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Abstract

This thesis investigates two distinct projects: one in statistical genetics focusing on identi-
fying rare causal variants using a sequence-relatedness approach, and another in goodness-
of-fit test based on the empirical distribution function (EDF) for any general likelihood
model. First, we investigate an association method based on sequence-relatedness for iden-
tifying causal variants in a genomic region. We focus on conducting linkage analysis by
using sequences as the unit of observation rather than the traditional methods that re-
lied on individuals. We introduce two sequence-relatedness approach to associate similar-
ity in genetic relatedness with similarity in trait values. We compare them to two com-
mon genotypic-association methods. Based on a simulation study, we show the efficacy of
sequence-relatedness methods in improving the localization and detection of rare causal
variants in an allelically heterogeneous disease trait. In addition, a post-hoc labeling proce-
dure based on the idea of genealogical nearest neighbors is introduced to identify potential
carriers or non-carriers of causal variants among case sequences. Second, we introduce a
goodness-of-fit test based on the EDF in the presence of parameter estimation, which can
be applied to any general likelihood model. In summary, the computation of the P-value
in goodness-of-fit tests based on EDF with parameter estimation depends on the limiting
large-sample covariance function of a stochastic process. This function relies on key elements
of the model, including the Fisher information matrix and the derivatives of the cumula-
tive distribution function under the null hypothesis. Computing these elements is often not
straightforward and can be computationally intensive or impractical in some cases. In this
thesis, we review the theory and propose a new method to estimate the covariance func-
tion of the process directly from the sample instead of analytical calculation. We consider
two broad cases: when the sample is independent and identically distributed, or when the
expected value of the response variable depends on some covariates (e.g., linear model or
generalized linear model). Through simulations, we demonstrate the reliability of the es-
timation method. Finally, we provide computational tools as an R package for practical
implementation.

Keywords: linkage analysis; fine-mapping; sequence relatedness; goodness-of-fit test; em-
pirical distribution function; general likelihood model
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Chapter 1

Introduction

This thesis presents the theory and results of two distinct projects that have been undertaken
as part of my thesis. The first part of the thesis discusses a project in the field of statistical
genetics where we explore a linkage fine-mapping method to identify the causal variants in
a genomic region. In the second part of the thesis, we review the theory of goodness-of-fit
tests based on empirical distribution functions and propose a computational method for
formal model evaluation in a general likelihood model.

Chapter 2 of the thesis presents a statistical genetics project focused on exploring the
feasibility of linkage fine-mapping using sequences instead of individuals. The methods and
results of the simulation are described, including the proposed method to associate sequence-
relatedness with trait values in order to identify genomic regions containing causal variants.
We compare the results of sequence-relatedness methods with genotypic association meth-
ods, such as Fisher’s exact test and an optimal version of sequence kernel association test
known as SKAT-O, to benchmark their performance. The simulation results demonstrate
that sequence-relatedness methods improve the localization of rare causal variants and are
comparable to genotypic-association methods in detecting them. Additionally, we introduce
a post-hoc labeling approach to classify case sequences as potential carriers or non-carriers
of causal variants once an association has been established. The results of this project are
published in journal of Genetic Epidemiology, volume 47, 2023.

Moving on to the second part of the thesis in Chapter 3, we focus on goodness-of-fit
tests based on empirical distribution functions. In this work, a computational framework is
developed to apply these tests in order to verify the distribution or model assumptions. The
chapter starts by reviewing some of the well-known goodness-of-fit test methods based on
empirical distribution functions including Cramér-von-Mises and Anderson-Darling statis-
tic. For the case of an i.i.d sample, we review the large sample theory to approximate the
P-value for a simple null hypothesis where the distribution is fully specified and no pa-
rameter estimation is involved. We show that the problem can be reduced to studying a
stochastic process based on the empirical distribution function. The covariance function of
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this process is important since a limited number of the eigenvalues of that covariance can
be used to approximate the P-value for the test.

In addition to the simple null hypothesis, a more challenging case is studied where a
composite hypothesis is being tested. In a composite hypothesis, the model is not fully spec-
ified under the null hypothesis. The unknown parameters of the model must be estimated;
as a result of estimation, the covariance function of the relevant stochastic process is altered.
The exact form of the covariance depends on the estimator; since parameters are usually
estimated by the maximum likelihood estimates obtained from the sample only maximum
likelihood estimation is considered in this thesis. We review the limiting covariance function
which will be used to approximate the P-value for the test. Later in the chapter, we broaden
our view to the cases where the sample is not identically distributed and the expected value
of the observations depends on some covariates. Some examples of this are linear models
and generalized linear models.

Throughout the analysis of both simple null hypotheses and composite hypotheses,
we demonstrate that the covariance function of the stochastic process relies on specific
characteristics of the assumed model. Notably we need to know the Fisher information
matrix and the partial derivatives of the cumulative distribution function with respect to
the unknown parameters to compute the covariance function. However, obtaining these
quantities can be computationally intensive or challenging in general likelihood models. To
overcome this limitation, we propose an alternative method for estimating the covariance
function of the stochastic process directly from the sample data rather than carrying out
analytical calculations.

The results of a large scale simulation and application of the proposed goodness-of-
fit tests are presented in Chapter 4 of the thesis where we evaluate the reliability of the
estimation. In these simulations, the estimated version of the covariance function from
the sample is used to compute the P-value. In summary, our simulations consists of four
different cases, and we apply the goodness-of-fit test in each case. The first and second
simulations involve an i.i.d. sample from a Normal distribution and a Gamma distribution,
respectively. The third simulation investigates the behavior of the proposed method in
a linear model. Lastly, the fourth simulation involves a generalized linear model with a
Gamma-distributed response variable. Two different popular link functions (log and inverse
function) are considered in this GLM case. We also apply the proposed goodness-of-fit test
to third party motor insurance claims in Sweden in 1977. The chapter concludes with a
discussion of the work and of possible future research direction. Finally, we have developed
a computational package in R to implement the method of covariance function estimation
for anyone who is interested to utilize this method in their research. In Chapter 5 of the
thesis, a concise overview of the package’s functionality is provided. The package, gofedf,
is published on CRAN repository and is available for download.
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Chapter 2

An exploration of linkage
fine-mapping on sequences from
case-control studies

2.1 Introduction

Linkage analysis is a classic tool to map genetic loci that contribute to a heritable trait. The
basic idea is to look for genomic regions that have excess relatedness among individuals with
similar trait values [1]. The approach therefore associates similarity in genetic relatedness
with similarity in trait values (e.g. [2]; [3]). By contrast, genotypic-association analysis
associates specific variants or aggregates of variants directly with trait values. Linkage
analysis has traditionally been conducted on related individuals from families. However,
the use of families for fine mapping requires many informative meioses [4], either through
numerous small pedigrees or large extended pedigrees, and enrolling such families may be
impractical.

An alternative that has been proposed for allelically heterogeneous traits is population-
based linkage mapping, which gains meioses by adapting linkage analysis to readily-available
population-based case-control, cohort or cross-sectional samples [5]. These methods scan
individuals for excess ancestral sharing or identity by descent (IBD) at a locus, among indi-
viduals with similar trait values. The association between ancestral sharing and phenotypic
similarity is assessed along the genome, and regions with high association are singled out for
further study. Browning et. al. investigated the power of population-based linkage mapping
to detect associations for complex diseases in case-control studies [6]. They contrasted rates
of IBD in case/case and non-case/case pairs of individuals at each single-nucleotide variant
(SNV), and showed that IBD-based mapping has higher power than genotypic-association
mapping when there are multiple, rare causal variants. Their results confirm the expec-
tation that linkage analysis can be more powerful than genotypic-association methods for
allelically heterogeneous traits [7].
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The linkage analyses reviewed so far consider individuals as the unit of observation.
Here, we take a different approach and use sequences as the unit of observation. We use
sequences rather than individuals because, at a given genomic location, the gene genealogy
connecting the sampled sequences groups them according to their relatedness. We assume
that sequences which carry the same rare causal variant descend from a common ancestral
sequence. As a result, they are IBD around the variant and will cluster together on its
local gene genealogy. Genomic regions with excess trait clustering on their local genealogy
therefore indicate a causal locus.

In this chapter of thesis, we explore the feasibility of linkage fine-mapping on sequences,
as an alternative to standard genotypic association mapping. In particular, we compare the
ability of linkage and genotypic-association approaches to map an allelically heterogeneous
disease of high penetrance. High-penetrance variants produce familial clusters that are easier
to detect. Linkage methods are predicted to work well in such circumstances [7]. We consider
two linkage or descent-based methods that associate similarity in relatedness of sequences
with similarity in trait values. For comparison, we consider two genotypic-association meth-
ods, one which considers single variants and another which aggregates variants. Through a
simulation study, we compare the ability of these methods to fine-map rare causal variants in
a 2 million base-pair (Mbp) candidate region. We chose 2 Mbp because it is the approximate
resolution of a moderate-sized linkage study in pedigrees. For example, a linkage analysis
with 100 informative meioses is expected to map a disease locus to within 2 centiMorgans,
or approximately 2 Mbp [4].

To illustrate ideas, we work through an example dataset as a case study. Following this,
we use a coalescent simulation to evaluate the ability of these methods to detect and localize
a disease locus. Specifically, we are interested in the ability to detect any association within
the candidate genomic region being fine-mapped, and also in the ability to localize the
association signal to the causal subregion within the candidate region. Having detected a
disease locus, it is of interest to identify case sequences that may be carriers of a causal
variant. We conclude by describing a post hoc labeling procedure to classify case sequences
into carriers and non-carriers of causal variants, using estimated sequence relatedness.

2.2 Materials and Methods

In this section, we describe how we simulated the genetic data and disease phenotype given
the genetic data. Next, we describe the association methods that we considered to detect and
localize causal variants. Finally, we propose a method for post-hoc labeling of case sequences
into carriers and non-carriers of causal variants, given that an association has been detected.
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2.2.1 Genetic-data simulation

We used msprime to simulate the gene genealogy and sequences across a 2 Mbp genomic
region for an entire population [8]. We applied a hybrid strategy in which a backwards
Wright-Fisher model with recombination and mutation was run to 5000 generations before
present, followed by a coalescent with recombination and mutation from 5000 generations
back to the overall most recent common ancestor across the genomic region [9]. The hybrid
strategy avoids inaccuracies in the coalescent approximation when the number of sampled
sequences is large relative to the population effective size. The diploid population was of
constant effective size, Ne = 3100, and consisted of 6200 sequences [10]. We used a recom-
bination rate of 1 × 10−8 per base per generation and a mutation rate of 2 × 10−8 per base
per generation to simulate 500 populations [11, 12]. Figure B.1 displays the distribution of
variant allele frequencies in the simulated population from which the example dataset was
drawn. This allele-frequency spectrum is similar across the 500 simulated populations. The
spike in the lowest-frequency bin of the histogram (frequency ≤ 0.01) is consistent with an
observed abundance of rare variants in real populations [13].

2.2.2 Disease-trait model

To mimic random mating in a diploid population, we randomly paired the population se-
quences into 3100 individuals. Case-control status was assigned to individuals in the popu-
lation based on causal SNVs (cSNVs) randomly sampled from the middle 900-1100 kbp of
the 2 Mbp candidate genomic region. For cSNVs, the risk of disease increases according to
a logistic-regression model:

logit(P (D = 1|G)) = β0 + β1

m∑
j=1

Gj ,

where

• logit(p) = log[ p
1−p ] for 0 < p < 1,

• D is the disease status (D=1, case; D = 0, control),

• G = (G1, G2, · · · , Gm) is the multi-locus genotype of an individual at m causal SNVs,
where Gj indicates the number of copies of the derived allele at the jth cSNV,

• β0 is the intercept of the model and controls the sporadic-disease rate, i.e P (D =
1|G = 0), and

• β1 is the effect parameter which measures the influence of causal variants on the
disease.
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Simulations under the null hypothesis

We randomly assigned disease status to the 3100 individuals in the population. To ensure
a disease prevalence of 5% in the population, 155 out of 3100 individuals were randomly
assigned as disease-affected individuals. To form our case-control sample, we randomly sam-
pled 50 cases from the 155 affected individuals and 50 controls from the 2945 unaffected
individuals in the population.

Simulations under the alternative hypothesis

We used the disease-trait model above with parameter values set to ensure a high penetrance
and low phenocopy rate consistent with genetic-linkage studies [7]. In particular, we set
β0 = −10 so that the phenocopy rate f = P (D = 1|

∑m
j=1Gj = 0) = 4.5 × 10−5, and

β1 = 16 so that the genetic penetrance g = P (D = 1|
∑m

j=1Gj ≥ 1) ≈ P (D = 1|
∑m

j=1Gj =
1) = 0.9975. The penetrance ratio was therefore g/f ≈ .9975/4.5×10−5 = 22167. We aimed
for an allelically heterogeneous disease with 15 rare cSNVs of roughly equal frequency in the
population. To achieve the targeted disease prevalence, each cSNV had a population allele
frequency around 0.16 percent (about 10 copies in the population of 6200 sequences). When
necessary, additional very rare variants were chosen to be causal to attain the targeted
5% disease prevalence. Further details about the selection procedure for causal variants
can be found in Appendix C. After assigning disease status to the 3100 individuals in the
population, we randomly sampled 50 cases from the affected individuals and 50 controls
from the unaffected individuals. We then extracted the SNV sequences of the case-control
sample for analysis.

2.2.3 Genotypic association

We consider Fisher’s exact test and an optimized sequence-kernel association test [14]. These
methods test for association between the trait and the genotypes, either one-at-a-time or
in aggregate, and do not consider the relatedness of sequences.

Fisher’s exact test

We use a standard Fisher’s exact test of disease association with genotype frequencies for
each SNV implemented in the stats package in base R. Specifically, each of the SNV sites
is tested for an association with the disease outcome using a 2 × 3 table to compare the
genotype frequencies. At each SNV, our test statistic is the exact P-value, expressed in the
negative, base-10-logarithmic scale.

SKAT-O

Single-variant association tests such as Fisher’s exact test have limited power to detect
rare variants [15]. To improve power, aggregation methods, such as the sequence-kernel
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association test, collapse variants in a window of SNVs into a one-number summary that
is then used to test for association. We consider the adaptive aggregation test SKAT-O
[14] which finds the optimal linear combination of the burden test [16] and the sequence
kernel association test in terms of power. We applied the SKAT-O test implemented in the
SKAT R package [17] to each SNV, using a window size of 21 SNVs (∼ 14 − 15 kbp in the
simulated datasets). The window includes the target SNV at the center and 10 SNVs to the
right and left. Target SNVs at either edge of the candidate region had a smaller window
size than 21. For example, the window centered at the first SNV has no SNVs to the left
and 10 SNVs to the right and thus contains 11 SNVs in total. At each SNV, we record the
P-value, expressed in the negative-base-10-log scale, as the test statistic.

2.2.4 Descent-based association

Rather than associating genotype frequencies with trait values, we propose instead a linkage
analysis that associates similarity in sequence-relatedness with similarity in trait values.
Since sequences carrying a causal variant tend to cluster on the gene genealogy around the
variant, we expect sequence relatedness and trait similarity to be associated in genomic
regions harbouring causal variants. As the true gene genealogy is unknown, we reconstruct
sequence partitions on the genealogy from the sequence data and calculate distances on
these partitions. We then calculate trait dissimilarities between sequences and use them to
assess the association between the clustering of sequences and trait values.

Sequence partitions and their distances

To reconstruct sequence partitions, we apply the clustering methods implemented in the
R package, perfectphyloR [18]. The package takes the sample sequences and returns a
perfect phylogeny for a focal SNV. The perfect phylogeny is a rooted tree that recursively
partitions DNA sequences [19]. These nested partitions provide insight into the relatedness
of sequences around a focal SNV. Sequences descending from a common ancestral mutation
tend to cluster together in a partition. We use the reconstructPPregion() function
from perfectphyloR package with a minimum window size of 500 variants to reconstruct
partitions across the 2-Mbp genomic region. We use a large window size to help resolve
non-identical sequences in the reconstruction. Note that the sequence partitions provide no
information on coalescence times or the ordering of non-nested coalescence events and so
are not genealogical trees. They do however provide information on the nested structure of
sequence clusters and therefore on sequence relationships.

At each SNV, we measure the scaled pairwise distances between sequences on the parti-
tions as described in [20]. These distances measure how closely sequences are related around
a focal SNV. To compute the pairwise distances, we apply the perfectphyloR function
rdistMatrix(). Partitions may change along the genome due to recombination. As a re-
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sult, the pairwise distances may differ for different focal SNVs. A small example of sequence
distances on a partition is presented in the Appendix, Figure D.1.

Phenotypic distances are computed as described in [21]. These distances measure the
trait dissimilarity of sequences. Briefly, the phenotypic distance between sequence i and j

is defined to be dij = 1 − sij , where sij = (yi − µ)(yj − µ) is the phenotypic similarity
score between sequence i and j, yi is the binary phenotype (0 for control or 1 for case),
and µ is the disease prevalence in the population. For our disease prevalence of 5%, the
phenotypic distances are essentially dichotomous. In one group, the distances between case
sequences take on the same low values while, in the other group, the distances between
control sequences or between case and control sequences take on similar high values.

Measures of association

We associate sequence and phenotypic distances in two ways: via the distance correlation
as described in [22] or the Mantel coefficient [23]. The distance correlation measures non-
linear dependence between two random vectors but can be expressed in terms of pairwise
Euclidean distances [24]. In contrast, the Mantel coefficient measures linear dependence
between elements of two distance matrices which do not necessarily have to be Euclidean.
At each SNV, we record the distance correlation or Mantel coefficient as the test statistic.

2.2.5 Scoring detection

Through simulation, we compare the abilities of the two genotypic and two descent-based
methods to both detect association and localize causal SNVs. For detection, we are inter-
ested in finding any association across the entire candidate region. For localization, we are
interested in mapping the locus harboring causal variants. We describe a global test to de-
tect association across the entire region and the empirical distribution function (EDF) to
graphically compare the resulting global tests. We also describe how we compute the type-I
error rate and power of the global tests.

Global tests

For each dataset, we use the maximum test statistic across all the SNVs to obtain a global
test statistic across the candidate genomic region. We obtain the null distribution of this
global test statistic by randomly permuting the case-control labels of the individuals 1000
times. The P-value for the global test is defined as the proportion of test statistics that are
greater than or equal to the observed value. The nominal level of all tests is 5%.

Empirical distribution functions

To compare the distribution of p-values for each of the methods, we plot their empirical
distribution functions or EDFs. The EDF at any point x ∈ (0, 1) indicates the proportion
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of simulated datasets with a p-value less than or equal to x. Therefore, any method with
higher EDF at x has a larger proportion of simulated datasets with p-value less than or
equal to x.

Type-I error rate and power

The estimated type-I error rate and power of each method is respectively the proportion
of the 500 datasets simulated under the null or alternative hypothesis that are rejected at
level 5%. Type-I error rate and power can be extracted from the EDF. For example, when
datasets are simulated under the alternative hypothesis, any method with higher EDF at
x = 0.05 appears to be more powerful at level 0.05. To assess whether the power of two
methods differs, we apply McNemar’s test to the EDFs evaluated at x = .05 [25]. We use
McNemar’s test to account for dependence in test results from the same dataset.

We are particularly interested in the type-I error rate of the Mantel test because it is
known to be biased (i.e to have inflated type-I error rate) when the units being permuted are
non-exchangeable under the null hypothesis [26]. In our context, the sample sequences are
not exchangeable owing to their underlying ancestry. However, under the null hypothesis of
no association, the case-control status of the individuals being permuted is exchangeable.
We use a normal approximation to the binomial distribution to obtain an approximate 95%
confidence interval for the type-I error rate.

2.2.6 Scoring localization

To evaluate the localization ability of each method, we calculate the distance of the max-
imum absolute association signal from the causal region, in base pairs. If more than one
maximum is encountered, we take the average of all maxima. We then calculate the EDF of
these average distances for the 500 simulated datasets. The EDF at any point 0 ≤ x ≤ 2000
kbp gives the proportion of simulated datasets with peak association signal within x kbp
of the causal region. Therefore, any method with higher values of the EDF at a given value
x appears to localize better, within a distance of x kbp. To assess whether the localization
ability of two methods differs, we apply McNemar’s test to the EDFs evaluated at x = 0.

2.2.7 Post-hoc labeling of case sequences

We propose a procedure to label case sequences as potential carriers or non-carriers of causal
variants. Our approach relies on the concept of a genealogical nearest neighbor or GNN
[27]. GNNs arise from the topological properties of genealogical trees, as summarized by
the sequence partitions. Case sequences that carry a given rare variant are descended from a
common ancestral mutation that arose relatively recently back in time. Therefore, we expect
these case sequences to cluster in the sequence partition as GNNs. The GNN proportion of a
sequence for a given partition is the proportion of its nearest neighbors in the partition that

9



are case sequences. We then average this proportion over all sequence partitions along the
genomic region to obtain an average GNN proportion. A worked example of the calculation
of average GNN proportions is illustrated in Appendix E. Briefly, any case sequence whose
average GNN proportion is consistent with the distribution of GNN proportions in controls
is declared to be more closely related to controls than to cases. We group case sequences
into carriers and non-carriers of causal variants according to their average GNN proportion.
We consider the median of the distribution of GNN proportions in control sequences as our
threshold. Specifically, any case sequence with an average GNN proportion less than the
median of the average GNN proportion in control sequences is labelled as a non-carrier. We
refer to this grouping as the GNN labeling of case sequences.

Since we have simulated the sequences and genealogies, we know the true carrier status
of each sequence. Therefore, we can compare the accuracy of our GNN labeling to naive la-
beling, in which all case sequences are assumed to be carriers. Table 2.1 presents an example
of a confusion matrix for the carrier status of N = a+b+c+d case sequences in a simulated
dataset. Referring to this confusion matrix, we see that the observed misclassification rate
is b+c

N .

Table 2.1: Example confusion matrix of carrier status for N case sequences

GNN-predicted status
Non-Carrier Carrier

True status Non-Carrier a b
Carrier c d

N=a+b+c+d

2.3 Results

To start, we present an analysis of an example dataset to give insight into the association
methods. We then present estimated type-I error rates and rates of detection and localization
of the causal region. Finally, we present misclassification error rates for the proposed post-
hoc labeling of case sequences.

2.3.1 Example dataset

We first summarize the causal variants in the population and sample. Next, we show profiles
of various association statistics across the candidate genomic region and apply the proposed
procedure for post-hoc labeling of the case sequences.

Population and sample summaries

The population of 3100 individuals (6200 sequences) has 4723 SNVs in a 2 Mbp genomic
region. Among these SNVs, 2904 are segregating in the sample of 50 case and 50 control

10



individuals, including all 15 cSNVs. In the population, all sequences and all but one indi-
vidual carry zero or one cSNV. The one individual with two carrier sequences is included
in the sample as a case. Table 2.2 summarizes the causal variants in the sample and pop-
ulation. The column labeled “Position (kbp)” gives the physical position of cSNVs along
the genome in kbp. The columns labeled “Population” and “Sample” count the number
of case and control sequences that are carrying any causal variants in the population and
sample, respectively. The column labeled “DAF” gives the derived allele frequency of causal
variants in the population, expressed as a percentage. The causal variants are all rare with
a maximum population DAF of 0.19%. A total of 154 and 51 case sequences carry a cSNV
in the population and sample, respectively. None of the control sequences carry cSNVs.

Table 2.2: Summaries of causal variants in the sample and population.

Population sequences Sample sequences
Position Case Control Case Control

cSNV (kbp) (154) (0) DAF% (100) (100)
1 928.761 9 0 0.14 4 0
2 937.392 12 0 0.19 7 0
3 940.023 12 0 0.19 4 0
4 942.571 9 0 0.14 5 0
5 946.127 10 0 0.16 1 0
6 993.008 12 0 0.19 4 0
7 994.439 10 0 0.16 3 0
8 998.710 11 0 0.18 4 0
9 1002.568 9 0 0.14 2 0
10 1003.525 11 0 0.18 2 0
11 1016.514 9 0 0.14 1 0
12 1039.256 10 0 0.16 4 0
13 1045.524 11 0 0.18 3 0
14 1054.265 10 0 0.16 4 0
15 1082.301 9 0 0.14 3 0

Association profiles

The association profile is a scatter plot with genomic coordinates on the horizontal axis and
SNV-specific measures of association on the vertical axis. Figure 2.1 presents the association
profiles of different methods for the example dataset. The x-axes in all panels is the genomic
position in kbp. The y-axes show either a transformed SNV-specific P-value (genotypic as-
sociation methods), or an SNV-specific measure of association (descent-based association
methods). The vertical red-dashed and horizontal red-dotted lines indicate, respectively, the
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causal region from which the cSNVs were randomly selected and the 5% significant thresh-
old for the global test of any association. The Mantel, SKAT-O and distance correlation
tests detect significant association, but the Mantel test is the only method that correctly
localizes the causal region. The profiles for Fisher’s exact test and distance correlation in
panels (a) and (c) appear similar, and the peak association signal of both methods occurs
in approximately in the same genomic position. We will return to this point later when
discussing the simulation results.
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Figure 2.1: Association profiles, a) Fisher’s exact test (FET), b) SKAT-O, c) distance corre-
lation (dCor), and d) Mantel. The vertical red-dashed lines indicate the region from which
the causal SNVs were selected. The green triangles represent the causal SNVs. The maxi-
mum value of SNV-specific statistics over the entire genomic region is used in a permutation
test for the presence of any association. The horizontal dotted line represents the 5% sig-
nificant threshold based on 1000 permutations of the individual disease phenotypes. The
detection P-values for FET, SKAT-O, dCor, and Mantel are 0.089, 0.005, 0.008, and 0.002
respectively.
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Post-hoc labeling of case sequences

We apply the proposed GNN-labeling procedure to classify case sequences in the example
dataset. Figure 2.2 shows the boxplots of average GNN proportions of sequences grouped
by their status as case carriers or case non-carriers of causal variants and controls. We use
the median of average GNN proportion in control sequences to classify the case sequences
into carriers and non-carriers. In the example dataset, all but three of the true carriers are
correctly predicted by the GNN labeling.

Figure 2.2: Average GNN proportions of sequences grouped by their status as case carriers
of causal variants, case non-carriers of causal variants or controls. The horizontal red line
is the median of the average GNN proportion in control sequences.

Tables 2.3 (a) and (b) show the confusion matrices for naive and GNN labeling, re-
spectively. Naive labeling considers all 100 case sequences to be carriers of a cSNV. The
observed misclassification rates for naive and GNN labeling are 49% and 25%, respectively.
Post-hoc, GNN labeling therefore improves the identification of carriers of a cSNV among
case sequences. Table 2.4 considers the 51 case sequences that carry a cSNV in the exam-
ple dataset, and presents the number that are correctly predicted by GNN labeling. Three
carrier case sequences are incorrectly predicted, corresponding to the cSNVs in highlighted
rows of the table. As the case sequences carrying cSNVs 5 and 11 are sample singletons,
we would not expect their genealogical nearest neighbours to be over-represented by case
sequences. Thus, we would not expect the GNN labeling to correctly predict their carrier
status.
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Table 2.3: Carrier status for N = 100 case sequences in the example dataset using a) naive
labeling and b) GNN labeling.

(a) Naive labelling
Naive status

Non-Carrier Carrier

True status
Non-Carrier 0 49

Carrier 0 51
N=100

(b) GNN labelling
GNN-predicted status
Non-Carrier Carrier

True status
Non-Carrier 27 22

Carrier 3 50
N=100

Table 2.4: Carrier case sequences for each cSNV and number predicted by GNN labeling.

