
Design and Application of Physical Contextual

Computers

by

Vahideh Shirmohammadli

M.Sc., University of Guilan, 2015

B.Sc., University of Guilan, 2013

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

School of Mechatronic Systems Engineering

Faculty of Applied Sciences

© Vahideh Shirmohammadli 2024

SIMON FRASER UNIVERSITY

Spring 2024

Copyright in this work is held by the author. Please ensure that any reproduction

or re-use is done in accordance with the relevant national copyright legislation.

ii

Declaration of Committee

Name: Vahideh Shirmohammadli

Degree: Doctor of Philosophy

Title: Design and Application of Physical Contextual
Computers

Committee: Chair: Carolyn Sparrey
Associate Professor, Mechatronic Systems
Engineering

 Behraad Bahreyni
Supervisor
Professor, Mechatronic Systems Engineering

 Ljiljana Trajkovic
Committee Member
Professor, Engineering Science

 Mo Chen
Committee Member
Assistant Professor, Computing Science

 Gary Wang
Examiner
Professor, Mechatronic Systems Engineering

 Shervin Shirmohammadi
External Examiner
Professor, Electrical Engineering and Computer
Science
University of Ottawa

iii

Abstract

The widespread adoption of Internet of Things (IoT) devices has ushered in an era

of extensive sensor-generated data, leading to the need for improved communication

capabilities, data storage, and energy efficiency. A significant proportion of the power used

by these devices, ranging from 60% to 98%, is dedicated to energy dissipation through

communication lines. This thesis addresses these requirements through innovative

computing approaches that center on processing data in close proximity to sensors.

A key contribution of this research is the introduction of "thermo-computing," a

ground breaking concept that uses the unique characteristics of materials and devices to

process data over time. Thermo-computing leverages an entirely passive network of

thermistors for data manipulation, promising significant energy savings. This work,

supported by extensive experiments and careful analysis, firmly establishes thermo-

computing as a transformative method for data processing.

Additionally, the thesis examines the capabilities of 3D-printed computing

platforms for real-time data processing and the classification of sensory data. It

investigates how memory, nonlinearity, and sampling rates affect the performance of

these processors, highlighting their cost-effectiveness and ease of integration into existing

smart and 3D-printed intelligent systems, marking a noteworthy advancement in the

domain of 3D-printed systems.

Furthermore, the research bridges the gap between software-based reservoir

computing and its physical counterpart, introducing a novel reservoir computing platform.

This pioneering platform enhances our understanding of the applications of physical

reservoir computing and explores the transfer of energy within physical systems acting as

reservoirs inspired by neural networks. This innovative approach has the potential to

transform physical computing platforms and offer new solutions across areas such as

networks, sensing, and computing.

Keywords: reservoir computing; physical reservoir computing; energy transfer; thermo-

reservoir; 3D-printed reservoir

iv

Publications

• V. Shirmohammadli and B. Bahreyni, “Role of Heat Transfer in Shaping the Dynamics of

Physical Reservoir Computers,” Journal of Physics D: Applied Physics, Submitted.

• V. Shirmohammadli and B. Bahreyni, “A 3D-Printed Computer”, Advanced Intelligent Systems,

vol. 5, p. 2300015, 2023.

• V. Shirmohammadli and B. Bahreyni, “A Neuromorphic Electrothermal Processor for Near-

Sensor Computing,” Advanced Material Technologies, vol. 7, no. 11, p. 2200361, 2022.

• V. Shirmohammadli and B. Bahreyni, “Machine Learning for Sensing Applications: A Tutorial,”

IEEE Sensors Journal, vol. 22, no. 11, pp. 10183 - 10195, 2022.

• V. Shirmohammadli and B. Bahreyni, “Development of a Thermo-Computing Platform,” In

Proc. 21st Int. Conf. on Solid-State Sensors, Actuators and Microsystems (Transducers),

Orlando, FL, USA, June 2021, pp. 1307-1310.

https://ieeexplore.ieee.org/abstract/document/9495663/

v

Dedication

I dedicate this thesis to the journey of personal growth, with gratitude for the valuable

lessons learned and the profound changes experienced along the way. May it serve as a

reminder that education is not just about acquiring knowledge but also about becoming a

better version of oneself.

vi

Acknowledgements

I wish to express my deepest gratitude to the exceptional individuals who

supported and guided me throughout this transformative experience.

