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Abstract 

The widespread adoption of Internet of Things (IoT) devices has ushered in an era 

of extensive sensor-generated data, leading to the need for improved communication 

capabilities, data storage, and energy efficiency. A significant proportion of the power used 

by these devices, ranging from 60% to 98%, is dedicated to energy dissipation through 

communication lines. This thesis addresses these requirements through innovative 

computing approaches that center on processing data in close proximity to sensors. 

A key contribution of this research is the introduction of "thermo-computing," a 

ground breaking concept that uses the unique characteristics of materials and devices to 

process data over time. Thermo-computing leverages an entirely passive network of 

thermistors for data manipulation, promising significant energy savings. This work, 

supported by extensive experiments and careful analysis, firmly establishes thermo-

computing as a transformative method for data processing. 

Additionally, the thesis examines the capabilities of 3D-printed computing 

platforms for real-time data processing and the classification of sensory data. It 

investigates how memory, nonlinearity, and sampling rates affect the performance of 

these processors, highlighting their cost-effectiveness and ease of integration into existing 

smart and 3D-printed intelligent systems, marking a noteworthy advancement in the 

domain of 3D-printed systems. 

Furthermore, the research bridges the gap between software-based reservoir 

computing and its physical counterpart, introducing a novel reservoir computing platform. 

This pioneering platform enhances our understanding of the applications of physical 

reservoir computing and explores the transfer of energy within physical systems acting as 

reservoirs inspired by neural networks. This innovative approach has the potential to 

transform physical computing platforms and offer new solutions across areas such as 

networks, sensing, and computing. 

Keywords: reservoir computing; physical reservoir computing; energy transfer; thermo-

reservoir; 3D-printed reservoir 
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Glossary 

Dynamic System In physics, an object or ensemble of objects whose state 
varies over time and obeys differential equations with time 
derivatives is called a dynamic system. 

Edge of Chaos An operating point for a system where complex patterns 
and behaviour emerge in a homogeneous medium is 
found. 

Fading Memory When a system state contains all information from 
previous time steps in a discrete-time domain, the most 
recent inputs receive the highest weight. 

Injective Function In mathematics, an injective function is a function g that 
maps distinct elements to another distinct elements; 
therefore, g(x1) = g(x2) implies x1 = x2. 

Kernel A function that transforms the input values into a high-
dimensional vector is referred to as a kernel. 

Nonlinear Node/Neuron Node and neuron are interchangeably used throughout 
this document. A (physical) node is a node/neuron that 
reacts nonlinearly to what it receives as its input (either 
physical, chemical, or electrical stimulation). 

Non-temporal Task In a non-temporal task, the individual data points are 
considered independent of each other, meaning that their 
order or timing does not affect the outcome of the task. 

Reservoir A network of randomly connected nonlinear nodes or 
elements leveraging a short memory of past information. 

Spatial Reservoir A reservoir in which the internal nonlinear nodes are 
spatially distributed.  

Temporal Task The desired output function may contain a memory of 
previous input values, where both the input and output signals 
are in the discrete-time domain.  

Timescale A representative of the response time of a nonlinear 
dynamical element. If data are introduced to and read from 
the same element at the rate of 1/timescale, the element 
will almost pass its dynamic region.  

Timestep A unit for representation of steps in a discrete-time domain. 
In the physical world, it is used to introduce an input value 
to a system for a determined duration of time. 

Virtual Nodes The internal nonlinear nodes are multiplexed in time in a 
specific reservoir type. These reservoir nodes are called 
virtual nodes.  

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Differential_equation
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Chapter 1.  
 
Introduction 

“Reservoir computing is a radically new way of doing computation that is 
based on the idea of using a dynamic system to perform a computation, 
rather than using a static set of weights or a set of rules.” 

― Dr. John Paul Gosling, University of Oxford  

Technological advancements have enabled us to generate and record vast data 

using microsensors that can quantify real-world parameters. However, our ability to make 

sense of this data has not kept up with the pace of data generation, leading to bottlenecks 

in data processing and analysis that lead to delays in processing data, increased 

processing time, and even data loss or corruption. In many cases, this bottleneck can be 

addressed by limiting the storage and transmission of data to contextual information 

instead of raw data. 

Typically, raw data must be transmitted and processed at the edge or cloud levels 

to generate context, as shown in Figure 1.1 [1]. This approach is wasteful in terms of 

communication bandwidth and data storage and accounts for a significant amount of 

energy usage in the Internet of Things (IoT) [2]. By limiting the data storage and 

transmission to contextual information rather than raw data, as shown in Figure 1.2, it is 

possible to achieve significant energy savings (up to an order of magnitude) and reduce 

latencies in time-sensitive applications. Context-based triggers can also significantly 

reduce power consumption in ultra-low-power systems by allowing the system to wake up 

only when needed to take measurements. 

To address these challenges, researchers are exploring various computing 

approaches that operate near or inside sensory systems [3]. One of these approaches is 

reservoir computing, a recent trend in machine learning suitable for processing temporal 

data, such as time series, speech, and video [4]. Reservoir computing is a machine 

learning approach practical for various tasks, including pattern recognition, time series 

prediction, and control [4]–[8]. Unlike traditional machine learning algorithms requiring 

extensive training and data preprocessing, reservoir computing systems can learn and 
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adapt to new inputs online. One key aspect of reservoir computing is using a dynamic 

system, known as the "reservoir," to transform and scale input signals. 

 

Figure 1.1. Conventional context detection in the internet of things (IoTs), where 
the processing is conducted in clouds. The cloud structure is 
generally based on a Von Neumann architecture. 

 

Figure 1.2. Unconventional context detection platform: moving processors close 
to the sensors to generate and communicate the context to command 
centers (near-sensor processing platform). 



3 

Over the past decade, there has been growing interest in developing physical 

reservoir computing platforms, which use physical systems, such as lasers, oscillators, 

and microfluidic channels, as the reservoir [9]–[12]. These physical platforms offer several 

potential benefits over traditional computing approaches, including increased energy 

efficiency, robustness to noise and perturbations, and the ability to perform computations 

at the nanoscale. 

However, the development of physical reservoir computing platforms is a 

challenging task, as it requires a deep understanding of the complex dynamics of the 

physical system, as well as the ability to control and manipulate these dynamics in a 

precise and reliable manner. 

This research aims to advance state-of-the-art physical reservoir computing 

platforms and enable the development of new and innovative computing applications. The 

goal of this project is to contribute to the development of physical reservoir computing 

platforms by exploring new approaches to the design, control, and optimization of these 

systems. In particular, this thesis focuses on developing 3D-printed reservoirs, which are 

promising physical systems for many processing applications. 

1.1. Addressing the Data Processing Bottleneck 

Data processing bottlenecks occur when the rate at which data are generated or 

received exceeds the rate at which it can be processed or stored. It can be due to various 

factors, including limited processing power, slow network connectivity, or a high volume 

of data. Researchers have developed different techniques to address these bottlenecks, 

depending on the root cause of the problem. 

One effective solution to address a data processing bottleneck caused by limited 

processing power is to upgrade the hardware. This can involve several approaches, such 

as adding more CPUs, increasing memory, or upgrading to faster storage devices. 

Another approach is to leverage specialized processors that are optimized for specific 

processing tasks, such as graphics processing units (GPUs), field-programmable gate 

arrays (FPGAs), or application-specific integrated circuits (ASICs). Central processing 

units (CPUs) are the primary processors in a computer and are responsible for executing 

most of the instructions that run on a computer. These processors are designed to perform 
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general-purpose operations but may not be optimized for specific tasks. In contrast, GPUs 

are specialized processors that are designed to accelerate graphics and video processing 

tasks. These processors have many small, efficient cores optimized for parallel 

processing, making them well-suited for tasks involving large amounts of data. ASICs are 

custom-designed processors built to perform specific tasks and are used in applications 

that require high performance and low power consumption. These processors are highly 

optimized for their intended tasks and often outperform general-purpose CPUs. FPGAs 

are programmable processors that can be configured to perform a wide range of functions. 

They offer flexibility and reconfigurability, which makes them well-suited for applications 

that require rapid prototyping and development. 

Distributed processing is another technique used to address data processing 

bottlenecks. It involves breaking up the data processing tasks into smaller, more 

manageable ones and distributing them across multiple processors or nodes. This 

technique can improve performance and reduce processing time by allowing multiple 

processors to work on different parts of the same task simultaneously [13]. 

If the bottleneck is caused by slow network connectivity, increasing the network 

bandwidth can help. It can involve upgrading network hardware, such as routers and 

switches, or using techniques such as load balancing to distribute traffic across multiple 

network links [14]. 

These solutions use the general von Neumann architecture, which has several 

limitations that impact the performance of computers. The von Neumann architecture is a 

computer design paradigm proposed by mathematician and computer scientist John von 

Neumann in the 1940s [15]. One of the main limitations of the von Neumann architecture 

is the separation of memory and processing units. In this architecture, the CPU fetches 

instructions from memory, decodes them, and executes them one at a time. It requires the 

CPU to constantly access the memory to fetch instructions, which can be slow and 

inefficient. It is known as the von Neumann bottleneck.  

Many modern computers use caching, pipelining, and parallel processing 

techniques to improve performance to overcome the von Neumann bottleneck. However, 

these techniques can only do so much to overcome the fundamental limitations of the 

architecture. In this regard, researchers are exploring alternative architectures, such as 
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neuromorphic computing, analog computing based on Hebbian Learning, and reservoir 

computing. Neuromorphic computing is inspired by the human brain's structure and 

function. It involves the development of hardware and software systems that mimic the 

neural architecture and processes of the brain to perform tasks such as perception, 

learning, and decision-making. Neuromorphic computing systems are designed to be 

highly energy-efficient and capable of processing large amounts of data in real-time [16]. 

One example of neuromorphic computing is spiking neural networks, which use 

pulses or "spikes" to encode and transmit information, similar to how neurons in the brain 

communicate. Neuromorphic chips are specialized microprocessors designed to 

implement spiking neural networks or other types of neural architectures in hardware. For 

example, Intel introduced Loihi, a neuromorphic processor with on-chip learning [17]. IBM 

has also developed the neuromorphic TrueNorth chip with 70mW power consumption 

when implementing artificial neural networks for pattern recognition [18]. These chips can 

perform certain types of calculations much more efficiently than traditional CPUs, making 

them suitable for pattern recognition and classification tasks. 

While neuromorphic computing shows promise for overcoming the limitations of 

von Neumann's architecture, its development and implementation still have challenges 

and limitations. Neuromorphic computing systems are often highly complex and can be 

challenging to design and implement. Programming neuromorphic computing systems 

can also be complicated due to their complexity and the lack of standardized approaches 

and tools. Moreover, neuromorphic computing systems can be expensive to develop and 

implement [16]. 

On the other hand, around the 1990s feedforward neural networks (FNNs) through 

analog components were implemented, which were able to harness the continuous nature 

of analog signals, aligning more closely with the principles of neural computation [19]. 

Researchers have explored diverse architectures to instantiate FNNs, leveraging the 

inherent parallelism and efficiency of analog circuits [20]. Analog implementations of FNNs 

typically involve neurons modelled with analog components, such as transistors, to 

simulate the dynamic behaviour of biological neurons. Synaptic connections, essential for 

weight adjustments, were often realized through tunable conductance. 
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An alternative computing approach called reservoir computing (RC) emerged in 

2001 [5], [7], [21], [22]. RC is a machine learning algorithm designed to address the 

complexities in training recurrent neural networks (RNNs). It uses a fixed network of 

coupled nonlinear elements with a finite memory of past events, called a reservoir, and a 

trainable output layer, known as the readout. The reservoir maps sequential input data to 

a multi-dimensional state space, and the readout generates context from raw data using 

simple linear regression. RC offers temporal data processing capabilities and can go 

beyond the von Neumann architecture due to its short-term memory and computation 

combination.  

RC has been successfully applied to various nonlinear time-series applications, 

such as sequential pattern classification, time series prediction, adaptive filtering and 

control, and feature extraction on complex time series [23]. It offers low training costs, 

real-time processing with high accuracy, and simple training algorithms, often using linear 

regression or generalized ridge regression. It has led to the development of physical 

reservoir computing, in which proposed physical systems leverage materials or devices' 

specific and nonlinear responses to perform well-defined tasks in the physical domain. 

Once a reservoir is designed, it can perform well on multiple tasks by training the output 

layer. 

The randomly connected and temporally internal connections in a reservoir benefit 

the hardware implementation of next-generation computing platforms. This has led to 

recent developments in physical RC systems based on connected mechanical oscillators 

[12], [24], [25], memristors [26]–[32], photonic circuits [33]–[40], carbon nanotube/polymer 

composites [41]–[43], soft body [44], and connected atomic switches [11]. For example, 

bio-computers were developed at the organism or molecular level to interface with and 

respond to stimuli such as light and chemicals [45], [46]. In addition, reaction-diffusion 

computers use chemical reactions to perform highly parallel computations [47].  

In a physical RC system, the nonlinearities of the materials or devices provide the 

mapping function, the system's transient response creates a fading memory which makes 

the network output independent of events in the distant past, and the fixed coupling and 

internal connections give the system a time-dependent response. For a reservoir to 

perform well in computational tasks, it must meet specific requirements [23]: 
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• The reservoir must exhibit nonlinearity, which is essential for tasks that are not 
linearly separable and for extracting nonlinear dependencies in time-series 
predictions. 

• The reservoir must have fading memory, which is necessary to keep a short 
enough memory of past inputs to the system and is essential for temporal 
pattern recognition. 

• The reservoir must have high dimensionality to map inputs into a high-
dimensional state space and facilitate the separation of originally inseparable 
inputs and the retrieval of temporal dependencies of inputs. 

• The reservoir must have a separation property, which ensures that the 
reservoir responses to different signals are sufficiently different, separating 
them into different classes. 

• The reservoir must have an approximation property, which refers to the 
consistency of the reservoir and promotes the ability to be insensitive to small 
fluctuations such as noise. 

1.2. Motivation 

The development of physical RC platforms in this thesis has been motivated by 

the need for efficient and practical approaches to processing and analyzing data 

generated by sensory networks. As the amount of data generated by these networks 

continues to grow, there is a need for computing approaches that can handle this data 

more efficiently and effectively. RC platforms offer several benefits, including low training 

cost, real-time processing, and high accuracy using simple training algorithms. 

Another motivation for developing physical RC platforms is the potential for 

improved energy efficiency. Traditional von Neumann computing architectures rely on 

data transfer between memory and processing units, which can be energy-intensive. In 

contrast, RC platforms can operate in a more distributed, local manner, with computation 

integrated within each sensory node throughout the network. This approach can lead to 

improved energy efficiency, particularly in the case of large-scale sensory networks. 

Physical RC platforms also offer the potential for increased flexibility and 

adaptability. Training the output layer of an RC network makes it possible to adapt the 

network to perform different tasks without redesigning the entire system. This attribute can 

benefit applications where the data or task requirements may change over time. 
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One of the intrinsic motivations for my thesis is the development of near-sensor 

processors for integrating sensors and processors. We aim to help advance the 

knowledge in this field and pave the way for in-sensor processing. While there have been 

advancements in the development of physical computing platforms from various materials 

and devices, there is currently a lack of processors specifically designed for the compatible 

integration of sensors and processors. In this regard, there are many open questions and 

challenges in the development of these platforms, including:  

• How can physical RC platforms be designed and implemented for near-sensor 
computing applications? 

• What are the key challenges and limitations in developing physical RC 
platforms for near-sensor computing? 

• How does the performance of physical RC platforms compare to traditional 
computing approaches? 

• Can physical RC platforms be adapted to perform various tasks, or are they 
limited to specific tasks? 

Specifically, I demonstrate the following: 

• Design and implement physical RC platforms for near-sensor computing 
applications. 

• Assess the feasibility and potential of physical RC for near-sensor computing 
applications. 

• Evaluate the performance of physical RC platforms compared to traditional 
computing approaches. 

• Determine the adaptability of physical RC platforms to perform a range of 
tasks. 

• Identify and address the key challenges and limitations in developing physical 
RC for near-sensor computing. 

• Provide recommendations for the design and development of physical RC for 
near- or in-sensor computing applications based on the findings of this 
research. 

1.3. Structure 

This thesis is organized as follows: 
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• Chapter 2 elaborates on the theory of reservoir computing and reviews the 
literature on physical reservoir computing platforms.  

• Chapter 3 presents the initial efforts to identify materials and devices with 
specific properties for use in physical RC and the design of physical neurons. 
It also includes descriptions of our prototypes using off-the-shelf components 
and the implementation of basic information transfer mechanisms within the 
proposed reservoirs. 

• Chapter 4 focuses on exploring printable materials with specific properties, 
developing information transfer mechanisms using thermal energy transfer, 
and the 3D printing of proposed processors. 

• Chapter 5 evaluates and optimizes the performance of the 3D-printed 
processors. 

• Chapter 6 discusses the future direction of the research and potential 
applications for physical RC.  
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Chapter 2.  
 
Physical RC Systems 

Physical reservoir computing is a form of machine learning that utilizes the 

dynamics of a physical system as the "reservoir" to perform computations. The basic idea 

behind physical RC is to use the intrinsic dynamics of the physical system to map input 

data into a high-dimensional feature space, where a simple linear model can be trained to 

produce the desired output [23]–[25]. 

Any dynamic system, such as electronic circuits, lasers, mechanical systems, or 

fluid, can serve as the physical system in RC [51]. The choice of the system is based on 

the application's specific requirements, including factors like speed, accuracy, and energy 

consumption. To process the input data, it is fed into the chosen physical system as a 

time-varying signal. The response of the system to the input signal is then recorded 

through an interface circuitry and analyzed to extract relevant features. These features 

are then used to train a linear model, also known as the "readout layer," which maps the 

features to the desired output. The readout layer is trained using a supervised learning 

algorithm like linear or ridge regression. The training process aims to find the optimal set 

of readout layer weights that minimize the error between the predicted and actual output. 

Physical RC has been the subject of extensive research over the past decade, and 

numerous studies have investigated its theoretical properties and practical applications 

[52]. One of the key advantages of physical RC is that it can be implemented using low-

power, analog hardware, which makes it well-suited for applications in embedded systems 

and the IoT. Moreover, physical RC has been shown to be effective in various applications, 

including speech recognition, image processing, and control of nonlinear systems. 

Physical RC is a promising machine learning approach that harnesses physical systems' 

dynamics to perform computations. Physical RC is specifically promising for developing 

the next generation of processors that can be located close to or inside sensory networks, 

offering energy-efficient and real-time information processing [3]. Here a brief literature 

study on the recently developed physical RC using various physical phenomena utilized 

for the reservoir is provided.  
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2.1. Statistical Learning for Time-series Data 

Neural networks are a class of machine learning models that can be used for data 

analysis. In a feedforward neural network, as shown in Figure 2.1 (a), information flows in 

one direction, from the input layer through one or more hidden layers to the output layer. 

The input to a feedforward neural network can be represented as a sequence of samples, 

𝑛. The weights and biases in the network are learned through a process called 

backpropagation, which involves minimizing a loss function that measures the discrepancy 

between the network's predictions and the actual values. The forward pass of a neural 

network can be represented as follows [53] 

𝒙(𝑛) = 𝒇(𝑊 𝒖(𝑛) + 𝑏) 

𝒚(𝑛) = 𝑊𝑜𝑢𝑡 𝒙(𝑛) 
(2-1) 

where x(n) represents the hidden state at step n, u(n) represents the input at step n, W 

represents the weight matrix connecting the input to the hidden layer, b represents the 

bias vector for the hidden layer, f is a nonlinear activation function applied element-wise 

to the hidden state, Wout represents the weight matrix connecting the hidden layer to the 

output layer, y(n) represents the predicted output at step n. The weight matrices W and 

Wout are learned during the training process to optimize the network's performance on the 

given time-series data. 

While NNs can effectively capture complex patterns in data, they lack the ability to 

explicitly model temporal dependencies. This is where recurrent neural networks (RNNs) 

excel [53]. By introducing recurrent connections, as shown in Figure 2.1 (b), RNNs can 

maintain an internal memory or hidden state that retains information about past inputs, 

allowing them to capture long-term dependencies in sequential data. This memory allows 

RNNs to process time-series data more effectively than traditional feedforward NNs. The 

recurrent connections in RNNs enable them to dynamically adapt their hidden state based 

on both current and previous inputs, making them well-suited for tasks that involve 

sequential information, such as speech recognition. The hidden state of an RNN at each 

time step can be calculated using the following formula 
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𝒙(𝑛) = 𝒇(𝑾ℎℎ 𝒙(𝑛 − 1) +𝑾𝒊𝒏 𝒖(𝑛) + 𝑏ℎ) (2-2) 

where x(n) represents the hidden state at timestep n, u(n) represents the input at timestep 

n, Whh represents the weight matrix connecting the previous hidden state to the current 

hidden state, Win represents the weight matrix connecting the input to the current hidden 

state, bh represents the bias vector for the hidden state, and f is a nonlinear activation 

function applied element-wise to the hidden state. The output of an RNN at each time step 

can be obtained by multiplying the hidden state by an output weight matrix and applying 

an activation function. 

 

Figure 2.1. A graphic representation of (a) a neural network, (b) recurrent neural 
network, and (c) a reservoir computer. The reservoir has fixed nodes 
and connections. Only the weights at the readout layer require 
updates for specific data at the input. 

2.2. Reservoir Computing 

Recurrent neural networks have been used for temporal pattern recognition since 

the 1980s. Internal connections inside a conventional recurrent network require training, 
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a complex, time-consuming problem to solve [54], [55]. To tackle this issue, Jaeger 

introduced echo state networks (ESNs) in 2001, which focused on training dynamical 

systems for temporal learning tasks using RNNs [56]. Alternatively, Maass et al., proposed 

liquid state machines (LSMs) in 2002 for realistic modelling of the computational properties 

of neural microcircuits [57]. These solutions rely on a fixed, connected network of specific 

nodes (i.e., fixed connection weights). Later, reservoir computing was coined by 

Verstraeten et al. in 2007 [22] to include these two approaches for implementing and 

training recurrent neural networks. RC successfully reduces the training of RNNs to a 

simple linear regression problem. Compared to a typical neural network, training is 

conducted only on the output layer with configurable weights. RC structure is compared 

to a typical neural network in Figure 2.1 (c). In general, RC consists of three parts [54]:  

• An input layer for scaling and introducing the input to the reservoir: The input 
layer maps the input signal to the nonlinear functions in the reservoir with a 
bias. 

• The reservoir of connected nonlinear functions with fixed internal weights: This 
reservoir structure remains unchanged for all applications.  

• The output or readout layer is the trainable layer, in which a linear weighted 
sum of the input-excited reservoir states creates the predicted/classified 
output. Usually, linear regression is utilized to update and optimize the weights 
of this linear combination by introducing the label (or target output). 

Since the LSMs were proposed for neuroscience applications, the nonlinear 

elements in the reservoir are based on spiking neurons. The spiking neurons are built on 

the idea that the information is transmitted once it reaches a specific value. When the 

neuron exceeds the threshed level, the neuron fires and generates a corresponding signal. 

One of the well-known spiking neuron models is the leaky integrate-and-fire model [58]. 

Thus, if the RC is constructed using an LSM structure with spiking neurons, it is called 

LSM-based RC; otherwise, it is referred to as an ESN-based RC. 

2.2.1. Echo State Networks 

Echo state networks have developed in the frame of machine learning applications. 

An ESN consists of an input layer with an input weight matrix of Win, which scales the 

temporal data and applies it to the fixed reservoir. Additional input can also be provided to 

bias the network, Wbias. The reservoir is a random, fixed recurrent network of nonlinear 

nodes with a non-trainable, internal weight matrix of Wres, driven by a temporal input, u(n); 
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where n = 1, 2, 3, . . . indicates the different data points in the dataset. The reservoir states, 

x(n), are the nonlinear mappings of the input signals. Nonlinear expansion of the input to 

a higher dimension space is widely used in ML algorithms, including support vector 

machines (SVMs). This nonlinear expansion function that transforms the input into a high-

dimensional vector is usually referred to as ‘kernel’. Therefore, one may introduce RC as 

a nonlinear expansion approach, which uses the nonlinear dynamic reservoir as a kernel 

with a memory of the input history as 

𝒙(𝑡) = 𝒇(𝑾𝑖𝑛 𝒖(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-3) 

where x(n) represents the vector of the reservoir states at the discrete timestep n, 𝒙(𝑛 − 1) 

is the reservoir states’ vector in the previous time step, f is the nonlinear activation function 

(typically the hyperbolic tangent, tanh, or another sigmoid function), Win and Wres are the 

matrices of input and internal network connections, respectively. The formula considers 

bias terms to reduce the written complexity implicitly. A more general model can include 

the possibility of feedback connections (Wback) from the output layer units to the reservoir 

𝒙(𝑛) = 𝒇(𝑾𝑖𝑛 𝒖(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1) +𝑾𝑏𝑎𝑐𝑘  𝒚(𝑛 − 1)) (2-4) 

where y(n) is the weighted sum of the internal reservoir states, and y(n - 1) is the most 

recent output.  

The trainable readout layer with the weight matrix Wout is trained and reconfigured 

for various temporal applications. The state matrix x is then utilized to get an estimation 

of the desired output function ytarget, as: 

𝒚(𝑛) = 𝑾𝑜𝑢𝑡  𝒙(𝑛) (2-5) 

In some networks, a constant bias term is implemented in the x(n), and Wout must 

contain a corresponding column of weights. On the other hand, some include the input 

u(n) as an extra feature in x(n), corresponding to a direct connection from the input to the 

output layer. The goal is then to minimize the error between the weighted linear sum of 

reservoir states x(n) trained on the linear regression of reservoir states x(n) and target 

signals ytarget(n). The readout layer is trained through any least-squares matrix solution 
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such as ridge regression, also called Tikhonov regularization with the regularization 

constant β used to penalize large Wout, which is defined as: 

𝑾𝑜𝑢𝑡 = 𝒀𝑡𝑎𝑟𝑔𝑒𝑡𝑿
𝑇(𝑿𝑿𝑇 + 𝛽𝑰)−1 (2-6) 

2.2.2. Physical RC Models 

In the physical domain, models are more complex compared to software-based 

models. The specific form of the reservoir model varies depending on the physical system 

being studied. Let us consider an example of photonic RCs [34]. In this case, the physical 

system under study involves the propagation of light through an optical medium, such as 

a waveguide. In photonic RC, the input signal is usually encoded as variations in the 

intensity or phase of the optical signal. The input signal can be modulated using different 

techniques, such as intensity modulation or phase modulation. In an intensity modulation 

scheme, for example, the input signal is used to control the power or intensity of the optical 

signal propagating through the waveguide. This can be achieved using various methods, 

including electro-optic modulation or optoelectronic feedback loops. The optical signal, 

after being modulated by the input signal, propagates through the waveguide and interacts 

with various elements, such as optical amplifiers, couplers, and nonlinear elements. These 

interactions introduce nonlinear transformations to the optical signal, making the 

waveguide act as a nonlinear reservoir. The output of the reservoir is then measured using 

photodetectors or other optical sensors. The measured output can be processed further 

to extract useful information or perform specific tasks such as pattern recognition, time-

series prediction, or classification. 

The physical reservoir model in photonic RC can be described using equations 

that capture the behavior of light propagation through the waveguide, taking into account 

the nonlinearities and interactions with the optical elements. These equations may include 

terms that describe the input modulation, the optical propagation, and the dynamics of the 

optical elements in the system [34] as 

𝒙(𝑛) = 𝒇(𝑾𝑖𝑛 𝑼(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-7) 

where 𝑼(𝑛) can be the modulated optical signal that carries the input information.  
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Another example is the origami-based RC. Origami-based RC is a physical 

computing platform that uses folded origami structures as the reservoir for processing 

input signals [52]. In this system, the goal is to transform an input signal, 𝑢(𝑛), which 

represents a desired pattern or behaviour, into mechanical movements of the origami 

structure, 𝑥(𝑛). This input signal is used to modulate or manipulate the behaviour of the 

origami structure. Input signals may involve applying external forces to the origami 

structure such as tension, compression, or pressure. However, in some structures, an 

actuation mechanism is implemented to deliver input, 𝑢(𝑛), to the reservoir [49]. In angle 

encoding techniques, mechanical actuators such as motors or servos can be integrated 

into the origami structure [52]. These actuators can manipulate specific parts of the 

origami to achieve desired angular changes in response to input signals. Therefore, the 

input signal, 𝑢(𝑛), undergoes mechanical transformation (denoted as 𝑈(𝑛)) before driving 

the origami-based reservoirs. The configuration of the origami structure, then, changes 

over time due to mechanical folding and unfolding, and these dynamic transformations 

introduce nonlinear dynamics into the system. The output of the reservoir was measured 

using sensors that track the position or shape of the origami structure as it unfolds and 

moves. The measured output is processed further to control the robotic crawling motion 

or other desired tasks. 

Another example is physical reservoirs constructed using mechanical oscillators. 