Sample sequences
cSNV Case GNN predicted

1 4 4
2 7 7
3 4 4
4 5 5
5 1 0
6 4 4
7 3 3
8 4 4
9 2 2
10 2 2
11 1 0
12 4 4
13 3 3
14 4 3
15 3 3

2.3.2 Detection

We present the simulation results for type-I error rates first, then the results for power.
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Type-I error rate

To estimate type-I error rates, we considered 500 datasets simulated under the null hypoth-
esis of no association with cSNVs. Figure 2.3 shows the empirical distribution functions
(EDFs) of the permutation P-values from a global test of association across the entire ge-
nomic region, for each of the association methods. In both panels, P-values are labeled in
the natural scale but plotted in the log-10-scale. The y-axis in the left panel of the figure is
shown up to 0.30. The right panel of the figure magnifies EDFs around the 5% significance
level. Figure 2.4 presents point and approximate 95%-confidence interval estimates of the
type-I error rates. The results of both figures suggest that the type-I error rates of all asso-
ciation methods are controlled at the nominal 5% level. Numerical values for the point and
95% confidence-interval estimates of the type-I error rates are reported in Table F.1.

Figure 2.3: Empirical distribution functions (EDFs) of permutation P-values from a global
test of association across the genomic region. Four methods are compared: Fisher’s exact test
(FET), SKAT-O, distance correlation (dCor) and Mantel. a) Original b) Zoomed version.
On the x-axis, P-values are labeled in the natural scale but plotted in the log-10-scale. The
vertical and horizontal dashed lines indicate the nominal 5% level.
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Figure 2.4: Point and approximate 95%-confidence interval estimates for type-I error rate
in Fisher’s exact (FET), SKAT-O, distance correlation (dCor), and Mantel tests. The hor-
izontal dashed line is the nominal 5% level.

Power

The EDFs shown in Figure 2.5 are based on 500 datasets that have been simulated under
the alternative hypothesis of association with causal SNVs. The EDFs suggest that the
SKAT-O and Mantel tests outperform the other tests for detecting the association signal.
The performance of the SKAT-O and Mantel tests at level 5% does not differ significantly
(McNemar P-value = 0.60).

A scatter plot of detection P-values from the SKAT-O and Mantel tests is shown in
Figure 2.6. The Pearson correlation between these two sets of P-values is 0.175 and differs
significantly from zero (p < 0.0001). In 62 of the 500 datasets, the Mantel test detects
the association signal but the SKAT-O test does not (fourth quadrant). In 68 datasets, the
SKAT-O test detects the association signal but the Mantel test does not (second quadrant).
Both methods detect the association signal in 345 datasets (third quadrant) and neither
method detects the signal in 25 datasets (first quadrant). The observed discordance rate
between the tests is 130/500, or 26%. These results suggest that the SKAT-O and Mantel
tests are picking up on different aspects of the association signal.
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Figure 2.5: Empirical distribution functions (EDF) of permutation P-values from a global
test of association across the genomic region. Four methods are compared: Fisher’s exact
test (FET), SKAT-O, distance correlation (dCor), and the Mantel statistic. On the x-axis,
P-values are labeled in the natural scale but plotted in the log-10 scale. The vertical dashed
line indicates a P-value of 0.05.
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Figure 2.6: The relationship between P-values from the Mantel test and SKAT-O in the log-
10 scale. The vertical and horizontal black-dashed lines show P-values of 0.05. The Pearson
correlation between the transformed P-values is 0.175 (p <0.0001). The red-dashed line is
y=x.

2.3.3 Localization

The EDFs of average distances from the causal region are shown in Figure 2.7, for the four
association methods. The Mantel profile appears to localize the causal region far better than
any of the others, followed by SKAT-O. In fact, the Mantel profile localizes significantly
better than SKAT-O (McNemar P-value = 0.0042)

From the figure, we see that Fisher’s exact test and the distance correlation localize
about 10% of the 500 simulated datasets to the causal region. However, the causal region
comprises 10% of the candidate region being fine-mapped, and so these two methods are
localizing no better than random chance. In the example dataset, Fisher’s exact test and
the distance correlation had similar association profiles which localized the peak signal
to roughly the same genomic position. To investigate the co-localization properties of the
methods, we calculated the Pearson correlation of their average distances from the causal
region. Amongst all pairs of methods, the maximum correlation of 0.30 (p-value ≈ 0) belongs
to Fisher’s exact test and the distance correlation. Our findings suggest that Fisher’s exact
test and distance correlation tend to co-localize the association signal more than any other
pair of methods considered.
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Figure 2.7: Empirical distribution functions (EDFs) for the average distance of the peak
association signal from the causal region, for 500 datasets simulated under the alternative
hypothesis of association. Four methods are compared: Fisher’s exact test (FET), SKAT-
O, distance correlation (dCor) and Mantel. To make the comparison easier and for better
resolution, the x-axis is shown only for genomic distances less than 200 kbp.

2.3.4 Performance of case-sequence labeling

We use the 500 datasets simulated under the alternative hypothesis to compare the per-
formance of GNN labeling of case sequences to a naive labeling scheme in which all case
sequences are assumed to be carriers of cSNV. For the 100 sampled case sequences in each
dataset, we compute the misclassification rates of the labeling procedures. Figure 2.8 shows
the scatter plot of these rates for the 500 datasets, with the GNN rates on the vertical
axis and the naive rates on the horizontal axis. The naive misclassification rates on the
horizontal axis have only four values (0.48, 0.49, 0.50, and 0.51), which have been randomly
perturbed for better viewing. From the red-dashed line indicating y = x, we can see that
GNN labeling has a uniformly lower misclassification error rate than naive labeling, across
all 500 datasets. Thus, post-hoc labeling of case sequences by the GNN procedure may be
of practical use for predicting which case sequences carry causal variants.
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Figure 2.8: Misclassification error rate of cSNV carrier status in case sequences, for GNN
versus Naive labeling across 500 simulated datasets. The red-dashed line is y = x.

2.4 Discussion and Conclusion

We have explored the feasibility of linkage fine-mapping on sequences for an allelically
heterogeneous disease. In particular, we have compared the ability of linkage and genotypic-
association approaches to detect and fine-map a causal locus in simulated datasets. The
linkage methods we have considered use sequences rather than individuals as the unit of
observation. These methods associate similarity in relatedness of sequences with similarity
in trait values, using either the distance correlation or Mantel coefficient as a measure of
association. For comparison, we include two genotypic-association methods, a single-variant
Fisher’s test and the SKAT-O test that aggregates variants. While our linkage methods use
haploid sequences and the genotypic association methods use diploid individuals as the unit
of observation, both classes of methods assume a diploid disease model. A consequence for
the linkage methods is that some case individuals will have sequences that do not carry
causal variants. We therefore introduce a post-hoc procedure to group case sequences into
carriers and non-carriers of causal variants, inspired by the idea of genealogical nearest
neighbors (GNN) described in [27]. We view this simulation investigation as a proof of
principle illustrating the potential of sequence-based linkage approaches. A future direction
of research would be to compare the linkage and SKAT-O approaches on real datasets from
fine-mapping studies.
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Our example data analysis and simulation study indicate that sequence-based linkage
methods are useful for population-based fine-mapping of an allelically heterogeneous dis-
ease. In particular, we find that: (i) a linkage-based Mantel test detects rare causal variants
as well as a state-of-the-art genotypic-association test, SKAT-O; (ii) the Mantel profiles best
localize rare causal variants among all the methods; and (iii) GNN labeling of case sequences
is helpful for removing sequences that do not carry causal variants. These findings suggest
the following strategy for fine-mapping an heterogeneous disease in case-control samples.
First, detect disease association with either the Mantel or SKAT-O test. Once a disease
association has been detected, localize the causal region with the Mantel association profile
and refine the case sequences by removing those labeled as non-carriers by the GNN pro-
cedure. The putative causal locus and putative carrier case sequences can then be searched
for causal variants. Our work extends earlier investigations of sequence-based linkage map-
ping that relied on the known gene genealogies [20], [28]. Instead, we infer the topological
structure of unknown genealogies from sequence data. Our sequence-based approaches are
therefore practical for linkage fine-mapping with population-based data.

We evaluated the type-I error rate using datasets simulated under the null hypothesis
of no association. Our results suggest that the type-I error rate of all the methods is well
controlled at the 5% nominal level. The Mantel test was of particular interest because it
has been criticized for inflated type-I error rates when the units being permuted are non-
exchangeable [26]. In our context, however, the size of the Mantel test is maintained because
the case and control status of individuals is exchangeable under the null hypothesis.

Fisher’s exact test had the lowest power of all the methods, as expected for a single-
variant method detecting rare variants. The Mantel test of linkage and the SKAT-O test
of genotypic-association had the highest power of all methods. The estimated power of
these tests at level 5% did not differ significantly (McNemar P-value = 0.60). The similar
power of the Mantel and SKAT-O tests prompted us to look into the agreement of their
p-values across the simulated datasets (Figure 2.6). The random pattern in the figure as
well as the observed discordance rate of 26% between the two significance tests at level 5%
suggests that the Mantel and SKAT-O tests detect different aspects of the association signal.
The complementary nature of the tests indicates that a combined test, e.g., using Fisher’s
method of combining p-values (e.g. [29]), could be more powerful than either the Mantel or
SKAT-O tests alone. Investigating the power of combined tests is an area for future work.
The Mantel test had higher detection power than the distance-correlation test (Figure 2.5).
We note that the Mantel test is well suited to a disease of low prevalence (5%) because the
trait distances, between case/case pairs on one hand and case/non-case and non-case/non-
case pairs on the other, are essentially binary (results not shown). The relationship between
trait distances is then essentially a straight line and therefore well captured by the Pearson
correlation coefficient. By contrast, the distance correlation assumes Euclidean distances
[24] and so may be unsuitable for our partition distances between sequences.
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The principal finding of our simulation study is that, when the penetrance model favours
linkage analysis, the Mantel association profile localizes the causal region significantly better
than the next-best SKAT-O (McNemar P-value = 0.0042). In contrast, Fisher’s exact test
and the distance correlation localized the causal region the worst, and in fact did no better
than random guessing of the location. Interestingly, among all pairs of methods considered,
the average distance of the peak association signal from the causal region was the most
highly correlated for the Fisher’s exact and distance-correlation methods (r = 0.30, p-
value≈ 0). In some datasets, the peak association signals for Fisher’s exact test arise from
synthetic associations with common SNVs outside the causal region that happen to tag
multiple causal SNVs by chance [30]. It would be interesting to investigate whether distance
correlation is also vulnerable to synthetic associations, given its tendency to co-localize the
association signal with Fisher’s exact test.

Throughout, we have applied SKAT-O with a window size of 21 SNVs. This window size
corresponds to a genomic region of roughly 14-15 kb, about the size of a typical human gene,
in our simulated datasets. We also investigated the detection and localization properties
of SKAT-O using windows of 11, 41, 61, and 81 SNVs (results not shown). We found
that a SKAT-O window size of 61 SNVs yielded slightly greater detection power than the
Mantel test. SKAT-O localization rates improved slightly, up to a window size of 61 SNVs,
before falling off for larger window sizes. However, no SKAT-O window size achieved better
localization than the Mantel method. Such tuning of the SKAT-O window size is not possible
in practice, as it will depend on unknowns such as the presence and location of any causal
variants. In addition, SKAT-O already involves optimizing over a linear combination of
its constituent burden and variance-component tests, so that optimizing over window size
would add extra computational burden. Development of practical and feasible procedures
for tuning the SKAT-O window size would be an interesting avenue for further investigation.

Our results suggest that sequence-based linkage analysis is useful for fine-mapping al-
lelically heterogeneous traits. To start the discussion, we have used simulation to explore
disease traits in a case-control study design, under a genetic architecture that favors linkage
methods. In particular, we simulated high-penetrance, low-frequency causal variants. Ex-
amples of diseases influenced by high-penetrance, low-frequency variants are familial breast
and ovarian cancer [31], familial bipolar disorder [32], hearing impairment, familial goitres
and familial hypertension [7]. In the absence of allelic heterogeneity, we do not expect
sequence-based linkage methods to offer advantages over genotypic association methods
such as SKAT-O, for either detection or localization. By analogy to family-based linkage
analysis, lower penetrance ratios are expected to reduce the effectiveness of sequence-based
linkage analysis in relation to association approaches such as SKAT-O. Further simula-
tions under a larger variety of allele frequency and penetrance parameters are an important
direction for future work.
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A related area of future work is to expand the scope to other study designs and genetic
architectures. For example, how is sequence-based fine-mapping affected as we vary the
type of trait (i.e. binary disease versus quantitative), the type of population-based study
design (e.g. case-control, cohort or cross-sectional sampling), and the number and frequency
of causal variants within the trait locus? We would also like to investigate the impact of
sequencing errors on the sequence-based linkage methods. Our initial thoughts are that
sequencing errors will attenuate the association signal by misclassifying carriers of causal
variants as non-carriers or vice versa, but is unlikely to create false-positive associations.
Adjusting for confounding variables is another area of interest. One option to deal with
confounding is a partial Mantel test of association between two distance matrices given a
third [33]. This extension would allow testing for association between partition distances
and phenotype distances given a third distance matrix based on the confounding variables.

In fine-mapping, fine-scale population structure is a confounding variable of particular
concern because rare variants tend to cluster geographically due to their recent origin [34].
Adjusting for fine-scale population structure when fine-mapping rare variants is challenging,
though recently proposed permutation approaches offer a potential way forward [35]. Our
investigation of sequence-based linkage methods has focused on fine-mapping in a candidate
region, but these methods also have the potential to scale up to genome-wide analysis as
long as computational resources are available. For example, on a 2.1Ghz Intel processor, and
with the sequence partition distances in hand, calculation of the Mantel association profile
for the example dataset took 2.18 seconds, and calculation of 1000 further scans for the
permutation distribution took about 18 minutes. Scaling from a 2MB region to the entire
genome is expected to take about 54.5 minutes for a single scan, and about 27,000 minutes
for the permutation replicates. However, permutations are easily parallelized across nodes of
a compute cluster. Our study was focused on fine mapping, and so used the perfectphyloR

R package for partition reconstruction. As perfectphyloR’s reconstruction does not scale
to genome-wide data, we recommend alternative genome-wide reconstructors such as those
implemented in tsinfer [36] or Relate [37]. For high-penetrance diseases influenced by
multiple low-frequency variants, we expect sequence-based linkage analysis to have similar
power to SKAT-O and better localization at the genome-wide scale, as in the fine-mapping
results from the current investigation.
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Chapter 3

Goodness-of-fit tests based on
empirical processes

3.1 Introduction

A goodness-of-fit test is a statistical method which uses hypothesis testing to evaluate how
well a theoretical distribution fits observed data. The process of testing whether sample
data match a specific distribution with a cumulative distribution function (CDF) F begins
by specifying a null hypothesis.

A simple null hypothesis arises when there are no unknown parameters, and a single
CDF, F , fully describes the distribution of the data. However, in the much more common
situations where some or all parameters of the distribution are unknown, a composite hy-
pothesis is tested. Sometimes the observations in the sample are assumed to follow the
same distribution but in more complex situations, the distribution of each observation in
the sample may depend on some covariates. Important examples are linear and generalized
linear models.

In its simplest form, a simple null hypothesis is being tested where F fully describes
the distribution. To be more specific, let Y1, Y2, . . . , Yn be a random sample of a contin-
uous random variable (such as Y ) from a population with the cumulative distribution
function G. The basic problem of goodness-of-fit is to test the simple null hypothesis
H0 : For all y G(y) = F (y), where F is a known continuous distribution, against the om-
nibus alternative that G is in the set of all CDFs which are not identically equal to F .
The alternative hypothesis in goodness-of-fit test thus specifies no information about the
distribution of the data and only indicates that the null hypothesis is false.

We review some of the suggestions in the literature for testing the simple null hypothesis
when F has no unknown parameters and the distribution of sample data does not depend
on covariates. The well-known Pearson’s Chi-squared test was developed for the classic
problem of testing goodness-of-fit [38]. To test the hypothesis, we partition the entire range
of data into k different cells. The idea is to compare the number of observed values in any
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cell range (denoted oi) to the expected number of observations in the cell obtained from
the distribution under the null hypothesis (denoted ei). The sum of the squared differences
between expected values and observed values divided by the expected values asymptotically
follows a Chi-squared distribution; the degree of freedom, k − 1 depends on the number of
cells. Therefore, it is easy to compute the P-value for the test.

The Pearson Chi-squared test for the goodness-of-fit is an ideal case for discrete data but
it lacks statistical power for the general alternative given above when the data is continuous.
To overcome this, goodness-of-fit tests based on the empirical distribution function (EDF)
were developed later [39]. The EDF is a step function calculated from sample data and is an
estimate for the population distribution function [40]. Goodness-of-fit tests based on EDF
give a non-parametric approach that does not make any assumption about the distribution
of the data itself. Rather, the idea of these tests is to measure the discrepancy between the
EDF obtained from the sample and the cumulative distribution function F (y) specified by
the null hypothesis.

A variety of methods have been proposed for goodness-of-fit tests based on the EDF.
See for example Cramér[41], Smirnov [42], Kolmogorov [43], Anderson and Darling [44],
and Lockhart and Stephens [45]. The asymptotic distribution of these statistics depends on
whether or not any parameter estimation is involved, that is, on whether or not the null
hypothesis is composite.

In this chapter of the thesis, we focus on goodness-of-fit tests based on the EDF. We
mainly study the Cramér-Von-Mises (CvM) and Anderson-Darling (AD) statistics. We re-
view the large sample theory for these EDF tests and show that each new model to be
tested requires a substantial theoretical effort to derive the large sample distribution. That
effort involves computing the covariance function of a suitable approximately Gaussian pro-
cess and then solving a Fredholm integral equation to find the spectrum (eigenvalues) of
the covariance function of that Gaussian process. We then show how to estimate, rather
than compute analytically, the relevant covariance function and then estimate the required
spectrum. Finally we review computation of approximate P-values of our statistic based on
the computed or estimated spectrum.

The chapter is organized as follows. We begin in Section 3.2 by reviewing tests based on
the empirical distribution function. We give the definitions and some properties of the well-
known Cramér-von-Mises and Anderson-Darling statistics beginning with the simple null
hypothesis. We present in Section 3.3 the well-known large sample theory that is required
to study the asymptotic behavior of these statistics. When no parameters are estimated
our statistics are the squared integral of a stochastic process which is a scaled average of
independent and identically distributed terms. Well known large sample theory then shows
that this stochastic process converges weakly, under the null hypothesis, to a Gaussian
process with mean 0 and a covariance function which depends on whether we are discussing
the Cramér-von-Mises statistic or the Anderson-Darling statistic. The properties of this
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covariance function play a central role in calculating the P-value of the test; the limiting
distribution of the test statistic is that of a linear combination of chi-squared variables. The
weights are eigenvalues of the covariance; they solve a certain integral equation which we
present.

We continue in Section 3.4 by studying the large sample theory when some or all pa-
rameters of the density model are not known. This case is important as it is more likely to
happen in real-world applications of the goodness-of-fit test. In Section 3.5, we introduce a
new method to estimate the covariance function of a stochastic process based on the sample
which is helpful in applying goodness-of-fit tests based on EDF for any general likelihood
model. To present our idea and emphasize the theory, we examine in Sections 3.6 and 3.7
the details of an i.i.d. sample from a Normal distribution and an i.i.d. sample from a Gamma
distribution. The Gamma distribution has multiple standard parametrizations; motivated
by this observation we show in Section 3.8 that our tests are parametrization invariant.

In Section 3.9 and 3.10 we broaden our view by considering linear models with a normal
assumption for the residuals and then generalized linear models with an assumption of
gamma distributed observations. In the generalized linear model case we focus on two
popular links: log and inverse. Concluding remarks are in 3.11. To facilitate the application
of our method and provide it to a wider audience, we have developed an R package to
implement these methods in R statistical software; the package and its scope are described
in Chapter 5.

3.2 Tests based on the empirical distribution function

In this section, we review the details of the goodness-of-fit tests based on the empirical
distribution function (EDF). We describe two well-known statistics of this type which we
will be using in this thesis. The simplest and classical problem of goodness-of-fit begins
with an i.i.d. sample denoted by Y1, Y2, . . . , Yn from a continuous random variable Y drawn
from a population with some unknown cumulative distribution function (CDF) such as G,
i.e G(y) = Pr(Y ≤ y). We would like to test the following hypothesis:

H0 : For all y G(y) = F (y; θ)

H1 : There is a y such that G(y) ̸= F (y; θ)

where F is the CDF of a fully known distribution. This means θ is a known value or vector.
For example, F might be the CDF of a Normal distribution with mean zero and standard
deviation of one. In this case θ is the vector θ = (µ, σ) = (0, 1). Thus the precise form of
the hypothesized distribution is known.

To test the above null hypothesis, one can calculate the empirical distribution function
based on the random sample from the population. The empirical distribution function for
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the sample is defined as:

Fn(y) = 1
n

n∑
i=1

I (Yi ≤ y) . (3.1)

Note that I is the indicator function with a value of one when Yi ≤ y and zero oth-
erwise. For all possible values of y, the quantity Fn(y) simply calculates the proportion of
observations in the sample that are less than or equal to y. If the null hypothesis is cor-
rect, we expect the proportions obtained from the sample to match very well to theoretical
values obtained from F (y; θ). For example Pearson’s chi-squared test assesses this expec-
tation at certain points. The entire range of possible values is partitioned into different
disjoint intervals. The points where intervals are defined are denoted by C0 = −∞, C1,
C2, . . . ,Ck−1, Ck = ∞. The number of observations falling within the interval [Ci−1, Ci]
is oi = n (Fn(Ci) − Fn(Ci−1)) where Fn(Ci) and Fn(Ci−1) are the empirical cumulative
distribution functions evaluated at Ci and Ci−1, respectively. On the other hand, the ex-
pected number of observations in each interval is ei = n (F (Ci) − F (Ci−1)), where F (Ci)
and F (Ci−1) are the cumulative distribution functions of the theoretical distribution under
consideration evaluated at Ci and Ci−1, respectively. Pearson’s chi-squared statistic mea-
sures this discrepancy using the statistic χ2 = ∑n

i=1
(oi−ei)2

ei
which asymptotically follows

a Chi-square distribution with k − 1 degrees of freedom. Note that the statistic essentially
measures the discrepancy between the EDF and the hypothesized CDF at certain discrete
data points.

More generally the idea of goodness-of-fit tests based on the EDF is to measure the
discrepancy between the empirical distribution function obtained from the sample, Fn(y),
and the cumulative distribution function under the null hypothesis, F (y; θ), at all possible
values of y. Goodness-of-fit tests based on the EDF summarize this distance over all possible
values of y with a statistic. Generally speaking the distance between Fn(y) and F (y, θ) can
be calculated by two classes of statistics.

Supremum EDF statistics: The first class is the supremum norm of the weighted
distance between the Fn(y) and F (y; θ); the Kolmogorov-Smirnov (KS) statistic is a well-
known example. It measures the discrepancy between Fn(y) and F (y; θ) by calculating
the absolute value of distance of the empirical distribution function from the cumulative
distribution function for all possible values of y, weighted by square root of the sample size.
The supremum of these differences is the KS statistic which is defined as follows:

Kn = sup
−∞<y<∞

√
n |Fn(y) − F (y; θ) |.

Quadratic EDF statistics: The second class of EDF-based statistics measures the
discrepancy between the empirical distribution function obtained from the sample and the-
oretical values under the null hypothesis with a quadratic form of distance. This idea leads
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to the family of Cramér-von-Mises statistics defined as follows:

Q = n

∫ ∞

−∞
(Fn(y) − F (y; θ) )2 ζ(y) dF (y; θ). (3.2)

Here ζ(y) controls the power of the test by assigning different weights to different parts of
the distribution. If ζ(y) = 1, the statistic is known as the Cramér-von-Mises statistic and
is defined by:

W 2 = n

∫ ∞

−∞
(Fn(y) − F (y; θ) )2 dF (y; θ). (3.3)

This is a distribution free statistic (that is, the distribution of W 2 does not depend on
F when the null hypothesis holds) that compares how well the empirical distribution
function of a sample matches to the theoretical distribution under the null hypothesis.
Anderson and Darling [46] defined another measure of discrepancy by setting ζ(y) =
[F (y; θ) (1 − F (y; θ)]−1 to define the statistic as follows:

A2 = n

∫ ∞

−∞

(Fn(y) − F (y; θ) )2

F (y; θ)(1 − F (y; θ))dF (y; θ). (3.4)

The Cramér-von Mises and Anderson-Darling statistics have easier alternative forms for
computing purposes. The idea is to do the integral in 3.3 or 3.4 by integrating analytically
between sorted probability integral transform values obtained from the sample. Suppose
that Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) is the ordered sample from smallest to largest value. The
Cramér-von Mises statistic can then be computed as [40]:

W 2 =
n∑

i=1

[
U(i) − 2i− 1

2n

]2
+ 1

12n (3.5)

where U(i) = F (Y(i); θ). Similarly, the Anderson-Darling statistic can be computed as [40]:

A2 = −1
n

n∑
i=1

(2i− 1)
[
ln (U(i)) + ln (1 − U(n+1−i))

]
− n. (3.6)

Both Cramér-von Mises and Anderson-Darling tests are well known in the literature and
quite practical. Anderson-Darling statistic assigns more weight to the tails of the distribution
than does the Cramér-Von Mises statistic (since ζ(y) = 1 in CvM). This makes Anderson-
Darling more sensitive to deviations from the theoretical distribution in the tails. Therefore
using it against heavy tail alternative distributions often results in better power.

If the null hypothesis is not correct, we expect a large number for the discrepancy
between the empirical distribution function obtained from sample, Fn(y), and the cumula-
tive distribution function under the null hypothesis, i.e F (y; θ). For example in the case of
Cramér-von Mises statistic, this is reflected in the value of integrand, i.e (Fn(y) −F (y; θ))2.
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As a result it is clear that the null hypothesis would be rejected when W 2 exceeds z for
some value of z since this indicates a significant discrepancy between Fn(y) and F (y; θ)
from our assumption in the null hypothesis. This is true for both supremum and quadratic
type statistics. In order to be able to work with any of these statistics, we need to obtain
the distribution and the corresponding significance levels of these statistics. The asymptotic
distribution of Kn is studied in the works of [43]. Massey [47] used combinatorial methods
to obtain the exact distribution of Kn for sample sizes of n ≤ 35. The asymptotic distribu-
tion of the Cramér-von Mises statistic is studied in the works of Smirnov (1936). The focus
of this chapter is primarily on Cramér-von Mises statistics. In the next section, we review
the required large sample theory to find the asymptotic distribution of quadratic statistics
based on the EDF.