First and foremost, my sincere appreciation goes to my supervisor, Prof. Behraad

Bahreyni, who, without a doubt, was the best mentor I had ever. His generous sharing of

extensive academic knowledge played a pivotal role in helping me establish myself within

the academic community. His firm yet compassionate guidance not only facilitated

significant contributions to publications during my PhD but also opened doors I never

thought possible.

I also extend my gratitude to my esteemed PhD thesis committee members, Prof.

Ljiljana Trajković and Prof. Mo Chen. Their dedicated time, valuable feedback, and

thought-provoking questions have significantly enriched the quality of my work.

Special appreciation is reserved for my colleagues and peers at the School of

Mechatronic Systems Engineering. Engaging in extracurricular activities and maintaining

personal connections with all of you has been truly enriching.

Lastly, I would like to extend my heartfelt appreciation to my family for their

enduring belief in my abilities, which has been a cornerstone of my academic

accomplishments. To my spouse, you have been my rock and the guiding light that helped

me navigate the challenges of this academic endeavour. Your enduring support,

unwavering belief, and consistent encouragement have been sources of inspiration and

motivation. I am deeply grateful for your presence by my side, which made this journey

possible.

This thesis represents a collective effort, and I offer my sincere thanks to all those

who have contributed to its successful completion. Your support and encouragement have

played pivotal roles in making this achievement possible.

