball that is bowled. The data were coded manually by data entry specialists who watch
video broadcasts of matches. It is believed that the data have a high level of accuracy. After
some minor data management, our dataset of T20 matches consist of 123,067 bowled balls
(men) and 166,898 bowled balls (women) that occurred during the first and second innings.

In our investigation of xER, we are interested in bowling performance. Hence we seek
variables that relate bowling performance to the batting outcome. The beauty of sport is
that domain knowledge is often high, and feature selection may be assisted by this subjective
knowledge. In Table 3.1, we list k = 25 covariates (features) that we believe are predictive
of the batting outcome. We have taken the point of view to err on the generous side and
include all variables that may have a chance of improving supervised learning predictions;
machine learning algorithms have been designed to detect the most important variables. The
potential variables that we have omitted from Table 3.1 include many redundant variables
such as the result of the match and cumulative totals as the match proceeds. We have
omitted match identifiers (e.g. match Id and season Id) which are unrelated to the outcome
of the particular ball that has been bowled. We have also omitted many variables that
are deemed irrelevant to the batting outcome such as non-striker characteristics, fielder
characteristics and the occurrence of injuries.

Note that the variables in Table 3.1 are categorized as either bowling variables or batting
variables. A bowling variable is one that is entirely due to the bowler or the conditions of
the match. For example, the ball speed variable is a bowling variable. As another example,
the wickets lost variable is a bowling variable. A batting variable concerns something that
the batsman did. For example, batsman handedness is a bowling variable (because this is a
condition of the match) whereas hit angle of the batted ball is a batting variable.
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Feature (Data Details) Bowling Batting Percent Missing
Variable Variable Observations

bowling team venue (home, neutral, road) Y N 0.00
innings (1, 2) Y N 0.00
time of day (hour using 24 hour clock) Y N 0.00
batsman handedness (L, R) Y N 0.00
bowler handedness (L, R) Y N 0.00
bowler’s style (pace, spin) Y N 0.00
bowler’s spell (1, 2, 3, 4) Y N 0.00
bowler’s speed (fast, medium, slow) Y N 0.00
powerplay (Y, N) Y N 0.00
over (1, ..., 20) Y N 0.00
ball in over (1, ..., 6) Y N 0.00
wickets lost (0, ..., 9) Y N 0.00
resources remaining (0.0 to 100.0) Y N 0.00
deficit (integer) Y N 0.00
ball speed (continuous in km/hr) Y N 69%
ball rpm (continuous) Y N 99%
pitchx (horizontal ball landing rel to wicket) Y N 0.00
pitchy (vertical ball landing rel to wicket) Y N 0.00
batsmanx (horizontal ball landing rel to batsman) Y N 0.00
batsmany (vertical ball landing rel to batsman) Y N 0.00
hit angle (angle ball hit by batsman) N Y 0.00
hit length (distance ball stopped after hit) N Y 0.00
temperature (cold, moderate, hot) Y N 2%
humidity (dry, moderate, humid) Y N 2%
cloud cover (light, medium, heavy) Y N 2%

Table 3.1: Selected features (covariates) and related information used in the estimation of
batting outcomes.

In Table 3.1, we have added two variables that were not included in the Cricket Australia
database which we believe are predictive of the batting outcome. The first is the resources
remaining variable (Duckworth and Lewis 1998) adapted for T20. The resources remaining
at the time that a ball is bowled provides an indication of how aggressive a batsman may
bat. To also account for batting aggression, we include the deficit variable which is the
number of runs by which the batting team is trailing in the second innings (i.e. deficit =
target score less current batting score). In the first innings, we define deficit as the average
runs scored in the first innings of a T20 match less the current score. In men’s T20 cricket,
the average first innings score is 160 runs whereas in women’s T20 cricket, the average first
innings score is 131 runs.

In Table 3.1, we observe some redundancies in the variables. For example, the D/L re-
sources remaining variable is a function of wickets lost and overs. In theory, the specification
of redundant variables is unnecessary since machine learning techniques are “smart” and
are able to detect functional relationships. However, in our experience, over-specification
of variables is sometimes useful to assist the performance of algorithms. We also note that
the hit angle variable has been standardized to account for lefthanded and righthanded

20



batsmen. There were some very minor data management issues such as correcting entries
with 10, 11 or 12 wickets lost. These are obvious coding errors where the correct values can
be imputed by looking at the data corresponding to adjacent balls.

3.3 Random Forests

Recall that our problem involves the estimation of the batting outcome probabilities pi(1), . . . ,

pi(6) in (3.1). These probabilities are estimated in a supervised learning context the batting
outcomes and the features (Table 3.1) are known for each ball in our massive dataset.

A first thought involving the prediction of categorical outcomes may be the use of “clas-
sical” methods such as multinomial logistic regression. However, an important limitation
of such methods is the reliance on a linear model structure. In this application, we have
many covariates that may interact in non-linear ways where appropriate correlations may
be difficult to specify. Moreover, classical parametric models have an underlying stochastic
structure which is unknown.

A rationale for machine learning methods in prediction is that complex phenomenon
are often difficult to model explicitly. Here, we have a categorical response variable y with
8 categories, and a moderate-dimensional explanatory vector x = (x1, x2, . . . , xk), with
k = 25. The reduction of potential covariates in the complete dataset to k = 25 variables was
carried out in Section 3.2 and based on subject domain knowledge of cricket. We have little
apriori knowledge about the relationship between y and x. For example, the relationship
may only involve a subset of the variables x, the components of x may be correlated, and
most importantly, the relationship y ≈ f(x) involves an unknown and possibly complex
function f . In addition, the stochastic aspect of the relationship is typically unknown and
big data sets may introduce computational challenges. Miraculously, machine algorithms
provide black box predictions based on the features of interest.

For this application, we use random forests as the chosen machine learning algorithm.
Random forests (Genuer and Poggi 2020) are particularly easy to implement using the ran-
domForest package (Liaw and Wiener 2002) in the R programming language (R Core Team
2022). The basic idea is that a random forest is a collection of many decision trees where pre-
diction results are aggregrated over trees. The use of multiple trees improves prediction and
makes inference less reliant on a single tree. The splits in the trees accommodate non-linear
relationships and terminal nodes provide the estimated probabilities pi(1), . . . , pi(6).

In choosing the tuning parameters, we have a preference for simpler models (i.e. smaller
trees). For example, if a more expansive tree has similar prediction accuracy to a modest
tree, we choose the modest tree. To assess accuracy (Section 3.4), the data were randomly
divided where 20% of the observations were used for training and the remaining 80% of the
observations were used for validation and prediction. The 20/80 ratio is low compared to
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many applications. However, we want a large validation (prediction) set so that there are
enough balls to reliably estimate xER for many of the bowlers.

With 20% of the data restricted to training, this still provides a large enough dataset to
obtain a good model. When modifying the training set from 20% to 50% of the observations,
we found little change in predictions. In the training component, 10-fold cross-validation
was utilized, and this allowed us to set tuning parameters. For example, the number of
variables randomly selected at each split was set at mtry = 10 to maximize accuracy. We
specified 500 trees in the random forest which is the default value. We also used default
values for tree depth and the maximum number of nodes. For missing values in our dataset
(of which there are few - see Table 3.1), we chose the argument na.roughfix which involves
a simple imputation scheme.

3.4 Model Validation

This section investigates the quality of estimation in various ways.
Their are four analyses that are of interest. First, we have the T20 data divided into

the men’s game and the women’s game. And then, within each of these two formats, we
consider an analysis A based on both bowling and batting features (see Table 3.1). And
then we consider an analysis B based only on bowling features (see Table 3.1). The appeal of
Analysis A is that it includes the variables hit angle and hit length. One might presume that
these are very predictive features, which provide more accurate probabilities pi(1), . . . , pi(6),
and hence, better estimates of xER. The appeal of analysis B is that it removes the quality
of the opposition from the analysis. For example, suppose you have a bowler who competes
primarily against inferior opponents. Then this bowler’s observed economy rate would be
lower than if the bowler competed against more challenging competition. But this would
not be a problem for xER (under Analysis B) since only the characteristics of the bowled
ball and the state of the match are considered; the quality of the opposition is eliminated
from the evaluation of xER.

3.4.1 Confusion Matrices

Once a model is trained (fitted), we consider each ball from the validation set. The features
of the ball are fed to the model and the batting probabilities are estimated. The batting
outcome with the maximum probability is considered the predicted outcome.

For each ball in the validation set, we compare the actual batting outcome with the
predicted outcome, and summarize the results in a confusion matrix. The entry (i, j) in the
confusion matrix records the number of times an actual batting outcome j was predicted
as outcome i.

Tables 3.2, 3.3, 3.4 and 3.5 provide the confusion matrices for Analysis A (Men), Analysis
B (Men), Analysis A (Women) and Analysis B (Women), respectively. The first thing that
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can be calculated from the confusion matrices is that the overall percentage rates of accuracy
for the four analyses are 76%, 45%, 78%, and 47%, respectively. Therefore, as anticipated,
the batting features angle and hit_length greatly assist in the accuracy of the predictions. In
Analysis B, one prediction that is particularly poor concerns wickets. Although the wicket
calculation does not directly appear in the xER formula (3.1), its underestimation impacts
the other batting outcomes. For example, in Table 3.3, only 124 wickets were predicted
in the roughly 5000 cases where wickets actually occurred. The prediction of wickets is
much improved in Table 3.2 (Analysis A). The same comment also applies to the women’s
game. In all analyses, we observe that 3’s and 5’s are almost never predicted. In fact, this
is sensible, as they almost always result from some sort of fielding error.

Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 1232 123 44 23 0 6 0 0
0 1377 27361 5483 83 4 4 11 0
1 2368 3873 31693 7182 410 305 4 12
2 146 3 543 1042 265 102 0 3
3 1 0 1 8 10 0 0 0
4 44 0 112 195 100 9923 3 96
5 0 0 0 0 0 0 0 0
6 35 1 66 79 15 44 1 4015

Table 3.2: Confusion matrix corresponding to Analysis A (bowling and batting features) for
men based on a validation set of 98,450 observations.

Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 124 100 183 64 2 34 0 31
0 1697 16007 9594 2079 344 4174 10 885
1 3313 14820 27714 6294 429 5693 9 3056
2 31 51 121 65 4 38 0 29
3 0 0 1 0 0 1 0 0
4 30 375 309 100 25 432 0 104
5 0 0 0 1 0 0 0 0
6 8 8 20 9 0 12 0 21

Table 3.3: Confusion matrix corresponding to Analysis B (bowling features only) for men
based on a validation set of 98,450 observations.

One of the important observations distinguishing Tables 3.2 and 3.3 (men) from Ta-
bles 3.4 and 3.5 (women) is the rate at which 6’s occur and are predicted. In the men’s
game, 6’s occur 4123/98450 → 4.2% of the time whereas in the women’s game, 6’s occur
1654/133515 → 1.2% of the time. This is a reminder that there are significant differences
between men’s and women’s T20 cricket, and that they should be studied separately.
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Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 1610 170 32 8 0 0 0 0
0 2683 46023 9924 162 11 4 11 1
1 2267 4687 38943 7879 412 4 7 7
2 143 7 915 1772 324 34 0 2
3 0 0 6 24 26 0 0 0
4 5 0 33 28 10 13564 1 70
5 0 0 0 0 0 0 0 0
6 9 1 40 32 9 41 0 1574

Table 3.4: Confusion matrix corresponding to Analysis A (bowling and batting features) for
women based on a validation set of 133,515 observations.

Prediction Actual Outcome
Wicket 0 1 2 3 4 5 6

Wicket 34 49 61 4 1 10 1 34
0 2765 31533 18581 3576 373 6598 11 2765
1 3897 19141 31017 6255 414 6865 7 3897
2 14 44 71 19 3 26 0 14
3 0 2 1 1 0 1 0 0
4 7 118 158 47 1 144 1 7
5 0 0 0 0 0 0 0 0
6 0 1 4 3 0 3 0 0

Table 3.5: Confusion matrix corresponding to Analysis B (bowling features only) for women
based on a validation set of 133,515 observations.

We note that the xER statistic does not distinguish between wickets and 0s; each con-
tributes no runs to the xER statistic (3.1). Therefore, it may be interesting to reproduce the
confusion matrix given in Table 3.3 by combining wickets and 0s. This new table is provided
in Table 3.6. When comparing Table 3.3 and Table 3.6, we observe that the predictions are
generally less accurate when wickets and 0s are combined.

Prediction Actual Outcome
W & 0 1 2 3 4 5 6

W & 0 20695 13474 2909 414 4849 11 1341
1 15199 23855 5469 366 4947 8 2573
2 121 182 88 3 73 0 56
3 1 4 0 0 2 0 0
4 522 395 129 20 490 0 132
5 0 0 0 0 0 0 0
6 26 32 17 1 23 0 24

Table 3.6: Confusion matrix corresponding to Analysis B (bowling features only) for men
based on a validation set of 98,450 observations. Here, the wickets and 0 categories have
been combined.
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3.4.2 Features of Importance

One of the informative outputs from the randomForest package (Liaw and Wiener 2002) are
importance plots of the model features. Features are listed from top to bottom according
to their impact on prediction.

We provide importance plots for the men’s game (Figure 3.1) and for the women’s game
(Figure 3.2). Importance plots are provided for Analysis A (bowling and batting features)
and Analysis B (bowling features only). As expected, we observe in the leftmost plots
that the variables hit length and hit angle are the most influential as they describe the
characteristics of the batted ball. For example, balls that are hit far are most likely to result
in runs scored.

In both Analysis A and Analysis B, we observe that the landing location of the bowling
delivery (pitchx and pitchy) impact the batting outcome prediction. The same is true for
(batsmanx and batsmany) which describe the landing location of the ball relative to the
batsman. For example, if the ball is too close to the batsman, the batsman is unable to
apply full torque on the batted ball, and is less likely to generate 4’s and 6’s. Our intro-
duced variables deficit and resources remaining which together describe the urgency and
aggressiveness of batting are also variables which help the prediction of batting outcomes.

Comparing Figure 3.1 and Figure 3.2, we do not observe many meaningful differences
between the men’s game and the women’s game. It appears that the features that are
influential in predicting batting outcomes are similar.
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Figure 3.1: Importance plots of the features for the men’s game corresponding to Analysis
A and Analysis B.
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Figure 3.2: Importance plots of the features for the women’s game corresponding to Analysis
A and Analysis B.

3.4.3 Brier Scores

As mentioned previously, the utility of xER is only as good as the reliability of the estimates
of the probabilities pi in (3.1). To assess the estimates, we calculate Brier scores (Brier 1950)
based on three forecasts.

The first forecast is naive and is not expected to be accurate. However, it does provide
a sense of the magnitude of differences with respect to Brier scores. We refer to the first
forecast as Uniform Discrete where the associated probabilities are given in Table 3.7. Here,
we set all of the six non-neglible probabilites in (3.1) equal to 1/6. We emphasize that the
probabilities are the same for every ball that is bowled.

The second forecast which we refer to as T20 Proportions is based on the observed
proportions of T20 batting outcomes from a much larger dataset. It includes more than
500,000 balls from international men’s T20 matches from 2015-2020. Again, we assign zero
probability to the rare batting events corresponding to 3 and 5 runs. The probabilities are
given in Table 3.7. Since these probabilities are associated with the men’s game, our Brier
score analysis will only consider batting predictions for men.

Forecast p(wicket) p(0) p(1) p(2) p(3) p(4) p(5) p(6)
Uniform Discrete 0.166 0.166 0.166 0.166 0.000 0.166 0.000 0.166
T20 Proportions 0.056 0.305 0.404 0.071 0.000 0.112 0.000 0.048

Table 3.7: Probability estimates associated with two competing forecasts.
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Now, for every ball i = 1, . . . , N that is bowled in the dataset, we define oi(j) = 1 if
event j occurred and oi(j) = 0 if event j did not occur where the event j takes on the values
w, 0, . . . , 6. With event probabilites pi(j) corresponding to a particular forecasting method,
the Brier score is then given by

B = 1
N

N∑

i=1

∑

j=w,0,...,6
(pi(j) − oi(j))2 . (3.2)

For the men’s game, we calculate Brier scores using (3.2) for the Uniform Discrete
forecast, the T20 Proportions forecast and the random forests forecast (Analysis A), We
obtain Brier scores of 0.84, 0.73 and 0.33, respectively. The results suggest that the random
forests algorithm (Analysis A) predicts the batting outcome much better than the other
two methods that do not consider the circumstances of the match and the characteristics
of the ball that was bowled. In turn, and most importantly, this suggests that xER informs
us about what might reasonably have happened in matches involving economy rate had the
batting outcomes proceeded as expected.

3.5 Results - xER in T20 Cricket

For a given bowler, we are interested in the comparison of xER with their career economy
rate. Career economy rates in T20 were obtained from the stats.espncricinfo.com website.

For this analysis, we are only interested in bowlers who have bowled sufficiently in our
validation (prediction) dataset. We therefore restricted our attention to bowlers who have
bowled at least 500 balls in the validation set. From these bowlers (57 men and 89 women),
we randomly selected 10 men and 10 women and calculated their corresponding xER. The
calculation was based on the estimates pi(1), . . . , pi(6) in (3.1) for each ball i that was
bowled in the validation set. The xER statistic in (3.1) was calculated two ways; using
Analysis A which relied on bowling and batting features, and Analysis B which only used
bowling features. The results are presented in Table 3.8 (men) and Table 3.9 (women).

Our initial observation is that the expected economy rates xER are in line with the
career economy rates. Sometimes the xER statistic is smaller (the bowler has been slightly
unlucky in actual matches) and sometimes the xER statistic is larger (the bowler has been
slightly lucky in actual matches). We have argued up to this point that Analysis A is most
likely better than Analysis B since Analysis A has more accurate predictions. Perhaps the
most interesting bowler according to Analysis A is Renee Chappel from Table 3.9. Her xER
(Analysis A) is a full 2.81 runs lower than her career economy rate. This is a large difference
which suggests that she is a better bowler than her record indicates. She is an experienced
bowler, 38 years of age, having made her international debut in 2013. In 2016-17, Chappel
received the Karen Read Medal as the best player in WACA Female A Grade and T20
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competitions. It appears that her excellence as highlighted by the xER statistic has been
appreciated.

We also observe that the men bowlers tend to have higher economy rates on average
than the women bowlers. This could be related to the observation from Section 3.4.1 where
we observed that the men score 6’s more frequently than the women.

Bowler Country Balls Bowled in Career xER (Analysis A) xER (Analysis B)
Validation Set Economy Rate

Steketee, Mark Australia 595 8.90 8.37 7.53
Lyon, Nathan Michael Australia 620 7.21 7.28 7.74
Abbott, Sean Australia 1185 8.54 8.54 7.82
Hauritz, Nathan Australia 533 7.56 7.75 7.79
Archer, Jofra England 512 7.65 7.43 7.70
Maxwell, Glenn Australia 802 7.71 7.68 7.36
Ahmed, Fawad Australia 933 6.96 6.88 8.13
Zampa, Adam Australia 1306 7.29 6.76 7.94
McKay, Clinton Australia 950 8.07 8.41 7.46
Boyce, Cameron Australia 1109 7.65 7.72 7.96

Table 3.8: The expected economy rate statistic xER for 10 randomly selected men bowlers.

Bowler Country Balls Bowled in Career xER (Analysis A) xER (Analysis B)
Validation Set Economy Rate

Pike, Kirsten Australia 708 7.34 5.93 5.67
Hepburn, Brooke Australia 1454 6.97 6.70 6.15
King, Emma Australia 1379 6.41 6.06 6.30
Birkett, Haidee Australia 553 6.75 6.67 6.28
Kearney, Emma Australia 657 6.22 6.33 5.73
Chappell, Renee Australia 634 8.28 5.47 6.45
Elwiss, Georgia England 604 5.92 6.90 6.55
Biss, Emma Australia 521 5.22 6.01 6.08
Elliott, Sarah Australia 921 6.20 5.72 6.24
Coyte, Sarah Australia 2521 6.10 6.25 6.12

Table 3.9: The expected economy rate statistic xER for 10 randomly selected women
bowlers.

3.6 Discussion

This chapter introduces expected economy rate xER to the sport of cricket. The idea borrows
on the expected goals concept which has become especially popular in soccer. As xER
attempts to reduce the luck element from bowling, xER may be a diagnostic that informs
us of the true quality of a bowler, perhaps a more trustworthy statistic than the actual
economy rate. This may be particularly valuable in the context of unproven bowlers who
have not established a clear reputation. For example, xER could alert team selectors to
promising bowlers whose results have not yet matched their quality.
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This chapter is intended to be a proof of concept of a potentially valuable statistic.
Naturally, the statistic could improve with better data. For example, the positioning of
fielders surely has an impact on batting outcomes. We suggest that the availability of such
data is not far down the road as player tracking data becomes more widely available across
major sports.

Of course, different models and prediction schemes could also be investigated. This is a
possible avenue for future research. Another point of reference for future research in cricket
analytics is a call for more work on the women’s game. This research has pointed out that
there are significant differences between the men’s and women’s games.
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Chapter 4

A Causal Investigation of Pace of
Play in Soccer

4.1 Introduction

In team sports, playing style is a much discussed topic and an important component of
success. For example, in soccer, we hear about the gegenpress (Tweedale 2022), total football
(McLellan 2010) and parking the bus (Guan, Cao and Swartz 2022). However, playing style
is notoriously difficult to quantify in soccer. It is difficult to quantify since playing style is
a team concept, which relies on the actions of multiple players whose movements are fluid
in both time and space.

However, the landscape for studying playing style has changed in recent years with
the advent of player tracking data. With player tracking data, the location coordinates
for every player on the field are recorded frequently (e.g. 10 times per second in soccer).
With such detailed data, the opportunity to explore novel questions in sport has never
been greater. The massive datasets associated with player tracking also introduce data
management issues and the need to develop modern data science methods beyond traditional
statistical analyses. Gudmundsson and Horton (2017) provide a review of spatio-temporal
analyses that have been used in invasion sports where player tracking data are available.

This chapter is concerned with “pace of play” in soccer, a relatively underexplored
topic. In some sports, pace is readily defined. For example, in basketball, team pace may be
defined as the average number of possessions per game. In the NBA, this is a well-studied
statistic which is available from various websites including https://www.nba.com/stats/
teams/advanced/

In American football, although there is a clear notion of pace of play, there is no
commonly reported statistic that directly measures pace. In the National Football League
(NFL), the number of plays per game is available for each team from standard box scores.
Although this statistic is related to pace, it is obvious that poor offensive teams who rarely
make first downs have fewer plays per game. Therefore, in football, the average number
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of plays per game for a team is confounded with offensive strength, and consequently, the
number of plays is not a pure measure of pace. Pace in football can be increased for a team
by using a “hurry-up offense” which affords more plays in a given period of time provided
that the team continues to make first downs. Furthermore, teams that frequently pass the
ball (as opposed to run the ball) typically use up less of the clock and have more plays from
scrimmage.

In ice hockey, the definition of pace is even less clear. See, for example, Silva, Davis and
Swartz (2018) where various definitions of pace are considered. Yu et al. (2018) revisit the
hockey problem and suggest an alternative definition of pace.

The sport of soccer shares some of the same challenges as hockey with respect to the
definition of pace. For example, how is possession determined? How do successful passes
contribute to pace and should pace calculations involving a pass be counted differently
than when dribbling? Shen, Santo and Akande (2022) builds on the aforementioned hockey
papers and uses event data to investigate pace in soccer.

This chapter differs from Shen, Santo and Akande (2022) in a number of key directions.
First, this chapter uses tracking data rather than event data to study pace. Second, al-
ternative definitions of pace are provided. In particular, we define attacking pace which is
related to “direct play”, a much discussed tactic in soccer. Third, we provide various sport-
ing implications associated with pace. Finally, our primary goal addresses the key question
of whether playing with pace is strategicly sound. Many soccer experts believe that moving
the ball quickly is advantageous. When you move the ball quickly, the logic is that it affords
the defensive team less time to transition to solid defensive formations. However, to our
knowledge, this basic tenet of soccer has never been tested. Is it better to play with pace?
We address this question by using methods of causal inference (Pearl 2009). Obviously, de-
cisions that are made on the field are often instantaneous. Therefore, it is impossible to use
traditional randomized trials to determine the cause-and-effect relationship between playing
with pace and success. With match data, we have “studies” as opposed to “experiments”.
Fortunately, the methods of causal inference allow us to address causality in studies pro-
vided that confounding variables can be identified and measured. With tracking data and
our subject knowledge of soccer, confounding variables are accessible.

Related to our investigation of pace, they have been many investigations of determinants
of success in soccer. A sample of recent papers include Lepschy, Wäsche and Woll (2021),
Merlin et al. (2020), and in the women’s game, de Jong et al. (2020).

In soccer, the most investigated aspect of playing style concerns formations. For example,
the book “Inverting the Pyramid” (Wilson 2013) considers the history of soccer tactics
throughout the world with an emphasis on positional play and player roles. It is also now
common during television broadcasts to provide graphical statistics that depict the average
location of each player during a match. Such information is useful in determining match
strategy as it can point out features such as gaps in player alignment. There have also been

31



many technical papers written on player formation. For example, Shaw and Glickman (2019)
use tracking data and clustering methods to determine a team’s offensive and defensive
formations. This is useful as the fluidity of the sport and changing tactics sometimes makes
it difficult to distinguish between formations (e.g. 4-4-2 versus 3-5-2). Goes et al. (2021)
also identify formations using tracking data and relate attacking success to formations.

The association between style and results in soccer has been well investigated. For
example, in their Table 1, Kempe et al. (2014) list various ball possession and passing metrics
which have been explored in the literature. Kempe et al. (2014) also propose aggregate
metrics and relate these to success. However, a distinguishing feature of our work is that
we consider a causal approach rather than one of association. This is made possible by the
availability of player tracking data.

In Section 4.2, we introduce and motivate two definitions of pace. We contrast these
definitions with alternative definitions that have been presented in the literature. In Section
4.3, we describe the player tracking dataset and discuss the challenges involved in pace
calculations. One of the challenges is the determination of possession. In Section 4.4, we
provide exploratory data analyses which provides various sporting insights on pace. The
sporting insights are highlighted with the letters A-E. This section is also useful in iden-
tifying confounding variables that are related to pace. In Section 4.5, we present a causal
analysis concerning the benefit of playing with pace. This involves the fitting of a MANOVA
model which is the foundation for the determination of propensity scores and matching. The
main result of this section is that playing with pace is a beneficial team strategy in soccer
in terms of generating more shots. We conclude with a short discussion in Section 4.6.

4.2 Definitions of Pace in Soccer

Dan Blank’s paperback on soccer (Blank 2002) provides 54 chapters on different tactics
and advice on playing the game well. The first chapter which is titled the “Holy Grail”
provides an inspiration for our investigation. In this chapter, Blank claims that playing fast
is better than playing slow. In other words, Blank argues that teams should play with pace.
Although the heuristic may be appealing, it does not seem that the belief has ever been
corroborated against data. If the belief is true, then a measurable and sensible definition of
pace may lead to important soccer insights.

First, we review some of the previous definitions of pace. In the original investigation of
pace in hockey, Silva and Swartz (2018) were limited to the analysis of event data. With event
data, a finite number of event types are recorded along with a timestamp. A shortcoming
of the analysis is that the skating paths between events (which are relevant to pace) are
unknown. Consequently, Silva and Swartz (2018) only measured horizontal distances (i.e.
down the length of the rink) during which possession was maintained. Furthermore, Silva
and Swartz (2018) only evaluated pace for a game and did not differentiate pace of play
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between the two teams. Yu et al. (2019) used more extensive event data with events recorded
approximately every second on average. With this data, they were able to define pace in
various directions and considered zonal, league, team-level and player-level analyses. The
pace metric defined by Yu et al. (2019) appears to be an average of velocities over event
intervals and therefore differs conceptually from the Silva and Swartz (2018) definition which
is based on total distance travelled. In soccer, Shen, Santo and Akande (2022) also used
velocity as a pace measurement but restricted analyses to sequences where possession is
retained over three or more events.

A commonality amongst all of the above pace analyses is that they were based on event
data. With event data, distance calculations between events assume that the ball/puck
travels in a straight line. Shen, Santo and Akande (2022) described the assumption as a
major limitation. In this chapter, the more detailed tracking data allows us to consider the
actual paths where the ball travelled.

We begin with an analogy related to our definition of pace. We suggest that a painter is
painting quickly (i.e. with pace) if they are able to apply a lot of paint on a canvas in a short
period of time. In soccer, we view the brush strokes as the paths where players carry the ball
and the paths where a ball is successfully passed. If a team is able to move the ball quickly,
then they are playing with pace. The concept of possession is important; if a team is simply
punting the ball downfield, in our view, they are not playing with pace. To operationalize
these ideas, we consider the non-contiguous time intervals (t1, t2), . . . , (tn, tn+1) in a match
where a team has possession. During the possession interval i, the team moves distance di,
i = 1, . . . , n. Then, following the painting analogy, we refer to the team’s general pace in
the match as

GP =
∑n

i=1 di∑n
i=1(ti+1 − ti)

. (4.1)

Similarly, there is a corresponding pace formula (4.1) for the opponent. Note that the
two teams will differ in the amount of time possession during the match. Therefore, the
pace measure (4.1) is reflective of their style of play while in possession, and is insensitive
to their total time of possession. Although the general pace metric (4.1) is defined in terms
of a match, it can also be calculated for shorter periods of time (e.g. a half) or even for a
single possession.

We contrast the general pace metric (4.1) with the quantity

PSSA = 1
n

n∑

i=1

di

ti+1 − ti
(4.2)

which is related to the velocity concept of pace utilized by Shen, Santo and Akande
(2022); note, however that Shen, Santo and Akande (2022) used medians rather than means.
When comparing (4.1) with (4.2), we observe that (4.2) is sensitive to and is inflated by
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very fast passes (i.e. typically large di that occur over moderate time intervals ti+1 − ti).
We believe that (4.1) better reflects pace as the totality of distance covered with respect to
the cumulative time of possession.

We now introduce a variation of the general pace metric GP defined in (4.1). We note
that there are differences in scoring intent based on the type of passes and dribbling. For
example, the “tiki-taka” approach adopted by the Spanish National team in 2006 relied on
many consecutive short passes that emphasized possession. Based on the metric GP , the
tiki-taka approach would be characterized as a pacey style since passes typically have larger
pace contributions than dribbling. But is tiki-taka pacey?

The aforementioned tiki-taka style allows one to reflect on stylistic differences between
hockey and soccer. In hockey, the playing surface is smaller and players skate at great
speeds. Therefore, it is more difficult to retain possession in hockey. Consequently, possession
sequences tend to be of shorter duration than in soccer. To investigate pace in soccer with an
emphasis on direct play, we modify GP and introduce attacking pace AP where the distances
di now correspond to displacements down the field in the direction of the opposing goal.
For example, passes back to the keeper (which have no attacking intent) do not positively
contribute to attacking pace AP . Large positive contributions to the statistic AP will involve
transitions such as the counter-attack.

To define AP , we refer to Figure 4.1 where an AP contribution is illustrated. In the
plot, the “most attacking” pass that could possibly be made from point A would be to the
middle of the opponent’s goal line C.

This potential pass has associated distance dAC . Instead, the pass was made from A to
B, and the attacking distance from this new point B to C is denoted dBC . Therefore, the
contribution (in terms of attacking) from A to B is given by the residual distance

d =
{

dAC − dBC dAC ≥ dBC

0 dAC < dBC

. (4.3)

In (4.3), dAC − dBC represents the reduction of the greatest attacking distance that was
made due to the pass from A to B. Therefore, the new statistic AP has the same form as
GP in equation (4.1) where the d in equation (4.3) assumes a subscript i corresponding to
the ith possession. We also note that the same type of calculation is carried out whether a
possession involves passes or dribbles. It is important to note that the tracking data allows
us to deal with path curvature when dribbling by breaking up dribbling sequences into small
time intervals. If event data had been used (in contrast to tracking data), only the starting
point and ending point of a dribbling sequence would be known.