3.3 Large sample theory for the EDF

In this section, we provide the large sample theory required to perform the goodness-of-
fit tests for the simple null hypothesis based on the empirical distribution function. As
mentioned before, we primarily focus on the Cramér-von Mises statistic in this thesis but
the idea can be generalized in a similar way to any quadratic EDF statistic for goodness-
of-fit test. Again let Y1, Y2, . . . , Yn be a random sample from a continuous random variable
Y with G(y) being the unknown cumulative distribution function. The simple hypothesis
test:

H0 : For all y G(y) = F (y; θ)

H1 : There is a y such that G(y) ̸= F (y; θ)

is of interest where F is the distribution in question and θ is a known vector of parameters
that fully describes the distribution under the null hypothesis. Note that as Y is a continuous
random variable, the probability integral transform theorem guarantees that the random
variable U = F (Y ; θ) has a Uniform distribution over the interval [0,1]. Therefore we can
transform the Yi sample into Ui = F (Yi; θ) for i = 1, 2, 3, . . . , n. If the null hypothesis is
correct, the Ui’s are a random sample drawn from a Uniform distribution over interval [0,1].
Therefore, the initial hypothesis testing problem can be reduced to determining whether
these transformed samples follow a Uniform distribution over the interval [0, 1], with a
cumulative distribution function of F (u) = u, for 0 ≤ u ≤ 1. We can now write the Cramér-
von Mises statistic in the following form based on the Ui sample:

W 2 = n

∫ 1

0
(Fn(u) − F (u) )2 du = n

∫ 1

0
(Fn(u) − u )2 du =

∫ 1

0

(√
n(Fn(u) − u)

)2
du.

Note that we are now abusing notation by writing Fn(u) for values of the empirical CDF
of the Ui and Fn(y) for values of the empirical CDF of the Yi. That is we define for values
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of 0 ≤ u ≤ 1:

Fn(u) = 1
n

n∑
i=1

I (F (Yi; θ) ≤ u) = 1
n

n∑
i=1

I (Ui ≤ u) . (3.7)

We finally define Wn(u) =
√
n (Fn(u) − u) to write the CvM as follows:

W 2 =
∫ 1

0

(
Wn(u)

)2
du. (3.8)

The expected value of Fn(u) is calculated as follows:

E [Fn(u)] = E

(
1
n

n∑
i=1

I (F (Yi; θ) ≤ u)
)

= 1
n

n∑
i=1

E (I (F (Yi; θ) ≤ u))

= 1
n

n∑
i=1

Pr (F (Yi; θ) ≤ u) = 1
n

n∑
i=1

Pr
(
F−1(F (Yi; θ); θ) ≤ F−1(u; θ)

)
= 1
n

n∑
i=1

Pr(Yi ≤ F−1(u; θ)) = 1
n

n∑
i=1

F
(
F−1(u; θ); θ

)
= 1
n

n∑
i=1

u = u.

The covariance between Fn(s) and Fn(t) for any values of 0 ≤ s, t ≤ 1 is calculated as
follows:

Cov (Fn(s), Fn(t)) = Cov
(

1
n

n∑
i=1

I (F (Yi; θ) ≤ s) , 1
n

n∑
i=1

I (F (Yi; θ) ≤ t)
)

= 1
n2 Cov

(
n∑

i=1
I (Ui ≤ s) ,

n∑
i=1

I (Ui ≤ t)
)

= 1
n2

n∑
i=1

n∑
j=1

Cov (I(Ui ≤ s), I(Uj ≤ t))

= 1
n2

 n∑
i=1

Cov(I(Ui ≤ s), I(Ui ≤ t)) +
∑
i ̸=j

Cov(I(Ui ≤ s), I(Uj ≤ t)

 .
Note that each term in the second summation in the parentheses is 0; it is the covariance
between two independent random variables – since Yi and Yj are independent we see that
Ui and Uj are independent too. In the first term we must compute for 0 ≤ s, t ≤ 1:

Cov(I(Ui ≤ s), I(Ui ≤ t) = E(I(Ui ≤ s)I(Ui ≤ t)) − st.
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Since I(Ui ≤ s)I(Ui ≤ t) = I(Ui ≤ min(s, t)) we find

Cov (Fn(s), Fn(t)) = 1
n2

n∑
i=1

Cov(I(Ui ≤ s), I(Ui ≤ t) (3.9)

= 1
n

(min(s, t) − st) . (3.10)

We now describe the limiting distribution of W 2 =
∫ 1

0 (Wn(u))2 du. For values of 0 ≤ u ≤ 1,
Wn(u) =

√
n (Fn(u) − u) is an empirical process. The limiting behaviour of this process is of

interest. For fixed values of u1, u2, . . . , uk the joint distribution ofWn(u1),Wn(u2), . . . ,Wn(uk)
converges to a Gaussian process with mean zero and a certain covariance function, as n → ∞
[48]. We here highlight the properties of the Gaussian process in the case of Cramér-von
Mises statistic. The mean and covariance function of the sequence of stochastic process is
calculated as follows:

E [Wn(u)] = E
[√
n(Fn(u) − u)

]
=

√
n [E(Fn(u)) − u] =

√
n(u− u) = 0

For values of 0 ≤ s, t ≤ 1 the covariance function of the stochastic process is:

Cov(Wn(s),Wn(t)) = n(Cov(Fn(s), Fn(t)))

= min(s, t) − st

We use the notation:

ρ(s, t) = min(s, t) − st (3.11)

to refer to the covariance function of the stochastic process Wn(u). First note that we can
use the Karhunen-Loève theorem to expand the covariance function ρ(s, t) in terms of its
eigenvalues (spectrum) and its orthonormal eigenfunctions as follows [48]:

ρ(s, t) =
∞∑

i=1
λjfj(s)fj(t)

On the other hand, since Wn(u) is a random process in L2 such that
∫ 1

0 W
2
n(u) du < ∞, it

can be shown that the expansion of Wn(u) is [48]:

Wn(u) =
∞∑

j=1

√
λjZn,jfj(u)

where fj(t) are orthonormal eigenfunctions, λj are the eigenvalues of covariance function
ρ(s, t) and:

Zn,j =
∫ 1

0
Wn(u)fj(u) du.
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Note that:(
Wn(u)

)2
=
( ∞∑

j=1

√
λjZn,jfj(u)

)2
=

∞∑
j=1

λjZ
2
n,jf

2
j (u)+

∞∑
j=1

∞∑
k=1

√
λjZn,jfj(u)

√
λkZn,kfk(u)

Now we can rewrite Cramér-von-Mises statistics defined in formula 3.8 as follows:

W 2 =
∫ 1

0

(
Wn(u)

)2
du =

∫ 1

0

( ∞∑
j=1

λjZ
2
n,jf

2
j (u) +

∞∑
j=1

∞∑
k=1

√
λjZn,jfj(u)

√
λkZn,kfk(u)

)
du

=
∫ 1

0

∞∑
j=1

λjZ
2
n,jf

2
j (u) du +

∫ 1

0

∞∑
j=1

∞∑
k=1

√
λjZn,jfj(u)

√
λkZn,kfk(u) du

=
∞∑

j=1
λjZ

2
j

∫ 1

0
f2

j (u) du +
∞∑

j=1

∞∑
k=1

√
λjZn,j

√
λkZn,k

∫ 1

0
fj(u)fk(u) du

=
∞∑

j=1
λjZ

2
n,j .

The last line holds since fj(u) are orthonormal functions (i.e.
∫ 1

0
f2

k (t)dt = 1 and for values

of i ̸= j we have
∫ 1

0 fj(t)fk(t)dt = 0). Replacing Wn(u) = 1√
n

∑n
i=1 (I(Ui ≤ u) − u) in the

formula for Zn,j we can write:

Zn,j =
∫ 1

0

1√
n

n∑
i=1

(I(Ui ≤ u) − u) fj(u) du.

The Zn,j have mean zero, standard deviation one, and for values of i ̸= j, Cov(Zn,j , Zn,k) =
0. It can be shown that Zn,j converges in distribution to an i.i.d. sequence of variables Zj

with standard normal distributions. Therefore the Cramér-von-Mises defined in formula 3.8
converges in distribution to a linear combination of Chi-squared random variables with a
quadratic form such as

Q =
∞∑

j=1
λjZ

2
j

where the Zj ’s are i.i.d. random variables from a standard normal distribution and the λj ’s
are eigenvalues of the covariance function of the stochastic process defined in formula 3.11.
For a rigorous proof of the convergence see page 210 on Shorack and Wellner [48]. As a
result, there are normalized eigenfunctions denoted fk(t) that satisfy the following integral
equation [49]:

∫ 1

0
ρ(s, t)fk(t)dt = λkfk(s) k = 1, 2, 3, . . . (3.12)
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Note that the value of k varies from 1 to infinity as there are infinitely many eigenvalues. For
the basic Cramér-von Mises statistic defined in formula 3.8, solving the integral equation
gives the following eigenvalues and eigenfunctions [49]:

λk = 1
π2k2 fk(t) =

√
2 sin(

√
λkt) k = 1, 2, 3, . . . . (3.13)

More general statistics such as the Anderson-Darling statistic incorporate a weight func-
tion ζ in the integral defining the test statistic. In this case the covariance function ρ is
replaced by ρζ defined by

ρζ(s, t) =
√
ζ(s)ζ(t)ρ(s, t).

A similar strategy can be incorporated to calculate eigenvalues and eigenfunctions in the
case of Anderson-Darling and prove the convergence.

As we will see later in this chapter, a more complex form of the covariance function, as
defined in formula 3.11, emerges in examples where the model contains unknown parameters.
In such cases, an analytical solution for the integral equation in Formula 3.12 rarely exists.
A common approach to solve for λ numerically is to discretize the integral over the interval
[0,1]. For any given covariance function ρ(s, t), the eigenvalues can be approximated by
solving the following system of equations:

m∑
j=1

wjρ(si, sj)f(sj) = λif(si) i = 1, 2, 3, . . . ,m (3.14)

where m is the number of knots sj being used to discretize the integral over [0,1] and wj are
quadrature weights [50]. Specifically, the eigenvalues can be approximated by computing
the non-zero eigenvalues of an m by m matrix M, where the elements of this matrix are:

Mi,j = wjρ(si, sj)

The elements are calculated by evaluating the covariance function at values of si and sj

where 0 ≤ si, sj ≤ 1. In this thesis, these values are either selected to be equally spaced over
the [0,1] interval or obtained as probability integral transformed values from the sample.
We have also tried two sets of quadrature weights: either wj = 1/m (uniform weight over
m different knots sj) or wj = (U(j+1) −U(j−1))/2 where U(j) = F (Y(j); θ) is the j-th ordered
probability integral transformed value of sample.

Returning to the covariance function in formula 3.11 and its eigenvalues in formula 3.13
for CvM, we use only a finite number, m, of these eigenvalues to numerically compute the
P-value by computing the tail probability of the distribution of a linear combination of
chi-squared variables,

Qm =
m∑

i=1
λiZ

2
i .
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We do this computation using either the method of Imhof [51] (numerical inversion of
the characteristic function) or the method of Farebrother [52] (a more complex infinite
expansion). In this thesis and in the package we developed, we worked with the first m = 100
eigenvalues in the case considered in this section: the simple null hypothesis tested using the
Cramér-von Mises statistic. The P-value is Pr(Qm > x) where x is the Cramér-von Mises
statistic calculated from the sample based on formula 3.5. The package CompQuadForm
in R statistical software can be used to compute the P-value based on either Imhof’s or
Farebrother’s method.

In summary, the following are the steps to calculate the P-value to test the null hypoth-
esis when there is no unknown parameter in the model:

Step 1. For a sample of size n, obtain Y(1), Y(2), . . . , Y(n) where Y(i) is the i-th sorted
value in the sample.

Step 2. Compute the probability integral transformed values of each Y(i) by applying
U(i) = F (Y(i); θ)

Step 3. Compute the Cramer-von Mises statistic, W 2, using computation formula in
3.5.

Step 4. Compute a finite set of m eigenvalues as defined in formula 3.13.
Step 5. Numerically compute the P-value by either Imhof’s or Farebrother’s method.

In this section, we reviewed the goodness-of-fit test based on EDF for a simple hypothesis
testing setting where θ is known, and F (Y ; θ) fully describes the distribution under the null
hypothesis. As a result there is no parameter estimation involved. In the next section, we
will review the necessary theory for a more challenging and practical case. Specifically, we
will explore cases where some or all elements of the vector parameter θ are unknown and
need to be estimated from the sample. We will review the large sample theory in this case
and how it alters the covariance function.

3.4 Empirical distribution function test for a composite hy-
pothesis

We now consider a more challenging situation where F (y; θ) is not fully specified under the
null hypothesis since some or all elements of θ, vector of parameter, are unknown. To be
more specific, assume Y1, Y2, . . . , Yn is an independent and identically distributed random
sample from a continuous distribution. We denote the unknown cumulative distribution
function with G(y). We would like to test the following null hypothesis vs the alternative:

H0 : There is a θ ∈ Θ such that G(y) = F (y, θ) for all y,

H1 : For every θ ∈ Θ there is a y such that G(y) ̸= F (y, θ).
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In this hypothesis, F (y; θ) is the distribution of interest. For example, it can be a Normal
distribution with unknown parameters of µ and σ2. In this case, the vector of parameters
is θ = (µ, σ2) ∈ Θ where Θ = {(µ, σ2);µ ∈ R, σ > 0}, or it could be a Gamma dis-
tribution with unknown shape and scale parameters. In this case θ = (α, λ) ∈ Θ where
Θ = {(α, λ), α, λ > 0}. The large sample theory for composite hypotheses is similar to the
large sample theory that we discussed in section 3.3 but with some important changes. Now
θ is not known and needs to be estimated to compute the estimated distribution function
which will be compared to the empirical distribution function. As a result of parameter
estimation, the covariance function of the corresponding stochastic process is changed. This
case has attracted more attention in the literature, particularly in the work of Michael
Stephens [49], as it is more relevant to real-life applications. Here, we review the theory and
summarize the steps for conducting the hypothesis tests.

The first step is to estimate the unknown parameter from the sample using a reasonable
estimator. Maximum Likelihood Estimators (MLEs) are known for their efficiency and well-
behaved asymptotic properties. MLEs can be easily computed for some known distributions
from the sample data. In more complex likelihood models, when possible, numerical meth-
ods, such as the Newton-Raphson algorithm, can be employed to compute the MLE for θ
numerically. We use the conventional notation θ̂ to represent the MLE of θ. In this thesis, we
only consider MLE estimation of θ. Once the unknown parameter is estimated, the second
step involves transforming the original data, Y1, Y2, . . . , Yn, into Û1, Û2, . . . , Ûn by apply-
ing the probability integral transform Ûi = F (Yi; θ̂). The estimated empirical distribution
function is then calculated for all possible values of 0 ≤ u ≤ 1 by computing:

F̂n(u) = 1
n

n∑
i=1

I
(
F (Yi; θ̂) ≤ u

)
= 1
n

n∑
i=1

I
(
Ûi ≤ u

)
. (3.15)

Note that this is an estimate for the empirical distribution function defined in formula 3.7.
Recall that the Cramér-von Mises statistic measures the discrepancy between the empirical
distribution function and the cumulative distribution function under the null hypothesis.
The same principle applies in the context of parameter estimation but the theoretical distri-
bution function is replaced with the distribution function based on the parameter estimates.
The Cramér-von Mises statistic is then used to quantify the goodness-of-fit between the EDF
and the CDF estimated under the null hypothesis. It is worth noting that for relatively large
sample sizes, we can expect the MLE of θ to be sufficiently close to the true value of θ.
As a result, under the null hypothesis we can expect the estimated values Ûi = F (Yi; θ̂) to
be very close to the true values Ui = F (Yi; θ), which means that we can reasonably expect
F̂n(u) to be close to Fn(u). Therefore, we can reduce the problem to checking whether the
transformed values of Ûi follow a uniform distribution over the interval [0,1]. Thus for test-
ing our composite null hypothesis we define the Cramér-von Mises statistic in the following
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form:

W 2 = n

∫ 1

0

(
F̂n(u) − u

)2
du

=
∫ 1

0

(√
n(F̂n(u) − u)

)2
du =

∫ 1

0

(
Ŵn(u)

)2
du,

where now Ŵn(u) =
√
n
(
F̂n(u) − u

)
which can be thought of as an estimate for Wn(u) =

√
n (Fn(u) − u) (defined in section 3.3). The limiting distribution of W 2 is still a quadratic

form such as ∑k λkZ
2
k but the estimation of θ changes the covariance function of Ŵn(u)

process compared to the covariance function of Wn(u) process, [49]. We now review the
steps needed to calculate the limiting covariance function of the Ŵn(u) process when the
parameters of the model need to be estimated. (Our presentation does not give rigorous
proofs that the various remainder terms are uniformly negligible; see [53], chapter 5, section
5 on page 228 for more details.) The idea is to expand Ŵn(u) in terms of Wn(u) since we
know the covariance function of Wn(u). Using formula 3.15, we start by writing:

Ŵn(u) =
√
n
(
F̂n(u) − u

)
=

√
n

(
1
n

n∑
i=1

I
(
F (Yi, θ̂) ≤ u

)
− u

)
=

√
n

(
1
n

n∑
i=1

I
(
F (Yi, θ̂) ≤ u

)
− nu

n

)

=
√
n

n

(
n∑

i=1
I
(
F (Yi, θ̂) ≤ u

)
− nu

)
= 1√

n

n∑
i=1

(
I
(
F (Yi, θ̂) ≤ u

)
− u

)
.

(3.16)

We define the inverse of the cumulative distribution function of F (Y ; θ̂) using the notation
Q(Y ; θ̂) = F−1(Y ; θ̂). Applying the inverse function to both sides of the inequality in the
indicator function in formula 3.16, resulting in the following expression:

Ŵn(u) = 1√
n

n∑
i=1

(
I(Yi ≤ Q(u; θ̂)) − u

)
.

Since F (Y ; θ) is a non-decreasing function of Y , we can write:

Ŵn(u) = 1√
n

n∑
i=1

(
I(F (Yi; θ) ≤ F (Q(u; θ̂); θ)) − u

)
.

37



It is easy to verify that adding and subtracting F (Q(u; θ̂); θ) results in:

Ŵn(u) = 1√
n

n∑
i=1

(
I(F (Yi; θ) ≤ F (Q(u; θ̂); θ)) − F (Q(u; θ̂); θ) + F (Q(u; θ̂); θ) − u

)

= 1√
n

n∑
i=1

(
I(F (Yi; θ) ≤ F (Q(u; θ̂); θ)) − F (Q(u; θ̂); θ)

)

+ 1√
n

n∑
i=1

(
F (Q(u; θ̂); θ) − u

)
= 1√

n

n∑
i=1

(
I(Ui ≤ F (Q(u; θ̂); θ)) − F (Q(u; θ̂); θ)

)
+

√
n
(
F (Q(u; θ̂); θ) − u

)
.

(3.17)

We approximate the first of the two terms on last line by Wn(u) to write the expression in
formula 3.17 as follows [53]:

Ŵn(u) = 1√
n

n∑
i=1

{I(Ui ≤ u) − u} +
√
n{F (Q(u; θ̂); θ) − u} +Rn(u)

where Rn(u) is the remainder term given by

Rn(u) = 1√
n

n∑
i=1

(
I(Ui ≤ F (Q(u; θ̂); θ)) − F (Q(u; θ̂); θ)

)
− 1√

n

n∑
i=1

{I(Ui ≤ u) − u}.

In [53] it is shown under reasonable conditions on the null hypothesis model that

sup
0≤u≤1

|Rn(u)| → 0

in probability; we therefore drop the remainder term from our formulas in the discussion
which follows. Recall that Wn(u) = 1√

n

∑n
i=1{I(Ui ≤ u) − u}; therefore we can write:

Ŵn(u) = Wn(u) +
√
n{F (Q(u; θ̂); θ) − u} (3.18)

The next step is to approximate F (Q(u; θ̂); θ) by deriving the Taylor expansion of F (Q(u; θ̂))
around the value of θ. Before that, we will introduce some notation and review some deriva-
tives. Since Q is the inverse of cumulative distribution function, we have F (Q(u; θ); θ) = u.
Taking the derivative of both sides with respect to θ and applying the chain rule gives:

∂

∂θ
F (Q(u; θ); θ) = ∂

∂θ
u

∂F (Q(u; θ); θ)
∂Q(u, θ) × ∂Q(u, θ)

∂θ
+ ∂F (Q(u; θ); θ)

∂θ
= 0
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f(Q(u; θ); θ) × ∂Q(u; θ)
∂θ

+ ∂F (Q(u; θ); θ)
∂θ

= 0

which leads to:

∂Q(u; θ)
∂θ

= −D2F (Q(u; θ), θ)
f(Q(u; θ); θ)

where D2F (Q(u; θ), θ) is the partial derivative of F (Q(u; θ), θ) with respect to the second
parameter, i.e θ. Using this formula, we can evaluate ∂Q(u;θ)

∂θ at any specific value of θ. For
instance, we can calculate it at θ = θ̂ to write:

∂Q(u; θ̂)
∂θ̂

= −D2F (Q(u; θ̂), θ̂)
f(Q(u; θ̂); θ̂)

=
− ∂

∂θ̂
F (Q(u; θ̂), θ̂)

f(Q(u; θ̂); θ̂)
. (3.19)

Note that in this thesis, we assume that partial derivatives of F (y; θ) exists and f(y; θ̂)
evaluated at y = Q(u; θ̂) is not zero (0 ≤ u ≤ 1). Our simulations are based on these
assumptions. Next we write the Taylor expansion of F (Q(u; θ̂); θ) around the true value of
θ as follows:

F (Q(u; θ̂); θ) = F (Q(u; θ); θ) + ∂

∂θ̂
F (Q(u; θ̂); θ) (θ̂ − θ) +Op[(θ̂ − θ)2] (3.20)

= u + ∂

∂θ̂
F (Q(u; θ̂); θ) (θ̂ − θ) +Op[(θ̂ − θ)2]

= u +f(Q(u; θ̂); θ)∂Q(u; θ̂)
∂θ̂

(θ̂ − θ) +Op[(θ̂ − θ)2]

and plug in the value of ∂Q(u;θ̂)
∂θ̂

from 3.19 to obtain:

F (Q(u; θ̂); θ) = u− f(Q(u; θ̂); θ)
∂
∂θ̂
F (Q(u; θ̂), θ̂)
f(Q(u; θ̂); θ̂)

(θ̂ − θ) +Op[(θ̂ − θ)2]. (3.21)

In the limit, i.e as n → ∞, we expect θ̂ → θ. In formula 3.21, we evaluate the second term
at θ̂ = θ to continue:

F (Q(u; θ̂); θ) = u− f(Q(u; θ); θ)
∂
∂θF (Q(u; θ), θ)
f(Q(u; θ); θ) (θ̂ − θ) +Op[(θ̂ − θ)2] (3.22)

= u− ∂

∂θ
F (Q(u; θ), θ) (θ̂ − θ) +Op[(θ̂ − θ)2]

= u− ΨT (u) (θ̂ − θ) +Op[(θ̂ − θ)2]

Note in the formula Ψ(u) is a column vector. The elements of this vector are the partial
derivatives of the cumulative distribution function with respect to the unknown parameter
θ. If θ contains p unknown parameters then the Ψ(u) vector has p elements of the form
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ψi(u) = ∂
∂θi
F (y; θ), for i = 1, 2, 3, . . . , p, and all elements are evaluated at y = Q(u; θ), the

inverse of cumulative distribution function. Returning to formula 3.18, we replace the value
of F (Q(u; θ̂); θ) from the formula in 3.22 to write:

Ŵn(u) = Wn(u) +
√
n{F (Q(u; θ̂); θ) − u}

= Wn(u) +
√
n{u− ΨT (u) (θ̂ − θ) +Op[(θ̂ − θ)2] − u}

= Wn(u) −
√
n{ΨT (u) (θ̂ − θ) +Op[(θ̂ − θ)2]}

= Wn(u) − ΨT (u)
√
n(θ̂ − θ) −

√
nOp[(θ̂ − θ)2].

(3.23)

Since θ̂− θ = Op( 1√
n

) we conclude that (θ̂− θ)2 = Op( 1
n) and the remainder term converges

to zero as n → ∞. Conditions under which the remainder term, which depends on u,
converges uniformly to 0 at the rate 1/

√
n are in [48]. We can write:

Ŵn(u) = Wn(u) − ΨT (u)
√
n(θ̂ − θ).

We now use the standard asymptotic properties of maximum likelihood estimator to
replace

√
n(θ̂ − θ) in the expansion. We will see the usual score function and the Fisher

information matrix, but we also need an n × p matrix, here denoted by S(θ) (the score
matrix) where the i-th row and the j-th column of S(θ) is:

Sij(θ) = ∂ log f(Yi, θ)
∂θj

Note that the partial derivative is with respect to the j-th element of θ vector. Each row
of this matrix contains the partial derivative of the log-likelihood function with respect to
θ. For instance, the i-th row of the matrix is given by Si(θ) = ∂

∂θ log f(Yi; θ). We use the
notation of Si(θ) to denote the i-th row in score matrix. Then we can write the usual score
function as a row vector of length p given by:

1TS(θ) =
n∑

i=1
Si(θ)

where 1 is a column vector of length n with all values one. The usual asymptotic properties
of MLE results in:

√
n(θ̂ − θ) = 1√

n
1TS(θ)I−1(θ) +OP ( 1√

n
).

In this formula, I(θ) represents the Fisher information matrix based on one observation
and is a p by p matrix (corresponding to the number of unknown parameters in θ) and
S(θ) is the score function, a matrix with n rows (sample size) and p columns (number of
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parameters), as defined before. Replacing
√
n(θ̂ − θ), we can write Ŵn(u) as follows:

Ŵn(u) = Wn(u) − 1√
n

1TS(θ)I−1(θ)Ψ(u) +OP ( 1√
n

).

The remainder term converges to zero as n → ∞. We can finally write Ŵn(u) according to
Si(θ), the score of each observation as follows:

Ŵn(u) = Wn(u) − 1√
n

1TS(θ)I−1(θ)Ψ(u) +OP ( 1√
n

)

= 1√
n

n∑
i=1

{I (F (Yi, θ) ≤ u) − u} − 1√
n

n∑
i=1

Si(θ)I−1(θ)Ψ(u)

= 1√
n

n∑
i=1

(
I (F (Yi, θ) ≤ u) − u− Si(θ)I−1(θ)Ψ(u)

)
.

It can be shown that Ŵn(u) converges weakly to a stochastic process with mean zero and
a certain covariance [48]. Note that the mean is zero since E(Si(θ)) = 0. To calculate the
covariance, we take the following steps. Start by defining Zi(u) = I (F (Yi, θ) ≤ u) − u −
Si(θ)I−1(θ)Ψ(u) to rewrite Ŵn(u) as:

Ŵn(u) ≈ 1√
n

n∑
i=1

Zi(u).