vii

Table of Contents

Declaration of Committee .. ii

Abstract .. iii

Publications .. iv

Dedication ... v

Acknowledgements .. vi

Table of Contents .. vii

List of Tables .. ix

List of Figures.. x

List of Acronyms .. xv

Glossary ... xvi

Chapter 1. Introduction .. 1

1.1. Addressing the Data Processing Bottleneck .. 3

1.2. Motivation .. 7

1.3. Structure .. 8

Chapter 2. Physical RC Systems ... 10

2.1. Statistical Learning for Time-series Data ... 11

2.2. Reservoir Computing ... 12

2.2.1. Echo State Networks .. 13

2.2.2. Physical RC Models ... 15

2.2.3. Performance Evaluation ... 17

2.2.4. On Nonlinearity and Memory .. 17

2.2.5. Global Parameters of RC ... 19

2.2.6. Reservoir Configurations .. 21

2.2.7. RC Evaluation Tests .. 23

2.3. Sample Physical RC Platforms .. 26

2.3.1. Photonic RC ... 26

2.3.2. Memristors and Atomic Switches ... 27

2.3.3. Mechanical RC ... 29

2.3.4. In-materio Computing ... 30

2.3.5. Biological Computers ... 31

2.3.6. Quantum Reservoirs .. 32

2.4. Summary ... 32

Chapter 3. The Electro-Thermal Computing Platform .. 34

3.1. Development of a Physical Computing Platform .. 34

3.2. The Electrothermal Reservoir: The Prototype .. 45

3.3. Benchmark Analysis .. 49

3.3.1. Time-Series Prediction ... 50

3.3.2. Event Detection .. 51

3.4. Summary ... 54

viii

Chapter 4. Exploring the Potential of 3D Printed Computing Platforms 55

4.1. The 3D-Printed Neuron.. 56

4.2. Analytical Model .. 59

4.2.1. The Analytical Model of 3D-Printed Physical RC 60

4.2.2. The Static Response of a Reservoir ... 64

4.2.3. Dynamic Response of a Reservoir ... 74

4.2.4. Connecting the Analytical Model to Reality ... 80

4.3. Computer-Aided Design and Model Verification .. 85

4.4. Summary ... 89

Chapter 5. The Proposed 3D-Printed Computing Platform 91

5.1. The 3D-Printed Reservoir .. 91

5.2. Performance Evaluation based on Standard Tasks ... 99

5.3. Near-Sensor Data Processing ... 104

5.4. Power and Speed Considerations ... 106

5.5. Comparison between the RC and Neural Networks ... 109

5.6. Summary ... 112

Chapter 6. Conclusions and Future Work .. 114

6.1. Future Directions ... 116

References ... 120

Appendix A. Materials and Methods ... 129

3D Printing Setup .. 129

Evaluation of the Analytical Model ... 130

Deriving the Analytical Model .. 131

On Developing a 3D-Printed Reservoir.. 135

Setting Up the Input Layer ... 139

Design of the Output Layer.. 142

Proposed Design Procedure and Rules... 143

Appendix B. MATLAB Codes... 145

Appendix C. Maple Codes ... 149

ix

List of Tables

Table 2-1. Applications and related evaluation tests on RC..................................... 24

Table 2-2. Nonlinearity, memory, and coupling in photonic RC 28

Table 4-1. Some of the most common boundary conditions in heat transfer. 63

Table 4-2. Specific dimensions used for the COMSOL MultiPhysics Simulations. ... 69

Table 4-3. Real dimensions used for the COMSOL MultiPhysics Simulations. 81

Table 4-4. Synergy between Software and Physical RC. .. 90

Table 5-1. Arrangement of the electrodes in the reservoir and their functions. 96

Table 5-2. Power consumption and speed justifications with change in material and
the 3D printing technology. ... 108

Table 5-3. Performance comparison among the proposed 3D-printed processor and
software neural networks ... 111

Table 6-1. Advantages and disadvantages of the proposed computing platform
compared to the existing solutions ... 115

x

List of Figures

Figure 1.1. Conventional context detection in the internet of things (IoTs), where the
processing is conducted in clouds. The cloud structure is generally based
on a Von Neumann architecture. .. 2

Figure 1.2. Unconventional context detection platform: moving processors close to the
sensors to generate and communicate the context to command centers
(near-sensor processing platform). ... 2

Figure 2.1. A graphic representation of (a) a neural network, (b) recurrent neural
network, and (c) a reservoir computer. The reservoir has fixed nodes and
connections. Only the weights at the readout layer require updates for
specific data at the input. .. 12

Figure 2.2. Various forms of nonlinear functions in a reservoir. 19

Figure 2.3. Examples of reservoirs in an RC system. ... 19

Figure 2.4. The representatives of (a) standard reservoir, (b) delay line reservoir, (c)
delay line with feedback, (d) simple cyclic reservoir, and (e) leaky reservoir
© 2011 IEEE [21]. .. 22

Figure 2.5. Schematic view of a reservoir computer based on a single nonlinear node
(NL) with delay (τ). Virtual nodes are defined as temporal positions in the
delay line, Copyright © 2011, L. Appeltant et al. [62]. 23

Figure 2.6. Scheme of the optoelectronic reservoir computer, Copyright © 2012, Y.
Paquot et al. [64]. The optical (electronic) path is depicted in red (blue)
colour. .. 27

Figure 2.8. The proposed RC system based on a single beam and SEM image of the
device [25]. ... 29

Figure 2.9. (a) Hardware reservoir system and CNT/polymer deposited onto PCB
electrode array [82]. (b) a reservoir of in-vitro cell cultures, Copyright ©
2007 Elsevier B.V. All rights reserved. [84]. .. 31

Figure 3.1. (a) V-I characteristics of an NTC thermistor (NT0515291) and (b) thermal
dynamics of the NTC thermistor for changes in the current injected into the
NTC. .. 37

Figure 3.2. (a) A closed-loop system with dynamic, nonlinear feedback and (b) an
inverting amplifier based on an NTC thermistor as the dynamic, nonlinear
feedback. The coupling is shown in blue colour. Here, x1 and x2 are the
output of neurons 1 and 2, respectively. ... 38

Figure 3.3. Characteristics of feedback-based nodes for various input resistance
values. ... 39

Figure 3.4. (a) An active node based on MOSFETs with nonlinear coupling and (b)
characteristics of an active nonlinear node with varying width sizes for the
MOSFET, K1. The coupling is shown in blue. .. 40

Figure 3.5. (a) A single branch NTC-based node, and (b) an example of coupled
nodes. .. 42