A feature of the construction of the metric AP is illustrated through a possession se-
quence where the ball travels in a forward direction from A to B to C and where we denote
the center of the goal by G. Using obvious notation for distances, the total attacking dis-
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CA

B
dBC

dAC

Figure 4.1: The plot illustrates a pass with attacking intent. A is the starting point of the
pass, B is the end point of the pass and C denotes the middle of the goal line of the opponent.
The values dBC and dAC represent the distances from B to C, and A to C, respectively.
Attacking pace AP for this component of play is obtained using the distance dAC − dBC .

tance (4.3) is given by d = (dAG − dBG) + (dBG − dCG) = dAG − dCG which demonstrates
that the metric is additive over the possession path.

Whereas the metrics GP and AP describe style of play while a team is in possession,
insights may also be provided by considering the extent to which teams play a given style.
For example, if a team is rarely in possession, then they are rarely executing their style.
Therefore, we could also introduce the metric GP ∗ which is similar to GP except that we
omit the denominator in (4.1). Therefore, GP ∗ may be thought of as total distance travelled
by the team. Therefore, while GP is a statistic that describes pace during possession, GP ∗

takes possession into account such that teams with little possession are not playing with
pace. Similarly, we could introduce the metric AP ∗ which is the total attacking distance
during the match. However, for the remainder of our investigation, we only focus on the
general pace statistic GP and the attacking pace statistic AP . Note that all of the proposed
definitions of pace are properties of the possessing team.
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4.3 Data

For this investigation, we have a big data problem where both event data and player tracking
data are available for 237 regular season matches (three matches missing) from the 2019
season of the Chinese Super League (CSL). The schedule is balanced where each of the 16
teams plays every opponent twice, once at home and once on the road.

Event data and tracking data were collected independently where event data consists of
occurrences such as tackles and passes, and these are recorded along with auxiliary infor-
mation whenever an “event” takes place. The events are manually recorded by technicians
who view film. Both event data and tracking data have timestamps so that the two files
can be compared for internal consistency. There are various ways in which tracking data
are collected. One approach involves the use of RFID technology where each player and the
ball have tags that allow for the accurate tracking of objects. In the CSL dataset, tracking
data are obtained from video and the use of optical recognition software. The tracking data
consists of roughly one million rows per match measured on 7 variables where the data are
recorded every 1/10th of a second. Each row corresponds to a particular player at a given
instant in time. Although the inferences gained via our analyses are specific to the CSL, we
suggest that the methods are applicable to any soccer league which collects tracking data.

4.3.1 Possession

A possession is defined as a period where a team has control of the ball. The event data is
used to identify the possession sequences of a team. The event data contains all the events
that occurred during a match and therefore tells us when possession sequences began and
ended. Events where neither team is determined to have possession include injuries, cards,
out-of-bounds, preliminary time to the beginning of set pieces (eg corners, throw-ins, free
kicks, penalties, etc). Also, when determining possession sequences, we exclude time beyond
90 minutes since different matches have different amounts of added time. Among all the
matches, there is an average of 373 possessions per match.

In Figure 4.2, we provide histograms (GP and AP ) of the length of the possession
sequences in metres. The histogram is right skewed. We observe a mean length of 46.6
(21.0) metres, minimum length 0.1 (0.0) metres, and maximum length 456.8 (82.2) metres
corresponding to GP and AP , respectively.

4.3.2 The Pace Datasets

We pre-processed the CSL tracking and event data. Originally, the data were provided in
xml files and we extracted the content using the read_xml function from the XML package
using R software. The resulting tracking and event data were written into csv file format.

Ultimately, we constructed a pace dataframe for each match. This is a comprehensive
dataset that allows us to investigate various questions of interest. The pace dataset is a
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Figure 4.2: Histogram of the lengths of all possession sequences in metres corresponding to
GP and AP , respectively.

matrix where the rows correspond to pace contributions made by an individual player during
a possession. The columns consist of the following variables: start time of pace contribution,
end time of pace contribution, the displacement di (both Euclidean distance and attacking
distance (4.3)), match score at the beginning of the pace contribution, match score at the
end of the pace contribution, the player who contributed to the pace contribution, the team
of the player who made the pace contribution, whether the contributing player plays for the
home or road team, and the number of playing minutes during the match for the player.
We note that Yu et al. (2018) shared the pace contribution equally between the player who
made the pass and the player who received the pass. In our construction, we assign credit
only to the player who made the pass.

To create the pace dataframe, we looped frame by frame through the tracking data,
where we matched events and time using the event data. This permitted the calculation
of the relevant distances during each possession. The process required approximately 15
minutes of computation for all 237 matches. Another challenge related to the calculation of
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AP involved slight differences in pitch size where the coordinates of point C in Figure 4.1
varied across pitches.

4.4 Exploratory Data Analyses

A main objective of exploratory data analysis (EDA) is to reveal insights that can be more
thoroughly investigated via modelling and inferential techniques. In this section, we use EDA
to gain insights related to the pace statistics GP and AP together with other variables of
interest. Below, EDA reveals five insights, labelled A-E.

In Figure 4.3, we produce scatterplots of GP and AP related to the home and road
teams for all of the 237 available matches during the 2019 season of the CSL. We obtain a
mean value of 0.66 (0.66) metres/sec, minimum value 0.42 (0.48) metres/sec and maximum
value 0.78 (0.82) for the home and road team, respectively, using GP . We obtain a mean
value of 0.25 (0.26) metres/sec, minimum value 0.14 (0.15) metres/sec and maximum value
0.38 (0.53) for the home and road team, respectively, using AP . Therefore, we observe that
the pace statistics differentiating home and road teams are minor.
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Figure 4.3: Scatterplots for GP and AP related to the home and road teams for each match.
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Initially, we were unsure whether pace was a property of the match (e.g. both teams
play at high pace due to the particular style of the game) or whether each team has control
of their respective pace. We observe that the sample correlation coefficients for GP and AP

are 0.16 and 0.06, respectively. It is possible to carry out a test of correlation H0 : ρ = 0
in the two cases. The p-values are given by 0.014 and 0.358, for GP and AP , respectively.
Although the first correlation is statistically significant, it is not strong in magnitude. The
lack of strong correlations lead to the following insight.

Insight A: In a given match, each team has control of whether they play a pacey style.
The pace of one team is not dictated by the pace of its opposition.

Next, we are interested in whether pace is a characteristic that can be attributed to
teams. In Figure 4.4, we produce boxplots of the pace (GP and AP ) for each of the 16
teams in the CSL where a single datapoint refers to the pace calculation in a match. We
observe that there are only minor differences in the pace distributions across teams.
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Figure 4.4: Boxplots of GP and AP for each of the 16 teams in the CSL based on their 30
matches.

Using a one-way ANOVA design for testing differences across teams, we obtain p-values
of 0.0278 and 0.0106, for GP and AP , respectively. This leads to the following insight.
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Insight B: Although some teams may play at slightly different average pace than other
teams, such differences are small (particularly with GP . Pace is primarily a
property of how a team plays in a particular match rather than a general
property of the team.

Next, we are interested in whether pace depends on playing position. In Figure 4.5,
we produce boxplots of the pace (GP and AP ) for defenders, midfielders and forwards in
the CSL where a single datapoint refers to the pace calculation in a match. We observe
differences across the three positions. Due to the constraints of the field and positioning, it
is logical that defenders have more open space in front of them than midfielders, and that
midfielders have more open space in front of them than forwards. Therefore, it coincides with
our intuition that pace should decrease according to defenders, midfielders and forwards,
respectively.
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Figure 4.5: Boxplots of GP and AP for forwards, midfielders and defenders based on their
individual match statistics.

Using a one-way ANOVA design for testing differences across positions, we obtain highly
significant test results with p-values of 4.13e−10 and 5.18e−6, for GP and AP , respectively.
This leads to the following broad insight.
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Insight C: Defenders play at higher pace levels than midfielders who in turn play at
higher pace levels than forwards.

Next, we are interested in whether pace is related to the time of the match. In Figure
4.6, we produce boxplots of the total pace by both teams (GP and AP ) according to the
time of the match broken into 15-minute intervals from 0 to 90 minutes. Although pace
changes throughout the match, we observe different patterns according to GP and AP.
With general pace GP, when a match begins, we expect that teams are alert and maintain
defensive discipline. As the match continues, players tire, and they discontinue running with
the same pace as before. At halftime, there is a rest period where teams recover slightly,
and then they continue to tire during the second half.

With attacking pace AP, the interplay between exhaustion and defensive discipline is
expressed differently. As the match continues, players tire and this allows for more open
space and the opportunity to seek gaps downfield. This causes a gradual increase in attacking
pace with more pronounced increases in the latter stages.
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Figure 4.6: Boxplots of GP and AP according to the time of the match where time is divided
into six 15-minute intervals from 0 to 90 minutes. The pace calculations are the total pace
corresponding to both teams.
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Using a one-way ANOVA design for testing differences across time intervals, we ob-
tain highly significant test results with p-values of 3.66e−8 and 4.56e−5, for GP and AP ,
respectively. This leads to the following insight.

Insight D: Teams plays at higher attacking pace as the match progresses.

Next, we are interested in whether pace is related to goal differential. In Figure 4.7,
we produce boxplots of GP and AP corresponding to five goal differential categories as
explained in the caption. The calculation of pace is taken over five-minute intervals for all
teams and matches during the season. When a goal is scored during a five-minute interval,
then the pace observation for that interval is excluded since the goal differential during
the interval is not constant. With respect to the home team, we observe an interesting
pattern with a slight increase in the median value of AP from GD = −2 to GD = −1,
from GD = −1 to GD = 0, from GD = 0 to GD = 1, followed by a drop in pace at
GD = 2. Note that due to the home team advantage, GD = 2 is a more common situation
than GD = −2. Our nuanced intuition corresponding to these observations begins with the
case GD = −2 where the home team is losing badly. In this case, we expect that the road
team is playing defensively as argued by Guan, Cao and Swartz (2002). The home team
is therefore dominant in their offensive zone (i.e. near the road team’s goal). On average,
there is little room downfield for the home team, and consequently, they will be unable to
make significant positive contributions to AP , and the AP measurement (as observed), will
be low. As GD changes from -2 through 1, we would expect the road team to play less
defensively, and as previously argued, AP will increase (as observed). However, a different
behavioural mechanism occurs when GD = 2. In this case, the home team has a dominant
lead. Their lead is so great, that they have little fear of losing. Hence, when GD = 2, the
home team is not playing ultra-defensive (i.e. largely contained in their own zone, with
predominantly long passes having a high AP contribution). Rather, when GD = 2, the
home team is playing free, and this causes a reduction in AP from GD = 1 to GD = 2.

Using a one-way ANOVA design for testing differences in pace across goal differentials,
we obtain significant test results with p-values of 0.041 and 0.028 for GP and AP , respec-
tively. This leads to the following insight.

Insight E: Teams play at different pace levels depending on the goal differential.

4.5 Causal Analysis

In this section, we return to our primary question whether it is advantageous to play with
pace. With a sensible definition of pace and the availability of tracking data, the issue can
be addressed.

Recall that questions of cause and effect are traditionally addressed using randomization
in experimental contexts. For our problem, this would require the random assignment of
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Figure 4.7: Boxplots of GP and AP corresponding to the goal differential (GD) taken at
5-minute intervals where -2 corresponds to the home team losing by 2 or more goals, -1
corresponds to the home team losing by 1 goal, 0 indicates a tied match, 1 corresponds to
the home team winning by 1 goal and 2 corresponds to the home team winning by 2 or
more goals.

pace to the two teams. Of course, matches are not experiments, but rather observational
studies where randomization does not occur. Therefore, we address cause and effect through
methods of causal inference (Pearl 2009). Although causal inference has received great
attention, the methods are often difficult to implement due to the necessity of specifying
and measuring relevant confounding variables. Fortunately, sport is much simpler in its
objectives than many other scientific domains, and via the spatio-temporal tracking data
and the EDA investigations of Section 4.2, confounding variables are accessible. Therefore,
together with some novel ideas, and referring to the approach introduced in Wu et al. (2021),
we are able to address cause and effect associated with pace.

4.5.1 Propensity Scores

Using causal terminology, we think of pace as the treatment which we denote Xh and Xr,
corresponding to the home and road teams, respectively. We denote W as the vector of
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confounding variables which we believe are predictive of the pace X = (Xh, Xr)′. With this
structure, we wish to specify propensity scores Prob(Xh − Xr > 0 | W ) that describe the
probability that the home team plays at greater pace than the road team given the relevant
circumstances of the match. With insights gained from the EDA of Section 4.2, we specify a
statistical model that leads to propensity scores. For reference, we define all of our relevant
variables below.

t ≡ time of the match in minutes, t ∈ (0, 90)
X(t) ≡ pace vector for home and road teams at time t; either GP or AP

GD(t) ≡ goal differential in favour of the home team at time t

O ≡ pre-match betting odds corresponding to the home team
Y ((t1, t2)) ≡ excess shots by home team compared to road team during (t1, t2)

(4.4)

Looking ahead, our interest is in determining a cause-effect relationship regarding the
impact of pace X on success Y . A natural success variable would be goals. However, in
soccer, goals are rare events with less than three goals per game on average in top profes-
sional leagues. We therefore use the surrogate variable shots as defined in (4.4) to assess
success. Of course, not all shots lead to goals but shots are an indication of success. However,
let’s return to the first step of the causal investigation which involves the construction of a
propensity score model.

We first bin the data to define levels for each of the three confounding variables W (t) =
(t, GD(t), O)′. We segment the time t into 18 five-minute intervals: (0, 5), (5, 10), . . . ,
(85, 90). We do not include added time beyond 90 minutes since the amount of added
time differs across matches.

For the second variable, we restrict GD(t) to five states with goal differentials -2, -1, 0,
1 and 2 corresponding to the home team at time t. Note that GD(t) = −2 corresponds to
the home team losing by two or more goals and that GD(t) = 2 corresponds to the home
team winning by two or more goals. For a given match, we consider each of the 18 time
intervals, and if the goal differential is constant throughout the interval (either -2, -1, 0, 1
or 2), then an observation is recorded.

For the third variable O, we access pre-match betting odds available from the website
https://www.oddsportal.com/soccer/china/super-league-2019/results/ . The betting odds
(reported in decimal format) provide us with the relative strength of the two teams. Ignoring
the vigorish imposed by the bookmaker, the interpretation of betting odds o for a team is
that the team has a pre-match probability 1/o of winning the match. Therefore, values of
o slightly greater than 1.0 indicate a strong favourite whereas large values of o indicate an
underdog. For a given match, we define four bins for the decimal odds of the home team:
[1.3,1.7), [1.7,2.3), [2.3,3.0) and [3.0,8.0). The odds are restricted so that only competitive
matches are included, and the endpoints are selected to provide comparable numbers of
observations across bins. Note that the bettings odds O do not depend on the time t.
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The variable O was obtained using the standard three-way betting odds for soccer
corresponding to home wins, draws and losses. Ideally, relative strength would be better
measured with moneyline odds corresponding to wins where wagers corresponding to draws
are refunded. The reason why three-way betting odds are not ideal is that two matches can
have identical win odds yet different draw and loss odds. However, the difference in odds in
these two situations is typically minor.

For the response variable in the propensity score model, we calculate Xh(t) and Xr(t)
during the time interval which is intended to convey the style of pace over the time period.
We use attacking pace AP for the pace calculation, as it is more definitive and perhaps more
interesting that general pace GP . We also emphasize that the response variable X(t) =
(Xh(t), Xr(t))′ is bivariate which makes the causal investigation nonstandard.

To illustrate the variables in the propensity score model, consider a match where the
score is 2-0 just prior to the 70-th minute. Following conventional notation where the first
team in the scoreline is the home team, this implies that the home team is leading by two
goals. Assume further that the home team is the favoured team with pre-match decimal
betting odds o = 1.5. In this match, suppose that neither team scores during the time
interval (65, 70) minutes, and that the AP statistics for the home and road teams during
this period are 2.34 and 2.07, respectively. Then, for this time interval, we have the observed
response X = (2.34, 2.07) and covariates W = (14, 2, 1) where t ∈ (65, 70) corresponds to
the 14th time category, GD = 2 is the goal differential (categorical), and odds o = 1.5 ∈
(1.3, 1.7) corresponds to the first category.

Based on the above considerations, we have 3679 observations recorded across 18×5×4 =
360 cells. For linear models based on categorical data, it is prudent to have adequate numbers
of observations in each cell. For this reason, we consider a reduction in the number of cells
by instead defining six time categories, (0, 15), (15, 30), . . . , (75, 90) minutes. In this case,
we have 944 observations recorded across 6 × 5 × 4 = 120 cells. The cell counts are provided
in Table 4.1. In most cells, we have the recommended minimum number of five counts per
cell; exceptions tend to occur with large goal differentials (i.e. GD = −2 and GD = 2),
especially early in matches.

Our propensity score model is a multivariate analysis of variance (MANOVA) model
where the response variable X is two-dimensional and the covariate W = (t, GD, O) has
6×5×4 = 120 cells (as described above). The MANOVA model is preferred to two separate
ANOVA models for Xh and Xr since the MANOVA model permits a covariance structure
between Xh and Xr. Details on MANOVA models are given by Smith, Gnanadesikan and
Hughes (1962).

We used MANOVA software using the manova function in the Stats R package (R Core
Team 2022). One of the assumptions of MANOVA concerns the normality of observations.
A quantile plot of the residuals does not suggest any serious departures from normality. In
Table 4.2, we present the results of fitting the MANOVA model where we have allowed for
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GD = −2 GD = −1 GD = 0
O [1.3,1.7) [1.7,2.3) [2.3,3) [3,8) [1.3,1.7) [1.7,2.3) [2.3,3) [3,8) [1.3,1.7) [1.7,2.3) [2.3,3) [3,8)

t ∈ (00, 15) 0 0 0 2 0 0 0 3 48 51 33 37
t ∈ (15, 30) 0 0 0 3 6 3 2 8 32 32 19 24
t ∈ (30, 45) 1 0 0 3 6 3 4 5 24 24 17 20
t ∈ (45, 60) 0 0 2 8 5 5 6 7 18 18 11 16
t ∈ (60, 75) 1 1 3 13 3 4 3 12 15 15 7 7
t ∈ (75, 90) 1 3 4 7 3 4 4 11 9 16 6 8

GD = 1 GD = 2
O [1.3,1.7) [1.7,2.3) [2.3,3) [3,8) [1.3,1.7) [1.7,2.3) [2.3,3) [3,8)

t ∈ (00, 15) 6 2 1 2 0 0 0 0
t ∈ (15, 30) 14 6 5 7 2 1 0 0
t ∈ (30, 45) 17 9 7 10 6 2 1 0
t ∈ (45, 60) 18 14 5 8 12 1 2 2
t ∈ (60, 75) 12 16 8 5 14 5 4 3
t ∈ (75, 90) 13 9 6 4 16 3 3 1

Table 4.1: Cell counts for the 6 × 5 × 4 covariate categories where the categories correspond
to the time t, the goal differential GD and the betting odds O.

the possibility of first-order interaction terms. The main takeaway is that the time of the
match t, the goal differential in favour of the home team GD and the relative strength of the
home team O are strongly associated with attacking pace X. There is also mild evidence of
some first-order interactions involving t, GD and O.

Variable Df Pillai approx F num Df den Df Pr(> F )
t 5 0.062411 5.7077 10 1772 1.801e-08 ***

GD 4 0.075761 8.7208 8 1772 9.575e-12 ***
O 3 0.126651 19.9665 6 1772 <2.2e-16 ***

t∗GD 18 0.050637 1.2786 36 1772 0.12531
t∗O 12 0.054758 2.0784 24 1772 0.00164 **

GD∗O 15 0.035338 1.0624 30 1772 0.37509
Error 886

Table 4.2: Results from the MANOVA which relates pace X to the covariates W =
(t, GD, O).

Finally, we need to induce the required probability Prob(Xh − Xr > 0 | W ) from the
fitted MANOVA model. The calculation is based on a simple result from mathematical
statistics using properties of the normal distribution. For example, for a given match situ-
ation W , suppose that the MANOVA model yields X ∼ Normal2(µ, Σ) where µ = (µ1, µ2)′

and Σ = (σij). Then Prob(Xh − Xr > 0 | W ) = Φ((µ1 − µ2)/
√

σ11 + σ22 − 2σ12) where
Φ is the cumulative distribution function of the standard normal distribution. Note that
the bivariate normal parameters are estimated through the fitting of the MANOVA model.
For example, the estimated values of σ11, σ22 and σ12 are 0.0051, 0.0061 and 0.0003, re-
spectively. Therefore, the estimated correlation between home and road attacking pace is
σ12/(√σ11σ22) = 0.054 which indicates that the MANOVA formulation (which takes into
account the relationship between home and road pace) provides only a slight improvement
over ANOVA.
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4.5.2 Matching and Results

In the most basic randomized experiment, an experimenter randomly assigns M subjects
from a population to receive a treatment and M subjects from the population to receive the
control. The hope is that through random assignment, the treatment group will on average
be similar to the control group, and that differences in the response between the two groups
can be attributed to the treatment.

The use of propensity scores and matching (Austin 2011, Imbens 2004) attempts to
mimic the basic randomized experiment in the context of observational studies. A propensity
score for a subject in a clinical trial is the probability that the subject receives the treatment.
In the pace problem, Prob(Xh − Xr > 0 | W ) is the estimated probability that the home
team will play at a higher pace than the road team. Therefore, Prob(Xh − Xr > 0 | W )
serves as the relevant propensity score in the pace application.

In our problem, we have a dataset involving 944 pace observations (see Section 4.5.1)
resulting in M1 = 450 cases where the home team plays at greater pace (the treatment) and
M2 = 494 cases where the home team plays at lesser pace (the control). Since M1 < M2,
the matching idea is that we attempt to match each of the M1 treatment cases with a
corresponding control case so that each pair has a similar estimated propensity score based
on the underlying match circumstances W . Then the resulting two groups (M1 treatments
and M2 controls) will be similar in the match characteristics, and that differences between
the two groups can be attributed to the treatment (i.e. pace).

There are many ways that the matching of propensity scores can be carried out (Stuart
2010), and caution ought to be exercised in the process. In our application, we begin with the
M1 cases where the home team plays at a greater pace, and we use a nearest neighbor method
for selecting the matched cases where the home team plays at a lesser pace. Specifically, we
use the Matching package (Sekhon 2011) in the statistical programming language R (R Core
Team 2022) to randomly select (with replacement) control cases that fall within a specified
tolerance of the propensity scores for the treatment cases. Sampling with replacement tends
to increase the quality of matching when compared to sampling without replacement. Unlike
deterministic matching procedures, the random aspect of the nearest neighbor procedure
allows us to repeat analyses to check the sensitivity of the inferences.

Following the implementation of the matching procedure, Figure 4.8 displays the bal-
ance between the two groups with respect to the propensity scores. The similarity in the
histograms is important as it provides confidence that the two groups are similar according
to the characteristics that affect whether the home team plays at greater pace.

The inferential component of the investigation begins with a simple paired two-sample
test between the two groups based on the response Y (excess shots by the home team) as
described in (4.4). Again, we prefer to use shots rather than goals since goals are rare events.
The quantity of interest is the average treatment effect ATE = Ȳ (1) − Ȳ (0) where Ȳ (1) is
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Figure 4.8: After matching, histograms of the two groups (treatment and control) are de-
picted where the horizontal variable is the propensity score.

the excess number of resultant shots by the home team when they are playing at greater
pace, and Ȳ (0) is the excess number of resultant shots by the home team when they are
playing at lesser pace. We obtain ATE = 0.73 − 0.41 = 0.32 with standard error 0.103. The
result is significant and suggests that pace is beneficial in the sense of playing at a higher
attacking pace.

To put the above result into context, suppose that the home team outpaces the road
team during all six 15-minute intervals during the match. Then, we would expect the home
team to have roughly 6(0.32) = 2 more shots during the match than the road team. Note
also that we have been careful to distinguish the home and road teams. If we flipped the
analysis to consider the average treatment effect due to the road team playing at pace,
we would obtain ATE = −0.41 − (−0.73) = 0.32. Therefore, the benefit of outpacing the
opposition applies to either team.

In Figure 4.9, we present a more nuanced view of the situation. For each group (treatment
and control), we smooth the variable Y with respect to the propensity score. We observe
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that as the propensity score increases (i.e. conditions become more favourable for the home
team to play at greater pace), the excess shots for the home team increases for both groups.
We also observe that the excess shots by the home team remains relatively constant across
the two groups as the propensity score increases. In practice, this means that the advantage
of playing at pace persists no matter the circumstances that dictate whether a team should
play at pace.
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Figure 4.9: After matching, smoothed plots of the excess shot variable Y for the home team
with respect to the propensity score under the treatment (blue) and the control (red).

Therefore, the takeaway message is that playing with pace is a good strategy. It leads
to more shots for than against. This provides support to Blank’s thesis - the Holy Grail of
tactics (in Chapter 1 of Blank (2012)) that fast is better than slow.

4.6 Discussion

Despite its importance, style of play is an understudied aspect in team sport. In this chapter,
we investigate pace of play as it relates to soccer. Although the analyses were restricted to
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the study of tracking data in the Chinese Super League, it is conjectured that the broad
results hold true for other high-level professional soccer leagues.

In particular, we found that teams that play at higher attacking pace are more advan-
taged in producing shots than teams that play at lower pace. For a team that outpaces its
opponent throughout a match, this translates to roughly two extra shots. The conclusion
was facilitated through the adaptation of causal methods. In particular, we sought con-
founding variables that were important in determining propensity scores. Furthermore, the
propensity scores were obtained by reducing a bivariate normal distribution to a relevant
Bernoulli distribution. The EDA produced additional sporting insights (A-E) related to
pace.

There are possible future investigations related to pace of play. For example, we believe
that similar analyses may be carried out in other invasion sports where tracking data are
available. Also, it may be interesting to analyze pace separately in terms of passing and
dribbling. The ball generally moves more quickly when passing, and there may be stylistic
differences between teams in terms of how much they pass relative to how much they dribble.

A limitation in our work is that the response variable Y (shots) in the causal analysis
correspond to rare events and is known to be noisy. A better response variable may be
expected goals (Spearman 2018, Anzer and Bauer 2021), and this could be considered in
future investigations. Another limitation of our work is the restriction to matches from the
CSL. It would be good to see if the results also hold in top-level European leagues where the
best players from all over the world compete. Although we argue that confounding variables
can be identified with tracking data, for sure, there are latent variables that we have not
utilized (e.g. level of player fatigue). This is also a limitation.
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Chapter 5

Causal analysis of tactics in soccer:
The Case of Throw-ins

5.1 Introduction

The investigation of cause and effect relationships is a fundamental research topic in both
the sciences and the social sciences. Traditionally, cause and effect relationships are studied
through experiments where randomization is the primary technical tool for investigation.

In sport, cause and effect relationships are also important. For example, teams and indi-
viduals want to know whether particular tactics are effective winning strategies. However,
in sport, data do not typically arise through randomized experiments. Rather, data are
usually collected from matches, in non-experimental settings.

Fortunately, the development of causal methods (Pearl 2009) has provided opportuni-
ties to investigate cause and effect relationships in non-experimental settings. Whereas the
identification and measurement of relevant confounding variables is a necessary and chal-
lenging component of causal methods, the hurdle appears less imposing in sport. In sport,
objectives are often clear (e.g. score more goals than the opponent), matches terminate in
reasonable timeframes (e.g. often two to four hours), and rules are well defined. Most im-
portantly, with the advent of detailed player tracking data (e.g. spatio-temporal data), our
sporting intuition often permits the identification and measurement of relevant confounding
variables.

Causal inference in sport assisted by player tracking data is a relatively new but poten-
tially fruitful research area. Wu et al. (2021) provided a template for such analyses in soccer
where the benefit of crossing the ball was investigated. In this investigation, the response
variable Y (resultant shot) was binary, and the treatment X (crossing) was binary. Wu et
al. (2021) generated conclusions that were contradictory to some of the existing literature,
where they indicated that crossing is a valuable tactic. Epasinghege Dona and Swartz (2023)
expanded on these ideas to carry out a causal analysis regarding pace of play in soccer. In
this investigation, the response variable Y (excess shots) was discrete, and the treatment
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X (pace) was bivariate and continuous. Epasinghege Dona and Swartz (2023) established
that playing with pace is a valuable strategy, a conclusion that had not been previously
established in soccer.

This chapter extends the causal investigations of Wu et al. (2021) and Epasinghege
Dona and Swartz (2023). Our analysis investigates the optimal locations of throw-ins in
soccer. In this investigation, the response variable Y (resultant shot) is binary, and the
treatment X (throw-in reception location) is spatial. Stone, Smith and Barry (2021) have
previously studied the throw-in problem using data from the English Premier League where
they obtained the surprising result that backward throw-ins are more successful in terms
of shot creation. Notably, Stone, Smith and Barry (2021) did not have access to player
tracking data. Without tracking data, it is not possible to assess the extent to which the
recipient of a throw-in is open. Unlike our chapter, Stone, Smith and Barry (2021) did not
carry out a causal analysis.

As mentioned, the availability of player tracking data provides the opportunity for a
deep-dive analysis of throw-ins in soccer. With player tracking data, the location coordinates
for every player on the field are recorded frequently (e.g. 10 times per second in soccer).
With such detailed data, the opportunity to explore novel questions in sport has never
been greater. The massive datasets associated with player tracking also introduce data
management issues and the need to develop modern data science methods beyond traditional
statistical analyses. Gudmundsson and Horton (2017) provide a review of spatio-temporal
analyses that have been used in invasion sports where player tracking data are available.

In Section 5.2, we describe the player tracking data and discuss related challenges. We
then describe how we construct the throw-in datasets from the tracking data. The throw-
in datasets are the source files which are used for the causal analysis. Some exploratory
data analyses are also provided. In Section 5.3, we discuss the use of propensity scores
in causal investigations. Propensity scores describe the probability of the treatment X

(spatial location of throw-in) given underlying covariates W . In Section 5.4, we present a
causal analysis concerning the optimal locations of throw-ins relative to the position on the
pitch. This is done in three ways. The first two approaches are simple as they are based on
defining a binary variable corresponding to backward/forward throw-ins and (2) defining a
binary variable corresponding to short/long throw-ins. We then consider a more complex
analysis based on the full spatial treatment X. The main result from the analyses is that
both backward throw-ins and long throw-ins confer a competitive advantage. We provide
some concluding remarks in Section 5.5.

Apart from tactics, there have been many recent investigations in the literature related
to soccer. A sample of diverse topics include match fixing (Forrest and McHale 2019), the
evaluation of passing (Håland et al. 2020), competitive balance (Manasis, Ntzoufras and
Reade 2022) and the forecasting of match results (Hubáček, Šourek and železný 2022).
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5.2 Data

For this investigation, we have a big data problem where both event data and player tracking
data are available for 237 regular season matches (three matches missing) from the 2019
season of the Chinese Super League (CSL). The schedule is balanced where each of the 16
teams plays every opponent twice, once at home and once on the road.

Event data and tracking data were collected independently where event data consists of
occurrences such as tackles and passes, and these are recorded along with auxiliary infor-
mation whenever an “event” takes place. The events are manually recorded by technicians
who view film. Both event data and tracking data have timestamps so that the two files can
be compared for internal consistency. There are various ways in which tracking data are col-
lected. One approach involves the use of Radio Frequency Identification (RFID) technology
where each player and the ball have tags that allow for the accurate tracking of objects. In
the CSL dataset, tracking data are obtained from video and the use of optical recognition
software. The tracking data consists of roughly 1.3 million rows per match measured on 7
variables where the data are recorded every 1/10th of a second. Each row corresponds to a
particular player at a given instant in time. Although the inferences gained via our analyses
are specific to the CSL, we suggest that the methods are applicable to any soccer league
which collects tracking data.

5.2.1 The Throw-in Datasets

We pre-processed the CSL tracking and event data. Originally, the data were provided in
xml files and we extracted content using the read_xml function from the XML package using
R software. The resulting tracking and event data were written into csv file format.