The covariance function of Ŵn(u) for values of 0 ≤ s, t ≤ 1 is now:

ρ(s, t) = Cov ( Ŵn(s) , Ŵn(t) )

≈ Cov
( 1√

n

n∑
i=1

Zi(s) ,
1√
n

n∑
i=1

Zi(t)
)

= 1
n

( n∑
i=1

n∑
j=1

Cov(Zi(s), Zj(t))
)

= 1
n

 n∑
i=1

Cov(Zi(s), Zi(t)) +
n∑

i ̸=j

Cov(Zi(s), Zj(t))

 .
Note that if i ̸= j, then Cov(Zi(s), Zj(t)) is zero since Yi and Yj are independent. Therefore,
we only need to calculate the covariance when i = j as follows:

ρ(s, t) = 1
n

n∑
i=1

Cov(Zi(s), Zi(t))

= 1
n

n∑
i=1

Cov
(
I(Ui ≤ s) − s− Si(θ)I−1(θ)Ψ(s), I(Ui ≤ t) − t− Si(θ)I−1(θ)Ψ(t)

)
.
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We expand the covariance and calculate each term separately. The calculation of

Cov (I(Ui ≤ s) − s, I(Ui ≤ t) − t) = min(s, t) − st

remains the same as in formula 3.11. To compute the remaining terms define y by F (y, θ) =
s. Since E(Si(θ)) = 0, it is easy to verify that:

Cov(I(Ui ≤ s) , Si(θ)I−1(θ)Ψ(t)) = E

[
I(Ui ≤ s)Si(θ)I−1(θ)Ψ(t)

]

= E

[
I(Yi ≤ y)Si(θ)I−1(θ)Ψ(t)

]
=
(∫ y

−∞
f(y′; θ)Si(θ) dy′

)
I−1(θ)Ψ(t)

=
(∫ y

−∞
f(y′; θ) ∂ log f(y′; θ)

∂θ
dy′
)
I−1(θ)Ψ(t)

=
(∫ y

−∞
f(y′; θ)

∂
∂θf(y′; θ)
f(y′; θ) dy′

)
I−1(θ)Ψ(t)

=
(∫ y

−∞

∂

∂θ
f(y′; θ) dy′

)
I−1(θ)Ψ(t) = ∂

∂θ

(∫ y

−∞
f(y′; θ) dy′

)
I−1(θ)Ψ(t)

= ∂

∂θ
F (y, θ)I−1(θ)Ψ(t)

= ΨT (s)I−1(θ)Ψ(t).

Switch the roles of s and t to get:

Cov(Si(θ)I−1(θ)Ψ(s), I(Ui ≤ t)) = ΨT (t)I−1(θ)Ψ(s).

Finally, the last term in the covariance calculation is:

Cov
(
Si(θ)I−1(θ)Ψ(s) , Si(θ)I−1(θ)Ψ(t)

)
= ΨT (s)I−1(θ) Cov

(
Si(θ) , Si(θ)

)
I−1(θ)Ψ(t) = ΨT (s)I−1(θ) I(θ)I−1(θ)Ψ(t)

= ΨT (s)I−1(θ)Ψ(t).

Therefore, the approximate covariance function of the stochastic process Ŵn(u) is:

ρ(s, t) = min(s, t) − st− ΨT (t)I−1(θ)Ψ(s) (3.24)

for values of 0 ≤ s, t,≤ 1. As mentioned before, Ψ(u) is a column vector with the same length
as the number of parameters in θ. The elements of the vector are the partial derivatives
of F (y; θ) with respect to θ which are evaluated at y = Q(u; θ), for values of 0 ≤ u ≤ 1.
Note that in formula 3.24, the covariance function depends on θ since both Ψ and I depend
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on θ. We replace θ by the maximum likelihood estimator of θ to estimate both the Fisher
information matrix and Ψ in the formula.

Now we summarize the steps to compute the P-value when θ is unknown and is estimated
from the sample.

Step 1. Estimate the unknown parameter using the computing the maximum likelihood
estimate of θ, i.e., θ̂.

Step 2. Sort the data to obtain Y(1), Y(2), . . . , Y(n) where Y(i) is the i-th sorted value in
the sample.

Step 3. Compute the (estimated) probability integral transforms, Û(i) = F (Y(i), θ̂).
Step 4. Compute the Cramér-von Mises statistic from these Û(i) as in formula 3.5:

W 2 =
n∑

i=1

[
Û(i) − 2i− 1

2n

]2
+ 1

12n.

Step 5. Calculate the elements of the vector Ψ̂(y) and evaluate them at y = Q(u; θ̂)
where Q is the inverse of the cumulative distribution function under the null hypothesis
and 0 ≤ u ≤ 1.

Step 6. Calculate the Fisher information matrix and replace the unknown parameters
by θ = θ̂.

Step 7. Using the estimates from Steps 5 and 6, estimate the covariance function defined
in 3.24.

Step 8. Approximate the eigenvalues of the covariance function calculated in Step 7 by
computing the eigenvalues of matrix M . Detailed suggestions for the choice of M are given
in 3.14.

Step 9. Discard any zero eigenvalues (if any) and compute the P-value by using the
Imhof or Farebrother method.

It is evident that knowledge of the covariance function is crucial for calculating the P-
value. This necessitates the availability of the Ψ(y) vector and I(θ). As we will see in the
following sections, these components may not be readily available for all likelihood models.
In the next section, we propose a method to estimate the covariance function from sample
data without the need for analytical element calculations.

3.5 Estimation of the covariance function

Understanding the covariance function of the stochastic process Ŵn(u) is crucial for com-
puting the P-value for the goodness-of-fit test. Some distributions, such as the Normal
and Gamma, allow a relatively straightforward computation of the covariance function, but
computing the covariance function can be a daunting or time consuming task for a general
likelihood model. The problem occurs when computing the partial derivatives of CDF with
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respect to parameters, i.e. the vector Ψ(u), or the inverse of the Fisher information matrix.
Consequently computing ρ(s, t) may not always be a straightforward process if these quan-
tities are too difficult or time consuming to compute analytically. This problem can limit
our ability to compute the P-value for the goodness-of-fit test. To address this challenge,
this section proposes an alternative method of estimating ρ(s, t) using sample data rather
than calculating it analytically from the model. The proposal needs only algorithms to find
the MLE, θ̂, evaluate the score function components, Si(θ̂), and compute the probability
integral transforms F (Yi, θ̂); it is not necessary to have compute the expectations defining
the Fisher information matrix, nor to compute the derivative of F (·, θ) with respect to θ.

The idea starts by finding an alternative expression for the elements of Ψ(t) based on
Si(θ) and I(F (Yi; θ) ≤ t). Note that under conditions where we can change the order of
integral and derivative, for any value of 0 ≤ t ≤ 1 we can write Ψ(t) as follows:

Ψ(t) = ∂

∂θ
F (y; θ)

∣∣∣∣∣
y=Q(t;θ)

=
∫ y

−∞

∂f(y′; θ)
∂θ

dy′|y=Q(t;θ)

=
∫ y

−∞

∂f(y′;θ)
∂θ

f(y′; θ) f(y′; θ) dy′|y=Q(t;θ) =
∫ y

−∞

∂

∂θ
log(f(y; θ)) f(y′; θ) dy′|y=Q(t;θ)

= E

[
∂

∂θ
log(f(Yi; θ)) I(F (Yi; θ) ≤ t)

]
= E

[
Si(θ)I(F (Yi; θ) ≤ t)

]

= Cov
(
Si(θ), I(F (Yi; θ) ≤ t)

)
.

Note that the last line results since E (Si(θ)) = 0. The calculation presented above brings
two important notes. First, the random variable Si(θ)I(F (Yi; θ) ≤ t) has expected value
Ψ(t). Second, Ψ(t) can also be computed using an alternative approach by calculating the
covariance between Si(θ) and I(F (Yi; θ) ≤ t).

Having these points in mind, note that for i = 1, 2, 3, . . . , n the sequence of random
variables Si(θ)I(F (Yi; θ) ≤ t) are mutually independent with the same expected value.
Therefore by the weak law of large numbers the average of these random variables converges
in probability to Ψ(t). In other words:

1
n

n∑
i=1

Si(θ)I(F (Yi; θ) ≤ t) P−→ Ψ(t).

Now suppose θ0 is the true value of θ. Define:

H(θ, θ0) = Eθ0

[
Si(θ)I(F (Yi; θ) ≤ t)

]
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which is a continuous function of θ. The function can be evaluated at θ̂, the MLE of θ to
get H(θ̂, θ0). Since θ̂ is consistent, continuity implies that H(θ̂, θ0) converges in probability
to H(θ, θ0). Hence:

1
n

n∑
i=1

Si(θ̂)I(F (Yi; θ̂) ≤ t) P−→ Ψ(t).

Therefore, for a sample of size n, we estimate Ψ(t) by the covariance between the score
function and indicator function computed from the sample, i.e:

Ψ̂(t) = 1
n

n∑
i=1

Si(θ̂)I(F (Yi; θ̂) ≤ t).

Similarly, the Fisher information matrix can be estimated by the sample covariance of the
score function. We use the notation of Î = Î(θ̂) for the estimate of Fisher information to
define the estimate by:

Î(θ̂) = 1
n

n∑
i=1

Si(θ̂)TSi(θ̂) = S(θ̂)TS(θ̂)
n

where Si(θ̂) = ∂
∂θ log f(Yi; θ̂) is the i-th row of S(θ̂) matrix.

Our proposal for testing the fit of a general model for independent observations is
to estimate θ by maximum likelihood, compute probability integral transforms using this
estimate, then estimate a covariance function as described above. Discretize the integral
equation as described at 3.14 and compute the eigenvalues of the resulting matrix Q (this
matrix is defined in the steps below). Use these eigenvalues to approximate an infinite linear
combination of chi-squares by a finite linear combination and compute tail probabilities of
the approximation to get a P-value.

In summary, the steps for a goodness-of-fit test in a composite hypothesis for a general
likelihood model are as follows:

Step 1. Sort the sample Y1, Y2, . . . , Yn to obtain Y(1), Y(2), . . . , Y(n).
Step 2. Compute θ̂, the MLE of θ.
Step 3. Calculate the Cramér-von Mises statistic by:

W 2 =
n∑

i=1

[
Û(i) − 2i− 1

2n

]2
+ 1

12n

where Û(i) = F (Y(i); θ̂).
Step 4. Calculate the score function, S(θ̂), which is an n × p matrix where n is the

sample size and p is the number of parameters. Note that the ith row of S presents the
contribution to the score for the ith observation and that θ̂ is plugged-in for θ whenever
necessary.
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Step 5. Estimate the Fisher information matrix by computing the p × p matrix Î(θ̂)
which is the sample variance of S(θ̂). That is,

Î(θ̂) = 1
n

n∑
i=1

Si(θ̂)TSi(θ̂) = S(θ̂)TS(θ̂)
n

and compute the inverse of Î(θ̂).
Step 6. Estimate the function Ψ(u) by the sample covariance of the score function and

an indicator function:

Ψ̂(u) = 1
n

n∑
i=1

1(Ûi ≤ u)Si(θ̂).

In this thesis, we evaluated this estimate at m values of u within the interval [0,1] to
obtain a matrix with dimensions m × p. We tried using either the sorted estimated values
of the probability integral transform obtained from the sample as the grid, denoted as
Û(1), Û(2), . . . , Û(n) or a grid of m equally spaced points, such as ui = i

m , within the interval
[0 − ϵ, 1 + ϵ], where we chose ϵ to be 10−5. This choice of ϵ was made to ensure that the first
and last columns of the matrix Q (as defined below) do not consist solely of zeros and ones.
In our developed R package, we decided to evaluate Ψ̂(u) at PIT values since the simulation
results clearly showed the advantage of PIT over an equally spaced grid.

Step 7. Compute the n×m matrix ∆ = S(θ̂)
(
Î(θ̂)

)−1
Ψ̂T (u) using values from step 5

and step 6. Then compute matrix Q with elements defined as:

qij = I(Ûi ≤ uj) − δij

where δij is the i, j-th entry in the matrix ∆. Here uj are the chosen grid of values over
interval [0,1]. Note that Q is an n×m matrix, where i ranges from 1 to n (sample size) and
j ranges from 1 to m (number of points in the grid).

Step 8. Compute the m by m matrix Λ whose i, jth entry is the sample covariance
between the ith and jth columns of matrix Q; then multiply Λ by n−1

n−p−1 . In the R code in
our package, we use function var to compute this variance-covariance matrix; our choice of
scaling is motivated by our simulation studies in Chapter 4.

Step 9. Calculate the eigenvalues of this covariance matrix, drop all those which are
numerically 0, and obtain the P-value using either Imhof’s or Farebrother’s method. In our
package we use imhof function from CompQuadForm package, unless an error is detected
in which case farebrother is substituted.

Our experience shows that when computing the probabilities in the extreme tail of
quadratic forms in normal variables, sometimes the P-value is inaccurate or outright incor-
rect. For example, we noticed that if the P-value is greater than 10−7, the Imhof method
has no numerical issue with computation. If the P-value is between 10−10 and 10−7, Imhof
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fails to generate a correct value but Farebrother computes the P-value with a good accuracy.
For P-values less than 10−10, both methods have difficulty and produce incorrect values.
While P-values this small have little importance it is important in writing code to be clear
about the accuracy of all presented results; in particular we must avoid reporting negative
P-values. To overcome this, in our R package, we have developed procedures to numerically
compute a lower bound (LB) and an upper bound (UB) for the P-value. Then, depending
on the values of LB and UB, we compute the exact P-value using either Imhof ’s or Fare-
brother ’s method. In the case when both methods fail, we simply return LB and UB values
as an interval for the P-value.

In the next two sections, we review the theory behind computing the covariance function
in two examples. The first example is an i.i.d. sample from a Normal distribution. The
second example reviews the theory for a Gamma distribution. In both examples, we derive
the limiting covariance function both analytically and with the estimation method described
in this section.

3.6 Example 1: Normal distribution

The simplest example to start with is the Normal distribution. In this section we derive the
analytic formulas from Section 3.4 and show the details of the steps presented in Section 3.5
to estimate the covariance and eigenvalues. For this distribution the analytic formulas for
Ψ(u) are relatively easy but we also present the precise formulas for the method of Section 3.5
for comparison.

Suppose we have a random sample Y1, Y2, . . . , Yn from a population. We would like to test
if this sample follows a Normal distribution. In other words H0 : F ∈ {G(·, θ); θ ∈ Θ} where
G(·, θ) is the CDF of a Normal distribution, θ = (µ, σ) and Θ = {(µ, σ); µ ∈ R , σ > 0}.
Both parameters are unknown. For a sample of size n, the likelihood function is

L(µ, σ) =
n∏

i=1
f(Yi;µ, σ) =

n∏
i=1

1√
2πσ2

e
−1
2σ2 (Yi−µ)2

= (2πσ2)
−n

2 e
−1
2σ2
∑n

i=1(Yi−µ)2

and the log-likelihood function is:

l(µ, σ) =
(−n

2

)
log (2πσ2) − 1

2σ2

n∑
i=1

(Yi − µ)2.

We take the following steps to calculate the limiting covariance function of the stochastic
process Ŵn(u). The first step is to obtain the Fisher information matrix by calculating the
partial derivatives of the log-likelihood function with respect to parameters:

∂l(µ, σ)
∂µ

=
(

−1
2σ2

)
n∑

i=1
(−2)(Yi − µ) =

n∑
i=1

Yi − µ

σ2 ,
∂2l(µ, σ)
∂µ2 = −n

σ2
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∂l(µ, σ)
∂σ

= −n
σ

+ 1
σ3

n∑
i=1

(Yi − µ)2,
∂2l(µ, σ)
∂σ2 = n

σ2 − 3
σ4

n∑
i=1

(Yi − µ)2

∂l(µ, σ)
∂σ∂µ

= ∂l(µ, σ)
∂µ∂σ

= −2
σ3

n∑
i=1

(Yi − µ).

The Fisher information matrix is thus:

In(θ) = −E

 ∂2

∂µ2 l(µ, σ) ∂
∂µ∂σ l(µ, σ)

∂
∂σ∂µ l(µ, σ) ∂2

∂σ2 l(µ, σ)

 = −E


−n
σ2

−2
σ3
∑n

i=1(Yi − µ)

−2
σ3
∑n

i=1(Yi − µ) n
σ2 − 3

σ4
∑n

i=1(Yi − µ)2



=
(

n
σ2 0
0 2n

σ2

)

and the Fisher information matrix based on one observation is:

I(θ) = 1
n
In(θ) =

( 1
σ2 0
0 2

σ2

)
.

The inverse of the Fisher information matrix (based on one observation) is:

I−1(θ) =
(
σ2 0
0 σ2

2

)
.

The next step is to calculate the column vector Ψ(y), partial derivatives of cumulative
distribution function F (y; θ) with respect to θ evaluated at y = F−1(u; θ). In the Normal
example, Ψ(u) is a column vector with two elements as follows:

Ψ(u) =
(
ψ1(u)
ψ2(u)

)
=


∂

∂µF (y; θ)
∣∣∣∣
y=F −1(u;θ)

∂
∂σF (y; θ)

∣∣∣∣
y=F −1(u;θ)

 .

It is easy to verify that:

∂

∂µ
F (y; θ) = ∂

∂µ
Φ(y − µ

σ
) =

(−1
σ

)
ϕ(y − µ

σ
)
∣∣∣∣
y=F −1(u;θ)

=
(−1
σ

)
ϕ(Φ−1(u))
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and:

∂

∂σ
F (y; θ) = ∂

∂σ
Φ(y − µ

σ
) =

(−1
σ2

)
(y − µ)ϕ(y − µ

σ
)
∣∣∣∣
y=F −1(u;θ)

=
(−1
σ

)
Φ−1(u)ϕ(Φ−1(u))

where ϕ(·) and Φ(·) are the probability density function and cumulative distribution function
of the standard normal distribution, respectively. Therefore:

Ψ(u) =
(−1
σ

)
ϕ(Φ−1(u))

Φ−1(u)ϕ(Φ−1(u))

 .

Thus the limiting covariance of Ŵn(u) process is

ρ(s, t) = min(s, t) − st− ΨT (t)I−1(θ)Ψ(s)

Finally, we can write the covariance function of Ŵn(u) process for the case of an i.i.d. normal
sample as follows:

ΨT (t)I−1(θ) =
(−1
σ

)(
ϕ(Φ−1(t)) Φ−1(t)ϕ(Φ−1(t))

)(σ2 0
0 σ2

2

)

= (−σ)
(
ϕ(Φ−1(t)) 1

2Φ−1(t)ϕ(Φ−1(t))
)
.

So

ΨT (t)I−1(θ)Ψ(s) =

(−σ)
(
ϕ(Φ−1(t)) 1

2Φ−1(t)ϕ(Φ−1(t))
)

(− 1
σ

)


ϕ(Φ−1(s))

Φ−1(s)ϕ(Φ−1(s))


= ϕ(Φ−1(t))ϕ(Φ−1(s)) + 1

2Φ−1(t)ϕ(Φ−1(t))Φ−1(s)ϕ(Φ−1(s)).

Thus,

ρ(s, t) = min(s, t) − st− ϕ(Φ−1(t))ϕ(Φ−1(s)) − 1
2Φ−1(t)ϕ(Φ−1(t))Φ−1(s)ϕ(Φ−1(s)).

In the case of an i.i.d. sample from Normal distribution, it is worth noting that the covariance
function of Ŵn(u) is independent of any unknown parameters. Instead, it solely relies on
the values of 0 ≤ s, t ≤ 1. This is to be expected because µ and σ are location and scale
parameters. If our sample values Y1, Y2, . . . , Yn are drawn from a N(µ, σ2) distribution then
the variates Z1, Z2, . . . , Zn where Zi = (Yi − µ)/σ are iid standard normal. We can express
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the maximum likelihood estimates µ̂ and σ̂ in terms of the Z’s as follows:

µ̂ = µ+ σZ̄

and

σ̂ = σ

√∑n
i=1(Zi − Z̄)2

n
.

Define

sZ =

√∑n
i=1(Zi − Z̄)2

n

to be the sample standard deviation of the Z values. The probability integral transforms
for i = 1, 2, · · · , n are then

Ûi = Φ
(
Yi − µ̂

σ̂

)
= Φ

(
Zi − Z̄

sZ

)
.

This formula shows that goodness-of-fit statistics which depend only on the Ûi have distri-
butions which do not depend on µ or σ.

By employing the method described in Section 3.4, one can use the covariance function
defined in Formula 3.25, discretize the integral equation, and approximate the eigenvalues
of this covariance function to compute the P-value. As demonstrated, deriving this covari-
ance function needs theoretical calculations. Instead of analytically computing the limiting
covariance, we can estimate the covariance function directly from the sample using the ap-
proach detailed in Section 3.5. For a Normal distribution, first, the calculations depend on
the matrix S(θ̂) whose i-th row presents the contribution to the score for the i-th observation
in the score function with the following values:

Si(θ̂) =
[

Yi−Ȳ
σ̂2

(Yi−Ȳ )2

σ̂3 − 1
σ̂

]
.

The Fisher information matrix is estimated by the variance of the score function, i.e:

Î(θ̂) = 1
n

n∑
i=1

Si(θ̂)TSi(θ̂) = S(θ̂)TS(θ̂)
n

= 1
σ̂2

 1 1
n

∑n
i=1

(
Yi−Ȳ

σ̂

)3

1
n

∑n
i=1

(
Yi−Ȳ

σ̂

)3 1
n

∑n
i=1

(
Yi−Ȳ

σ̂

)4
− 1

 .
Second, the elements of the column vector Ψ(u) are estimated by computing the covariance
between the score function and an indicator function as described in Step 6 in Section 3.5.
For each value of the 0 ≤ u ≤ 1 in the grid being used, we estimate Ψ(u) by:

Ψ̂(u) = 1
n

n∑
i=1

I(Ûi ≤ u)
[

Yi−Ȳ
σ̂2

(Yi−Ȳ )2

σ̂3 − 1
σ̂

]
.
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We compute the matrix ∆ as described in Section 3.5 step 7, and follow step 8 and step 9
in that section to compute the P-value.

3.7 Example 2: Gamma distribution

In this section, we show how to calculate the covariance function of the stochastic process
defined in Section 3.24 for the case of an i.i.d. sample from Gamma distribution. Suppose
we have an i.i.d. sample such as Y1, Y2, . . . , Yn from Gamma(α, λ) distribution with the
following probability distribution function:

f(Y ;α, λ) = λα

Γ(α) Y
α−1 e−λY

where α > 0 is the shape, λ > 0 is the inverse scale parameter and Γ(α) is the Gamma
function defined as Γ(α) =

∫∞
0 tα−1e−tdt. Therefore we can write the likelihood function as:

L(α, λ) =
n∏

i=1
f(Yi;α, λ) =

n∏
i=1

λα

Γ(α) Y
α−1

i e−λYi =
(
λα

Γ(α)

)n( n∏
i=1

Yi

)α−1
e−λ

∑n

i=1 Yi

= λnα(
Γ(α)

)n

( n∏
i=1

Yi

)α−1
e−λ

∑n

i=1 Yi .

We now proceed by reparametrizing the model in terms of α and the mean of Y denoted by
µ. This will help connect this example to work in later sections when we study generalized
linear models. Note that in Gamma distribution µ = E(Yi) = α

λ . We plug in the value of λ
and rewrite the likelihood with the new set of parameters, i.e (α, µ) as follows:

L(α, µ) =
(α

µ )nα(
Γ(α)

)n

( n∏
i=1

Yi

)α−1
e

− α
µ

∑n

i=1 Yi .

The log-likelihood follows:

l(α, µ) = (nα) ln
(
α

µ

)
− n ln

(
Γ(α)

)
+
(
α− 1

) n∑
i=1

ln(Yi) −
(
α

µ

) n∑
i=1

Yi

= (nα) ln(α) − (nα) ln(µ) − n ln
(

Γ(α)
)

+ (α− 1)
n∑

i=1
ln(Yi) −

(
α

µ

) n∑
i=1

Yi.

We take the following steps to calculate the covariance function of the stochastic process
Ŵn(u). The first step is to obtain the Fisher information matrix by calculating the partial
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derivatives of the log-likelihood function with respect to the parameters as follows:

∂l

∂α
= n ln (α) + (nα) 1

α
− n ln (µ) − n

Γ′(α)
Γ(α) +

n∑
i=1

ln (Yi) − 1
µ

n∑
i=1

Yi

= n ln (α) + n− n ln (µ) − nD(α) +
n∑

i=1
ln (Yi) − 1

µ

n∑
i=1

Yi

∂2l

∂α2 = n

α
− nD

′(α), ∂l

∂µ
= −nα

µ
+ α

n∑
i=1

Yi

µ2 ,
∂2l

∂µ2 = nα

µ2 − 2α
µ3

n∑
i=1

Yi

∂l

∂µ∂α
= −n

µ
+

n∑
i=1

Yi

µ2

where D(α) = Γ′ (α)
Γ(α) is the digamma function whose derivative D

′(α) = ∂
∂αD(α) is the

trigamma function. The Fisher information matrix is:

In(θ) = −E

 ∂2

∂α2 l(α, µ) ∂
∂α∂µ l(α, µ)

∂
∂µ∂α l(α, µ) ∂2

∂µ2 l(α, µ)

 = −E


n
α − nD

′(α) −n
µ +

∑n

i=1 Yi

µ2

−n
µ +

∑n

i=1 Yi

µ2
nα
µ2 − 2α

µ3
∑n

i=1 Yi


=

nD′(α) − n
α 0

0 −nα
µ2


and the Fisher information matrix based on one observation in the sample is:

I(θ) =

D′(α) − 1
α 0

0 −α
µ2


and the inverse of Fisher information matrix is:

I−1(θ) =

 −α
1−αD′ (α) 0

0 −µ2

α

 .
The next step is to obtain the vector Ψ(y), the partial derivatives of the cumulative distribu-
tion function with respect to the parameters and evaluate it at y = F−1(u). The cumulative
distribution function of a Gamma distribution at any value of y is calculated as:

G(y;α, µ) =
∫ y

0

αα

µα Γ(α) t
α−1 e− α

µ
t
dt.
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We need to calculate ∂
∂αG(y;α, µ) and ∂

∂µG(y;α, µ) to obtain Ψ(u) vector. In order to do
so, we apply the change of variable as follows:

z = α

µ
t ⇒ dz = α

µ
dt ⇒ dt = µ

α
dz

to write the cumulative distribution function as:

G(y;α, µ) =
∫ αy

µ

0

αα

µα Γ(α)

(
µz

α

)α−1

e−z µ

α
dz = αα

µα Γ(α)
µα−1

αα−1
µ

α

∫ αy
µ

0
zα−1 e−z dz

=
∫ αy

µ

0

1
Γ(α) z

α−1 e−z dz.

Now the partial derivative with respect to α is:

∂

∂α
G(y;α, µ) = ∂

∂α

(∫ αy
µ

0

1
Γ(α) z

α−1 e−z dz

)
= ∂

∂α

(∫ αy
µ

0
g(z;α, 1) dz

)

= ∂

∂α

(
αy

µ

)
g(αy
µ

;α, 1) +
∫ αy

µ

0

∂

∂α
g(z;α, 1) dz

= y

µ
g(αy
µ

;α, 1) +
∫ αy

µ

0

∂ ln(g(z;α, 1))
∂α

g(z;α, 1) dz

= y

µ
g(αy
µ

;α, 1) +
∫ αy

µ

0

∂

∂α

(
(α− 1) ln(z) − z − ln(Γ(α))

)
g(z;α, 1) dz

= y

µ
g(αy
µ

;α, 1) +
∫ αy

µ

0

(
ln(z) − D(α)

)
g(z;α, 1) dz

= y

µ
g(αy
µ

;α, 1) +
∫ αy

µ

0
ln(z) g(z;α, 1) dz −

∫ αy
µ

0
D(α) g(z;α, 1) dz

and the partial derivative with respect to µ is:

∂

∂µ
G(y;α, µ) = ∂

∂µ

(∫ αy
µ

0

1
Γ(α) z

α−1 e−z dz

)

= ∂

∂µ

(∫ αy
µ

0
g(z;α, 1) dz

)

= ∂

∂µ

(
αy

µ

)
g(αy
µ

;α, 1) +
∫ αy

µ

0

∂

∂µ
g(z;α, 1) dz

= −α y

µ2 g(αy
µ

;α, 1) +
∫ αy

µ

0

∂

∂µ
g(z;α, 1) dz

= −α y

µ2 g(αy
µ

;α, 1) +
∫ αy

µ

0

∂

∂α
g(z;α, 1)∂α

∂µ
dz
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= −α y

µ2 g(αy
µ

;α, 1) +
∫ αy

µ

0

[
ln(z) −D(α)

]
g(z;α, 1)λ dz

= −α y

µ2 g(αy
µ

;α, 1) + λ

∫ αy
µ

0
ln(z) g(z;α, 1) dz − λD(α)

∫ αy
µ

0
g(z;α, 1) dz.