Mechanical oscillators are physical systems designed to generate periodic motion or 

vibrations. They produce oscillations, which are repetitive back-and-forth movements or 

vibrations, and these oscillations can occur in various forms, such as mechanical 

vibrations or waves. In this case, the input signal to the reservoir is the driving voltage 

signal, 𝒖(𝒕), which creates a driving force 𝐹𝑑~𝒖
𝟐(𝑡). This force then acts on the oscillators, 

resulting in a displacement that can be measured using strain sensors (resistors). The 

measurement of this displacement is used as part of the reservoir model [25]. Hence, the 

physical reservoir model can be described by the equation: 

𝒙(𝑛) = 𝒇(𝑾𝑖𝑛 𝒖
𝟐(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-8) 

Comparing this equation with the previous equation (2-3) for software RC, we can 

observe that the input signal to the physical reservoir has a different representation in this 

context. The input signal, 𝒖(𝑛), in the form of voltage signal gets squared to generate the 
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required force to drive the oscillator, multiplied by the input weight matrix and then 

combined with the weighted output from the previous time step before being passed 

through the activation function. This highlights the distinction between the software-based 

RC models, where the input signal is typically provided directly, and the physical reservoir 

models, where the input signal may undergo transformations based on the characteristics 

of the physical system being studied. 

2.2.3. Performance Evaluation 

The process of implementing an RC for temporal tasks includes a specific 

nonlinear transformation, ytarget(n), of an input signal, u(n). In a temporal task ytarget(n) and 

u(n) represent signals in a discrete-time domain, and the desired output function may have 

a memory of previous input values. In a temporal task, the function to be learned depends 

on the input history: y(n) = y(u(n), u(n−1), u(n−2), . . .). Different functions can be used for 

measuring the error, such as the mean squared error (MSE), root mean squared error 

(RMSE), the normalized mean squared error (NMSE), or the normalized root mean 

squared error (NRMSE) [59] 

𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) = 〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖
2
〉 (2-9) 

𝑅𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) = √〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖
2
〉 (2-10) 

𝑁𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) =
〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖

2
〉

〈‖𝒚(𝑛) − 〈𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)〉‖
2
〉
 (2-11) 

𝑁𝑅𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) = √
〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖

2
〉

〈‖𝒚(𝑛) − 〈𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)〉‖
2
〉
 (2-12) 

where 〈… 〉 stands for the mean and ‖…‖ denotes the Euclidean distance. 

2.2.4. On Nonlinearity and Memory  

Memory refers to the neurons/nodes' capability to store information in a system. 

Fading memory, also known as short-term memory, is present in almost any physical 
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system. Fading memory is required to satisfy the so-called echo state property (ESP), 

which Jaeger introduced for ESNs: the system must forget its previous states as time 

passes [60]. That is, the current state is a pure injective function E on all previous inputs 

as 

𝒙(𝑛) = 𝐸(… , 𝒖(𝑛 − 1), 𝒖(𝑛)) (2-13) 

meaning that the network acts as a fading memory where the states contain information 

from previous time steps. However, the most weight is given to recent inputs. In an RC 

system, we require fading memory terms long enough to store information from the recent 

past but short enough to forget the distant past. Usually, the memory is implemented 

digitally, while in physical RC, there are suitable alternatives that can be a reliable source 

of memory. 

The nonlinearity of nodes inside a reservoir can be of different types. For example, 

spiking neuron models are utilized in RC based on liquid-state machines. However, 

analog, differentiable functions such as sigmoid and hyperbolic tangent (tanh) are 

primarily employed in RCs based on ESNs. Alternatively, some functions that are widely 

used in NNs, such as rectified linear unit (ReLU), leaky ReLU, and exponential linear unit 

(ELU) for ESN-based RCs, can be employed in these structures, as illustrated in Figure 

2.2. The first two functions are the traditional nonlinear functions used in ML, while the last 

three are among the nonlinearities used in more recent ML. While some nonlinearities can 

be achieved in many saturable physical systems or devices, other ones can be obtained 

from diode-like circuits. Simply including nonlinear functions in a node's activation function 

does not adequately communicate the importance of input range in facilitating nonlinear 

behaviour. A nonlinear element may act linearly if the input range is too small or set to its 

linear region, as shown in Figure 2.3. A reservoir built using several nonlinear nodes 

reacting linearly to the input range is called a linear reservoir. The nonlinear reservoir is 

defined as a network in which most of its internal nodes have nonlinear responses with 

respect to a given input range. In a saturated reservoir, most of the nodes are driven into 

the saturation region for a given input range.  
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Figure 2.2. Various forms of nonlinear functions in a reservoir. 

 

Figure 2.3. Examples of reservoirs in an RC system. 

2.2.5. Global Parameters of RC 

One should adhere to certain guidelines to create a high-quality reservoir in 

software-based reservoir computing. These include generating a vast reservoir 

comprising numerous nonlinear nodes (ranging from tens to thousands) that are sparsely 

and randomly connected (with connectivity typically set at 1-20%). It's important to note 

that multiple factors impact the performance of reservoir computing systems, such as: 

Reservoir size is the number of nonlinear nodes in a reservoir that directly 

contributes to the weighted output sum of the RC.  Larger reservoirs produce a higher 

dimensional state space, promising better performance. 

Input scaling refers to the process of scaling the input weight matrix used to 

connect the input to the internal nodes of the reservoir. It is an important step in the design 

of an RC system as it directly affects the performance and behaviour of the reservoir. The 

input weight matrix is typically randomly generated, and values are drawn from a specific 

distribution. For uniformly distributed matrices, the input scaling factor, a, is defined as the 
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range of the interval [−a, a] from which values of the input matrix are sampled. The 

standard deviation is often used as a scaling measure for normally distributed input 

weights. The goal of input scaling in RC is to create a reservoir where most of its internal 

states perform nonlinearly for a given input. This is achieved by selecting an appropriate 

scaling factor that shifts the reservoir to operate in its linear, nonlinear, or saturation 

regions. If the scaling factor is too small, the input signal may not be strong enough to 

drive the reservoir to perform nonlinearly, resulting in poor performance. On the other 

hand, if the scaling factor is too large, the reservoir may become saturated, causing the 

performance to degrade. Therefore, the choice of the scaling factor is critical for achieving 

optimal performance in an RC system. The scaling factor can be chosen based on the 

specific application and the characteristics of the input data.  

𝑾𝑖𝑛
′ = 𝑎 𝑾𝑖𝑛 (2-14) 

The spectral radius is a measure of the fixed weights inside the reservoir, 

representing the connections between different nonlinear nodes. The spectral radius 

refers to the largest absolute value of the eigenvalues of the reservoir connection matrix, 

Wres. It is denoted by the symbol 𝜌 and has a direct impact on the performance of RC 

systems. When the spectral radius is close to 1, the highest eigenvalue of the reservoir 

weights, the RC system provides an extended memory of input, making it suitable for 

applications requiring more information from past events. On the other hand, when the 

spectral radius is 0, the RC system becomes a feedforward network. Since the memory 

of past inputs is lost in this case, the system is unsuitable for applications that require past 

events. 

The leaking rate, α, is a parameter used in RC to control the rate at which the 

current state of the reservoir decays and is replaced by the new state. It is often used in 

RC systems that include leaky-integrator nodes [61] with some memory of past events. In 

these systems, the state update equation is expressed as  

𝒙(𝑛) = (1 − 𝛼)𝒙(𝑛 − 1) + 𝛼𝒇(𝑾𝑖𝑛 𝒖(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-15) 

where x(n) is the current state of the reservoir, u(n) is the current input, f is the node's 

nonlinear function, and 𝑾𝑖𝑛 and 𝑾𝒓𝒆𝒔 are the input and reservoir weight matrices, 

respectively. In a software-based RC, the leaking rate can be adjusted easily, and it is 
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proposed to set it to match the speed of the input dynamics and/or the target to provide 

longer short-term memory of the information [54]. 

The number of connections from the input to a reservoir node and the number 

of recurrent connections of internal nodes determine the sparseness of a reservoir. It is 

recommended to make the reservoir connections sparse enough (≈20% recurrent 

connection) [43] for improved performance.  

Selection of input scaling, spectral radius, and leaking rate are essential for good 

performance and are pretty task-specific in software RC. However, many of these 

parameters require a thorough understanding of the problem and developing a suitable 

physical RC accordingly by considering external restrictions in physical RCs.  

2.2.6. Reservoir Configurations 

Standard ESNs consist of many simple processing units called nodes, organized 

in an arbitrary and fixed network of connections in their reservoir layer. The random 

connectivity of the nodes allows the reservoir to have rich, dynamic internal 

representations that are applied to solve a variety of tasks, such as time series prediction, 

speech recognition, and image classification.  

Since the reservoir plays a vital role in the performance of RCs, researchers have 

studied and developed different reservoir topologies [21]. A study conducted in 2011 

compared the performance of several topologies, including the delay line reservoir (DLR), 

DLR with feedback connections (DLRB), simple cycle reservoir (SCR), and leaky reservoir 

(LR) with standard ESNs, as shown in Figure 2.4 [54]. 

The DLR configuration comprises nodes organized in a line, with only a 

feedforward connection in the reservoir with the same connection weight. The DLRB 

topology has the same structure as DLR except for the feedback connections between a 

reservoir node and the preceding one in the DLRB. In this topology, all the feedforward 

connections have a similar weight, and all the feedback connections are set to a fixed 

value. The SCR topology organizes nodes in a cycle where all connections have the same 

weight. The LR topology consists of a standard ESN and a layer with leaky integrator 

nodes. A leaky integrator node, a first-order low-pass filter, follows each node in a standard 

reservoir. 
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Figure 2.4. The representatives of (a) standard reservoir, (b) delay line reservoir, 
(c) delay line with feedback, (d) simple cyclic reservoir, and (e) leaky 
reservoir © 2011 IEEE [21].  

The study found that all the structures performed similarly on a wide range of time 

series benchmarks, suggesting that ordered and random connections offer similar 

performance. However, each topology has advantages and disadvantages, such as ease 

of implementation, computational efficiency, or ability to handle specific data types. 

Therefore, the choice of topology for a reservoir should be based on the specific 

requirements of the task at hand.  

Another type of reservoir was developed to tackle some practical implications in 

physical RC, known as single dynamical node (SDN) RC. SDN RC uses a dynamical 

system with a single nonlinear node coupled to itself through a delay line. Also known as 

delay-based RC systems [62], the nonlinear nodes in this reservoir are multiplexed in time 

and must be retrieved sequentially in the time domain in the readout layer. The nonlinear 

nodes in an SDN reservoir are called virtual nodes, as unlike the spatially distributed nodes 

in classical reservoirs (ESNs and LSMs), these virtual nodes are temporally distributed. 

Delay-based RC is practically useful in the physical realizations of RC systems and has 

been utilized in different physical RC systems. Mathematically speaking, the SDN 

reservoir is integrated into the sampled solutions of a single delay differential equation 

(DDE) as [23]: 
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𝑑𝒙(𝑡)

𝑑𝑡
= 𝑭(𝑡, 𝒙(𝑡), 𝒙(𝑡 − 𝜏)) (2-16) 

where t represents continuous time, x is the vector of the reservoir states, F is a function 

determining the flow of this system, and 𝜏 > 0 is the delay period. DDE fundamentally 

differs from ordinary differential equations as the time-dependent solution of a DDE is not 

uniquely determined by its state at a given moment. The general concept of this approach 

is depicted in Figure 2.5, which illustrates how the recurrent reservoir network is realized 

using the single nonlinear dynamical node (NL) with delayed feedback. The N virtual 

nodes in the reservoir are distributed uniformly in time over the delay interval 𝜏, with each 

virtual node having a width of 𝜃 =  𝜏/𝑁. The physical nonlinearities of the nodes generate 

the reservoir states x(t) at the end of each time segment. These states are a combination 

of both the memory and the nonlinear transformation of the input signal, as they are 

integrated into the transient response of the nonlinear node to a specific input at a given 

time. To generate the random virtual nodes, a masking signal, m(t), is combined with the 

discrete input signal, with each time segment having a width of 𝜃. This approach simplifies 

the system structure but comes at the cost of slower processing speed compared to 

spatially distributed reservoir computing. To compensate for this disadvantage, the 

dynamical behavior in the system must operate at N times the higher rate than in a 

spatially distributed reservoir with N internal states. 

 

Figure 2.5. Schematic view of a reservoir computer based on a single nonlinear 
node (NL) with delay (τ). Virtual nodes are defined as temporal 
positions in the delay line, Copyright © 2011, L. Appeltant et al. [62]. 

2.2.7. RC Evaluation Tests 

Reservoir computing has been applied to and optimized for many applications, 

from classification to time series prediction. Some benchmark tasks have been developed 
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to assess the performance of RC for these applications [23], summarized in Table 2-1. 

The RC system's input and target output signals are determined based on the selected 

task.  

In a pattern classification task, the input is a time series, while the discrete output 

value represents the class label. The input and output signals are temporal data in the 

time series prediction.  

Temporal XOR Task 

Temporal XOR is an XOR function which is integrated in time. The input is a 

random sequence of binary or real values, and the output is the XOR (or multiplication) of 

the input signals at a given time t, u(t), and the one before u(t − 1): y(t) = u(t). u(t  – 1). 

Prediction of this temporal benchmark requires a network's nonlinearity and memory 

properties. Training the network makes it possible to perform more delayed operations, 

which are useful for applications that require a larger memory of past information. In such 

cases, the network needs to remember inputs from further back in time. The XOR 

operation can be computed for the inputs u(t – k) and u(t – k - 1), where k is an integer 

representing the delay size. Importantly, the reservoir dynamics are independent of the 

RC system's output.  

Table 2-1. Applications and related evaluation tests on RC 

Problems Benchmark tasks 

Pattern classification Spoken digit recognition [63] 

Waveform classification [64] 

Human action recognition [65] 

Handwritten digit image recognition [66] 

Time series prediction Chaotic time series prediction [56] 

NARMA time series prediction [67] 

Pattern generation Wave generation [68] 

Limit cycle generation [69] 

Adaptive filtering and control Channel equalization [70] 

System approximation Temporal XOR task [71] 

Temporal parity task [71] 

Short-term memory Memory capacity [60] 
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NARMA Task 

The performance of RC systems can be examined using the nonlinear 

autoregressive moving average (NARMA) task. NARMA is a discrete-time temporal task 

with an nth-order time lag. The NARMA time series is given by [72] 

     𝒚(𝑡) =  𝛼 𝒚(𝑡 − 1) + 𝛽 𝒚(𝑡 − 1) ∑ 𝒚(𝑡 − 𝑖)𝑛
𝑖=1 + 𝛾 𝒖(𝑡 − 𝑛) 𝒖(𝑡 − 1) + 𝛿 (2-17) 

where α = 0.3, β = 0.05, γ = 1.5, and δ = 0.1 [72]. If we consider the NARMA task as a 

dynamical system whose output is given as equation (14), the stability of the system, its 

divergence to infinity, and its capability to store input streams, are determined by the 

parameters above. Thus, these values are constant for this task to keep the NARMA in a 

determined dynamical region. The input u(t) is a uniform distribution in the interval [0,0.5]. 

u(t − 1) is a one-step delayed input, y(t) is the current approximation of the system (using 

linear readout), and y(t − 1) is the prediction at the output of the RC system once u(t − 1) 

is given as input. The dependence of NARMA on its nonlinearity and long-time lags makes 

it a challenging problem for any computational system. For example, calculating 

NARMA10 requires a device capable of algorithmic programming and perfect memory of 

the input and the outputs of up to 10 previous time steps.  

Waveform Classification 

The waveform classification problem involves identifying different types of 

waveforms, such as sinusoidal, triangular, and square waves. It is a fundamental task in 

classification. Multiple waveform data with different frequencies are first generated to 

tackle this problem. The data can be presented to the RC system as an electrical signal 

or physical stimulation. Each waveform type is assigned a class label, and the linear 

readout layer is optimized to recognize the patterns in the data and correctly classify the 

waveforms. 

Memory Capacity 

The short-term memory capacity of the RC system is essential in applications 

requiring memory of past events. The concept of memory is based on the RC system's 

ability to retrieve past information from the reservoir using the linear combinations of its 

internal states. To evaluate the short-term memory capacity, we compute the k-delay 

memory capacity (MCk) may be computed, as introduced and derived in [60] 
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𝑀𝐶𝑘 = 
𝑐𝑜𝑣2(𝒖(𝑡 − 𝑘), 𝒚𝑘(𝑡))

𝜎2(𝒖(𝑡))  𝜎2(𝒚𝑘(𝑡))
 (2-18) 

where u(t − k) is a k-step delayed input and yk(t) = u(t − k) is its reconstruction at the output 

of the RC system. cov represents the covariance of the two under-study time series, and 

σ2 is the variance of the time series signal, either the input or the output of the linear 

readout layer. The overall short-term memory capacity is then approximated as:  

𝑀𝐶 =∑ 𝑀𝐶𝑘
𝑘𝑚𝑎𝑥

𝑘=1
  (2-19) 

2.3. Sample Physical RC Platforms 

2.3.1. Photonic RC 

The history behind photonic RC goes back to 2008 when a research group 

implemented a photonic RC using an on-chip network of semiconductor optical amplifiers 

(SOAs) distributed in a cascade way [73]. The power-saturation behaviour of an SOA is 

naturally a nonlinear function (tanh). As the first hardware realization of a photonic RC, 

the same group developed a passive, linear photonic reservoir using optical waveguides, 

optical splitters, and combiners on a silicon-on-insulator substrate (SOI), serving as a 

complex interferometer [74]. The existing technology fails at injecting inputs and making 

measurements at the rate of Gbit/s. Thus, the photonic reservoirs mostly used a photonic 

delay line (such as a spiral waveguide) to be integrated with the nodes to achieve slower 

dynamics. On the other hand, the system requires a nonlinearity to highly expand the input 

states, which was realized using a fast photodetector that detects the optical power, 

resulting in the reservoir states as Xn ∝ ‖E
2‖, where E is the optical field. Incorporating 

photodetectors in optical systems introduces an element of non-pure optical hardware, as 

the conversion of optical signals to electrical signals occurs within the detector.  

The first optical hardware implementation of a delay-based RC was based on an 

optical ring cavity [64], as shown in Figure 2.6. This optoelectronic RC uses a Mach-

Zehnder modulator for the nonlinear modulation of the incoming light (sin2), the system 

dynamics was employed as the source of the fading memory, and a fibre spool is used to 

provide the feedback delay line. In an all-optical delay-based RC, the nature of the input 
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and the reservoir is optical. The first two experimental implementations of this type were 

based on active devices. In one, SOA (providing the tanh nonlinearity) was placed in an 

optical ring cavity [75]. In another, a semiconductor laser (providing the ReLU-like 

nonlinearity) was located in a loop with a feedback delay line [37]. However, passive 

devices are an essential step towards developing high-speed, low-consumption, photonic 

computers because they do not require a power supply, making them energy-efficient and 

ideal for high-speed operation.  

 

Figure 2.6. Scheme of the optoelectronic reservoir computer, Copyright © 2012, 
Y. Paquot et al. [64]. The optical (electronic) path is depicted in red 
(blue) colour. 

A delay-based photonic RC system based on a semiconductor saturable absorber 

mirror placed in a ring-like optical cavity has been demonstrated [76], in which the external 

input modulates a light-emitting diode (LED), providing the injected light. Alternatively, a 

simple linear fibre cavity can be used as a reservoir computer if the output layer is 

nonlinear, such as detecting the propagated optical field inside the cavity using a 

photodetector. Apart from the photonic reservoirs, some researchers were focused on the 

physical implementations of the entire computers using photoelectronic devices [34], i.e., 

the input layer, readout layer and the reservoir itself. Summarized information on nonlinear 

and memory elements and the coupling mechanism is provided in Table 2-2. 

2.3.2. Memristors and Atomic Switches  

The three fundamental electrical components (resistors, capacitors and inductors) 

create relationships between current, voltage, charge, and magnetic flux. Memristors link 
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the charge and flux and were first theorized in 1971 by Chua [77]. The first nano-scale 

memristors were demonstrated in 2008 [77]. Two equations define memristors 

𝑉 = 𝑅(𝑥, 𝐼). 𝐼 (2-20) 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝐼) (2-21) 

where V and I are the voltage and currents of the device, R is the resistance, the function 

f is device-specific, and the variable x is a state variable used as a mathematical analogy 

of the physical changes within the device.  

Table 2-2. Nonlinearity, memory, and coupling in photonic RC 

Optical Element Input-Output Signal Nonlinearity Type 

Mach Zehnder modulator [40], [64]   Optical - Optical Sin2 

Semiconductor optical amplifier [73] Optical - Optical Tanh 

Semiconductor laser [37] Optical – Optical Diode nonlinearity 

Photodetector [33] Optical - Electrical Quadratic 

Optical limiter [78] Optical – Optical Sigmoid 

Fading Memory  

Fibre optics spool [64], Laser’s relaxation oscillations in SL [37], Fibre cavity, Multimode ring resonator 
[78] 

Coupling in spatially distributed RC Coupling in temporally distributed RC 

Multimode interferometers (MMIs) [33], laser-to-laser 
coupling using spatial light modulator (SLM) [79] 

Multiplexed in time [64] 

 

Atomic switches [80] switch between high- and low-conductance states with a 

negligible intermediate transition. Atomic switches have a current threshold at which the 

switch breaks. Due to the random fabrication of atomic switch networks, they are easier 

to produce than memristor networks.  

There is a wide range of research to exploit computing capabilities from memristors 

and atomic switches. In one approach, researchers created a memristive reservoir of silver 

nanowires [81]. This network contains different patterns within the various sections of the 

network, which can be combined using a readout layer for computations. Another research 

explored the possibility of reservoir computing using silver nanowire atomic switches [11]. 

Their networks have been used to generate higher harmonics of the input waves and 

generate various waveforms of the same frequency, highlighting the advantages of 
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network dynamics. The studies were then directed towards the topologies of memristor 

networks, the design of memristors operating in both the “learning” and “predicting” modes 

instead of continuous conductance updates, and the effectiveness of arbitrary memristor 

networks. 

2.3.3. Mechanical RC 

A mechanical model available as a physical reservoir is a network of mass-spring 

systems, which can be regarded as coupled mechanical oscillators. A mass-spring 

network reservoir where mass points are randomly connected to neighbouring mass 

points via nonlinear springs was first proposed in [24]. When each oscillator is described 

with a first-order ordinary differential equation (ODE), a system of N coupled oscillators 

can be described in the following general form 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝐹(𝑥𝑖(𝑡)) + 𝐺(𝑥1(𝑡), … , 𝑥𝑁(𝑡)),     𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 (2-22) 

where t represents continuous time, xi(t) is the state of oscillator i at time t, F determines 

the dynamics of isolated oscillators, and G is a coupling function. The input signal is given 

to some randomly chosen nodes as the external force, inducing nonlinear responses of 

the mass-spring oscillators. The output signal is obtained from a linear combination of the 

lengths of the springs, for instance. Simulations demonstrated the computing power of RC 

based on the mass-spring network in time series approximation [24].  

 

Figure 2.7. The proposed RC system based on a single beam and SEM image of 
the device [25]. 
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Micro-electro-mechanical systems (MEMS) technology can reliably produce small 

and energy-efficient devices exhibiting rich, dynamic behaviour, promising alternatives to 

computing using conventional electronics [82]. MEMS resonators often demonstrate 

nonlinear behaviour when driven above a certain critical amplitude. When oscillating at 

large amplitudes, the structure’s stiffness changes result in nonlinear resonance frequency 

shifts. Frequently, the Duffing equation for nonlinear oscillators is used to describe the 

motion of MEMS resonators.  

In their work, Dion et al. developed reservoir computers using a network of virtual 

nodes multiplexed in time, as depicted in Figure 2.7 [25]. The network utilizes a single 

oscillating silicon beam, which exhibits a classical Duffing nonlinearity, serving as the 

system's source of nonlinearity. This innovative approach enables using a single physical 

component to generate the nonlinearity required for reservoir computing, simplifying the 

system and reducing its complexity. The reservoir is electrically stimulated using amplitude 

modulation. The input signal (amplitude A and frequency fd) is preprocessed in the digital 

domain, modulated, and amplified before being supplied to the drive electrode. Measuring 

the response involves amplifying the piezoresistive signal, bandpass filtering it around fh, 

detecting its envelope, digitizing it, and reinjecting it with a delay and a gain in the 

preprocessing stage. The bandpass filter is locked at fh = 4fd due to the quadratic relation 

between the applied force to the beam, the drive signal, and the frequency shift in the 

stiffed beam. 

Later, a delay-based RC was developed to process the acceleration information 

provided by an inertial mass [12]. The device consists of an inertial mass electrostatically 

coupled to an oscillating beam through a gap. The motion of the inertial mass modulates 

an AC electrostatic field that drives the beam in its nonlinear regime. This nonlinearity is 

then used to implement machine learning in the mechanical domain.  

2.3.4. In-materio Computing 

In 2012, the European discovery project 'NASCENCE' was established to explore 

the computational properties of materials. NASCENCE employed a hybrid approach to 

create reservoir computers, combining computer and physical domains [41], [48], [83]. 

Reservoirs were configured using physical substrates consisting of single-walled carbon 

nanotubes (SWCNTs)/polymer composites spin-coated onto a PCB electrode array, as 
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illustrated in Figure 2.8 (a). Different materials were investigated, including 

SWCNT/PBMA, SWCNT/LC (liquid crystal), and gold nanoparticles, with the reservoirs 

eventually being based on SWCNT/PBMA composites.  

The behaviour of the SWCNT/PBMA composite was found to be nonlinear for low 

concentrations of SWCNTs, with the nonlinearity related to the percolation of conducting 

pathways within the composite [84]. The network's time scale or dynamics were 

determined by how fast the SWCNTs could create the paths due to the applied electric 

field. The coupling between nodes (i.e., specific electrodes) was determined based on 

random conductive pathways. An evolutionary algorithm in the computer domain was used 

to determine the optimal configuration of the substrate, the control voltage signals, and 

the locations of the input/output electrodes. The experimental results showed that these 

substrates could be configured and trained as reservoir computers. 

 
 

Figure 2.8. (a)  Hardware reservoir system and CNT/polymer deposited onto 
PCB electrode array, © 2019 M. Dale et. al. [84]. (b) a reservoir of in-
vitro cell cultures, Copyright © 2007 Elsevier B.V. All rights reserved. 
[85]. 

2.3.5. Biological Computers 

Some researchers developed in vitro RC with biological nodes for biological 

information processing. Microelectrode arrays (MEAs) are the main substrates to stimulate 

cultured cells or bacteria and measure their responses electrically [85]. A sample reservoir 

of in vitro cell cultures is shown in Figure 2.8 (b). In 2015, Obien et al. developed an RC 

based on cultured cells on MEAs, which was stimulated by two rectangular voltage pulses 

applied on the electrodes to generate action potentials of the cultured cells [85]. A leaky 

integrator was used to transform the MEA measurements into a time-continuous reservoir 

state, and a readout layer successfully classified the spike patterns. Some researchers 

have changed the direction toward the electrical stimulation protocols, where the influence 
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of low and high-frequency stimulations on living cortical networks was studied [86]. Some 

introduced optogenetic stimulation instead of electrical stimuli to control neural activities 

precisely [87]. Rat cortical neurons were cultured on MEAs as a reservoir in this study, 

and the reservoir was stimulated using random dot patterns. Finally, reservoirs based on 

other living organisms, such as the bacterium Escherichia coli (E. coli), were proposed 

[88], which react to different chemical inputs and generate complex temporal patterns. 

2.3.6. Quantum Reservoirs 

Reported quantum computers are based on qubits (or quantum bits), which contain 

information and can simultaneously be in the ground and excited states. The qubits 

considered for quantum reservoirs must represent a scalable physical system and be able 

to initialize their state. The scalability enables the building of larger reservoirs that can 

handle more complex computational tasks. If the qubits used are not scalable, building 

larger reservoirs with more qubits would be challenging, limiting the system's 

computational power. Additionally, the qubits should offer a coherence time longer than 

the gate operation time and have the capacity to conduct qubit-specific measurements 

[89].  

Over the years, researchers have developed several physical realizations of qubits 

such as silicon qubits, nuclear magnetic resonance, ion traps, superconducting qubits, 

and Nitrogen vacancies in the diamond. Obst et al. introduced a nano-scale reservoir with 

quantum dots and chemical compounds that change their absorption spectrum depending 

on their environment's pH or redox potential [90]. An input signal is given as a change in 

the chemical properties of the compounds, which affect the signal transfer between 

quantum dots randomly dispersed in space, encoded as an emission pattern. Simulations 

confirmed the potential computational performance in an image recognition task. 

2.4. Summary 

The main advantage of physical reservoir computing is that it creates highly 

efficient and scalable computing platforms that can perform complex computational tasks 

in real-time. Additionally, physical reservoir computing can be implemented using various 

materials and technologies, making it a versatile and adaptable approach to machine 

learning. Physical RC is promising in bringing low-power data processing closer to the 
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sensors or even inside them. Whereas with RNNs deployed on hardware processors, the 

amount of power being consumed for loading the weight values or training the network 

especially when the model size is large is comparably higher than physical RC. However, 

there are also some limitations to physical reservoir computing, such as the need for 

precise control over the physical system, the potential for noise and other disturbances to 

affect the system's performance, and the difficulty of integrating physical reservoir 

computing with traditional computing architectures.  
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Chapter 3.  
 