Figure 3.6. Different coupling mechanisms employed in the reservoir. 44

xi

Figure 3.7. Different coupling mechanisms employed in the reservoir: (a) nonlinear
summing of two states using a neuron driven with a control signal and (b)
extraction of temporal features. .. 45

Figure 3.8. The prototype mounted on a PCB. ... 46

Figure 3.9. Realized thermo-reservoir consisting of 6 sub-reservoirs with eight
principal nonlinear neurons each, driven by shifted inputs {u(t), u(t-d), …,
u(t-5d)} in the range of d = {0, …, 5}." ... 47

Figure 3.10. The electrical energy exchanged between coupled nodes. Each node is
represented by a neuron having a distinct bias resistance value. The
diagram highlights the variability in bias resistance values across the
neurons by labelling the neurons by their resistance value. 47

Figure 3.11. States of a rich thermo-reservoir consisting of six sub-reservoirs, each with
eight nonlinear neurons. The sub-reservoirs are driven with shifted inputs
in the range of 0 to 5 timesteps. ... 48

Figure 3.12. The realized input layer for the electrothermal RC. 49

Figure 3.13. Data acquisition setup. ... 49

Figure 3.14. The capability of a reservoir of size 48 in computing problems with different
levels of memory requirements and nonlinearities. 51

Figure 3.15. (a) RMSE and R2 of the reservoir versus various complexity levels of the
under-study task (n). (b) Transient response of a reservoir node at various
fs. (c) Importance of the fs on the reservoir performance. 52

Figure 3.16. Performance of the proposed electrothermal reservoir in detecting a
specific event from non-event instances. .. 53

Figure 3.17. The truth table for the specific event detection among non-event instances
of the proposed electrothermal reservoir. ... 53

Figure 4.1. The current-voltage characteristic response of a free-hold 3D-printed
resistor under different test conditions. In each case, the resistor's current
was increased from zero to the maximum Imax and back to zero. The
resistors’ current was held constant for Δt (shown at the top) before
measuring the voltage across the resistor and proceeding to the next step.
Notably, under these test conditions, the resistor response is repeatable,
indicating a permanent change to material response has not yet occurred.
 ... 57

Figure 4.2. The measurement setup for IV characteristics. 58

Figure 4.3. (a) The resistor/neuron model, (b) the 3D model of a resistor created in
SolidWorks where the black colour shows the resistor printed surrounded
by regular PLA, and (c) the 3D-printed resistor. Note that regular PLA is
available in different colours to print, while C-PLA is available in black
colour. There are not significant differences in terms of thermal/mechanical
properties between regular PLAs with different colours. 58

Figure 4.4. (a) Specified temperature boundary conditions. (b) Specified heat flux
boundary conditions. (c) A large plate with insulation. (d) Thermal
symmetry boundary condition. (e) Convection boundary condition. (f)
Boundary conditions at the interface of two bodies in perfect contact. 64

Figure 4.5. The heat transfer problem with four resistors/neurons. Resistors are long
cylinders with small radii compared to medium thickness. 65

xii

Figure 4.6. Simplification of heat transfer for resistor/neuron 1. It is assumed that the
heat transfer ceases at the top surface of the PLA, where it contacts the
surrounding air, allowing to application of a thermal isolation boundary
condition. Thermal isolation at a specific point can be caused due to the
system's symmetry. Therefore, instead of solving a half-cylindrical problem,
the general heat conduction problem for a fully cylindrical structure would
result in the temperature distribution due to the self-heating of resistor 1.
 ... 67

Figure 4.7. Simplification of heat transfer for Resistor/Neuron 3. To accurately
represent the thermal isolation boundary condition at the top surface in
contact with the air, we can consider a projection of resistor 3 along the
negative z-axis. .. 69

Figure 4.8. Comparing analytic model and simulations for resistors 1 and 3. ∆𝑻 of (a)
resistor 1 and (b) resistor in z direction when y=0. (c) Simulated isothermal
surfaces for resistor 1 compared to its analytic model (d). (e) Simulated
isothermal surfaces for resistor 3 compared to its analytical model (f). ... 70