We evaluate both terms at y = Q(u;α, µ) = µ
αQ(u;α, 1) where Q is the inverse of cumulative

distribution function of a Gamma distribution with shape parameter of α and scale of one.
Therefore we can write the elements of Ψ(u) vector as follows:

∂

∂α
G(y;α, µ)

∣∣
y= µ

α
Q(u;α,1) = 1

α
Q(u;α, 1)g(Q(u;α, 1);α, 1) +

∫ Q(u;α,1)

0
ln(z)g(z;α, 1) dz

−
∫ Q(u;α,1)

0
D(α)g(z;α, 1)

∂

∂µ
G(y;α, µ)

∣∣
y= µ

α
Q(u;α,1) = −1

µ
Q(u;α, 1)g(Q(u;α, 1);α, 1) + λ

∫ Q(u;α,1)

0
ln(z)g(z;α, 1) dz

− λD(α)
∫ Q(u;α,1)

0
g(z;α, 1) dz.

It is possible to compute the Fisher information matrix and the elements of the Ψ(u) vector
numerically for a given sample. For example, the functions digamma and trigamma function
from the MASS package in the R statistical software can be used to calculate D(α) and
its derivative D′(α). The maximum likelihood estimate of α and λ can be computed using
a procedure to find the root of the score function with any desired precision. Finally, a
simple routine, in combination with the qgamma function from the stats package in R, can

be applied to compute
∫ Q(u;α,1)

0
log(z)g(z;α, 1)dz accurately. Thus the limiting covariance

function of Ŵn(u) process will be:

ρ(s, t) = min(s, t) − st− ΨT (t)I−1(θ)Ψ(s)

= min(s, t) − st− ΨT (t)

 −α
1−αD′ (α) 0

0 −µ2

α

Ψ(s).

In the case of an i.i.d. sample from the Gamma distribution, the covariance function of
Ŵn(u) not only depends on s and t but also depends on the shape parameter in the Gamma
distribution. The analytic calculation of the covariance function is long and tedious. We will
not show the details here but similar to the Normal example described in Section 3.6, we can
instead estimate the covariance function and eigenvalues. We follow the steps as described
in Section 3.5.

The likelihood function of a Gamma distribution can be expressed in two forms. In
the example we discussed here, we examined one form of the likelihood and derived the
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covariance function based on it. It is natural to wonder which likelihood parametrization
one should choose. In the next section, we will demonstrate the invariance property of the
covariance function of the Ŵn(u) process we have been discussing thus far. We will show that
both the covariance function and the statistic itself are independent of the parametrization
of the likelihood. This applies to the CvM statistic, the estimated eigenvalues, and the final
P -value.

3.8 Parametrization invariance of the statistic and the co-
variance function

In this section, we show the invariance of our statistics and of the covariance function of the
stochastic process Ŵn(u) to the parametrization of θ in the likelihood function. Consider
an i.i.d. sample Y1, Y2, . . . , Yn from a parametric model F = {fθ(y); θ ∈ Θ} where Θ is
the parameter space and θ contains p unknown parameters. A new parametrization of the
parametric model is obtained by defining a one-to-one function which maps θ into a new
set of parameters such as ϕ ∈ Φ where Φ is the new parameter space resulted from the
mapping. Note that the map is one-to-one therefore the two class of parametric models are
essentially the same, i.e {fθ(y); θ ∈ Θ} = {fϕ(y);ϕ ∈ Φ}. One example of this is the Gamma
distribution where one can write the likelihood in terms of (α, λ) or (α, β) where α is the
shape parameter and β = 1

λ is the inverse of scale parameter λ. The goal of this section is to
calculate the covariance function in new parameter space and show the invariance property
of such a function.

Note first that it is well known that the mle of ϕ is simply ϕ̂ = ϕ(θ̂). As a result
the estimated probability integral transforms do not depend on the parametrization so
the goodness-of-fit statistics do not depend on the parametrization. Once we show that
the estimated covariance functions are also parametrization invariant we will see that the
p-values themselves do not depend on the parametrization.

To start with, we define the score function based on the original parametrization of the
likelihood function as S(θ) = S(Y ; θ) which is a matrix with n rows and p columns. We
define the elements of this matrix as follows:

S(Yi; θj) = ∂

∂θj
log

(
f(Yi; θ)

)
i = 1, 2, 3, . . . , n j = 1, 2, 3, .., p.

The score function based on the new parametrization is S(ϕ) = S(Y ;ϕ), a matrix with n

rows and p columns with the following elements:

S(Yi;ϕk) = ∂

∂ϕk
log (f(Yi;ϕ)) i = 1, 2, 3, . . . , n k = 1, 2, 3, .., p.
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It is easy to verify that for a fixed value of k, the derivative of log-likelihood in the new
parametrization with respect to the k-element of ϕ is:

∂

∂ϕk
log (f(Yi;ϕ)) =

p∑
j=1

∂

∂θj
log (f(Yi;ϕ)) ∂θj

∂ϕk
=

p∑
j=1

∂

∂θj
log (f(Yi;ϕ(θ))) ∂θj

∂ϕk

=
p∑

j=1
S(Yi;ϕ(θ)) ∂θj

∂ϕk
.

Note that for each value of k, ∂

∂ϕk
log (f(yi;ϕ)) produces a column vector of size n indexed

by i. For each value of i it produces a row vector with p entries indexed by k. As a result,
the score matrix based on the new parametrization is n× p and is given by S(ϕ) = S(θ)D
where D is the p× p matrix with i, jth entry ∂θj

∂ϕk
in which both j and k vary from 1 to p.

We also need to calculate the elements of the column vector Ψϕ(u) in the new presen-
tation of likelihood. Again we can use the chain rule to compute the column vector Ψϕ(u)
from the column vector Ψθ(u) as follows:

Ψϕ(u) = ∂

∂ϕ
F (y;ϕ) = ∂

∂ϕ

∫ y

−∞
f(t;ϕ) dt =

∫ y

−∞

∂

∂ϕ
f(t;ϕ) dt =

∫ y

−∞

∂θ

∂ϕ

T ∂

∂θ
f(t;ϕ) dt

= ∂θ

∂ϕ

T
(∫ y

−∞

∂

∂θ
f(t;ϕ) dt

)
= ∂θ

∂ϕ

T
(
∂

∂θ

∫ y

−∞
f(t;ϕ) dt

)
= ∂θ

∂ϕ

T
(
∂

∂θ

∫ y

−∞
f(t;ϕ(θ)) dt

)

= ∂θ

∂ϕ

T ∂

∂θ
F (y;ϕ(θ)) = ∂θ

∂ϕ

T

Ψθ(u) = DT Ψθ(u).

To be clear, the k-th element of this column vector is:

∂

∂ϕk
F (y;ϕ) = ∂

∂ϕk
F (y;ϕ(θ)) =

p∑
j=1

∂

∂θj
F (y;ϕ(θ)) ∂θj

∂ϕk
=

p∑
j=1

Ψθj

∂θj

∂ϕk

and Ψθj
is the j-th element of Ψθ(u) vector. The Fisher information matrix based on the

original parametrization is:

I(θ) = V ar (S(θ)) = E
[
S(Y ; θ)TS(Y ; θ)

]
.

The Fisher information matrix according to the new parametrization is:

I(ϕ) = V ar (S(ϕ)) = V ar (S(θ)D) = DTV ar(S(θ))D = DT I(θ)D

and the inverse of the Fisher information is:

I−1(ϕ) =
(
DT I(θ)D

)−1
= D−1I−1(θ)(DT )−1.
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The stochastic process based on the new parametrization is calculated as follows:

Ŵn(u) = 1√
n

n∑
i=1

(
I(F (Yi;ϕ) ≤ u) − u− S(Yi;ϕ)I−1(ϕ)Ψϕ(u)

)
.

Now we show that the covariance of this process based on new parameter of ϕ is the same
as the covariance of the Ŵn(u) process based on θ. To start, for any values of 0 ≤ u ≤ 1 we
define:

Zi(u) = I(F (Yi;ϕ) ≤ u) − u− S(Yi;ϕ)I−1(ϕ)Ψϕ(u)

therefore we can write:

Ŵn(u) = 1√
n

n∑
i=1

Zi(u).

We use the notation of ρϕ(s, t) to denote the limiting covariance function in the new
parametrization and calculate as follows:

ρϕ(s, t) = Cov(Ŵn(s), Ŵn(t)) = Cov
(

1√
n

n∑
i=1

Zi(s),
1√
n

n∑
i=1

Zi(t)
)

= 1
n

 n∑
i=1

Cov(Zi(s), Zi(t)) +
n∑

i ̸=j

Cov(Zi(s), Zj(t))


= 1
n

n∑
i=1

Cov (Zi(s), Zi(t))

= 1
n

n∑
i=1

Cov
(
I(F (Yi;ϕ) ≤ s) − s− S(Yi;ϕ)I−1(ϕ)Ψϕ(s),

I(F (Yi;ϕ) ≤ t) − t− S(Yi;ϕ)I−1(ϕ)Ψϕ(t)
)

= 1
n

n∑
i=1

{
Cov

(
I(F (Yi;ϕ) ≤ s) − s, I(F (Yi;ϕ) ≤ t) − t

)

− Cov
(
I(F (Yi;ϕ) ≤ s) − s, S(Yi;ϕ)I−1(ϕ)Ψϕ(t)

)
− Cov

(
S(Yi;ϕ)I−1(ϕ)Ψϕ(s), I(F (Yi;ϕ) ≤ t) − t

)

+ Cov
(
S(Yi;ϕ)I−1(ϕ)Ψϕ(s), S(Yi;ϕ)I−1(ϕ)Ψϕ(t))

)}
.
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Note that the summation applies over all four terms. The calculation continues as follows.
For the first term, note that since F (Yi;ϕ) = F (Yi; θ), we can write:

1
n

n∑
i=1

Cov(I(F (Yi; θ) ≤ s) − s, I(F (Yi; θ) ≤ t) − t) = min(s, t) − st.

For the second term, we can write (note that we apply the fact that E (S(Yi;ϕ)) = 0):

Cov
(
I(F (Yi;ϕ) ≤ s),S(Yi;ϕ)I−1(ϕ)Ψϕ(t)

)
= E

[
I(F (Yi;ϕ) ≤ s)S(Yi;ϕ)I−1(ϕ)Ψϕ(t)

]

= ΨT
ϕ (t)I−1(ϕ)E

[
I(F (Yi;ϕ) ≤ s)S(Yi;ϕ)

]

= ΨT
ϕ (t)I−1(ϕ)

∫ s

0
g(u;ϕ)S(Yi;ϕ)du

= ΨT
ϕ (t)I−1(ϕ)

∫ s

0
g(u;ϕ) ∂

∂ϕ
log(g(u;ϕ))du

= ΨT
ϕ (t)I−1(ϕ)

∫ s

0
g(u;ϕ)

∂
∂ϕg(u;ϕ)
g(u;ϕ) du

= ΨT
ϕ (t)I−1(ϕ)

∫ s

0

∂

∂ϕ
g(u;ϕ)du

= ΨT
ϕ (t)I−1(ϕ) ∂

∂ϕ

∫ s

0
g(u;ϕ)du

= ΨT
ϕ (t)I−1(ϕ) ∂

∂ϕ
(G(s) −G(0))

= ΨT
ϕ (t)I−1(ϕ)Ψϕ(s).

For the third term, switch the roles of s and t to check that:

Cov
(
I(F (Yi;ϕ) ≤ t), S(Yi;ϕ)I−1(ϕ)Ψϕ(s)

)
= ΨT

ϕ (s)I−1(ϕ)Ψϕ(t).

Finally we calculate the last term in the summation as follows:

Cov
(
S(Yi;ϕ)I−1(ϕ)Ψϕ(s), S(Yi;ϕ)I−1(ϕ)Ψϕ(t)

)
= ΨT

ϕ (s)I−1(ϕ)Cov
(
S(Yi;ϕ), S(Yi;ϕ)

)
I−1(ϕ)Ψϕ(t)

= ΨT
ϕ (s)I−1(ϕ)V ar(S(Yi;ϕ))I−1(ϕ)Ψϕ(t)

= ΨT
ϕ (s)I−1(ϕ)I(ϕ)I−1(ϕ)Ψϕ(t)

= ΨT
ϕ (s)I−1(ϕ)Ψϕ(t).
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This shows that the limiting covariance function of the stochastic process Ŵn(u) based on
the new parametrization is:

ρϕ(s, t) = min(s, t) − st− ΨT
ϕ (t)I−1(ϕ)Ψϕ(s)

for any 0 ≤ s, t ≤ 1. To show the equivalence of covariance function with the original
parametrization, we note that Ψϕ(u) = DT Ψθ(u) and I−1(ϕ) = D−1I−1(θ)(DT )−1. Plug
these values back in the formula for ρϕ(s, t), we conclude:

ρϕ(s, t) = min(s, t) − st−
(
DT Ψθ(t)

)T (
D−1I−1(θ)(DT )−1

)
DT Ψθ(s)

= min(s, t) − st− ΨT
θ (t)DD−1I−1(θ)(DT )−1DT Ψθ(s)

= min(s, t) − st− ΨT
θ (t)I−1(θ)Ψθ(s) = ρ(s, t).

As we can see, the covariance function does not change as a result of the new parametriza-
tion. Consequently, the estimated eigenvalues, as discussed in Section 3.5, remain the same.
As previously noted, since F (Yi;ϕ) = F (Yi; θ), the value of the CvM statistic also remains
unchanged. This leads to the conclusion that the parametrization of the likelihood model
does not alter the p-value of the goodness-of-fit test. In the next section, we review the
theory and steps for applying goodness-of-fit tests based on empirical distribution functions
in a linear model.

3.9 Example 3: Linear model

In sections 3.6 and 3.7, we examined the large sample theory for independently and iden-
tically distributed (i.i.d) samples from the Normal and Gamma distributions. Specifically,
we showed the steps to calculate the covariance function of the stochastic process. In both
examples, Yi was assumed to be derived from the same F (Y ; θ) distribution. In particular,
we assumed that the expected value of the response variable was the same for all Yi. How-
ever, the expected value of each response variable could depend on some covariates. In this
section, we review the theory for linear models where the response variables for different
observations are still independent but their expected values depend on some covariates. The
goal is to test the null hypothesis that the usual assumptions about the distribution of the
response variable are correct.

To start with, consider a linear regression model for the relationship between k explana-
tory variables and a response variable. An independent sample of n observations is available
in the form of (Yi, xi1, xi2, . . . , xik). Each Yi is a response value and the xij is the value of
the jth explanatory variable for the i-th observation. For i = 1, 2, 3, . . . , n, we define the co-
variate vector as xT

i = (x1i, x2i, . . . , xki). The Yi’s are independent from each other but their
expected value, E[Yi], depends on the values of the covariate vector, xT

i ; as usual in linear
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regression our analysis is conditional on the covariates – they are treated as non-random
constants. Therefore, the linear regression model is written as Y = Xβ + ϵ, where Y and ϵ

are both column vectors with n elements. The matrix X has n rows and p = k+ 1 columns
to include the intercept in the model. The column vector β has p elements. The usual as-
sumptions apply for error terms where means are assumed to be zero and the variance σ2

is constant.
Here we review the theory when the response is assumed to follow a normal distribution

but the idea remains the same for other continuous distributions. We start by writing the
likelihood function of the response variable:

L(θ) =
(

2πσ2
)−n

2
e

−1
2σ2 (Y −Xβ)T (Y −Xβ)

and the log-likelihood is:

l(θ) = −n log(σ) − 1
2σ2 (Y −Xβ)T (Y −Xβ).

For convenience, we define θ which contains both β and σ. The next step is to calculate
partial derivatives:

∂l

∂β
= −1

2σ2

(
2XTXβ − 2XTY

)
= 1
σ2X

T (Y −Xβ)

∂2l

∂β2 = −1
σ2 X

TX

∂l

∂σ
= −n

σ
+ 1
σ3 (Y −Xβ)T

∂2l

∂σ2 = n

σ2 − 3
σ4 (Y −Xβ)T (Y −Xβ)

∂l

∂σ∂β
= 2
σ3X

T (Xβ − Y ).

The Fisher information matrix is:

I(θ) = −E
[
∂2l

∂θ2

]
=
(

XT X
σ2 0
0 2n

σ2

)
= 1
σ2

(
XTX 0

0 2n

)
.

For a linear model with intercept, we can write XTX in the following form. Note that for
this model the first column in X has all entries equal to 1. Therefore:

XTX = [1, X]T [1, X] =
(
n nX̄T

nX̄ XTX

)
= n

(
1 X̄T

X̄ XT X
n

)
= n

(
1 X̄T

X̄ 1
n

∑n
i=1 xix

T
i

)
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where X̄T = (X̄1, X̄2, . . . , X̄k) is the vector of averages of explanatory variables. We can
thus write the Fisher information matrix as follows:

In(θ) = n

σ2


1 X̄T 0
X̄ 1

n

∑n
i=1 xix

T
i 0

0 0 2

 . (3.25)

The average Fisher information matrix based on one observation is:

I(θ) = 1
n
In(θ) = 1

σ2


1 X̄T 0
X̄ 1

n

∑n
i=1 xix

T
i 0

0 0 2

 . (3.26)

Before we calculate the covariance function of the stochastic process Ŵn(u) in the linear
model case, we would like to point out some important changes from the i.i.d. case. The
distribution of Yi depends on covariate xT

i values and as a result the calculations of Ŵn in
3.16 will change slightly. First, F (Y ; θ) depends on covariates now. Therefore we rewrite
3.16 in the following way:

Ŵn(u) = 1√
n

n∑
i=1

(
I
(
Fi(Yi, θ̂) ≤ u

)
− u

)
. (3.27)

Note that the subscript in F shows the dependency of the CDF on i-th observation. Similar
to calculations in Section 3.4, we define Qi(Y ; θ̂) = F−1

i (Y ; θ̂) as the inverse of the cumu-
lative distribution function Fi(Y ; θ̂) and apply this inverse transform on both sides of the
inequality in 3.27 to obtain the following expression:

Ŵn(u) = 1√
n

n∑
i=1

(
I
(
Yi ≤ Qi(u; θ̂)

)
− u

)
.

Using the fact that Fi(Yi; θ) is a non-decreasing function of Yi, we continue:

Ŵn(u) = 1√
n

n∑
i=1

(
I
(
Fi(Yi; θ) ≤ Fi(Qi(u; θ̂); θ)

)
− u

)
.

Following the ideas leading to formula 3.17, the expansion of Ŵn(u) in this case is:

Ŵn(u) = 1√
n

n∑
i=1

(
I(Ui ≤ Fi(Qi(u; θ̂); θ)) − Fi(Qi(u; θ̂); θ)

)
+ 1√

n

n∑
i=1

(
Fi(Qi(u; θ̂); θ) − u

)
.
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We approximate the first of the two terms on the last line by Wn(u) to write the expression
as follows [53]:

Ŵn(u) ≈ 1√
n

n∑
i=1

(
I(Ui ≤ u) − u

)
+ 1√

n

n∑
i=1

(
Fi(Qi(u; θ̂); θ) − u

)

= Wn(u) + 1√
n

n∑
i=1

(
Fi(Qi(u; θ̂); θ) − u

)
.

. (3.28)

As in 3.21, we write the Taylor expansion of Fi(Qi(u; θ̂); θ) around θ in the form:

Fi(Qi(u; θ̂); θ) = u− ∂

∂θ̂
Fi(Qi(u; θ̂); θ) (θ̂ − θ) +Op[(θ̂ − θ)2]. (3.29)

Note that the remainder term is negligible for relatively large values of n. Replacing the
value of Fi(Qi(u; θ̂); θ) from 3.29 in 3.28 and evaluating at θ̂ = θ we can write Ŵn(u) as:

Ŵn(u) = Wn(u) − 1√
n

n∑
i=1

∂

∂θ
Fi(Qi(u; θ); θ) (θ̂ − θ)

= Wn(u) −
√
n

1
n

n∑
i=1

∂

∂θ
Fi(Qi(u; θ); θ)(θ̂ − θ)

= Wn(u) −
√
nΨT

n (u)(θ̂ − θ).

In this expansion, Ψn(u) remains a column vector with elements representing the partial
derivatives of the cumulative distribution function with respect to θ. However, the values
are averaged over the sample since the distribution of each Yi depends on covariates. In
other words:

Ψn(u) = 1
n

n∑
i=1

∂

∂θ
Fi(Qi(u; θ); θ).

Following the same approach as for an i.i.d. sample, we can finally write Ŵn(u) in terms
of the score function based on each observation as follows:

Ŵn(u) = 1√
n

n∑
i=1

(
I (Fi(Yi, θ) ≤ u) − u− Si(θ)I−1(θ)Ψn(u)

)
.

The covariance function of Ŵn(u) remains the same as the i.i.d. case except the Ψ(u) is
replaced by Ψn(u), as follows:

ρ(s, t) = min(s, t) − st− ΨT
n (t)I−1(θ)Ψn(s). (3.30)

In this example for linear model with normal residuals, there are k+ 1 estimated values
for the coefficients (k explanatory variables and one intercept) and one estimate for σ. In
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total there are (k + 1) + 1 = p + 1 parameters. Hence the vector Ψn(u) contains p + 1
elements. For j = 1, 2, 3, . . . , p, the j-th element of Ψn(u) evaluated at the inverse of the
CDF is:

Ψj(u) = 1
n

n∑
i=1

∂

∂βj
Fi(Yi;β, σ) = 1

n

n∑
i=1

∂

∂βj
Φ(Yi − xijβj

σ
) = 1

n

n∑
i=1

(−xij

σ

)
ϕ(Yi − xijβj

σ
)

= −1
nσ

n∑
i=1

xij ϕ(Φ−1(u)) = −ϕ(Φ−1(u))
nσ

n∑
i=1

xij = −ϕ(Φ−1(u))
σ

x̄j .

Similarly, for j = p+ 1 the j-th element of Ψn(u) vector evaluated at the inverse of CDF is:

Ψj(u) = 1
n

n∑
i=1

∂

∂σ
Fi(Yi;β, σ) = 1

n

n∑
i=1

∂

∂σ
Φ(Yi − xijβj

σ
)

= 1
n

n∑
i=1

(−1
σ2
)(
Yi − xijβj

)
ϕ(Yi − xijβj

σ
)

=
(−1
nσ

) n∑
i=1

(Yi − xijβj

σ

)
ϕ(Yi − xijβj

σ
)

=
(−1
nσ

) n∑
i=1

Φ−1(u)ϕ(Φ−1(u)) =
(−1
σ

)
Φ−1(u)ϕ(Φ−1(u)).

Therefore Ψn(u) is a column vector with elements as follows:

Ψn(u) =
(−1
σ

)
ϕ(Φ−1(u))



1
X̄1

X̄2

.

X̄k

Φ−1(u)


=
(−1
σ

)
ϕ(Φ−1(u))


1
X̄

Φ−1(u)

 .

We start with the calculation of the term ΨT
n (t)I−1(θ)Ψn(s) in the covariance function

ρ(s, t). Using the Fisher information matrix obtained in 3.26 we get:

(−1
σ

)ϕ(Φ−1(t))
(
1 X̄T Φ−1(t)

)
σ2


1 X̄T 0
X̄ 1

n

∑n
i=1 xix

T
i 0

0 0 2


−1

(−1
σ

)ϕ(Φ−1(s))


1
X̄

Φ−1(s)


= ϕ(Φ−1(t))ϕ(Φ−1(s))

[1
2Φ−1(t)Φ−1(s) +

(
1 X̄T

)( 1 X̄T

X̄ 1
n

∑n
i=1 xix

T
i

)−1(
1
X̄

)]
.
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It is easy to verify that:

(
1 X̄T

X̄ 1
n

∑n
i=1 xix

T
i

)−1(
1
X̄

)
=
(

1
0

)

which results in :

ΨT
n (t)I−1(θ)Ψn(s) = ϕ(Φ−1(t))ϕ(Φ−1(s))

[1
2Φ−1(t)Φ−1(s) +

(
1 X̄T

)(1
0

)]

= ϕ(Φ−1(t))ϕ(Φ−1(s))
[1

2Φ−1(t)Φ−1(s) + 1
]

= 1
2ϕ(Φ−1(t))ϕ(Φ−1(s))Φ−1(t)Φ−1(s) + ϕ(Φ−1(t))ϕ(Φ−1(s)).

This gives the covariance function for the case of linear model as:

ρ(s, t) = min(s, t) − st− 1
2ϕ(Φ−1(t))ϕ(Φ−1(s))Φ−1(t)Φ−1(s) + ϕ(Φ−1(t))ϕ(Φ−1(s)).

Note that in a linear model with an intercept, the covariance function only depends on
the values of 0 ≤ s, t ≤ 1; it does not depend on the values of explanatory variables. Instead
of computing the limiting covariance analytically, we can estimate it using a similar approach
to that we used in Section 3.6 and Section 3.7. In the next section, we will review the theory
and steps for applying goodness-of-fit tests based on empirical distribution functions in a
generalized linear model with a Gamma-distributed response variable.

The arguments in this section have involved non-identically distribute summands in
the process whose limiting distribution must be computed. In [54] it is shown that all the
remainder terms discarded along the way are uniformly negligible for any sequence of full
rank designs with an intercept term.

3.10 Example 4: Generalized linear model

Generalized linear models (GLMs) are also used to model the relationship between a re-
sponse variable and one or more covariates. GLMs extend the linear regression model by
relaxing the assumption of normally distributed errors and allowing for a broader range of
response distributions. In a GLM, the expected value of the response variable is related to
a linear combination of the covariates through a link function. Specifically, for each obser-
vation i = 1, 2, 3, · · · , n, we have E(Yi) = µi, where Yi represents the response variable,
and µi is the expected value, which is modeled as a function of the covariates. In a GLM,
the relationship between the mean µi and the linear predictor ηi is captured by g(·), a link
function. Specifically, we assume that g(µi) = ηi where ηi = β0 +β1xi1 +β2xi2 + . . .+βpxip,
and β0, β1, . . . , βp are the coefficients to be estimated, and xi1, xi2, . . . , xip are the covariates
for observation i.
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The choice of link function allows us to model flexibly the relationship between µi and
ηi. For example, in a linear regression model, the function g(·) connects ηi and µi through an
identity link, g(x) = x. By specifying an appropriate link function and response distribution,
GLMs can handle a wide range of data types and non-linear relationship between the
response variable and covariates [55].