The Electro-Thermal Computing Platform 

The development of physical computing platforms starts with the design of physical 

reservoirs. The design of physical reservoirs begins with exploring devices and materials 

that exhibit nonlinear responses to various types of input stimulation, such as physical, 

electrical, optical, or chemical. This initial step involves identifying materials that possess 

the intrinsic memory property, which refers to the time it takes for the material to respond 

to a specific stimulus applied for a short time and return to its initial state. Once the target 

material or devices has been identified, the next step is to implement a neuron that can 

operate with the appropriate input signal (e.g., physical, chemical, electrical, optical, etc.) 

and produce target readings (e.g., physical, chemical, electrical, optical, etc.). This 

process involves selecting the correct type of neuron and configuring it nonlinearly to 

respond to the specific stimuli that will be applied. Finally, the role of connections inside a 

reservoir is to enable the flow of information among the neurons. Information flows within 

the network through energy exchange among the neurons in the physical domain. This 

energy can take various forms, such as electrical or optical energy, and can be either 

already present in the material or explicitly created to flow in the reservoir. Finding the 

right balance of the energy that flows among neurons is crucial to get the most efficient 

results. This chapter partly contains my article published in Advanced Materials 

Technologies entitled “A Neuromorphic Electrothermal Processor for Near‐Sensor 

Computing” [91]. All the steps taken to build a physical RC are explained in detail and the 

resulting physical RC is evaluated using standard tasks.  

3.1. Development of a Physical Computing Platform 

In the early stages of this research, we have been seeking new materials and 

devices for physical reservoir computing by exploiting the physics of sensors and sensor 

systems to go beyond linear readings of information and simplify the generation of context. 

One promising device for this purpose is the negative temperature coefficient (NTC) 

thermistor, a temperature-sensitive resistor. Thermistors are inexpensive devices used for 

temperature measurement and control in various applications. Their operating principle 

relies on the dependence of material resistivity on temperature. NTC thermistors are 
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generally made of nickel, cobalt, iron and silicon oxides, employed as pure elements or 

as ceramics and polymers. Thermistors such as bead, disk, and chip, as well as glass-

encapsulated thermistors, are categorized according to their manufacturing processes. 

Disk NTC thermistors (used in this work) have metalized surface contacts and are featured 

as accurate, stable, and highly sensitive. NTC thermistors have several attractive 

properties for physical reservoir computing, including a wide resistance range, fast thermal 

response time, and high precision and accuracy. In this Chapter, we will investigate the 

use of NTC thermistors for physical reservoir computing and explore their potential for 

real-time data processing under standard tasks. 

Nonlinearity 

NTCs experience a reduction in their resistance when their temperature is 

increased. The resistance of an NTC thermistor as a function of temperature, 𝑇, is given 

by [92] 

𝑅(𝑇) = 𝑅(𝑇0) 𝑒
𝛽(
1
𝑇
−
1
𝑇0
)
 

(3-1) 

where 𝑇0 is the nominal operating temperature, and 𝛽 is a material constant. Current 

passing through a thermistor generates heat, raising its temperature above the 

environment. Its electrical power is calculated as 𝑃𝐸 = 𝑉. 𝐼, where I and V are the is the 

current passing through and the voltage drop across the thermistor, respectively. Newton’s 

law of cooling describes the heat transfer rate as [92] 

𝑃𝑇 = 𝐾(𝑇 − 𝑇0) (3-2) 

where K is the dissipation constant in mW/°C, which is a measure of the thermal 

connection of the thermistor to its surroundings. At equilibrium, these two rates (i.e., 

electrical and thermal power) must be equal, giving the current-voltage (IV) characteristic 

of the thermistor as: 

𝑉. 𝐼 = −
𝑇𝑎  𝐾 ln (R(T) R(𝑇0)⁄ )

(ln (R(T) R(𝑇0)⁄ ) + 𝛽 𝑇0⁄ )
 

(3-3) 

The IV characteristic of NTC thermistors exhibits interesting nonlinearities as a 

result of the self-heating of the device under large currents (see Figure 3.10 (a)). This 



36 

nonlinearity is a fundamental criterion in devices performing as reservoir nodes. When 

used as a sensor, the thermistor's resistance is measured using a small current to avoid 

self-heating. Under large currents, however, the device self-heats (Joule heating), which 

causes the resistance to decrease. If driven by a current source, the resistance drop 

continues until electrothermal equilibrium with the environment and the device reaches a 

stable operating point. When driven by a voltage source, the current through a device can 

continue to increase as its resistance drops due to self-heating. This can lead to potential 

damage to the device if the current is not limited through another mechanism. 

Fading Memory 

In addition to their nonlinear response to slow-changing signals, thermistors exhibit 

an interesting dynamic response to their input electrical excitation. This time-dependent 

response results from the heat-up and cool-down times of the thermistors, which are 

governed by the heat conduction dynamics of the medium (see Figure 3.1 (b)). This 

dynamic response provides the fading memory function.  

When the thermistors operate in their self-heating mode, they show a dynamic 

response. The voltage across the NTC in response to an abrupt change in its current can 

be represented by 

𝑉𝐿𝐻(t) = 𝑉𝐿𝐻1  [1 − exp (
−𝑡

𝜏1
)] + 𝑉𝐿𝐻2  exp (

−𝑡

𝜏2
) (3-4) 

where t in this context shows a continuous time, and 𝑉𝐿𝐻1 and 𝜏1 represent the fast 

dynamics due to the abrupt increase in the current passed through the NTC. As a result 

of this change, the temperature of the NTC increases. Once the thermistor self-heats, its 

resistance decreases with a thermal time constant of 𝜏2. 𝑉𝐿𝐻2 expresses the change in the 

voltage until it reaches the equilibrium state. While the voltage for a decrease in the current 

will be: 

𝑉𝐻𝐿(t) = 𝑉𝐻𝐿1 exp (
−𝑡

𝜏1
) + 𝑉𝐻𝐿2  [1 − exp (

−𝑡

𝜏2
)]   (3-5) 

Figure 3.1 (b) illustrates the dynamics of the NTC voltage due to the change in the 

current passing through it. This dynamic response can be utilized to leverage the desired 

fading memory. 
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Figure 3.1. (a) V-I characteristics of an NTC thermistor (NT0515291) and (b) 
thermal dynamics of the NTC thermistor for changes in the current 
injected into the NTC. 

The voltage across the NTC thermistor in response to an abrupt change in its 

current can be represented by a thermal time constant (TTC), a measure of the slow 

dynamics of the thermistor. The TTC is determined by the time it takes for the thermistor 

to reach ~63% of its maximum elevated temperature from the ambient temperature when 

it is driven into its self-heating mode. As highlighted earlier, 𝜏2 describes the thermal time 

constant of the NTC thermistor. The TTC for the thermistor (NT0515291) is reported in the 

datasheet and measured to be approximately 20 seconds.  

Coupling 

Coupling between thermistors requires a flow of energy between them which can 

happen in electrical or thermal domains. The first type of coupling is thermal coupling, 

when the heat generated by one thermistor can affect another nearby one. This can create 

recurrent nodes within the reservoir but is more effective on a micro scale when the 

thermistors are integrated onto a single substrate. The second type of coupling is electrical 

coupling, which can be achieved, for instance, by using a diode and a series resistance. 

Different types of electrical coupling structures can be used in different reservoirs. 

Electro-Thermal Neurons 

We developed active and passive neurons for potential use in a physical 

computing system. An active neuron uses nonlinear feedback in an amplifier with a 

(s

)) 

(s) 
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significant gain to produce a nonlinear output. As illustrated in Figure 3.2 (a), this topology 

consists of a high-gain amplifier and a nonlinear function in the feedback path.  

𝑌 = 𝐴 (𝑋 − 𝑓(𝑌)) (3-6) 

where X and Y are the input and output of the system, respectively, A is the amplifier gain, 

and f is the nonlinear feedback. Since the feedback is nonlinear, the output will behave 

nonlinearly by considering a high gain, A, for the amplifier:   

𝑌 = 𝑓−1(𝑋) (3-7) 

Inverting/non-inverting amplifiers with an NTC thermistor in the feedback are 

potential options for such a system, as illustrated in Figure 3.2 (b). This way, the current 

flowing through the thermistor will be independent of the temperature and/or NTC 

thermistor. The system will directly transfer the nonlinearity of the thermistor to the output 

in magnitude. The coupling in a reservoir based on these nodes can be realized using a 

coupling resistor Rc. The coupling resistor can be adjusted to inject an attenuated version 

of the second physical state, x2. 

𝐼1 =
u(t)

𝑅𝑖𝑛
, 𝐼𝑐 =

𝑥2(𝑡)

𝑅𝑐
 (3-8) 

𝑥1(𝑡) = −𝑅𝑁𝑇𝐶(𝐼1 + 𝐼𝑐) (
u(t)

𝑅𝑖𝑛
+
𝑥2(𝑡)

𝑅𝑐
) 

(3-9) 

 

Figure 3.2.  (a) A closed-loop system with dynamic, nonlinear feedback and (b) 
an inverting amplifier based on an NTC thermistor as the dynamic, 
nonlinear feedback. The coupling is shown in blue colour. Here, x1 
and x2 are the output of neurons 1 and 2, respectively. 
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Figure 3.3. Characteristics of feedback-based nodes for various input resistance 
values. 

As can be seen in Figure 3.3 (a), by changing the input resistance value, Rin, the 

current injected into the system is changed. As a result, the nonlinear region seems to be 

shifted, promising adjustable nonlinear nodes. 

We have implemented an XOR gate using a reservoir composed of three active 

nonlinear nodes based on inverting amplifiers. The measurement results have 

demonstrated promising outcomes for the temporal XOR task. This achievement 

demonstrated the potential of reservoir computing for solving computationally challenging 

tasks using relatively simple hardware. The reservoir consisting of a network of nonlinear 

nodes can generate complex dynamics that enable efficient computation of a given task. 

In this case, implementing an XOR gate using a simple reservoir of only three active 

nonlinear nodes highlights the efficiency and effectiveness of reservoir computing. 

The second active structure may be constructed by positioning the NTC thermistor 

in the drain terminal of a metal oxide semiconductor field-effect transistor (MOSFET), as 

shown in Figure 3.4 (a). By doing so, the MOSFETs nonlinearly convert the input voltage 

signal into a current signal. The nonlinear current combined with the thermal memory and 

nonlinearity from the self-heating of the NTC thermistors results in a highly nonlinear 

neuron. This approach offers several advantages, including increased computational 

power and improved accuracy. The use of a highly nonlinear neuron can enable more 

complex computations to be performed, leading to improved accuracy and better 

performance. The coupling, though, can be realized using another transistor, which injects 
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additional current into the NTC depending on the neighbour state’s value.  

𝐼1 = 𝐾1(𝑢(𝑡) − 𝑉𝑡ℎ)
2, 𝐼𝑐 = 𝐾𝑐(𝑥2(𝑡) − 𝑉𝑡ℎ)

2 (3-10) 

𝑥1(𝑡) = 𝑉𝐷𝐷 − 𝑅𝑁𝑇𝐶(𝐼1 + 𝐼𝑐)(𝐾1(𝑢(𝑡) − 𝑉𝑡ℎ)
2 + 𝐾𝑐(𝑥2(𝑡) − 𝑉𝑡ℎ)

2) (3-11) 

where K1 and Kc are the parameters specific to the transistor and can be scaled to shift 

the nonlinearity of nodes, VDD is the supply voltage, and Vth is the threshold voltage of the 

transistor. Figure 3.4 (b) illustrates the nonlinear responses of the various nodes using 

various transistor sizes, K1, with respect to the input.  

 

 

 

(a) (b) 

Figure 3.4. (a) An active node based on MOSFETs with nonlinear coupling and 
(b) characteristics of an active nonlinear node with varying width 
sizes for the MOSFET, K1. The coupling is shown in blue. 

On the other hand, passive neurons do not have a gain or any other type of 

amplification and are driven by the input signal. They can be used to introduce nonlinearity 

into a system and offer simple and low-cost microfabrication/implementation. The simplest 

passive structure for reading the electrical signal at states is the resistive divider in a single 

branch, as shown in Figure 3.5 (a), where x is the state voltage. The neurons can be driven 

into various operating regions by adjusting the R1. The possible coupling between the 

nodes can be realized using a diode and a resistor, as shown in Figure 3.5 (b), affecting 

the nonlinear response of both nodes. However, one may use coupling to create a delayed 

response. In that case, we may not be able to develop delayed states using passive 

structures, and we mainly use them to create various orders of nonlinearity. 
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The First Proposed Reservoir 

It is important to consider specific factors and considerations to derive an analytical 

model for a reservoir in the proposed reservoir computing platform. The first factor is that 

the energy flow is one-directional due to the implementation of coupling using diodes. In 

a physical RC, diodes can be used to ensure that energy flows in a specific direction rather 

than being able to flow in both directions. The second factor considers that the electrical 

energy flows from a neuron with high energy to one with lower energy, similar to the 

concept of entropy in thermodynamics. This energy flow helps the network converge to a 

stable state. Energy exchange in such a physical RC depends on the input signal at each 

neuron (the amount of thermal energy generated by the neurons) and the diodes’ 

direction. Thus, the coupling weights and the weights inside the reservoir are typically 

nonlinear, affecting how energy flows through the network. 

When deriving an analytical model for the reservoir, it is essential to consider that 

even though the same device is used, its temperature and resistance may vary based on 

the input signal received at each neuron in the network. Additionally, the behaviour of the 

neurons may differ based on the bias resistors used. These factors must be considered 

when developing an accurate analytical model of the reservoir. However, the memory is 

constant for all the neurons inside the reservoir, so we may not be able to integrate various 

orders of memory into the network at this point. This can limit the network's ability to 

process complex input patterns or sequences if other solutions to this challenge are not 

introduced.  

While a single neuron, as shown in Figure 3.6 (a), is formulated as: 

𝑉𝑖𝑛 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗
) (3-12) 

If the neuron (neuron j) drives another neuron (neuron j+1) with one branch of one-

directional energy transfer, as shown in Figure 3.6 (b), the behaviour of the neuron j is 

described as: 
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Figure 3.5. (a) A single branch NTC-based node, and (b) an example of coupled 
nodes. 

𝑉𝑖𝑛 =

{
 
 

 
 𝑉𝑗 (1 +

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
𝑉𝑗+1 𝑉𝑗 ≥ 𝑉𝑗+1 + 𝑉𝐷

𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗
) 𝑉𝑗 < 𝑉𝑗+1 + 𝑉𝐷

 (3-13) 

If the neuron (neuron j) drives another neuron (neuron j+1) with one branch of one-

directional energy transfer and, at the same time, is driven by another neuron (neuron j-

1), as depicted in Figure 3.6 (c), one may describe the relationship as: 

𝑉𝑖𝑛 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 2⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
(𝑉𝑗−1 + 𝑉𝑗+1) (3-14) 

A general formula for describing the behaviour of a neuron (neuron j) with m 

connections is, only if 𝑉𝑗 > 𝑉𝑗+(1..𝑚) + 𝑉𝐷 for all: 

𝑉𝑖𝑛 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 𝑚⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
∑𝑉𝑖

𝑗+𝑚

𝑖=𝑗

 (3-15) 
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Thus, the state of the neighbouring neurons (e.g., 𝑉𝑗+1) and the input signal 

received at each neuron (𝑉𝑖𝑛,𝑗) affects its state (𝑉𝑗). As discussed and illustrated earlier, 

the nonlinearity comes from the temperature dependence of the thermistor’s resistance, 

𝑅𝑁𝑇𝐶(𝑇𝑗). The temperature of the thermistor (𝑇𝑗) in the proposed neuron structure 

depends on the input signal, 𝑉𝑖𝑛,𝑗 and the state of the neuron, 𝑉𝑗. To align with the 

definition of echo state networks, we can illustrate the equation (3-15) for neuron j as: 

𝑊𝑖𝑛
(𝑗)
𝑢 = 𝑉𝑗 (1 +

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 2⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
(𝑉𝑗−1 + 𝑉𝑗+1) (3-16) 

Even though it seems to be hard to solve the equation (3-16), the nonlinear 

interactions of the neurons with each other are evident from this equation. For a reservoir 

of N neurons, the weight matrix would be of the form: 

𝑊𝑟𝑒𝑠
(𝑁×𝑁) = [

𝑊11 … 𝑊1𝑁
⋮ ⋱ ⋮
𝑊𝑁1 … 𝑊𝑁𝑁

] (3-17) 

For a fully connected network, all the matrix elements are non-zero. However, 

based on the signals received at each neuron and whether the diodes are turned on or 

off, some or all non-diagonal elements can be zero. Thus, the weight matrix will self-adjust 

depending on the signals received at the neurons, either from input or neighbouring 

neurons.  

There are two other types of coupling structures used in this chapter, nonlinear 

summing two states using a neuron driven with a control signal (Figure 3.7 (d)) and 

extraction of temporal features (Figure 3.7 (e)). Nonlinear summing, also known as 

nonlinear element-wise summing in computer science, is a way in which the summing of 

neurons can aid in feature extraction by allowing the network to learn complex, nonlinear 

relationships between the input data and its features.  

𝑉𝐶 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 2⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
(𝑉𝑗−1 + 𝑉𝑗+1) (3-18) 
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Figure 3.6. Different coupling mechanisms employed in the reservoir. 

The reservoir could capture long-term dependencies in sequential data using a 

temporal element-wise coupling, essential for time series analysis. The ability to 

selectively retain or forget information from previous time steps allows the network to 

maintain a memory of past inputs while adapting to new input patterns. 

𝑉𝑖𝑛,𝑗 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
𝑉𝑗+1 

𝑉𝑖𝑛,𝑗+1 = 𝑉𝑗+1 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗+1)

𝑅𝑗+1‖𝑅𝑐
) −

𝑅𝑁𝑇𝐶(𝑇𝑗+1)

𝑅𝑐
𝑉𝑗 

(3-19) 

The proposed physical reservoir is a nonlinear dynamical system in which the 

coupling weights between the neurons change over time with every input signal received. 

These nonlinear, varying coupling weights in the reservoir can be beneficial in processing 

signals because they can introduce nonlinear interactions between the reservoir nodes. 

These nonlinear interactions can lead to a more complex and dynamic response to input 

signals, which can be helpful in certain types of signal-processing tasks. Nonlinear 

interactions within the reservoir can enhance its ability to extract relevant features from 

input signals, thereby improving its performance in various tasks such as pattern 

recognition and time-series prediction. 
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Figure 3.7. Different coupling mechanisms employed in the reservoir: (a) 
nonlinear summing of two states using a neuron driven with a control 
signal and (b) extraction of temporal features. 

3.2. The Electrothermal Reservoir: The Prototype 

In this study, an electrothermal reservoir developed using NTC thermistors is 

introduced. Advanced Material Technologies published this work [91], and the results 

demonstrate the effectiveness of this approach for generating more complex and efficient 

dynamics in various applications.  

The Electrothermal Reservoir  

The electrothermal reservoir is composed of a passive network of randomly 

coupled NTC thermistors. We utilized NT0515291 from Ametherm for the NTC 

thermistors, offering desired nonlinear characteristics. Each NTC is biased in a different 

but close to the nonlinear region using a bias resistance picked among 47Ω, 100Ω, 150Ω, 

220Ω, 280Ω, 330Ω, and 470Ω. These bias resistances set the diagonal elements of the 

reservoir’s fixed weight matrix, Wres, to the range of [0.03 0.24].  

SB130-T Schottky diodes (Diodes Incorporated) and 10Ω resistors were used to 

implement one-directional, random electrical energy paths in the network. These 

connections set the off-diagonal elements of the reservoir weight matrix, Wres. While these 
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elements ought to be fixed in the reservoir, the proposed coupling offers off-diagonal 

weights, a nonlinear function of the input signal at each node and depends on the energy 

state of the two neighbouring nodes. Thus, these elements provide various off-diagonal 

weight values regardless of their similar and exact coupling. Another aspect is the direction 

of the energy flow set using these one-directional couplings, which are set to flow the 

energy from the highest gradient to the lowest. Additionally, almost all reservoir nodes are 

driven by the input signal, and some are biased using a control signal either in a self-

heating mode or just below that.  

Unless otherwise stated, the time step is set to 0.25*TTC, a quarter of the thermal 

time constant of the under-study NTC. The electrothermal reservoir was built on a regular 

printed circuit board (PCB), as shown in Figure 3.8. The connections between the source 

and measurement equipment were realized using jumper wires. The NTCs were mounted 

at a 0.5 cm distance from each other and 1 cm from the substrate to prevent heat 

convection among the reservoir nodes. Diodes are mounted to the back end of the PCB 

substrate to avoid the possible temperature-dependent shift in the diode characteristics 

due to the generated heat in the thermistors.  

  

Figure 3.8. The prototype mounted on a PCB. 

Figure 3.9 illustrates the realized thermo-reservoir with a size of 48, consisting of 

6 sub-reservoirs with eight principal nonlinear neurons. Each sub-reservoir of size eight is 

driven with shifted inputs {u(t), u(t-d), …, u(t-5d)} in the range of d = {0, …, 5}, where d is 

the timestep at which the data are introduced to the reservoir.  

Figure 3.10 illustrates the couplings where input or control signals can drive all or 

some states. Control signal biases the states, either in a self-heating mode or just below 

that. Each state driven by the input signal can share some of its electrical energy with the 
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lower state through the designated path in an ordinal way. However, when a control signal 

is used, the lower energy states share more of their energy rather than the states with 

higher energy levels, creating a highly nonlinear electrical energy exchange between the 

states. The states of the reservoir are depicted in Figure 3.11. 

 

Figure 3.9. Realized thermo-reservoir consisting of 6 sub-reservoirs with eight 
principal nonlinear neurons each, driven by shifted inputs {u(t), u(t-
d), …, u(t-5d)} in the range of d = {0, …, 5}." 

 

Figure 3.10. The electrical energy exchanged between coupled nodes. Each node 
is represented by a neuron having a distinct bias resistance value. 
The diagram highlights the variability in bias resistance values across 
the neurons by labelling the neurons by their resistance value. 
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Figure 3.11. States of a rich thermo-reservoir consisting of six sub-reservoirs, 
each with eight nonlinear neurons. The sub-reservoirs are driven with 
shifted inputs in the range of 0 to 5 timesteps. 

Input Layer 

For physical RC, the input layer may be realized in different ways. The most 

straightforward approach scales the input data to the reservoir and applies it to the 

nonlinear nodes of the reservoir). A richer nonlinear dynamic may be created by keeping 

a history of the input data and applying it sequentially to the reservoir (Figure 3.12). Both 

these approaches may be employed for near-sensor processing applications. However, 

the additional computational power offered by the second approach necessitates using a 

sample-and-hold mechanism which adds to the system's complexity. A final approach in 

physical RC is to remove the input layer and build the reservoir from nonlinear, coupled 

sensors. The output layer then monitors the state of the reservoir and produces a signal 

that reflects the state of the reservoir. In this case, the reservoir state changes directly with 

the parameter of interest. 

The input layer used in this study, as shown in Figure 3.12, consists of an analog 

shift register, shifting the input signal up to five timesteps, mapping six shifted, sequential 

signals {u(n), u(n-1), …, u(n-5)} into the reservoir.  

Output Layer 

The output layer runs a linear regression and decision tree implemented in a 

MATLAB® environment for the time-series prediction and event detection. The code is 

designed to apply to all the selected output signals from the reservoir (i.e., 48 temporal 

signals). 
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Figure 3.12. The realized input layer for the electrothermal RC. 

3.3. Benchmark Analysis 

The proposed electrothermal reservoir was utilized to perform two tasks. The first 

task involves using the reservoir to predict a times-series signal. The reservoir detected a 

particular event in incoming data for the second task. The data collection setup is 

illustrated in Figure 3.13. The input signals and output data were collected using a National 

Instruments PXIe-6363 I/O module through a LabVIEW interface at a rate of one sample 

per second. Due to the limited number of data acquisition channels (32 AI channels), I 

utilized an NI switch module (NI PXI-2564) to measure various signals if more than 32 

neurons were employed.  

 

 

 

Figure 3.13. Data acquisition setup. 
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3.3.1. Time-Series Prediction 

There are some real-life applications where continuous monitoring of a parameter, 

such as the concentration of specific gas species in an environment, is vital. The 

performance of the physical computer can be evaluated using a time-series signal to 

assess its capability in detecting a particular output function (e.g., concentrations) with the 

time history of past incidents. In this case, a standard test uses a nonlinear autoregressive 

moving average (NARMA) of the input signal. The input signal is a randomly distributed 

sinusoidal, sawtooth, and square waveform at different frequencies with amplitudes falling 

from 4.5V to 6.5V. NARMA is a discrete-time temporal task with an nth -order time lag. 

In evaluating the NARMA time series prediction, a dataset of size ~570 was used, 

which was split into a training set and a testing set. The training set comprised 70% of the 

dataset, while the remaining 30% was allocated for testing. This division allowed for the 

model to be trained on a substantial amount of data, which could improve its accuracy, 

while also ensuring that the model's performance was evaluated on a sufficiently large 

and diverse dataset. Figure 3.14 (a) shows the predicted and real values for various orders 

of nonlinearity and memory requirement (represented by n). An electrothermal reservoir 

with 48 nodes can compute up to a 5th-order NARMA with good agreement between the 

actual and predicted values (see Figure 3.15 (a)). Increasing the orders of nonlinearity 

and memory beyond the 7th order leads to increasing error. Recorded root mean squared 

error (RMSE) reveals that the prediction error is less than 56mV for n ={1,2,…,5}, while it 

experiences an increase and reaches 222mV for NARMA10. 

Developing physical signal processors needs to account for the time the system 

needs to respond to the input. The system will ignore changes at the input much faster 

than its response time (i.e., fast changes are filtered). On the other hand, waiting too long 

for the system response to become stable increases the computational time. For the 

electrothermal computer, we used the NTC's thermal time constant (TTC) (i.e., the time 

required for the voltage across the thermistor to reach 63.3% of its final value from 0) as 

the measure of response time. Figure 3.15 (b) compares the system's response to inputs 

that vary at different time scales (0.5 TTC and 1.5 TTC). As can be seen, when the input 

changes quickly compared to the natural response time of the reservoir, the output retains 

a significant portion of the past events. The stronger dependence on past events can be 

balanced by using a larger reservoir exhibiting a more complex dynamic behaviour (Figure 
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3.15 (c)). These results demonstrate the importance of choosing the correct reservoir 

parameters for the accuracy and speed of computations in physical sensor computing. 

 

 

 

n = 1 

 

 

 

n = 3 

 

 

 

n = 5 

 

 

 

n = 7 

Figure 3.14. The capability of a reservoir of size 48 in computing problems with 
different levels of memory requirements and nonlinearities. 

3.3.2. Event Detection 

This experiment aimed to evaluate the capability of a physical computer, 

specifically an electrothermal computer, to detect a specific event based on incoming time-

series data. The approach taken in this experiment could potentially be used to build 

event-based triggers that could wake up an intelligent system to perform specific tasks. 

For example, the system could be designed to detect a particular seismic activity, 

triggering an alert to be sent out or other action to be taken. 
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(a) 

 

 

(b) 

 

(c) 

Figure 3.15. (a) RMSE and R2 of the reservoir versus various complexity levels of 
the under-study task (n). (b) Transient response of a reservoir node 
at various fs. (c) Importance of the fs on the reservoir performance. 

In this experiment, the input signal was a decaying Gaussian pulse waveform 

distributed in various time windows with varying pulse widths. The specific events were 

mounted onto another pulse signal with various levels to challenge the system further. The 

amplitude and duration of the events changed over time, making the event-detection 

problem harder to solve. A limited demonstrative set of 52 specific events was introduced 

to the electrothermal computer. The electrothermal processor was trained to detect these 

events. As depicted in Figure 3.13, the experiment results showed that the electrothermal 

computer could detect the events with 98% sensitivity and 100% specificity to all events. 

In other words, the computer could correctly identify almost all events with few false 
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positives. We also achieved a 99% accuracy in event detection, indicating that the system 

was highly effective at identifying specific events. A truth table for the event detection is 

presented in Figure 3.17.  

 

 

Figure 3.16. Performance of the proposed electrothermal reservoir in detecting a 
specific event from non-event instances. 
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Figure 3.17. The truth table for the specific event detection among non-event 
instances of the proposed electrothermal reservoir. 
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3.4. Summary 

Physical signal processing presents a plethora of opportunities for developing 

specialized computers suitable for various applications. In particular, sensor signal 

processing can significantly benefit from this approach since, in most cases, the context 

produced from sensor data are more valuable than the raw data. This chapter introduced 

the electrothermal RC model to develop physical signal processors, focusing on cases 

more suitable for physical realization. The chapter also covered relevant aspects of 

modelling for the electrothermal RC. Similar concepts can then be applied to develop 

integrated physical computers using miniaturized integrated thermistors. Electrical 

coupling was used for creating connections within the developed reservoir in this chapter. 

However, since the platform operates based on the self-heating of thermistors, another 

potential coupling mechanism might be thermal coupling, where the generated heat is 

transferred from one neuron to another, as mentioned earlier in this chapter. The next 

chapter focuses on the development of 3D-printed reservoir computing platforms based 

on thermal coupling. 
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Chapter 4.  
 
Exploring the Potential of 3D Printed Computing 
Platforms  

Additive Manufacturing or 3D printing is a rapidly developing technology that 

enables the fabrication of complex, multi-layer, and even multi-material structures at once 

using various printable materials [93]. Advances in 3D printing technologies and additive 

manufacturing have been utilized to develop 3D-printed sensors and hence, 3D-printed 

intelligent systems (i.e., structures with embedded sensing capabilities) [94]. However, 

typical 3D-printed systems, including 3D-printed sensors, are generally passive 

components, lacking computational capability. 

The desire to add computation capability in analog or digital domains has 

motivated research on developing 3D-printed transistors and active components [95]. 