Ultimately, we constructed throw-in dataframes for each match. These are comprehen-
sive datasets that allows us to investigate various questions of interest related to throw-ins.
A throw-in dataframe is a matrix where the rows correspond to throw-ins. Each throw-in
has been translated and standardized such that throw-in angles and distances downfield
are consistent according to direction that a team is attacking. The columns include the
following basic variables: the identification of the throw-in team, the identification of the
opponent team, the identification of the player who made the throw-in and the binary vari-
able Y according to whether the end of possession from the throw-in resulted in a shot for
the throw-in team. The variable Y serves as the response variable which indicates success
related to a throw-in. An end of possession for the throw-in team occurs when the opponent
gains possession, a whistle occurs, there is a stoppage in play or when the ball goes out
of bounds. Although goals are a more direct measure of success, we note that goals are
rare events in soccer with less than three goals per match on average in most professional
leagues. We also record the relative spatial location X = (r, θ) of the received throw-in.
By relative spatial location, we mean the length of the throw-in and its radius angle given
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the location on the field where the throw-in occurred to where the ball was received. The
measurement is standardized with respect to the side of the field where the throw-in occurs.
Using polar coordinates, the radius arm r is the length of the throw-in measured in metres
and θ is the angle of the throw-in measured in degrees. For example, X = (10, 90) describes
a throw-in of length 10m that is thrown perpendicular to the touch line.

For the propensity scores described in Section 5.3, we wish to relate covariates W which
have a potential impact on the relative spatial location X of the received throw-in. These
variables are derived from our soccer intuition and are viewed as confounding variables in
the causal analysis. In proposing covariates W , we take a broad perspective and introduce
variables that may have even a hint of impacting the spatial locations of throw-ins. We
introduce additional column variables W = (t, d, f, o, b, r) to the throw-in dataframes where

t ≡ time of the throw-in in minutes, t ∈ (0, 90)
d(t) ≡ score differential in favour of the throw-in team
f(t) ≡ field location of the throw-in, f(t) ∈ (0, 100)
o(t) ≡ openness of the receiver of the throw-in

b ≡ pre-match betting odds corresponding to the throw-in team
r ≡ red card variable corresponding to manpower advantage of throw-in team

(5.1)

In (5.1), we define the time variable t such that throw-ins that occur during extra time
in the first half are set to t = 45. For throw-ins that occur during extra time in the second
half, we set t = 90. Therefore t is a mixed variable (both continuous and discrete).

The score differential d(t) is a discrete variable and expresses the lead by the throw-in
team. For example, d(t) = −2 indicates that the throw-in team is losing by two goals.

The field location variable f(t) has been standardized to the interval (0, 100) to account
for fields of different length. For example, f(t) = 50.0 corresponds to a throw-in taken from
midfield.

The openness variable o(t) in (5.1) describes the degree to which the receiver of the
throw-in is open. An open receiver is more likely to be targeted for a throw-in. To obtain
o(t), we first consider the shaded region in Figure 5.1 where only defenders in this region
are assumed to pose a threat of intercepting the throw-in. The idea is that defenders who
are behind the receiver can be “boxed out” by the receiver, and are not involved. Our
experience is that a receiver with a defender on his back will move towards the ball, be able
to keep the defender behind, and obtain possession. Thus, such a defender is not a threat
to possession. We define a defender as “boxed out” if the defender is situated within 45
degrees from the perpindicular from the throw-in location to the receiver. Admittedly, the
45 degree angle is a bit arbitrary. The variable o(t) is then calculated by taking the distance
from the nearest defender in the shaded region to the receiver. In this way, longer distances
convey greater openness of the receiver. If the throw-in is intercepted, o(t) = 0.0. Openness
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is related to the more complex notion of pitch control or field ownership. Pitch control
was first introduced using Voronoi tesselations (Voronoi 1907, Kim 2004). More advanced
metrics for field ownership are discussed in Wu and Swartz (2022).

45

45

A

B

Figure 5.1: The figure depicts the line between thrower (X) and receiver (open dot), and
two rays labelled A and B that are situated 45 degrees from the perpindicular to the line.
The resultant shaded region corresponds to the area where defenders are assumed to pose
a threat of intercepting the throw-in.

For the fifth variable b in (5.1), we accessed pre-match betting odds available from the
website https://www.oddsportal.com/soccer/china/super-league-2019/results/ . The bet-
ting odds (reported in decimal format and also known as European odds) provide us with
the relative strength of the two teams. For simplicity, we temporarily ignore the vigor-
ish imposed by the bookmaker. 1 In this case, the interpretation of betting odds b for a
team is that the team has a pre-match probability 1/b of winning the match. Therefore,
values of b slightly greater than 1.0 indicate a strong favourite whereas large values of b

indicate an underdog. To better understand betting odds, consider fair odds b, a wager of
x dollars and probability p of winning the bet. The expected profit from such a wager is
−x ∗ (1 − p) + (xb − x) ∗ p and setting this equal to zero yields p = 1/b. Our sporting
intuition is that stronger teams may have different throw-in strategies than weaker teams.
In general, stronger teams tend to play differently than weaker teams (see for instance, Silva
and Swartz (2016)). Figure 5.2 depicts some of the variables described above.

The final variable r is binary and is set according to whether the throw-in team has a
manpower advantage. One might expect the defensive team to behave differently (e.g. more
players lined up behind the ball) in this scenario.

1For the actual analysis, consider bettings odds bw, bd and bl corresponding to a team win, draw and
loss respectively. For profitability, the bookmaker introduces a vigorish whereby 1/bw + 1/bd + 1/bl > 1.
Therefore, the implied probability of a win is given by p = (1/bw)/(1/bw + 1/bd + 1/bl). To measure the
strength of a team, we instead base our analysis using betting odds defined as the reciprocal of p.
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Figure 5.2: The plot illustrates some of the key variables corresponding to throw-ins. Four
throw-ins are depicted where the angle θ is standardized accounting for the side of the
field and the attacking direction. The four throw-ins each correspond to r = 15 metres and
f(t) = 60.0.

To create the throw-in dataframe, we looped frame by frame through the tracking data,
where we matched events and time using the event data. The process required approximately
15 minutes of computation for all 237 matches.

To illustrate the propensity score variables W given by (5.1), consider a match where
the score is 1-0. In the 70-th minute, teams are full-strength, a throw-in takes place at
midfield for the leading team who are the favoured team with pre-match decimal betting
odds b = 1.5 (with the vigorish removed). Further, suppose that the nearest defender to
the receiver is standing along the sideline 8 metres away from the receiver. In this case,
W = (t, d, f, o, b, r) = (70, 1, 50, 8.0, 1.5, 0).

The vector W = (t, d, f, o, b, r) corresponds to our soccer intuition as a driver of the
throw-in decision. We did consider other variables which did not have significant effects. For
example, the speed of the target receiver was considered and this was obtained by taking
the Euclidean distance of the player two frames before and two frames prior to the throw-in.
We also experimented with the red card variable r in a categorical setting corresponding to
manpower advantage, no advantage and manpower disadvantage. However, only manpower
advantage proved significant, and hence it was reduced to a binary variable.
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5.2.2 Data Management

With increasingly complex and large datasets in data science, the importance of data in-
tegrity cannot be overstated. Without accurate data, reliable inferences cannot be achieved.
In this application, we constructed the throw-in datasets from the event and tracking data
where the following issues presented challenges.

• Some throw-ins were identified as impossibly short (i.e. 0 metres in length). These were
a consequence of foul throws (59 occurrences) and were removed from the dataset.

• Some throw-ins were identified as impossibly long (i.e. exceeding 40 metres in length).
These were a consequence of an event happening during the throw-in which invalidated
the throw-in (e.g. a foul), and from which the next event took place at a location
other than the free-throw location. These events were rare (13 occurrences) and were
removed from the dataset.

• In our event dataset, a throw-in is labelled before the throw-in occurred, and there-
fore, we should consider the next event to obtain the location where the throw-in
was received. There are some events like player substitutions, red/yellow cards that
occur before the throw-in. Therefore, we had to carefully eliminate these events before
calculating the throw-in length r and angle θ.

• There were two throw-ins where the target receiver was not identified.

From the original 8467 throw-ins occurring in the matches, 8393 were useable for data
analysis.

5.2.3 Exploratory Data Analysis

Exploratory data analyses often guide the development of formal statistical models. We
present several plots related to our investigation.

In Figure 5.3, we provide a histogram of the direction variable θ associated with all
throw-ins in the dataset. We observe that there are more forward throw-ins (i.e. θ < 90)
than backward throw-ins (i.e. θ > 90). This corresponds to our intuition since the attacking
team typically wishes to advance the ball downfield to a more threatening scoring position.
The symmetric modes that we observe at approximately θ = 22.5 and θ = 157.5 are
interesting. These throw-ins are close to the touch line.

In Figure 5.4, we provide a histogram of the radius arm r (or simply the length) as-
sociated with all throw-ins in the dataset. We observe a right-skewed histogram where the
modal throw-in length is roughly 10 metres. There are several long throw-ins of approaching
40 metres in length. Whereas such throw-in distances may seem unlikely, these throw-ins
may be the result of a ball that was not initially received and travelled for a period.
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Figure 5.3: The histogram of the variable θ describes the throw-in angle relative to the
sideline in the direction that the team is attacking.
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Figure 5.4: The histogram of the variable r describes the throw-in length.

In Figure 5.5, we provide a histogram of the openness variable o which gives the distance
from the receiver to the receiver’s nearest opponent who is positioned in the shaded region of
Figure 5.1. We observe that the median distance is roughly 10 metres and that the histogram
is right-skewed. From a practical point of view, a player is comfortably open whether o = 10
metres or o = 30 metres, for example. Note that there were 126 cases in the throw-in dataset
where there were no opponents in the shaded area (see Figure 5.1). These observations are
not reflected in Figure 5.5, although they were retained for the causal analysis.

5.3 Propensity Scores

Imagine temporarily that the throw-in problem was designed as a randomized experiment.
For each throw-in, we would randomize the location X = (r, θ) of the received throw-in, and
we would then relate Y (whether the completion of the possession resulted in a shot) to X.
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Figure 5.5: The histogram of the openness variable o describes the degree to which the
receiver is open (see formal definition in Section 5.2.1).

This would allow us to determine an optimal X. With randomization, the idea is that the
underlying conditions leading to X would be nearly uniform across different realizations of
X.

Of course, with match data, X is not randomized. And it is quite possible that not only
does X depends on the covariate W in (5.1) but also Y depends on W . In other words, W

is a confounding variable when investigating the relationship between Y and X.
We therefore wish to obtain propensity scores P(X | W ) that describe how the prob-

ability of the treatment X (i.e. relative spatial location of the throw-in) is related to the
confounding variable W . If we are able to do this, then through matching, we can compare
Y1 under a treatment X1 relative to Y2 under a treatment X2 if X1 and X2 have similar
propensity scores. This is the essential logic of the causal approach where propensity scores
are used as a substitute for randomization.

Whereas we utilize a propensity score matching (PSM) approach, it is also possible to
carry out analyses based on weighted propensity scores (PSW). The latter has the advantage
that all observations can be used in the analysis. Narita, Tena and Detotto (2023) provide
an insightful tutorial on the use of propensity score analyses with particular attention to
PSW analyses.

We consider three causal analyses in Section 5.4: (1) backward throw-ins versus forward
throw-ins, (2) long throw-ins versus short throw-ins and (3) a composite analysis based on
the full spatial variable X = (r, θ). The propensity score models that we use in these three
analyses are logistic, logistic and random forests, respectively.
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5.4 Causal Analyses

We return to the primary question concerning the optimal locations involving throw-ins. In
Section 5.3, we have developed a propensity score model which yields scores P(X | W ). Our
objective now is to investigate the causal relationship between the binary response variable
Y (whether the throw-in possession results in a shot) and the spatial treatment variable
X = (r, θ).

We present three analyses where the first two analyses address the following simple
questions: (1) Is a forward throw-in preferable to a backward throw-in? (2) Is a long throw-
in preferable to a short throw-in? For the third analysis, we use more sophisticated methods
to investigate the impact of the full spatial variable X = (r, θ) on Y .

For the purposes of the simple causal analyses in Sections 5.4.1 and 5.4.2, we make some
adjustments to the confounding variable W = (t, d, f, o, b, r) presented in equation (5.1).
First, we discretize the time variable t according to the two categories t < 45 minutes and
t > 45 minutes. This has been done since we are doubtful that the corresponding response
variables are linear with respect to t, and we believe that the two halves of a match reflect
different playing styles. We also categorize the score differential to d(t) = −2, −1, 0, 1, 2
where d(t) = −2 indicates that the throw-in team is losing by a large margin (two or more
goals) and d(t) = 2 indicates that the throw-in team is winning by a large margin (two
or more goals). With respect to goal differential, we attempted expanding the categories
to d(t) = −3, −2, −1, 0, 1, 2, 3. However, we observed several insignificant effects and we
believe this was due to few observations corresponding to the cells d = −3 and d = 3.
We discretize the field location variable f according to f < 67 and f ≥ 67 since there are
tactical differences in the final third of the pitch. Third, we truncate the openness variable
o such that values of o > 10 metres are set according to o = 10. This is done because
we believe there is a meaningful difference in openness between o = 1 metres and o = 2
metres, for example. However, for o > 10, all throw-in receivers are effectively open. We did
experiment with different thresholds of openness (e.g. o > 12 metres) but found that this
made little difference in the causal analyses.

5.4.1 Causal Analysis based on Throw-in Direction

We simplify the problem involving the spatial causation variable X = (r, θ) to a binary
context such that the control 0 < θ < 90 corresponds to a forward throw-in and the
treatment 90 < θ < 180 corresponds to a backward throw-in. Therefore, the corresponding
propensity score becomes P (90 < θ < 180 | W ) which we fit using logistic regression.
In this framework, there are n0 = 5023 control observations and n1 = 3370 treatment
observations. Of course, there may be other classes of interest with respect to throw-in
direction (e.g. sideways throw-ins); the full spectrum of throw-in directions are analyzed in
Section 5.4.3.
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In Table 5.1, we provide the results of logistic regression based on the variable W =
(t, d, f, o, b, r) described in Section 5.2.1. We observe that the time t of the match is signifi-
cant where more throw-ins go backward as the time progresses. This may be a function of
teams tiring and less willing to move forward up the pitch. The goal differential d is highly
significant where we observe that greater leads are associated with forward throw-ins. This
may be a consequence of the leading team playing better, having more confidence and en-
ergy, and consequently moving downfield more frequently. The throw-in position variable
f is highly significant. As the throw-in location moves into the attacking third, there are
more backwards throw-ins due to the constraints of the endlines. The openness variable
o is significant and this aligns with our intuition. With teams defending their own goal,
we expect more openness with backwards throw-ins. The betting odds variable b is highly
significant and indicates that weaker teams tend to have more forward throw-ins. This is an
interesting result and may be explained that these teams have less confidence and perhaps
feel that the only way for them to succeed is to move forward. Conversely, stronger teams
are typically more comfortable on the ball, willing to build up play through structured pass-
ing and possession, and thus, more likely to throw backwards. With respect to the red card
variable, we observe that the throw-in team (with a manpower advantage) tends to have
more backward throw-ins. This may be explained by the defensive team playing a more
cautious style with more defenders behind the ball.

Variable Estimate Std Error p-value
intercept -0.184 0.134 0.171
time t(45, 90) 0.108 0.050 0.030 *
goal differential d(−1) -0.208 0.091 0.021 *
goal differential d(0) -0.575 0.088 5e-11 ***
goal differential d(1) -1.185 0.101 2e-16 ***
goal differential d(2) -1.250 0.122 2e-16 ***
field location f(≥ 67) 0.706 0.047 2e-16 ***
openness o 0.026 0.011 0.018 *
betting odds b -0.050 0.008 5e-10 ***
red card r 0.641 0.176 3e-04 ***

Table 5.1: Results from logistic regression in Section 5.4.1 which determines the propensity
scores P (90 < θ < 180 | W ).

Since n1 < n0, the matching concept (Austin 2011, Imbens 2004) is that we attempt to
match each of the n1 treatment cases with a corresponding control case so that each pair has
a similar estimated propensity score based on the underlying match circumstances W . Then
the intention is that the resulting two groups (controls and treatments) are similar in the
match characteristics, and the differences between the two groups can be attributed to the
treatment (i.e. backward throw-in). There are many ways that the matching of propensity
scores can be carried out (Stuart 2010). For example, matching may be carried out either
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with or without replacement. Matching may also be greedy (where each treatment case
is matched with the closest eligible control case) or performed to optimize some global
criterion. Further, randomization can be introduced in the matching procedure so that
sensitivity due to the matching can be assessed. There are some downsides of propensity
score matching (Guo, Fraser and Chen 2020). For example, with unequal treatment and
control groups, matching results in a loss of data. Also, propensity score matching reduces
the dimensionality of the covariate vector to a single dimension.

In our application, we begin with the n1 cases where the throw-ins are backward, and
we use a nearest neighbor method for selecting the matched cases where the throw-ins
are forward. Specifically, we use the Matching package (Sekhon 2011) in the statistical
programming language R to randomly select (with replacement) control cases that fall
within a specified tolerance of the propensity scores for the treatment cases. Sampling with
replacement tends to increase the quality of matching when compared to sampling without
replacement. Unlike deterministic matching procedures, the random aspect of the nearest
neighbor procedure allows us to repeat analyses to check the sensitivity of the inferences.
We repeated the analyses 1000 times. To get a sense of the matching, for each of the 1000
analyses, we recorded the maximum absolute difference in propensity scores. This quantity
was then averaged over the 1000 analyses and yielded the difference 0.0048.

We tested for balance in the covariate distributions W = (t, d, f, o, b, r) of the matched
treatment and control groups using the two-sample t-test (Rosenbaum and Rubin 1985). For
a particular matching (selected randomly), the p-values corresponding to t, d, f, o, b, r were
0.222, 0.396, 0.116, 0.962, 0.190 and 0.640, respectively. The lack of significance suggests
that there is balance in the matching across the confounding variables.

Following the implementation of the matching procedure, we calculate the average treat-
ment effect ATE = Ȳ (1) − Ȳ (0) where Ȳ (1) is the average number of resultant shots from
a backward throw-in and Ȳ (0) is the average number of resultant shots from a forward
throw-in. We obtained ATE = 0.018 with standard error 0.006 leading to p-value 0.001.
This was based on the 1000 iterations of the matching procedure using n1 = 3370 matched
pairs. The result is significant and suggests that backward throw-ins are beneficial. This
corroborates the findings of Stone, Smith and Barry (2021). Specifically, our causal anal-
ysis indicates that from 100 backward throw-ins, roughly two more will result in a shot
than if the throw-ins had been forward. This is a meaningful result in terms of gaining a
competitive advantage.

In Figure 5.6, we present a more nuanced view of the situation for a randomly selected
case involving matching. For each group (treatment and control), we smooth the variable
Y with respect to the propensity score. On average, under our model’s specifications, we
observe that there is no advantage to executing a forward throw-in. As the propensity scores
increase (i.e. conditions more favorable to making a backward throw-in), the benefit of the
backward throw-in (in terms of shots) increases compared to making a forward throw-in.
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This implies that players tend to make the correct decisions with respect to the direction of
throw-ins. As backward throw-ins become more probable, backward throw-ins have higher
probabilities of successful outcomes.
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Figure 5.6: Smoothed plots of the shot variable Y with respect to the propensity score for
backward throw-ins (treatment red) and for forward throw-ins (control blue).

5.4.2 Causal Analysis based on Throw-in Length

In this section, we consider a second inferential question involving the length of throw-ins. In
recent years, the “long” throw-in has gained popularity in professional soccer, and we wish to
investigate whether the long throw-in confers an advantage. We again simplify the problem
involving the causation variable X = (r, θ) to a binary context. In this case, we define the
treatment of a long throw-in as r > 15 metres and 60 < θ < 120. The dual condition is
imposed so that long throw-ins do not correspond to throw-ins along the touchline (i.e. θ

near 0 or 180). Rather our interest is focused on long throw-ins that are directed towards
the middle of the pitch. Such long throw-ins appear to be an increasingly common tactic.
Therefore, the corresponding propensity score becomes P ((r > 15) ∩ (60 < θ < 120) | W )
which we fit using logistic regression. In this framework, there were n0 = 7831 control
observations and n1 = 562 treatment observations.

In Table 5.2, we provide the results of logistic regression based on the variable W =
(t, d, f, o, b). Note that the red card variable r was not included in the analysis of Table 5.2
since it was not statistically significant. In this analysis, we do not have as many statistically
significant terms as in Table 5.1. However, we do note that the coefficient estimates generally
correspond to our soccer intuition. For example, we expect more longer throw-ins in the
second half where one of the teams may be desperate and in need of a goal. This same
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pattern appears with respect to the goal differential where a team trailing by one goal
(desperate) is more likely to make a long throw-in. When a team is tied or leading (i.e.
d = 0, 1, 2), they are less likely to make a long throw-in. The positive coefficient for f is also
sensible as long throws are more common in the attacking third. The openness variable o is
highly significant; in order to retain possession on the throw-in, it is reasonable that long
throw-ins require receivers to be more open than with short throw-ins.

Variable Estimate Std Error p-value
intercept -3.613 0.274 2e-16 ***
time t(45, 90) 0.355 0.095 2e-04 ***
goal differential d(−1) 0.116 0.161 0.472
goal differential d(0) -0.113 0.160 0.477
goal differential d(1) -0.602 0.194 0.002 **
goal differential d(2) -0.444 0.228 0.052
field location f(≥ 67) 0.212 0.089 0.017 *
openness o 0.111 0.023 2e-06 ***
betting odds b -0.024 0.015 0.135

Table 5.2: Results from logistic regression in Section 5.4.2 which determines the propensity
scores P ((r > 15) ∩ (60 < θ < 120)).

We carry out the matching procedure as described in Section 5.4.1. To check the sensi-
tivity of the inferences, we repeated the analyses 1000 times. For each of the 1000 analyses,
we recorded the maximum absolute difference in propensity scores. This quantity was then
averaged over the 1000 analyses and yielded the difference 0.0002. We then obtained the
average treatment effect ATE = Ȳ (1) − Ȳ (0) = 0.042 with standard error 0.016 and corre-
sponding p-value 0.004. This was based on the 1000 iterations of the matching procedure
using n1 = 562 matched pairs. Here, Ȳ (1) is the average number of resultant shots from
a long throw-in and Ȳ (0) is the average number of resultant shots otherwise. The result
indicates that long throw-ins are beneficial as they lead to approximately four more shots
per 100 throw-ins. In this analysis, the p-value is larger than in Section 5.4.1 but is still
significant. We note that the distance analysis presented here involves fewer observations
than the directional analysis of Section 5.4.1. The result indicates that the recent trend
involving more long throw-ins is a sound tactic.

In Figure 5.7, we consider a randomly selected case involving matching. We smooth the
variable Y with respect to the propensity score for each group (treatment and control). We
again see that professional soccer players are making the correct decisions. As it becomes
more likely for executing a longer throw-in, the benefits of doing so increase. Inspecting
the propensity scores, we observe that long throw-ins are relatively rare. This suggests that
teams may consider increasing the frequency of long throw-ins.
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Figure 5.7: Smoothed plots of the shot variable Y with respect to the propensity score for
the treatment group involving long throw-ins (red) and for the control group (blue).

5.4.3 Causal Analysis based on Full Spatial Location of Throw-in

In this section, we utilize the full spatial variable X = (r, θ) to gain insight on the causal
relationship between X and the shot variable Y . Gelman and Meng (2004) consider struc-
tures beyond the simple binary X as analyzed in Sections 5.4.1 and 5.4.2. Here, we use
machine learning methods to obtain the propensity scores.

A rationale for machine learning methods in prediction is that complex phenomena
are often difficult to model explicitly. Here, we have a two-dimensional spatial response
variable X = (r, θ), and an explanatory vector W described by (5.1). We have little apriori
knowledge about the relationship between X and W . For example, the relationship may
only involve a subset of the variables W , the components of W may be correlated, and
most importantly, the relationship X ≈ g(W ) involves an unknown and possibly complex
function g. In addition, the stochastic aspect of the relationship is typically unknown.

For this application, we use random forests as the chosen machine learning algorithm.
Random forests (Genuer and Poggi 2020) are particularly easy to implement using the ran-
domForest package (Liaw and Wiener 2002) in the R programming language (R Core Team
2022). The basic idea is that a random forest is a collection of many decision trees where
prediction results are aggregrated over trees. The use of multiple trees improves prediction
and makes inference less reliant on a single tree. The splits in the trees accommodate non-
linear relationships and terminal nodes provide the estimated probabilities of discretized
values of X.

A feature of random forest procedures is that the cutpoints for component variables in
W (which determine nodes in trees) are obtained optimally by the algorithm. The random
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forests procedure provides us with propensity scores P (X | W ) for data (X, W ) which is
a necessary ingredient of the spatial causal analysis. In this analysis, P (X | W ) is the
probability that the ball is received at spatial location X = (r, θ) given the match situation
W .

In choosing the tuning parameters of the random forest procedure, we aimed for pre-
dictive accuracy. We used the grid search method to obtain the optimized hyperparameters
of the random forest model. From that, we obtained ntrees = 300, mtry = 1 and nodesize
= 2. All the other hyperparameters were set to their default values. For the evaluation of
model performance, we used 10-fold cross validation.

In Figure 5.8, we present the feature importance plot of the variables W = (t, d, f, o, b, r)
used in the random forest procedure. The plot is provided as part of the randomForest
package. As in Section 5.4.1 and Section 5.4.2, we observe that the variables t, d, f, o, b are
important. In particular, t, f, o, b are roughly of the same importance with goal differential
d slightly less important. The red card variable r does not appear important in the full
spatial analysis.
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Figure 5.8: A plot of feature importance for the random forest procedure of Section 5.4.3.

Our causal investigation begins by discretizing the two-dimensional space X where
throw-ins may be received. The region is truncated such that we only include observations
extending 18 metres vertically from the throw-in location and 20 metres from the throw-in
location horizontally (both left and right). Therefore, the area of the region is 720 squared
metres (i.e. 18 metres by 40 metres). The region is then divided into rectangles of dimension
4 metres (horizontally) by 2 metres (vertically). This leads to 720/(2*4) = 90 rectangles.
Based on n = 7704 throw-ins in the truncated region, we would expect 7704/90 ≈ 85 throw-
ins on average, per rectangle. We amalgamate neighbouring rectangles when the number
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of observations in a rectangle is less than 30. There were 19 rectangles with fewer than
30 observations. After joining rectangles with insufficient observations, we were left with
71 rectangles. For every throw-in received, there is a propensity score P (X | W ) obtained
using the machine learning methods based on random forests.

The matching idea used previously in the binary analyses of Sections 5.4.1 and 5.4.2
is now extended for the grid structure. We begin by randomly selecting a throw-in and
noting its propensity score p = P (X | W ). Within each of the remaining 70 rectangles,
we then select the throw-in whose propensity score is closest to p; these are the matching
observations.

The process in the preceding paragraph is repeated M = 30 times. This means that there
are 30 observations within a given rectangle, and each of these observations is matched to
an observation in each of the remaining 70 rectangles. For each rectangle, we calculate the
average number of shots Ȳ generated by the throw-ins within the rectangle.

There is variability in the procedure due to the initial M = 30 observations that were
randomly selected. Therefore, the entire procedure is repeated 100 times with Ȳ for each
rectangle averaged over the 100 iterations. We investigated the matching of propensity
scores by calculating the maximum absolute difference of propensity scores across the (71

2)
pairs. This was then averaged over the M = 30 observations and the 100 iterations giving
a value of 0.003. Therefore, the small difference suggests that the matching was successful.

To investigate the causal effect of X on Y , we produce a smoothed heat map of the
average treatment effect Ȳ . In Figure 5.9, the heatmap is smoothed using the function
interp.loess in the R package tgp. We observe darker regions (i.e. larger Ȳ ) to the left
(backward throw-ins) that are not too long (i.e. less than 5 metres outward). We also observe
darker regions near the top (longish throw-ins from roughly 10 metres to 17 metres). This
corroborates our findings from Section 5.4.1 and Section 5.4.2.

Our investigation of variability associated with the matching procedure involves calcu-
lating the standard deviation s(Ȳ ) for each rectangle. For a particular rectangle, we obtain
Ȳi for the i-th iteration, i = 1, . . . , 100. The quantity s(Ȳ ) is the resultant sample standard
deviation corresponding to the Ȳi values. Then s(Ȳ ) is averaged over the 71 rectangles where
we obtain s̄(Ȳ ) = 0.064. From the color coding legend in Figure 9, it is apparent that the
variability due to matching does not lead to maps with meaningful colour differences.

5.5 Discussion

The evaluation of tactics is a difficult and important problem for teams seeking to gain a
competitive edge. This chapter uses causal methods facilitated by tracking data to investi-
gate throw-ins in soccer. Our results suggest the surprising result that backward throw-ins
are more effective than forward throw-ins. It is surprising since the receptor of a backward
throw-in is in a less threatening offensive position on the field. We also demonstrate the
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Figure 5.9: A smoothed heat map of the average treatment effect Ȳ over the grid of the
reception locations of throw-ins according to the algorithm of Section 5.4.3. The point
(X1, X2) = (0, 0) refers to the throw-in location.

benefit of the long throw-in, a tactic that appears to be increasing in usage but whose
benefits have not been previously quantified.

We see this work as a template for the use of causal methods in sport to assess tactics.
Of course, a limitation of causal methods is the latency of confounding variables W that
effect the tactic X and the response Y . An underlying premise of our work is that sport
specific knowledge and tracking data permit the identification of the important confounding
variables.

There is an important and practical question related to our work. Given a particular
game situation W ∗ = (t, d, f, o, b, r), how should the throw-in be executed X to optimize Y ?
Let’s assume that all confounding variables have been identified. Then we wish to compare
a throw-in tactic X0 against a throw-in tactic X1 both occurring under W ∗. There would be
n0 observations under X0 and n1 observations under X1. Unfortunately, n0 and n1 would
be small (likely 0 or 1), and therefore a meaningful comparison could not be carried out.
Perhaps there is some way around this, maybe by categorizing W ∗, X0 and X1 into larger
classes of interest. With the provision of more data, this may be a future research direction.

Whereas tactics related to set plays are perhaps the easiest and first investigations that
come to mind, we also wish to continue the analyses of tactics to more complex scenarios
and across various sports.
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Chapter 6

What does Rally Length tell us
about Player Characteristics in
Tennis?

6.1 Introduction

As is the case with many sports, tennis has seen an upsurge of work in analytics. One
of the first serious statistical contributions to tennis analytics was the work by Klassen
and Magnus (2001) which concerned an investigation of the iid assumption that points are
independent and identically distributed. They concluded that there is a positive correlation
between successive outcomes and that servers are less likely to win a point in important
situations.

More recently, tennis analytics has been assisted by the availability of tracking data.
With tracking data, player and ball locations are recorded with high frequency (i.e. spatio-
temporal data), and these detailed datasets have contributed to explorations of many sport-
ing problems that were previously unimaginable. Gudmundsson and Horton (2017) provide
a review on spatio-temporal analyses used in invasion sports where player tracking data are
available. In tennis, there are a growing number of papers that provide statistical analy-
ses and rely on tracking data. Tea and Swartz (2022) investigate serving tendencies which
may allow a player to anticipate the nature of the opponent’s serve. The approach relies
on hierarchical models in a Bayesian framework. Kovalchik and Albert (2022) also used a
Bayesian framework where they investigate serve returns by introducing a semiparametric
mixture model. Other papers that use tracking data but focus exclusively on the serve in-
clude Mecheri et al. (2016) and Wei et al. (2015). The text by Albert et al. (2017) provides
a flavour for sports statistics across major sports.

Whereas tracking data analyses are on the increase, tracking data are often proprietary.
In this chapter, we use publicly available non-tracking data to analyze an aspect of tennis
that does not seem to have been previously investigated. Specifically, we consider rally
length as the response variable with the added information whether the last volley was
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touched or not touched (i.e. a winner). This simple and readily available information allows
us to analyze the rally characteristics of players. Various models of increasing complexity
are introduced where we consider player characteristics, the identification of the server and
a reduction in serve advantage as the rally proceeds.