Figure 4.9. Comparison among analytic model and simulations for the reservoir when
(a) resistor 1 is self-heated, (b) resistor 3 is self-heated, and (c) resistors 1
and 4 are self-heated. .. 73

Figure 4.10. Normalized weight elements of the reservoir with four resistors/neurons
with different spacings. ... 74

Figure 4.11. Dynamic behaviour of self-heated resistors and the neighbouring ones
without self-heating. ... 75

Figure 4.12. Dynamics of the reservoir under different conditions when all resistors are
self-heated together. .. 78

Figure 4.13. Thermal time constants of the resistors 1 and 3 vs. different PLA
thicknesses. ... 80

Figure 4.14. Model justifications for the real dimensions: a transisition from
resistors/neurons with cylindrical cross-section to rectangular one. 81

Figure 4.15. Temperature distribution around resistors 1 and 3 when (a) resistor 1 is
self-heated and (b) resistor 3 is self-heated for rectangular cross-sections
within real dimensions. ... 82

Figure 4.16. A sample reservoir with a general, random configuration defining the
neurons in the top layer and in-depth of PLA. ... 85

Figure 4.17. Flowchart of the processes involved with creating a physical reservoir. It
outlines the script initialization, parameter handling, visualization, and
dynamic evaluation with a time series input. ... 86

Figure 4.18. (a) Step-by-step outcomes of the MATLAB® script following the developed
general model in the previous section. The reservoir is configured first,
isothermal contours are visualized, both static and dynamic weight
matrices are derived based on a specified input, and a comparison
between the temperature across each resistor/neuron within the physical
reservoir to the corresponding temperatures obtained from COMSOL
Multiphysics simulations are made. .. 87

Figure 4.19. Comparison of the developed general model and the simulations from
COMSOL Multiphysics in response to a time series signal in the input. .. 88

xiii

Figure 4.20. Performance of the reservoir built in MATLAB® environment using the
developed analytical model with the reservoir simulated in COMSOL
Multiphysics in solving a nonlinear problem. ... 88

Figure 5.1. Components of the 3D printed computer. (a) The proposed reservoir
structure; (b) The 3D-printed reservoir with electrical connections for
applying or reading electrical signals; (c) the top view of the computer with
three conductive layers printed between the insulating material next to a
Canadian ₵10 coin. .. 92

Figure 5.2. Electrical response of printed structures. (a) Schematic of the conductive
paths in the fabricated reservoir and its close-up view; (b) The nonlinear I-
V response of the reservoir obtained by sweeping a current through two
one of the resistors in steps with a time delay of 10s or 50s between the
steps; (c) The effect of control current, I_C, on the response of a resistor;
(d) Comparison of the I-V responses of three reservoir samples with similar
lateral dimensions but different thicknesses for the conductive resistors (e)
Temperature and the voltage across the two electrodes over time in
response to an I=8mA step current input. ... 94

Figure 5.3. Electrical and thermal response of coupled components. (a) IV
characteristics of various pairs of electrodes; (b) The electrode labels. .. 96

Figure 5.4. Thermal images of the reservoir at different computation times. 96

Figure 5.5. A sample time-series signal (top), its time-shifted copies applied to the
reservoir input by the analogue shift-register (middle), and the reservoir
output (bottom). .. 97

Figure 5.6. Initiation and evolution of the reservoir when stimulated with different input
signals. Responses of the output neurons are illustrated to capture the
evolution. (a) The 3D-printed reservoir with specified input, output and
ground electrodes. (b) A shift in the responses happened, (c) departing and
diverging happened, (c)-(e) two furthest states got closer and two far states
got away from each other. .. 98

Figure 5.7. Assessment of the computer performance to solve computational tasks
with varying orders of nonlinearity and memory. (a) The reservoir response
to predicting a time-series input produced by varying orders of NARMA task
with fS=fS3. .. 99

Figure 5.8. Comparison of the reservoir performance when solving NARMA tasks of
different orders with different sampling frequencies. 101