Much of this research has thus far focused on developing transistors for analog signal 

processing or conventional von Neuman digital processors. However, these transistors 

are far from silicon devices in terms of performance and are printed at much lower 

densities than the existing silicon microelectronic chips, severely limiting their utility as 

computational elements. 

Alternatively, 3D-printed neuromorphic devices and processors have been 

proposed to add computing power to 3D-printed structures [96]–[98]. 3D-printed optical 

signal processors have also been proposed as a solution to circumvent the challenges on 

the electrical side for processing large quantities of input data [99]. Nonetheless, the 

existing solutions for signal processing with 3D-printed structures face significant 

challenges in scaling up the computation capabilities or requiring sophisticated tools to 

recover the processed data. 

The use of 3D printing technology in developing near-sensor computing platforms 

has the potential to revolutionize the field of customized intelligent system development. 

The ability to mass-customize processors, combined with the precise control of physical 

structure offered by 3D printing, allows for the creation of small and lightweight processors, 

making them ideal for many applications. Furthermore, 3D printing can also reduce the 

cost and time of production, making it more accessible for a wide range of applications. 
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Additionally, 3D-printed computing platforms can offer real-time processing while easing 

the integration of various sensors, leading to improved performance and efficiency. 

 The material used for 3D-printed computing platforms is critical for the device's 

performance. Carbon-filled Polylactic Acid (PLA) is a conductive filament that is 

particularly well-suited for this application. This material is a thermoplastic polymer 

reinforced with carbon particles, giving it high electrical conductivity. Additionally, it is a 

low-cost and widely available material that is easy to work with using fused deposition 

modelling (FDM) technology. FDM is presently the most common 3D printing technology, 

where a filament of the printed material is melted and deposited selectively using a printer 

head. Depending on the type, the nozzle temperature for printing these conductive 

filaments is between 120℃ to 250℃ [100].  

We will introduce carbon-filled PLA as a conductive filament for 3D-printed 

computing platforms as an appropriate choice due to its electrical conductivity, low cost, 

wide availability and suitability for FDM technology. It also provides nonlinear and time-

dependent responses beneficial for reservoir computing. Thus, this chapter focuses on 

studying the behaviour of 3D-printed neurons and reservoirs. We build a mathematical 

model for the 3D-printed reservoir with the mathematical weights defined based on the 

electrical and thermal processes involved in the reservoir. Physical phenomena involved 

with the thermal coupling of the neurons are described by heat transfer, and the electrical 

coupling follows Ohm’s law. Finally, we will compare the derived model with the 

experimental analysis and numerical simulation of the developed 3D-printed reservoir 

using COMSOL Multiphysics.  

4.1. The 3D-Printed Neuron 

The 3D printing technology with carbon-filled PLA as a conductive filament offers 

a solution for developing resistive networks for reservoir computing. These resistors are 

printed using FDM technology, which involves the melting and depositing of a filament of 

the printed material selectively using a printer head. 

One of the key advantages of using 3D-printed resistors is that they exhibit 

significant nonlinear responses due to self-heating at relatively low temperatures (50-

60℃). Figure 4.1 illustrates the reaction of a 3D-printed resistor under different conditions. 
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The resistors exhibit a nonlinear response under high currents due to self-heating. The 

resistors exhibit a time-dependent response if the time spent at each current level is 

shorter than the time needed to reach thermal equilibrium. For these IV characteristics, I 

swept the current passing through a piece of 3D printed resistor forward and backward 

and measured its voltage after various time intervals by Keysight 2901A precision 

source/measure unit (SMU).  

Δ𝑡 = 1𝑠 Δ𝑡 = 5𝑠 Δ𝑡 = 10𝑠 

 

Figure 4.1. The current-voltage characteristic response of a free-hold 3D-printed 
resistor under different test conditions. In each case, the resistor's 
current was increased from zero to the maximum Imax and back to 
zero. The resistors’ current was held constant for Δt (shown at the 
top) before measuring the voltage across the resistor and proceeding 
to the next step. Notably, under these test conditions, the resistor 
response is repeatable, indicating a permanent change to material 
response has not yet occurred. 
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Figure 4.2. The measurement setup for IV characteristics. 

   

(a) (b) (c) 

Figure 4.3. (a) The resistor/neuron model, (b) the 3D model of a resistor created 
in SolidWorks where the black colour shows the resistor printed 
surrounded by regular PLA, and (c) the 3D-printed resistor. Note that 
regular PLA is available in different colours to print, while C-PLA is 
available in black colour. There are not significant differences in 
terms of thermal/mechanical properties between regular PLAs with 
different colours.  

The setup for these measurements is shown in Figure 4.2. The nonlinearity and 

time dependence in the responses of these resistors makes them ideal candidates for 

developing physical RC systems based on ESN topology. Figure 4.3 illustrates the 3D 

model of a 3D-printed resistor developed in SolidWorks and its printed version. 

The advancements in developing physical computing platforms promote the 

importance of connecting RC to physical RC to enhance our understanding of the design 

process. Nonlinearity in physical systems can arise from materials or devices while fading 
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memory may be attributed to the time required for these materials or devices to respond 

to a stimulus. The connections between neurons within an RC play a vital role in facilitating 

the exchange of information. Although the connections among neurons in a physical RC 

can be realized using electrical couplings, thermal coupling can be an alternative in 

systems employing 3D-printed temperature-sensitive elements. Heat is generated as 

current (i.e., the input signal) passes through a 3D-printed resistor, and it can transfer from 

one neuron to another under specific conditions. Consequently, thermal coupling involves 

establishing pathways for heat transfer among neurons/resistors, with heat transfer 

becoming a particularly crucial aspect to investigate. In the case of a reservoir consisting 

of 3D-printed resistors, thermal coupling occurs when these resistors/neurons are printed 

close to each other, ensuring a short path for the generated heat to transfer from one 

resistor/neuron to another. 

4.2. Analytical Model 

A computational model was introduced in Section 2.1 for feedforward and recurrent 

neural networks. Feedforward NNs, in their most general form, are modelled using the 

weight matrices connecting neurons in different layers, W, the input signal u, and the 

response of neurons, x, i.e., f(W, u, x). The weights are typically time-independent and 

learned during training to optimize the network's performance on a specific task.  

RNNs, on the other hand, are neural networks designed to process sequential or 

time-series data by capturing temporal dependencies. RNNs are modelled using the 

weight matrix connecting the previous hidden state to the current hidden state Whh, the 

input signal u(t), and the response of neurons in the previous and current time steps, x(t-

1) and x(t), i.e., f(Whh, u(t), x(t), x(t-1)). The weight matrices in RNNs, similar to NNs, are 

also time-independent. During the training process, the weights are typically learned 

through backpropagation through time. 

In digital implementations of RC, the weight matrix is typically fixed and time-

independent, similar to NNs and RNNs. Therefore, the reservoir can be modelled by f(Wres, 

u(t), x(t), x(t-1)). However, in physical RC, the weight matrix, or its equivalent, can be time-

dependent. This time dependence arises from the dynamic properties of the physical 

components used to implement the reservoir. By leveraging the time-dependent nature of 

the physical system, physical RC systems can exhibit rich dynamics and complex 
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computations, which are beneficial for time-series analysis or other tasks. The time 

dependence in the weight matrix allows the physical system to adapt and respond to input 

signals, enhancing the reservoir's computational capabilities for processing time-varying 

data. It is important to note again that the time dependence in the weight matrix of physical 

RC is specific to its physical implementation and not inherent to traditional software RC. 

Also, the time dependence sets limits on processing capabilities.  

In this context, we derive a general analytical model for 3D-printed reservoirs to 

gain insight into the reservoir weight matrices and design parameters required for 

developing an efficient 3D-printed reservoir. 

4.2.1. The Analytical Model of 3D-Printed Physical RC  

For 3D-printed reservoirs, the weight matrix can be derived by understanding the 

thermal coupling among the resistors. We can envision this scenario as neurons heating 

up when current passes through them (Heat Generation) and the generated energy 

transferring to the surrounding area (Heat Transfer). Consequently, the temperature 

distribution in the medium where the resistor is located changes in response to self-

heating. The amount of heat transfer and temperature distribution depends on the 

Boundary Conditions of the resistor. For instance, if the resistor is printed using a single 

material and measured while kept in air, heat transfer to the surrounding area may occur 

at a negligible rate. However, suppose the resistor is printed within a solid material, like 

regular PLA. In this case, the heat generated in the resistor will conduct away from the 

resistor and transfer to the surrounding material at a higher rate compared to the air due 

to the higher thermal conductivity of PLA over air.  

Therefore, temperature is one of the measurable quantities in the reservoir. To 

obtain an approximate temperature value, heat transfer problems with specific boundary 

conditions must be solved. Here, we begin modelling this process by  

• discussing heat generation in resistors,  

• providing a brief introduction to heat transfer in solids,  

• defining various boundary conditions and  

• deriving static and dynamic models for the reservoir.  
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Heat Generation in Resistors  

When an electric current passes through a resistor, it undergoes resistive heating 

process, where the resistor generates heat, causing its temperature to rise. The amount 

of heat produced is directly proportional to the square of the current (𝐼) passing through 

the resistor and the resistance value of the component (𝑅), as described by 𝐼2𝑅. The heat 

transfer from the resistor to its surroundings increases with an increase in the resistor's 

temperature. As an illustration, when an electric current start flowing through the resistor, 

the resistor's temperature rises and continues to increase until steady operating conditions 

are reached, and the heat generation rate equals the heat transfer rate to the 

surroundings. The total rate of heat generation in a resistor of volume 𝒱 can then be 

determined from: 

�̇�𝑔𝑒𝑛 = ∫  
𝒱

�̇�𝑔𝑒𝑛𝑑𝒱               (W) (4-1) 

Considering a uniform heat generation for an electric resistance heating 

throughout a homogeneous material, Eq. (4-1) reduces to �̇�𝑔𝑒𝑛 = �̇�gen𝒱, where �̇�g𝑒𝑛 is the 

constant rate of heat generation per unit volume. 

Heat Transfer Problems in Solids 

The generated heat in the resistors is conducted away from the center of the 

resistor to its surrounding medium. In the most general case, heat transfer through a 

medium is three-dimensional (3D). The temperature varies along all three primary 

directions within the medium during the heat transfer process. However, depending on the 

relative magnitudes of heat transfer rates in different directions and the desired accuracy 

level, the problem can be reduced to one-dimensional or two-dimensional. Suppose the 

temperature in a solid object varies mainly in two primary directions, and the variation is 

negligible in the third direction. In that case, the heat transfer problem is considered two-

dimensional (2D). In a one-dimensional heat transfer, the temperature varies in one 

direction only, and the variation of temperature and, thus, heat transfer in other directions 

are negligible or zero.  

Heat transfer problems are solved by considering the energy balance inside the 

medium. Energy balance in a 3D heat transfer problem during a small time-interval Δ𝑡 can 

be expressed as [101]: 
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(
 Rate of heat 
 conduction 

 at 𝑥, 𝑦, 𝑧
) − (

 Rate of heat 
 conduction 

 
𝑎𝑡 𝑥 + 𝛥𝑥,

𝑦 + Δ𝑦, 𝑧 + Δ𝑧
 
) + (

 Rate of heat 

 generation 

 inside the 
 element 

) = (

 Rate of change 

 of the heat energy 

 content of the 

 element 

) 

Which gives the general equation of heat conduction as [101] 

𝜕

𝜕𝑥
(𝜅
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜅
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜅
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
) + �̇�gen 

= 𝑚𝐶𝑝
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡
 

(4-2) 

where 𝜅 is the thermal conductivity of the material, which is a measure of the ability of a 

material to conduct heat. 𝑚 is the mass of the material and 𝐶𝑝 is the specific heat capacity 

of the material. Heat conduction through a solid medium in a specified direction (e.g., in 

the 𝑥-direction) is proportional to the temperature difference across the medium and the 

area normal to the direction of heat transfer but is inversely proportional to the distance in 

that direction, which is defined by Fourier's law of heat conduction as 

�̇�cond = −𝜅𝐴
𝑑𝑇

𝑑𝑥
 (4-3) 

where 𝑑𝑇/𝑑𝑥 is the temperature gradient. Heat flows in the direction of decreasing 

temperature, and thus, the temperature gradient is negative when heat is conducted in the 

positive 𝑥-direction. 

Boundary Conditions 

Heat flux and the temperature distribution in a medium depending on the surface 

conditions. As discussed earlier, the general heat conduction equations were developed 

using an energy balance on a differential element inside the medium. Thus, they remain 

the same regardless of the thermal conditions on the surfaces of the medium. A heat 

transfer problem in a medium is incomplete without a complete description of the thermal 

conditions at the boundary surfaces, known as the boundary conditions. Some of the most 

common boundary conditions are illustrated in Figure 4.4 and summarized in Table 4-1 

[101].  
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Table 4-1. Some of the most common boundary conditions in heat transfer. 

Boundary 
Condition 

Definition 

Generalized 
Boundary 
Conditions 

Generally, a boundary condition can be obtained from a surface energy balance, 
expressed as 

(
 Heat transfer 

 to the surface 
 in all modes 

) = (
 Heat transfer 

 from the surface 
 in all modes 

) 

Specified 
Temperature 
Boundary 
Condition 

The specified temperature boundary conditions can be expressed as  

𝑇(0, 𝑡) = 𝑇1 𝑇(𝐿, 𝑡) = 𝑇2 

Specified Heat 
Flux Boundary 
Condition 

When energy interactions at a surface are known, the rate of heat transfer (i.e., the 
heat flux �̇�) on that surface can be used as one of the boundary conditions.  

�̇� = −𝜅
∂𝑇

∂𝑥
= (

 Heat flux in the 

 positive 𝑥 −  direction 
) 

Special Case I: 
Insulated 
Boundary 

The heat transfer would be zero at an insulated surface 
∂𝑇(𝐿, 𝑡)

∂𝑥
= 0 

Special Case II: 
Thermal 
Symmetry 

For a large plate of thickness 𝐿 suspended vertically in the air with its two surfaces 
exposed to the same thermal conditions, symmetry in the temperature distribution 
about the center plane, 𝑥 = 𝐿/2, results in no heat flow across the center plane. 
Therefore, the center plane can be treated as an insulated surface (zero heat flux 
boundary condition) 

∂𝑇(𝐿/2, 𝑡)

∂𝑥
= 0 

Convection 
Boundary 
Condition 

In practice, since most heat transfer surfaces are exposed to an environment with a 
specific temperature, the most common boundary condition is convection, which is 
defined as 

(
 Heat conduction 
 at the surface in a 

 selected direction 

) = (
 Heat convection 
 at the surface in 

 the same direction 

) 

For one-dimensional heat transfer in the x-direction, the convection boundary 
conditions at the surface of 𝑥 = 0 can he expressed as 

−𝜅
∂𝑇(0, t)

∂𝑥
= ℎ[𝑇∞ − 𝑇(0, t)] 

where ℎ and 𝑇∞ are the convection heat transfer coefficient and temperature far 
from the surface, respectively. 

Interface 
Boundary 
Conditions 

If an object consists of multiple layers of different materials, the heat transfer 
problem must be solved in each layer considering the boundary conditions at each 
interface. At the interface of two layers, A and B, with perfect contact at 𝑥 = 𝑥0, (1) 

the two layers must have the same temperature at the contact area 

𝑇𝐴(𝑥0, 𝑡) = 𝑇𝐵(𝑥0,, 𝑡) 

and (2) energy is not stored at the contact area (same heat flux on the two sides of 
the interface).  

−𝜅𝐴
∂𝑇𝐴(𝑥0, 𝑡)

∂𝑥
= −𝜅𝐵

∂𝑇𝐵(𝑥0, 𝑡)

∂𝑥
 

where 𝜅𝐴 and 𝜅𝐵 are the thermal conductivities of the layers 𝐴 and 𝐵, respectively.  
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Figure 4.4. (a) Specified temperature boundary conditions. (b) Specified heat flux 
boundary conditions. (c) A large plate with insulation. (d) Thermal 
symmetry boundary condition. (e) Convection boundary condition. (f) 
Boundary conditions at the interface of two bodies in perfect contact. 

4.2.2. The Static Response of a Reservoir  

Here, we derive an analytic model for the static response of a reservoir consisting 

of four 3D-printed resistors (i.e., neurons). Consider the resistors are printed in a medium 

of regular PLA, as shown in Figure 4.5. For simplicity in this section, we will assume the 

resistors are printed with long (L) cylindrical cross-sections with a radius of 𝑟𝑖. We will 

solve the heat transfer problem for the medium surrounding the resistors to develop the 

weight matrix for the reservoir. We will consider that the temperature of the resistors does 

not change significantly inside it, so the average temperature for each resistor is equal to 

the temperature at its contact surface with the regular PLA, i.e., 𝑇(𝑟𝑖) (See Appendix A). 

The input signal to the neuron/resistor is a current density (
𝐴

𝑚2
), neuron’s response is 

calculated as its temperature (K), the neurons are electrically insulated, and for simplicity, 

the electrical conductivity of the neurons is considered to be insensitive to temperature 

(no nonlinearity introduced). We want to model the static response of thermally-coupled 

neurons when subjected to an input signal J. The main focus is to gain insights into the 
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thermal coupling between these neurons, including their strength and the factors that 

influence the strength of these connections. 

The first step involves deriving the temperature distribution inside a regular PLA 

resulting from the heating of the resistors. This entails solving the heat transfer problem 

within the regular PLA to determine how heat spreads. In the subsequent step, the 

temperature at the location of each neuron/resistor is calculated, taking into account the 

influence of all other neurons. Since the medium is assumed to be linear, the principle of 

superposition can be employed to determine the temperature distribution. In this 

approach, one neuron is considered to heat the environment while the others remain off, 

and the temperature distributions resulting from each neuron's contribution are summed. 

By performing these calculations, the study aims to uncover the relationship between the 

input signal, J, the temperature distribution within the PLA, T, and the resulting response 

of the thermally-coupled neurons, T1, T2, T3, and T4. It seeks to shed light on the strength 

of thermal coupling between the neurons and identify the key parameters that affect the 

coupling between the neurons. 

 

Figure 4.5. The heat transfer problem with four resistors/neurons. Resistors are 
long cylinders with small radii compared to medium thickness.  

For the resistors, the temperature distribution will be achieved by solving the 

general heat conduction problem in a cylindrical coordinate system as [101] 
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1

𝑟

𝜕

𝜕𝑟
(𝜅𝑃𝐿𝐴𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2
𝜕

𝜕𝜑
(𝜅𝑃𝐿𝐴𝑟

𝜕𝑇

𝜕𝜑
) +

𝜕

𝜕𝑧
(𝜅𝑃𝐿𝐴

𝜕𝑇

𝜕𝑧
) + �̇�gen = 𝜌𝑚𝐶𝑝

𝜕𝑇

𝜕𝑡
 (4-4) 

where 𝜅𝑃𝐿𝐴 is the thermal conductivity of the PLA material and 𝜌𝑚 is the density of the 

PLA. The regular PLA considered in this study has large dimensions, allowing us to 

assume that at a location far from the resistors, the temperature reaches the ambient 

temperature denoted as 𝑇𝑎. This assumption leads to the imposition of a constant 

temperature boundary condition, where 𝑇(𝑟 = 𝑡𝑃𝐿𝐴) = 𝑇𝑎. To solve the heat transfer 

problem within the regular PLA, a specific heat flux boundary condition is considered at 

the interface between the resistor and the regular PLA. Mathematically, this condition is 

expressed as −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
= 𝑞, where 𝑞 is the heat flux at the contact point of the neuron and 

the PLA due to the heat generated in the resistor and conducted away from it to the contact 

surface. According to the discussions in Appendix A, the heat flux for each resistor with 

the radius of 𝑟𝑖 is given as 𝑞𝑖 = 𝜌𝑒 𝐽𝑖
2 𝑟𝑖, where 𝜌𝑒 represents the electrical resistivity. 

Furthermore, if we assume that heat transfer ceases at the top surface of the PLA, 

where it is in contact with the surrounding air, a thermal isolation boundary condition can 

be applied. It is important to note that thermal isolation at a specific point can also be 

introduced due to the system's symmetry. Thus, we can solve the general heat conduction 

problem for a fully cylindrical structure instead of a half-cylindrical problem, as shown in 

Figure 4.6. Neglecting the dynamic part and considering that there is no heat generation 

within the regular PLA, the heat conduction problem described by Eq. (4-4) can be 

simplified. This simplification reduces the problem to focusing solely on the heat 

conduction process within the PLA and its interaction with the resistors. 

1

𝑟

𝑑

𝑑𝑟
(𝜅𝑃𝐿𝐴𝑟

𝑑𝑇

𝑑𝑟
) = 0 (4-5) 

These boundary conditions and the assumptions made allow for the formulation of 

a simplified heat conduction problem within the regular PLA. This simplified problem omits 

the dynamic aspects and considers a scenario where heat is only conducted through the 

PLA material without any internal heat generation. By solving this reduced problem, 

valuable insights can be gained regarding the temperature distribution and heat transfer 

dynamics within the regular PLA, providing a foundation for understanding the behaviour 

of the thermally-coupled neurons in the system.   
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Figure 4.6. Simplification of heat transfer for resistor/neuron 1. It is assumed that 
the heat transfer ceases at the top surface of the PLA, where it 
contacts the surrounding air, allowing to application of a thermal 
isolation boundary condition. Thermal isolation at a specific point can 
be caused due to the system's symmetry. Therefore, instead of 
solving a half-cylindrical problem, the general heat conduction 
problem for a fully cylindrical structure would result in the 
temperature distribution due to the self-heating of resistor 1. 

Solving this equation for resistor 1 considering −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟1

= 𝑞1, gives the 

temperature distribution for 𝑟1 < 𝑟 < 𝑡𝑃𝐿𝐴 as 

∆𝑇1(𝑟) =
𝜌 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
𝑟
) (4-6) 

where ∆𝑇𝑖(𝑟) = 𝑇𝑖(𝑟)  − 𝑇𝑎. Note that the 𝑇1(𝑟 = 𝑟1) gives an approximate temperature of 

resistor 1. For resistor 3 in the regular PLA, a thermal isolation boundary condition is 

introduced by considering a projection of resistor 3 along the negative z-axis, as illustrated 

in Figure 4.7. This ensures that the thermal isolation due to the surface with direct contact 

with air is properly accounted for. Additionally, it is essential to note that the area through 

which heat transfers from resistor 3 and its projection to the surrounding area differs from 

the previous case. Consequently, the heat flux boundary condition for resistor 3 and its 
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projection is modified as −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟3

= 𝜌𝑒𝐽3
2 𝑟3 and −𝜅𝑃𝐿𝐴

𝑑𝑇

𝑑𝑟′
|
𝑟′=𝑟3

= 𝜌𝑒 𝐽3
2 𝑟3. Thus 

solving Eq. (4-5) for 𝑟3 < 𝑟, 𝑟
′ < 𝑡𝑃𝐿𝐴 results in 

∆𝑇3(𝑟) =
𝜌𝑒  𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑟 𝑟′
) (4-7) 

where 𝑅𝑑 represents the distance of the neuron 3 from the top surface. Now, by going 

back to the Cartesian coordinate system, we can find the temperature distribution for other 

resistors. We will keep the Cartesian coordinate system’s origin at the center of resistor 1; 

therefore we replace 𝑟 = √𝑦2 + 𝑧2 in Eq. (4-6). Whereas, for resistor 3, we replace 𝑟 =

√𝑦2 + (𝑧 − 𝑅𝑑)
2 and 𝑟′ = √𝑦2 + (𝑧 + 𝑅𝑑)

2. These changes result in (for 𝑟1 < √𝑦
2 + 𝑧2 <

𝑡𝑃𝐿𝐴) 

∆𝑇1(𝑦, 𝑧) =
𝜌𝑒 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√𝑦2 + 𝑧2
) (4-8) 

And for 𝑟3 < √𝑦
2 + (𝑧 − 𝑅𝑑)

2 < 𝑡𝑃𝐿𝐴 

∆𝑇3(𝑦, 𝑧) =
𝜌𝑒 𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

√(𝑦2 + (𝑧 − 𝑅𝑑)
2)(𝑦2 + (𝑧 + 𝑅𝑑)

2)
) (4-9) 

A reservoir consisting of four resistors/neurons, as shown in Figure 4.5 with the 

specific dimensions provided in Table 4-2, was simulated using COMSOL Multiphysics® 

5.5 software. Several physics modules must be combined to simulate and model self-

heating in a resistor. Two physics were employed here: electric currents (ec) from the 

AC/DC module and heat transfer in solids from the Heat Transfer module, and a coupled 

physics (i.e., Multiphysics) known as electromagnetic heating to study the effect of self-

heating in the under-study electrothermally conductive material (i.e., the conductive PLA). 

Readers are referred to Appendix A for more information on the material properties used 

for the simulations and the specific boundary conditions. The current densities injected 

into the resistors/neurons were set to 𝐽1 = 𝐽3 =
10 𝜇𝐴

𝜋𝑟3
2 = 0.127 (

𝜇𝐴

(𝜇𝑚)2
). 
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Figure 4.7. Simplification of heat transfer for Resistor/Neuron 3. To accurately 
represent the thermal isolation boundary condition at the top surface 
in contact with the air, we can consider a projection of resistor 3 along 
the negative z-axis. 

Table 4-2. Specific dimensions used for the COMSOL MultiPhysics Simulations. 

Parameter Definition Value 

𝑟1 & 𝑟2 Radius of resistors/neurons in the top layer 5√2 [µm] 

𝑟3 & 𝑟4 Radius of resistors/neurons in the second layer 5 [µm] 

𝑡𝑃𝐿𝐴 The thickness of the 3D-printed piece PLA 10 [mm] 

𝑊𝑃𝐿𝐴 Width of the 3D-printed piece PLA 100 [mm] 

𝐿𝑃𝐿𝐴 Length of the 3D-printed piece and the resistors/neurons 100 [mm] 

𝑅12 & 𝑅34 Shortest spacing between two neighboring resistors/neurons in one layer 2 [mm] 

𝑅13 & 𝑅24 Shortest spacing between two neighboring resistors/neurons in two 
different layers 

2 [mm] 

 

The simulation results were compared to those of the derived models in Equations 

(4-8) and (4-9). The findings are presented in Figure 4.8. The analytical model describing 

temperature distributions when current flows through each resistor aligns closely with the 

developed analytical model. Furthermore, isothermal surfaces (i.e., surfaces with uniform 

temperature) exhibit a strong agreement with the simulation results, affirming a high level 

of harmony between the analytical model and the simulation outcomes. The isothermals 

closely match the simulations, particularly at elevated temperatures near the resistors. 
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However, it is worth noting that due to the dimensions extending in directions other than 

depth (𝑊𝑃𝐿𝐴 & 𝐿𝑃𝐿𝐴 >> 𝑡𝑃𝐿𝐴), the isothermals may exhibit a slightly larger expansion than 

anticipated in these directions.  

  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

Figure 4.8. Comparing analytic model and simulations for resistors 1 and 3. ∆𝑻 
of (a) resistor 1 and (b) resistor in z direction when y=0. (c) Simulated 
isothermal surfaces for resistor 1 compared to its analytic model (d). 
(e) Simulated isothermal surfaces for resistor 3 compared to its 
analytical model (f). 
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Now that we have solved the problem for two types of temperature distribution 

inside a material, i.e., neurons located on the top layer and buried at any depth, they can 

describe the temperature distribution of the rest of the resistors/neurons in the reservoir. 

Therefore, for resistors 2 and 4, by replacing 𝑦 = 𝑦 − 𝑅12 and 𝑦 = 𝑦 − 𝑅34 the 

temperature distribution for resistor 2 in 𝑟2 < √(𝑦 − 𝑅12)
2 + 𝑧2 < 𝑡𝑃𝐿𝐴 is given as: 

∆𝑇2(𝑦, 𝑧) =
𝜌𝑒 𝐽2

2 𝑟2
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√(𝑦 − 𝑅12)
2 + 𝑧2

) (4-10) 

For resistor 3 is given as (for 𝑟3 < √(𝑦 − 𝑅34)
2 + (𝑧 − 𝑅𝑑)

2 < 𝑡𝑃𝐿𝐴): 

∆𝑇4(𝑦, 𝑧)

=
𝜌𝑒 𝐽4

2 𝑟4
2

𝜅𝑃𝐿𝐴
Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

√((𝑦 − 𝑅12)
2 + (𝑧 − 𝑅𝑑)

2)((𝑦 − 𝑅34)
2 + (𝑧 + 𝑅𝑑)

2)
) 

(4-11) 

Superposition then implies that the temperature distribution can be achieved by 

summing over the temperature distribution of all resistors/neurons. 

∆𝑇(𝑦, 𝑧) =∑∆𝑇𝑖(𝑦, 𝑧)

4

𝑖=1

 (4-12) 

Now, with the equation described above, we can calculate the temperature of each 

resistor or neuron by integrating their respective locations into the equation. This results 

in the static model of the reservoir, which is represented as follows 

[

∆𝑇1
∆𝑇2
∆𝑇3
∆𝑇4

] = 𝑊𝑟𝑒𝑠
(4×4)

.