In Section 6.2, we describe the data and associated issues with the dataset. In Section
6.3, three models of increasing complexity are proposed which take into account increasingly
realistic features of the sport of tennis. In Section 6.4, priors are introduced for the models
and computation is discussed. We fit the models using large datasets based on the ATP
(Association of Tennis Professionals) tour for men and the WTA (Women’ Tennis Associ-
ation) tour for women. We consider separate analyses for first and second serves. Insights
are obtained for the various models. For example, we consider overall tennis characteristics
and how these vary across the the men’s and the women’s games, and in first versus second
serves. We then investigate serve and rally characteristics with respect to various players
of interest. We also observe how extending rallies is an important component of success in
tennis. We conclude with a short discussion in Section 6.5.

6.2 Tennis Data

The data analysed in this chapter is based on 947,821 and 422,776 serves from men’s and
women’s professional tennis matches, respectively. The data were obtained from the Match
Charting Project (https://github.com/JeffSackmann/tennis_MatchChartingProject) main-
tained by Jeff Sackman. The data involve matches from 1970 through 2022 and contain
shot-by-shot outcomes involving 710 distinct men and 489 distinct women. This public
dataset provides information on shot type, shot direction, depth of returns, types of errors,
and more. The data were collected by volunteers after watching the video recordings of
matches. To the best of our knowledge, there is no other source of publicly-available data
of this type. At present, these data appear to be under utilized for statistical modelling of
tennis outcomes.

The data covers matches from all the major Grand Slam events, the Davis Cup and
many minor tournaments. The best players of this time period are included in the dataset.
Since the charting of matches was at the discretion of volunteers, data are highly skewed in
favour of later years. Also, better (i.e. winning) players have a higher representation since
they frequently reached the latter rounds of tournaments.

We have chosen to use limited and relatively simple data to facilitate modelling. As will
be seen in Section 6.4, important tennis insights can be achieved with such data. The data
collected for each point are of the form (T, I) where T is the number of touches leading
to the point and I is an indicator function as to whether the server won the point. For
example, suppose that the serve is in play and the receiver hit the serve out of bounds. In
this case, there are two touches yielding T = 2 and I = 1. Alternatively, suppose that the
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serve is in play, the receiver returned the serve and the server then hit the ball into the net.
In this case, there are three touches yielding T = 3 and I = 0. Note there is a technicality
in the definition of (T, I). If (T = 1, I = 0), then the event corresponds to a fault on a first
serve. However, (T = 1, I = 0) corresponds to a point for the receiver on a second serve
(i.e., a winner).

It may seem that the number of touches T is a nonstandard choice for a data variable.
We have selected T over the related variable “rally length” (or rally count) since there
appears to be some confusion over the definition of rally length. For example, some people
refer to an ace as a rally of length zero while others refer to an ace as a rally of length one.
We also found that the variable T is more intuitive for modelling purposes.

6.2.1 Data Management Issues

When analyzing data, it is obviously important that the data are accurate. Therefore, we
carried out various procedures to check data accuracy.

In the MatchChartingProject dataset, rows correspond to points awarded. Therefore,
we augmented the dataset to include all serves. For example, whenever a second serve
occurred, this implied that there was a first serve that resulted in a fault, for which no
point was awarded.

Also, it is expected that in a huge dataset involving volunteer coding, some mistakes
occur in data entry. For example, in the rallyCount variable, there were five non-numeric
characters out of more than 500,000 serves in the ATP data. We simply removed the corre-
sponding rows when this occurred.

In our model formulation, we need to determine the number of touches T . However, in
the MatchChartingProject dataset, T is not directly provided and is obtained through the
rallyCount variable RC. We set T = RC if the IsRallyWinner variable is TRUE, and we
set T = RC + 1 if the IsRallyWinner variable is FALSE. According to Jeff Sackman, RC is
the number of shots excluding errors.

6.3 Models

In this section, we present three models. The first model is simple, concise, and assumes
commond characteristics across all players. The model serves as a baseline case for the
more realistic models to follow. The second model introduces the realism of individual
player characteristics. The third model is a further extension, which distinguishes return
characteristics according to whether a player is the server.

None of the models below distinguish first serves from second serves. However, there is
a quick fix to this limitation; we simply use the same model analyzed separately for the
two situations with model parameters interpreted according to the serve number. Naturally,
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there are fewer second serves. We analyze first and second serves separately in Section 6.4
for both the men’s and women’s games.

6.3.1 Model 1

Although this model is not meant to be realistic, it introduces notation and provides a base-
line case for comparison purposes. This model also permits straightforward generalizations
for more complex models. Later, we use results from Model 1 to elicit prior information for
more realistic Bayesian models.

We introduce a parameter vector (a, f, s, w, r, m) which describes player characteristics.
There is an implicit assumption that all players have the same characteristics. Specifically,
we define

a = Prob(player serves an ace)
f = Prob(player serves a fault)
s = Prob(player serves a ball that is neither an ace nor a fault)
w = Prob(player returns a winner)
r = Prob(player returns a ball in play which is subsequently touched by the opponent)
m = Prob(player makes a mistake by touching but not returning a ball in play)

The parameterization includes service parameters a and f , critical components of tennis.
The return parameters (w, r, m) are convenient since they describe all possibilities that can
occur on a return that is touched, and consequently, w + r + m = 1. Quality of return
capability is characterized by large w and small m.

We note that the proposed parameters have a different focus than standard statistics
reported in the tennis literature. For example, with respect to the parameter a (aces), a
commonly reported statistic is aces per match. A problem with aces per match is that
players may not have the same number of average serves per match. A player with more
serves (i.e. longer matches) will have an inflated aces/match statistic. Also, career aces
favour players with longevity. Our proposed parameters and their estimates standardize
performance with respect to the number of opportunities.

Consider then a first serve that results in a fault. In this case, neither player wins the
point and we have

Prob(T = 1) = f . (6.1)

Alternatively, consider a one touch event (i.e., T = 1) that may be either a first or
second serve, but is not a first serve fault. In this case, we have
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Prob(T = 1, I) = aI f1−I . (6.2)

For two touches, a conditional probability expansion involving the two events yields

Prob(T = 2, I) = s mI w1−I

and, in general, for rallies with t = 2, 3, . . . , touches,

Prob(T = t, I) =
{

s rt/2−1 rt/2−1 mI w1−I t even
s rt/2−1/2 rt/2−3/2 wI m1−I t odd

(6.3)

Therefore, the likelihood based on the observed data is formed by taking the product
over all serves using the expressions (6.1), (6.2) and (6.3). Model 1 has a parameterization
that is 4-dimensional.

6.3.2 Model 2

We extend Model 1 by introducing a parameter vector (ai, fi, si, wi, ri, mi) for each player
i = 1, . . . , N . The vector describes playing characteristics of player i. The generalization
is needed since some players, for example, are better servers than other players. For each
i = 1, . . . , N , the parameters satisfy the constraints in Model 1.

Without loss of generality, we assume that player i serves to player j. Consider then a
first serve that results in a fault. In this case, neither player wins the point and we have

Prob(T = 1) = fi . (6.4)

Alternatively, consider a one touch event (i.e., T = 1) that may be either a first or
second serve, but is not a first serve fault. In this case, we have

Prob(T = 1, I) = aI
i f1−I

i . (6.5)

Extending (6.3) for specific players, for rallies with t = 2, 3, . . . , touches, we have

Prob(T = t, I) =





si r
t/2−1
j r

t/2−1
i mI

j w1−I
j t even

si r
t/2−1/2
j r

t/2−3/2
i wI

i m1−I
i t odd

(6.6)

Therefore, the likelihood based on the observed data is formed by taking the product over
all tennis points using the expressions (6.4), (6.5) and (6.6), and by introducing appropriate
subscripts i and j for specific players. With n players, Model 2 has a parameterization that
is 4N -dimensional.
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6.3.3 Model 3

Although convenient, the Model 2 does not realistically account for differences in return
characteristics according to the number of touches. For example, suppose again that player
i serves to player j. It is well known in tennis that the probability of j hitting a winner on
the immediate serve return (touch number two) is less than the probability of j hitting a
winner on touch number four. The reason is that serves often place the returner in vulnerable
situations where it is difficult for the returner to hit a quality shot. By the time player j

reaches touches 4, 6, 8, . . . , the impact of the serve begins to dissipate.
Accordingly, we augment the return parameters (wi, ri, mi) to (w(t)

i , r
(t)
i , m

(t)
i ) where the

superscript t = 2, 3, . . . , corresponds to the touch number. For example, we would expect
that w

(2)
i < w

(4)
i < w

(6)
i and that w

(3)
i > w

(5)
i > w

(7)
i .

With this modelling enhancement, the probabilities (6.4) and (6.5) remain the same.
However, the probabilities in (6.6), for touches t = 2, 3, . . . , become

Prob(T = t, I) =





si

(∏t/2−1
k=1 r

(2k)
j r

(2k+1)
i

)
(m(t)

j )I (w(t)
j )1−I t even

si

(∏t/2−1/2
k=1 r

(2k)
j

) (∏t/2−3/2
k=1 r

(2k+1)
i

)
(w(t)

i )I (m(t)
i )1−I t odd

(6.7)

A challenge involving (6.7) is the dimensionality of the parametrization. With N players
and with maximum number of touches tmax, the extended parametrization in Model 3
is (2 + 2(tmax − 1))N -dimensional. A possible solution to this high-dimensional challenge
involves limiting the parametrization. We may determine a cutoff value c for which the serve
impact on returns dissipates; i.e. w

(t)
i = w

(c)
i , r

(t)
i = r

(c)
i , and m

(t)
i = m

(c)
i , for all t ≥ c.

Another idea is the introduction of exponential decay models for the specification of w
(t)
i ,

r
(t)
i and m

(t)
i .

6.4 Analyses and Results

The analyses and results are provided according to the three models of increasing complexity.
All of our models are developed in the Bayesian framework, and consequently require the
specification of prior distributions. We discuss prior selection and associated computational
issues. We also provide a comparison of fit among the three models.

6.4.1 Analysis of Model 1

We begin with the simplest model which provides overall insights but later serves in prior
development for more complex models.

For the Bayesian approach, we consider flat priors given by

(a, f, s) ∼ Dirichlet(1, 1, 1) (6.8)
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which is assumed independent of

(w, r, m) ∼ Dirichlet(1, 1, 1) . (6.9)

Note that the Dirichlet distributions in (6.8) and (6.9) are 2-dimensional where a+f +s = 1
and w+r+m = 1. The parameter s is a characteristic of lesser interest and is not specifically
investigated. To obtain posterior inferences, we use the programming language Stan (Stan
Development Team 2023). A main benefit of Stan is that a user supplies only the statistical
model, the prior specification and the data. The associated Markov chain Monte Carlo
(MCMC) aspects of the Bayesian implementation are carried out in the background.

To assess the robustness of Bayesian inferences with respect to prior selection, we cal-
culate classical estimates of the parameters that are based on proportions. Recall that T is
the number of touches and I = 1/0 corresponds to the server/receiver winning the point.
Let n be the corresponding number of serves and let tk be the number of touches on the
kth serve. Then the sample proportions are given as follows:

â = #{T = 1, I = 1}
n

ŝ = #{T > 1}
n

ŵ = #{T = 2, I = 0} + #{T = 3, I = 1} + #{T = 4, I = 0} + · · ·
t1 − 1 + t2 − 1 + · · · + tn − 1

m̂ = #{T = 2, I = 1} + #{T = 3, I = 0} + #{T = 4, I = 1} + · · ·
t1 − 1 + t2 − 1 + · · · + tn − 1

In Table 6.1, we provide estimated posterior means and proportions for Model 1. This is
done for first and second serves using both the ATP and WTA data. We observe that there
is agreement between the posterior estimates and the proportions which indicates that the
information contained in the data dominates the prior. This is a consequence of having a
rich dataset with many observations.

In Table 6.1, we observe some interesting features regarding first serves. It seems that
aces occur in the men’s game (0.08) at roughly double the rate observed in the women’s game
(0.04). This may be explained by the higher average speed of men’s serves. The remaining
displayed parameter estimates are comparable between men and women. We observe that
first serve faults occur roughly forty percent of the time (f = 0.40 for men and f = 0.37 for
women). This high rate may be explained by the desire to hit a first serve that is difficult to
return - difficult serves are typically directed near the boundaries and are close to faults. If
a player is able to get their racket on the ball, the return rate is high (r = 0.74 for men and
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r = 0.76 for women). And if a player is able to get their racket on the ball, the probability
m of making a mistake is roughly 2.5 times the probability w of hitting a winner.

For second serves, the occurrences of aces and faults are much different from first serves.
Aces are reduced in second serves because the server is less aggressive and wants to ensure
that the serve is in play. Similarly, faults are greatly reduced with second serves. In searching
the literature, we could not find any reports of second serve ace percentage other than that
second serve aces are extremely rare. Here, we estimate second serve ace percentage where
there are 1% second serve aces for men and 0.4% second serve aces for women.

When comparing men to women on second serves, the biggest parameter differences
involve aces (a = 0.01 for men and a = 0.004 for women) and faults (f = 0.09 for men and
f = 0.13 for women). The lower ace percentage for women compared to men may again be
due to lower serve speed. However, the higher fault percentage for women compared to men
is not so readily explained.

Parameters
Serve n a f w r m
ATP 1st 692385 0.08 (0.08) 0.40 (0.40) 0.07 (0.07) 0.74 (0.74) 0.19 (0.19)
WTA 1st 307750 0.04 (0.04) 0.37 (0.37) 0.07 (0.07) 0.76 (0.76) 0.17 (0.17)
ATP 2nd 255436 0.01 (0.01) 0.09 (0.09) 0.05 (0.05) 0.80 (0.80) 0.15 (0.15)
WTA 2nd 115026 0.004 (0.004) 0.13 (0.13) 0.06 (0.06) 0.77 (0.77) 0.17 (0.17)

Table 6.1: Estimated posterior means (sample proportions) for the parameters a, f, w, r, m
corresponding to Model 1. The posteriors are based on flat priors. The sample size n for
the number of serves is also reported.

6.4.2 Analysis of Model 2

Model 2 extends Model 1 by introducing player specific characteristics. That is, we extend
the parameter vector (a, f, s, w, r, m) to (ai, fi, si, wi, ri, mi) for all players i = 1, . . . , N .
The modelling philosophy is that individual player characteristics arise from a population
of player characteristics given by

(ai, fi, si) ∼ Dirichlet(ka, kf, ks) (6.10)

which is assumed independent of

(wi, ri, mi) ∼ Dirichlet(kw, kr, km) (6.11)

where (a, f, s, w, r, m) are the posterior means obtained through the previous analysis of
Model 1, and k > 0 is a specified constant. Hence, the approach is empirical Bayes where
larger values of k impose greater knowledge through the prior distributions (6.10) and (6.11).
More specifically, larger values of k decrease the prior variance.
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Our rationale for setting k > 0 is that we want players with longevity to have posterior
parameter estimates that reflect their actual playing performance. On the other hand, for
players with short professional careers who have served infrequently (say ni < 100), we want
their posterior estimates to revert closer to population averages. Accordingly, we have set
k = 200 after some trial and error.

Under the higher parameterization associated with Model 2, computational demands
increase. Running Stan with 2000 iterations using the men’s first serve dataset requires 4.6
hours of computation on a laptop computer.

We are interested in the variability of the player characteristics for the four datasets
(ATP 1st Serve, WTA 1st Serve, ATP 2nd Serve, WTA 2nd Serve). In Figures 6.1-6.3, we
provide the boxplots of the posterior means of the parameters ai, fi and wi for the four
datasets. From Figure 6.1, we observe that there is a lower ace percentage on the second
serve compared to the first serve. This is a consequence of more cautious (less aggressive)
behaviour on the second serve since players are trying to avoid double faults. It is also
interesting that the men (with higher service speeds) have a higher percentage of aces on
the first serve than the women and that there is more variability in ace percentage amongst
men than amongst women.
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Figure 6.1: Boxplots of the posterior probability of an ace ai by players for the four datasets.

From Figure 6.2, we observe a similar pattern amongst faults as with aces. That is, due to
cautiousness on the second serve, the fault probability fi is greatly decreased on the second
serve compared to the first serve. This is true for both the men and the women. Variability
amongst men and variability amongst women seems to be similar when comparing first
serves and when comparing second serves. However, a conspicuous feature of Figure 6.2 is
that the women fault on the second serve at a higher rate (roughly 50% more often) than
the men. This may be a consequence of greater serving skill by the men.

From Figure 6.3, we observe the distributions of the percentage of winning shots wi.
With the women, these distributions do not differ greatly between first and second serves.
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Figure 6.2: Boxplots of the posterior probability of a fault fi by players for the four datasets.

However, with the men, the distributions differ where there is a higher percentage of win-
ning volleys using the first serve data compared to the second serve data. However, these
differences are difficult to interpret since a winner on the return of a serve is a markedly
different situation than a winner on the server’s first return. For example, we would expect
a player to be more off balance in the former situation than in the latter situation due to
the influence of a powerful serve. This aspect is investigated in Section 6.3 using Model 3
where return characteristics are allowed to vary according to touch number. Because of the
importance of touch number, we do not investigate the distributions of return probabilities
ri and mistake probabilities mi under Model 2.
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Figure 6.3: Boxplots of the posterior probability of a winning shot wi by players for the four
datasets.

With an understanding of the distribution of parameter estimates, we wish to observe
which players distinguish themselves with respect to the player characteristics. In Tables
6.2-6.4, we highlight the top five players with respect to their posterior estimates ai, fi and
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wi under the four datasets. From Table 6.2, we observe that the top five list of ATP players
who serve high ace percentages (first serve) are familiar names. The posterior standard
errors are such that there exist differences between the players. Reilly Opelka is 6 feet
11 inches tall and this affords a serve trajectory that can maximize serving speed. He is
a current player who is not highly ranked (#643 in 2023). It will be interesting to see if
his overall game catches up to his devastating serve. John Isner is likewise tall (6 feet 10
inches) and is reknown for his serve. Goran Ivanisevic was a left hander which is unusual
and may have accounted for the difficulty that players experienced when returning his serve.
It is noteworthy that four of the top-five ATP players are still active in 2023 (Opelka, Isner,
Kyrgios) or recently retired (Karlovic). Interestingly, three of the players from the first serve
list reside on the second serve list. With second serves, Maxime Cressy is an unusual case
with an ace percentage that is comparable to the mean first serve ace percentage. It seems
that Cressy has discovered/perfected something, and that he differs from the population
of ATP professionals. In the women’s game, Serena Williams sits atop the first serve ace
percentage list. Similar to the men, four of the top five players with respect to first serve
ace percentage (excepting Lucie Hradecka) are recent players. With WTP second serve ace
percentage, there is not much to discuss since all players (even the top ones) have very few
aces.

ATP 1st Serve WTA 1st Serve ATP 2nd Serve WTA 2nd Serve
1. R.Opelka 0.21(0.006) 1. S.Williams 0.11(0.004) 1. M.Cressy 0.08(0.008) 1. C.Harrison 0.02(0.008)
2. I.Karlovic 0.20(0.007) 2. M.Keys 0.09(0.005) 2. I.Karlovic 0.04(0.006) 2. J.Ostapenko 0.02(0.003)
3. J.Isner 0.19(0.004) 3. L.Hradecka 0.09(0.020) 3. A.Bublik 0.03(0.005) 3. C.Paquet 0.02(0.007)
4. G.Ivanisevic 0.18(0.006) 4. K.Pliskova 0.08(0.004) 4. R.Opelka 0.03(0.005) 4. S.Lisicki 0.02(0.004)
5. N.Kyrgios 0.17(0.004) 5. C.Vandeweghe 0.08(0.009) 5. N.Kyrgios 0.03(0.003) 5. J.Niemeier 0.01(0.005)

Table 6.2: Estimated posterior means (Model 2) for the top five players in the four datasets
for the probability of serving an ace ai. Estimated posterior standard errors are given in
parantheses.

From Table 6.3, we first remind ourselves that low fault percentage is considered good.
Generally speaking, the players in these lists are not specifically known for their low fault
percentage. It is remarkable that John Isner appears on this list (ATP first serves) and also
in Table 6.2 for first serve ace percentage. His appearance on both lists confirms that he is
an outstanding server. During his playing days, Mats Wilander must have had outstanding
serve control; he has low fault percentage on both first and second serves. For the women,
we observe that Chris Evert (an iconic player) faulted infrequently on first serve. Given the
nickname “Ice Maiden”, perhaps this reflected her ability not to succumb to the pressure
of faulting.

From Table 6.4, we investigate the ability to hit winners during the rally. It is noteworthy
here that most of the players who appear on the top lists are from an earlier era. Maybe
this is a consequence of the game being faster today (especially with respect to the serve)
and the consequent difficulty of hitting winners from faster shots. It is also noteworthy that

79



ATP 1st Serve WTA 1st Serve ATP 2nd Serve WTA 2nd Serve
1. A.Berasategui 0.25(0.018) 1. S.Errani 0.26(0.010) 1. M.Wilander 0.04(0.007) 1. A.Radwanska 0.07(0.006)
2. M.Wilander 0.28(0.007) 2. C.Evert 0.27(0.010) 2. G.Forget 0.05(0.009) 2. M.Keys 0.08(0.007)
3. S.Baez 0.29(0.012) 3. N.Parrizas Diaz 0.28(0.020) 3. J.Brooksby 0.05(0.008) 3. K.Juvan 0.08(0.010)
4. J.Isner 0.30(0.005) 4. A.Rus 0.29(0.006) 4. A.Chesnokov 0.05(0.009) 4. A.Sanchez Vicario 0.09(0.009)
5. M.Cecchinato 0.30(0.011) 5. M.Niculescu 0.29(0.010) 5. M.Safin 0.05(0.005) 5. K.Muchova 0.09(0.008)

Table 6.3: Estimated posterior means (Model 2) for the top five players in the four datasets
for the probability of committing a fault fi. Estimated posterior standard errors are given
in parantheses.

Novak Djokovic widely regarded as the GOAT (greatest of all time) in men’s tennis does
not appear on this list nor in the previous tables. We posit that Djokovic has an all-around
game that leads to his excellence. Prominent names that appear in Table 6.4 include Pat
Rafter, Stefan Edberg, Rod Laver, Hana Mandilikova and Anna Kournikova. Since hitting
winners off of rallies is not a statistic that is routinely collected and analyzed, it good to
see some excellent all-time players appearing in these lists. However, as mentioned with
Djokovic, these individual parameters, studied on their own do not portend success. As we
observe later in this section, it is the combination of skills which lead to success.

ATP 1st Serve WTA 1st Serve ATP 2nd Serve WTA 2nd Serve
1. K.Carlsen 0.14(0.016) 1. K.Scott 0.15(0.020) 1. R.Laver 0.15(0.010) 1. K.Scott 0.14(0.020)
2. K.Curren 0.13(0.010) 2. J.Goerges 0.12(0.005) 2. K.Carlsen 0.14(0.020) 2. J.Ostapenko 0.12(0.006)
3. P.Rafter 0.12(0.004) 3. H.Sukova 0.12(0.009) 3. R.Krajicek 0.13(0.007) 3. J.Goerges 0.12(0.006)
4. S.Edberg 0.12(0.002) 4. S.Waltert 0.11(0.010) 4. D.Brown 0.12(0.009) 4. H.Mandlikova 0.11(0.010)
5. R.Laver 0.12(0.001) 5. J.Ostapenko 0.11(0.005) 5. J.Siemerink 0.11(0.020) 5. A.Kournikova 0.10(0.010)

Table 6.4: Estimated posterior means (Model 2) for the top five players in the four datasets
for the probability of hitting a winner wi. Estimated posterior standard errors are given in
parantheses.

We have suggested that the game of tennis may have changed over time. With the various
parameters introduced in Model 2 which characterize aspects of the game, we see that
longitudinal tennis analyses are readily possible. For example, consider the ATP mistake
volley parameter mi on first serves. In Figure 6.4, we plot the posterior mean of mi versus
the year of entry into professional tennis for the corresponding player. There are several
things to observe from Figure 6.4. First, there are more players in our dataset in recent
years. This is a consequence of greater availability of recent recordings for charting. There
also seems to be tighter variability in the mistake parameter mi in recent years. There is also
an indication that volley mistakes have slightly decreased over time. With tighter scrutiny
on tennis analytics and performance, this is perhaps understandable.

We now investigate how the parameters a, f , w and m correlate individually to success.
We collect the Official Pepperstone ATP player ranking points obtained from the ATP web-
site at https://www.atptour.com/en/rankings/singles. There are 100 players on this list and
we take the points corresponding to June 6/2022. These points are used to determine player
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Figure 6.4: Scatterplot of the posterior mean of mi for first serve ATP data versus the year
that player began professional tennis.

rankings. For example, the 1st, 50th and 100th players on the list are Novak Djokovic, Roger
Federer and Alexei Popyrin with 8770, 1030 and 626 points, respectively. We obtain sample
correlation coefficients between the player ranking points and their posterior estimates. The
results are reported in Table 6.5. The message again is that individual parameters do not
correlate strongly with success. We do note that although the correlations are small (i.e.
close to zero), they tend to correlate in the correct directions. For example, high probabili-
ties of aces ai are beneficial, and here, the associated correlations are positive with respect
to the first serve. We would expect to also see a positive correlation with winners wi. How-
ever, this is not the case since winner occur infrequently (see Figure 6.3) and there is not
much variability in winners across players. Also, as mentioned previously, the analysis of
winners needs to be considered in tandem with touch number T . For example, winners on
T = 2 are unlikely since this corresponds to returning a serve where the receiver is often
off-balance. On the other hand, a winner on T = 3 is likely since the server retains some
advantage from the serve.

Low probabilities of faults fi and mistakes mi are beneficial, and here, the associated
correlations are negative with respect to the first serve. The correlations involving second
serves are less interpretable where fewer aces and faults occur. Again, a limiting factor in
the correlation study involving wi and mi is that touch number is not considered; this is
remedied with Model 3 in Section 6.3.

Now, although the previous analyses are informative, it is obviously the case that player
excellence is a function of various skills. To investigate the combination of skills, we carry out
a regression analysis of the previously mentioned Pepperstone points against the variables
(ai1, fi1, wi1, mi1, ai2, fi2, wi2, mi2) where the second subscript in the pair of subscripts refers
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Parameter ATP 1st Serve ATP 2nd Serve
a 0.11 -0.05
f -0.25 0.01
w -0.05 -0.14
m -0.14 -0.22

Table 6.5: Correlation coefficients between 2022 ATP player ranking points and the posterior
estimates of a, f, w, m for first and second serves.

to serve number. Retaining only the significant variables, we obtain the fitted equation

y = 7539 + 19872 ∗ a1 − 14217 ∗ f1 − 25706 ∗ m2 (6.12)

where the correlation between the fitted line and the Pepperstone points is an improved
r = 0.50.

Equation (6.12) can assist in player evaluation. For example, suppose that a player has
first serve ace percentage a1 = 0.08. The player’s points might be expect to rise by 199
points if they could increase their first serve ace percentage to a1 = 0.09. However, it must
be kept in mind that there are reasonable restrictions (see Figure 6.1) as to the extent
that one might increase their first serve ace percentage. It is interesting that the fitted
equation (6.12) contains the characteristics a1, f1 and m2. Although the inclusion of a1 and
f1 appear obvious, it is worth considering why mistakes occurring on the second serve m2

are important whereas mistakes on the first serve m1 are not important. Our data reveal
that 72% of first serves involve T = 3 touches or less. When there are only T = 3 touches,
this means that mistakes of the type m1 can only be made on the second or third touches.
After a powerful serve, the second touch (i.e. the receiver’s return) will be difficult, and
therefore, mistakes m1 will be made at a high rate. Conversely, on the third touch, the
server will continue to benefit from the serve as mistakes m1 will occur at a low rate. These
two phenomena will tend to cancel each other out, and this is why m1 is not statistically
significant. Again, the importance of touch number is considered in Section 6.3.

6.4.3 Analysis of Model 3

The enhancement of Model 2 to Model 3 involves the introduction of return characteristics
w, r, m that vary according to touch number. With the player characteristics i, and the
touch number t, this leads to parameters w

(t)
i , r

(t)
i , m

(t)
i . The motivation is that the effect of

the serve dissipates as the rally progresses. We wish to quantify the effect.
We use the same prior distribution as given in (6.10) and (6.11) for each touch t = 2, 3, ....

We then average posterior estimates of w
(t)
i , r

(t)
i , m

(t)
i over all players i to give varying return

characteristics w(t), r(t), m(t). For the ATP first serve dataset, we plot the estimates of the
winner probability w(t) with respect to the touch number t in Figure 6.5. We observe that
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the server retains an advantage in hitting a winner on touches T = 3 and T = 5. The
advantage then quickly dissipates on subsequent touches for the server where the posterior
probability of a winner approaches the prior mean probability. This is expected since there
are fewer cases of long rallies. For example, the number of cases where T = 15 in the
ATP first serve dataset is only n = 2, 245. We also observe that as the rally continues, the
probability of the server and the receiver hitting a winner is the same.
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Figure 6.5: Plot of the posterior estimate w(t) versus t according to Model 3 with respect to
the ATP first serve data. The first plot concerns t odd (server) and the second plot concerns
t even (receiver).

In Figure 6.6, we plot the estimates of the mistake probability m(t) with respect to
the touch number t. Here, we observe that the server’s mistake probabilities increase only
slightly with touch number. This seems intuitive as mistakes are exaggerated when a player
is put in difficult situations, and there are no touch numbers where the server is consistently
in distress. We also observe that mistake probabilities decrease for the receiver as the rally
continues with stabilization around T = 6. This is the point at which the residual influence
of the serve has dissipated.

Under the higher parameterization associated with Model 3, computational demands
increase. Running Stan with 2000 iterations using the men’s first serve dataset requires
roughly 18 hours of computation on a laptop computer.

6.5 Discussion

Using a massive dataset of coarse observations in tennis, we have produced models that
describe various features of the sport. These features are explored with respect to both the
men’s and women’s games, and with respect to both the first and second serves.
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Figure 6.6: Plot of the posterior estimate m(t) versus t according to Model 3 with respect to
the ATP first serve data. The first plot concerns t odd (server) and the second plot concerns
t even (receiver).

An instructive aspect of this research is that players have their own playing characteris-
tics a and f corresponding to the serve, and their characteristics w(t) and m(t) corresponding
to touch T = t. These probabilities summarize all components of a player’s game, and can
be viewed with the purpose of evaluation with respect to average player performance.

Also, given these estimated parameters, a researcher can use simulation techniques to
investigate all sorts of interesting questions. For example, one may simulate matches between
two competitors to obtain the probability of a match lasting beyond two sets. As another
example, one may be interested in the probability that a player breaks service in a particular
match. With parameters describing inter-related aspects of tennis, the models provide great
scope for analysis both at the game level and the player level.

In terms of future directions, it would be interesting to see how characteristics vary
across different surfaces (e.g., grass, clay and hardcourt). With fewer matches (and data)
on grass, one may extend the proposed hierarchical models where grass parameters are
related to hardcourt parameters, for example. More work could also be done on identifying
aspects of the game which make players truly exceptional. In this chapter, the framework
has been proposed to address extended questions in tennis that have not been previously
investigated.

A further avenue for model enhancement concerns the parameters a and w corresponding
to the probability of an ace and the probability of a winner, respectively. In Model 2 and
Model 3, these parameters have a subscript i corresponding to the player of interest who is
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involved in the shot. However, it is apparent that these probabilities are also impacted by
i’s opponent. It would be useful to incorporate this feature in enhanced future models.
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This is the first in a series of RMarkdown documents describing how we simulated exome-sequencing data in
pedigrees ascertained to have four or more relatives affected with lymphoid cancer. The overall workflow for
this project is shown below.

Simulate SNV data for
pedigree founders

Specify the demographic model


Create recombination map for SLiM


Simulate ascertained
pedigrees

Simulate SNV data for
affected individuals in

pedigrees 

Select causal variants


Simulate genetic data for affected
pedigree members

Simulate population genetic data with
SLiM


SLiM_output.txt

1 2

3

Read and process SLiM data in R

study_peds.txt

Generate data files


Ascertain a pedigree


 Simulate pedigrees on the Compute
Canada cluster


Examine the simulated pedigrees 


Figure 1: Work-flow for simulating the exome-sequencing data for ascertained pedigrees.