Figure 5.9. Demonstration of the dependence of reservoir memory capacity, RMSE,
and R2 to sampling frequency when solving a NARMA5 task. The graph at
the top shows a typical step response of one of the reservoir's nonlinear
neurons, which is used to estimate TTC and set sampling frequencies.
 ... 102

Figure 5.10. The 3D-printed processor’s performance (when driven into different
dynamical regions by adjusting the sampling rate) compared to a
feedforward neural network in solving computational tasks with varying
orders of nonlinearity and memory. .. 104

Figure 5.11. Sample raw sensor data and normalized extracted features for different
activities. .. 106

xiv

Figure 5.12. Activities detection procedure by the 3D-printed processor. The data were
collected using a 3-axis accelerometer on a wearable device worn on a
user's wrist during different activities. The truth table shows the
performance of the computer in recognizing user activity from sensor data.
 ... 107

Figure 5.13. The feedforward neural network created to compare with the proposed
processor. .. 110

Figure 5.14. The layered recurrent neural network created to compare with the
proposed processor. .. 110

Figure 5.15. Performance comparison of the (a) FNN, (b) RNN, and (c) the proposed
3D printed processor in modelling the NARMA3. 112

Figure 6.1. Future directions. ... 119

xv

List of Acronyms

ANN Artificial Neural Network

ASIC Application-Specific Integrated Circuits

CPU Central Processing Units

DDE Delay Differential Equation

ESN Echo State Network

ESP Echo State Property

FNN Feedforward Neural Network

FPGA Field-Programmable Gate Array

GPU Graphical Processing Units

LSM Liquid State Machine

MC Memory Capacity

ML Machine Learning

MSE Mean Squared Error

NMSE Normalized Mean Squared Error

NRC Neuromorphic Computing

NRMSE Normalized Root Mean Squared Error

PRC Physical Reservoir Computing

R2 R-squared

RBF Radial Basis Function

RC Reservoir Computing

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

SDN Single Dynamical Node

SOI Silicon-on-Insulator

SVM Support Vector Machine

XOR Exclusively-OR

xvi

Glossary

Dynamic System In physics, an object or ensemble of objects whose state
varies over time and obeys differential equations with time
derivatives is called a dynamic system.

Edge of Chaos An operating point for a system where complex patterns
and behaviour emerge in a homogeneous medium is
found.

Fading Memory When a system state contains all information from
previous time steps in a discrete-time domain, the most
recent inputs receive the highest weight.

Injective Function In mathematics, an injective function is a function g that
maps distinct elements to another distinct elements;
therefore, g(x1) = g(x2) implies x1 = x2.

Kernel A function that transforms the input values into a high-
dimensional vector is referred to as a kernel.

Nonlinear Node/Neuron Node and neuron are interchangeably used throughout
this document. A (physical) node is a node/neuron that
reacts nonlinearly to what it receives as its input (either
physical, chemical, or electrical stimulation).

Non-temporal Task In a non-temporal task, the individual data points are
considered independent of each other, meaning that their
order or timing does not affect the outcome of the task.

Reservoir A network of randomly connected nonlinear nodes or
elements leveraging a short memory of past information.

Spatial Reservoir A reservoir in which the internal nonlinear nodes are
spatially distributed.

Temporal Task The desired output function may contain a memory of
previous input values, where both the input and output signals
are in the discrete-time domain.

Timescale A representative of the response time of a nonlinear
dynamical element. If data are introduced to and read from
the same element at the rate of 1/timescale, the element
will almost pass its dynamic region.

Timestep A unit for representation of steps in a discrete-time domain.
In the physical world, it is used to introduce an input value
to a system for a determined duration of time.

Virtual Nodes The internal nonlinear nodes are multiplexed in time in a
specific reservoir type. These reservoir nodes are called
virtual nodes.

https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Differential_equation

1

Chapter 1.

Introduction

“Reservoir computing is a radically new way of doing computation that is
based on the idea of using a dynamic system to perform a computation,
rather than using a static set of weights or a set of rules.”

― Dr. John Paul Gosling, University of Oxford

Technological advancements have enabled us to generate and record vast data

using microsensors that can quantify real-world parameters. However, our ability to make

sense of this data has not kept up with the pace of data generation, leading to bottlenecks

in data processing and analysis that lead to delays in processing data, increased

processing time, and even data loss or corruption. In many cases, this bottleneck can be

addressed by limiting the storage and transmission of data to contextual information

instead of raw data.