This section reviews the theory required to apply a goodness-of-fit test based on the
empirical distribution function for checking the model assumption regarding the distribution
of the response variable in a GLM. To show the required theory, we specifically consider a
GLM with a log link function. However, the concept remains the same for any link function.
Consider a GLM with Yi as the response variable, where i = 1, 2, 3, · · · , n. In this model,
the expected value of Yi, denoted as E(Yi), depends on certain covariates. Specifically, we
express E(Yi) as µi, where log(µi) = β0+β1xi1+β2xi2+· · ·+βpxip. To simplify the notation,
we can rewrite this equation as µi = exp(xT

i β), where xT
i represents a row vector with p

elements, and β represents the column vector of coefficients with p elements. We assume
Yi’s are drawn from a population with a Gamma distribution with the following probability
distribution function (PDF):

f(Yi;α, θi) = 1
θiΓ(α)

(
Yi

θi

)α−1

e
−Yi
θi

where α is the shape and θi is the scale parameter. Since E(Yi) = µi = αθi, we can substitute
θi = µi

α in the PDF as follows:

f(Yi;α, β) = 1
µi
α Γ(α)

(
Yi
µi
α

)α−1

e
− α

µi
Yi = α

Γ(α)
1
µi

αα−1
(
Yi

µi

)α−1

e
− α

µi
Yi .

Note that in this particular example, the log link function results in ln(µi) = xT
i β, or

alternatively, µi = exp(xT
i β). In addition, the PDF is now a function of α and β. We can

now write the likelihood function for the sample as follows:

L(α, β) =
n∏

i=1
f(Yi;α, β) =

n∏
i=1

α

Γ(α)
1
µi

αα−1
(
Yi

µi

)α−1

e
− α

µi
Yi

=
(

α

Γ(α)

)n ( n∏
i=1

1
µi

)
αn(α−1)

n∏
i=1

(
Yi

µi

)α−1

e
−α
∑n

i=1
Yi
µi

and log-likelihood as:

l(α, β) = n ln( α

Γ(α)) +
n∑

i=1
ln( 1

µi
) + n(α− 1) ln(α) + (α− 1)

n∑
i=1

ln(Yi

µi
) − α

n∑
i=1

Yi

µi
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= n ln(α) − n ln(Γ(α)) −
n∑

i=1
ln(µi) + n(α− 1) ln(α) + (α− 1)

n∑
i=1

ln(Yi)

− (α− 1)
n∑

i=1
ln(µi) − α

n∑
i=1

Yi

µi
.

To calculate the Fisher information matrix, we derive the partial derivatives of the log-
likelihood function with respect to parameters as follows:

∂l

∂α
= n

α
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n∑
i=1

ln(Yi) −
n∑
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∂2l
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α

where D(α) = Γ′ (α)
Γ(α) . The partial derivatives with respect to β is:
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Therefore the Fisher information matrix is:

In(θ) = −E

 ∂2

∂α2 l(α, β) ∂
∂α∂β l(α, β)

∂
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T
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)

and the Fisher information matrix based on one observation is:

I(θ) = 1
n
In(θ) =

(
D

′(α) − 1
α 0

0 α
n

∑n
i=1 xix

T
i

)
.

In the GLM case, the covariance function of Ŵn(u) remains the same as in the i.i.d. case,
except the Ψ(s) vector values are averaged out, similar to the calculations we discussed to
obtain the covariance function in formula 3.30. The covariance function is:

ρ(s, t) = min(s, t) − st− ΨT
n (t)I−1(θ)Ψn(s). (3.31)

The elements of Ψn(u) are the partial derivative terms with respect to the parameters,
evaluated at the inverse of the CDF, and then averaged. For example, in a GLM-Gamma
model with k explanatory variables, there are p = k+ 2 parameters (with k for coefficients,
one for the intercept, and one for the shape parameter α). Therefore, Ψn(u) is a vector with p
elements. The next step is to calculate these elements in the column vector. If the response
variable, Yi, follows a Gamma distribution, we can compute the cumulative distribution
function as follows:

Fi(Yi;α, β) =
∫ Yi

0

αα

Γ(α)
tα−1

µα
e

−
(

αt
µ

)
dt.

The partial derivative of Fi(Yi;α, β) with respect to β is:
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=
∫ Yi
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We apply the change of variable v = αt
µi

to continue:
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The partial derivative of Fi(Yi;α, β) with respect to α is:
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=
∫ Yi
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We apply the change of variable v = αt
µi

to continue:
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We evaluate both terms at Yi = Q(u;α, µi) = µi
α Q(u;α, 1) where Q is the inverse of cumu-

lative distribution function of a Gamma distribution with shape parameter of α and scale
parameter of one. Therefore we can write the elements of the vector Ψn(u) as the average
over i of:
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The vector Ψn(u) has p elements, denoted by Ψn,j(u), and can be computed as follows. For
j values ranging from 2 to p, Ψn(u) includes the following values:

Ψn,j(u) = 1
n

n∑
i=1

∂

∂βj−1
Fi(Yi;α, β)

and for j = 1:

Ψj(u) = 1
n

n∑
i=1

∂

∂α
Fi(Yi;α, β).

It is possible to compute both elements of the Ψn(u) vector numerically for a given sample.
For example, the digamma function from the MASS package in the R statistical software
can be used to calculate D(α). The maximum likelihood estimate of α can be computed
using a procedure to find the root of the score function with any desired precision. Finally,
a simple routine, in combination with the qgamma function from the stats package in R,
can be applied to compute

∫Q(u;α,1)
0 ln(z)g(z;α, 1)dz accurately. Thus the approximating

covariance function of the process Ŵn(u) will be:

ρ(s, t) = min(s, t) − st− Ψ′
n(t)I−1(θ)Ψn(s)

= min(s, t) − st− Ψ′
n(t)

(
D

′(α) − 1
α 0

0 α
n

∑n
i=1 xix

T
i

)−1

Ψn(s).

This covariance function depends not only on s and t but also on the shape parameter
α. As described in Section 3.4, one can estimate the eigenvalues and compute the P-value.
Instead of computing the limiting covariance analytically, we can estimate it with a similar
approach to what we show in Section 3.6 and Section 3.7.

3.11 Concluding remarks

Throughout the previous sections of this chapter, we have discussed various examples, in-
cluding i.i.d. cases, linear models, and generalized linear models. We have covered the un-
derlying theory necessary for computing the covariance function of the Ŵn(u) process ana-
lytically, in each of these examples. We started our exploration with a simple i.i.d. case and
gradually considered more complex models. As will be evident to the reader, the complexity
of obtaining the essential components within the covariance function increases notably as
we transition towards working with general likelihood models.

In Section 3.5, we introduced our main contribution: an alternative approach to esti-
mating the covariance function. Instead of relying on theoretical calculations, we presented
a method for directly estimating the covariance function from sample data. This method
replaces the need for complex computations and opens the door to more practical applica-
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tions. In the upcoming chapter, we will investigate the reliability of this estimation through
various simulations, where we will apply this estimation method to derive the covariance
function, estimate the eigenvalues, and compute the P-value.
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Chapter 4

Simulation results and real data

4.1 Overview

In this Chapter, we conduct four large-scale simulations in which we estimate the covariance
function directly from the sample using the method described in Section 3.5, rather than
relying on analytical calculations of the covariance function. In each simulation, the data
is randomly generated from a model under the null hypothesis which we will explain. We
use the simulations to evaluate the quality of the asymptotic approximations and to guide
specific choices for estimation methods and for the approximate quadrature method.

For the first and second simulations, presented in Sections 4.2 and 4.3, we consider
generating data from univariate Normal and Gamma distributions, respectively. In the third
simulation, presented in Section 4.4, we briefly examine a linear regression model where the
error terms follow a Normal distribution. In the last simulation, presented in Section 4.5, we
address a common problem in generalized linear models (GLM) where the responses follow
a Gamma distribution, and the link function is either the logarithm or the inverse of the
linear predictor.

Throughout the chapter we use the Cramér-von Mises goodness-of-fit test and compute
P-values. Under the null hypothesis, we expect P-values to follow a uniform distribution.
We investigate this by examining the quantile-quantile plot (QQ-plot) of P-values to detect
any discrepancy between quantiles of computed P-values and the theoretical quantiles of
the uniform distribution. Additionally, we are interested to check if the distribution of small
P-values is close to uniform, since the common significance level for statistical testing is
0.01 or 0.05 most of the times. For this, we assess the uniformity of P-values less than or
equal to 0.10 by examining their QQ-plot.

The estimated type-one error rate is also computed to check the rate at which the test
rejects a correct null hypothesis. This is estimated by computing the proportion of tests
that are rejected at 0.01 or 0.05 significant levels.

We investigate the effect of sample size and suggest a minimum sample size in each
simulation setting. To approximate the eigenvalues of the covariance function using matrix
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Q (defined in Section 3.5), we employed two different approaches. We either used a grid of n
equally spaced points over the interval [0,1] (i.e m = n points), or we utilized the probability
integral transformed values. We also considered m = 2n and m = 3n equally spaced points
over the interval [0,1], but we did not observe any significant differences compared to using
m = n data points. Therefore we are not presenting those results here. We use uniform
weights wj throughout but a brief discussion of alternatives is presented in the Conclusion
of the chapter in Section 4.7.

For the Normal and Gamma simulations, we run four sub-simulations in each case. We
consider two estimates of the Fisher information matrix: calculating the sample variance of
the score function or computing the negative of the Hessian matrix evaluated at the MLE.
Those results led us to estimate the Fisher information matrix based on the sample variance
of the score in the simulations with covariates.

After the simulations, Section 4.6 presents the results of our proposed goodness-of-fit
test in a real-world example where the response variable is assumed to follow a Gamma
distribution. We finish the chapter with Section 4.7 which presents concluding remarks and
some ideas for future research.

4.2 Normal distribution

We show the results of four large scale simulations in the case of an i.i.d sample from the
Normal distribution. In all of these simulations, a random sample of size n was generated
from N(0, 1) distribution. We only considered a standard normal distribution, i.e µ = 0
and σ = 1. This setting is sufficient because if Zi follows a standard normal distribution,
then Yi = µ + σZi follows a Normal distribution with a mean of µ and a standard devia-
tion of σ. It is easy to verify that Φ

(
Yi−Ȳ

sY

)
= Φ

(
Zi−Z̄

sZ

)
and as a result, the probability

integral transformed (PIT) values are the same, and the CvM statistic remains unchanged.
Additionally, in Section 3.6, we demonstrated that the limiting covariance function for the
Normal distribution does not depend on the choice of µ and σ.

We varied the sample size to assess its effect by including values of n = 50, n = 100,
and n = 250. To calculate the matrix Q, we either divided the interval [0,1] into m = n

equally spaced points depending on the value of n or considered the probability integral
transformed values, as described in the methods section. The Fisher information matrix
was estimated either by the variance of the score function (estimated from the sample) or
by the negative of the observed Hessian matrix evaluated at the MLE. In each simulation
setting, 10,000 Monte Carlo samples were simulated.

The four sub-simulations in this section are as follows. The Fisher information matrix is
estimated by the variance of the score in simulation 1 and simulation 3, and in simulation
2 and simulation 4 is estimated by the negative of the observed Hessian matrix evaluated
at the MLE. In simulation 1 and simulation 2, we used m = n equally spaced data points
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over interval [0,1] to compute the Q matrix and estimate the eigenvalues (we show the com-
putation of matrix Q in Section 3.5) while simulation 3 and simulation 4, used probability
integral transformed values as a grid over interval [0,1]. In all these simulations we used
uniform weights 1/n.

4.2.1 Simulation 1

In this simulation, we estimate the Fisher information matrix using the sample variance
of the score function. To compute the matrix Q and estimate eigenvalues, we used m = n

equally spaced points over [0,1] grid as described in Section 3.5. Quadrature weights were
wi = 1/n. Figure 4.1 shows the Quantile-Quantile plot or Q-Q plot of the P-values obtained
from our goodness-of-fit test in each simulation setting. The x and y-axes in all panels are
the theoretical quantiles of the Uniform distribution and quantiles of the P-value obtained
from the sample, respectively. The figure is arranged in a 1 × 3 gird, where each column
presents a sample size. In other words, the results related to sample sizes of n = 50, n = 100,
and n = 250 are arranged in first, second, and third column, respectively. For sample size
50 there is some departure from the straight line but it is still acceptable considering the
small sample size. Also we can see that the sample quantiles correspond very well with the
corresponding theoretical values for sample sizes of 100 and 250.

It is of interest to investigate how well theoretical and sample quantiles correspond not
only for all P-values but also focusing on smaller P-values. Figure 4.2 shows the Q-Q plot of
P-values less than or equal to 0.10 (multiplied by 10 to run from 0 to 1). The x and y-axes
in all panels are the theoretical quantiles of the Uniform distribution and quantiles of the
sample, respectively. The figure is arranged in the same way as Figure 4.1. As we can see,
regardless of the sample size, in all panels, the theoretical values correspond very well with
sample quantiles.

We estimate the type-one error rate of the test at two nominal levels of α = 0.01 and
α = 0.05 in Table 4.1, for each sample size. The estimated rate is the proportion of all
P-values among 10000 Monte Carlo samples that are less than the nominal level. We can
see that the estimated type-one error rate is well controlled at level 0.01 for all simulation
settings. It is clear that increasing the sample size from n = 50 to n = 250 results in a
better controlled type one error rate. The estimated type-one error rate is inflated at level
α = 0.05 for sample sizes of n = 50 and n = 100. However, increasing sample size to n = 250
controls the type-one error rate at the desired level.
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Figure 4.1: Normal distribution, simulation 1, using the variance of the score and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values from goodness-
of-fit test for different sample sizes in each panel: panels (A), (B), and (C) are for sample
size n = 50, n = 100, and n = 250 respectively.

Figure 4.2: Normal distribution, simulation 1, using the variance of the score and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or
equal to 0.1 from goodness-of-fit test for different sample sizes in each panel: panels (A),
(B), and (C) are for sample size n = 50, n = 100, and n = 250, respectively.

Table 4.1: Normal distribution, simulation 1, using the variance of the score and an evenly
spaced grid. The estimated type one error rate at level α = 0.01 and level α = 0.05. Rows
are the level of the test and columns are the sample sizes.

Sample size
n = 50 n = 100 n = 250

α = 0.01 0.0199 0.0136 0.0122
α = 0.05 0.0745 0.0635 0.0553
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4.2.2 Simulation 2

In this simulation, we estimate the Fisher information matrix by the negative of the observed
Hessian matrix, where the required parameters are estimated from the data. To compute
the matrix Q and estimate eigenvalues, we used m = n equally spaced points over [0,1] grid
as described in Section 3.5. Figure 4.3 shows the Q-Q plot of all P-values and Figure 4.4
presents the Q-Q plot for P-values that are less than or equal to 0.10.

Looking at the Q-Q plot of all P-values, it seems that estimating Fisher information
with the observed Hessian matrix rather than the variance of score, produces unacceptably
conservative P-values. This can be visually verified in all panels for any sample size that we
considered in Figure 4.3. The Q-Q plot of P-values less than or equal to 0.10 in Figure 4.4
suggests that the sample quantiles are larger than the expected theoretical values.

The estimated type-one error rate at two nominal levels of α = 0.01 and α = 0.05 are
given in table 4.2. It is worth noting that by estimating the Fisher information matrix with
Hessian matrix, the estimated type one error rate is well controlled in both nominal levels
of α = 0.01 and α = 0.05 but the test is too conservative.

Figure 4.3: Normal distribution, simulation 2, using the negative Hessian and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values from goodness-
of-fit test for different parameter settings in each panel: panels (A), (B), and (C) are for
sample sizes n = 50, n = 100, and n = 250, respectively.
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Figure 4.4: Normal distribution, simulation 2, using the negative Hessian and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or
equal to 0.1 from goodness-of-fit test for different sample sizes in each panel: panels (A),
(B), and (C) are for sample sizes n = 50, n = 100, and n = 250, respectively.

Table 4.2: Normal distribution, simulation 2, using the negative Hessian and an evenly
spaced grid. The estimated type one error rate at level α = 0.01 and level α = 0.05. Rows
are the level of the test and columns are the sample sizes.

Sample size
n = 50 n = 100 n = 250

α = 0.01 0.0037 0.0055 0.0114
α = 0.05 0.0363 0.0367 0.0517

4.2.3 Simulation 3

In this simulation, we estimate the Fisher information matrix by the variance of the score
function. In order to compute the matrixQ and estimate eigenvalues, we used the probability
integral transformed values for grid, as described in Section 3.5. Figure 4.5 shows the Q-Q
plot of all P-values and Figure 4.6 shows the Q-Q plot of P-values less than or equal to 0.10
only. It is clear from both plots that estimating the covariance function of the empirical
process by probability integral transformed values results in a more uniform distribution
of P-values under the null hypothesis. We estimate the type-one error rate at two nominal
levels of α = 0.01 and α = 0.05. These estimates are given in table 4.3. As we can see, the
estimated type one error rate is well controlled at nominal level of α = 0.01. The estimated
type-one error rate at level α = 0.05 is a bit higher than 0.05 but not importantly so.
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Figure 4.5: Normal distribution, simulation 3, using the variance of the score and the PITs
for the grid. Theoretical quantiles vs sample quantiles of obtained P-values from goodness-
of-fit test for different sample sizes in each panel: panels (A), (B), and (C) are for sample
size n = 50, n = 100, and n = 100, respectively.

Figure 4.6: Normal distribution, simulation 3, using the variance of the score and the PITs
for the grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or
equal to 0.1 from goodness-of-fit test for different sample sizes in each panel: panels (A),
(B), and (C) are for sample size n = 50, n = 100, and n = 250, respectively.

Table 4.3: Normal distribution, simulation 3, using the variance of the score and the PITs
for the grid. The estimated type one error rate at level α = 0.01 and level α = 0.05. Rows
are the level of the test and columns are the sample sizes.

Sample size
n = 50 n = 100 n = 250

α = 0.01 0.0147 0.0117 0.0119
α = 0.05 0.0570 0.0560 0.0548
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4.2.4 Simulation 4

In this simulation, we estimate the Fisher information matrix by the negative observed
Hessian matrix evaluated at the maximum likelihood estimates. To compute the matrix Q
and estimate eigenvalues, we used the probability integral transformed values, as described
in Section 3.5. Figure 4.7 shows the Q-Q plot of all P-values and Figure 4.8 shows the
Q-Q plot of P-values less than or equal to 0.10 only. For sample size of n = 50, there is a
visible departure from the straight line. But we can see that increasing the sample size help
resolving this issue. The estimated type-one error rate at two nominal levels of α = 0.01
and α = 0.05 are given in table 4.4. The estimated type one error rate is well controlled at
nominal level of α = 0.01 and α = 0.05. However, the results of the test are too conservative.

Figure 4.7: Normal distribution, simulation 4, using the negative Hessian and the PITs for
the grid. Theoretical quantiles vs sample quantiles of obtained P-values from goodness-of-fit
test for different sample sizes in each panel: panels (A), (B), and (C) are for sample size
n = 50, n = 100, and n = 250, respectively.
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Figure 4.8: Normal distribution, simulation 4, using the negative Hessian and the PITs for
the grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or equal
to 0.1 from goodness-of-fit test for different sample sizes in each panel: panels (A), (B), and
(C) are for sample size n = 50, n = 100, and n = 250, respectively.

Table 4.4: Normal distribution, simulation 4, using the negative Hessian and the PITs for
the grid. The estimated type one error rate at level α = 0.01 and level α = 0.05. Rows are
the level of the test and columns are the sample sizes.

Sample size
n = 50 n = 100 n = 250

α = 0.01 0.0018 0.0041 0.0085
α = 0.05 0.0222 0.0325 0.0458

The results of the simulation in the Normal case suggests the following. We recommend
to use the PIT values as a grid over interval [0,1] with quadrature weights of wi = 1

n . In
addition, our findings suggest that estimating the Fisher information matrix by the variance
of score is more reliable. The test demonstrate an excellent performance for sample sizes as
low as n = 50 at both significance levels of α = 0.01 and α = 0.05.

4.3 Gamma distribution

In this section, we present the results of four large scale simulations in the case of the
Gamma distribution. In all these simulations, a random sample of size n is generated from
Gamma(α, 1) distribution for a wide range of values for the shape parameters, including
α = 1, α = 7, and α = 50. As shown in 3.7, the limiting covariance function does not depend
on the choice for the scale parameter, as a result we set λ = 1. We consider different values
of n = 50, n = 100, and n = 250 for the sample size. To compute the matrix Q and estimate
the eigenvalues, we either divided the interval [0,1] into m = n equally spaced data points,
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depending on the value of n, or considered the probability integral transformed values as
described in Section 3.5 section to estimate the covariance function of the empirical process.
The Fisher information matrix was estimated either by the variance of the score function
or by the negative value of the observed Hessian matrix. In each simulation setting, 10,000
Monte Carlo samples were simulated.

The four sub-simulations in this section follow the same pattern as in the Normal case.
The Fisher information matrix, is estimated by the variance of score in simulation 1 and
simulation 3, and in simulation 2 and simulation 4 is estimated by the negative of the
observed Hessian matrix evaluated at MLE. In simulation 1 and simulation 2, we used
m = n equally spaced data points over interval [0,1] to compute the Q matrix and estimate
the eigenvalues (we show the computation of matrix Q in Section 3.5) while simulation 3
and simulation 4, used probability integral transformed values as a grid over interval [0,1].
In all these simulations we used uniform weights 1/n.

4.3.1 Simulation 1

In this simulation, the Fisher information matrix is estimated by the variance of the score
function. We used a grid with m = n equally spaced data points over [0,1] interval to
compute the matrix Q and estimate the eigenvalues, as described in Section 3.5. Figure 4.9
shows the Q-Q plot of the obtained P-value from goodness-of-fit test in each simulation
setting. The x and y-axes in all panels are the theoretical quantiles of Uniform distribution
and quantiles of the computed P-value from the test, respectively. The figure is arranged so
that each row belongs to a different sample size and each column represents a parameter
setting. The results of each shape parameter (α = 1, α = 7, and α = 50) are arranged in
first, second, and third columns, respectively. There are some visible discrepancies between
theoretical and sample quantiles when n = 50 but a sample of size n = 100 seems to resolve
the issue. In general, we see that the sample quantiles matches well with the corresponding
theoretical values as sample size increases from n = 50 to n = 250.

We also look at Q-Q plots of smaller P-values to get a better insight into the performance
of the method. Figure 4.10 shows the Q-Q plot of P-values less than or equal to 0.10. The
x and y-axes in all panels are the same as 4.9 and panels are arranged in the same way. As
we can see, theoretical and sample quantiles matches very well for all parameter settings.
The estimated type one error rate at nominal levels of α = 0.01 and α = 0.05 are given
in table 4.5 and 4.6, respectively. At level α = 0.05, it seems that the type one error rate
is slightly inflated specially for small sample sizes. Increasing the sample size helps control
the type one error rate at the desired level.

81



Figure 4.9: Gamma distribution, simulation 1, using the variance of the score and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values from goodness-
of-fit test for different parameter settings in each panel: panels (A), (B), and (C) are for
sample size n = 50, and α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F)
are for sample size n = 100, and α = 1, α = 7, and α = 50, respectively. Panels (G), (H),
and (I) are for sample size n = 250, and α = 1, α = 7, and α = 50, respectively.
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Figure 4.10: Gamma distribution, simulation 1, using the variance of the score and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or equal
to 0.1 from goodness-of-fit test for different parameter settings in each panel: panels (A),
(B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50, respectively. Panels
(D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and α = 50, respectively.
Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7, and α = 50,
respectively.

Table 4.5: Gamma distribution, simulation 1, using the variance of the score and an evenly
spaced grid. The estimated type one error rate at level 0.01. Rows are sample size and
columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0195 0.0192 0.0175
n = 100 0.0124 0.0147 0.0123
n = 250 0.0112 0.0108 0.0107
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Table 4.6: Gamma distribution, simulation 1, using the variance of the score and an evenly
spaced grid. The estimated type one error rate at level 0.05. Rows are sample size and
columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0783 0.0764 0.0751
n = 100 0.0605 0.0624 0.0601
n = 250 0.0553 0.0557 0.0492

4.3.2 Simulation 2

In this simulation, the Fisher information matrix is estimated by the negative of the observed
Hessian matrix. The covariance function of the empirical process is estimated over a grid
of n equally spaced points over [0,1] (i.e m = n) interval as described in Section 3.5. Figure
4.11 shows the Q-Q plot of the obtained P-value from goodness-of-fit test in each simulation
setting. The x and y-axes in all panels are the theoretical quantiles of Uniform distribution
and sample quantiles of P-values, respectively. The figure is arranged so that each row
belongs to a different sample size and each column represents a parameter setting. The
results of each shape parameter of α = 1, α = 7, and α = 50 are arranged in first, second,
and third columns, respectively. We can clearly see that the sample quantiles matches very
well with the theoretical ones. Figure 4.12 depicts the Q-Q plot of P-values less than or
equal 0.10. For these P-values, the sample quantiles are larger than the theoretical values,
as there is an obvious curve in the case of n = 50. This seems to improve a bit as sample
size increases to n = 100 and much better as sample size reaches n = 250. Table 4.7 shows
the estimated type one error rate at level 0.01 for each of the parameter settings. For all
simulation settings, the type one error rate is below the desired level. The conclusion remains
the same at level 0.05 as shown in Table 4.8. This observation persuaded us not to use the
Hessian matrix to estimate Fisher information matrix.
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Figure 4.11: Gamma distribution, simulation 2. Theoretical quantiles vs sample quantiles
of obtained P-values from goodness-of-fit test for different parameter settings in each panel:
panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50,
respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and
α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7,
and α = 50, respectively.
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Figure 4.12: Gamma distribution, simulation 2, using the negative Hessian and an evenly
spaced grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or
equal to 0.1 from goodness-of-fit test for different parameter settings in each panel: panels
(A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50, respectively.
Panels (D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and α = 50,
respectively. Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7, and
α = 50, respectively.

Table 4.7: Gamma distribution, simulation 2, using the negative Hessian and an evenly
spaced grid. The estimated type one error rate at level 0.01. Rows are sample size and
columns are shape parameter.

α = 1 α = 7 α = 50
n = 50 0.0043 0.0055 0.006
n = 100 0.0061 0.0065 0.0042
n = 250 0.0060 0.0068 0.0085
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Table 4.8: Gamma distribution, simulation 2, using the negative Hessian and an evenly
spaced grid. The estimated type one error rate at level 0.05. Rows are sample size and
columns are shape parameter.

α = 1 α = 7 α = 50
n = 50 0.0325 0.0329 0.0348
n = 100 0.0393 0.0386 0.0341
n = 250 0.0436 0.0461 0.0461

4.3.3 Simulation 3

In this simulation, the Fisher information matrix is estimated by the variance of the score
function. The covariance of the empirical process is calculated by probability integral trans-
formed (PIT) values as described in Section 3.5. Figure 4.13 shows the Q-Q plot of all
P-values. The x and y-axes in all panels are the theoretical quantiles of Uniform distri-
bution and quantiles of the sample, respectively. The figure is arranged so that each row
belongs to a different sample size and each column represents a parameter setting. The
results of each shape parameter of α = 1, α = 7, and α = 50 are arranged in first, second,
and third columns, respectively. As we can see, the sample quantile matches very well with
theoretical quantiles for any simulation settings. The conclusion remains the same for P-
values that are less or equal than 0.10 as shown in figure 4.14. Table 4.9 shows the estimated
type one error rate at level 0.01 for each of the parameter settings. It seems that the type of
error rate is well controlled at level α = 0.01. The estimated type one error rate at level 0.05
seems to be a bit inflated for n = 50 as we can see in table 4.10. It seems that increasing
sample size to n = 100 and n = 250 controls the type one rate error at the desired level.
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Figure 4.13: Gamma distribution, simulation 3. Theoretical quantiles vs sample quantiles
of obtained P-values from goodness-of-fit test for different parameter settings in each panel:
panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50,
respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and
α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7,
and α = 50, respectively.
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Figure 4.14: Gamma distribution, simulation 3. Theoretical quantiles vs sample quantiles of
obtained P-values less than or equal to 0.1 from goodness-of-fit test for different parameter
settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1,
α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100, and
α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250,
and α = 1, α = 7, and α = 50, respectively.