This document focuses on the part of the flowchart labelled as 1 (the green box). To start, we require
single-nucleotide variant (SNV) sequences for pedigree founders. These founders are assumed to be sampled
from an American Admixed population, which we simulate with the evolutionary simulation package SLiM
(Haller et al. 2019). In particular, we simulate genome-wide sequences of exons only, to mimic exome
sequencing.

The outline of this document as follows. Section 1 explains how we create the SLiM recombination map using
the create_SlimMap() function in the SimRVSequence R package (Nieuwoudt, Brooks-Wilson, and Graham
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2020). Section 2 explains the demographic model for the source population of the pedigree founders. Section
3 discusses how we set the parameters in our SLiM model to simulate the exon-only SNV sequences.

The final outcome of this RMarkdown document is the file SLiM_output containing SNV exon sequences
from a simulated American Admixed population. In the third RMarkdown document of this series, the
population sequences file is sampled to get the founder sequences to drop down the ascertained pedigrees.
The final gene-dropping step generates the exome-sequencing data in the family-based study of lymphoid
cancer families.

1 Create recombination map for SLiM
To simulate the genome-wide exon-only sequences with SLiM, we need to supply a recombination map which
reads the exon positions in chromosomes. We use the create_SlimMap() function in the SimRVSequence
(Nieuwoudt, Brooks-Wilson, and Graham 2020) R package, as shown in the next code chunk.
library(SimRVSequences)

# Load hg_exons data set in SimRVSequence package
data("hg_exons")

# Create recombination map for exon-only data using the hg_exons dataset
s_map <- create_slimMap(exon_df = hg_exons)
head(s_map)

## chrom segLength recRate mutRate exon simDist endPos
## 1 1 11873 0.00e+00 0e+00 FALSE 1 1
## 2 1 354 1.00e-08 1e-08 TRUE 354 355
## 3 1 385 3.85e-06 0e+00 FALSE 1 356
## 4 1 109 1.00e-08 1e-08 TRUE 109 465
## 5 1 499 4.99e-06 0e+00 FALSE 1 466
## 6 1 1609 1.00e-08 1e-08 TRUE 1609 2075

We use the hg_exons dataset in the SimRVSequence package to specify the exon positions of each of the
22 human autosomes, based on the hg38 reference genome from the UCSC Genome Browser (Nieuwoudt,
Brooks-Wilson, and Graham 2020). As shown above, the call to create_SlimMap() returns a data frame
with information about the genetic segments in each chromosome. As an example, the first row in the output
above represents information about the genetic segment before the first exon on chromosome 1. The second
row represents information about the first exon on chromosome 1. The exon contains 354 base pairs and the
recombination and mutation rates in this exon are 10−8 per site per generation. The other columns of the
data frame are described in the SimRVSequences documentation. The recombination rate between adjacent
exons is set to the number of base pairs in the intervening intronic segment (segLength) multiplied by 10−8

per base pair per generation (recomb_rate). Further, the gap between two unlinked chromosomes is set to
be a single base pair and the recombination rate between them is set to be 0.5 per base pair per generation
(Harris and Nielsen 2016). Since we are interested in exon-only data, the mutation rate outside exons is set to
zero and mutation rates inside exons is set to 10−8 per base pair per generation (Nieuwoudt, Brooks-Wilson,
and Graham 2020).

We need three variables from s_map to create the recombination map for simulating exon-only data by SLiM:
recRate, mutRate and endPos. We select these three variables and shift the endPos variable forward by one
unit because SLiM reads arrays starting at position as 0 rather than 1. We save the resulting output as a
text file (Slim_Map_chr.txt) to be used as a recombination map for SLiM.
# Restrict output to the variables required by SLiM
slimMap <- s_map[, c("recRate", "mutRate", "endPos")]

# Shift endPos up by one unit
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slimMap$endPos <- slimMap$endPos - 1

# Print first four rows of slimMap
head(slimMap, n = 4)

## recRate mutRate endPos
## 1 0.00e+00 0e+00 0
## 2 1.00e-08 1e-08 354
## 3 3.85e-06 0e+00 355
## 4 1.00e-08 1e-08 464
# Write the results to a text file
write.table(slimMap, file ="Slim_Map_chr.txt")

The next section explains the demographic model we will use to simulate the population-level, exon-only SNV
sequences. These sequences will be randomly sampled from the population to be assigned to the founders of
our ascertained pedigrees in later steps of the workflow.

2 Specify the demographic model
Demographic models play a major role in understanding the genetic patterns in human populations. Through-
out human evolution, different demographic events such as expansion, migration, splitting etc. have occurred,
affecting genetic diversity (Ragsdale and Gravel 2019). The population-genetics literature has several es-
tablished demographic models inferred from genetic data (Gutenkunst et al. 2009). Some of these models
have been compiled in stdpopsim, a standard library of population-genetic simulation models (Adrion et al.
2020). At the time of writing, this library contains around nine demographic models. Among these, we select
the American Admixture demographic model of Browning et al. (2018) because the family-based study
motivating our work is in a North American population.

2.1 American admixture demographic model
In the American-Admixture model (Browning et al. 2018), the pre-admixture model parameters are selected
from the Out-of-Africa model of Gravel et al. (2011) illustrated below.

Figure 2: The inferred Out-of-Africa demographic model.

96



In the figure, the parameter estimates have been rounded and times are expressed in kilo-years before present
(kya). The demographic model has three populations representing Africa, Europe and Asia. The initial
effective population size of Africa was 7310 individuals which then increased to 14, 474 individuals 5920
generations ago (148 kya, assuming a generation time of 25 years). About 2040 generations ago (51 kya), the
out-of-Africa migration event occurred with a migrating effective population size of 1861 individuals. Then
migration occurred between Africa and out-of-Africa populations with a rate of 1.5 × 10−4 per generation.
About 920 generations ago (23 kya), the out-of-Africa population split into two populations, Europe and
Asia, with effective sizes of 1032 and 554 individuals, respectively. These two populations then grew at rates
of 3.8 × 10−3 per generation for Europe and 4.8 × 10−3 per generation for Asia. Further, between these
three populations, (Africa , Europe and Asia) migrations occurred. The migration rates per generation were
2.5 × 10−5 between Africa and Europe, 7.8 × 10−6 between Africa and Asia, and 3.11 × 10−5 between Europe
and Asia (Browning et al. 2018). Admixing started about 12 generations ago (0.3 kya) with the initial
effective size of the admixed population being 30, 000 individuals. The growth rate of the admixed population
was 5% per generation with 1

6 of the admixed population originating from African ancestry, 1
3 from European

ancestry and 1
2 from Asian ancestry (Browning et al. 2018).

As described in the next section, we use SLiM together with the inferred American-admixture demographic
model to simulate population-level exon-only SNV sequences.

3 Simulate population genetic data with SLiM
The following SLiM script generates genome-wide exon-only SNV sequences for a population under the
American-Admixture demographic model. The script is a .slim file, which we have embedded in an R code
chunk (that is not run). The original SLiM_American_Admixture.slim file can be found on our GitHub page
at https://github.com/SFUStatgen/SeqFamStudy/.
initialize() {

// Seed number which helps to reproduce the same result
setSeed(2181144364021);

// Read recombination map created by SimRVSequence R package

lines = readFile("~/Slim_Map_chr.txt");
Rrates = NULL;
Mrates = NULL;
ends = NULL;

for (line in lines)
{
components = strsplit(line);
ends = c(ends, asInteger(components[3]));
Rrates = c(Rrates, asFloat(components[1]));
Mrates = c(Mrates, asFloat(components[2]));
}
Exomelength = ends[size(ends)-1];

initializeRecombinationRate(Rrates, ends);

initializeMutationRate(Mrates, ends);

initializeSex("A"); // Specifies modeling of an autosome

initializeMutationType("m1", 0.5, "g", -0.043, 0.23); //non-synonymous
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initializeMutationType("m2", 0.5, "f", 0.0); // synonymous

m1.mutationStackPolicy = "l";
m2.mutationStackPolicy = "l";

initializeGenomicElementType("g1", m1, 1); // positions 1 and 2
initializeGenomicElementType("g2", m2, 1); // positions 3

starts = repEach(seqLen(asInteger(round(Exomelength/3))) * 3, 2) +
rep(c(0,2), asInteger(round(Exomelength/3)));

end_pos = starts + rep(c(1,0), asInteger(round(Exomelength/3)));
types = rep(c(g1,g2), asInteger(round(length(starts)/2)));

initializeGenomicElement(types, starts, end_pos);

}

// Initialize the ancestral African population
1 { sim.addSubpop("p1", asInteger(round(7310.370867595234))); }

// End the burn-in period; expand the African population
73105 { p1.setSubpopulationSize(asInteger(round(14474.54608753566))); }

// Split Eurasians (p2) from Africans (p1) and set up migration
76968 {
sim.addSubpopSplit("p2", asInteger(round(1861.288190027689)), p1);
p1.setMigrationRates(c(p2), c(15.24422112e-5));
p2.setMigrationRates(c(p1), c(15.24422112e-5));
}

// Split p2 into European (p2) and East Asian (p3); resize; migration
78084 {
sim.addSubpopSplit("p3", asInteger(round(553.8181989)), p2);
p2.setSubpopulationSize(asInteger(round(1032.1046957333444)));
p1.setMigrationRates(c(p2, p3), c(2.54332678e-5, 0.7770583877e-5));
p2.setMigrationRates(c(p1, p3), c(2.54332678e-5, 3.115817913e-5));
p3.setMigrationRates(c(p1, p2), c(0.7770583877e-5, 3.115817913e-5));
}

// Set up exponential growth in Europe (p2) and East Asia (p3)
78084:79012{
t = sim.generation - 78084;
p2_size = round(1032.1046957333444 * (1 + 0.003784324268)ˆt);
p3_size = round(553.8181989 * (1 + 0.004780219543)ˆt);
p2.setSubpopulationSize(asInteger(p2_size));
p3.setSubpopulationSize(asInteger(p3_size));
}

// Create the admixed population
79012 early(){
sim.addSubpop("p4", 30000); 
//This new subpopulation is created with 30000 new empty individuals 
p4.setMigrationRates(c(p1, p2, p3), c(0.1666667, 0.3333333, 0.5));
}
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//After this early() event, SLiM will generate offspring, and the empty individuals in p4 
will be // discarded and replaced by migrant offspring from p1, p2 and p3 as requested.
79012 late(){
p4.setMigrationRates(c(p1, p2, p3), c(0, 0, 0));
}

// Set up exponential growth in admixture (p4)
79012:79024 {
t = sim.generation - 79012;
p4_new_size = round(30000 * (1 + 0.05)ˆt);
p4.setSubpopulationSize(asInteger(p4_new_size));
}

// Output and terminate
79024 late() {
p4.individuals.genomes.output(filePath = "~/SLiM_output.txt");
}

Before the simulation starts, we need to initialize the mutation rate, recombination rate, genomic structure
and so forth as the simulation parameters (Haller et al. 2019). We read the recombination map into SLiM
using the readFile() function. Inside this function, we supply the path to our recombination map text file.
Then we create three null vectors named Rrates, Mrates and ends to save the recombination rates, mutation
rates and end positions of each exon in our recombination map, respectively.

Next, we use a for-loop to move along the genome, reading each line of the recombination map and:

• save the recombination rate, mutation rate and end position of each genomic segment,
• initialize the recombination rate for each genomic segment with the initializeRecombinationRate()

function, by specifying the rate and the end position of the genomic segment,
• initialize the mutation rate for each genomic segment with the initializeMutationRate() function,
• specify that the genomic segment belongs to an autosomal chromosome with the initializeSex()

function,
• specify the mutation type for each genomic segment with the initializeMutationType() function

(see below),
• specify the mutation stacking policy for each genomic segment with the mutationStackPolicy command

(see below),
• specify the type for each genomic segment with the initializeGenomicElementType() function (see

below).

In exons, the last base-pair position in a three base-pair codon (coding for an amino acid in a protein)
is a synonymous site. Synonymous sites are viewed as selectively neutral in comparison to the first two
base-pair positions in a codon, which are non-synonymous. Therefore, we simulate two types of mutations:
synonymous and non-synonymous. The initializeMutationType(“m1,” 0.5, “g,” -0.043, 0.23) callback in
the for-loop explains all the parameters that are held by the “m1” mutation type. We use “m1” to represent
the non-synonymous mutations. These non-synonymous mutations have a dominance coefficient of 0.5 and
the selection coefficient is generated from a gamma distribution with mean -0.043 and shape parameter is
0.23 (Harris and Nielsen 2016). We initialize the synonymous mutations separately with another call to the
initializeMutationType() function. In initializeMutationType(“m2,” 0.5, “f,” 0.0) callback, the “m2”
mutation type represents the synonymous mutations and they have a fixed selection coefficient denoted by “f.”
The selection coefficient of this type of mutation is always 0, as seen in the fourth argument of the function.
The dominance coefficient in the second argument of the function is 0.5.

In SLiM (as in biology), the individuals rather than the mutations are under selection. Selection acts on the
individual, through their fitness value. The fitness value of an individual is calculated from the fitness effects
of all the mutations carried by that individual (based upon their selection coefficient, dominance coefficient,
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and heterozygous/homozygous state). All the fitness effects are multiplied together to produce the individual
fitness. The individual fitness value then affects selection. Specifically, in the default Wright-Fisher (WF)
model of SLiM (which we use), lower fitness means a lower probability of mating. As a result, deleterious
mutations tend to decrease in frequency and beneficial mutations tend to increase in frequency.

SLiM allows for recurrent mutations at a given base position on a given sequence (Haller et al. 2019). By
default, SLiM “stacks” any mutations that occur in the same location as pre-existing mutations on a given
sequence. This default behaviour of “mutation stacking” (“s” for stacked), is changed to “l” (last) with
the command m1.mutationStackPolicy = "l", so that new mutations occurring in the same location as
pre-existing mutations on a given sequence replace the pre-existing mutations.

The next initialization task is to create the chromosome structure. In SLiM we can model different genomic
structures in the chromosomes. We consider exons only, which have two genomic element types: one
for non-synonymous sites (base positions 1 and 2 of a codon) and the other for synonymous sites (base
position 3 of a codon). These genomic element types are called “g1” and “g2” and alternate as g1, g2,
g1, g2, g1, etc. along the exome until the end position of a chromosome is reached. The first genomic-
element type corresponds to non-synonymous sites, is initialized as “m1” and could have mutations with
selection coefficients that come from the negative gamma distribution. The second genomic element type
corresponds to the synonymous sites, is initialized as “m2” and could have neutral mutations. We use the
initializeGenomicElementType() function to specify these two genomic elements and our exome structure.
For example, initializeGenomicElementType("g1", m1, 1) specifies that genomic element type “g1” is
defined as using mutation type “m1” for all of its mutations. The second genomic element type “g2” is defined
as using mutation type “m2” for all its mutations. Then we create the alternating start and end positions
of the “g1” and “g2” genomic elements along the exome. Finally, we initialize the two genomic elements
“g1” and “g2” with initializeGenomicElement(), supplying their starting and ending positions along the
exome.

After the initialize() callbacks end, we run our simulation under the Out-of-Africa model described in the
SLiM manual (Haller et al. 2019), with exact parameter estimates from Gravel et al. (2011). In the first
generation, the African ancestral population, labelled “p1,” is created with the function sim.addSubpop() and
initial effective population size of 7310 individuals. Haller et al. (2019) start the model at 79024 generations
back from the present (gbp) and set it to be generation 0 in the forwards simulation. The simulation then
takes 10*African ancestral population size generations as the neutral burn-in time (Haller et al. 2019).
At generation 73105 in the simulation (5919 gbp), the ancestral population, “p1,” increases in effective size
from ∼ 7310 to ∼ 14474 individuals. Subsequently, at generation 76968 of the simulation (2056 gbp), the
African ancestral population, “p1,” splits into the Eurasian ancestral sub-population, “p2,” and migration
starts between these two sub-populations. The command p1.setMigrationRates sets the migration rate
from the African to the Eurasian ancestral sub-population, while p2.setMigrationRates sets the migration
rate from the Eurasian ancestral to the African sub-population. Then at 78084 generations in the simulation
(940 gbp), the “p2” Eurasian sub-population splits into European and Asian sub-populations. We create a
new sub-population,“p3,” to represent the Asian sub-population and let the Eurasian ancestral sub-population
become the European sub-population. After the Eurasian ancestral population becomes the Asian and
European sub-populations, we allow for migration between the African, Asian and European sub-populations,
setting the migration rates according to the literature. Then, starting from 78084 generations in the simulation
(940 gbp), we specify exponential growth in European (p2) and Asian (p3) sub-populations, until 79012
generations in the simulation (12 gbp). At 79012 generations (12 gbp), we create the American admixed
sub-population with an initial effective population size of 30000 individuals and set the migration rates
between the admixed and the other three sub-populations according to Browning et al. (2018). Once the
admixed sub-population is created, migration into and out of it is stopped and it grows exponentially at rate
5% per generation until the present at 79024 generations into the simulation. Finally in generation 79024 of
the simulation (the present) we terminate our SLiM simulation and collect the output.

We only consider the SLiM output for the American admixed sub-population. We extract the genomic se-
quences of all individuals in the admixed sub-population with the function p4.individuals.genomes.output()
obtaining output formatted as follows:
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#OUT: 79024 GS 107752 /project/6007536/epasiedn/SLiM/American_Admixture/SLiM_output.txt
Mutations:
7229 50171 m2 51287555 0 0.5 p1 5 60626 . . .
13218 484904 m2 39812003 0 0.5 p1 45 9536 . . .
5202 762125 m2 36490340 0 0.5 p1 70 64099 . . .
. . .
Genomes:
p*:0 A 0 1 2 3 4 5 6 7 8 9 10 11 . . .
p*:1 A 10605 1 2 3 10606 4 5 6 8 10607 10608 9 . . .
p*:2 A 10605 1 2 4 15639 15640 6 10608 15641 15642 15643 15644
p*:3 A 0 1 2 19096 19097 4 6 19098 19099 9 10 19100
. . .

In the above output, the first line starts with “# OUT:” followed by the generation of the simulation (79024)
from which the output is obtained. Then “GS” tells us the data is formatted as “genomes SLiM format” and
this is followed by the number of haploid genomes (2* number of individuals). Finally, the full path where we
save the output is printed.

The second line of the output starts the mutation section. In the mutation section, each line represents a
mutation which is currently segregating in the population and the nine fields on a line represent the mutation
properties. The first field is the SLiM-generated identifier number which helps to identify the mutation easily
within the program. The second field is the mutation’s identification number. The third field represents
the type of the mutation. The fourth field is the base-pair position of the mutation on the chromosome.
The fifth and sixth fields represent selection and dominance coefficients, respectively. The seventh field is
the sub-population in which the mutation originated. The eighth field is the generation of the simulation
when the mutation arose. Finally, the ninth field represents the number of copies of the mutation in the
sub-population.

The last section in the output represents the genomes section. In the genome section, a line corresponds
to a haploid genome in the sub-population. For example, in the first line, “p*: 0,” means the 0th genome
of the sub-population . Then “A” represents autosome, the type of the genome. This is followed by the
SLiM-generated identification numbers of all the mutations carried by this haploid genome. Recall that the
SLiM-generated identification numbers are in the first field of the mutation section.

3.1 Simulation on Compute Canada Cluster
This SLiM simulation is highly memory intensive and not suitable for most personal computers. We therefore
use the Compute Canada cluster (http://www.computecanada.ca) as described next. First, we need to install
the SLiM software. The way we install the software is exactly the same as how we install the software on our
own computer. Use the SLiM manual guidelines for this task. After we install SLiM, we use a job scheduler
on the compute cluster to run our jobs. On the Compute Canada Cluster, the job scheduler is the Slurm
Workload Manager . Slurm helps to allocate resources and time, and provides methods to execute our
work. To run the SLiM script we write the following Slurm script, job_serial.sh:
#!/bin/bash
#SBATCH --account=def-jgraham
#SBATCH --ntasks=1
#SBATCH --time=7-05:05:00
#SBATCH --mem=64000M

module load StdEnv/2020 gcc/9.3.0 slim/3.4.0

slim SLiM_American_Admixture.slim

The content of job_serial.sh is described as follows.

• #SBATCH–account=def-jgraham specifies the account name. In this example, the account name is
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“def-jgraham.”
• #SBATCH–ntasks=1 defines the number of processors. We request 1 processor to run the program.
• #SBATCH–time=7-05:05:00 specifies the time limit for the job. To avoid the simulation being stopped

prematurely for running over the allocated time, we try to err on the side of allocating too much.
• #SBATCH–mem=640000M specifies memory required for our simulation. We request 64GB. Next, the

executable commands are aligned in the script file:
• module load StdEnv/2020 gcc/9.3.0 slim/3.4.0 loads the SLiM version we installed on the Cluster.
• slim SLiM_American_Admixture.slim calls SLiM to run the SLiM script, SLiM_American_Admixture.slim.

To submit the slurm script to the cluster, we type the following in our log-in node:
[epasiedn@gra-login2 American_Admixture]$ sbatch job_serial.sh

This SLiM simulation took approximately 3 days to complete on the Compute Canada cluster. The SLuRM
script allocated 64GB to run the simulation. Out of this 64GB, the job utilized 43.61GB. The output of this
SLiM simulation is saved as SLiM_output.txt and we use this file as one of the inputs for the third step of
our workflow. We will return to the SLiM_output.txt output in our third RMarkdown document.

3.2 Summary Statistics
We use R and the output in SLiM_output.txt to obtain summary statistics for the American admixed
population. We start by reading SLiM_output.txt into R.
library(SimRVSequences)
library(tidyverse)

## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --

## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.4 v dplyr 1.0.7
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 2.0.1 v forcats 0.5.1

## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(Matrix)

##
## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(data.table)

##
## Attaching package: 'data.table'

## The following objects are masked from 'package:dplyr':
##
## between, first, last

## The following object is masked from 'package:purrr':
##
## transpose
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# Read the SLiM output text file to R
# Note: Change the path for the file as necessary.
exDat <- readLines("D:/SFU_Vault/SLiM_Output/SLiM_output.txt")

The file size of SLiM_output.txt is approximately 6 GB and takes approximately 1 minute to load into R
on a Windows OS with an i7-8550U @ 1.8GHz,16GB of RAM.
# Read the mutations and genomic sections in the output
MutHead <- which(exDat == "Mutations:")
GenHead <- which(exDat == "Genomes:")

# Get the population count in sequences
popCount <- as.numeric(unlist(strsplit(exDat[1],

split = " ", fixed = TRUE))[4])

# Population count in individuals
popCount/2

## [1] 53876

The number of individuals in the simulated American admixed population is 53,876.
# Extract mutation data from SLiM's Mutation output
# only retaining the tempID, type, position,
# selection coefficient and count of each mutation
MutOut <- do.call(rbind, strsplit(exDat[(MutHead + 1):(GenHead - 1)], split = " ", 
fixed = TRUE)) 
MutData <- data.frame(tempID = as.numeric(MutOut[, 1]),

type = MutOut[, 3],
position = as.numeric(MutOut[, 4]),
selCoef = as.numeric(MutOut[, 5]),
count = as.numeric(MutOut[, 9]),
stringsAsFactors = TRUE)

nrow(MutData)

## [1] 862243

The number of mutations segregating in the American admixed population is 862,243. We next examine
what percentage of these have derived allele frequency less than 1% in the population.
# Add 1 to temp ID so that we can easily associate mutations to columns.
# By default SLiM's first tempID is 0, not 1.
MutData$tempID <- MutData$tempID + 1
# First position in SLiM is 0, not 1
MutData$position <- MutData$position + 1

# Calculate the population derived allele frequency.
# Divide the allele count by the population size.
MutData$afreq <- MutData$count/(popCount)

# Get the percentage of SNVs whose allele frequency < 0.01
af_less <- which(MutData$afreq < 0.01)
af_less_per <- length(af_less)/ nrow(MutData)

af_less_per

## [1] 0.9426565
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Among the 862,243 mutations segregating in the simulated American-admixed population, approximately
94% have derived allele frequencies less than 1%. This is slightly less than the approximately 97% of
single-nucleotide variants observed to have alternate allele frequencies less than 1% in the TopMed study of
the American population (Taliun et al. 2021).

Next, we check the percentage of mutations that are singletons in the simulated American admixed population.
# Use the prevalence (the number of times that the mutation occurs in any genome)
# column in MutData dataframe to calculate the singleton percentage
singleton <- MutData %>%

count(count) %>%
mutate(percentage = n/nrow(MutData))

colnames(singleton) <- c("number_of_allele", "count", "proportion")
head(singleton)

## number_of_allele count proportion
## 1 1 164624 0.19092530
## 2 2 64401 0.07469008
## 3 3 45210 0.05243301
## 4 4 33804 0.03920473
## 5 5 27019 0.03133571
## 6 6 22881 0.02653660

Among the 862,243 mutations, only 19% are singletons. By contrast, in the TopMed study, about half the
variants are singletons (Taliun et al. 2021). The following figure illustrates the allele frequency spectrum in
the simulated population.
# Plot the first 50 sites in the allele frequency spectrum
ggplot(singleton) +

geom_bar(mapping = aes(x = as.factor(number_of_allele),
y = proportion),

stat="identity",
position="dodge") +

xlab("Allele Count") +
ylab("Proportion") +
ylim(0, 0.3) +
scale_x_discrete(limits= as.character(1:50))
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We believe that our simulated American-admixed population has fewer rare variants and singletons than
the TopMed population because it lacks TopMed’s variety of source populations. Our SLiM simulation has
only three source populations and we collect mutation data from only the American-admixed population.
By contrast, the TopMed study considers the entire American population consisting of many more source
populations as well as an admixed population. To investigate this hypothesis, we combined data from
all four populations in our SLiM simulation to see if the singleton percentage increased. Due to the high
computational cost, we simulated mutations for chromosomes 8 and 9 only. Combining all four populations,
the percentage of singletons increased from 19 to 26% of mutations. An additional RMarkdown document, for
supplementary material 1-B, discusses the commands to generate and summarize all the source populations
and check the proportions of singletons, after combining the four populations.
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Supplementary Material 1-A discusses the SLiM simulation of the American-admixed population and the
processing of its data. This document discusses how to obtain and process the data not just for the American-
admixed population but also for all four populations in the simulation. We focus on chromosomes 8 and 9
only to reduce computational cost, and alter the original SLiM script as follows: 1. at the top of the script,
we provide an abbreviated recombination map, Slim_Map8n9.txt, containing only those lines of the original
recombination map (in the data frame, s_map) pertaining to chromosomes 8 and 9, and 2. at the bottom of
the script, we call sim.outputFull() rather than p4.individuals.genomes.output() to obtain the output.
Otherwise, the SLiM script remains exactly the same as the original in Supplementary Material 1-A.

The following R code chunk creates the abbreviated recombination map.
# Create the file Slim_Map8n9.txt containing the recombination map
# for chromosomes 8 and 9 only. NB: We assume that you have already run
# SupplementaryMaterial_1A.Rmd so that the s_map object it creates is
# already in your R workspace.
library(SimRVSequences)
data("hg_exons")
s_map<-create_slimMap(exon_df = hg_exons)
library(tidyverse)

## -- Attaching packages -------------------------------------------- tidyverse 1.3.0 --

## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.1 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0

## -- Conflicts ----------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(Matrix)

##
## Attaching package: 'Matrix'

## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(data.table)

##
## Attaching package: 'data.table'
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## The following objects are masked from 'package:dplyr':
##
## between, first, last

## The following object is masked from 'package:purrr':
##
## transpose
slimMap8n9<- s_map[(s_map[,"chrom"]==8 | s_map[,"chrom"]==9), c("recRate","mutRate","endPos")]
slimMap8n9$endPos <- slimMap8n9$endPos-1
write.table(slimMap8n9, file="Slim_Map8n9.txt")

Now we are ready to run the following SLiM script.
initialize() {

// Read in the abbreviated recombination map for chromosome 8 and 9.
lines = readFile("~/Slim_Map8n9.txt");
Rrates = NULL;
Mrates = NULL;
ends = NULL;

for (line in lines)
{
components = strsplit(line);
ends = c(ends, asInteger(components[3]));
Rrates = c(Rrates, asFloat(components[1]));
Mrates = c(Mrates, asFloat(components[2]));
}
Exomelength = ends[size(ends)-1];

initializeRecombinationRate(Rrates, ends);

initializeMutationRate(Mrates, ends);

initializeSex("A"); // Specifies modeling of an autosome

initializeMutationType("m1", 0.5, "g", -0.043, 0.23); //non-synonymous
initializeMutationType("m2", 0.5, "f", 0.0); // synonymous

m1.mutationStackPolicy = "l";
m2.mutationStackPolicy = "l";

initializeGenomicElementType("g1", m1, 1); // positions 1 and 2
initializeGenomicElementType("g2", m2, 1); // positions 3

starts = repEach(seqLen(asInteger(round(Exomelength/3))) * 3, 2) +
rep(c(0,2), asInteger(round(Exomelength/3)));

end_pos = starts + rep(c(1,0), asInteger(round(Exomelength/3)));
types = rep(c(g1,g2), asInteger(round(length(starts)/2)));
initializeGenomicElement(types, starts, end_pos);

}
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// Initialize the ancestral African population
1 { sim.addSubpop("p1", asInteger(round(7310.370867595234))); }

// End the burn-in period; expand the African population
73105 { p1.setSubpopulationSize(asInteger(round(14474.54608753566))); }

// Split Eurasians (p2) from Africans (p1) and set up migration
76968 {
sim.addSubpopSplit("p2", asInteger(round(1861.288190027689)), p1);
p1.setMigrationRates(c(p2), c(15.24422112e-5));
p2.setMigrationRates(c(p1), c(15.24422112e-5));
}

// Split p2 into European (p2) and East Asian (p3); resize; migration
78084 {
sim.addSubpopSplit("p3", asInteger(round(553.8181989)), p2);
p2.setSubpopulationSize(asInteger(round(1032.1046957333444)));
p1.setMigrationRates(c(p2, p3), c(2.54332678e-5, 0.7770583877e-5));
p2.setMigrationRates(c(p1, p3), c(2.54332678e-5, 3.115817913e-5));
p3.setMigrationRates(c(p1, p2), c(0.7770583877e-5, 3.115817913e-5));
}

// Set up exponential growth in Europe (p2) and East Asia (p3)
78084:79012{
t = sim.generation - 78084;
p2_size = round(1032.1046957333444 * (1 + 0.003784324268)ˆt);
p3_size = round(553.8181989 * (1 + 0.004780219543)ˆt);
p2.setSubpopulationSize(asInteger(p2_size));
p3.setSubpopulationSize(asInteger(p3_size));
}

// Create the admixed population
79012{
p2_new_size = p2.individualCount;
p3_new_size = p3.individualCount;
defineConstant("pop_size", c(p2_new_size, p3_new_size));
sim.addSubpop("p4", 30000);
p4.setMigrationRates(c(p1, p2, p3), c(0.1666667, 0.3333333, 0.5));
}
79012 late(){
p4.setMigrationRates(c(p1, p2, p3), c(0, 0, 0));
}

// Setup exponential growth in Europe (p2) and East Asia (p3)
79012:79024 {
t = sim.generation - 79012;
p2_new_size = round(pop_size[0] * (1 + 0.003784324268)ˆt);
p3_new_size = round(pop_size[1] * (1 + 0.004780219543)ˆt);
p4_new_size = round(30000 * (1 + 0.05)ˆt);
p2.setSubpopulationSize(asInteger(p2_new_size));
p3.setSubpopulationSize(asInteger(p3_new_size));
p4.setSubpopulationSize(asInteger(p4_new_size));
}
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// Output for all populations (not just p4) and terminate
79024 late() {
sim.outputFull("~/SLiM_output_chr8&9.txt");
}

We read SLiM_output_chr8&9.txt into R and obtain the number of individuals in each population and in
all populations combined.
# Read the SLiM output text file to R
# Note:Change the path for the file as necessary.
exDat <- readLines("/Users/jgraham/OneDrive - Simon Fraser University (1sfu)/NirodhaStuff/Data/SLiM_output_chr8&9.txt")
# Read the mutations and genomic sections in the output
MutHead <- which(exDat == "Mutations:")
GenHead <- which(exDat == "Genomes:")
PopHead <- which(exDat == "Populations:")
IndHead <- which(exDat == "Individuals:")

# Get the population count for each source population

popCount_1 <- as.numeric(unlist(strsplit(exDat[PopHead + 1], split = " "))[2])
popCount_2 <- as.numeric(unlist(strsplit(exDat[PopHead + 2], split = " "))[2])
popCount_3 <- as.numeric(unlist(strsplit(exDat[PopHead + 3], split = " "))[2])
popCount_4 <- as.numeric(unlist(strsplit(exDat[PopHead + 4], split = " "))[2])

# Get the total population count
popCount <- popCount_1 + popCount_2 + popCount_3 + popCount_4

The following table of population sizes summarizes the output of the above commands.