[
 
 
 
 
𝐽1
2

𝐽2
2

𝐽3
2

𝐽4
2]
 
 
 
 

 (4-13) 

where ∆𝑻 is the vector describing the neuron responses, 𝑱.𝟐is the input signal, and 𝑊𝑟𝑒𝑠 is 

the weight matrix of the neural network. Considering 𝑟𝑖 ≪ 𝑅𝑖𝑗 where 𝑖 ≠ 𝑗, this weight 

matrix is given as    
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𝑊𝑟𝑒𝑠 = [

𝑊11 𝑊12 𝑊13 𝑊14
𝑊21 𝑊22 𝑊23 𝑊24
𝑊31 𝑊32 𝑊33 𝑊34
𝑊41 𝑊42 𝑊43 𝑊44

]

=
𝜌𝑒 

𝜅𝑃𝐿𝐴
 

[
 
 
 
 
 
 
 
 
 𝑟1

2Ln (
𝑡𝑃𝐿𝐴
𝑟1
) 𝑟2

2 Ln (
𝑡𝑃𝐿𝐴
𝑅12

) 𝑟3
2 Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑅13
2 ) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅14
2 )

𝑟1
2 Ln (

𝑡𝑃𝐿𝐴
𝑅12

) 𝑟2
2Ln (

𝑡𝑃𝐿𝐴
𝑟2
) 𝑟3

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅23
2 ) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅24
2 )

𝑟1
2 Ln (

𝑡𝑃𝐿𝐴
𝑅13

) 𝑟2
2 Ln (

𝑡𝑃𝐿𝐴
𝑅23

) 𝑟3
2 Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

2 𝑟3𝑅𝑑
) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅24𝑅𝑑
′ )

𝑟1
2 Ln (

𝑡𝑃𝐿𝐴
𝑅14

) 𝑟2
2 Ln (

𝑡𝑃𝐿𝐴
𝑅24

) 𝑟3
2 Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑅34𝑅𝑑
′ ) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

2 𝑟4𝑅𝑑
)
]
 
 
 
 
 
 
 
 
 

 

(4-14) 

where 𝑅12 = 𝑅34, 𝑅𝑑 = 𝑅13 = 𝑅24, 𝑅14 = 𝑅23 = √𝑅12
2 + 𝑅𝑑

2, and 𝑅𝑑
′ = √𝑅34

2 + 4𝑅𝑑
2. The 

unit of the weight matrix is 
Ω.𝐾

𝑊
𝑚4. The weight matrix is contingent upon the spacing 

between the resistors/neurons, represented as 𝑅𝑖𝑗. As the distance between neurons 

increases, their connection becomes more tenuous; conversely, bringing them closer 

results in stronger connectivity. Several material characteristics can influence the weight 

matrix, such as the thermal conductivity of the PLA—the material encasing the 

resistors/neurons. Another parameter is the resistivity of the resistors/neurons. A 

temperature-independent resistivity yields a linear reservoir matrix, while nonlinear 

temperature-dependent resistivity gives rise to nonlinear interactions among the 

resistors/neurons. A pivotal aspect in reservoir design entails incorporating diverse weight 

elements, which can be actualized by introducing distinct resistors/neurons with varying 

radii. Therefore, by manipulating the dimensions of the resistor, it is possible to create 

complex temperature distributions that can be utilized as part of a larger system.  

To further validate our analytical model, we compared it to the simulation results 

for the temperature distribution within the reservoir, as outlined in Equation (4-12). This 

comparison, illustrated in Figure 4.9, revealed a consistent temperature distribution in both 

the y and z directions, further affirming our analytical model's reliability. Subsequently, the 

weight elements were graphed in Figure 4.10 to observe the impact of spacing between 

neurons, denoted as 𝑅𝑖𝑗. As anticipated, the coupling between the neurons depends on 

their separation. It is noteworthy that the similarity in spacings contributes to a reduction 

in network complexity, owing to the presence of analogous weight elements.  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.9. Comparison among analytic model and simulations for the reservoir 
when (a) resistor 1 is self-heated, (b) resistor 3 is self-heated, and (c) 
resistors 1 and 4 are self-heated.  
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Figure 4.10. Normalized weight elements of the reservoir with four 
resistors/neurons with different spacings. 

4.2.3. Dynamic Response of a Reservoir  

It is essential to understand the transient behaviour of the processor because it 

provides insight into how the system will respond to changes in operating conditions, such 

as sampling frequency and response time to changes in the injected current (density), and 

can help to predict the system's performance under various scenarios. In this context, 

transient heat transfer analysis is used to model, simulate, and analyze the dynamic 

behaviour of the reservoir of neurons with thermal coupling and to optimize their 

performance. Most of the heat transients follow the response of the 1st order system 

through the equation below [101] 

𝑇(𝑡) = 𝑇𝑓 + (𝑇𝑖 − 𝑇𝑓)𝑒
−𝑡 𝜏⁄  (4-15) 

where, 𝑇𝑖 and 𝑇𝑓 are the initial and final temperatures of the medium, and t represents the 

continuous time. The thermal time constant, 𝜏, appears in these equations as a parameter 
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that affects the rate of heat transfer and the rate of temperature change in the system. The 

time constant depends on the thermal properties and geometry of the materials involved 

in the heat transfer process. 

When the transient response of resistors was studied both in experiments and 

simulations, two different types of transients were observed. Self-heating resistors exhibit 

a transient response characterized by two thermal time constants; the internal time 

constant (𝜏𝑖𝑛𝑡) and the substrate thermal time constant (𝜏𝑡ℎ). The internal time constant 

represents the duration it takes for the heat generated inside the resistors to be conducted 

away from its center. The substrate time constant signifies how fast the heat is conducted 

away from the resistors’ contact surface deep into the substrate. The thermal time 

constants rely on the physical properties of the thermistor and substrate, including their 

dimensions, thermal mass, and thermal conductivity. In a reservoir with effectively large 

dimensions for the substrate compared to the resistors, the substrate time constant would 

dominate the response time and determine the transient behaviour of the neurons and 

their design. Therefore, understanding the factors that affect 𝜏𝑡ℎ are important.  

 

Figure 4.11. Dynamic behaviour of self-heated resistors and the neighbouring 
ones without self-heating. 

Here, let us delve into the analytical understanding of 𝜏𝑡ℎ, which plays a crucial 

role in the transient behavior of the neurons. The regular PLA is assumed as a medium 

that conducts the generated heat until it reaches equilibrium. By introducing thermal 

diffusivity as 𝛼 =
𝜅𝑃𝐿𝐴

𝜌𝑚𝐶𝑝
, and assuming the temperature does not change significantly in all 

directions except for 𝑟, Eq. (4-4) reduces to: 
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1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇(𝑟, 𝑡)

𝜕𝑟
) =

1

𝛼

𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
 (4-16) 

To solve this equation, we assume that the temperature can be expressed as a 

product of radial and temporal components as 𝑇(𝑟, 𝑡) = 𝑅(𝑟) . 𝑇(𝑡). By substituting this 

assumed form into the heat conduction equation in (4-16), we get: 

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝑟 
𝑑2𝑅(𝑟)
𝑑𝑟2

𝑟
 𝑇(𝑡) =

𝑅(𝑟)

𝛼

𝑑𝑇(𝑡)

𝑑𝑡
 (4-17) 

Dividing both sides by 𝑅(𝑟) . 𝑇(𝑡), we have: 

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝑟 
𝑑2𝑅(𝑟)
𝑑𝑟2

𝑟 𝑅(𝑟)
 =

𝑑𝑇(𝑡)
𝑑𝑡

𝛼 𝑇(𝑡)
 (4-18) 

Since the left side depends only on 𝑟 and the right side depends only on 𝑡, both 

sides must be equal to a constant. Let us denote this constant as −𝜆2 and summarize the 

equations as: 

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝑟
𝑑2𝑅(𝑟)
𝑑𝑟2

𝑟 𝑅(𝑟)
 = −𝜆2    

𝑟2 𝑅(𝑟)
→     𝑟2

𝑑2𝑅(𝑟)

𝑑𝑟2
+ 𝑟

𝑑𝑅(𝑟)

𝑑𝑟
 + 𝜆2𝑟2𝑅(𝑟) = 0       

𝑑𝑇(𝑡)
𝑑𝑡

𝛼 𝑇(𝑡)
= −𝜆2                →           

𝑑𝑇(𝑡)

𝑑𝑡
+ 𝛼𝜆2𝑇(𝑡) = 0 

(4-19) 

We now have two separate ordinary differential equations. The first equation is 

Bessel's equation, which can be solved using Bessel functions. The second equation is a 

simple first-order linear ordinary differential equation. The solution considering the initial 

boundary condition of 𝑇(0) = 0 is given by 

𝑇(𝑡) = 𝐶1(1 − 𝑒
−𝛼𝜆2𝑡) (4-20) 

where 𝐶1 is an amplitude coefficient. The thermal time constant from equation Eq. (4-20) 

can be derived as 𝜏 =  1
𝛼𝜆2⁄ . 
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For the first equation, the solution depends on the specific boundary conditions or 

geometry of the problem. For the problem under study, where the heat is generated in the 

center of the cylinder and conducts away through the regular PLA, the solution would take 

the form of 

𝑅(𝑟) = 𝐵1𝐵𝑒𝑠𝑠𝑒𝑙𝐽(0, 𝜆𝑟) (4-21) 

where 𝐵𝑒𝑠𝑠𝑒𝑙𝐽(0, 𝜆𝑟) is the Bessel function of the first kind of order zero. This function 

appears as a solution to the cylindrical heat conduction equations.  

To determine the value of 𝜆, we need to apply appropriate boundary conditions 

and solve the problem numerically. A numerical value is found from [101], 

𝜏𝑡ℎ = 
𝐿𝑐ℎ

2

2.42𝛼
 (4-22) 

where 𝐿𝑐ℎ is the characteristic length of the material surrounding the resistors/neurons. In 

this case, it is the distance from the resistor to the PLA surface with constant temperature. 

For the resistors in the top layer, the characteristic length is equal to  𝑡𝑃𝐿𝐴. This yields 𝜏ℎ 

value as 225 seconds for a PLA with a thickness of 10mm encapsulating the resistors. 

Consequently, a reservoir comprising multiple resistors/neurons will exhibit dynamics with 

a time constant of approximately 225 seconds, with slight variations based on which 

resistors/neurons are self-heating. Resistors in the first layer generally possess smaller 

thermal time constants than those in the PLA's depth. This distinction arises from the fact 

that the characteristic length for resistors/neurons in the depth of the PLA is modified to 

𝐿𝑐ℎ = √(𝑡𝑃𝐿𝐴 − 𝑅𝑑)
2 + (𝑡𝑃𝐿𝐴 + 𝑅𝑑)

2 = √𝑡𝑃𝐿𝐴
2 + 𝑅𝑑

2 rather than simply 𝑡𝑃𝐿𝐴. Look at the 

symmetric model in Figure 4.7 for this distance explanation.  

Reservoir dynamics when all resistors are self-heated is illustrated in Figure 4.12. 

To analyze transient responses, simulation data are processed using MATLAB®, 

employing a combination of two exponentials. This computational approach facilitates the 

automated calculation of thermal time constants. It is worth noting that resistors within the 

same layer tend to exhibit similar time constants, but there can be noticeable differences 

in dynamics between neurons located in distinct layers. Moreover, a deviation from the 

calculated values for the thermal time constants was observed. This deviation may be 
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attributed to the fact that, although the dynamics of an individual neuron or resistor are 

defined by Eq. (4-15), the entire reservoir, comprising multiple interconnected elements, 

exhibits a unique and distinct dynamical behavior. When all the resistors are self-heated, 

the dynamic response of the reservoir is described by (assuming a linear medium):  

∆𝑇(𝑡) =∑𝑇𝑓,𝑗 + (𝑇𝑖,𝑗 − 𝑇𝑓,𝑗)𝑒
−𝑡 𝜏𝑗⁄

4

𝑗=1

 (4-23) 

This equation accounts for the combined thermal effects across the different layers 

and their respective time constants 𝜏𝑗. Therefore, the dynamic temperature of the resistors 

evolves from an initial condition of ∆𝑇𝑖(𝑦, 𝑧, 0), as expressed as: 

[

∆𝑇1
∆𝑇2
∆𝑇3
∆𝑇4

] =

[
 
 
 
 
∆𝑇𝑖,1𝑒

−𝑡 𝜏1⁄

∆𝑇𝑖,2𝑒
−𝑡 𝜏2⁄

∆𝑇𝑖,3𝑒
−𝑡 𝜏3⁄

∆𝑇𝑖,4𝑒
−𝑡 𝜏4⁄ ]

 
 
 
 

+𝑊𝑟𝑒𝑠(𝑡)
(4×4).

[
 
 
 
 
𝐽1
2

𝐽2
2

𝐽3
2

𝐽4
2]
 
 
 
 

 (4-24) 

 

Figure 4.12. Dynamics of the reservoir under different conditions when all 
resistors are self-heated together. 
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where 

𝑊𝑟𝑒𝑠(𝑡)

=  

[
 
 
 
 
𝑊11(1 − 𝑒

−𝑡 𝜏1⁄ ) 𝑊12(1 − 𝑒
−𝑡 𝜏2⁄ ) 𝑊13(1 − 𝑒

−𝑡 𝜏3⁄ ) 𝑊14(1 − 𝑒
−𝑡 𝜏4⁄ )

𝑊21(1 − 𝑒
−𝑡 𝜏1⁄ ) 𝑊22(1 − 𝑒

−𝑡 𝜏2⁄ ) 𝑊23(1 − 𝑒
−𝑡 𝜏3⁄ ) 𝑊24(1 − 𝑒

−𝑡 𝜏4⁄ )

𝑊31(1 − 𝑒
−𝑡 𝜏1⁄ ) 𝑊32(1 − 𝑒

−𝑡 𝜏2⁄ ) 𝑊33(1 − 𝑒
−𝑡 𝜏3⁄ ) 𝑊34(1 − 𝑒

−𝑡 𝜏4⁄ )

𝑊41(1 − 𝑒
−𝑡 𝜏1⁄ ) 𝑊42(1 − 𝑒

−𝑡 𝜏2⁄ ) 𝑊43(1 − 𝑒
−𝑡 𝜏3⁄ ) 𝑊44(1 − 𝑒

−𝑡 𝜏4⁄ )]
 
 
 
 

 
(4-25) 

Each 𝜏𝑗  has a unique value for different neurons. Importantly, as time (𝑡) 

approaches infinity, 𝑊𝑟𝑒𝑠(𝑡) converges to the static weight matrix derived in the previous 

section, mathematically represented as: 

𝐿𝑖𝑚
𝑡→∞

𝑊𝑟𝑒𝑠(𝑡) = 𝑊𝑟𝑒𝑠 (4-26) 

Despite the reservoir's continuous operation, it usually interacts with a digital 

system whose output is sampled at specific time intervals, ∆𝑡. This leads to the weight 

matrix expressed as: 

𝑊𝑟𝑒𝑠,∆𝑡

= 

[
 
 
 
 
𝑊11(1 − 𝑒

−∆𝑡 𝜏1⁄ ) 𝑊12(1 − 𝑒
−∆𝑡 𝜏2⁄ ) 𝑊13(1 − 𝑒

−∆𝑡 𝜏3⁄ ) 𝑊14(1 − 𝑒
−∆𝑡 𝜏4⁄ )

𝑊21(1 − 𝑒
−∆𝑡 𝜏1⁄ ) 𝑊22(1 − 𝑒

−∆𝑡 𝜏2⁄ ) 𝑊23(1 − 𝑒
−∆𝑡 𝜏3⁄ ) 𝑊24(1 − 𝑒

−∆𝑡 𝜏4⁄ )

𝑊31(1 − 𝑒
−∆𝑡 𝜏1⁄ ) 𝑊32(1 − 𝑒

−∆𝑡 𝜏2⁄ ) 𝑊33(1 − 𝑒
−∆𝑡 𝜏3⁄ ) 𝑊34(1 − 𝑒

−∆𝑡 𝜏4⁄ )

𝑊41(1 − 𝑒
−∆𝑡 𝜏1⁄ ) 𝑊42(1 − 𝑒

−∆𝑡 𝜏2⁄ ) 𝑊43(1 − 𝑒
−∆𝑡 𝜏3⁄ ) 𝑊44(1 − 𝑒

−∆𝑡 𝜏4⁄ )]
 
 
 
 

 
(4-27) 

After each timestep  ∆𝑡. When ∆𝑡 is significantly smaller than the thermal time 

constants (∆𝑡 ≪ 𝜏𝑗), the weight matrix approaches zero, indicating that the input at the 

current timestep has little influence on the thermal response at the current timestep. 

Consequently, the reservoir retains the previous response, albeit slightly attenuated, and 

inter-neuron interactions become negligible. Conversely, when ∆𝑡 is much larger than the 

thermal time constants (∆𝑡 ≫ 𝜏𝑖𝑗), the input at the current timestep has a substantial 

impact on the system's response. Interactions among neurons reach their maximum 

potential value. Thus, for a physical reservoir, the choice of timesteps at which it is 

sampled, or the sampling frequency (𝑓𝑠 =
1

∆𝑡
), plays a crucial role in determining its 
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performance. The experimental validation of these principles was conducted in the 

previous chapter along with the next chapter. 

Figure 4.13 provides insight into the relationship between thermal time constants 

and the thickness of the PLA medium for resistors 1 and 3, considering the scenario where 

all resistors within the reservoir undergo self-heating. The graph illustrates how varying 

the thickness of the medium influences the system's thermal behaviour. Decreasing the 

thickness of the PLA medium reduces the thermal time constants, resulting in faster 

dynamics within the reservoir. Conversely, increasing the medium's thickness 

corresponds to a slower response. Therefore, the thickness of the medium plays a 

significant role in shaping the overall temporal characteristics of the reservoir's thermal 

responses. 

 

Figure 4.13. Thermal time constants of the resistors 1 and 3 vs. different PLA 
thicknesses.  

4.2.4. Connecting the Analytical Model to Reality 

In practice, the resistors we are dealing with are 3D printed and possess 

rectangular cross-sections, deviating from the cylindrical cross-section assumed in the 

developed model. To bridge this gap between theoretical assumptions and real-world 

conditions, a slight adjustment is made to the existing model to accommodate the actual 

dimensions of the resistors. Specifically, let's consider a scenario where all resistors share 

the same dimensions: thicknesses of 2𝑟0, and widths, 
𝜋𝑟0

2
. By setting 𝑟1,2 = √2 𝑟0 and 𝑟3,4 =

 𝑟0, the previously established model can be effectively extended to predict the 
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temperature distribution within the reservoir accurately. This modification is depicted in 

Figure 4.14, illustrating how the adjustment aligns with the rectangular cross-sections of 

the resistors. Incorporating these adjusted dimensions, simulation results for the 

rectangular cross-section resistors are presented in Figure 4.15. utilizing the realistic 

dimensions detailed in Table 4-3. It is notable that the derived model effectively captures 

and predicts the temperature distribution surrounding the resistors, demonstrating a high 

degree of agreement between the model's predictions and the simulation outcomes. The 

successful alignment between the derived model and the simulation results bolsters 

confidence in its applicability for analyzing and understanding temperature distribution in 

the reservoir. 

 

Figure 4.14. Model justifications for the real dimensions: a transisition from 
resistors/neurons with cylindrical cross-section to rectangular one. 

Table 4-3. Real dimensions used for the COMSOL MultiPhysics Simulations. 

Parameter Definition Value 

2𝑟0 Thickness of resistors/neurons 0.5 [mm] 

𝑡𝑃𝐿𝐴 Thickness of the 3D-printed piece 5 [mm] 

𝑊𝑃𝐿𝐴 Width of the 3D-printed piece 50 [mm] 

𝐿𝑃𝐿𝐴 Length of the 3D-printed piece and the resistors/neurons 30 [mm] 

𝑅12 & 𝑅34 Spacing between two neighbouring resistors/neurons in one layer 7 [mm] 

𝑅13 & 𝑅24 Spacing between two neighbouring resistors/neurons in one layer 
from another 

0.25 [mm] 
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(a) (b) 

Figure 4.15. Temperature distribution around resistors 1 and 3 when (a) resistor 1 
is self-heated and (b) resistor 3 is self-heated for rectangular cross-
sections within real dimensions. 

To delve further into the behavior of these 3D-printed reservoirs, we explore 

several key aspects: nonlinear temperature-dependent electrical resistivity, the 

temperature dependence of thermal conductivity, direction dependence of thermal 

conductivity, and developing a general reservoir model. These elements will provide a 

comprehensive understanding of how these resistors interact with temperature variations 

and how these properties can be incorporated into a broader reservoir modelling 

framework. 

Nonlinear Temperature-Dependent Electrical Resistivity: The electrical 

conductivity of certain materials exhibits a temperature dependence. Conductive PLA 

demonstrates a nonlinear relationship between its electrical resistivity and temperature. 

Despite this characteristic, the presented analytical model does not account for this 

nonlinear temperature dependence. Nevertheless, incorporating this aspect into the 

model would introduce implications for various system components. An immediate 

consequence would be the alteration of the heat generation rate equation within the 

resistor, where the expression −𝜅𝑃𝐿𝐴
𝑑𝑇𝑖(𝑟)

𝑑𝑟
= 𝑞𝑖 is impacted. Specifically, the heat 

generation term 𝑞𝑖 = 𝜌(𝑇𝑖) 𝐽𝑖
2 𝑟𝑖 needs to be adjusted to consider the temperature-

dependent resistivity, 𝜌(𝑇𝑖). This modification in the heat generation rate would 

reverberate throughout the model, directly influencing the temperature distribution 

equations for the resistors/neurons. Furthermore, the weight matrix described in Equation 

(4-14) would also be affected due to the changes in the temperature distribution equations. 
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While incorporating such complexity into the model could potentially capture more 

nuanced behaviours, it's worth acknowledging the challenges that arise. The introduction 

of nonlinear temperature-dependent resistivity would render the resulting equations 

challenging to solve. Developing closed-form solutions may become significantly more 

complex, if possible at all, potentially negating the benefits of adding this level of detail. 

Temperature Dependence of Thermal Conductivity: The thermal conductivity of a 

material, in general, varies with temperature. However, this variation is mild for many 

materials in the range of practical interest and can be disregarded. In such cases, we can 

use an average value for the thermal conductivity and treat it as a constant. This is also 

common practice for other temperature-dependent properties such as density and specific 

heat. Sufficiently accurate results can be obtained using a constant thermal conductivity 

value at an average temperature. 

Direction Dependence of Thermal Conductivity: The analytical modelling discussed 

earlier assumes isotropic engineering materials, where properties remain consistent in all 

directions. This simplification holds true for many practical scenarios, obviating the need 

to account for directional property variations. However, it is crucial to acknowledge that 

certain materials, particularly anisotropic ones like fibrous or composite materials, exhibit 

distinct properties along different axes. Notably, the layer-by-layer 3D printing process 

introduces the potential for directional discrepancies in thermal conductivity. In this 

context, the thermal conductivity along the x and y directions might diverge from the z 

direction. This disparity arises due to factors such as the type and percentage of carbon 

filler utilized, printing conditions, and the orientation of printed layers. Therefore, while the 

analytical model discussed earlier does not consider the direction dependence of thermal 

conductivity, it is paramount to recognize that in practical applications involving anisotropic 

materials and layer-by-layer 3D printing, variations in thermal conductivity along different 

axes may impact the system's thermal behaviour.  

Develop a General Reservoir Model: A systematic approach involving superposition can 

be employed to create a comprehensive model accommodating N resistors/neurons within 

a reservoir. This method enables the derivation of a generalized model capable of 

addressing diverse configurations and scenarios. Specifically, this model considers a 

range of neurons within the reservoir, each contributing to the overall temperature 

distribution. For resistors/neurons situated in the top layer, the temperature distribution 
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can be expressed as follows: A general model for N number of resistors/neurons in a 

reservoir can be derived by applying superposition on all the N neurons knowing that the 

temperature distribution for the resistors/neurons in the top layer will be (for 𝑟𝑖 <

√(𝑦 − 𝑅𝑙,𝑖)
2
+ 𝑧2 < 𝑡𝑃𝐿𝐴): 

∆𝑇𝑖(𝑦𝑖, 𝑧) =
𝜌 𝐽𝑖

2 𝑟𝑖
2

𝑘𝑃𝐿𝐴
𝐿𝑛

(

 
𝑡𝑃𝐿𝐴

√(𝑦 − 𝑅𝑙,𝑖)
2
+ 𝑧2)

  (4-28) 

In this equation, 𝑅𝑙,𝑖 signifies the lateral distance of the neuron from the coordinate 

system's origin, which is the neuron located at the center. The provided equation accounts 

for the temperature distribution as a result of the neuron 𝑖 within the top layer of the PLA. 

For resistors/neurons located deeper within the PLA, at a distance 𝑅𝑑,𝑖 from the top 

surface, the temperature distribution is determined by (for 𝑟𝑖 < √(𝑦 − 𝑅𝑙,𝑖)
2
+ (𝑧 − 𝑅𝑑,𝑖)

2
<

𝑡𝑃𝐿𝐴): 

∆𝑇𝑖(𝑦, 𝑧)

=
𝜌 𝐽𝑖

2 𝑟𝑖
2

𝑘𝑃𝐿𝐴
𝐿𝑛

(

 
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑,𝑖
2

√((𝑦 − 𝑅𝑙,𝑖)
2
+ (𝑧 − 𝑅𝑑,𝑖)

2
) ((𝑦 − 𝑅𝑙,𝑖)

2
+ (𝑧 + 𝑅𝑑,𝑖)

2
)
)

  
(4-29) 

These definitions are depicted in Figure 4.16 for a sample reservoir configuration. 

Their spatial arrangement and thermal interactions then determine the temperature 

distribution. By establishing this comprehensive framework, practitioners gain a powerful 

tool to analyze and predict temperature dynamics within a reservoir housing multiple 

resistors/neurons with different spacings and number of layers. This model's adaptability 

accommodates different configurations and assists in optimizing system performance for 

a wide array of real-world applications. 
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Figure 4.16. A sample reservoir with a general, random configuration defining the 
neurons in the top layer and in-depth of PLA. 

4.3. Computer-Aided Design and Model Verification 

In this section, we present a critical component of our research where we bridge 

the theoretical aspects of our developed model with practical insights through computer-

aided design (CAD) and verification. The implementation of a MATLAB® script serves as 

a valuable tool to not only create physical reservoirs but also to validate our theoretical 

framework. A simplified flowchart outlining the pivotal steps involved in this process is 

depicted in Figure 4.17. The MATLAB® script is designed to receive critical parameters 

that are fundamental to creating and developing physical reservoirs. These parameters 

are: the number of neurons, specific neuron locations (if provided; otherwise, it generates 

a reservoir with a random spatial distribution), neuron dimensions, and PLA dimensions. 

Using these inputs, the script configures the reservoir. Leveraging the insights from our 

general model, the script employs superposition to create isothermal contours. These 

contours serve as powerful visualizations, providing an intuitive representation of the 

temperature distribution within the reservoir. Furthermore, the script goes beyond 

visualization; it generates both static and dynamic weight matrices based on a specified 

input signal. The generation of static and dynamic weight matrices enables an assessment 

of how the reservoir processes information over time. This dynamic evaluation allows us 

to gain insights into how the system's dynamics evolve in response to varying inputs, 

providing an understanding of its computational behavior. To validate our theoretical 

model and ensure its practical utility, the MATLAB® script conducts a critical verification 

step. It compares the temperature across each resistor or neuron within the physical 

reservoir to the corresponding temperatures obtained from COMSOL Multiphysics 



86 

simulations. This verification process plays a pivotal role in solidifying the theoretical 

foundation of our model and confirming its real-world applicability. Figure 4.18 provides a 

visual illustration of the verification step, offering a clear depiction of how the temperature 

verification is conducted and emphasizing the alignment between our analytical model 

and the empirical data obtained through simulations.  

 

Figure 4.17. Flowchart of the processes involved with creating a physical 
reservoir. It outlines the script initialization, parameter handling, 
visualization, and dynamic evaluation with a time series input. 

In the subsequent phase, we introduced a time series as an input to the model and 

simulations, unlocking the ability to observe the dynamic response of the reservoir system 

in real time. Within the MATLAB® script, the temperature distribution across the entire 

reservoir was calculated and monitored the temperature of individual neurons at one-

second intervals. This approach allowed us to closely track and analyze the behavior of 

the system over time. As illustrated in Figure 4.19, a high level of agreement between the 

simulation results was observed and the predictions generated by our theoretical model 

when subjected to the provided time series input. This agreement highlights the model's 

ability to faithfully capture the intricate dynamics of the reservoir computing system in real-
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time scenarios. It validates not only the static aspects of our model but also its dynamic 

predictive power, further affirming its practical applicability and relevance in real-world RC 

applications. 

 

Figure 4.18. (a) Step-by-step outcomes of the MATLAB® script following the 
developed general model in the previous section. The reservoir is 
configured first, isothermal contours are visualized, both static and 
dynamic weight matrices are derived based on a specified input, and 
a comparison between the temperature across each resistor/neuron 
within the physical reservoir to the corresponding temperatures 
obtained from COMSOL Multiphysics simulations are made. 

Using the previously outlined reservoir, we successfully addressed a nonlinear 

problem with memory constraints. Figure 4.20 illustrates the input signal introduced into 

the reservoir alongside NARMA1 designated as the output for prediction by the reservoir. 

This comprehensive performance assessment encompasses both the reservoir 

constructed within the MATLAB® environment, utilizing the developed analytical model 

and the reservoir simulated using COMSOL Multiphysics to solve the nonlinear task. 

Remarkably, the performance of both reservoirs demonstrates a substantial level of 

comparability.   

 



88 

 

Figure 4.19. Comparison of the developed general model and the simulations from 
COMSOL Multiphysics in response to a time series signal in the input. 