Table 4.9: Gamma distribution, simulation 3. The estimated type one error rate at level
0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0144 0.0117 0.0130
n = 100 0.0137 0.0107 0.0131
n = 250 0.0103 0.0103 0.0125
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Table 4.10: Gamma distribution, simulation 3. The estimated type one error rate at level
0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0618 0.0619 0.0559
n = 100 0.0588 0.0529 0.0610
n = 250 0.0505 0.0492 0.0549

4.3.4 Simulation 4

In this simulation, the Fisher information matrix is estimated by the observed Hessian
matrix. To compute the matrix Q and estimate eigenvalues, we used the probability integral
transformed (PIT) values as described in Section 3.5. Figure 4.15 shows the Q-Q plot of
all P-values and 4.16 shows the Q-Q plot of P-values less than or equal to 0.10. The x and
y-axes in all panels are the theoretical quantiles of Uniform distribution and quantiles of
the sample, respectively. Both figures are arranged so that each row belongs to a different
sample size and each column represents a parameter setting. The results of each shape
parameter of α = 1, α = 7, and α = 50 are arranged in first, second, and third columns,
respectively. The sample quantiles matches very well with the theoretical quantiles and the
match gets better as the sample size increases from n = 50 to n = 250. Tables 4.11 and
4.12 presents the estimated type-one error rates at nominal levels of α = 0.01 and α = 0.05,
respectively. The type one error rate seems to be controlled at the desired levels.
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Figure 4.15: Gamma distribution, simulation 4, using the negative Hessian and the PITs for
the grid. Theoretical quantiles vs sample quantiles of obtained P-values from goodness-of-fit
test for different parameter settings in each panel: panels (A), (B), and (C) are for sample
size n = 50, and α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for
sample size n = 100, and α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I)
are for sample size n = 250, and α = 1, α = 7, and α = 50, respectively.
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Figure 4.16: Gamma distribution, simulation 4, using the negative Hessian and the PITs for
the grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or equal
to 0.1 from goodness-of-fit test for different parameter settings in each panel: panels (A),
(B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50, respectively. Panels
(D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and α = 50, respectively.
Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7, and α = 50,
respectively.

Table 4.11: Gamma distribution, simulation 4, using the negative Hessian and the PITs for
the grid. The estimated type one error rate at level 0.01. Rows are sample size and columns
are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0020 0.0022 0.0029
n = 100 0.0048 0.0047 0.0056
n = 250 0.0063 0.0075 0.0071
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Table 4.12: Gamma distribution, simulation 4, using the negative Hessian and the PITs for
the grid. The estimated type one error rate at level 0.05. Rows are sample size and columns
are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0221 0.0226 0.0266
n = 100 0.0354 0.0330 0.0320
n = 250 0.0417 0.0429 0.0441

The results of the simulations for Gamma example suggest a similar strategy to the
Normal example: We recommend using the PIT values as a grid over interval [0,1] with
quadrature weights of wi = 1

n , and estimating the Fisher information matrix by the variance
of score. The test demonstrate an excellent performance for sample sizes as low as n = 50
at both significance levels of α = 0.01 and α = 0.05.

4.4 Linear models

In this section, we show the results of one simulation for a linear model with a normal
assumption for error terms. We considered the data generating model y = Xβ + e where
βT = (0.5,−1.34) is the vector of coefficients (including intercept), X is a design matrix with
n rows and 2 columns, and e is the error terms. (As discussed below the null distribution
of our test statistic does not depend on the actual parameter values.) In each Monte Carlo
sample, the values of the design matrix and error terms are randomly generated from a
standard normal distribution with mean zero and standard deviation of one but the vector
of coefficients is kept constant between samples.

In view of the results obtained in the i.i.d. sampling examples we did not use a uniform
grid; instead we used the probability integral transformed (PIT) values as a grid to compute
the Q matrix, as described in Section 3.5.

As we described in Section 3.9, the limiting covariance function does not depend on
the values of X, β, and on the choice of mean and standard deviation for the error terms.
We applied the goodness-of-fit test to assess the normality of residuals in this model. We
considered sample sizes n = 50, n = 100, and n = 250. Relying again on the univariate
results the Fisher information matrix is here estimated by the variance of the score function
obtained from the sample. We generated 10,000 Monte Carlo samples.

Figure 4.17 shows the theoretical quantiles vs the sample quantiles of all P-values re-
sulted from goodness-of-fit test. For sample size of n = 50, the P-values seem to be uniformly
distributed under the null hypothesis. There is a bit of departure from the straight line but
the general performance seems fine. As the sample sizes increases, we can clearly see that
the points get closer to the straight line. Figure 4.18 shows the theoretical quantiles vs the
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sample quantiles of P-values that are less than or equal to 0.10, resulted from goodness-
of-fit test. The results clearly suggests that, regardless of sample size, both theoretical and
sample quantiles matches very well.

Table 4.13 presents the estimated type one error rate based on 10,000 Monte Carlo
sample studies at two nominal levels of α = 0.01 and α = 0.05. The colums of this table
shows the estimated values for each sample size. As we can see, for sample size n = 50 the
values are a bit inflated specially for α = 0.05. However, increasing the sample size seems
to properly control the type one error rate at the desired level.

Figure 4.17: Simulation studies, linear models. Theoretical quantiles vs sample quantiles of
obtained P-values from goodness-of-fit test for different sample sizes: panels (A), (B), and
(C) are for sample size n = 50, n = 100, n = 250, respectively.

Figure 4.18: Simulation studies, linear models. Theoretical quantiles vs sample quantiles of
P-values less than or equal to 0.10 from goodness-of-fit test for different sample sizes: panels
(A), (B), and (C) are for sample size n = 50, n = 100, n = 250, respectively. The plot shows
P-values less than 0.10 only.
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Table 4.13: Simulation studies, linear models. The estimated type one error rate at level
α = 0.01 and α = 0.05 for different sample sizes. The rows and the columns are nominal
type-one error rate (1 and 5 percent) and sample sizes, respectively. The values in the cells
are the estimated type one error rates based on 10,000 Monte Carlo samples.

n= 50 n =100 n = 250
α = 0.01 0.0141 0.0118 0.0110
α = 0.05 0.0634 0.0557 0.0543

4.5 Generalized linear model

In this section, we extend our simulations to a more general case and consider Gamma
regression in the class of generalized linear models with two popular link functions, 1) log
and 2) inverse. We test the null hypothesis that the response variable follows a Gamma
distribution. We show the results from five different simulations.

In the first four simulations, we consider a generalized linear model with a log link
function and one explanatory variable, i.e log(µ) = β0 + β1X where µ = E(Y |X). We keep
the value of the intercept constant at β0 = 0.56 in all four simulations. Each simulation uses
a different value os β1 to investigate any effect of the slope. The value of X was generated
from a Uniform distribution over the interval [0,1]. The response variable was generated by
Y = eβ0+β1X × e, where e is the error term that follows a Gamma distribution with shape
parameter α and scale value of one.

In the last simulation, we consider a generalized linear model with more explanatory
variables. In this setting, we consider an inverse link function, i.e. µ = 1

Xβ . The values of
β vector are generated from a Uniform distribution over the interval [0.5,1.5]. The values
of the X matrix are generated from a normal distribution with a mean of 2 and standard
deviation of 0.1 to ensure the values of µ are positive. The error terms of the model are
generated as before.

In all simulations, we considered different values for the shape parameter, α = 1, α = 7,
and α = 50, and different sample sizes, n = 50, n = 100, and n = 250. We generated
10,000 Monte Carlo samples for each parameter setting. The Fisher information matrix
was estimated by the score function. We estimated the covariance function of the empirical
process by probability inverse transformed values. In all of the simulations below, we used
the probability integral transformed (PIT) values to compute matrix Q, as described in
Section 3.5.
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4.5.1 Simulation 1

In this simulation, we set the intercept β0 = 0.56 and slope β1 = −1.3. Figure 4.19 shows the
Q-Q plot of the P-values obtained from our goodness-of-fit test in each simulation setting.
The x and y-axes in all panels are the theoretical quantiles of Uniform distribution and
quantiles of the sample, respectively. The figure is arranged in the same way as before,
where each row belongs to a different sample size and each column represents a parameter
setting. The results of each shape parameter of α = 1, α = 7, and α = 50 are arranged in
first, second, and third columns, respectively.

We can see that the sample quantiles correspond very well with the corresponding
theoretical values as sample size increases from n = 50 to n = 250. We also look at Q-
Q plot of smaller P-value to get a better insight into the performance of the method. Figure
4.20 shows the Q-Q plot of P-values less than or equal to 0.10. The x and y-axes in all
panels are the theoretical quantiles of Uniform distribution and quantiles of the sample,
respectively. The figure is arranged in the same way as previous figures. As we can see,
theoretical and sample quantiles corresponds very well for all parameter settings.

We estimate the type-one error rate at levels of α = 0.01 and α = 0.05 in Table 4.14
and Table 4.15, respectively. The level of the test is well controlled at level α = 0.01 but
inflated at level of α = 0.05. But increasing the sample size from n = 50 to n = 250 seems
to control the level of the test. Note that when comparing this to the case of i.i.d. Gamma,
the type-one error rate in that simulation is controlled, regardless of the sample size.
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Figure 4.19: Generalized linear model, simulation 1. Theoretical quantiles vs sample quan-
tiles of obtained P-values from goodness-of-fit test for different parameter settings in each
panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50,
respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and
α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7,
and α = 50, respectively.
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Figure 4.20: Generalized linear model, simulation 1. Theoretical quantiles vs sample quan-
tiles of obtained P-values less than or equal to 0.1 from goodness-of-fit test for different
parameter settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and
α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100,
and α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size
n = 250, and α = 1, α = 7, and α = 50, respectively.

Table 4.14: Generalized linear model, simulation 1. The estimated type one error rate at
level 0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0192 0.0164 0.0150
n = 100 0.0154 0.0142 0.0140
n = 250 0.0104 0.0127 0.0124
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Table 4.15: Generalized linear model, simulation 1. The estimated type one error rate at
level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0767 0.0640 0.0669
n = 100 0.0615 0.0607 0.0604
n = 250 0.0520 0.0552 0.0539

4.5.2 Simulation 2

We keep the value of the intercept β0 = 0.56 – the same as in simulation 1. We increase
the slope to β1 = 2.1. Figure 4.21 shows the Q-Q plot of the all obtained P-value from
goodness-of-fit test in each simulation setting. Figure 4.22 shows the Q-Q plot of P-values
less than or equal to 0.10. The x and y-axes in all panels are the theoretical quantiles of
Uniform distribution and quantiles of the sample, respectively. The figure is arranged in
the same way as before, where each row belongs to a different sample size and each column
represents a parameter setting. The results of each shape parameter of α = 1, α = 7, and
α = 50 are arranged in first, second, and third columns, respectively.

We can see that the sample quantiles correspond very well with the corresponding
theoretical values as sample size increases from n = 50 to n = 250. Table 4.16 and Table 4.17
shows the estimated type-one error rate. The conclusion remains the same as simulation 1.
The level of the test is well controlled at α = 0.01 and a bit inflated at level α = 0.05 and
improves by increasing the sample size.
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Figure 4.21: Generalized linear model, simulation 2. Theoretical quantiles vs sample quan-
tiles of obtained P-values from goodness-of-fit test for different parameter settings in each
panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50,
respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and
α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7,
and α = 50, respectively.

100



Figure 4.22: Generalized linear model, simulation 2. Theoretical quantiles vs sample quan-
tiles of obtained P-values less than or equal to 0.1 from goodness-of-fit test for different
parameter settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and
α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100,
and α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size
n = 250, and α = 1, α = 7, and α = 50, respectively.

Table 4.16: Generalized linear model, simulation 2. The estimated type one error rate at
level 0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0177 0.0136 0.0173
n = 100 0.0149 0.0152 0.0131
n = 250 0.0116 0.0109 0.0124
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Table 4.17: Generalized linear model, simulation 2. The estimated type one error rate at
level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0718 0.0654 0.0689
n = 100 0.0640 0.0580 0.0590
n = 250 0.0560 0.0523 0.0578

4.5.3 Simulation 3

For this simulation, we keep the value of intercept (β0 = 0.56) the same as the previous
simulations. We change the value of the slope to β1 = −2.6. Figure 4.23 shows the Q-Q
plot of all P-value from goodness-of-fit test in each simulation setting. Figure 4.24 shows
the Q-Q plot of P-values less than or equal to 0.10. The x and y-axes in all panels are the
theoretical quantiles of Uniform distribution and quantiles of the sample, respectively. The
figure is arranged in the same way as before, where each row belongs to a different sample
size and each column represents a parameter setting. The results of each shape parameter
of α = 1, α = 7, and α = 50 are arranged in first, second, and third columns, respectively.

We can see that the sample quantiles correspond very well with the corresponding
theoretical values as sample size increases from n = 50 to n = 250. Table 4.18 and Table
4.19 shows the estimated type-one error rate at different levels of α = 0.01 and α = 0.05,
respectively.
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Figure 4.23: Generalized linear model, simulation 3, using the variance of the score and
the PITs for the grid. Theoretical quantiles vs sample quantiles of obtained P-values from
goodness-of-fit test for different parameter settings in each panel: panels (A), (B), and (C)
are for sample size n = 50, and α = 1, α = 7, and α = 50, respectively. Panels (D), (E),
and (F) are for sample size n = 100, and α = 1, α = 7, and α = 50, respectively. Panels
(G), (H), and (I) are for sample size n = 250, and α = 1, α = 7, and α = 50, respectively.
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Figure 4.24: Generalized linear model, simulation 3, using the variance of the score and the
PITs for the grid. Theoretical quantiles vs sample quantiles of obtained P-values less than or
equal to 0.1 from goodness-of-fit test for different parameter settings in each panel: panels
(A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and α = 50, respectively.
Panels (D), (E), and (F) are for sample size n = 100, and α = 1, α = 7, and α = 50,
respectively. Panels (G), (H), and (I) are for sample size n = 250, and α = 1, α = 7, and
α = 50, respectively.

Table 4.18: Generalized linear model, simulation 3, using the variance of the score and the
PITs for the grid. The estimated type one error rate at level 0.01. Rows are sample size and
columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0193 0.0154 0.0149
n = 100 0.0156 0.0142 0.0141
n = 250 0.0123 0.0102 0.0114
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Table 4.19: Generalized linear model, simulation 3. The estimated type one error rate at
level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0728 0.0640 0.0604
n = 100 0.0649 0.0597 0.0559
n = 250 0.0561 0.0524 0.0529

4.5.4 Simulation 4

In this simulation, we kept the value of intercept the same as β0 = 0.56 and considered
a more negative slope, β1 = −5. Figure 4.25 shows the Q-Q plot of all P-values from the
goodness-of-fit test in each simulation setting. Figure 4.26 shows the Q-Q plot of P-values
less than or equal to 0.10. The x and y-axes in all panels are the theoretical quantiles of
Uniform distribution and quantiles of the sample, respectively. The figure is arranged in
the same way as before, where each row belongs to a different sample size and each column
represents a parameter setting. The results of each shape parameter of α = 1, α = 7, and
α = 50 are arranged in first, second, and third columns, respectively.

We can see that the sample quantiles correspond very well with the corresponding
theoretical values as sample size increases from n = 50 to n = 250. Table 4.20 and Table
4.21 shows the estimated type-one error rate at different levels of α = 0.01 and α = 0.05,
respectively.
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Figure 4.25: Generalized linear model, simulation 4. Theoretical quantiles vs sample quan-
tiles of P-values obtained from the goodness-of-fit test for different parameter settings in
each panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and
α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1,
α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and
α = 1, α = 7, and α = 50, respectively.
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Figure 4.26: Generalized linear model, simulation 4. Theoretical quantiles vs sample quan-
tiles of P-values less than or equal to 0.1 from the goodness-of-fit test for different parameter
settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1,
α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100, and
α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250,
and α = 1, α = 7, and α = 50, respectively.

Table 4.20: Generalized linear model, simulation 4. The estimated type one error rate at
level 0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0183 0.0170 0.0144
n = 100 0.0160 0.0127 0.0125
n = 250 0.0116 0.0129 0.0121
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Table 4.21: Generalized linear model, simulation 4. The estimated type one error rate at
level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0730 0.0708 0.0620
n = 100 0.0611 0.0538 0.0542
n = 250 0.0563 0.0580 0.0521

4.5.5 Simulation 5

In this simulation, we extend our model to include more explanatory variables. As noted
at the beginning of the section, we generated the data based on a generalized linear model
with an inverse link function. The values of β and design matrix X were chosen to ensure
the value of µ = 1

Xβ is positive. The number of explanatory variables in this simulation
was k = 2, 3, 4, 5, 10 but we only show the results for k = 2, 5, 10. However, the conclusion
remains the same.

Number of explanatory variables = 2

Figure 4.27 shows the Q-Q plot of all P-value from goodness-of-fit test in each simulation
setting. Figure 4.28 shows the Q-Q plot of P-values less than or equal to 0.10. The x and
y-axes in all panels are the theoretical quantiles of Uniform distribution and quantiles of
the sample, respectively. The figure is arranged in the same way as before, where each row
belongs to a different sample size and each column represents a parameter setting. The
results of each shape parameter of α = 1, α = 7, and α = 50 are arranged in first, second,
and third columns, respectively.
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Figure 4.27: Generalized linear model, simulation 5, k=2. Theoretical quantiles vs sample
quantiles of obtained P-values from goodness-of-fit test for different parameter settings in
each panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and
α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1,
α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and
α = 1, α = 7, and α = 50, respectively.
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Figure 4.28: Generalized linear model, simulation 5, k=2. Theoretical quantiles vs sample
quantiles of obtained P-values less than or equal to 0.1 from goodness-of-fit test for different
parameter settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and
α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100,
and α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size
n = 250, and α = 1, α = 7, and α = 50, respectively.

Table 4.22: Generalized linear model, simulation 5, k = 2. The estimated type one error
rate at level 0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0207 0.0165 0.0165
n = 100 0.0155 0.0149 0.0144
n = 250 0.0124 0.0129 0.0144
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Table 4.23: Generalized linear model, simulation 5, k = 2. The estimated type one error
rate at level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0808 0.0716 0.0711
n = 100 0.0679 0.0620 0.0598
n = 250 0.0558 0.0540 0.0534

Number of explanatory variables = 5

Figure 4.29 shows the Q-Q plot of all P-value from goodness-of-fit test in each simulation
setting. Figure 4.30 shows the Q-Q plot of P-values less than or equal to 0.10. The x and
y-axes in all panels are the theoretical quantiles of Uniform distribution and quantiles of
the sample, respectively. The figure is arranged in the same way as before, where each row
belongs to a different sample size and each column represents a parameter setting. The
results of each shape parameter of α = 1, α = 7, and α = 50 are arranged in first, second,
and third columns, respectively.
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Figure 4.29: Generalized linear model, simulation 5, k=5. Theoretical quantiles vs sample
quantiles of obtained P-values from goodness-of-fit test for different parameter settings in
each panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and
α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1,
α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and
α = 1, α = 7, and α = 50, respectively.
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Figure 4.30: Generalized linear model, simulation 5, k=5. Theoretical quantiles vs sample
quantiles of obtained P-values less than or equal to 0.1 from goodness-of-fit test for different
parameter settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and
α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100,
and α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size
n = 250, and α = 1, α = 7, and α = 50, respectively.

Table 4.24: Generalized linear model, simulation 5, k = 5. The estimated type one error
rate at level 0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0372 0.0278 0.0265
n = 100 0.0263 0.0179 0.0163
n = 250 0.0133 0.0130 0.0140
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Table 4.25: Generalized linear model, simulation 5, k = 5. The estimated type one error
rate at level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.1192 0.1001 0.0938
n = 100 0.0876 0.0749 0.0695
n = 250 0.0633 0.0528 0.0576

Number of explanatory variables = 10

Figure 4.31 shows the Q-Q plot of all P-values from goodness-of-fit test in each simulation
setting. Figure 4.32 shows the Q-Q plot of P-values less than or equal to 0.10. The x and
y-axes in all panels are the theoretical quantiles of Uniform distribution and quantiles of
the sample, respectively. The figure is arranged in the same way as before, where each row
belongs to a different sample size and each column represents a parameter setting. The
results of each shape parameter of α = 1, α = 7, and α = 50 are arranged in first, second,
and third columns, respectively.

In Figure 4.31, a noticeable disagreement between theoretical and sample quantiles is
observed, particularly for sample sizes of n = 50 and n = 100, regardless of the chosen value
for the shape parameter. This disagreement persists for n = 250 and a shape parameter
of one. However, for n = 250 and larger shape values, there is a slight improvement. For
P-values less than 0.10 in Figure 4.32, we also observe a discrepancy between sample and
theoretical quantiles for values of n = 50 and n = 100. But increasing the sample size to
n = 250 resolves the issue. Table 4.26 and Table 4.27 present the estimated type-one error
rates at the significance levels of α = 0.01 and α = 0.05, respectively. It is evident that the
type-one error rate is not adequately controlled in this simulation at either level. Increasing
the sample size from n = 50 to n = 100 does not appear to improve the control of the
type-one error rate. Only for a large shape value, such as α = 50, is the type-one error rate
slightly inflated when the sample size is n = 250. Overall, in the case of ten explanatory
variables, we observe poor performance.
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Figure 4.31: Generalized linear model, simulation 5, k=10. Theoretical quantiles vs sample
quantiles of obtained P-values from goodness-of-fit test for different parameter settings in
each panel: panels (A), (B), and (C) are for sample size n = 50, and α = 1, α = 7, and
α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100, and α = 1,
α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size n = 250, and
α = 1, α = 7, and α = 50, respectively.
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Figure 4.32: Generalized linear model, simulation 5, k=10. Theoretical quantiles vs sample
quantiles of obtained P-values less than or equal to 0.1 from goodness-of-fit test for different
parameter settings in each panel: panels (A), (B), and (C) are for sample size n = 50, and
α = 1, α = 7, and α = 50, respectively. Panels (D), (E), and (F) are for sample size n = 100,
and α = 1, α = 7, and α = 50, respectively. Panels (G), (H), and (I) are for sample size
n = 250, and α = 1, α = 7, and α = 50, respectively.

Table 4.26: Generalized linear model, simulation 5, k = 10. The estimated type one error
rate at level 0.01. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.0899 0.0528 0.0490
n = 100 0.0444 0.0295 0.0272
n = 250 0.0196 0.0153 0.0152
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Table 4.27: Generalized linear model, simulation 5, k = 10. The estimated type one error
rate at level 0.05. Rows are sample size and columns are shape parameters.

α = 1 α = 7 α = 50
n = 50 0.2225 0.1594 0.1443
n = 100 0.1318 0.1008 0.0986
n = 250 0.0770 0.0679 0.0619

4.6 Real data example

In this section, we demonstrate the application of the proposed goodness-of-fit test by using
publicly available empirical data as an illustrative example. We have chosen the third-party
motor insurance claims from Sweden in 1977 as our sample data set; this data is conveniently
available in the faraway package in R. The dataset comprises 1797 observations across 8
distinct variables as follows [56]:

• Kilometres is a categorical variable that quantifies the annual mileage of a vehicle
(in km) and has five discrete levels. Level 1 represents vehicles with less than 1000
km, level 2 covers the range of 1000-15,000 km, level 3 corresponds to 15,000-20,000
km, level 4 pertains to the range of 20,000-25,000 km, and level 5 comprises vehicles
with a mileage exceeding 25,000 kilometers.

• Zone is a categorical variable that represents the geographical area of the vehicle.
There are seven distinct levels including level 1: Stockholm, Goteborg, Malmo with
surroundings area; 2: Other large cities with surroundings; 3: Smaller cities with sur-
roundings in southern Sweden; 4: Rural areas in southern Sweden; 5: Smaller cities
with surroundings in northern Sweden; 6: Rural areas in northern Sweden; 7: Gotland.

• Bonus represents the number of years that have elapsed since the last claim, plus one.

• Make categorizes car models into nine different levels, with levels 1-8 representing
common cars and level 9 representing any other model.

• Insured is the number of insured in policy-years.

• Claims shows the number of insurance claims.

• Payment represents the total value of payments in Swedish Kronor.

• perd is the payment per claim which is Payment divided by Claims.

117



The insurance companies were interested in modeling Payment as the response variable
and investigating its relationship with other explanatory variables in the dataset. This
analysis can help them better understand the factors that influence Payment and identify
any patterns or trends that can improve their decision-making processes. The dataset has
also been studied in different statistical and actuarial science literature and textbooks.
For example, Edward W. Frees in [57] studied this data and fitted a generalized linear
model with a Gamma assumption for the response variable and a log link function. The
systematic component of the model includes Zone, Make, and an offset term for the log
number of claims (Claims). In addition, the online tutorial of the faraway package fits a
Gamma regression model with a logarithmic link function to model the response variable.
The systematic component of the model includes make, bonus, kilometres and an offset
term for logarithmic of Insured. The author of the tutorial applied this model to a dataset
consisting of records from the cities of Stockholm, Goteborg, Malmo, and their surrounding
areas (zone = 1), which contains 295 observations.

We use the data and fitted model presented in the faraway tutorial to illustrate the
application of goodness-of-fit tests for validating the assumptions made about the response
variable. We test the null hypothesis that the response variable of this generalized linear
model follows a Gamma distribution using the proposed method. The Cramer-von-Mises
statistic for this test is W 2

n = 0.2051 with a corresponding approximate pvalue = 0.0052.
The result indicates that we reject the null hypothesis and thus suggests that the response
variable model does not follow a Gamma distribution. The maximum likelihood estimate of
the shape parameter, computed using the gamma.shape function from the MASS package
in R, is 2.053 (with a standard error of 0.157).

If the null hypothesis about the distribution of the response is correct, we expect the
probability integral transformed (PIT) values to be evenly distributed across the interval
[0,1]. We further assess this assumption visually by plotting the PIT values of the sample
versus the expected PIT values under the null hypothesis as shown in figure 4.33 below.
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Figure 4.33: Real data. Probability integral transformed values of response variable vs ex-
pected probability integral transformation values.

Upon visual inspection of the probability integral transformed values, it is apparent that
there is a curvature in the middle section of the plot. The null hypothesis that the response
variable follows a Gamma distribution is rejected with a significant p-value at level α = 0.01
based on the results of the goodness-of-fit test. Both theoretical and visual analysis indicate
that the response variable do not conform to a Gamma distribution assumption. Therefore,
it seems necessary to investigate the model assumptions further.

4.7 Conclusion and future research

In this Chapter, we reviewed results from several simulations and a real data analysis fol-
lowed by some practical suggestions for goodness-of-fit tests based on empirical distribution
functions. We discuss the strengths and limitations of the proposed method, offer recom-
mendations for the application in real data analysis, and outline a future research direction.