Table 1: Population sizes.

Population size
African 14, 475

European 35, 815
Asian 48, 765
Admix 53, 876
Total 152,931

# Extract mutation data from SLiM's Mutation output
# only retaining the tempID, type, position, selection coefficient and prevalence of each mutation
MutOut <- do.call(rbind, strsplit(exDat[(MutHead + 1):(IndHead - 1)], split = " ", fixed = TRUE))
MutData <- data.frame(tempID = as.numeric(MutOut[, 1]),

type = MutOut[, 3],
position = as.numeric(MutOut[, 4]),
selCoef = as.numeric(MutOut[, 5]),
count = as.numeric(MutOut[, 9]),
stringsAsFactors = TRUE)

nrow(MutData)

## [1] 142549

On chromosomes 8 and 9, the number of mutations segregating in all four populations is 142,549.

111



# Add 1 to temp ID so that we can easily associate mutations to columns.
# By default SLiM's first tempID is 0, not 1.
MutData$tempID <- MutData$tempID + 1
# First position in SLiM is 0, not 1
MutData$position <- MutData$position + 1

# Calculate the population derived-allele frequency.
# Divide the derived-allele count by the population size.
MutData$afreq <- MutData$count/(popCount)

# Get the percentage of SNVs whose derived-allele frequency is < 0.01
af_less <- which(MutData$afreq < 0.01)
af_less_per <- length(af_less)/ nrow(MutData)

af_less_per

## [1] 0.9616693

Among the 142,549 mutations on chromosomes 8 and 9, approximately 96% have frequencies less than 1%.

In Supplementary Material 1-A, we discuss how 26% of the variants in the combined populations were
singletons. The following commands are used to calculate this percentage.
# Use the prevalence (the number of times that the mutation occurs in any genome)
# column in MutData dataframe to calculate the singleton percentage
singleton <- MutData %>% count(count) %>% mutate(percentage = n/nrow(MutData))
colnames(singleton) <- c("number_of_allele", "count", "proportion")
head(singleton)

## number_of_allele count proportion
## 1 1 38012 0.26665918
## 2 2 14312 0.10040056
## 3 3 9436 0.06619478
## 4 4 6731 0.04721885
## 5 5 5051 0.03543343
## 6 6 3979 0.02791321

The following figure illustrates the derived-allele frequency spectrum for chromosomes 8 and 9.
# Plot derived-allele counts of up to 50 in the allele-frequency spectrum
ggplot(singleton) +
geom_bar(mapping = aes(x = as.factor(number_of_allele),

y = proportion),
stat="identity",
position="dodge") +

xlab("Allele Count") +
ylab("Proportion") +
ylim(0, 0.3) +
scale_x_discrete(limits= as.character(1:50))
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The second major step in our work-flow simulates 150 pedigrees ascertained to have four or more relatives
affected with lymphoid cancer (the blue box labelled 2).

Simulate SNV data for
pedigree founders


Specify the demographic model


Create recombination map for SLiM


Simulate ascertained
pedigrees

Simulate SNV data for
affected individuals in

pedigrees 

Select causal variants


Simulate genetic data for affected
pedigree members

Simulate population genetic data with
SLiM


SLiM_output.txt

1 2

3

Read and process SLiM data in R

study_peds.txt

Generate data files


Ascertain a pedigree


 Simulate pedigrees on the Compute
Canada cluster


Examine the simulated pedigrees 


Figure 1: Work-flow for simulating the exome-sequencing data for ascertained pedigrees.

1 Ascertain a pedigree
We use the SimRVPedigree (Nieuwoudt et al. 2018) R package to ascertain a single pedigree simulated to
contain four or more relatives affected with lymphoid cancer. Affected pedigree members can have either
sporadically occurring disease or genetic disease caused by a single rare variant that is segregating in the
pedigree. We refer to the causal rare variants as cRVs. The package constructs a pedigree by growing it
from a single starting individual or “seed founder” and obtaining the seed founder’s descendants. A cRV
may be introduced into the seed founder with probability equal to either one or the carrier probability of a
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cRV in the population. When a cRV is introduced into the seed founder with probability equal to the carrier
probability of a cRV in the population, the pedigree is ascertained from the general population. A genetic
pedigree is defined as a pedigree in which the seed founder carries a cRV, whereas a sporadic pedigree is
defined as a pedigree in which the seed founder does not carry a cRV. Ascertained pedigrees may be either
genetic or sporadic, and may contain both genetic and sporadic cases. Once a cRV is introduced into a seed
founder, it is transmitted from parent to offspring according to Mendel’s law. The age-specific life events of
the seed founder and his/her descendants such as birth, disease onset and death are modelled according to
the cRV carrier status of the individual. The modeling requires specification of the age-specific incidence
rates of disease, the age-specific hazard rates of death and the genetic relative-risk (GRR) of disease.

We ascertain a single pedigree from the general population using simRV_ped(), the core function of the
SimRVPedigree package. The sim_RVped() function simulates all life events of a seed founder and his/her
descendants, as described by Nieuwoudt et al. (2018). Starting at the birth of an individual, the waiting
times of the possible next life events of the individual – disease onset, reproduction and death – are generated.
The event with the minimum waiting time is selected as the individual’s next life event. The waiting time
is added to the current age of the individual and the corresponding life event is recorded. These steps are
repeated until the individual dies or the study reaches its stop year. Further details of this function can be
found in Nieuwoudt and Graham (2018).

The required arguments of simRV_ped() are: hazard_rates, GRR, num_affected, ascertain_span, FamID,
and founder_byears. Non-required arguments of specific interest to us are: stop_year, carrier_prob,
RV_founder, recall_probs and first_diagnosis. A short description of these arguments follows.

• hazard_rates- We use the AgeSpecific_Hazards dataset in the SimRVPedigree package. The first
column of the AgeSpecific_Hazards data-frame gives the age-specific hazard rates for the disease
in the general population. The second column gives the age-specific hazard rates for death in the
unaffected population. The third column gives the age-specific hazard rates for death in the affected
population.

• GRR- the genetic relative-risk; i.e, the risk of disease for individuals who carry a copy of a cRV relative
to those who carry no copies of a cRV. We use 50 as the GRR.

• num_affected- the minimum number of disease-affected members needed to ascertain the pedigree is
set to 4.

• ascertain_span- the period of ascertainment of the pedigree; i.e., (start-year, end-year) is set to (2000
, 2010).

• FamID- the family identity number of the simulated pedigree. We assign a vector that contains values 1
to 150 since we need to generate 150 pedigrees.

• founder_byears- the period for the possible birth year of a seed founder is set to be (1880, 1920).

• stop_year- 2020 is set to the year in which we stop collecting data.

• carrier_prob- the probability that an individual in the general population carries a cRV is set to
0.001.

• RV_founder- is set to FALSE, i.e., the seed founder carries a cRV with probability equal to the carrier
probability (0.001) of a cRV in the population.

• recall_probs- the proband’s recall probabilities of relatives in the pedigree is set to (1, 1, 1, 1, 0.75,
0.5, 0.25, 0.125, 0). These probabilities imply that first to fourth-degree relatives of the proband (e.g.
fourth degree = great aunt) are recalled with probability 1, all fifth-degree relatives (e.g. first cousin
once removed) of the proband are recalled with probability 0.75, and so forth.

• first_diagnosis- the earliest year after which reliable diagnoses can be made regarding the disease-
affection status is set as 1940.

We set the above values for the arguments in the sim_RVped() function and use the Compute Canada cluster
for the simulation. We use an array job on the cluster, with a processor (CPU) to simulate each pedigree. Due
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to the requirement that at least four relatives be known to be affected, the ascertainment of each pedigree
is time-consuming and the simulation time is variable across pedigrees. However, as discussed below, we
allocate up to 24 hours to simulate a pedigree.

2 Simulate pedigrees on the Compute Canada cluster
We use the following slurm batch file to submit an array job with a processor for each of the 150 pedigrees.

#!/bin/bash
#SBATCH --account=def-jgraham
#SBATCH --array= 1-150
#SBATCH --ntasks=1
#SBATCH --mem-per-cpu=4000M
#SBATCH --time=23:59:00

module load nixpkgs/16.09 gcc/5.4.0 r/3.5.0

echo "This is job $SLURM_ARRAY_TASK_ID out of $SLURM_ARRAY_TASK_COUNT jobs."

R CMD BATCH --no-save SimRVpedigree.R

In the batch script above, the parameters are set as follows.

• #SBATCH–account=def-jgraham - specifies the project account on Compute Canada. In this example,
the project account is “def-jgraham”.

• # SBATCH –array= 1-150 - specifies an array of tasks with indices 1 through 150, one for each of the
150 pedigrees. More generally, users can specify indices x through y to obtain y − x + 1 pedigrees.

• #SBATCH–ntasks=1 - defines the number of array tasks per processor. We request 1 processor to run
each task (i.e. each one of our 150 pedigrees, will use 1 CPU).

• #SBATCH–mem=40000M - specifies memory that we require to run each task in the array. We request
4GB.

• #SBATCH–time=23:59:00 - specifies the time limit for each task. If we allocate 24 hours or more to run
a task, we must wait longer in the queue to start a task than if we allocate less than 24 hours.

• module load nixpkgs/16.09 gcc/5.4.0 r/3.5.0 - loads the R version that we installed.

• echo "This is job $ SLURM_ARRAY_TASK_ID out of $ SLURM_ARRAY_TASK_COUNT jobs." - prints
the job number out of 150 tasks.

We use the R CMD BATCH command to submit the SimRVpedigree.R script to the cluster. The contents of
the script is given below.
# load the SimRVPedigree library
library(SimRVPedigree)

# Create hazard object from AgeSpecific_Hazards data
data(AgeSpecific_Hazards)
my_HR = hazard(AgeSpecific_Hazards)

# Get the Unix environmental variable for array job id.
# This id is created by the cluster for each job.
dID = Sys.getenv("SLURM_ARRAY_TASK_ID")

# Set a seed value to assure the reproducibility.
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seed = as.numeric(dID)
set.seed(seed)

generatePeds = function(dataID){

# Read the R function that do the analysis
out = sim_RVped(hazard_rates = my_HR,

GRR = 50, FamID = dataID,
RVfounder = FALSE,
founder_byears = c(1880, 1920),
ascertain_span = c(2000, 2010),
stop_year = 2020,
recall_probs = c(1, 1, 1, 1, 0.75, 0.5, 0.25, 0.125, 0),
carrier_prob = 0.001,
num_affected = 4,
first_diagnosis = 1940)[[2]]

# Save the results separately for each dataset.
write.table(out, file = paste0("/project/6007536/epasiedn/Array_jobs/",

dataID,".txt"))
}

# Run the function.
generatePeds(dID)

In the above script, we create a function generatePeds() which calls the sim_RVped() function. The
generatePeds() function has one argument,dataID, for the task identifier created by the cluster scheduler.
The environment variable, SLURM_ARRAY_TASK_ID, identifies each task in the array. In the last two lines
of the R script above, we use dID = Sys.getenv("SLURM_ARRAY_TASK_ID") to get the task identifier and
assign it as the argument to the generatePeds() function. dID is also assigned as the random seed for each
pedigree. Since each pedigree is a task that is run separately on a different CPU in the cluster, we want to
assign a different seed value each time.

Among the 150 tasks, 140 manage to run within the allocated time period. Some tasks take longer because
some pedigrees take a longer time to ascertain. The unfinished tasks are run again, with a different random
seed. We use the linux command ls to identify the finished jobs. This command returns all the files in our
directory, so that we can see which task IDs are missing. Among all 150 tasks, IDs 14, 30, 48, 50, 63, 73, 83,
94, 102 and 129 are unfinished. The following code chunk shows how we identify the unfinished tasks.

[epasiedn@cedar1 Array_jobs_check]$ ls
100.txt 140.txt 45.txt 88.txt slurm-19422255_124.out slurm-19422255_26.out 64.out
101.txt 141.txt 46.txt 89.txt slurm-19422255_125.out slurm-19422255_27.out 65.out
103.txt 142.txt 47.txt 8.txt slurm-19422255_126.out slurm-19422255_28.out 66.out
104.txt 143.txt 49.txt 90.txt slurm-19422255_127.out slurm-19422255_29.out 67.out
105.txt 144.txt 4.txt 91.txt slurm-19422255_128.out slurm-19422255_2.out 68.out
106.txt 145.txt 51.txt 92.txt slurm-19422255_129.out slurm-19422255_30.out 69.out
107.txt 146.txt 52.txt 93.txt slurm-19422255_12.out slurm-19422255_31.out 6.out
108.txt 147.txt 53.txt 95.txt slurm-19422255_130.out slurm-19422255_32.out 70.out
109.txt 148.txt 54.txt 96.txt slurm-19422255_131.out slurm-19422255_33.out 71.out
10.txt 149.txt 55.txt 97.txt slurm-19422255_132.out slurm-19422255_34.out 72.out
110.txt 150.txt 56.txt 98.txt slurm-19422255_133.out slurm-19422255_35.out 73.out
111.txt 15.txt 57.txt 99.txt slurm-19422255_134.out slurm-19422255_36.out 74.out
112.txt 16.txt 58.txt 9.txt slurm-19422255_135.out slurm-19422255_37.out 75.out
113.txt 17.txt 59.txt job_array.sh slurm-19422255_136.out slurm-19422255_38.out 76.out
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114.txt 18.txt 5.txt SIMrvpedigree.R slurm-19422255_137.out slurm-19422255_39.out 77.out
115.txt 19.txt 60.txt SIMrvpedigree.Rout slurm-19422255_138.out slurm-19422255_3.out 78.out

61.txt slurm-19422255_100.out slurm-19422255_139.out slurm-19422255_40.out 79.out
7.out
80.out

116.txt 1.txt
117.txt 20.txt 62.txt slurm-19422255_101.out slurm-19422255_13.out slurm-19422255_41.out 
118.txt 21.txt 64.txt slurm-19422255_102.out slurm-19422255_140.out slurm-19422255_42.out 
119.txt 22.txt 65.txt slurm-19422255_103.out slurm-19422255_141.out slurm-19422255_43.out 81.out

11.txt 23.txt 66.txt slurm-19422255_104.out slurm-19422255_142.out slurm-19422255_44.out 82.out
83.out
84.out
85.out
86.out
87.out
88.out

126.txt 2.txt 89.out
8.out

120.txt 24.txt 67.txt slurm-19422255_105.out slurm-19422255_143.out slurm-19422255_45.out 
121.txt 25.txt 68.txt slurm-19422255_106.out slurm-19422255_144.out slurm-19422255_46.out 
122.txt 26.txt 69.txt slurm-19422255_107.out slurm-19422255_145.out slurm-19422255_47.out 
123.txt 27.txt 6.txt slurm-19422255_108.out slurm-19422255_146.out slurm-19422255_48.out 
124.txt 28.txt 70.txt slurm-19422255_109.out slurm-19422255_147.out slurm-19422255_49.out 
125.txt 29.txt 71.txt slurm-19422255_10.out slurm-19422255_148.out slurm-19422255_4.out 

72.txt slurm-19422255_110.out slurm-19422255_149.out slurm-19422255_50.out 
126.txt 31.txt 74.txt slurm-19422255_111.out slurm-19422255_14.out slurm-19422255_51.out 
127.txt 32.txt 75.txt slurm-19422255_112.out slurm-19422255_150.out slurm-19422255_52.out 90.out

12.txt 34.txt 76.txt slurm-19422255_113.out slurm-19422255_15.out slurm-19422255_53.out 91.out
92.out
93.out
94.out

130.txt 35.txt 77.txt slurm-19422255_114.out slurm-19422255_16.out slurm-19422255_54.out 
131.txt 36.txt 78.txt slurm-19422255_115.out slurm-19422255_17.out slurm-19422255_55.out 
132.txt 37.txt 79.txt slurm-19422255_116.out slurm-19422255_18.out slurm-19422255_56.out 
133.txt 38.txt 7.txt slurm-19422255_117.out slurm-19422255_19.out slurm-19422255_57.out 95.out

134.txt 39.txt 80.txt slurm-19422255_118.out slurm-19422255_1.out slurm-19422255_58.out 96.out
81.txt slurm-19422255_119.out slurm-19422255_20.out slurm-19422255_59.out 97.out

98.out
99.out
9.out

135.txt 3.txt
136.txt 40.txt 82.txt slurm-19422255_11.out slurm-19422255_21.out slurm-19422255_5.out 
137.txt 41.txt 84.txt slurm-19422255_120.out slurm-19422255_22.out slurm-19422255_60.out 
138.txt 42.txt 85.txt slurm-19422255_121.out slurm-19422255_23.out slurm-19422255_61.out 
139.txt 43.txt 86.txt slurm-19422255_122.out slurm-19422255_24.out slurm-19422255_62.out

13.txt 44.txt 87.txt slurm-19422255_123.out slurm-19422255_25.out slurm-19422255_63.out

For these unfinished tasks, we need to assign a new seed value which we set to be job number * 20; i.e. seed
= as.numeric(dID)*20. We select 20 as the multiplier to avoid repeating the seed values. For example,
a multiplier of 10 doesn’t work because if we multiply task ID 14 by 10, we get 140 as the seed, which
has already been used for pedigree ID 140 in the previous run. In this way, we obtain the 150 simulated
pedigrees in separate files (i.e. 1.txt, 2.txt,. . . ,150.txt), read them all into R and save them in a single file
called study_peds.txt. We use a for-loop to read in the pedigrees and save them in a list. Then we combine
all 150 list elements into a single data frame as shown in the next code chunk.
## Load all 150 simulated pedigrees, save them in a single list, and write them to a text file.

study_peds <- list()

for(i in 1:150){

study_peds[[i]] <- read.table(paste0(i,".txt"))

}

study_peds <- do.call("rbind", study_peds)

write.table(study_peds, file = "study_peds.txt")
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3 Examine the simulated pedigrees
In the next code chunk, we read study_peds.txt into R as a data frame and convert it to class ped using
the new.ped() function of the SimRVPedigree R package.
library(SimRVPedigree)

# import study peds
study_peds <- read.table("study_peds.txt", header=TRUE, sep= " ")

# create an object of class ped, from a data.frame,
study_peds <- new.ped(study_peds)

head(study_peds)

## FamID ID sex dadID momID affected DA1 DA2 birthYr onsetYr deathYr available
## 1 1 1 1 NA NA TRUE 0 1 1881 1952 1955 TRUE
## 2 1 2 0 NA NA FALSE 0 0 NA NA NA FALSE
## 3 1 3 1 2 1 TRUE 0 1 1901 1970 1981 TRUE
## 5 1 4 0 2 1 TRUE 0 1 1910 2000 2002 TRUE
## 6 1 5 1 2 1 FALSE 0 0 1913 NA 1991 TRUE
## 8 1 7 1 6 3 FALSE 0 1 1924 NA 1956 TRUE
## Gen proband
## 1 1 FALSE
## 2 1 FALSE
## 3 2 FALSE
## 5 2 TRUE
## 6 2 FALSE
## 8 3 FALSE

The rows of study_peds represent individuals and the columns are:

1. FamID- the identity number of the ascertained pedigree.

2. ID- the individual identity number.

3. sex- sex of the individual, with sex = 0 for males and sex = 1 for females.

4. dadID- individual identity number of the father.

5. momID- individual identity number of the mother.

6. affected- the disease status of the individual, with affected = TRUE if the individual has developed
disease and affected = FALSE otherwise.

7. DA1- the cRV status of the paternally inherited allele, with DA1 = 1 if the cRV is inherited and 0
otherwise.

8. DA2- the cRV status of the maternally inherited allele, with DA2 = 1 if the cRV is inherited and 0
otherwise.

9. birthYr- the birth year of the individual.

10. onsetYr- the disease-onset year of the individual, when applicable, and NA otherwise.

11. deathYr- the death year of the individual, when applicable, and NA otherwise.

12. RR- the genetic relative-risk of disease for carriers of the cRV.

13. available- the availability of life-events information on the individual. Specifically, if an individual
descends from the seed founder and is recalled by the proband then available = TRUE. If an individual
descends from the seed founder and is not recalled by the proband then available = FALSE. Finally,
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if an individual is not descended from the seed founder (i.e. has married into the pedigree) available
= FALSE.

14. Gen- the generation of the individual within the pedigree.

15. proband- the proband status, with proband = TRUE if the individual is the proband and FALSE otherwise.

Let’s use SimRVPedigree’s built-in plot() function to draw a pedigree in study_peds, in the year 2020. We
will take the 39th pedigree out of the 150 generated:
plot(study_peds[study_peds$FamID == 39, ], ref_year = 2020, cex = 0.5)

ID: 2 ID: 1 
 (1918 − 2006)
 onset age: 86

ID: 3 
 (1937 − 1960)

ID: 4 
 (1938 − 1992)
 onset age: 45

ID: 6 ID: 5 
 (1941 − 2010)

ID: 11 ID: 7
 age: 63

ID: 8 
 (1957 − 1984)
 onset age: 21

ID: 9 
 (1958 − 2000)

ID: 10
 age: 50

 onset age: 40

ID: 15 

ID: 12 
 (1985 − 2007)

ID: 13 
 (1985 − 2003)

ID: 14
 age: 25

ID: 16
 age: 14

affected

proband

RVstatus

Reference Year: 2020

The legend identifies affected individuals, the proband, and the cRV status of the individuals. Disease-affected
individuals have solid shading in the upper-left third of their symbol (IDs 1, 4, 8 and 10). The proband (ID
10) has shading in the lower portion of their symbol. Carrier individuals (IDs 1, 4, 7, 9, 10, 12 and 13) have
shading in the upper-right portion of their symbol. The seed founder is the individual with ID 1 and he and
all his descendants have ages relative to the reference year of 2020. We create age labels at a selected reference
year by providing the argument ref_year to the plot() function. The birth year and the death year of dead
individuals are displayed in parentheses. Following standard practice in medical genetics, individuals who
have died as of the reference year have slashes through their symbols. The age of the individuals who are
alive at the end of the reference year displays under their symbol. Any individual with disease onset before
the end of the reference year has a disease-onset year given under their symbol.

For reference, session information giving the versions of R and packages used by the SimRVPedigree package
is as follows.
# Get the session information
sessionInfo()

## R version 4.2.3 (2023-03-15 ucrt)
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## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Canada.utf8 LC_CTYPE=English_Canada.utf8
## [3] LC_MONETARY=English_Canada.utf8 LC_NUMERIC=C
## [5] LC_TIME=English_Canada.utf8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] SimRVPedigree_0.4.4
##
## loaded via a namespace (and not attached):
## [1] quadprog_1.5-8 lattice_0.20-45 digest_0.6.29 grid_4.2.3
## [5] magrittr_2.0.3 evaluate_0.18 rlang_1.0.6 stringi_1.7.8
## [9] cli_3.4.0 rstudioapi_0.14 kinship2_1.9.6 Matrix_1.5-1
## [13] rmarkdown_2.18 tools_4.2.3 stringr_1.4.1 xfun_0.35
## [17] yaml_2.3.6 fastmap_1.1.0 compiler_4.2.3 htmltools_0.5.3
## [21] knitr_1.41

In the third and final step of our workflow, to be discussed next, the file study_peds.text will be used to
simulate the exome-sequencing data for the 150 ascertained pedigrees.
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This document discusses the gene-dropping step in our work-flow (the orange box labelled 3). Gene-dropping
in the ascertained pedigrees is the third and final step required to simulate the exome-sequencing data of
affected individuals and their connecting relatives along a line of descent in the ascertained pedigrees.

Simulate SNV data for
pedigree founders


Specify the demographic model


Create recombination map for SLiM


Simulate ascertained
pedigrees

Simulate SNV data for
affected individuals in

pedigrees 

Select causal variants
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SLiM_output.txt
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3

Read and process SLiM data in R

study_peds.txt

Generate data files


Ascertain a pedigree


 Simulate pedigrees on the Compute
Canada cluster


Examine the simulated pedigrees 


Figure 1: Work-flow for simulating the exome-sequencing data for ascertained pedigrees.

1 Read and process SLiM data in R
Our final goal is to simulate exome sequences for disease-affected members of the ascertained pedigrees. In the
first supplementary materials document we obtained exome sequences for an American-admixed population.
In the second supplementary materials document we obtained the ascertained pedigrees. Now, we have
only to select sequences for the pedigree founders from the population, and then “drop” them through the
pedigrees to descendants. We use the gene-dropping functions available in the SimRVSequences (Nieuwoudt,
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Brooks-Wilson, and Graham 2020) R package, which require sparse matrices of SNV sequences. Unfortunately,
the large population size and number of single-nucleotide variants (SNVs) exceeds R’s memory capacity
for a single sparse matrix. Therefore, we read in the population sequences and create the sparse matrices
chromosome-by-chromosome, as described next.

We start by reading the SLiM simulation output, SLiM_output.txt, into R. This text file is of size approx-
imately 6 GB and contains all the exome sequences in the American-admixed population. The file takes
approximately 1 minute to read on a Windows OS with an i7-8550U @ 1.8GHz,16GB of RAM.
library(Matrix) #this package is required throughout this document
# Read the text file to R.
# Note: Change the path for the file as necessary.
exData <- readLines("D:/SFU_Vault/SLiM_Output/SLiM_output.txt")

Next, we select rare SNVs based on their population derived (mutated) allele frequencies, as described in the
next subsection.

1.1 Extract the rare variants
First, we find the line numbers of the mutation and genome header sections in the SLiM output. The
formatting of the SLiM output is described in first supplementary materials document.
# Find heading location (i.e. file line number) for mutations.
MutHead <- which(exData == "Mutations:")

# Find heading location (i.e. file line number) for genomes.
GenHead <- which(exData == "Genomes:")

We create a data frame to store all the SNVs as follows.
# Extract mutation data from SLiM's Mutation output.
# Only retaining the tempID, position, selection coefficients and count
# of each mutation.
MutOut <- do.call(rbind, strsplit(exData[(MutHead + 1):(GenHead - 1)],

split = " ", fixed = TRUE))

MutData <- data.frame(tempID = as.numeric(MutOut[, 1]),
type = MutOut[, 3],
position = as.numeric(MutOut[, 4]),
selCoef = as.numeric(MutOut[, 5]),
count = as.numeric(MutOut[, 9]),
stringsAsFactors = TRUE)

head(MutData)

## tempID type position selCoef count
## 1 7229 m2 51287555 0 60626
## 2 13218 m2 39812003 0 9536
## 3 5202 m2 36490340 0 64099
## 4 25103 m2 41991968 0 3732
## 5 14264 m2 54793604 0 46668
## 6 4333 m2 30267920 0 79908

The MutData data frame contains all the SNVs in the simulated American-admixed population. The rows of
this data frame correspond to SNVs and the columns to the following SNV characteristics of interest:

1. tempID- specifies the SLiM-generated identifier number which helps to identify the SNV.

2. type- represents the type of the SNV.“m_1” and “m_2” catalog the non-synonymous and synonymous
SNVs, respectively.
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3. position- indicates the base-pair position of the SNV on the chromosome.

4. selCoef- represents the selection coefficient of the SNV.

5. count- specifies the number of copies of the SNV in the population.

Next we change the default behavior of the starting positions in SLiM. The starting position is zero in SLiM,
but R starts its indexing at position one. To accommodate R indexing, we add one to the tempID and
position columns in the MutData data frame.
# Add 1 to temp ID so that we can easily associate mutations to columns.
# By default SLiM's first tempID is 0, not 1.
MutData$tempID <- MutData$tempID + 1

# First position in slim is 0, not 1
MutData$position <- MutData$position + 1

Then we calculate the population derived-allele frequencies of the SNVs. We divide the number of copies
of the SNV in the population (the count column in the MutData) by the total number of sequences in the
population.
# Get the population count of sequences.
popCount <- as.numeric(unlist(strsplit(exData[1], split = " ",

fixed = TRUE))[4])
# Calculate the population derived allele frequency.
# Divide the allele count by the population size.
MutData$afreq <- MutData$count/(popCount)

# Order Mutation data set by tempID, so that (later) we can order
# the mutations on each haplotype by their genomic position.
MutData <- MutData[order(MutData$tempID), ]

After calculating the population derived-allele frequencies, we keep the SNVs which are rare in the population.
To select only the rare variants (RVs), we assign a colID to each based on a threshold value for its minor-allele
frequency (MAF). RVs with MAFs below the threshold are assigned non-zero colIDs that increase according
to their physical order on the exome. Common SNVs are assigned a colID of zero, as they will be discarded.
# Create a threshold value
maf <- 0.01
keep_SNVs <- (MutData$afreq <= maf | MutData$afreq >= (1 - maf))

# Variants with MAF below the threshold are assigned non-zero
# colIDs according their physical order on the exome.

MutData$colID <- cumsum(keep_SNVs)*(keep_SNVs)

We create a new data frame, RareMutData, of RVs in the American-admixed population.
# Using the identified colID, create data frame of rare mutations only.
RareMutData <- MutData[MutData$colID > 0, ]

We identify the chromosome of each RV with the reMap_mutations() internal function in the SimRVSequences
package. This function requires a recombination map identifying the exon positions on chromosomes. The
recombination map is obtained by calling the create_slimMap() function in the SimRVSequences R package.
# Create recombination map for exon-only data using
# the hg_exons dataset.(From SimRVSequences.)
recomb_map <- SimRVSequences:::create_slimMap(exon_df = hg_exons)
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# Use reMap_mutations function to identify the chromosome
# number on which each SNV resides.
RareMutData <- SimRVSequences:::reMap_mutations(mutationDF = RareMutData,

recomb_map)

The call to reMap_mutation() adds a new column, chr, to RareMutData. We are now in a position to extract
RV sequences from the SLiM output, as discussed in the next subsection.

1.2 Extract sequences of RVs
First we get the line number of the genome-header section in the SLiM output:
# Find heading location (i.e. file line number) for genomes.
GenHead <- which(exData == "Genomes:")

In the genomes section of the SLiM output, rows and columns represent, respectively, exome sequences and
SLiM-generated identifier numbers for SNVs. We extract RV sequences with the extract_tempIDs() internal
function of the SimRVSequences package.
# Determine future row and column position of each mutation
# listed in genomes.
RareGenomes <- lapply(1:(popCount), function(x){

SimRVSequences:::extract_tempIDs(mutString = exData[GenHead + x],
rarePos = MutData$colID)

})

For the American-admixed population, we now have a database of the RVs (RareMutdata) as well as a catalog
of the sequences containing them (RareGenomes). These sequences will be separated by chromosome in the
next subsection.

1.3 Prepare chromosome-specific population data
The code chunk below separates the large number of RVs and sequences in the American-admixed population
by chromosome. As the code chunk takes approximately 16 hours to run on a Windows OS with an i7-8550U
@ 1.8GHz,16GB, we recommend against running it to knit the document. Instead, load the Chromwide.Rdata
file which can be found in the Zenodo repository.