 

Figure 4.20. Performance of the reservoir built in MATLAB® environment using the 
developed analytical model with the reservoir simulated in COMSOL 
Multiphysics in solving a nonlinear problem. 
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4.4. Summary 

In this chapter, we elaborated on the idea of 3D-printed processors as a solution 

to address the requirements for computing units in processing applications. Energy 

transfer could be a valuable source of information transfer in hardware reservoirs and 

identified two types of energy that can be harnessed to this end in the 3D printed 

processors working based on the self-heating as a source of memory and nonlinearity 

within the reservoir. We conducted analytical studies on the reservoir's thermal energy 

transfer and weights matrix to explore this concept further.  

This chapter ends with laying a synergy between physical RC and software RC. In 

the realm of physical RC, the selection of appropriate physical components or materials 

is a crucial step. These components could encompass a range of possibilities, including 

mechanical, optical, or electronic elements. The choice of components is not arbitrary; it 

depends on the desired dynamics, compatibility with the overall system design, and how 

the chosen materials respond to different stimuli. These choices determine the nonlinearity 

the physical RC exploits and dictate how the reservoir's behaviour changes over time. 

Different systems with exponentially decaying behaviour, various forms of damping, and 

even chaotic systems can offer the desired dynamic properties that show fading memory. 

For instance, mechanical oscillators exhibit exponential decay, where the energy or 

amplitude of oscillations gradually decreases over time due to damping mechanisms. 

Another example can be found in resistor-capacitor circuits, where discharging a capacitor 

through a resistor results in an exponential decrease in voltage across the capacitor over 

time (~𝑒−𝑡/𝜏), where 𝜏 is the time constant of the system. 

Moving on, we discuss how energy is exchanged when we consider the interaction 

between physical components within the reservoir. These mechanisms can be of various 

types—electrical, mechanical, thermal, or hybrid. The selection of these coupling 

mechanisms profoundly impacts how energy flows, signals propagate, and computations 

are carried out within the physical RC system. Balancing the connectivity patterns and 

choosing appropriate coupling mechanisms is pivotal for achieving the desired 

computational performance. The physical layout and geometry of the reservoir also play 

an equally crucial role. This includes how the components are arranged and distributed 

spatially and the system's overall structure. These factors determine how strongly 

components are interconnected and the system's overall complexity. These aspects 
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collectively determine a key parameter called the "spectral radius" of the physical 

reservoir, which characterizes the system's dynamic behaviour. 

Physical RC systems require suitable input signals to operate and generate 

desired outputs in the context of input signals. These input signals can take various forms, 

such as electrical, optical, thermal, etc., depending on the nature of the physical 

components being used. The generated output signals correspond to changes in physical 

quantities like displacements, currents, or light intensity. Ensuring that input and output 

signals are designed efficiently and controllably is critical for achieving the desired 

computational performance. The concept of input scaling in physical RC corresponds to 

adjusting the amplitude of input signals to guide the reservoir to its intended operating 

state. This ensures that the input values fall within a suitable range that the reservoir can 

process effectively. It's analogous to tuning the gain or amplification of input signals in 

electronic systems.  

The analogy between physical and software RC parameters, which is summarized 

in Table 4-4, provides a bridge that enables researchers and engineers to translate their 

understanding and strategies from one domain to the other, fostering a richer experience 

and more effective design strategies. This synergetic relationship amplifies our 

comprehension and design capabilities, paving the way for more informed and efficient 

development across both fields. As we transition to the next chapter, we delve into the 

practical realization of these concepts, showcasing the proposed 3D printed computing 

platform's ability to process real-time data and its remarkable classification capabilities 

with real sensory information. Through tangible demonstrations and benchmark 

assessments, we underscore the platform's potential to perform intricate computations, 

ultimately ushering in a new era of versatile and powerful computing solutions. 

Table 4-4. Synergy between Software and Physical RC. 

Parameters Software RC Physical RC 

Activation function 𝑓(. ) Material/device nonlinearity e.g., 𝜌(𝑇) 

Leaking rate 𝛼 
𝑒−1/𝑓𝑠𝜏 

for an exponentially decaying system 

Input scaling 𝑎 Gain/scaling of the input signal 

Spectral radius 𝜌 Coupling strength 

Neuron connections Information flow Coupling/energy flow 

Reservoir size # neurons # devices/electrodes 
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Chapter 5.  
 
The Proposed 3D-Printed Computing Platform 

This chapter discusses the ability of the proposed 3D printed computing platform 

to process real-time data and its classification capability for real sensory data. We will 

demonstrate that a simple structure printed with regular 3D printers can be driven and 

used with common measurement tools to perform sophisticated contextual computations, 

including standard benchmarks and a demonstration of user activity detection from sensor 

data. This chapter partly contains my article published in Advanced Intelligent Systems 

entitled “A 3D-Printed Computer” [102]. Correlations between memory capacity, 

nonlinearity, and sampling rates with this computer were examined. Despite its simplicity, 

the computer can tackle complex standard tests and is used to solve the practical problem 

of user activity detection. Adding to the computational capability of the demonstrated 

computer is simply achievable by printing additional computational nodes. At a material 

cost of less than $1, this processor can be used next to existing intelligent systems for 

contextual signal processing. It can also be embedded within the structure of 3D-printed 

intelligent systems, enabling the realization of cognizant 3D-printed systems. 

5.1. The 3D-Printed Reservoir  

One of the challenges in implementing physical RC is the choice of a physical 

system to be used as the reservoir. In the previous chapter, we showed that 3D-printed 

resistors could be a suitable candidate for developing RC computers based on ESN 

topology. The nonlinearity and time dependence in resistors' responses make them ideal 

for use as elements in a reservoir. In addition, the coupling between the elements can be 

achieved through electrical or thermal coupling, as introduced earlier. Here, the proposed 

3D-printed reservoir using 3D-printing technology is described. Several resistors were 

printed close to each other such that the heat generated by one would reach and affect its 

nearby neurons. Thus, the reservoir structure can be interpreted as a three-layer reservoir 

in which the weighted connections between the neurons are realized through thermal and 

random electrical couplings. Moreover, the neurons on each layer are electrically coupled 

to each other. Three layers of resistors printed of Carbon-PLA composite were stacked on 

each other with a gap in between, filled with pure PLA as the insulating material, as shown 
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in Figure 5.1. The lateral dimensions of the 3D printed reservoir are 3.9 cm × 3.5 cm, while 

its height depends on the thickness of the resistors (i.e., the number of printed layers). 

The width of the resistors is 1.6mm, and the gap between the resistors (layers) is set to 

0.2mm. Three samples with similar lateral dimensions that differed only in the thickness 

of the conductive layers (resistors) were 3D printed. The thicknesses of the resistors in 

Samples 1 to 3 were 2 mm, 1 mm and 0.5 mm, respectively.  

 

Figure 5.1. Components of the 3D printed computer. (a) The proposed reservoir 
structure; (b) The 3D-printed reservoir with electrical connections for 
applying or reading electrical signals; (c) the top view of the computer 
with three conductive layers printed between the insulating material 
next to a Canadian ₵10 coin. 
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These resistors' nonlinear, time-dependent responses and their coupling satisfy 

the requirements for building an ESN. Contact pads were used to apply the input signals 

or to read the data from specific nodes. The input layer is driven by an analogue shift 

register which shifts and scales the input signal, 𝑢(𝑛), multiple times (i.e., past three 

samples 𝑢(𝑛 − 1), 𝑢(𝑛 − 2), and 𝑢(𝑛 − 3)) and maps the generated signals to the 

reservoir. The output layer is trained by running a linear regression on all the outputs from 

the reservoir in MATLAB®. 

These structures were initially studied to evaluate the nonlinearities and time 

dependencies of the responses of neurons at different locations and the couplings 

between them. Figure 5.2 shows test results from these samples on individual neurons' 

responses to electrical excitations. The hysteresis in the resistor's response, shown in 

Figure 5.2 (b), represents both memory and nonlinearity. Hysteresis refers to a 

phenomenon in which the output of a system depends not only on its current input but 

also on its past inputs. Hysteresis in a system or device can then be considered a form of 

memory. Together, these two characteristics can make it difficult to predict the behaviour 

of a system. It was also observed that the neurons' responses might be affected by 

injecting a control current, IC, into different neurons in the structure (Figure 5.2 (c)). This 

effect may be used to bias different neurons post-fabrication to make them respond 

differently from other similarly fabricated devices, adding another parameter that can be 

used to enhance the reservoir complexity.  

Figure 5.2 (e) demonstrates a resistor's measured electrical and thermal 

responses on the top layer of the 3D printed processor over time due to a step current 

input. After the current injection, the voltage across the resistor and its temperature slowly 

rise until thermal equilibrium with the environment is reached. In this case, the resistor 

exhibited a thermal time constant (TTC) of ~62s. TTC will differ for different neurons in the 

structure and depend on the thermal boundary conditions, such as being embedded within 

the structure or being exposed to the environment on one or more surfaces. This property, 

too, adds a degree of randomness and helps with using the 3D-printed structure as a 

contextual processor.  
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Figure 5.2. Electrical response of printed structures. (a) Schematic of the 
conductive paths in the fabricated reservoir and its close-up view; (b) 
The nonlinear I-V response of the reservoir obtained by sweeping a 
current through two one of the resistors in steps with a time delay of 
10s or 50s between the steps; (c) The effect of control current, I_C, on 
the response of a resistor; (d) Comparison of the I-V responses of 
three reservoir samples with similar lateral dimensions but different 
thicknesses for the conductive resistors (e) Temperature and the 
voltage across the two electrodes over time in response to an I=8mA 
step current input. 
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In physical reservoir computing, reservoir richness refers to the ability of a physical 

system to generate a high-dimensional and nonlinear response to a given input signal, 

which is a key property required for performing complex computations such as pattern 

recognition, time-series prediction, and control. It is a critical factor in the design and 

optimization of physical reservoir computing systems, as it determines the computational 

power and accuracy of the system. The physical system's complexity and nonlinearity 

determine a physical reservoir's richness. It can be characterized by various measures, 

such as the system's dimensionality (the combination of the number of neurons and their 

interconnections), the system's sensitivity to initial conditions, and the system's memory 

capacity, a measure of its ability to store and retrieve information. 

One aspect of richness is the nonlinear or linear response of individual neurons in 

the reservoir. Neurons in a reservoir can exhibit various nonlinear and linear response 

characteristics. The nonlinear and linear responses of neurons in a reservoir can interact 

with each other in complex ways, leading to the emergence of even more complex 

behaviours. For example, the nonlinear responses of some neurons in a reservoir can 

modulate the linear responses of other neurons, resulting in dynamic and adaptive 

processing capabilities. The nonlinear and linear interactions of neurons in a reservoir can 

also create feedback loops that allow the reservoir to store and manipulate information 

over time. Thus, richness in reservoir computing encompasses a wide range of complex 

and diverse nonlinear and linear responses of neurons, as well as their interactions, that 

enable the reservoir to perform complex computations. Figure 5.3 demonstrates some 

characterization results for Sample 3. The neurons in the printed reservoir exhibited linear 

and nonlinear responses to different ranges of input signals, as expected.  

A single printed computer provides numerous possibilities to arrange input and 

output layers by applying or reading signals to different contacts. See Table 5-1 for the 

arrangement used in this study. Figure 5.4 illustrates thermal images of the reservoir at 

different instances of time after the application of an input to the reservoir, showing the 

evolution of reservoir characteristics through heating and its subsequent effect on the IV 

characteristics of the neurons. 
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Figure 5.3. Electrical and thermal response of coupled components. (a) IV 
characteristics of various pairs of electrodes; (b) The electrode labels. 

   

Figure 5.4. Thermal images of the reservoir at different computation times. 

Table 5-1. Arrangement of the electrodes in the reservoir and their functions. 

Electrode # Status 

2, 4, 7, 9, 12, 14 Output States (Wout) 

3, 8, 11 GND 

1, 6, 10, 13 Input States (Win) 

5, 15 VC 

 

Figure 5.5 illustrates how the reservoir computing (RC) approach uses the 

reservoir outputs to distinguish between different events in a time-series signal. The 

incoming signal is first fed into the reservoir, and time-shifted copies of the signal are 

applied. The reservoir outputs, which represent the nonlinear and linear combinations of 

the input signals, are then combined using weights that were previously calculated during 

the training stage. This combination process results in a filtered and transformed version 

of the original signal, which can be used to distinguish between different events. 
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Figure 5.5. A sample time-series signal (top), its time-shifted copies applied to 
the reservoir input by the analogue shift-register (middle), and the 
reservoir output (bottom). 

The reservoir’s output neurons are a mapping of the reservoir states to the desired 

output of the system. How the output neurons respond to different initial input signals 

provides insight into the complexity of the reservoir. For example, if the reservoir is linear, 

then the output neurons may respond in a highly correlated way to an input. In contrast, 

in a nonlinear complex reservoir, the output neurons may react more independently. This 

property depends on the range of the input signals (i.e., operating point) and the number 

of nonlinear neurons within the reservoir. Four identical and two different control signals 

(as control signals) were introduced to the reservoir without any time shifts. The output 

neurons were read when the reservoir was initiated at a specific input value and increased 

with an increment of 1V. Figure 5.6 illustrates the different reservoir states that each of the 

output neurons (shown in coloured markers) were initiated and evolved. All the output 

neurons respond in a highly nonlinear way to certain initial input signals, especially when 

they are self-heated enough (i.e., ≥ 3𝑉). Sometimes, the states were distributed and the 

distribution did not change but a shift happened (b). Sometimes, the states were initially 

close to each other but departed and diverged in the next step (c). Sometimes, two furthest 

states can get closer and two far states can get away from each other (c)-(e). These 

suggest that the reservoir is highly complex and nonlinear and can respond complexly or 

unpredictably. However, another important factor in the complexity of a system is the time-

dependence.  
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Figure 5.6. Initiation and evolution of the reservoir when stimulated with different 
input signals. Responses of the output neurons are illustrated to 
capture the evolution. (a) The 3D-printed reservoir with specified 
input, output and ground electrodes. (b) A shift in the responses 
happened, (c) departing and diverging happened, (c)-(e) two furthest 
states got closer and two far states got away from each other.  
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5.2. Performance Evaluation based on Standard Tasks 

According to what we concluded from the previous section, we generated a sample 

dataset which includes 360 samples in the range of [3 10] V. Two hundred fifty samples 

from this data (~70%) were randomly selected and used to train the output layer weights. 

The remainder of the data set was used to validate the computer performance. Figure 5.7 

shows the response and the analysis of the response of the 3D printed processor to 

NARMA tasks of varying order (𝑛 = 1…10). This simple processor with only 18 nonlinear 

neurons performs well for 𝑛 ≤ 7. The performance of the processor can be improved 

through several simple approaches, including adding computational neurons, varying the 

control signal, or time-multiplexing the tasks between parallel computers. 

 

Figure 5.7. Assessment of the computer performance to solve computational 
tasks with varying orders of nonlinearity and memory. (a) The 
reservoir response to predicting a time-series input produced by 
varying orders of NARMA task with fS=fS3. 

It is well-known that different dynamical systems have different characteristic 

timescales (and/or frequencies) that govern their behaviour. Therefore, to excite different 

dynamics in a given system, it is necessary to apply input signals at appropriate sampling 

rates (and/or frequencies) that are tailored to the specific system. For instance, in chaotic 

systems, minor variations in the input signal or sampling rate can result in vastly different 
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trajectories and outcomes, highlighting the sensitivity of these systems to their initial 

conditions. On the other hand, in more regular systems, such as periodic or quasi-periodic 

oscillators, the input signal can be designed to match the system's natural frequency, 

allowing for optimal energy transfer and efficient excitation of the desired dynamics. 

Therefore, the importance of selecting the appropriate input scaling and sampling rate 

cannot be overstated when dealing with dynamic systems. It is crucial to carefully tailor 

these parameters to the unique characteristics of each system to drive it to the desired 

dynamic area.  

We first study this phenomenon using a NARMA task of varying order and then 

move to a more straightforward memory capacity task. The NARMA test helps study the 

compromise between the input signal's sampling rate and retainable memory within the 

system [103]. The system state approaches thermal equilibrium at a slow sampling rate 

(i.e., low data rate). Although the reservoir exhibits the most nonlinear response in this 

case, and hence the ability to solve complex problems, it may have lost information about 

distant past events. On the other hand, a fast sampling rate (i.e., high data rate) reduces 

the reservoir nonlinearity needed for contextual computing but helps the system retain 

more information about past events. Figure 5.8 (a) and (b) demonstrate the performance 

of the reservoir in solving NARMA tasks of varying orders with different sampling rates. 

As can be seen, both fast and slow sampling rates result in more significant errors. 

Therefore, proper selection of sampling frequency is essential in achieving optimal 

performance from the reservoir in terms of accuracy.  

Memory Capacity (MC) is a key concept in evaluating the performance of a 

contextual processor when dealing with temporal data. It is defined as the ability of a 

processor to retrieve past information from the reservoir using the linear combinations of 

its internal states. The higher the MC, the better the processor's ability to recall past 

events, making it useful for a wide range of applications that require processing time-

series data. Indeed, a high memory capacity means that the system can retain information 

about past events for extended periods and use this information to solve complex 

problems. This can be seen as a measure of how well the system can capture and model 

the underlying dynamics of the data it is processing (i.e., higher expressivity). Thus, a 

system with increased memory capacity is considered more expressive, as it can solve 

more complex problems and capture more intricate patterns in the data. 
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Figure 5.8. Comparison of the reservoir performance when solving NARMA tasks 
of different orders with different sampling frequencies.  

On the other hand, memory capacity can be seen as a measure of how well the 

system can handle large amounts of temporal data (i.e., scalability). For instance, a 

system with high memory capacity can take longer data sequences, making it more 

scalable. However, some other design parameters, such as the size and connectivity of 

the reservoir, the type of nonlinearity, and the input/output mapping, can also play a 

significant role in determining the processors’s expressivity and scalability. 

 Figure 5.9 demonstrates how the memory capacity of the reservoir is affected by 

the sampling frequency when solving a NARMA3 task. As can be seen, a slow sampling 

rate results in the computer operating with the least error (because of the high nonlinearity) 

but also a small MC (~2) because the system forgets about past events. On the other 

hand, a high sampling rate results in poor accuracy, but the system remembers many past 

events (~12). A balance may be struck for this reservoir by choosing a sampling frequency 

around 6/TTC to achieve good computation accuracy with a high MC (~6). Thus, a slow 

sampling rate results in the system operating with increased nonlinearity, leading to higher 

computational accuracy. However, this comes at the cost of a smaller memory capacity, 

limiting the types of problems that the system can solve. 

On the other hand, a high sampling rate can help the system remember many past 

events, enabling it to solve a broader range of problems. However, this also results in poor 

accuracy due to reduced nonlinearity. Again, in the context of neural networks, 
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expressivity refers to the ability of a network to represent complex functions, while 

scalability refers to the power of a network to handle large datasets or increase complexity 

efficiently. The sampling rate affects both properties in the context of a physical contextual 

processor. A slow sampling rate can improve the system's nonlinearity, allowing it to 

represent more complex functions. This, in turn, leads to higher expressivity. However, it 

may limit the system's ability to handle larger datasets, reducing scalability. Conversely, a 

high sampling rate can help the system remember past events, increasing its ability to 

handle larger datasets and potentially increasing scalability. However, this may come at 

the cost of reduced nonlinearity, limiting its expressivity. 

 

Figure 5.9. Demonstration of the dependence of reservoir memory capacity, 
RMSE, and R2 to sampling frequency when solving a NARMA5 task. 
The graph at the top shows a typical step response of one of the 
reservoir's nonlinear neurons, which is used to estimate TTC and set 
sampling frequencies. 
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Therefore, the choice of sampling rate is a crucial factor in determining the 

expressivity and scalability of a contextual processor. We can establish a trade-off 

between the two properties to achieve optimal performance depending on the problem. 

The behaviour of the reservoir can be influenced by adjusting the sampling rate. 

Consequently, we can alter the system's ability to solve certain problems or retain past 

information. Therefore, the sampling rate can be an added degree of freedom to the 

system. 

In general, the optimal performance of physical processors depends on the 

combination of network complexity, sampling rate, and nonlinearity. The processors need 

to be designed to attain a certain level of performance through their physical design and 

optimizing dimensions, number of neurons, types of materials, and other parameters that 

affect their nonlinearity and time responses.  

To justify our conclusions about the memory integrated within the reservoir and to 

prove its presence in the reservoir, we compared the performance of the 3D-printed 

processor with a feedforward neural network (FNN) constructed in MATLAB®. The FNN, 

although consisting of multiple layers and neurons, cannot store and retain temporal 

information, which limits its performance in certain tasks. In contrast, the 3D-printed 

processor integrates memory within the reservoir, allowing it to consider past inputs when 

making predictions, resulting in superior performance. The results in Figure 5.10 showed 

that the 3D-printed processor outperformed the FNN, consisting of 3 hidden layers with 

18 neurons. Each neuron in the FNN used a sigmoid activation function. It was found that 

increasing the number of neurons in the FNN improved its performance to some extent, 

but it still could not match the performance of the 3D-printed processor. 

This discrepancy in performance between the 3D-printed processor and the FNN 

can be attributed to the added degree of freedom that memory integration provides. The 

memory integrated within the reservoir adds a layer of complexity to the system, allowing 

it to process and retain temporal information. The added complexity and degree of 

freedom enable the 3D-printed processor to perform better than the FNN in specific tasks, 

demonstrating the importance of memory and temporal processing in computational 

systems. The comparison between the 3D-printed processor and the FNN can also be 

related to expressivity and scalability. Due to its ability to integrate memory and process 

temporal information, the 3D-printed processor can be considered more expressive and 
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scalable than the FNN, which lacks these capabilities. The added degree of freedom 

provided by memory integration expands the range of tasks the 3D-printed processor can 

perform, making it a more versatile and powerful computational tool. 

 

Figure 5.10. The 3D-printed processor’s performance (when driven into different 
dynamical regions by adjusting the sampling rate) compared to a 
feedforward neural network in solving computational tasks with 
varying orders of nonlinearity and memory. 

5.3. Near-Sensor Data Processing 

Activity detection is an important application of wearable systems, which can be 

used to monitor human conditions and health. In recent years, with the development of 

mobile Internet-of-Things (IoT) platforms, wearable devices have become more advanced 

and sophisticated, with various sensors and onboard computational capabilities that 

communicate with remote servers. One of the most common features of many wearable 

devices is their ability to detect the type of human activity. This ability is useful for various 

applications, including sports training, healthcare, and security monitoring. 

To develop statistical models for activity detection, data preparation and feature 

extraction are crucial steps. The quality of the data and the features extracted from it will 
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significantly impact the accuracy and performance of the statistical models. In this case 

study, we used data from a SensorTile kit from STMicroelectronics, which includes a pair 

of microcontrollers, a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis magnetometer, 

as well as pressure, temperature, and humidity sensors [104]. The accelerometer signals 

were used to identify the user activity between walking, stationary or on an elevator. The 

data were collected by attaching a SensorTile kit to a user's wrist and storing the data 

during different activities. 

The inertial signals from all three axes (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) needed to be included in 

developing the statistical model. However, it was noted that there is likely a strong 

correlation between the three features. Therefore, one may make the acceleration data 

independent of the module orientation by calculating an equivalent signal that retains the 

important information. This equivalent acceleration was calculated using the formula  

𝑎𝑒𝑞 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 (5-1) 

This signal was then used to extract features provided to the 3D-printed computer 

for activity detection. The next step was to define time windows during which we would try 

to identify the activity. After some trials, a measurement window of 5 seconds was selected 

in this case. This window should be long enough to let us calculate meaningful features 

and short enough to allow for the timely detection of activity changes. 

During each measurement window, the mean, standard deviation (STD), root 

mean squared (RMS), and number of peaks of 𝑎𝑒𝑞 were calculated as features. Since the 

range of feature values can vary widely, normalizing the features can help prioritize the 

features by a human or event identification by a machine. These features were then 

transformed into analog voltage signals and fed into the 3D-printed computer to indicate 

the user's activity data in each time frame. Figure 5.11 shows a sample of raw data 

collected from the accelerometers (𝑎𝑒𝑞) as well as features extracted from 5-second 

timeframes for different activities.  

The processor was trained on 196 instances of labelled user activity data. The 

output layer weights were determined through linear regression, and the processor's 

performance was evaluated using 60 cases of labelled activities that were not included in 
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the training dataset. We measured the processor’s accuracy in detecting patterns in the 

data and compared the results with those of typical machine learning algorithms. Figure 

5.12 depicts the entire procedure. A truth table shows the performance of the 3D-printed 

computer in detecting patterns in the data after training. The processor performs the data 

processing with 93.3% accuracy, 92.5%, 92.8%, and 100% sensitivity in determining 

whether the user is in an elevator, stationary, or walking. Notice that the sampling period, 

in this case, is 5 seconds, corresponding to a sampling frequency of about 12/TTC. This 

level of performance for such a limited set of input features is on par with the performance 

of typical machine learning algorithms on the same data. 

 

Figure 5.11.  Sample raw sensor data and normalized extracted features for 
different activities. 

5.4. Power and Speed Considerations 

We used common 3D printer for printing the processor with promising computing 

capability. The average power consumption for our processor in its current version is 

approximately 125mW, while the thermal time constant is ~62s. This power is required for 

heating each neuron to around 15 degrees above room temperature. Our current 

prototype consumes a high amount of power and has a lower speed in processing data. 

However, other 3D printing technologies, such as micro stereolithography (micro-SLA), 

can achieve minimum feature sizes in the range of tens to hundreds of micrometres. These 
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technologies utilize a light source (such as a UV LED) to cure and solidify photopolymer 

resin layer by layer into the desired 3D shape. The high precision of these technologies is 

due to the fine control of the light source and the ability to produce fine layers of resin. The 

minimum layer thickness in micro-SLA 3D printing technology can range from a few 

micrometres to tens of micrometres, depending on the specific machine and process used. 

Some micro-SLA systems can produce features with layer thicknesses as low as 1-2 

micrometres. These capabilities are promising in printing processors with lower power 

consumption and higher speeds. 

 

Figure 5.12. Activities detection procedure by the 3D-printed processor. The data 
were collected using a 3-axis accelerometer on a wearable device 
worn on a user's wrist during different activities. A truth table shows 
the performance of the computer in recognizing user activity from 
sensor data. 

The power required for each neuron is given as 

𝑃𝐸 = 𝑅𝐼
2 = 𝜌𝑒(𝑇) (

𝐼

𝐴𝑥
)
2

(𝑑𝑡ℎ .𝑊. 𝐿) (5-2) 

where 𝑑𝑡ℎ, 𝑊, and 𝐿 are the thickness, width and length of the resistors, respectively. 

Therefore, the power consumption would be reduced by three orders of magnitude to 

125μW if all the dimensions were reduced by a factor of 10.  
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On the other hand, the thermal time constant is related to the thermal conductivity, 

specific heat capacity, and density of the printing material, as well as the thickness of the 

entire structure, 𝑡𝑃𝐿𝐴. 

𝜏 =
𝜌𝑚𝐶𝑝

𝜅𝑃𝐿𝐴
𝑡𝑃𝐿𝐴

2 (5-3) 

Therefore, the thermal time constant reduces by two orders of magnitude to 620ms 

if all the dimensions are reduced by 10. The resulting processor would be easily and 

feasibly able to process 10 samples/s while consuming an average power of 125μW. The 

power consumed by a single neuron is 7μW/neuron (i.e., 0.4μW/weight). 

Transitioning from a 3D-printed reservoir to silicon offers a remarkable leap, due 

to smaller feature sizes and better thermal properties reducing thermal time constant by 

at least 5 orders of magnitude, resulting in a maximum timescale of ~0.6ms and a 

minimum processing speed of 10000 samples/s. An average power consumption of 

7nW/neuron (i.e., 0.4nW/weight) is achievable by dimension reduction from mm range to 

tens of μm range using readily available microfabrication technologies, which can be 

translated to 0.4pJ/weight for silicon reservoirs. This shift underscores the pivotal 

advantages of silicon reservoirs compared to a standard feedforward neural network 

running on the most efficient supercomputer on the Green500 list consuming 15pJ/weight 

[105]. All the above is summarized in Table 5-2. 

Table 5-2. Power consumption and speed justifications with change in material 
and the 3D printing technology. 

 Resistor 
dimensions 

Timescale Sampling rate Power consumption  

3D-Printed 
Reservoir 

0.5mm x 
1.6mm x 

4.6mm 

60s  0.1 
samples/second  

7mW/neuron  0.4mW/parameter  

50μm x 
160μm x 

460μm 

0.6s   

(100X)  

10 
samples/second  

(100X)  

7μW/neuron  

(1000X)  

< 0.4μW/parameter  

(1000X)  

Silicon-
based 
Reservoir 

5μm x 16μm 
x 46μm 

600μs  

(100,000X)
  

10,000 
samples/second  

(100,000X)  

< 7nW/neuron  

(1,000,000X) * 

< 0.4nW/parameter  

(100,000X) * 

* Ignoring the thermal dissipation to the environment.  
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5.5. Comparison between the RC and Neural Networks 

We developed the processor to predict time series data and tasks involving 

sequential data. We will conduct a benchmark analysis to compare the proposed 3D 

printed processor’s ability to process data with state-of-the-art software neural networks, 

including feedforward neural networks (FNNs) and recurrent neural networks (RNNs). The 

performance of the processor will be evaluated using predictive accuracy, memory 

capacity, and number of parameters (trainable weights). Predictive accuracy is the most 

commonly used metric to evaluate the performance of NNs on time series prediction tasks. 