4.7.1 Conclusion

We performed four simulations in the case of an i.i.d sample from normal distribution and
four simulations in the case of an i.i.d sample from Gamma distribution. In conclusion, all
simulations demonstrated an excellent performance and successfully controlled the type one
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error rate at both the 0.01 and 0.05 nominal levels. We observed a strong agreement between
the theoretical quantiles and sample quantiles of computed P-values, in particular for ones
that are less than or equal to 0.10. Moreover, we observed that using probability integral
transformed values for estimating the eigenvalues of the covariance function has a clear
advantage over choosing n data points equally spaced over the [0,1] interval. As a result, we
recommend the use of probability integral transformed values; this choice is implemented
in our package discussed in the next chapter. We estimated the Fisher information matrix
by either the variance of the score function or the negative Hessian evaluated at the MLEs.
However, it is important to note that estimating the Fisher information matrix by the
negative Hessian evaluated at the MLEs resulted in a highly conservative test, with P-
values consistently smaller than expected based on theory. We think this happens because
the off-diagonal elements of the Hessian matrix in both normal and gamma examples are
zero and are not the same with their corresponding values from matrix obtained by the
variance of score. As the sample size increased from n = 50 to n = 250, the test was
no longer conservative. Therefore, one should expect a lower chance of rejecting the null
hypothesis when the sample size is small and the Fisher information matrix is computed
using the Hessian matrix.

We also examined the case of a linear model and a generalized linear model in which
the distribution of the response variable may depend on some covariate. For the linear
model case, as demonstrated in Section 3.9, the covariance function of the Ŵn(u) process
does not depend on β, the vector of coefficients. Therefore, we considered only one set
of values for the coefficient vector in our simulations. In this simulation, the type one
error rate is well controlled at both the 0.01 and 0.05 nominal levels, and the proposed
method shows excellent performance. It is worth noting that the type one error rate at a
nominal level of 5 percent, when n = 50, is slightly inflated, but it does not change the final
conclusion. Additionally, the sample quantiles of computed P-values match very well with
their theoretical counterparts.

In the final simulation, we examined a generalized linear model (GLM) with inverse link
function, using various numbers of explanatory variables. When using a GLM with a single
explanatory variable, the sample quantiles closely align with the theoretical quantiles. The
type one error rate is effectively controlled at the 0.01 level, although it is slightly elevated
at the 0.05 level. This tendency is particularly evident for a sample size of n = 50 and
α = 1, but improves for larger sample sizes of n = 100 and n = 250. This conclusion holds
true for all coefficients considered in the model.

Furthermore, we investigated the impact of including additional explanatory variables
into the model. When considering k = 2 explanatory variables, a sample size of n = 50, and
a shape parameter of α = 1, the type one error rate exhibits a slight inflation above 0.01.
But increasing the sample size to n = 100 and n = 250 effectively reduced the type one
error rate, maintaining it at the desired level. In all different scenarios in this simulation,
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the type one error rate is well controlled, with no notable disparity observed between the
theoretical and sample quantiles of the computed p-values.

After adding k = 5 explanatory variables in the model, there is some deviation between
the theoretical and sample quantiles of the computed p-values, particularly for small shape
and sample sizes. Consequently, the type one error rate is slightly inflated at both nominal
levels. However, increasing the sample size to n = 250 seems to help in this case. Finally,
for a model with k = 10 explanatory variables, a significant discrepancy emerges between
the theoretical and sample quantiles of the computed p-values. In this case, the type one
error rate is inflated at both levels when the sample sizes are n = 50 and n = 100. However,
increasing the sample size to n = 250 effectively controls the type one error rate and
maintains it at the desired level.

We think the difficulty arises as a result of poor maximum likelihood estimation of
coefficients in the generalized linear model. In our simulations, we see a significant difference
between the true value that we used for the β vector and the estimated values that we
obtained from the glm package in R. We used the glm2 package in R since some convergence
issues with glm package were reported in the literature [58]. This resolved the convergence
issue but did not help with type one error rate. It is worth mentioning that we also considered
k = 2, 5, 10 explanatory variables in the linear model simulations (results are not shown
in the thesis). The conclusion remains the same as the case of a GLM simulation with
k = 2, 5, 10 explanatory variables.

We applied our proposed goodness-of-fit test, which is based on the empirical distribution
function, to a real data set. We fit a generalized linear model with a log link function and
a Gamma response variable. The results of the test indicated that the assumptions about
the distribution of the response variable do not seem to be true with p = 0.0052, which is
significant at both the 0.01 and 0.05 levels. There were 11 parameters estimated in total in
this model, the sample size was n = 295, and the maximum likelihood estimate of the shape
parameter was α̂ = 2.053. Comparing this with the results of our simulations in the GLM
section, this would be close to simulation 5 with ten explanatory variables. The results from
this simulation indicate that the sample quantiles of p-values match very well with their
theoretical counterparts. The estimated type one error rate is well controlled at the 0.01
level and is somewhere between 0.07 and 0.06 at the 0.05 level. Considering the very small
p-value of the test, visual investigation of probability transformed values, and comparing
the results with the simulation section, we are confident that the assumption about the
distribution of the response variable do not seem to be correct and further investigation is
required.

For all the simulations presented in this thesis, we used wj = 1
m as the quadrature

weight for computing the eigenvalues (as discussed in Section 3.4). We decided to enhance
the results of our simulations for the GLM with five or ten explanatory variables. For
this purpose, we tried quadrature weights of the form wj = (U(j+1) − U(j−1))/2, where
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U(j) = F (Y(j); θ), and we repeated the simulations under the same settings. The results
(not shown here) clearly demonstrate an improvement. Therefore we have included these
weights into our R package (see Chapter 5) for estimating the eigenvalues.

In conclusion, the proposed goodness-of-fit test based on empirical distribution function
has an excellent performance for i.i.d samples from a Normal and Gamma distribution. This
method can also be used for checking the response variable assumptions in a linear model
or generalized linear model. Based on the conclusion from the simulations, it is important
to use a sufficient sample size relative to the number of parameters in the case of GLM.
The performance is affected if the sample size is small and there are too many parameters
in the model. In addition, the accuracy of the maximum likelihood estimates of the linear
model or generalized linear model impacts the performance and accuracy of this method.
In the next section, we introduce two possible idea for the future research.

4.7.2 Future research

We considered an estimation method for the covariance function of the stochastic process in
the context of goodness-of-fit tests based on empirical distribution functions. Our simulation
included two cases: one involving i.i.d. samples, and the other where the response variable
depends on some covariates. Our simulation specifically focused on continuous data. Fur-
thermore, in our simulations of generalized linear models, we tested the assumptions about
the distribution of the response variable and assumed the correct link function. Based on
the results of our simulations, there are two areas of interest for future investigation.

First, it would be interesting to apply the method of estimating the covariance function
to a sample with discrete data. The problem of the goodness-of-fit test for discrete data
has been reviewed in the literature, and authors have suggested different methods. For
example, the classic Pearson chi-square test and Kolmogorov-Smirnov statistic are well-
known examples. Choulakian et al. [59] defined the Cramér-von-Mises and Anderson-Darling
statistics for discrete data and studied the asymptotic theory, where the distribution under
the null hypothesis is fully specified. Lockhart et al. [60] extended this work and included
the asymptotic theory where the distribution under the null hypothesis is not fully specified,
requiring estimation of some or all parameters. Additionally, Spinelli et al. [61] provided tests
to examine the assumptions about the response variable in a Poisson regression model.

It should be noted that the methods just described do not use the probability integral
transform because that transform does not produce uniformly distributed values. Instead,
in [60], the integral defining the Cramér-von Mises statistic is replaced by a weighted sum
over the possible values of the PIT.

We have not tried our proposal of estimating a covariance function in this context and
the examination of the relevant limiting distribution have not been considered yet. It is
worth noting that the discrete nature of the problem makes it challenging to investigate the
limiting distribution of the covariance function.
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As a second direction, we hope to apply the introduced goodness-of-fit method to check
if the assumption about the link function in any GLM is indeed correct. For example, let
Y1, Y2, Y3, . . . , Yn be a random sample from a population dependent on some covariates. One
might be interested in testing whether the true expected value of Yi, given the covariates Xi,
follows a known function of β and Xi, i.e., m(βTxi). Therefore, the following null hypothesis
is of interest:

H0 : E[Yi|Xi] = m(βTXi)

The idea starts with the definition of:

H(u, β) = E[(Y −m(βTX))I(βTX) ≤ u]

and estimating it with:

Ĥ(u, β̂) = 1
n

n∑
i=1

(
(Yi −m(β̂TXi))I(β̂TXi ≤ u)

)
Now the covariance function of the following stochastic process is of interest:

Wn(u) =
√
n

(
Ĥ(u, β̂) −H(u, β)

)
which could be computed in a similar way by writing the Taylor expansion as described in
Section 3.4 of Chapter 3. The eigenvalues of this covariance function might be estimated to
approximate the P-value.
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Chapter 5

Package gofedf in R

5.1 Overview

We have developed an R package called gofedf to facilitate goodness-of-fit tests based
on empirical distribution functions. This package includes functions and routines for com-
puting p-values for two goodness-of-fit tests: Cramér-con Mises and Anderson-Darling. As
mentioned earlier, the computation of p-values relies on estimating the covariance function
of a stochastic process. Our implementation utilizes the sample-based covariance estima-
tion method described in Section 3.5. The package gofedf offers a small number of tests for
specific distributional assumptions and a suite of functions to handle a wide range of other
models. In particular, there are functions to test independent and identically distributed
samples for the Normal or Gamma distributions. Additionally, gofedf provides tools for
checking the normality assumptions of residuals in linear models and for evaluating whether
the response variable in a generalized linear model follows a Gamma distribution with any
valid link function. The most significant feature of the package is to provide routines for
formal model evaluation in general likelihood models. Section 3.5 describes this feature in
more detail. The package is now published on the CRAN repository and is available for
download [62].

5.2 Main functions in the package

In this section, we briefly review the main functions included in the package. The first and
second section review the functions for testing the hypothesis that a sample is drawn from
a Normal or a Gamma distribution. The next two sections consider linear models with a
Gaussian error assumption and generalized linear models with a Gamma response variable.
In these cases, the assumption is that the expected value of response depends on some
covariates. A more detailed review is available in the vignette page of the package [62].
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5.2.1 Normal distribution

To test an i.i.d. sample against the normal distribution, one can use the testNormal function
in the package. The function requires a vector of numeric values as input. By default, the
probability integral-transformed (PIT) values of the sample are used as a grid to compute
the covariance function. Alternatively, one can define the number of equally spaced points
to be used for computing the covariance function. By default, the variance of the score
function is used to estimate the Fisher information matrix. However, it is also possible to
use the Hessian matrix computed directly from the second partial derivatives. The function
computes the maximum likelihood estimates (MLE) of the mean and standard deviation, as
well as the score function. Finally, it returns the requested statistic, i.e., Cramer-von Mises,
Anderson-Darling, or both statistics, along with the corresponding p-value. The following
lines of code show an example of testing a sample against the Normal distribution by gofedf

package:

> l ibrary ( g o f e d f )

> set . seed (123)
> simdata = rnorm(n = 50)

> testNormal ( x = simdata , method = ’ both ’ )

$ S t a t i s t i c s
Cramer−von−Mises S t a t i s t i c Anderson−Dar l ing S t a t i s t i c

0 .03781322 0.21797039

$pvalue
pvalue for Cramer−von−Mises t e s t Anderson−Dar l ing t e s t

0 .6766974 0.9426823
>

5.2.2 Gamma distribution

The package can also be used to test an i.i.d sample against Gamma distribution by calling
the function testGamma. This function uses the function gamma.shape from the MASS
package to compute the maximum likelihood estimate of the shape parameter for the
Gamma distribution [63]. The input requirements for the function are the same as before
and users have control over the estimation of covariance function and Fisher information
matrix. The probability integral-transformed (PIT) values of the sample can be used as a
grid to compute the covariance function. This is the default setting. It is also possible to
define the number of equally spaced points to be used for computing the covariance func-
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tion. In addition, Fisher information can be estimated by the variance of the score (default
value) or Hessian matrix. The following code gives an example of testing a sample against
the Gamma distribution by gofedf package:

> l ibrary ( g o f e d f )

> set . seed (123)
> simdata = rgamma(n = 50 , shape = 1)

> testGamma( x = simdata , method = ’ both ’ )
$ S t a t i s t i c s
Cramer−von−Mises S t a t i s t i c Anderson−Dar l ing S t a t i s t i c

0 .03313641 0.20812957

$pvalue
pvalue for Cramer−von−Mises t e s t Anderson−Dar l ing t e s t

0 .7367917 0.6732966
>

5.2.3 Linear models

The gofedf package can also be used when the expected value of each observation depends
on covariates. In the first example, we consider a linear model with constant variance and
normal error assumptions. The main function for this case is testLMNormal which can be
used to test the normality assumption. You can provide a matrix of covariates, where rows
represent observations and columns represent explanatory variables. Alternatively, you can
pass an object of class "linear model" for convenience, typically returned by the function
lm in R. If you choose to use the latter option, make sure to set the x and y arguments
to TRUE in the lm function to return the design matrix and response variable. The other
arguments to the function remain the same as previous examples.

In the following example, we begin by randomly generating a set of coefficients, a matrix
containing explanatory variables, and some error terms from a standard Normal distribu-
tion. The response variable is computed accordingly, and then we apply the testLMNormal
function.

> l ibrary ( g o f e d f )
> set . seed (123)
> n = 50
> p = 5
> b = runif (p)
> X = matrix ( runif (n∗p ) , nrow = n , ncol = p)
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> e = rnorm(n)
> y = X %∗% b + e
>
> testLMNormal ( x = X, y , method = ’cvm ’ )

$ S t a t i s t i c
[ 1 ] 0 .02285164

$pvalue
[ 1 ] 0 .9089065

>
> lm . f i t = lm( y ~ X, x = TRUE, y = TRUE)
> testLMNormal ( f i t = lm . f i t , method = ’cvm ’ )
$ S t a t i s t i c
[ 1 ] 0 .02285164

$pvalue
[ 1 ] 0 .9089065

>

5.2.4 Generalized linear models

The second example involves a generalized linear model with a Gamma response variable.
The package is designed to assess assumptions related to the response variable. Currently,
it supports only the Gamma distribution, but we have plans to include more common
distributions in future versions.

In this case, the main function is testGLMGamma(), which takes arguments we now
describe. Similar to the linear model example, you can provide either a matrix containing
explanatory variables and a response vector, or an object of class generalized linear model
returned from the glm or glm2 function. If you choose the latter option, the requirement to
return the design matrix and response variable remains the same.

The "l" argument is a character vector that indicates the link function to be used. For
the Gamma distribution, valid choices are ’log’ and ’inverse’ link functions. The ’start.value’
parameter serves as the starting point for the glm or glm2 functions. This value is crucial
for the iteratively reweighted least squares (IRLS) algorithm, which is used to compute the
maximum likelihood coefficients. We also need to estimate shape parameter. In the code,
the MLE of shape parameter is estimated by gamma.shape function from MASS package.
The other arguments for the function are the same as in previous examples.

> l ibrary ( g o f e d f )
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> l ibrary ( glm2 )
> set . seed (123)
> n = 50
> p = 5
> X = matrix (rnorm(n∗p , mean = 10 , sd = 0 . 1 ) , nrow = n , ncol = p)
> b = runif (p)
> e = rgamma(n , shape = 3)
> y = exp(X %∗% b) ∗ e
> testGLMGamma( x=X, y , l = ’ l og ’ , method = ’cvm ’ )
$ S t a t i s t i c
[ 1 ] 0 .0870493

$pvalue
[ 1 ] 0 .1896532

$converged
[ 1 ] TRUE

>
> glm . f i t <− glm2 ( y ~ X, family=Gamma( l ink = ’ log ’ ) ,
x=TRUE, y=TRUE)
> testGLMGamma( f i t = glm . f i t , l = ’ l og ’ )
$ S t a t i s t i c
[ 1 ] 0 .0870493

$pvalue
[ 1 ] 0 .1896532

$converged
[ 1 ] TRUE

During our simulation study in Chapter 4 and while fitting the model using the glm func-
tion from the R stats package, we encountered convergence difficulties with the iteratively
reweighted least squares (IRLS) algorithm in some Monte Carlo samples. Specifically, our
examination showed that the problem arose during the optimization step when step-halving
should have been invoked but was not. Consequently, the algorithm produced negative val-
ues for the linear predictor, leading to a failure in the convergence. To address this issue,
we considered using the glm2 function from the glm2 package [58] for computing the max-
imum likelihood estimation of model coefficients. The estimation process in glm2 is similar
to that of the glm function in the R stats package but includes modifications to ensure
greater stability in convergence. This includes employing a more rigorous step-halving than
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that found in the glm function to ensure that the deviance decreases during each iteration.
Further details about this algorithm can be found in [58]. While we cannot give strong
advice about the choice of starting values with real data we were able to give good starting
values in our simulation by use of the true parameter values.

5.3 Example: Inverse Gaussian Distribution

In addition to the functions mentioned in the previous sections, the package can be applied
to conduct goodness-of-fit tests based on empirical distribution function statistics for any
general likelihood model. The models considered will have independent but not necessarily
identically distributed variables Y1, . . . , Yn and a p-dimensional parameter vector. The only
requirements for users to supply are as follows: (i) a function to compute the maximum
likelihood estimate of the parameters (ii) a function to compute the probability integral
transformed (PIT) values of the responses (iii) a function that calculates the matrix S

whose ith row contains the component of the score due to observation Yi.
We provide an example of an inverse Gaussian distribution with constant known weights

to illustrate the concept. Let’s consider a sample of size n drawn from an inverse Gaussian
distribution with constant known weights, denoted as wi, and characterized by the following
probability distribution function:

f(Yi;µ, λ) =
√

λwi

2πY 3
i

exp
(

−λwi(Yi − µ)2

2µ2Yi

)

where wi are constant and known weights. Therefore we can write the likelihood function
as:

L(µ, λ) =
n∏

i=1
f(Yi;µ, λ)

=
(
λ

2π

)n
2
(

n∏
i=1

wi

Y 3
i

) 1
2

exp
(
λ

µ

n∑
i=1

wi − λ

2µ2 − λ

2µ2

n∑
i=1

wiYi − λ

2

n∑
i=1

wi

Yi

)

It is easy to verify that the maximum likelihood estimates of µ and λ are:

µ̂ =
∑n

i=1wiYi∑n
i=1wi

λ̂ = n∑n
i=1(wi

Yi
− wi

µ̂ )

The score is a matrix with n rows and two columns with the following elements:[
−λ
µ2 wi + λ

µ3wiYi
1

2λ + wi
µ − wiYi

2µ2 − wi
2Yi

]
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For illustrative purposes, the package includes functions to compute the maximum likelihood
estimates of parameters (i.e. µ̂ and λ̂), score functions, and PIT values. These functions are
named inversegaussianMLE, inversegaussianScore, and inversegaussianPIT in the package.

The testYourModel function from the package can be used to apply a goodness-of-fit
test based on the empirical distribution function for any general likelihood model. For
instance, in the case of the Inverse Gaussian model we’ve just described, you can apply the
test using the following lines of code. To simulate the data, we randomly generate weights
from a uniform distribution over the interval [5,6], which are then scaled. We also generate a
sample of size n = 50 from an Inverse Gaussian distribution using the statmod package in R.
The mean of the distribution, µ, is set to two. The shape parameter in this case depends on
the weight of each observation. We calculate the Maximum Likelihood Estimates (MLE) of
the model parameters, the score matrix, and Probability Integral Transform (PIT) values by
calling their respective functions. Finally, we invoke the testYourModel function to compute
the test statistic and P-value. It’s important to note that the only requirements for this
process are a vector of observations, a score function, and PIT values.

> l ibrary ( g o f e d f )
> set . seed (123)
> n = 50
> weights = runif (n , min = 5 , max = 6)
> weights = weights / sum( weights )
> mio = 2
> lambda = 2
> y = statmod : : r invgaus s (n , mean=mio , shape=lambda∗weights )
> thetahat = inversegaussianMLE ( obs=y , w=weights )
> sco r e . matrix = in ve r s e ga u s s i an Sc o r e ( obs=y , w=weights , mle=thetahat )
> p i t . va lue s = inversegauss ianPIT ( obs=y ,w=weights , mle=thetahat )
> testYourModel ( x = y , p i t = p i t . va lues , s c o r e = sco r e . matrix )
$ S t a t i s t i c
Cramer−von−Mises S t a t i s t i c

0 .03292151

$pvalue
[ 1 ] 0 .8436222

>
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Appendix A

Hybrid simulation

We used the msprime package to simulate sequences and their ancestry. This tool is efficient
for simulating data under various population genetic models and is widely employed in
population-genetic studies. We will now provide a brief description of two fundamental
models that msprime can be used to simulate data from: 1) Wright-Fisher model, and 2)
the standard coalescent theory.

The Wright-Fisher model describes the genetic dynamics in a population with constant
size and non-overlapping generations and random mating. In each generation, individuals
contribute offspring to the next generation through random sampling. For example, the
genes in the next generation choose their parents with a random draw among a pool of 2N
genes from the current generation (2N is used for a haploid population). Therefore, the
probability of two genes having the same parent (coalesce to the same gene) in the previous
generation is 1

2N . In general, the probability that two genes coalesce at generation t in this
model is:

P (T = t) = (1 − 1
2N )t−1 1

2N t = 1, 2, 3, . . .

The standard coalescent theory is a backward-in-time model used in population genetics to
study the common ancestry of gene copies in a sample of individuals. It provides a theoretical
framework for understanding how gene lineages coalesce backward in time until they share a
common ancestor. This model is widely used to investigate the genetic history and diversity
within populations. In standard coalescent theory, time is measured in a continuous scale
instead. The probability that two genes coalesce after generation t in this case is:

P (T > t) =
(

1 − 1
2N

)t

t ≥ 0

For large values of N we can approximate this probability using an exponential distribution
as follows:

P (T > t) = e− t
2N
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Note that the Wright-Fisher model describes the changes in allele frequencies over gen-
erations in a population with random mating, discrete generations, and non-overlapping
generations. On the other hand, the coalescent is a backward-in-time model that focuses on
the common ancestry of a sample of genes within a population. It provides a way to study
how gene lineages coalesce or merge backward in time until they share a common ancestor.

The approximations of coalescent theory break down when the number of simulated se-
quences (sample size) is large relative to the effective population size. In this case, the large-
scale coalescent simulations produce unrealistic relatedness among simulated sequences [9].
For a coalescent with recombination, this produces an overabundance of simulated ances-
tors for each sequence, while this is not the case for Wright-Fishser model. To correct this
and avoid unreasonable relatedness among sequences, there is a hybrid strategy included
in msprime package to use backward discrete Wright-Fisher model to simulate sequences
up to a certain generation back in the time. Then the simulation continues from there by
the standard coalescent with recombination. More details about backward discrete Wright-
Fisher model (refereed to as hybrid simulation) are available at msprime documentation
page and also described in [9].
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Appendix B

Allele frequency spectrum(AFS)

Figure B.1 shows the variant allele frequency spectrum of example dataset.

Figure B.1: Variant allele frequency spectrum of the example dataset.
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Appendix C

Causal variant selection

The disease-trait model specifies that logit(P (D = 1|G)) = β0 + β1
∑m

j=1Gj so that

P (D = 1|G) =


exp(β0)

1+exp(β0) ,
∑m

j=1Gj = 0
exp(β0+β1)

1+exp(β0+β1) ,
∑m

j=1Gj = 1.

As the cSNVs are rare, we make the simplifying assumption that each individual carries at
most one copy of a cSNV. Then the population prevalence of the disease is

P (D) ≈ P (D|
m∑

j=1
Gj = 0)P (

m∑
j=1

Gj = 0) + P (D|
m∑

j=1
Gj = 1)P (

m∑
j=1

Gj = 1).

Setting the prevalence to 0.05, we obtain

0.05 ≈ exp(β0)
1 + exp(β0) × N0

3100 + exp(β0 + β1)
1 + exp(β0 + β1) × N1

3100 ,

where N0 and N1 are respectively the number of individuals in the population that carry
zero and one copy of a cSNV.

Setting β0 = −10, β1 = 16 and N1 = 3100 − N0, we obtain N0 ≈ 2945 and N1 ≈ 155. We
select 15 variants of roughly equal frequency in the population such that their total number
of copies is around 155. Thus each cSNV has a frequency of about 155/15 = 10.33 in the
population of 6200 sequences. We also have N0 + N1 = 3100 so we may solve for N0 and
N1 to get N1 ≈ 155, and N0 ≈ 2945. We select 15 variants of roughly equal frequency in
the population such that their total number of copies is around 155.
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Appendix D

Sequence distances on partition

Figure D.1 shows an example partition with 4 sequences labeled as 1 to 4 and distances
assigned from the rdistMatrix() function in the perfectphyloR package. As illustrated in
the figure, the distance between a sequence and its ancestral node is one and the distance
between two neighboring nodes that descend from the same most-recent common ancestral
node is two.

Figure D.1: Distance between sequences assigned from the rdistMatrix() function in the
perfectphyloR package. 1, 2, 3, and 4 are sequences.
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Appendix E

A worked example for calculation
of GNN

To illustrate the GNN calculation, we consider a worked example of four sequences of
length 10 kbp, as shown in Figure E.1. In the figure, the subregion from 0 kbp to 6 kbp
is spanned by partition A, and the rest of the region by partition B. In other words, when
we reconstruct the partition at each SNV position within the first 6 kbp, we have only one
partition structure (partition A), and the rest of the region has the structure of partition B.
The GNN proportion for a given target sequence can be computed as follows. For example,
suppose we choose sequence 1 as our target sequence. Starting from sequence 1, we go
upward in the reconstructed partition until we find the first internal node. We call this
internal node a. All the sequences that descend from a, excluding the target sequence 1,
are the genealogical nearest neighbors of sequence 1. The GNN proportion for the target
sequence is the proportion of these neighbours that are case sequences within the clade
below a. We repeat this calculation for all the target sequences and arrange the proportions
in a vector indexed by target sequence. These proportions for the genomic region labeled
as A comprise a vector, GA. For example, in partition A, the GNN proportion for the four
target sequences are: 1/1 = 1 for sequence 1, 1/1 = 1 for sequence 2, 2/2 = 1 for sequence
3, and 2/3 = 0.67 for sequence 4. Thus GA = [1, 1, 1, 0.67]. Similarly in partition B we
obtain GB = (1, 1, 0.67, 1).

Once we compute GA and GB, these vectors are weighted by the proportion of genomic
region spanned by their respective partitions. Since partition A spans 60% of the total
region of 10 kbp, the corresponding weight, WA = 0.6. Similarly WB = 0.4. We are now
ready to compute the average GNN proportion by taking the weighted average of all these
proportions in both partitions. By taking the weighted average, we assign more weight to the
partitions corresponding to long physical lengths of sequence than partitions corresponding
to short physical lengths of sequence. This weighted average summarizes the proportion
of nearest neighbours to the target sequence that are case sequences. In our example, the
average GNN proportion can be computed as:

GAWA +GBWB

WA +WB
= [1, 1, 0.868, 0.802]
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Figure E.1: A worked example to illustrate the calculation of average GNN proportion. Four
sequences are considered, labeled with circles 1 to 4, over a 10 kbp region.
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Appendix F

The estimated type-I error rate

Table F.1: The estimated type-I error rate or proportion of 500 null datasets that incorrectly
reject the null hypothesis (p̂) and associated approximate 95% confidence interval. Four
methods are compared: 1) Fisher’s exact test (FET), 2) SKAT-O, 3) distance correlation
(dCor), and 4) Mantel.

Method p̂ Approximate 95% CI
Lower bound Upper bound

FET 0.040 0.022 0.057
SKAT-O 0.042 0.024 0.060

dCor 0.038 0.021 0.055
Mantel 0.048 0.029 0.067
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