We use the foreach() function to parallelize the looping over the 22 chromosomes. To start, we create a
“haplotypes” matrix for the corresponding chromosome. The haplotypes matrix is a sparse matrix of class
dgCMatrix defined in the SimRVSequences package. The rows of the matrix correspond to sequences in the
population and the columns to RVs that lie on the targeted chromosome. For any chromosome, the number
of rows in the haplotypes matrix is the number of sequences in the population. We get the IDs for RVs that
lie on a particular chromosome from the RareMutData R object and match them to the column IDs of the
haplotypes in the RareGenome R object. The RVs are ordered according to their base-pair position along
the chromosome. The RVs in the columns of the chromosome-specific haplotypes matrix GenoData and in
the rows of the chromosome-specific mutation data-frame RareMutData_new are named according to their
chromosome and base-pair position. The following code chunk implements these steps.
#------------------#
# Get the results by chromosome
#------------------#
# Load required libraries to parallel the code
library(foreach)
library(doParallel)

# Get unique chromosome IDs.
chrID <- unique(RareMutData$chrom)
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# Create empty lists to save the results
chrby_haplotype <- list()
chrby_SNVs <- list()
output <- list()

# Since we have a large number of SNVs in each chromosome,
# we parallelize the function to speed up the simulation time.
# Make the clusters.
cl <- makeCluster(detectCores() - 1)
# Register the clusters.
registerDoParallel(cl)

# Create a foreach loop.
out <- foreach(k= 1:length(chrID),

.packages = c("Matrix", "tidyverse", "data.table",
"SimRVSequences"),

.multicombine = TRUE)%dopar%{
#-----------#
# Genotypes #
#-----------#
# Get the column positions of the sparse matrix for the kth chromosome.
# We use the jpos output that contains the
# data from the genome section of the SLiM output.
jpos_chr <- lapply(RareGenomes,function(x){

x[RareMutData[RareMutData$colID
%in% x, ]$chrom == chrID[k]]})

# Get the rows of the sparse matrix for the kth chromosome.
ipos_chr <- lapply(1:length(jpos_chr), function(x){

rep(x, length(jpos_chr[[x]]))})

# Create sparse matrix containing SNVs (columns)
# for each genome (row).
GenoData <- sparseMatrix(i = unlist(ipos_chr),

j = unlist(jpos_chr),
x = rep(1, length(unlist(jpos_chr))))

GenoData <- GenoData[, -which(colSums(GenoData) == 0)]

#-----------#
# SNVs #
#-----------#

# Identify the SNV matrix for each chromosome.
Mute_uni <- unlist(jpos_chr)
RareSNVs <- RareMutData[RareMutData$colID %in% Mute_uni, ]

# Order by genomic position of rare SNV.
GenoData <- GenoData[, order(RareSNVs$position)]
RareSNVs <- RareSNVs[order(RareSNVs$position), ]
RareSNVs$colID <- 1:nrow(RareSNVs)

# Remove the old tempID.
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RareSNVs <- RareSNVs[, -1]

# Change the row names and column names of the mutation data frame.
RareMutData_new <- RareSNVs
row.names(RareMutData_new) = NULL

# Create unique SNV names.
RareMutData_new$SNV <- make.unique(paste0(RareMutData_new$chrom,

sep = "_",
RareMutData_new$position))

# Reduce RareMutData, to the columns we actually need.
RareMutData_new <- RareMutData_new[, c("colID", "chrom", "position",

"afreq", "SNV", "type",
"selCoef")]

# Store the SNVs and haplotypes by chromosome.
output[[k]] <- list(Haplotypes = GenoData,

Mutations = RareMutData_new)

}

stopCluster(cl)

# Save the result
save(out, file = "Chromwide.Rdata")

1.4 Identify pathway RVs
To identify the RVs that lie on the pathway of interest, we use the identify_pathwaySNVs() function in the
SimRVSequences package. We supply the apoptosis sub-pathway centered about the TNFSF10 gene in the
UCSC Genome Browser’s Gene Interaction Tool as discussed in Nieuwoudt, Brooks-Wilson, and Graham
(2020). The data in this sub-pathway are contained in the hg_apopPath data set in SimRVSequences R
package.
# Load the output generated from the previous code chunk.
# Note: Change the path for the file as necessary.

load("Chromwide.Rdata")

#----------------------#
# Identify Pathway SNVs #
#----------------------#
pathway_out <- lapply(out, function(x){

RareMutData_pathway = SimRVSequences:::identify_pathwaySNVs(markerDF =
x$Mutations, pathwayDF = hg_apopPath )})

The call to identify_pathwaySNVs() adds an additional column to the mutation data frame labelled
pathwaySNV. This column identifies RVs that lie on the pathway as TRUE.

We combine the chromosome-specific haplotypes matrices with the chromosome-specific mutation data frames
to get list elements for chromosomes. We then combine the chromosome-specific list elements into a list of
chromosomes as follows.
# Create a list of 22 elements representing chromosomes.
# Each element is itself a list which contains the haplotypes
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# matrix and the mutation data frame for that chromosome.

slim_out <- lapply(1:22, function(x){list(Haplotypes = out[[x]]$Haplotypes,
Mutations = pathway_out[[x]])})

The format of slim_out is discussed in the next subsection.

1.5 Discuss format of chromosome-specfic population data
The structure of the first element of the slim_out, for chromosome 1, is shown below.
# Get the structure of each list elements of output.
str(slim_out[[1]])

## List of 2
## $ Haplotypes:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## .. ..@ i : int [1:8343173] 86549 579 1814 3424 4089 4909 5912 6565 7663 8422 ...
## .. ..@ p : int [1:84665] 0 1 144 146 189 295 349 362 366 367 ...
## .. ..@ Dim : int [1:2] 107752 84664
## .. ..@ Dimnames:List of 2
## .. .. ..$ : NULL
## .. .. ..$ : NULL
## .. ..@ x : num [1:8343173] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..@ factors : list()
## $ Mutations :'data.frame': 84664 obs. of 8 variables:
## ..$ colID : int [1:84664] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ chrom : int [1:84664] 1 1 1 1 1 1 1 1 1 1 ...
## ..$ position : num [1:84664] 11951 11975 12224 12626 13231 ...
## ..$ afreq : num [1:84664] 9.28e-06 1.33e-03 1.86e-05 3.99e-04 9.84e-04 ...
## ..$ SNV : chr [1:84664] "1_11951" "1_11975" "1_12224" "1_12626" ...
## ..$ type : Factor w/ 2 levels "m1","m2": 1 1 1 1 2 2 1 1 1 1 ...
## ..$ selCoef : num [1:84664] -3.64e-03 -1.33e-06 -2.45e-02 -4.53e-03 0.00 ...
## ..$ pathwaySNV: logi [1:84664] FALSE FALSE FALSE FALSE FALSE FALSE ...

The object slim_out is a list of 22 elements. Each element corresponds to a chromosome and is itself a
list with two elements, a haplotypes matrix and a mutation data frame. The haplotypes matrix contains
the chromosome-specific exome sequences of all 107,752 individuals in the simulated American-admixed
population. Exome sequences for pedigree founders are sampled from the haplotypes matrix. The mutation
data frame contains information on the SNVs that reside on the chromosome. For chromosome 1, the
dimensions of these elements are as follows.
# dimensions of the list element 1
dim(slim_out[[1]]$Haplotypes)

## [1] 107752 84664
dim(slim_out[[1]]$Mutations)

## [1] 84664 8

The number of columns in haplotypes matrix is equal to the number of rows in the mutation data frame. The
first chromosome has 84,664 SNVs. Let’s print the first four rows and 30 columns of its haplotypes matrix.
slim_out[[1]]$Haplotypes[1:6, 1:30]

## 6 x 30 sparse Matrix of class "dgCMatrix"
##
## [1,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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## [2,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [3,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [4,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [5,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [6,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The haplotypes matrix is a sparse matrix of class dgCMatrix from the Matrix package. Rows correspond to
individuals and columns correspond to RVs on chromosome 1. Entries with “1” and “.” indicate the derived
(mutated) allele and the ancestral allele, respectively.

Let’s print the first six rows of the mutation data frame for chromosome 1.
head(slim_out[[1]]$Mutations)

## colID chrom position afreq SNV type selCoef pathwaySNV
## 1 1 1 11951 9.280570e-06 1_11951 m1 -3.638366e-03 FALSE
## 2 2 1 11975 1.327122e-03 1_11975 m1 -1.328507e-06 FALSE
## 3 3 1 12224 1.856114e-05 1_12224 m1 -2.454038e-02 FALSE
## 4 4 1 12626 3.990645e-04 1_12626 m1 -4.526557e-03 FALSE
## 5 5 1 13231 9.837404e-04 1_13231 m2 0.000000e+00 FALSE
## 6 6 1 13411 5.011508e-04 1_13411 m2 0.000000e+00 FALSE

The rows and columns of the mutation data frame represent the RVs and their characteristics, respectively.
The column variable colID links the rows in the mutation data frame to the columns of haplotypes matrix,
chrom is the chromosome of the RV, position is the position of the RV along the chromosome in base pairs,
afreq is the RV’s population derived allele frequency, SNV is an unique character identifier for the RV, and
pathwaySNV identifies whether or not RVs are located within the apoptosis sub-pathway of interest.

The next task is to select the causal rare variants (cRVs).

2 Select causal variants
We create a function, select_cRV(), to select cRVs. The functions considers RVs in genes on an apoptosis
sub-pathway as candidates for cRVs. Among these, cRVs are selected from population singletons, on the basis
of their absolute selection coefficients, until the cumulative probability of a sequence carrying a cRV in the
population is 0.001. Note that selection coefficients are less than or equal to zero because mutations are
deleterious or selectively neutral in the SLiM simulation. The function has two required arguments:

1. chrm_by_out - represents the chromosome-by-chromosome results in the slim_out R object.

2. cumAF - specifies the cumulative probability of a sequence carrying a risk variant in the population.

select_cRV() selects the relevant mutation data frames and haplotypes matrices from the slim_out R
object. Singleton SNVs which lie on the specified pathway (apoptosis sub-pathway) are determined from the
haplotypes matrices of the cumAF argument. A weight is assigned to each singleton in the pathway according
to the value of its selection coefficient (which is ≤ 0 because mutations are set to be deleterious or selectively
neutral in the SLiM simulation). The weights are calculated as:

wi = |Si|
| ∑N

i Si|
,

where wi is weight of ith SNV; Si is the selection coefficient of the ith SNV and N is the total number of
singletons in the specified pathway. These weights are used as the sampling probabilities for drawing causal
rare variants (cRVs) from the pool of singleton SNVs. The cRVs are sampled randomly with these weights
until their cumulative, derived-allele frequency in the population is 0.001.

The select_cRV() function is:
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select_cRV <- function(chrm_by_out, cumAF){

# Select all the mutation data frames in the slim_out object.
SNV_df <- lapply( chrm_by_out, `[[`, 'Mutations')

# Select all haplotypes matrices in the slim_out object.
haplo <- lapply( chrm_by_out, `[[`, 'Haplotypes')

# Get the ColIDs of singletons under each chromosome.
sing_colID <- lapply(lapply(haplo, function(x){

which(colSums(x) == 1)}), unlist)

# Select only singletons in the mutation data frames.
singletons <- lapply(1:22, function(x){

SNV_df[[x]][SNV_df[[x]]$colID %in% sing_colID[[x]], ]})

# Combine all the 22 data frames (contains only singletons)
# into one data frame.
SNV_singletons <- do.call(rbind, singletons)

# Assign weights to each marker based on their selection coefficient values.
SNV_singletons$weight <-

abs(SNV_singletons$selCoef)/abs(sum(SNV_singletons$selCoef))

# Select SNVs(singletons) which lie on our pathway of interest.
SNV_pathway <- SNV_singletons[SNV_singletons$pathwaySNV == TRUE, ]

# Initialize vectors to store the cumulative sum of allele frequencies and
# cRVs.
cum <- 0
cSNVs <- c()

# The loop runs while the cumulative sum of the allele frequency
# is less than or equal to CumAF (0.001).
while (cum <= cumAF) {

# Select a SNV proportional to its weights.
selected_cRVs <- sample(SNV_pathway$SNV, 1,

prob = c(SNV_pathway$weight))
# Get the allele frequency of the selected SNV.
af <- SNV_pathway[SNV_pathway$SNV == selected_cRVs, 4]
# Update the cumulative sum of the allele frequencies of causal SNVs.
cum <- cum + af
# Remove the selected SNV from the mutation data frame.
# If not we may get this same SNV again.
SNV_pathway <- SNV_pathway[-(which(SNV_pathway$SNV == selected_cRVs)),

]
# Save the selected cRVs in a vector
cSNVs <- c(cSNVs, selected_cRVs)

}
# Create a new variable in our mutation data frame to represent
# whether a SNV is a cRV or not.
SNV_combine <- do.call("rbind", SNV_df)
SNV_combine$is_CRV <- SNV_combine$SNV %in% cSNVs
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return(SNV_combine)
}

Below is an example call to select_cRV().
# Set a seed value.
set.seed(1987)

# Run the function.
cRV_data <- select_cRV(chrm_by_out = slim_out , cumAF = 0.001)

# Display the function output.
head(cRV_data)

## colID chrom position afreq SNV type selCoef pathwaySNV
## 1 1 1 11951 9.280570e-06 1_11951 m1 -3.638366e-03 FALSE
## 2 2 1 11975 1.327122e-03 1_11975 m1 -1.328507e-06 FALSE
## 3 3 1 12224 1.856114e-05 1_12224 m1 -2.454038e-02 FALSE
## 4 4 1 12626 3.990645e-04 1_12626 m1 -4.526557e-03 FALSE
## 5 5 1 13231 9.837404e-04 1_13231 m2 0.000000e+00 FALSE
## 6 6 1 13411 5.011508e-04 1_13411 m2 0.000000e+00 FALSE
## is_CRV
## 1 FALSE
## 2 FALSE
## 3 FALSE
## 4 FALSE
## 5 FALSE
## 6 FALSE

The output of the function is a mutation data frame with an additional column, is_CRV. This column gives
the RVs selected as causal variants. We may then print the number of cRVs in the population, their cumulative
allele frequencies in the population and their chromosomes, as follows.
# Display the number of selected cRVs in the population.
length(which(cRV_data$is_CRV == TRUE))

## [1] 108
# Print the cumulative allele frequency in the population.
round(sum(cRV_data$afreq[which(cRV_data$is_CRV==TRUE)]), 5)

## [1] 0.001
# Display the number of cRVs that are selected from each chromosome.
table(cRV_data[cRV_data$is_CRV == TRUE, ]$chrom)

##
## 1 2 3 4 5 6 7 8 10 11 16 17 18 19 21 22
## 1 21 5 3 8 8 5 11 8 4 4 4 13 1 7 5

According to the above outputs, 108 RVs are sampled as cRVs. Their cumulative derived-allele frequency in
the population is 0.001. The table summarizes the number of cRVs on each chromosome. For example, only
one cRV is on chromosome 1; 21 cRVs reside in chromosome 2 and so forth.

Then we add the is_CRV column to all 22 mutation data frames in the slim_out object as follows.
# Add is_CRV column to all 22 mutation data frames
slim_out <- lapply(1:22, function(x){
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list(Haplotypes = slim_out[[x]]$Haplotypes,
Mutations = cRV_data[cRV_data$chrom == x, ])})

We are now ready to simulate exome sequences for the affected individuals in the 150 ascertained pedigrees,
as described in the next section.

3 Simulate genetic data for affected pedigree members
The sim_RVstudy() function of the SimRVSequences R package simulates genetic sequence data in pedigrees,
but expects only a single population database of sequences as an argument in the form of a sparse matrix
of SNV haplotypes and an associated mutation data frame. Unfortunately, we cannot use sim_RVstudy()
without modification because the number of individuals and RVs in our American-admixed population far
exceeds R’s memory. The fundamental problem is that the population sequences of RVs cannot be contained
in a single sparse matrix. We therefore modify sim_RVstudy() and various supporting functions in the
SimRVSequences package to handle chromosome-specific databases, as described in the next subsections.

3.1 Modify sim_RVstudy() to simulate data by chromosome
We add a new argument, fam_RVs, to sim_RVstudy() that identifies the familial cRVs. This argument is
used to check whether or not the familial cRV lies on the targeted chromosome. If the familial cRV is on the
targeted chromosome, the chromosome is segregated through the pedigree with conditional gene-dropping
(Nieuwoudt, Brooks-Wilson, and Graham 2020). Otherwise, the chromosome is segregated through the
pedigree according to Mendelian law. Below, the updated sim_RVstudy_new() function has these changes as
marked in the comments.
sim_RVstudy_new <- function(ped_files, SNV_data, fam_RVs,

affected_only = TRUE,
remove_wild = TRUE,
pos_in_bp = TRUE,
gamma_params = c(2.63, 2.63/0.5),
burn_in = 1000,
SNV_map = NULL, haplos = NULL){

if (!(is.null(SNV_map)) | !is.null(haplos)) {
stop("Arguments 'SNV_map' and 'haplos' have been deprecated.

\n Instead, please supply to argument 'SNV_data' an object of class SNVdata.
Execute help(SNVdata) for more information." )

}

if (!(SimRVSequences:::is.SNVdata(SNV_data))) {
stop("Expecting SNV_data to be an object of class SNVdata")

}

#check to see if DA1 and DA2 are both missing, if so
#assume fully sporadic and issue warning
if (is.null(ped_files$DA1) & is.null(ped_files$DA2)) {

ped_files$DA1 <- 0
ped_files$DA2 <- 0
warning("\n The variables DA1 and DA2 are missing from ped_files.

\n Assuming fully sporadic ...
\n...setting DA1 = DA2 = 0 for all pedigrees.")

}

#check ped_files for possible issues

136



SimRVSequences:::check_peds(ped_files)

#assign generation number if not included in ped_file
if(!"Gen" %in% colnames(ped_files)){

ped_files$Gen <- unlist(lapply(unique(ped_files$FamID),
function(x){

SimRVSequences:::assign_gen(ped_files[
ped_files$FamID == x, ])}))

}

# save mutations and haplotypes in SNV_map and haplos objects
SNV_map = SNV_data$Mutations
haplos = SNV_data$Haplotypes

#check to see that the sample contains affected relatives when the
#affected_only setting is used
if (affected_only & all(ped_files$affected == FALSE)) {

stop("\n There are no disease-affected relatives in this sample of pedigrees.
\n To simulate data for pedigrees without disease-affected
relatives use affected_only = FALSE.")

}

#collect list of FamIDs
FamIDs <- unique(ped_files$FamID)

#check for pedigree formatting issues
for (i in FamIDs){

SimRVSequences:::check_ped(ped_files[ped_files$FamID == i, ])
}

#Reduce to affected-only pedigrees
if (affected_only) {

#reduce pedigrees to contain only disease-affected relative and
#the individuals who connect them along a line of descent.
Afams <- lapply(FamIDs, function(x){
SimRVSequences:::affected_onlyPed(ped_file = ped_files[which(ped_files$FamID == x),])
})

#combine the reduced pedigrees
ped_files <- do.call("rbind", Afams)
pedfiles <- ped_files
#check to see if any pedigrees were removed due to lack of
#disease affected relatives and issue warning for removed pedigrees
removed_peds <- setdiff(FamIDs, unique(ped_files$FamID))

if (length(removed_peds) > 0){
FamIDs <- unique(ped_files$FamID)
warning("\n There are no disease-affected relatives in the pedigrees with FamID: ",

paste0(removed_peds, collapse = ", "),
"\n These pedigrees have been removed from ped_files.")

}
}
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# Add is_CRV column again if it is not present
if (is.null(SNV_map$is_CRV)) {

SNV_map$is_CRV = FALSE
# warning("The variable is_CRV is missing from SNV_map.",
# "\n ... randomly sampling one SNV to be the cRV for all pedigrees.")

}

# Check whether any candidates for the familial cRV lie on the chromosome.
# This next block of code is changed from the original.
for(k in 1:length(FamIDs)){

if(any(SNV_map$SNV == fam_RVs[k])){
ped_files[ped_files$FamID == k, ]$DA1 <- ped_files[ped_files$FamID ==

k, ]$DA1
ped_files[ped_files$FamID == k, ]$DA2 <- ped_files[ped_files$FamID ==

k, ]$DA2
} else {

ped_files[ped_files$FamID == k, ]$DA1 <- 0
ped_files[ped_files$FamID == k, ]$DA2 <- 0

}
}

#Given the location of familial risk variants, sample familial founder
#haplotypes from conditional haplotype distribution
f_genos <- lapply(c(1:length(FamIDs)), function(x){
sim_FGenos(founder_ids = ped_files$ID[which(ped_files$FamID == FamIDs[x]

& is.na(ped_files$dadID))],
RV_founder = ped_files$ID[which(ped_files$FamID == FamIDs[x]

& is.na(ped_files$dadID)
& (ped_files$DA1 + ped_files$DA2) != 0)],

founder_pat_allele = ped_files$DA1[which(ped_files$FamID == FamIDs[x]
& is.na(ped_files$dadID))],

founder_mat_allele = ped_files$DA2[which(ped_files$FamID == FamIDs[x]
& is.na(ped_files$dadID))],

haplos, RV_col_loc = which(SNV_map$SNV == fam_RVs[x]),
RV_pool_loc = SNV_map$colID[SNV_map$is_CRV])

})

#If desired by user, reduce the size of the data by removing
#markers not carried by any member of the study.
if (remove_wild) {

reduced_dat <- SimRVSequences:::remove_allWild(f_haps = f_genos, SNV_map)
f_genos <- reduced_dat[[1]]
SNV_map <- reduced_dat[[2]]

}

#create chrom_map, this is used to determine the segments over
#which we will simulate genetic recombination
chrom_map <- SimRVSequences:::create_chrom_map(SNV_map)

#convert from base pairs to centiMorgan
if (pos_in_bp) {

options(digits = 9)
chrom_map$start_pos <- SimRVSequences:::convert_BP_to_cM(chrom_map$start_pos)
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chrom_map$end_pos <- SimRVSequences:::convert_BP_to_cM(chrom_map$end_pos)
SNV_map$position <- SimRVSequences:::convert_BP_to_cM(SNV_map$position)

}

#simulate non-founder haploypes via conditional gene drop
ped_seqs <- lapply(c(1:length(FamIDs)), function(x){

sim_seq(ped_file = ped_files[ped_files$FamID == FamIDs[x], ],
founder_genos = f_genos[[x]],
SNV_map, chrom_map,
RV_marker = fam_RVs[x],
burn_in, gamma_params)

})

ped_haplos <- do.call("rbind", lapply(ped_seqs, function(x){x$ped_genos}))
haplo_map <- do.call("rbind", lapply(ped_seqs, function(x){x$geno_map}))

#convert back to base pairs if we converted to CM
if (pos_in_bp) {

options(digits = 9)
SNV_map$position <- SimRVSequences:::convert_CM_to_BP(SNV_map$position)

}

return(SimRVSequences:::famStudy(list(ped_files = pedfiles, ped_haplos = ped_haplos,
haplo_map = haplo_map, SNV_map = SNV_map)))

}

sim_RVstudy() requires the argument SNV_data, an object of class SNVdata as defined by SimRVSequences
package. The SNVdata() function in the SimRVSequences R package converts haplotypes matrices and muta-
tion data frames into an object of class SNVdata. We modified the SNVdata() and the check_SNV_map() func-
tions of the package to align with our changes in sim_RVstudy_new(). The SNVdata() and check_SNV_map()
functions remain the same except that the mutation data frame provided as an argument is now expected
to have a column named SNV rather than marker. When the targeted chromosome contains no cRV, the
original check_SNV_map() function exits with an error. The original function exits because it inappropriately
checks whether the is_CRV column is FALSE for all the SNVs in the mutation data frame. To avoid the
inappropriate exit, we remove this check. The modified versions of SNVdata() and check_SNV_map() are
renamed as SNVdata_new() and check_SNV_map_new() and defined in the next code chunk.
# Define the SNVdata_new() and check_SNV_map_new() functions

# Constructor function for an object of class SNVdata
SNVdata_new <- function(Haplotypes, Mutations, Samples = NULL) {

#check SNV_map for possible issues
check_SNV_map_new(Mutations)

if (!"SNV" %in% colnames(Mutations)) {
Mutations$SNV <- make.unique(paste0(Mutations$chrom, sep = "_", Mutations$position))

}

if (nrow(Mutations) != ncol(Haplotypes)) {
stop("\n nrow(Mutations) != ncol(Haplotypes).

\n Mutations must catalog every SNV in Haplotypes.")
}
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#create list containing all relevant of SNVdata information
SNV_data = list(Haplotypes = Haplotypes,

Mutations = Mutations,
Samples = Samples)

class(SNV_data) <- c("SNVdata", class(SNV_data))
return(SNV_data)

}

# Check SNV_map for possible issues: modified version
check_SNV_map_new <- function(SNV_map){

#check to see if SNV_map contains the column information we expect
# and check to see if we have any missing values.

## Check colID variable
if (!"colID" %in% colnames(SNV_map)) {

stop('The variable "colID" is missing from SNV_map.')
}
if (any(is.na(SNV_map$colID))) {

stop('Error SNV_map: The variable "colID" contains missing values.')
}
if (any(duplicated(SNV_map$colID))) {

stop('Error SNV_map: The variable "colID" contains duplicate values.')
}

## Check chrom variable
if (!"chrom" %in% colnames(SNV_map)) {

stop('The variable "chrom" is missing from SNV_map.')
}
if (any(is.na(SNV_map$chrom))) {

stop('Error SNV_map: The variable "chrom" contains missing values.')
}

## Check position variable
if (!"position" %in% colnames(SNV_map)) {

stop('The variable "position" is missing from SNV_map.')
}

if (any(is.na(SNV_map$position))) {
stop('Error SNV_map: The variable "position" contains missing values.')

}

# Check to see if marker variable exists, and if so do all SNVs have a unique name
if ("SNV" %in% colnames(SNV_map)) {

if (length(unique(SNV_map$SNV)) != nrow(SNV_map)) {
stop('Expecting each SNV to have a unique SNV name in SNV_map.')

}
if (any(is.na(SNV_map$SNV))) {

stop('Error SNV_map: The variable "marker" contains missing values.')
}

}
}

The next subsection discusses how we set the arguments of sim_RVstudy_new().
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3.2 Set arguments to sim_RVstudy_new()
sim_RVstudy_new() requires three arguments: fam_RVs giving the cRV for each ascertained pedigree,
ped_files giving the ascertained pedigrees and SNV_data giving the chromosome-specific exome sequences
and associated mutation data frames for everyone in the American admixed population. We prepare these
three arguments as follows.

(1). fam_RVs

Familial cRVs are sampled on the basis of their population derived-allele frequencies as follows.
# Load all 150 pedigrees.
# Note: Change the path for the file as necessary.
study_peds <- read.table("study_peds.txt", header=TRUE, sep= " ")

# Collect list of FamIDs.
FamIDs <- unique(study_peds$FamID)

# Set the sampling probabilities for causal RVs.
# When the derived-allele frequencies are provided, we sample cRVs
# according to their derived-allele frequency.
sample_prob <- cRV_data$afreq[cRV_data$is_CRV]/

sum(cRV_data$afreq[cRV_data$is_CRV])

set.seed(1987)
# Sample the familial cRV from the pool of potential cRVs with replacement.
familial_RVs <- sample(x = cRV_data$SNV[cRV_data$is_CRV],

size = length(FamIDs),
prob = sample_prob,
replace = TRUE)

# Display first five candidates for familial cRVs.
familial_RVs[1:5]

## [1] "2_201170321" "18_63125128" "10_89015222" "6_108683999" "1_155738619"

The final output, familial_RVs is a vector of length 150 that contains the familial cRVs for each of the
ascertained pedigrees.

(2). ped_files is a data frame that represents the ascertained pedigrees. We have loaded this data frame
previously, in the object study_peds.

(3). SNV_data gives a database of exome sequences for a single chromosome, for everyone in the American-
admixed population. This argument is an object of class SNVdata. Objects of class SNVdata are comprised of
a sparse matrix of exome sequences together with an associated data frame of mutation information.

We first make a list, by chromosome, of objects of class SNVdata by applying the SNVdata_new() function:
# Apply the SNVdata_new function to 22 SNVdata objects comprised
# of sparse matrices of SNV sequences and mutation data frames.
chrom_data <- lapply(slim_out, function(x){

SNV_data = SNVdata_new(Haplotypes = x$Haplotypes,
Mutations = x$Mutations)})

The SNV_data argument of sim_RVstudy_new() will be extracted from the appropriate list element of the
chrom_data object.

The remaining arguments to sim_RVstudy_new() are optional and set with the defaults of the original
sim_RVstudy() function. For example, we use the default value affected_only = TRUE to simulate sequence
data for disease-affected members in the pedigree, as is typical for exome-sequencing studies of families
ascertained for multiple affected relatives. Affected relatives from such families are more likely to carry a
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cRV. We also set the default value of remove_wild = TRUE, to shrink the sequence data for the study by
removing monomorphic SNVs.

To obtain the genetic sequences for disease-affected family members, we loop over chromosomes and apply the
simRV_study_new() function to each. First, however, we load functions required by simRV_study_new().
These functions are slightly modified versions of sim_FGenos() and sim_seq(), two non-exported func-
tions from the SimRVSequences R package. The modified versions are the same as their counterparts in
SimRVsequences, except they use the Matrix package’s which() function instead of base R’s.
# Draw founder genotypes from haplotype distribution given familial RV
sim_FGenos <- function(founder_ids, RV_founder,

founder_pat_allele, founder_mat_allele,
haplos, RV_col_loc, RV_pool_loc) {

#Determine which haplotypes carry the familial RV and which do not
#Determine which haplotypes carry the familial cRV
RV_hap_loc <- which(haplos[, RV_col_loc] == 1)

#Determine which haplotypes do not carry ANY cRV in the pool
no_CRVrows <- SimRVSequences:::find_no_cSNV_rows(haplos, RV_pool_loc)

#here we handle the fully sporadic families
#i.e. families that do not segregate any cSNVs
#In this case, the haplotypes for ALL founders
#is sampled from no_CRVhaps
if(length(RV_founder) == 0){

#sample all founder data from this pool
founder_genos <- haplos[sample(x = no_CRVrows,

size = 2*length(founder_ids),
replace = TRUE), ]

} else {
#sample the paternally inherited founder haplotypes
pat_inherited_haps <- sapply(founder_pat_allele, function(x){

if(x == 0){
SimRVSequences:::resample(x = no_CRVrows, size = 1)

} else {
SimRVSequences:::resample(x = RV_hap_loc, size = 1)

}})

#sample the maternally inherited founder haplotypes
mat_inherited_haps <- sapply(founder_mat_allele, function(x){

if(x == 0){
SimRVSequences:::resample(x = no_CRVrows, size = 1)

} else {
SimRVSequences:::resample(x = RV_hap_loc, size = 1)

}})

#pull the sampled haplotypes from the haplos matrix
founder_genos <- haplos[c(pat_inherited_haps, mat_inherited_haps), ]

}

#create IDs to associate founders to rows in founder_genos
founder_genos_ID <- rep(founder_ids, 2)

#re-order so that founder haplotypes appear in order
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founder_genos <- founder_genos[order(founder_genos_ID), ]
founder_genos_ID <- founder_genos_ID[order(founder_genos_ID)]

return(list(founder_genos, founder_genos_ID))
}

#Now the modified version of the sim_seq() function.
sim_seq <- function(ped_file, founder_genos,

SNV_map, chrom_map, RV_marker,
burn_in = 1000, gamma_params = c(2.63, 2.63/0.5)){

#Get parent/offspring information
#i.e. for each offspring find RV_status,
#parent IDs, and parent alleles at RV locus
PO_info <- SimRVSequences:::get_parOffInfo(ped_file)
PO_info <- PO_info[order(PO_info$Gen, PO_info$offspring_ID),]

ped_genos <- founder_genos[[1]]
ped_geno_IDs <- founder_genos[[2]]

#determine the chromosome number and location of the familial RV locus
#then store as a data frame with chrom in the first column
RVL <- SNV_map[which(SNV_map$SNV == RV_marker),

which(colnames(SNV_map) %in% c("chrom", "position"))]

if(colnames(RVL[1]) != "chrom"){
RVL <- RVL[, c(2, 1)]

}

#for each offspring simulate transmission of parental data
for (i in 1:nrow(PO_info)) {

#simulate recombination events for this parent offspring pair
loop_gams <- SimRVSequences:::sim_gameteInheritance(RV_locus = RVL,

parent_RValleles = PO_info[i, c(6, 7)],
offspring_RVstatus = PO_info[i, 5],
chrom_map,
allele_IDs = c(1, 2),
burn_in, gamma_params)

#construct offspring's inherited material from this parent
loop_seq <- lapply(c(1:nrow(chrom_map)),

function(x){
SimRVSequences:::reconstruct_fromHaplotype(

parental_genotypes = ped_genos[which(ped_geno_IDs == PO_info[i, 
4]),

which(SNV_map$chrom == chrom_map
$chrom[x])], CSNV_map = SNV_map[which(SNV_map$chrom == chrom_map
$chrom[x]),], inherited_haplotype = loop_gams$haplotypes[[x]],
chiasmata_locations = loop_gams$cross_locations[[x]],
REDchrom_map = chrom_map[x, ])

})
#append ID for this haplotype to the list of IDs
ped_geno_IDs <- c(ped_geno_IDs, PO_info[i, 1])
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ped_genos <- rbind(ped_genos, unlist(loop_seq))
}

#Determine if this is a sporadic pedigree
printed_FamRV <- ifelse(all(ped_file[, c("DA1", "DA2")] == 0), "no_CRV", RV_marker)

#create a data.frame to store identifying info
geno_map <- data.frame(FamID = rep(ped_file$FamID[1], length(ped_geno_IDs)),

ID = ped_geno_IDs,
affected = rep(FALSE, length(ped_geno_IDs)),
FamCRV = rep(printed_FamRV, length(ped_geno_IDs)),
stringsAsFactors = FALSE)

#identify affected individuals
geno_map$affected[geno_map$ID %in% ped_file$ID[ped_file$affected]] <- TRUE

#Return the genomes matrix and a data.frame containing identifying
#information for the of IDs to identify the
#family member to whom
return(list(ped_genos = ped_genos, geno_map = geno_map))

}

We are now ready to call sim_RVstudy_new() on each chromosome.
# Simulate exome sequences of SNVs for affected family members
set.seed(1987)

study_seq <- lapply(1:22, function(x){sim_RVstudy_new(fam_RVs = familial_RVs,
ped_files = study_peds,
SNV_data = chrom_data[[x]]
)})

Simulating exome-wide sequences for disease-affected members in the study families takes about 6 minutes
on a Windows OS with an i7-8550U @ 1.8GHz,16GB of RAM. The times to simulate chromosomes 1, 2, 8
and 9 are shown in Table 1.