We will use RMSE and R2 to assess and compare the accuracy of the proposed 3D-printed 

processor to the FNNs and RNNs. We will measure the ability of the network to accurately 

predict future values in the NARMA task based on past values. As mentioned earlier in 

this thesis, MC measures the network's ability to store and retrieve information from 

previous inputs, which is important for tasks such as sequence generation. We will train 

the network on a sequence of inputs and evaluate its ability to generate the next element 

based on the previous elements. In a machine learning model, "parameters" refers to the 

values the model must learn to make accurate predictions on new data. In a neural 

network, the parameters typically include the weights and biases associated with the 

neurons in the network. These parameters are adjusted during the training process to 

minimize the error between the predicted outputs and the true outputs. The number of 

parameters in a machine learning model is important because it affects its capacity and 

ability to learn complex patterns. Models with too few parameters may underfit the data 

and fail to capture important patterns. At the same time, models with too many parameters 

may overfit the data and memorize the noise in the training set. Therefore, choosing an 

appropriate number of parameters for a given problem is important. In addition, the 

number of parameters can also affect the computational resources required to train and 

use the model. Models with a larger number of trainable parameters may require more 

time and memory to train and may be slower to make predictions at inference time. 

Therefore, balancing the model's capacity with its efficiency and practicality in a given 

application is essential. 

A feedforward network was created as a benchmark analysis to compare the 

performance of the 3D-printed processor against a more traditional machine learning 

approach. The feedforward neural network (FNN) is a type of artificial neural network that 
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is widely used in machine learning applications. In MATLAB, the FNN was created using 

the feedforwardnet function, which constructs a multilayer perceptron (MLP) architecture. 

The feedforwardnet function allows the user to specify the number of hidden layers, 

neurons in each layer, the activation functions used in each layer, and other parameters. 

The FNN consisted of an input layer with four neurons, one hidden layer of size 24, and 

an output layer, as depicted in Figure 5.13.  

 

Figure 5.13. The feedforward neural network created to compare with the 
proposed processor. 

 

Figure 5.14. The layered recurrent neural network created to compare with the 
proposed processor. 

A recurrent neural network (RNN) was created for performance comparison. The 

RNN was designed with a fully connected network structure. This memory retention 

capability made the RNN suitable for processing sequential data, such as time series data, 

where the current output depends on both the current and previous inputs. The RNN 

consisted of an input layer with four neurons, one hidden layer of size 24, and an output 

layer, as depicted in Figure 5.14. A layered RNN, or layrecnet, was implemented in 

MATLAB®. This architecture includes multiple recurrent layers stacked on each other, 

each taking the previous layer's output as input. In MATLAB®, the layrecnet can be easily 

implemented using the layrecnet function, which inputs the number of layers, the number 

of neurons in each layer, and the delay for each layer.  
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In comparing the performance of the proposed 3D printed processor with that of 

RNNs and FNNs in modelling nonlinear and dynamic systems, as summarized in Table 

5-3, it was found that RNNs and the proposed processor outperformed FNNs. Figure 5.15 

illustrates the time-series processing performance of the proposed processor, FNNs, and 

RNNs. Because of having a larger number of parameters than FNNs, RNNs could model 

the system's temporal dynamics and capture long-term dependencies, resulting in higher 

prediction accuracy. Regarding the number of parameters, it is worth noting that the 

proposed 3D-printed processor has a significantly smaller number of parameters than both 

FNNs and RNNs. FNNs typically have fewer parameters compared to RNNs, but their 

performance suffers when modelling temporal dynamics. In contrast, RNNs have a much 

larger number of parameters. They can capture the temporal dynamics in the data but 

may suffer from overfitting if the data size is insufficient. The proposed processor offers a 

middle ground, with a smaller number of parameters than RNNs, while still being able to 

model temporal dynamics. The competitive performance of the proposed processor with 

a smaller number of parameters suggests that it may be an efficient and effective solution 

for tasks requiring the modelling of nonlinear and dynamic systems, especially when the 

data size is limited. Therefore, the proposed physical processors could be a promising 

alternative to traditional FNNs and RNNs in specific applications. 

Table 5-3. Performance comparison among the proposed 3D-printed processor 
and software neural networks 

Model Name Software FNN Software RNN 3D-Printed 
Processor 

Pre-processing Normalization Normalization Gain/scaling 

Architectural details One input layer 

One hidden layer 

One output layer  

One input layer 

One hidden layer 

One output layer 

One input layer 

One hidden layers 

One output layer 

Number of neurons 4+24+1= 29 4+24+1 = 29 4+3*6+6 = 28  

Nonlinear function Sigmoid Sigmoid Temperature-
dependent resistivity 
of the material 

Accuracy 

RMSE (%) and R2 (%) 

 

7.9% and 79.8% 

 

3.4% and 96.7% 

 

4.32% and 95.2% 

Number of trainable 
parameters 

145 317 7 

Memory capacity ~ 3 ~ 6 ~ 6 

Hardware CPU CPU Hardware 
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(a) 

Feedforward Neural 
Network 

 

 

(b) 

Recurrent Neural 
Network 

 

 

(c) 

The 3D-Printed 
Processor 

Figure 5.15. Performance comparison of the (a) FNN, (b) RNN, and (c) the 
proposed 3D printed processor in modelling the NARMA3. 

5.6. Summary 

In conclusion, the proposed 3D-printed computing platforms using reservoir 

computing (RC) principles offer a new and innovative approach to sensory data 

processing. This approach uses conductive filaments, such as carbon-filled PLA, which 

exhibit interesting time-dependent, nonlinear responses due to self-heating. These 

responses make 3D-printed resistors suitable for developing RC computers based on ESN 

topology. By using 3D-printed resistors as nonlinear, coupled physical elements, we have 

demonstrated the feasibility of creating context from incoming time-series data. 

One of the significant advantages of the proposed 3D-printed computing platforms 

is that they can be designed and fabricated in any facility with access to regular 3D 

printers. This eliminates the need for sophisticated measurement systems or highly 

specialized manufacturing processes, making the technology accessible to a broader 

range of researchers and practitioners. Additionally, the computational capabilities of the 

printed computer can be increased by modulating control signals, increasing the number 

of printed neurons, and adjusting the lateral and vertical distances between the neurons. 
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Another key benefit of the proposed 3D-printed computing platforms is the 

potential for fully 3D-printed intelligent systems that combine 3D-printed sensors with a 

3D-printed contextual computer. This would allow for the instant extraction of context from 

environmental changes, enabling new possibilities for developing intelligent systems. 

Furthermore, the principles of this approach can be applied to other manufacturing 

techniques, such as using coupled temperature-sensitive resistors on silicon chips to 

process data from micromachined sensors, creating context without digital computations. 

The proposed 3D-printed computing platforms have the potential to revolutionize 

the field of data processing by providing a cost-effective and accessible solution for the 

development of intelligent systems. This approach can open up new opportunities for 

researchers and practitioners in the field and pave the way for innovations in the future. 



114 

Chapter 6.  
 
Conclusions and Future Work 

The proposed 3D-printed computing platform can be useful in many near-sensor 

applications. These processors can process sensor data in real-time, allowing for real-

time monitoring and analysis of various metrics such as movement and temperature. This 

attribute can enable more advanced applications such as predictive maintenance, quality 

control, and safety monitoring. One can exploit these processors to drive advanced user 

interfaces, enabling more immersive and interactive user experiences. If printed and 

developed in microscales, they will consume less power than traditional processors. 

Consequently, this allows sensing devices to be powered by small batteries, making them 

more portable.  

The advantages and disadvantages of the proposed computing platform are 

compared to the existing technologies and summarized in Table 6-1. A CPU, GPU, or 

FPGA cost can vary widely depending on several factors. CPUs tend to be the most 

expensive type of hardware, followed by GPUs and FPGAs. However, the cost is not the 

only consideration when selecting a platform, as other factors such as performance, 

capabilities, compatibility, and ease of use can also be important. Neuromorphic chips 

mimic the electrical properties and dynamics of biological neurons and synapses, allowing 

for low power consumption and high energy efficiency. They can perform multiple 

computations simultaneously, greatly accelerating the processing of large data sets. 

Neuromorphic chips can also tolerate high noise levels and errors, making them suitable 

for harsh environments. However, neuromorphic chips are relatively expensive to 

produce, which can limit their adoption in some applications. They offer limited scalability 

due to a fixed number of neurons and synapses and limit the system's scalability. It also 

suffers from limited programmability, which can limit the system's flexibility. 

Physical computing platforms, on the other hand, offer high flexibility. Physical 

systems developed for reservoir computing can be chosen from a wide range of systems 

that exhibit nonlinear dynamic behaviour, allowing for increased flexibility regarding the 

system's properties. These physical systems can be scaled up to larger systems, allowing 

to processing of larger data sets. These platforms are typically less expensive than 
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neuromorphic chips. However, the dynamics of these physical systems can be hard to 

control and may not be as robust to noise and errors as neuromorphic chips. Additionally, 

these physical systems may be less energy efficient than neuromorphic chips. 

The proposed computing platform utilizing 3D-printed processors presents a 

promising solution for various processing applications. It offers several advantages over 

traditional manufacturing methods. These include extremely low cost, compatibility with 

wearable sensors, and the ability to encompass a passive nonlinear dynamical system. 

Additionally, 3D-printed processors are easily reproducible, allowing for quick and efficient 

scaling of the platform. Furthermore, the platform is capable of real-time data processing 

and has the potential for low power consumption and energy efficiency if printed in 

microscales.  

Table 6-1. Advantages and disadvantages of the proposed computing platform 
compared to the existing solutions 

Technology Advantages Disadvantages 

CPUs 

Widely available and easy to program, 

High performance for general-purpose 
computing tasks 

High power consumption, 

Less efficient for parallelizable tasks 

GPUs 

High parallel processing power, 

Lower power consumption than CPUs for 
specific tasks 

More expensive than CPUs, 

More challenging to program, 

Microcontrollers 
Low power consumption, 

Low cost 

Limited computing power and memory, 

Limited scalability 

ASICs 
High performance and energy efficiency, 

Low power consumption 

High development cost, 

Limited flexibility 

FPGAs 

High performance and energy efficiency, 

Low power consumption, 

High flexibility 

High development cost, 

Complex programming 

Neuromorphic 
Computing 

High energy efficiency, 

Low power consumption 

High Cost, 

Limited scalability, 

Limited programming flexibility 

Existing 
Physical RC 
Platforms 

High performance and energy efficiency, 

Low power consumption, 

High flexibility 

Limited scalability 

Proposed 
Computing 
Platform 

Extremely low cost, 

Compatible with 3D-printed sensors, 

It encompasses a passive nonlinear 
dynamical system, 

Easily reproducible,  

Energy efficient (if developed in 
microscales) 

Possibility of deformation if large signals 
are applied, 

Limited control over the dynamics, 

Limited flexibility and scalability 
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On the other hand, there are a few limitations to consider with the proposed 

computing platform. One limitation is the current technology of 3D printing, as the 

resolution and precision of 3D printed components may not be as high as those produced 

through traditional manufacturing methods. Additionally, the platform may not be suitable 

for certain high-performance applications that require very high clock speeds or large 

amounts of memory. Lastly, the printed processors may deform due to high electrical 

signals applied to them, which could lead to reduced performance and reliability. Limited 

expressivity is another challenge that can be addressed to some extent by appropriately 

selecting the rate at which the input signals are mapped to the physical reservoir within 

the processors. 

6.1. Future Directions 

Physical RC is a relatively new field of research, and the future of this field is 

difficult to predict. However, physical RC will likely continue to be an active area of 

research as it has the potential to enable the development of more efficient, low-power 

computing systems for various applications. Physical RC platforms have been applied 

across multiple research projects and have demonstrated promising results in various 

tasks, such as time-series prediction, chaotic time-series prediction, and image processing 

[6], [106]–[108]. However, it is essential to note that these platforms are still in the research 

and development phase and may not yet be ready for practical applications. 

The applicability and feasibility of physical RC platforms depend on various factors, 

such as the type of platform, the specific application, and the current state of technology. 

For example, electronic RC platforms are generally easier to implement and control than 

other physical platforms, such as optical and mechanical RC. However, their performance 

may be limited by the current state of technology and the devices' quality. Additionally, the 

devices' cost and the fabrication process's complexity also play a role in the feasibility of 

these platforms. For example, the fabrication of micro- and nano-electromechanical 

systems (MEMS and NEMS) is relatively complex and costly, which may limit their 

scalability and commercial feasibility. Thus, more development and research are needed 

before these platforms can be easily realized and applied in practical applications. 

One potential direction for future research in this field is the development of 

compatible physical processors with different sensor technologies for power-efficient real-
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world applications. This will lead to designing and developing physical reservoir computing 

platforms for near- or in-sensor computing applications. Researchers can push the 

boundaries of these computing platforms by addressing the challenges and knowledge 

gaps that still exist in near-sensor computing platforms. By addressing these challenges 

and knowledge gaps, we can create more effective and efficient near-sensor computing 

platforms for various applications. Through my Ph.D. research, I have contributed to this 

field by developing a prototype of a near-sensor computing platform. However, there is 

much work to make these systems more effective and efficient. Thus, future research may 

focus on finding ways to make various sensors in each sensory node, such as 

temperature, humidity, and gas sensors, not only sense the environment but also 

collaborate to process the data in real time and produce context-aware information. This 

research can potentially revolutionize neuromorphic computing by significantly 

contributing to knowledge generation and utilization. This research can also be applied to 

other areas where energy efficiency and real-time processing are critical such as robotics, 

and control systems. Additionally, there is a need to focus on the design of scalable 

physical reservoir computing platforms for large-scale applications.  

Specific Research Gap: In many physical reservoirs that have been developed 

thus far, pre-processing is often required. This pre-processing is often necessary due to 

adjustments needed for solving specific problems using physical RC, which may differ 

from software-based approaches. One common requirement is to slow down the 

introduction of events to the physical RC system, considering the slower timescales 

associated with physical reservoirs and/or the external implications of the measurement 

setups. For instance, in the context of photonics-based RC, pre-processing steps may be 

employed to address the limitations or characteristics of the optical system [109]. Optical 

systems often have inherent time delays due to various factors such as signal propagation 

through optical fibers or the response time of optical elements. To account for these 

delays, pre-processing techniques like introducing artificial time delays or adjusting the 

timing of events may be necessary. This ensures that the events align appropriately with 

the dynamics of the physical reservoir. Additionally, optical signals may undergo various 

forms of distortion or noise during propagation. Pre-processing steps can involve signal 

conditioning techniques such as filtering, amplification, or equalization to enhance the 

quality and fidelity of the input signals before they are fed into the physical reservoir. As 

mentioned earlier, photonics RC often utilizes intensity or phase modulation schemes. 
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Pre-processing may involve choosing the appropriate modulation technique, optimizing 

the modulation parameters, or designing specific modulation waveforms to ensure efficient 

signal encoding and decoding within the physical reservoir. Last but not least, physical 

reservoirs may require calibration and synchronization procedures to align the 

components, optimize the system parameters, and mitigate any non-idealities. This may 

involve adjusting the optical power levels, aligning optical elements, or compensating for 

nonlinearities introduced by the physical system. Therefore, the specific requirements and 

techniques may vary depending on the characteristics of the physical system, the targeted 

application, and the desired performance of the physical reservoir. Pre-processing at the 

current level of research and development on physical RCs, plays a crucial role in adapting 

the input signals and the measurement setup to the specific characteristics and constraints 

of physical reservoirs, enabling them to effectively solve a wide range of computational 

tasks. The next research question can be: how can we eliminate the demand for pre-

processing in physical RCs?   

Specific Applications: One potential direction for future research in this field is the 

integration of the physical reservoir computing platforms in Internet of Things (IoT) devices 

to promote sustainability in smart cities. Researchers can focus on developing and using 

unconventional processors to perform in-memory computing and identify potential 

applications in various smart city contexts, such as monitoring the environment and public 

safety. Another area of further research could be developing intelligent systems to address 

the existing challenges. One example is the detection of specific gas concentrations in a 

gas mixture, which is of great importance in industrial, residential, or agricultural 

applications. Existing systems, often called electronic noses, utilize several gas sensors 

and sophisticated algorithms to overcome cross-sensitivity issues, making such systems 

prohibitively expensive, power-hungry, and large for wide-scale applications. Researchers 

can develop a cognizant gas sensor to address these concerns and apply their findings to 

other sensing applications with similar challenges, such as e-tongue or biomedical 

sensing. Researchers can also focus on addressing a challenge existing gas sensing 

systems face: the need for continuous communication of the gas content for processing 

purposes. While it is crucial to quickly and accurately detect gas concentrations, constantly 

transmitting this information is not always necessary. The system can reduce power 

consumption and improve efficiency by processing data locally and only communicating 

the necessary information. 
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On-Site Decision Making: Continuous data communication for processing 

purposes may not be necessary for all applications. The system can reduce power 

consumption and improve efficiency by processing data locally and only communicating 

the necessary information. This goal can be achieved using physical reservoir computing 

systems that perform real-time data processing and on-site decision-making without 

constant communication with a central processing unit. All the potential future directions 

are summarized in a mind map shown in Figure 6.1. 

 

Figure 6.1. Future directions. 

In conclusion, physical RC is a relatively new field of research with great potential 

to revolutionize processing systems by enabling the development of more efficient and 

low-power computing systems for various applications. Despite the promising results in 

multiple tasks, physical RC platforms are still in the research and development phase and 

may not yet be ready for practical applications. However, continued research and 

development in this field will pave the way for creating more efficient and powerful 

processing systems for various applications. Additionally, fostering collaborations 

between researchers from different areas, such as physics, computer science, electrical 

engineering, and materials science, will accelerate the development and application of 

physical RC systems.   
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Appendix A. 
 
Materials and Methods  

3D Printing Setup 

Fused deposition modelling (FDM) is the most widely used 3D printing technology. 

It uses a filament spool fed to an extrusion head with a heated nozzle. Once the extrusion 

head heats, it softens and lays down the heated material at set locations, where it cools 

to create a material layer. The nozzle then moves down to deposit the next layer. The 

reservoir is printed with a double extrusion 3D printer (Ultimaker 3) as shown in Figure A.1 

[110]. The material is printed with a default nozzle size of 0.4 mm. The printer settings 

were adjusted to have a layer height of 0.1 mm for each printed layer and a wall thickness 

of 0.8 mm. Thus, the minimum feature size for the resistor is 0.8 mm in the x and y 

directions, while it is 0.1 mm in the z-direction.  

 

Figure A.1. 3D printing setup. 

The key strength of FDM is the availability of a wide range of materials, including 

thermoplastics such as Polylactic Acid (PLA), a vegetable-based, biodegradable 

thermoplastic. PLA is an electrical insulator, so it was used as the substrate and insulating 

material between the conductive layers. The resistors were printed using carbon-PLA 

composite filaments. We used 2.85 mm pure PLA filament (Ultrafuse series from BASF) 
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for the main structure and 2.85 mm carbon-PLA composite (RM-PL0100 from Lulzbot) for 

the conductive segments. Before 3D printing, the conductive PLA filament has a volume 

resistivity of 15 Ω-cm. A 3D printed structure in the x- or y-directors has a resistivity of 30 

Ω-cm. 3D printed layers printed in the z-direction have a resistivity of 115 Ω-cm. Multi-

layer resistors offer higher conductivity as more conduction paths will be possible due to 

the increased connections between carbon elements within this structure. Silver 

conductive paste/epoxy was utilized to attach wires to the printed contacts, which were 

cured on a hot plate at 50 ℃ for 1 hour. 

Evaluation of the Analytical Model 

COMSOL Multiphysics® 5.5 software was used to perform the heat transfer 

modelling. COMSOL Multiphysics is a simulation software that can be used to model and 

analyze a wide range of physical systems, including the self-heating of a resistor. The 

software combines multiple physics modules and allows users to create custom models 

and simulations using a user-friendly graphical interface. To model self-heating in a 

resistor using COMSOL Multiphysics, we select the appropriate physics modules, such as 

electric currents, heat transfer in solids, and coupled physics like electromagnetic heating, 

and define the material properties of the resistor and surrounding environment. We also 

determine the geometry of the resistor and the thermal and electrical boundary conditions, 

such as the applied current and temperature at the boundaries. Once the model is set up, 

the software uses numerical methods to solve the governing equations and simulate the 

system's behaviour over time. Specifically, several physics modules must be combined to 

simulate and model self-heating in a resistor. Two physics were employed here; electric 

currents (ec) from the AC/DC module and heat transfer in solids from the Heat Transfer 

module, and a coupled physics (i.e., Multiphysics) known as electromagnetic heating to 

study the effect of self-heating in the under-study electrothermally conductive material, 

conductive PLA. 

The boundary condition of the bottom of the device is set to a specific temperature, 

i.e., room temperature. This is often referred to as a temperature boundary condition and 

is used to specify the temperature at a particular surface or location in a simulation. All 

other surfaces are set to be thermally isolated. Materials have been added manually with 

the values summarized in Table A.1. The device's dimensions are mentioned in Table A.2. 

We use these dimensions unless otherwise stated.  
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Table A.1. Material Characteristics 

Material Tg (K) Tg (K) ρm (kg/m3) Cp (J/kg.K) k (W/m.K) ϵr ρe (Ω-
cm) 

PLA 60 - 65 180 - 220 1210 -1240 1180 - 1210 0.12 – 0.15 2.88 – 3.48 - 

Conductive 
PLA 

60 - 70 170 1220 1180 0.18 – 0.2 - 30 - 115 

Table A.2. 3D-Printed Processor Specifications 

Parameter Definition Value Minimum (Limit) 

W Width of the resistor  
1.6 [mm] 0.8 [mm] 

th Thickness of the resistor 
0.5 [mm] 0.1 [mm] 

L Length of the resistor 4.8 [mm] 0.8 [mm] 

W_Electrode Width of the electrodes  5 [mm] 5 [mm] 

gap Spacing between resistor 0.5 [mm] 0.1 [mm] 

 

Deriving the Analytical Model 

To solve the heat transfer problem for resistors/neurons in a regular PLA, it is 

indeed essential to start with solving two sets of problems: one for the resistor/neuron and 

the second for the regular PLA. Therefore, we will need four types of boundary conditions. 

For neuron/resistor 1, we will need to solve 

1

𝑟

𝑑

𝑑𝑟
(𝜅𝑐  𝑟

𝑑𝑇𝑟
𝑑𝑟
) + �̇�gen = 0 

1

𝑟

𝑑

𝑑𝑟
(𝜅𝑃𝐿𝐴𝑟

𝑑𝑇𝑃𝐿𝐴
𝑑𝑟

) = 0 

(A-1) 

where 𝜅𝑐 is the thermal conductivity of the conductive PLA and �̇�gen is the generated heat 

in the resistor per volume. The set of boundary conditions is given as: 

𝑇𝑃𝐿𝐴(𝑟)|𝑟=𝑡𝑃𝐿𝐴 = 𝑇𝑎 

𝑇𝑃𝐿𝐴(𝑟)|𝑟=𝑟1 = 𝑇𝑟(𝑟)|𝑟=𝑟1 
(A-2) 
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−𝜅𝑃𝐿𝐴
𝑑𝑇𝑃𝐿𝐴
𝑑𝑟

|
𝑟=𝑟1
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𝑑𝑟
|
𝑟=0

= 0 

The first is the specific temperature boundary condition, the second and third are 

the interface boundary conditions at the interface of the resistor/neuron and the PLA, and 

the last is the thermal symmetry boundary condition. Solving Eq. (A-1) for resistor 1 

considering the boundary conditions in Eq. (A-2), gives the temperature distribution 

around resistor/neuron 1 due to its self-heating as 

∆𝑇1(𝑟) =

{
 
 

 
 𝜌𝑒 𝐽1

2 𝑟1
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2 𝑟1

2
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Ln (
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𝑟
) 𝑟1 < 𝑟 < 𝑡𝑃𝐿𝐴

0 𝑟 ≥ 𝑡𝑃𝐿𝐴

 (A-3) 

where ∆𝑇𝑖(𝑟) = 𝑇𝑖(𝑟)  − 𝑇𝑎. The equation above results in 𝑞1 = −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟1

= 𝜌𝑒 𝐽1
2 𝑟1. 

This heat flux is used in the interface of the resistor/neuron and the PLA at 𝑟 =  𝑟1 as a 

boundary condition in the main context. One important note is the negligible temperature 

deviations inside the resistor if the resistor’s dimensions are comparably smaller than the 

dimensions of the PLA. 

For resistor/neuron 3, due to its self-heating, we have 

∆𝑇3(𝑟)

=

{
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(A-4) 

where 𝑞3 = −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟3

= 𝜌𝑒 𝐽3
2 𝑟3. To go back to the Cartesian coordinate system and 

keep its origin at the center of resistor 1, we replace 𝑟 = √𝑦2 + 𝑧2 in Eq. (A-3). Whereas, 

for resistor 3 in Eq. (A-4), we replace 𝑟 = √𝑦2 + (𝑧 − 𝑅𝑑)
2 and 𝑟′ = √𝑦2 + (𝑧 + 𝑅𝑑)

2. 

These changes result in
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∆𝑇1(𝑦, 𝑧) =

{
  
 

  
 𝜌𝑒 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

( 1 −
𝑦2 + 𝑧2

𝑟1
2 ) + Ln (

𝑡𝑃𝐿𝐴
𝑟1
)) √𝑦2 + 𝑧2 ≤ 𝑟1

𝜌𝑒 𝐽1
2 𝑟1

2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√𝑦2 + 𝑧2
) 𝑟1 < √𝑦

2 + 𝑧2 < 𝑡𝑃𝐿𝐴

0 √𝑦2 + 𝑧2 ≥ 𝑡𝑃𝐿𝐴

 

∆𝑇3(𝑦, 𝑧) =

{
 
 
 

 
 
 𝜌𝑒 𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

(1 −
𝑦2 + 𝑧2 + 𝑅𝑑

2

𝑟3
2 ) + Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

2 𝑟3𝑅𝑑
)) √𝑦2 + (𝑧 − 𝑅𝑑)

2 ≤ 𝑟3

𝜌𝑒 𝐽3
2 𝑟3

2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

√𝑦2 + (𝑧 − 𝑅𝑑)2√𝑦2 + (𝑧 + 𝑅𝑑)2
) 𝑟3 < √𝑦

2 + (𝑧 − 𝑅𝑑)
2 < 𝑡𝑃𝐿𝐴 − 𝑅𝑑

0 √𝑦2 + (𝑧 − 𝑅𝑑)
2 ≥ 𝑡𝑃𝐿𝐴 − 𝑅𝑑

 

(A-5) 

Therefore, for resistors 2 and 4, by replacing 𝑦 = 𝑦 − 𝑅12 and 𝑦 = 𝑦 − 𝑅34 we have 

∆𝑇2(𝑦, 𝑧) =

{
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(A-6) 
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∆𝑻𝟒(𝒚, 𝒛)

=
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On Developing a 3D-Printed Reservoir 

Chapters 3 and 4 discuss two types of neuron connections in reservoirs: electrical 

and thermal coupling. Thermal coupling, as emphasized in Chapter 4, adds complexity to 

the reservoir's behaviour. To explore this further, we conducted an experiment using two 

types of reservoirs: one with only thermal coupling and the other with only electrical 

coupling among neurons. These setups are shown in Figure A.2. We created these 

reservoirs to see how different coupling mechanisms affect their performance. For the 

thermal coupling setup, we stacked five resistors on top of each other (Figure A.2 (a)), 

relying solely on thermal interactions between neurons. On the other hand, we printed a 

2D structure with all neurons in one layer for the electrical coupling setup (Figure A.2 (b)), 

where information transmission happens through electrical interactions.  

 

 

(a) (b) 

Figure A.2. The 3D-printed reservoir consisting of (a) five thermally coupled 
neurons and (b) six electrically coupled neurons. 

Comparing the performance of these reservoirs with different coupling 

mechanisms is shown in Figure A.3. One key observation is the impact of the number of 

neurons in the reservoir. Increasing the number of neurons improves the accuracy of 

processing time-series data. This implies that more neurons lead to better data modelling, 

enabling the reservoir to handle more complex tasks effectively. We found that thermally 

coupled neurons perform well in modelling time series data. This suggests that the thermal 

coupling mechanism adds analytical richness, making these neurons suitable for intricate 

tasks. 
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Figure A.3. Performance of the 3D-printed reservoir when employing different 
coupling mechanisms. 

Additionally, comparing different coupling mechanisms, we noticed that a reservoir 

with six electrically coupled neurons can perform similarly to one with four thermally 

coupled neurons. This indicates that the choice of coupling mechanism directly influences 

the reservoir's efficiency and performance. Therefore, an intelligent approach involves 

utilizing a layered structure for thermal energy transfer to optimize reservoir efficiency. 

Doing so can reduce the number of neurons while maintaining performance. 

We expanded our reservoir size to include 18 neurons by maintaining the same 

electrical coupling pattern across three layers while also incorporating thermal coupling 

(depicted in Figure A.4 (a)). This structured arrangement facilitates efficient heat transfer. 