Table 1: Simulation time for selected chromosomes.
Chromosome No. of RVs No. of cRVs Time (s)

1 84664 1 36.23
2 60995 21 53.63
8 31396 11 22.35
9 34248 0 19.57

From the table, we see that chromosome 1 takes less time to simulate than chromosome 2, despite having
more rare variants. We attribute this to chromosome 1 having fewer cRVs than chromosome 2. By contrast,
chromosome 8 has more cRVs than chromosome 1 yet takes less time to simulate because it has fewer RVs
overall. Simulation time therefore depends on both the overall number of RVs and the number of cRVs on
chromosome.

The sim_RVstudy_new() function returns the same set of outputs as the sim_RVstudy() function, as discussed
in the next subsection.
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3.3 Discuss the sim_RVstudy_new() output
The output study_seq from the call to sim_RVstudy_new() is a list containing 22 elements, one for each
chromosome. As the output format of each chromosome is the same, we focus on the first chromosome. Each
element of the list study_seq is itself a list containing four elements as follows.

(1). The ped_files data frame gives details about the individuals in the pedigrees. When we set
affected_only = TRUE, the results contain only the affected individuals and the individuals who con-
nect them along a line of descent within a pedigree. Note that the ped_files data frame is exactly the same
for all 22 chromosomes; though wasteful of space, this unnecessary repetition is convenient for looping.
# View the first 4 individuals in the ped_files data frame (the same regardless of chromosome).
head(study_seq[[1]]$ped_files, n = 4)

## FamID ID sex dadID momID affected DA1 DA2 birthYr onsetYr deathYr available
## 1 1 1 1 NA NA TRUE 0 1 1881 1952 1955 TRUE
## 3 1 3 1 2 1 TRUE 0 1 1901 1970 1981 TRUE
## 5 1 4 0 2 1 TRUE 0 1 1910 2000 2002 TRUE
## 25 1 20 0 19 8 TRUE 0 1 1957 1997 2016 TRUE
## Gen proband
## 1 1 FALSE
## 3 2 FALSE
## 5 2 TRUE
## 25 4 FALSE

(2). The sparse matrix ped_haplos contains simulated SNVs on the exome sequences of the disease-affected
individuals and the individuals connecting them in the ascertained pedigrees.
# View the first 30 SNVs of the first 6 exome sequences on the first chromosome.
study_seq[[1]]$ped_haplos[1:6, 1:30]

## 6 x 30 sparse Matrix of class "dgCMatrix"
##
## [1,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [2,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [3,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [4,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [5,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
## [6,] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rows of this sparse matrix correspond to exomes and columns to RVs on the first chromosome. The entry “1”
represents the derived (mutated) allele and “.” the ancestral allele.

(3). The SNV_map data frame contains information about RVs in the study. Since the remove_wild argument
of sim_RVstudy_new() is set to its default value of TRUE, this data frame contains only RVs carried by at
least one study individual.
# View the first 4 rows of SNV_map
head(study_seq[[1]]$SNV_map, n = 4)

## colID chrom position afreq SNV type selCoef pathwaySNV
## 1 1 1 12626 0.000399064519 1_12626 m1 -0.00452655694 FALSE
## 2 2 1 13411 0.000501150791 1_13411 m2 0.00000000000 FALSE
## 3 3 1 14230 0.001568416364 1_14230 m2 0.00000000000 FALSE
## 4 4 1 14231 0.000631078773 1_14231 m1 -0.00146789732 FALSE
## is_CRV
## 1 FALSE
## 2 FALSE
## 3 FALSE
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## 4 FALSE

The rows of the data frame represent the RVs carried by at least one individual in the study. The columns
are characteristics of the RVs explained in subsection 1.5 of this document.

(4). The haplo_map data frame maps the exome sequences in ped_haplos to the individuals in ped_files.
The rows of haplo_map correspond to sequences and the columns to characteristics of individuals to which
these sequences belong. Let’s look at the first family’s information on chromosome 1.
# View family 1's entries of haplo_map
fam1 <- (study_seq[[1]]$haplo_map[,"FamID"]==1)
study_seq[[1]]$haplo_map[fam1,]

## FamID ID affected FamCRV
## 1 1 1 TRUE no_CRV
## 2 1 1 TRUE no_CRV
## 3 1 2 FALSE no_CRV
## 4 1 2 FALSE no_CRV
## 5 1 6 FALSE no_CRV
## 6 1 6 FALSE no_CRV
## 7 1 19 FALSE no_CRV
## 8 1 19 FALSE no_CRV
## 9 1 3 TRUE no_CRV
## 10 1 3 TRUE no_CRV
## 11 1 4 TRUE no_CRV
## 12 1 4 TRUE no_CRV
## 13 1 8 FALSE no_CRV
## 14 1 8 FALSE no_CRV
## 15 1 20 TRUE no_CRV
## 16 1 20 TRUE no_CRV

We can see that the two sequences of an individual are stored in consecutive rows of the data frame. The
FamCRV column of the data frame gives the identifier of the familial cRV and is the same for all family
members. If a family does not have a cRV on the selected chromosome, the entry of FamCRV is no_CRV. For
example, family ID 1 does not carry a cRV on chromosome 1.

With the complete data now available in the list study_seq, our final task is to deliver it in human-readable
flat-file formats, as described next.

4 Generate data files
Throughout this section, we will refer to the list study_seq generated in the previous subsection. The list
element for chromosome 21 has the following structure.
# The study_seq object is a list of length 22 elements.
# We print the 21st element of study_seq, for chromosome 21.
str(study_seq[[1]])

## List of 4
## $ ped_files :'data.frame': 1247 obs. of 14 variables:
## ..$ FamID : int [1:1247] 1 1 1 1 1 1 1 1 2 2 ...
## ..$ ID : int [1:1247] 1 3 4 20 2 8 19 6 1 3 ...
## ..$ sex : int [1:1247] 1 1 0 0 0 1 0 0 1 0 ...
## ..$ dadID : int [1:1247] NA 2 2 19 NA 6 NA NA NA 2 ...
## ..$ momID : int [1:1247] NA 1 1 8 NA 3 NA NA NA 1 ...
## ..$ affected : logi [1:1247] TRUE TRUE TRUE TRUE FALSE FALSE ...
## ..$ DA1 : int [1:1247] 0 0 0 0 0 0 0 0 0 0 ...
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## ..$ DA2 : int [1:1247] 1 1 1 1 0 1 0 0 1 1 ...
## ..$ birthYr : int [1:1247] 1881 1901 1910 1957 NA 1924 NA NA 1914 1931 ...
## ..$ onsetYr : int [1:1247] 1952 1970 2000 1997 NA NA NA NA 1987 1979 ...
## ..$ deathYr : int [1:1247] 1955 1981 2002 2016 NA 1957 NA NA 1990 2014 ...
## ..$ available: logi [1:1247] TRUE TRUE TRUE TRUE FALSE TRUE ...
## ..$ Gen : int [1:1247] 1 2 2 4 1 3 3 2 1 2 ...
## ..$ proband : logi [1:1247] FALSE FALSE TRUE FALSE FALSE FALSE ...
## $ ped_haplos:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## .. ..@ i : int [1:193252] 1689 1700 1706 983 986 990 918 924 2246 2256 ...
## .. ..@ p : int [1:19394] 0 3 6 10 14 15 19 25 29 38 ...
## .. ..@ Dim : int [1:2] 2494 19393
## .. ..@ Dimnames:List of 2
## .. .. ..$ : NULL
## .. .. ..$ : NULL
## .. ..@ x : num [1:193252] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..@ factors : list()
## $ haplo_map :'data.frame': 2494 obs. of 4 variables:
## ..$ FamID : int [1:2494] 1 1 1 1 1 1 1 1 1 1 ...
## ..$ ID : int [1:2494] 1 1 2 2 6 6 19 19 3 3 ...
## ..$ affected: logi [1:2494] TRUE TRUE FALSE FALSE FALSE FALSE ...
## ..$ FamCRV : chr [1:2494] "no_CRV" "no_CRV" "no_CRV" "no_CRV" ...
## $ SNV_map :'data.frame': 19393 obs. of 9 variables:
## ..$ colID : int [1:19393] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ chrom : int [1:19393] 1 1 1 1 1 1 1 1 1 1 ...
## ..$ position : num [1:19393] 12626 13411 14230 14231 15836 ...
## ..$ afreq : num [1:19393] 0.000399 0.000501 0.001568 0.000631 0.000343 ...
## ..$ SNV : chr [1:19393] "1_12626" "1_13411" "1_14230" "1_14231" ...
## ..$ type : Factor w/ 2 levels "m1","m2": 1 2 2 1 2 1 1 2 2 2 ...
## ..$ selCoef : num [1:19393] -0.00453 0 0 -0.00147 0 ...
## ..$ pathwaySNV: logi [1:19393] FALSE FALSE FALSE FALSE FALSE FALSE ...
## ..$ is_CRV : logi [1:19393] FALSE FALSE FALSE FALSE FALSE FALSE ...
## - attr(*, "class")= chr [1:2] "famStudy" "list"

We use study_seq to create a .sam file containing information about genotyped individuals in the ascertained
pedigrees, chromosome-specific .geno files containing RV genotypes and chromosome-specific .var files
containing information about RVs. As described next, the data files are in flat-file format similar to PLINK
files (Purcell et al. 2007).

4.1 .sam file
The .sam file contains pedigree information about the disease-affected individuals and the individuals
connecting them along a line of descent in their pedigrees. These individuals are prioritized for exome
sequencing in our family study. The function plink_format_samp() generates the .sam file using the
argument, peds. The argument peds is a data frame giving information on the study pedigrees. The function
selects specific columns of the peds data frame and aligns them in a format similar to the .psam PLINK file.
# Get the information for .sam file
plink_format_samp <- function(peds){

# Convert sex. In PLINK 1 is male 2 is female.
# We have 0 s to represent male and 1 for female.
peds$sex[peds$sex == 1] <- c(2)
peds$sex[peds$sex == 0] <- c(1)

# Affected variable consists logical values.
# Need to change it as character to assign values to

147



# represent the phenotype.
peds$affected <- as.character(peds$affected)

# If affected is NA consider it as missing.
# In PLINK missing is denoted as 0 or -9.
peds$affected[is.na(peds$affected)] <- c(0)
# Non-affected is represented as 1 in PLINK.
peds$affected[peds$affected == "FALSE"] <- c(1)
# Affected is represented as 2 in PLINK.
peds$affected[peds$affected == "TRUE"] <- c(2)

peds$FamID <- as.numeric(peds$FamID)
peds$affected <- as.numeric(peds$affected)

# Create the data frame with required columns.
psam_file <- data.frame(peds$FamID, peds$ID, peds$dadID, peds$momID,

peds$sex, peds$affected,
peds$birthYr, peds$deathYr, peds$proband)

colnames(psam_file) <- c("FID", "IID", "PAT", "MAT", "SEX", "PHENO1",
"BIRTHYr", "DEATHYr", "PROBAND")

return(psam_file)
}

To get the .sam file, we apply the plink_format_samp() function to chromosome 21. Note that the .sam
file is the same regardless of which chromosome is used.
# Call the function for chromosome 21
sample_data <- plink_format_samp(study_seq[[21]]$ped_files)

# How many individuals.
nrow(sample_data)

## [1] 1247
# Print the first 6 individuals
head(sample_data, n= 6)

## FID IID PAT MAT SEX PHENO1 BIRTHYr DEATHYr PROBAND
## 1 1 1 NA NA 2 2 1881 1955 FALSE
## 2 1 3 2 1 2 2 1901 1981 FALSE
## 3 1 4 2 1 1 2 1910 2002 TRUE
## 4 1 20 19 8 1 2 1957 2016 FALSE
## 5 1 2 NA NA 1 1 NA NA FALSE
## 6 1 8 6 3 2 1 1924 1957 FALSE

The rows of sample_data are the 1247 genotyped individuals in the study pedigrees. The individuals are
either disease-affected or connect disease-affected individuals along a line of descent in a study pedigree.
The columns of sample_data contain information about the individuals as follows:

1. FID- the identification number of the family that the individual belongs to.

2. IID- the individual identification number.

3. PAT- the father’s identification number.

4. MAT- the mother’s identification number.
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5. SEX- the individual’s sex, with 1 and 2 corresponding to male and female, respectively.

6. PHENO1- the disease-affected status, with 1 and 2 corresponding to unaffected and affected, respectively.

7. BIRTHYr- the individual’s birth year.

8. DEATHYr- the death year of the individual, with NA indicating that the individual is still alive at the
end of the study.

9. PROBAND- a logical value indicating whether or not the individual is the proband for their pedigree.

We save the .sam file as a text file, sample_info.txt, as follows. The text file can be found in our Zenodo
repository.
# Write the sample information to a single text file
write.table(sample_data, "sample_info.txt", row.names=FALSE, quote = FALSE)

4.2 .geno files
A .geno file gives the RV genotypes in gene-dosage format. An individual’s dosage of the derived allele is the
number of copies they inherited from their parents (i.e. 0, 1 or 2). The get_geno_data() function below
converts RV-haplotype pairs into genotypes in gene-dosage format.
# Convert haplotype pairs into genotypes in gene-dosage format.
get_geno_data <- function(haps){

gene_dosage <- list()
IDs <- seq(from = 1, to = nrow(haps), by = 2)

# Get the column sums.
for(i in 1: length(IDs)){

gene_dosage[[i]] <- colSums(haps[IDs[i]:(IDs[i] + 1), ])
genotypes <- do.call(rbind, gene_dosage)

}
genotypes <- do.call(rbind, gene_dosage)
return(genotypes)

}

Let’s call get_geno_data() on chromosome 21 as an example. The function’s argument, haps, is filled with
the sparse matrix ped_haplos from the study_seq output.
# Apply the function to 21st chromosome
genotype_data <- get_geno_data(study_seq[[21]]$ped_haplos)

To convert chromosome 21 haplotypes to individual genotypes in gene-dosage format, get_geno_data()
takes approximately 15 seconds on a Windows OS with an i7-8550U @ 1.8GHz,16GB of RAM. Let’s view the
first few rows and columns of the data frame that is returned.
# View the first four rows and 12 columns
genotype_data[1:4, 1:12]

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 0 0 0 0 0 0 0 0 0 0 0 0
## [2,] 0 0 0 0 0 0 0 0 0 0 0 0
## [3,] 0 0 0 0 0 0 0 0 0 0 0 0
## [4,] 0 0 0 0 0 0 0 0 0 0 0 0

The rows of the data frame represent the 1247 genotyped individuals in our study. The columns represent
RVs that reside on the exome of chromosome 21. Each entry of the data frame gives the dosage of the derived
allele of an RV (i.e. 0, 1 or 2). Most of the entries are 0, as would be expected for RVs.
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The get_geno_data() function is applied to all the chromosomes as follows.
# Apply function to all chromosomes
genotype_data <- lapply(study_seq, function(x){

result <- get_geno_data(x$ped_haplos)
colnames(result) <- x$SNV_map$SNV
result

})

Below, the resulting chromosome-specific .geno files are written to text files named genotypes_chr_i.txt,
where “i” indicates the chromosome number. These text files can be found in the Zenodo repository.
# Write the results to 22 text files
for(i in 1:22){

write.table(genotype_data[[i]],
paste0("genotypes_chr_",i,".txt"),
row.names=FALSE, quote = FALSE)

}

4.3 .var files
A .var file contains information about the RVs in the columns of the associated .geno file. The
get_variant_data() function below selects the relevant characteristics of the RVs and stores them in a data
frame.
# Get the variant information to create the .var file
get_variant_data <- function(variant){

# Chromosome number.
CHROM <- variant$chrom
# Position.
POS <- variant$position
# Reference allele.
REF <- rep("A", length(CHROM))
# Alternate allele.
ALT <- rep("T", length(CHROM))
# Selection coefficient.
sel_coef <- variant$selCoef
# Population allele frequency.
pop_afreq <- variant$afreq
# Pathway SNV or not.
pathwaySNV <- variant$pathwaySNV
# Causal SNV or not.
C_SNV <- variant$is_CRV
# label the type as NS and S where NS- non-synonymous and
# S- Synonymous.
levels(variant$type) <- c("NS", "S")
# Type of the SNV
Type <- variant$type

# Create the data frame.
SNV <- data.frame(CHROM, POS, REF, ALT,

pop_afreq, sel_coef, pathwaySNV, C_SNV, Type)

return(SNV)
}
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Let’s call get_variant_data() on chromosome 21 as an example. The function’s argument, variant, is
filled with the SNV_map data frame from the study_seq output.
# Run the function on chromosome 21 SNV_map data
variant_info <- get_variant_data(study_seq[[21]]$SNV_map)

The function returns the data frame variant_info. Let’s view information about the first four RVs in
variant_info.
# View the first 4 rows of the resulting data frame
head(variant_info, n = 4)

## CHROM POS REF ALT pop_afreq sel_coef pathwaySNV C_SNV Type
## 1 21 5591572 A T 0.000371222808 0.00000000e+00 FALSE FALSE S
## 2 21 5591931 A T 0.000575395352 -8.08714731e-08 FALSE FALSE NS
## 3 21 6066994 A T 0.000092805702 0.00000000e+00 FALSE FALSE S
## 4 21 6112121 A T 0.000566114782 0.00000000e+00 FALSE FALSE S

The rows of variant_info contain exomic RVs on chromosome 21 that are carried by at least one study
participant. The columns give the following information about these RVs:

1. CHROM- the chromosome number of the RV.

2. POS- the RV position, in base pairs, on the chromosome.

3. REF- the reference allele for the RV

4. ALT- the alternate allele for the RV

5. pop_afreq- the population alternate allele frequency for the RV.

6. sel_coef- the selection coefficient for the RV.

7. pathwaySNV- whether or not the RV comes from a gene in our disease pathway.

8. C_SNV- whether or not the RV is causal.

9. Type- whether the RV is a synonymous (S) or non-synonymous (NS) mutation.

The get_variant_data() function is applied to all the chromosomes as follows.
# Apply function to all 22 chromosomes
SNV_map <- lapply(study_seq, function(x){

get_variant_data(x$SNV_map)
})

Below, the resulting chromosome-specific .var files are written to text files named SNV_map_chr_i.txt,
where “i” indicates the chromosome number. These text files can be found in the Zenodo repository.
# Write the results separately to text files
for(i in 1:22){

write.table(SNV_map[[i]],
paste0("SNV_map_chr_",i,".txt"),
row.names=FALSE, quote = FALSE)

}

The next section provides a data frame listing the cRVs for each ascertained family.

4.4 List the familial cRVs
First, we obtain a list of family-specific cRVs by chromosome. Each list item corresponds to a chromosome
and is a data frame with the family identifiers and the familial cRVs on that chromosome. We print the first
two chromosomes in this list for illustration.
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# Get the FamIDs and their familial cRVs, by chromosome
famcRV_bychrom <- lapply(study_seq, function(x){

unique(x$haplo_map[, c("FamID", "FamCRV")])})

str(famcRV_bychrom[1:2])

## List of 2
## $ :'data.frame': 150 obs. of 2 variables:
## ..$ FamID : int [1:150] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ FamCRV: chr [1:150] "no_CRV" "no_CRV" "no_CRV" "no_CRV" ...
## $ :'data.frame': 150 obs. of 2 variables:
## ..$ FamID : int [1:150] 1 2 3 4 5 6 7 8 9 10 ...
## ..$ FamCRV: chr [1:150] "2_201170321" "no_CRV" "no_CRV" "no_CRV" ...

From the output of str(), we see that each chromosome in the list famcRV_bychrom has a data frame
containing the family identifiers and the family’s cRV, if any, on that particular chromosome.

Next, we create the function familial_cRV() to collapse famRV_bychrom into a single data frame containing
the familial identifier and cRV for each family across all chromosomes.
# Get the familial_cRVs
familial_cRV <- function(cRV_bychrom){

# From haplomap data frame get the familial
# cRVs from the last column FamCRV.
f_CRV <- lapply(cRV_bychrom, function(x){

unique(x[which(x$FamCRV != "no_CRV"), ])
})

# Combine all of them into a single data frame.
family_CRV <- do.call("rbind", f_CRV)
# Order them the data frame according to the family ID.
family_CRV <- family_CRV[order(as.numeric(family_CRV$FamID)), ]
# Get the family IDS that are not carrying a cRV,
# by comparing two data frames.
no_CRV <- as.numeric(setdiff(cRV_bychrom[[1]]$FamID, family_CRV$FamID))
no_CRVfam <- rep(c("no_CRV"), length(no_CRV))
# Create a data frame with families without a cRV.
df <- data.frame(no_CRV, no_CRVfam)
# Give the same column names as in families with a cRV.
colnames(df) <- colnames(family_CRV)
# Combine both of the data frames.
family_CRV <- rbind(family_CRV, df)
# Order the final data frame based on the family ID.
family_CRV <- family_CRV[order(as.numeric(family_CRV$FamID)), ]

return(family_CRV)
}

We apply the function as follows and get the familial cRV for each family.
# Apply the function.
cRVS <- familial_cRV(famcRV_bychrom)

# View the output
head(cRVS, n=5)

## FamID FamCRV
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## 1 1 2_201170321
## 17 2 18_63125128
## 31 3 10_89015222
## 51 4 6_108683999
## 67 5 1_155738619

The output gives the cRVs for each family. As an example, family ID 1 has a cRV labeled “2_201170321”
indicating that it is on chromosome 2 in base-pair position 20117032. Although not shown in the output,
there are a few families without a cRV:
# Select families which do not carry cRVs
cRVS[cRVS$FamCRV == "no_CRV", ]

## FamID FamCRV
## 11 72 no_CRV
## 2 95 no_CRV
## 3 103 no_CRV

Three families with IDs 72, 95 and 103 do not carry a cRV. These families have affected individuals with
sporadically occurring disease.

We save the results in a text file, familial_cRV.txt, which can be found in the Zenodo repository.
# Save results in a text file.
write.table(cRVS,

"familial_cRV.txt",
row.names=FALSE, quote = FALSE)

4.5 Create PLINK files
We convert .sam, .var and .geno files to PLINK file formats, .fam, .bim and .bed file formats, respectively.
For this task we use the write.plink() function in the snpStats R package. For example, let’s write
chromosome 21’s .bim, .fam and .bed files.

First we get the sample information with the plink_format_samp() function from section 4.2 of this
document:
# Call the plink_format_samp function for chromosome 21
sample_data <- plink_format_samp(study_seq[[21]]$ped_files)

Then we get the variant information for chromosome 21 with the variant_data() function from section 4.3
of this document.
# Run the function on chromosome 21 SNV_map data
variant_info <- get_variant_data(study_seq[[21]]$SNV_map)
# Add row names to the variant data data frame
row.names(variant_info) <- study_seq[[21]]$SNV_map$SNV

Finally, we get the genotypes data for chromosome 21 by modifying the get_geno_data() function from
section 4.2 to code genotype dosage following the SnpMatrix convention of 0 for missing values, 1 for no copies
of the alternate allele, 2 for a single copy and 3 for two copies of the alternate allele. This modification allows
an object of class SnpMatrix to be supplied as an argument to the write.plink() function, as required.
# Convert haplotype pairs into genotypes in gene-dosage format.

get_geno_data_new <- function(haps){
gene_dosage <- list()
IDs <- seq(from = 1, to = nrow(haps), by = 2)
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# Get the column sums.
for(i in 1: length(IDs)){

gene_dosage[[i]] <- colSums(haps[IDs[i]:(IDs[i] + 1), ]) + 1
genotypes <- do.call(rbind, gene_dosage)

}
genotypes <- do.call(rbind, gene_dosage)
return(genotypes)

}

We apply the get_geno_data_new() function to the SNV haplotypes for chromosome 21.
# Apply the function to 21st chromosome
genotype_data <- get_geno_data_new(study_seq[[21]]$ped_haplos)

Let’s view the first few rows and columns of the data frame genotype_data.
# View the first four rows and 12 columns
genotype_data[1:4, 1:12]

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 1 1 1 1 1 1 1 1 1 1 1 1
## [2,] 1 1 1 1 1 1 1 1 1 1 1 1
## [3,] 1 1 1 1 1 1 1 1 1 1 1 1
## [4,] 1 1 1 1 1 1 1 1 1 1 1 1

In the output above, we see genotype dosages of 1, indicating that the four individuals carry no copies of the
alternate (derived) allele at the first twelve SNVs; this is to be expected as most SNVs are rare.

We convert the genotype_data object into a SnpMatrix object as follows.
# Add row and column names
rownames(genotype_data) <- 1:nrow(genotype_data)
colnames(genotype_data)<- study_seq[[21]]$SNV_map$SNV

# Change the mode of the genotype_data to 'raw'
mode(genotype_data) <- "raw"

# Change the class of the genotype_data object to SnpMatrix and rename it 'genotypes'
genotypes <- new("SnpMatrix", genotype_data)

To obtain PLINK .fam, .bim and .bed files for chromosome 21, we apply the write.plink() function as
follows.
write.plink(file.base = "chr_21", snp.major = TRUE,

snps = genotypes,
subject.data = sample_data, pedigree = as.numeric(FID),
id = as.numeric(IID), father = as.numeric(PAT) ,
mother = as.numeric(MAT), sex = as.numeric(SEX),
phenotype = as.numeric(PHENO1),
snp.data = variant_info, chromosome = as.numeric(CHROM),
position = as.numeric(POS), allele.1 = REF,
allele.2 = ALT,
na.code = 0, human.genome=TRUE)

## Writing FAM file to chr_21.fam
## Writing extended MAP file to chr_21.bim
## Writing BED file to chr_21.bed (SNP-major mode)
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## NULL

We may apply the above steps to all the chromosomes as follows. First, we apply the get_variant_data()
function to all the chromosomes.
# Apply function to all 22 chromosomes
SNV_map <- lapply(study_seq, function(x){

result <- get_variant_data(x$SNV_map)
rownames(result)<- x$SNV_map$SNV
result

})

Second, we apply the get_geno_data_new() function to all the chromosomes.
# Apply function to all chromosomes
genotype_all <- lapply(study_seq, function(x){

result <- get_geno_data_new(x$ped_haplos)
colnames(result)<- x$SNV_map$SNV
rownames(result) <- 1:nrow(result)
result

})

Next, convert genotype_all to an object of class SnpMatrix.
# Convert objects as the class of SnpMatrix
genotypes <- lapply(genotype_all, function(x){

mode(x) <- "raw"
new("SnpMatrix", x)})

To finish, we apply the write.plink() function to all chromosomes.
# Apply the write.plink function for all the chromosomes
for(i in 1:22){

write.plink(file.base=paste0("PLINK/chr_", i), snp.major = TRUE,
snps = genotypes[[i]],
subject.data = sample_data, pedigree = as.numeric(FID),
id = as.numeric(IID), father = as.numeric(PAT) ,
mother = as.numeric(MAT), sex = as.numeric(SEX),
phenotype = as.numeric(PHENO1),
snp.data = SNV_map[[i]], chromosome = as.numeric(CHROM),
position = as.numeric(POS), allele.1 = REF,
allele.2 = ALT,
na.code = 0, human.genome=TRUE)

}

As a final step, for future reference, we provide the R version and the version of the SimRVSequences R
package that was used to generate this document.
library(SimRVSequences)
sessionInfo()

## R version 4.1.1 (2021-08-10)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22000)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Canada.1252 LC_CTYPE=English_Canada.1252
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## [3] LC_MONETARY=English_Canada.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Canada.1252
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] snpStats_1.44.0 survival_3.2-11 reshape2_1.4.4
## [4] doRNG_1.8.2 rngtools_1.5.2 doParallel_1.0.16
## [7] iterators_1.0.13 foreach_1.5.1 data.table_1.14.0
## [10] Matrix_1.2-12 forcats_0.5.1 stringr_1.4.0
## [13] dplyr_1.0.7 purrr_0.3.4 readr_2.0.1
## [16] tidyr_1.1.3 tibble_3.1.4 ggplot2_3.3.5
## [19] tidyverse_1.3.1 SimRVSequences_0.2.7
##
## loaded via a namespace (and not attached):
## [1] httr_1.4.2 jsonlite_1.7.2 splines_4.1.1
## [4] modelr_0.1.8 assertthat_0.2.1 cellranger_1.1.0
## [7] yaml_2.2.1 pillar_1.7.0 backports_1.2.1
## [10] lattice_0.20-44 glue_1.4.2 quadprog_1.5-8
## [13] digest_0.6.27 rvest_1.0.2 colorspace_2.0-2
## [16] htmltools_0.5.2 plyr_1.8.6 pkgconfig_2.0.3
## [19] broom_0.8.0 SimRVPedigree_0.4.4 haven_2.4.3
## [22] zlibbioc_1.40.0 scales_1.2.0 intervals_0.15.2
## [25] tzdb_0.1.2 generics_0.1.2 ellipsis_0.3.2
## [28] withr_2.5.0 BiocGenerics_0.40.0 cli_3.1.0
## [31] magrittr_2.0.1 crayon_1.5.1 readxl_1.3.1
## [34] evaluate_0.15 kinship2_1.8.5 fs_1.5.0
## [37] fansi_0.5.0 xml2_1.3.3 tools_4.1.1
## [40] hms_1.1.1 lifecycle_1.0.1 munsell_0.5.0
## [43] reprex_2.0.1 compiler_4.1.1 rlang_1.0.2
## [46] grid_4.1.1 rstudioapi_0.13 rmarkdown_2.13
## [49] gtable_0.3.0 codetools_0.2-18 DBI_1.1.2
## [52] R6_2.5.1 lubridate_1.7.10 knitr_1.38
## [55] fastmap_1.1.0 utf8_1.2.2 stringi_1.7.4
## [58] Rcpp_1.0.7 vctrs_0.3.8 dbplyr_2.1.1
## [61] tidyselect_1.1.2 xfun_0.30
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