Details concerning neuron resistance and thermal time constants are illustrated in Figure 

A.4 (b). The experimental results when solving different problems using the 3D-printed 

reservoir are shown in Figure A.5. When tackling more intricate challenges such as the 

NARMA10 task, the reservoir comprising 18 neurons distributed over three layers 

demonstrated superior performance compared to the reservoir with 12 neurons distributed 

over two layers. This heightened performance can be attributed to several factors, 

including the increased number of processing units and the added complexity introduced 

by thermal coupling.   

In our exploration, we also delved into the effects of neuron widths on reservoir 

performance. A particularly intriguing approach emerged: the utilization of varying widths 

for neurons or resistors. This reservoir with random neuron widths was carefully crafted, 
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as Figure A.6 (a) depicts. Its distinctive characteristic lies in the diverse distribution of 

neuron resistances and thermal time constants across different layers, which is clearly 

illustrated in Figure A.6 (b). This unique arrangement aimed to fill the reservoir with 

heightened complexity, thereby fostering the potential for dynamic interactions. 

 
 

(a) (b) 

Figure A.4. (a) The 3D-printed uniform reservoir consisting of 3 thermally coupled 
layers (N = 18) and (b) distribution of the resistance and thermal time 
constants within the reservoir. 

 

Figure A.5. Performance of the 3D-printed reservoir consisting of 3 thermally 
coupled layers (N = 18) with uniform width distribution for the 
resistors/neurons. 

For a comprehensive assessment, we conducted a comparative analysis between 

the random 3D-printed reservoir and its uniform-width counterpart in Figure A.4. These 

reservoirs shared the same structure, consisting of three layers with 18 thermally coupled 

neurons, providing a fair basis for comparison. These reservoirs were subjected to solving 

various NARMA tasks, allowing us to evaluate their respective performance. The 

experimental results in Figure A.8 revealed a notable trend: the random network 

consistently exhibited superior accuracy when tackling various tasks. This enhanced 
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performance can be attributed to the inherent richness of dynamics in the random design. 

The variability in neuron widths introduces a layer of complexity that seems to enhance 

the reservoir's ability to handle a diverse range of tasks. 

 

 

(a) 

(b) 

 

Figure A.6. (a) The 3D-printed reservoir consisting of 3 thermally coupled layers 
(N = 18) and random width distribution, (b) the resistance distribution, 
and (c) thermal time constant distribution along different layers. 

 

Figure A.7. Performance of the 3D-printed reservoirs consisting of 3 thermally 
coupled layers (N = 18) with uniform and random width distribution 
for the resistors/neurons. 
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Setting Up the Input Layer 

 In RC, the input layer serves a crucial role. It acts as the gateway for input signals, 

channelling them into the reservoir layer for processing. This layer is equipped with 

neurons that establish a connection with the incoming input, enabling the entire network 

to interact with external information. Before delving into the reservoir's processing tasks, 

it's imperative to ensure that the input signals are appropriately adjusted. This is similar to 

preparing a tool for a specific task – the tool needs to be appropriately set up for optimal 

performance. Similarly, for the reservoir to operate effectively, the input signals must be 

adjusted to match its requirements. This can involve standardizing the signals to have a 

consistent mean and variance or adapting them to a predefined range of values that align 

with the reservoir's architecture. 

In the 3D-printed reservoir, there is a particular range of temperature at which each 

neuron can be safely driven to perform nonlinearly, showing thermal fading memory. The 

material’s temperature-dependent resistivity changes the behaviour of the 3D-printed 

resistor both in terms of the temperature and the voltage across it. Figure A.8 shows this 

concept. The nonlinear behaviour starts at ~25-28oC, and the conductive PLA melts at 50-

60oC. Thus, the temperature deviation of resistors should fall in ~ [7oC 30oC] in the 

presence of input signals. Hence, within our reservoir framework, it is imperative to 

maintain a controlled temperature environment for the neurons during input signal 

processing. Much like selecting the appropriate conditions for using a tool, we must ensure 

that the neurons are exposed to a temperature range that promotes their optimal function. 

This emphasis on temperature control is pivotal within our reservoir, as the neurons' 

behaviour hinges on these conditions.  

The maximum input voltage signal to be mapped to a reservoir depends on the 

material properties (heat capacity, density, thermal conductivity, and electrical 

resistivity/conductivity) and the reservoir itself (the number of thermally coupled layers, 

dimensions of the printed resistors, and the gap between the resistors). Scaling the input 

signal, 𝑎, can help improve the reservoir's performance by ensuring that the input values 

fall within a range that the network can effectively process. Suppose the input values are 

too large or too small. In that case, this can lead to problems with melting the entire 

reservoir or losing the reservoir's computational power due to tapping into the linear region 
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of the nonlinear dynamic system. The ideal input scaling 𝑎 is achieved when the 

environment temperature is set to room temperature.  

 

Figure A.8. The nonlinearity of the material depends on the temperature of the 
resistor. 

The performance of the reservoir was studied under different environmental 

temperatures, denoted as 𝑇𝑒𝑛𝑣. The reservoir was placed inside an oven, as shown in A.9 

(a) and the temperature using the temperature control circuitry. In these experiments, we 

adjusted the input scaling of the 3D-printed RC and retrained the output layer to observe 

the effects of varying environmental temperatures on the system's performance. We set 

up a controlled experimental environment to investigate the impact of environmental 

temperature on the system's behaviour. The 3D-printed reservoir was placed inside an 

oven to manipulate the environmental temperature. This allowed simulations of different 

temperature conditions to observe how the system responded. We first adjusted the 

environmental temperature to a specific value in each experiment, creating a controlled 

setting. To monitor 𝑇𝑒𝑛𝑣, the circuit in Figure A.9 (b) was designed using an NTC thermistor 

(NT0515291 from Ametherm), in which 

𝑉𝑇𝐻 = −
𝑅𝑇𝐻
R
 𝑉𝐷𝐶 = −

𝑅𝑎
R
𝑒
𝛽(

1
𝑇𝑒𝑛𝑣

−
1
𝑇𝑎
)
 𝑉𝐷𝐶 (A-7) 

If we set the 𝑅 = 𝑅𝑎 and 𝑉𝐷𝐶 = 1𝑉, the output voltage from this circuit would fall in 

the range of [−1  0]𝑉. Therefore, the environment temperature is given as 
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(a) (b) 

Figure A.9. (a) The experimental setup for studying the effect of environmental 
temperature and (b) Environment temperature monitoring circuitry 
used in the experimental temperature studies.   

𝑇𝑒𝑛𝑣 =
1

ln (|𝑉𝑇𝐻|)
𝛽

+
1
𝑇𝑎

 (A-8) 

We then modified the input scaling parameter to account for the influence of 

temperature on input signals, considering 𝑇 ∝
𝑉2

𝑅
 for each neuron: 

𝑎𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑎√
(𝑇𝑚𝑎𝑥 − 𝑇𝑒𝑛𝑣)

(𝑇𝑚𝑎𝑥 − 𝑇𝑎)
 (A-9) 

This step was crucial to ensure that the system adapted to the changing 

environmental conditions, maintaining its efficiency in processing. Following the input 

scaling adjustment, the system's output layer was retrained based on the modified input 

signals. This retraining process involved updating the output weights to align with the 

newly scaled input signals, effectively tuning the system for optimal performance under 

the specific environmental temperature. We repeated this process for various temperature 

settings to create a comprehensive dataset of system behaviours under different 
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environmental conditions. The outcomes of each experiment were then recorded and 

summarized in Table A.4. The results provided valuable information on how the system's 

performance evolved across different temperatures, demonstrating the necessity of 

adapting input scaling to maintain efficient operation across varying environmental 

conditions in thermal reservoir computing systems. Therefore, to make the reservoir 

adaptable across varying environmental temperatures, modifications in input scaling are 

necessary, which in turn necessitates retraining the reservoir on training data. This 

strategic approach ensures that the reservoir can effectively accommodate diverse 

operating conditions, showcasing the critical interplay between environmental factors and 

input scaling in the pursuit of optimized thermal reservoir computing platforms. 

Table A.4. 3D-printed reservoir’s performance under different environment 
temperatures with adjusted scaling. 

Temperature (oC) Statistical Evaluation Task  

NARMA3 NARMA5 NARMA10 

RMSE (%) R2 (%) RMSE (%) R2 (%) RMSE (%) R2 (%) 

22 3.45 97.32 6.8 87.8 10.4 70.2 

28 3.88 95.5 4.99 93.2 11.9 67.6 

32 4.39 93.4 5.99 90.2 10.5 73.3 

38 4.91 91.3 6.9 88.4 9.98 74.64 

 

Design of the Output Layer 

The output layer can be trained by running a linear regression on all the outputs 

from the reservoir in MATLAB®. Once trained, it can be replaced with an operational 

amplifier (OpAmp) circuit, as shown in Figure A.10, in which the ratio of the resistors in 

the feedback and input determine the trained weights. Let us consider we have ℓ trainable 

weights, of which q negative weights are the result after training. The output signal would 

take the form of 

𝑉𝑜𝑢𝑡 =
1 + ∑

𝑅𝑓
𝑅𝑖

𝑞
𝑖=1

1 + ∑
𝑅𝑓
𝑅𝑖

ℓ
𝑖=𝑞+1

∑
𝑅𝑓

𝑅𝑖

ℓ

𝑖=𝑞+1

𝑉𝑖 −∑
𝑅𝑓

𝑅𝑖

𝑞

𝑖=1

𝑉𝑖 
(A-10) 
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where 𝑉𝑖 is the signals received from the reservoir. To prevent the loading effects on the 

reservoir, it is safe to consider 𝑅𝑓 = 1𝑀Ω, the rest of the resistor values can be derived 

based on: 

𝑊𝑜𝑢𝑡
(ℓ×1)

=

{
 
 

 
 −

𝑅𝑓

𝑅𝑖
 𝑖 ≤ 𝑞   (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔𝑡ℎ𝑠)

1 + ∑
𝑅𝑓
𝑅𝑖

𝑞
𝑖=1

1 + ∑
𝑅𝑓
𝑅𝑖

ℓ
𝑖=𝑞+1

𝑅𝑓

𝑅𝑖
 𝑖 > 𝑞   (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔𝑡ℎ𝑠)

 

(A-11) 

We solved the equation above in Maple for the proposed 3D-printed processor 

once trained for solving a specific problem. 

 

Figure A.11. The output layer of the proposed computing platform. 

Proposed Design Procedure and Rules  

Developing a physical reservoir computing platform involves a systematic 

approach that draws upon insights gained from practical experiences. Through an 

exploration of various design aspects, from selecting appropriate materials to configuring 

coupling mechanisms, a general procedure emerges that guides the creation of efficient 

and adaptable computational systems. Rooted in my own experiential journey, this design 

process intertwines multiple realms of science, culminating in creating reservoirs that 

harness the nuances of physical properties for information processing. This narrative 
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encapsulates the steps and considerations that pave the way for the development of 

diverse and potent physical reservoir computing platforms. 

• Identify the physical system: Determine the physical system to use as the 
reservoir. It can be any physical system that exhibits rich dynamical behaviour, 
such as a chaotic electrical circuit, a fluid flow system, or a mechanical system. 
Make sure there is memory and nonlinearity in the system's response to 
physical stimulation. 

• Measure the response time of the physical dynamical system to know the time 
scale and the speed of the resulting processor.  

• Choose the sensing method: Select an appropriate sensing method for 
measuring the state variables of the physical system. It can involve using 
sensors, transducers, or other measurement devices. 

• Look for appropriate energy transfer mechanisms to implement in the 
dynamical system for information flow among the neurons. It will ensure the 
presence of nonlinear interactions among the neurons. 

• Design the input layer of the physical reservoir computing platform, which 
should be capable of converting the input signals into a suitable range (i.e., 
operating point) that can be injected into the physical system.  

• Construct the physical reservoir by connecting the sensing system to the input 
and output layers. The reservoir should be designed to exhibit complex and 
diverse dynamical behaviour. 

• Train the output layer of the physical reservoir computing platform using 
suitable machine learning algorithms. It involves using linear or nonlinear 
regression techniques or other machine learning algorithms. 

• Optimize the physical reservoir computing platform by tuning the various 
parameters, such as the connectivity of the reservoir, to achieve the best 
possible performance. 

• Test and evaluate the physical reservoir computing platform using appropriate 
benchmarks and datasets. It can involve using standard time-series prediction 
tasks, such as the NARMA task, delayed XOR, or other real-world datasets. 

• Refine and improve the physical reservoir computing platform based on the 
evaluation results, and continue to optimize and refine the platform as 
necessary to achieve the best possible performance. 
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Appendix B. 
 
MATLAB Codes  

The Recurrent Neural Networks 

%%%% The layered RNN, or Layrecnet, is a recurrent neural network architecture  

% implemented in MATLAB® that is used for sequence-to-sequence prediction tasks.  

% This architecture includes multiple recurrent layers that are stacked on top  

% of each other, with each layer taking the output of the previous layer as input.  

% The Layrecnet architecture is particularly useful for tasks that require modeling  

% complex sequences  

 

clc 

close all 

clear all 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

RealVal  = load('RealValue_N3.csv'); 

RealVal  = RealVal/max(RealVal); 

  

data  = load('input2_310V.txt'); 

In0 = data(:,2)/max(data(:,2)); 

In1 = circshift(In0,1); 

In2 = circshift(In0,2); 

In3 = circshift(In0,3); 

In = [In0 In1 In2 In3]; 

  

N1 = length(In0); 

N2 = length(RealVal); 

N = min(N1,N2); 

  

%%%%%%% Train/Test Segmentation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n = 10; 

N = N - n; 

Ratio = 0.7; 

NTrain = ceil(Ratio*N); 

  

trainData_In = In(1:NTrain,:); 

trainData_RealVal = RealVal(1:NTrain,:); 

testData_In = In(NTrain:N,:); 

testData_RealVal = RealVal(NTrain:N,:); 

  

%%%%%%% Create the Recurrent Neural Network %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Define the number of input, hidden, and output nodes 

input_nodes = 4; 

hidden_nodes = [8 8 8]; 

output_nodes = 1; 

layerDelays = [1 2 3]; 

  

% Define the activation functions for the hidden layers 

hiddenActivationFunctions = {'logsig', 'logsig', 'logsig'}; 

outputActivationFunction = 'purelin'; 

  

% Define the recurrent neural network 

net = layrecnet(layerDelays, hidden_nodes, 'traingdx'); 

  

% Set the nonlinear functions for the hidden layers and the output layer 

net.layers{1}.transferFcn = hiddenActivationFunctions{1}; 

net.layers{2}.transferFcn = hiddenActivationFunctions{2}; 

net.layers{3}.transferFcn = hiddenActivationFunctions{3}; 

net.layers{4}.transferFcn = outputActivationFunction; 



146 

  

% Define the input and output data for training 

input_data = trainData_In; 

target_data = trainData_RealVal; 

  

for i = 1:50 

% Train the recurrent neural network 

net = train(net, input_data', target_data'); 

view(net) 

% nnet.guis.closeAllViews() 

  

  

  

% Use the trained network to predict the output for the test data 

y_pred = net(testData_In'); 

  

% Calculate the RMSE and R-squared value 

rmse(i) = sqrt(mean((y_pred - testData_RealVal').^2)); 

r_squared(i) = 1 - (sum((y_pred - testData_RealVal').^2) / sum((testData_RealVal' - 

mean(testData_RealVal')).^2)); 

  

end 

  

rmse = sum(rmse)/50; 

r_squared = sum(r_squared)/50; 

  

% Print the results 

fprintf('RMSE: %.4f\n', rmse); 

fprintf('R-squared: %.4f\n', r_squared); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fig = figure 

axes4 = axes('Parent',fig,'FontSize',13,'FontName','Times New 

Roman','FontWeight','bold','LineWidth',1); 

box(axes4,'on'); 

hold(axes4,'on'); 

grid on 

%xlim([0 250]) 

%ylim([5.5 8.5]) 

  

plot(testData_RealVal,'b','LineWidth',2); hold on 

plot(y_pred,'r','LineWidth',2); hold on 

  

xlabel('Timestep','FontWeight','bold','FontSize',14); 

ylabel('Norm. Output','FontWeight','bold','FontSize',14); 

legend({'Real Values','Predicted Values'},'Location','southeast','FontName','Times New 

Roman','FontWeight','bold','FontSize',12) 

legend('boxoff') 

  

set(fig, 'Position', [300, 50, 600, 200]); 
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The Feedforward Neural Network 

%%%%% The feedforward neural network (FNN) is a type of artificial neural  

% network that is widely used in machine learning and deep learning applications.  

% In MATLAB®, the FNN can be created using the feedforwardnet function, which  

% constructs a multilayer perceptron (MLP) architecture. The feedforwardnet  

% function allows the user to specify the number of hidden layers, the number  

% of neurons in each layer, the activation functions used in each layer, and other  

% parameters. 

 

clc 

close all 

clear all 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%% Initialization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

RealVal  = load('RealValue_N1.csv'); 

RealVal  = RealVal/max(RealVal); 

data  = load('input2_310V.txt'); 

In0 = data(:,2)/max(data(:,2)); 

In1 = circshift(In0,1); 

In2 = circshift(In0,2); 

In3 = circshift(In0,3); 

In = [In0 In1 In2 In3]; 

  

N1 = length(In0); 

N2 = length(RealVal); 

N = min(N1,N2); 

  

%%%%%%% Train/Test Segmentation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

n = 10; 

N = N - n; 

Ratio = 0.7; 

NTrain = ceil(Ratio*N); 

  

trainData_In = In(1:NTrain,:); 

trainData_RealVal = RealVal(1:NTrain,:); 

testData_In = In(NTrain:N,:); 

testData_RealVal = RealVal(NTrain:N,:); 

  

%%%%%%% Create the Feedforward Neural Network %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Define the number of inputs, hidden layers, nodes and outputs 

inputs = 4; 

hiddenLayers = 3; 

% hiddenNodes = 18; 

hiddenNodes = [6 200 10]; 

outputs = 1; 

  

% Define the nonlinear functions for the hidden layers and the output layer 

hiddenActivationFunctions = {'logsig', 'logsig', 'logsig'}; 

outputActivationFunction = 'purelin'; 

  

% 'purelin' for a linear transfer function 

% 'logsig' for a log-sigmoid transfer function 

% 'tansig' for a hyperbolic tangent sigmoid transfer function 

% 'radbas' for a radial basis transfer function 

% 'hardlim' for a hard limit transfer function 

  

for i = 1:50 

% Create the neural network with the defined architecture 

net = feedforwardnet(hiddenNodes, 'traingdx'); 

  

% Set the nonlinear functions for the hidden layers and the output layer 

net.layers{1}.transferFcn = hiddenActivationFunctions{1}; 

net.layers{2}.transferFcn = hiddenActivationFunctions{2}; 

net.layers{3}.transferFcn = hiddenActivationFunctions{3}; 

net.layers{2}.transferFcn = outputActivationFunction; 

  

% Configure the network for training 

net = configure(net, In', RealVal'); 

view(net) 

% nnet.guis.closeAllViews() 

  

% Train the network using the input and output data 
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[net, tr] = train(net, trainData_In', trainData_RealVal'); 

  

% Use the trained network to predict the output for the test data 

y_pred = net(testData_In'); 

  

% Calculate the RMSE and R-squared value 

rmse(i) = sqrt(mean((y_pred - testData_RealVal').^2)); 

r_squared(i) = 1 - (sum((y_pred - testData_RealVal').^2) / sum((testData_RealVal' - 

mean(testData_RealVal')).^2)); 

  

end 

  

rmse = sum(rmse)/50; 

r_squared = sum(r_squared)/50; 

  

% Print the results 

fprintf('RMSE: %.4f\n', rmse); 

fprintf('R-squared: %.4f\n', r_squared); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fig = figure 

axes4 = axes('Parent',fig,'FontSize',13,'FontName','Times New 

Roman','FontWeight','bold','LineWidth',1); 

box(axes4,'on'); 

hold(axes4,'on'); 

grid on 

%xlim([0 250]) 

%ylim([5.5 8.5]) 

  

plot(testData_RealVal,'b','LineWidth',2); hold on 

plot(y_pred,'r','LineWidth',2); hold on 

  

xlabel('Timestep','FontWeight','bold','FontSize',14); 

ylabel('Norm. Output','FontWeight','bold','FontSize',14); 

legend({'Real Values','Predicted Values'},'Location','southeast','FontName','Times New 

Roman','FontWeight','bold','FontSize',12) 

legend('boxoff') 

  

set(fig, 'Position', [300, 50, 600, 200]); 
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Appendix C. 
 
Maple Codes  

Deriving Static Solutions for Resistor 1 

#Thermal Analysis Steady State, Constant rho, Resistors in Layer 1 

restart; 

  

EQ1 := 1/r*diff(k*r*diff(T1a(r),r),r) + e_gen1 = 0;  

EQ2 := 1/r*diff(k_PLA*r*diff(T1b(r),r),r) = 0; 

 

A1 := Pi/2*r1^2:   A_hflux1 := Pi*r1*L:   q_gen1 := e_gen1 * L * A1 / (A_hflux1);   

  

BC1 := eval(-k_PLA*diff(T1b(r),r),r=r1)= eval(-k*diff(T1a(r),r),r=r1) + q_gen1;  

BC2 := T1b(t_PLA)=0;  

BC3 := eval(T1a(r),r=r1) = eval(T1b(r),r=r1); 

BC4 := eval(diff(T1a(r),r),r=0) = 0; 

  

SOL := dsolve({EQ1,EQ2,BC1,BC2,BC3,BC4},{T1a(r),T1b(r)}):  

T1a(r) := rhs(SOL[1]);  T1b(r) := rhs(SOL[2]);  

q1 := e_gen1 + eval(-k*diff(T1a(r),r),r=r1);  q:= eval(-k_PLA*diff(T1b(r),r),r=t_PLA); 

 

T1(r) := piecewise(r<=r1,T1a(r),r<t_PLA,T1b(r),r>t_PLA,0); 

T1(y,z) := eval(T1(r),r=sqrt(z^2+y^2));  

       

sigma:=3.3: rho:=1/sigma: L:=100e-3: r0:=5e-6:  t_PLA:=10e-3: Iin:=10e-6: 

Ta:=293.15: k:=0.2:  k_PLA:=0.11: L_PLA:=100e-3: W_PLA:=100e-3: rho_m:=1210: 

Cp:=1180: r1:=sqrt(2)*r0; 

A1 := Pi/2*r1^2;  R1 := rho*L/A1;   

E_gen1 := R1*Iin^2;  e_gen1 := E_gen1/(L*A1);  q1 := e_gen1 * r1;    

      

plot(T1(r),r=0...t_PLA); 

plot3d(T1(y,z), y = -t_PLA...t_PLA, z = r0..t_PLA);    
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The Maple solution for Resistor 1 
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Deriving Static Solutions for Resistor 3 

#Thermal Analysis Steady State, Constant rho, Resistors in Layer 2 

restart; 

   

EQ1 := 1/r*diff(k*r*diff(T3a(r),r),r) + e_gen3 = 0;  

EQ2 := 1/r*diff(k_PLA*r*diff(T3b(r),r),r) = 0; 

 

A3 := Pi*r3^2:  A_hflux3 := 2*Pi*r3*L: q_gen3 := e_gen3 * L * A3 / (A_hflux3);   

  

BC1 := eval(-k_PLA*diff(T3b(r),r),r=r3)= eval(-k*diff(T3a(r),r),r=r3) + q_gen3;  

BC2 := T3b(t_PLA-R13)=0;  BC2_p := T3b(t_PLA+R13)=0;  

BC3 := eval(T3a(r),r=r3) = eval(T3b(r),r=r3); 

BC4 := eval(diff(T3a(r),r),r=0) = 0; 

  

SOL := dsolve({EQ1,EQ2,BC1,BC2,BC3,BC4},{T3a(r),T3b(r)}):   

SOL_p := dsolve({EQ1,EQ2,BC1,BC2_p,BC3,BC4},{T3a(r),T3b(r)}):  

T3a(r) := rhs(SOL[1]);   T3a_p(r) := rhs(SOL_p[1]);   

T3b(r) := rhs(SOL[2]);   T3b_p(r) := rhs(SOL_p[2]); 

  

q3 := q_gen3 + eval(-k*diff(T3a(r),r),r=r3); 

      

T3(r) := piecewise(r<=r3,T3a(r),r<t_PLA-R13,T3b(r),r>t_PLA-R13,0);  

T3_p(r) := piecewise(r<=r3,T3a_p(r),r<t_PLA+R13,T3b_p(r),r>t_PLA+R13,0); 

T3(y,z) := eval(T3(r),r=sqrt((z-R13)^2+y^2))+eval(T3_p(r),r=sqrt((z+R13)^2+y^2)); 

       

sigma:=3.3: rho:=1/sigma: L:=100e-3: r0:=5e-6:  t_PLA:=10e-3: Iin:=10e-6: 

Ta:=293.15: k:=0.2:  k_PLA:=0.11: R13:=2e-3: L_PLA:=100e-3: W_PLA:=100e-3: 

rho_m:=1210: Cp:=1180: r3:=r0;    

A3 := Pi*r3^2;  R3 := rho*L/A3;   

E_gen3 := R3*Iin^2;  e_gen3:= E_gen3/(A3*L);  q3 := e_gen3 * r3;    

           

plot(T3(r),r=0...t_PLA); plot(eval(T3(y,z),y=r1/sqrt(2)),z=0...t_PLA); 

plot3d(T3(y,z), y = -t_PLA...t_PLA, z = r0..t_PLA); 



152 

The Maple solution for Resistor 3 
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Plot Static Solutions for all Resistors 1, 2, 3, and 4 

 

#Thermal Analysis Steady State, Constant rho 

restart; 

  

T1(y, z) := piecewise(sqrt(y^2 + z^2) <= r1, -e_gen1*(y^2 + z^2)/(4*k) - e_gen1*r1^2*(4*ln(r1)*k - 4*ln(t_PLA)*k - 
k_PLA)/(4*k*k_PLA), sqrt(y^2 + z^2) < t_PLA, -e_gen1*r1^2*ln(y^2 + z^2)/(2*k_PLA) + e_gen1*r1^2*ln(t_PLA)/k_PLA, 
t_PLA < sqrt(y^2 + z^2), 0); 

  

T3(y, z) := piecewise(sqrt((z - R13)^2 + y^2) <= r3, -e_gen3*((z - R13)^2 + y^2)/(4*k) + e_gen3*r3^2*(4*ln(t_PLA - R13 )*k 
- 4*ln(r3)*k + k_PLA)/(4*k*k_PLA), sqrt((z - R13)^2 + y^2) < t_PLA - R13, -e_gen3*r3^2*ln((z - R13)^2 + y^2)/(2*k_PLA) + 
e_gen3*r3^2*ln(t_PLA - R13)/k_PLA, t_PLA - R13 < sqrt((z - R13)^2 + y^2), 0) + piecewise(sqrt((z + R13)^2 + y^2) <= r3, -
e_gen3*((z + R13)^2 + y^2)/(4*k) + e_gen3*r3^2*(4*ln(t_PLA + R13)*k - 4*ln(r3)*k + k_PLA)/(4*k*k_PLA), sqrt((z + R13)^2 
+ y^2) < t_PLA + R13, -e_gen3*r3^2*ln((z + R13)^2 + y^2)/(2*k_PLA) + e_gen3*r3^2*ln(t_PLA + R13 )/k_PLA, t_PLA + R13 
< sqrt((z + R13)^2 + y^2), 0);  

    

T2(y,z) := eval(T1(y,z),y=y-R12); 

T4(y,z) := eval(T3(y,z),y=y-R34);  

        

T12(y,z) := T1(y,z)+ T2(y,z);         

T13(y,z) := T1(y,z)+ T3(y,z);         

T14(y,z) := T1(y,z)+ T4(y,z); 

T23(y,z) := T2(y,z)+ T3(y,z);         

T24(y,z) := T2(y,z)+ T4(y,z); 

T34(y,z) := T3(y,z)+ T4(y,z); 

T(y,z) := T1(y,z)+ T2(y,z)+T3(y,z)+ T4(y,z); 

   

sigma:=3.3: rho:=1/sigma: L:=100e-3: r0:=5e-6:  t_PLA:=10e-3: Iin:=10e-6: 
Ta:=293.15: k:=0.2:  k_PLA:=0.11: L_PLA:=100e-3: W_PLA:=100e-3: rho_m:=1210: 
Cp:=1180: r1:=sqrt(2)*r0: r3:=r0:  r2:=r1:  r4:=r3:  R13:=2e-3:  

R12:=R13: R34:=R13: 

          

A1 := Pi/2*r1^2;   A3 := Pi*r3^2;   

R1 := rho*L/A1;   R3 := rho*L/A3;  

E_gen1 := R1*Iin^2;   E_gen3 := R3*Iin^2; 

e_gen1 := E_gen1/(L*A1);  e_gen3 := E_gen3/(L*A3);      
           

          

plot3d(T12(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);      

plot3d(T13(y,z), y = -t_PLA...t_PLA, z =  sqrt(2)*r0..t_PLA);     

plot3d(T14(y,z), y = -t_PLA...t_PLA, z =  sqrt(2)*r0..t_PLA);   

plot3d(T23(y,z), y = -t_PLA...t_PLA, z =  sqrt(2)*r0..t_PLA);     

plot3d(T24(y,z), y = -t_PLA...t_PLA, z =  sqrt(2)*r0..t_PLA);    

plot3d(T34(y,z), y = -t_PLA...t_PLA, z =  sqrt(2)*r0..t_PLA);       

plot3d(T(y,z), y = -t_PLA...t_PLA, z =  sqrt(2)*r0..t_PLA); 