Typically, raw data must be transmitted and processed at the edge or cloud levels

to generate context, as shown in Figure 1.1 [1]. This approach is wasteful in terms of

communication bandwidth and data storage and accounts for a significant amount of

energy usage in the Internet of Things (IoT) [2]. By limiting the data storage and

transmission to contextual information rather than raw data, as shown in Figure 1.2, it is

possible to achieve significant energy savings (up to an order of magnitude) and reduce

latencies in time-sensitive applications. Context-based triggers can also significantly

reduce power consumption in ultra-low-power systems by allowing the system to wake up

only when needed to take measurements.

To address these challenges, researchers are exploring various computing

approaches that operate near or inside sensory systems [3]. One of these approaches is

reservoir computing, a recent trend in machine learning suitable for processing temporal

data, such as time series, speech, and video [4]. Reservoir computing is a machine

learning approach practical for various tasks, including pattern recognition, time series

prediction, and control [4]–[8]. Unlike traditional machine learning algorithms requiring

extensive training and data preprocessing, reservoir computing systems can learn and

2

adapt to new inputs online. One key aspect of reservoir computing is using a dynamic

system, known as the "reservoir," to transform and scale input signals.

Figure 1.1. Conventional context detection in the internet of things (IoTs), where
the processing is conducted in clouds. The cloud structure is
generally based on a Von Neumann architecture.

Figure 1.2. Unconventional context detection platform: moving processors close
to the sensors to generate and communicate the context to command
centers (near-sensor processing platform).

3

Over the past decade, there has been growing interest in developing physical

reservoir computing platforms, which use physical systems, such as lasers, oscillators,

and microfluidic channels, as the reservoir [9]–[12]. These physical platforms offer several

potential benefits over traditional computing approaches, including increased energy

efficiency, robustness to noise and perturbations, and the ability to perform computations

at the nanoscale.

However, the development of physical reservoir computing platforms is a

challenging task, as it requires a deep understanding of the complex dynamics of the

physical system, as well as the ability to control and manipulate these dynamics in a

precise and reliable manner.

This research aims to advance state-of-the-art physical reservoir computing

platforms and enable the development of new and innovative computing applications. The

goal of this project is to contribute to the development of physical reservoir computing

platforms by exploring new approaches to the design, control, and optimization of these

systems. In particular, this thesis focuses on developing 3D-printed reservoirs, which are

promising physical systems for many processing applications.

1.1. Addressing the Data Processing Bottleneck

Data processing bottlenecks occur when the rate at which data are generated or

received exceeds the rate at which it can be processed or stored. It can be due to various

factors, including limited processing power, slow network connectivity, or a high volume

of data. Researchers have developed different techniques to address these bottlenecks,

depending on the root cause of the problem.

One effective solution to address a data processing bottleneck caused by limited

processing power is to upgrade the hardware. This can involve several approaches, such

as adding more CPUs, increasing memory, or upgrading to faster storage devices.

Another approach is to leverage specialized processors that are optimized for specific

processing tasks, such as graphics processing units (GPUs), field-programmable gate

arrays (FPGAs), or application-specific integrated circuits (ASICs). Central processing

units (CPUs) are the primary processors in a computer and are responsible for executing

most of the instructions that run on a computer. These processors are designed to perform

4

general-purpose operations but may not be optimized for specific tasks. In contrast, GPUs

are specialized processors that are designed to accelerate graphics and video processing

tasks. These processors have many small, efficient cores optimized for parallel

processing, making them well-suited for tasks involving large amounts of data. ASICs are

custom-designed processors built to perform specific tasks and are used in applications

that require high performance and low power consumption. These processors are highly

optimized for their intended tasks and often outperform general-purpose CPUs. FPGAs

are programmable processors that can be configured to perform a wide range of functions.

They offer flexibility and reconfigurability, which makes them well-suited for applications

that require rapid prototyping and development.

Distributed processing is another technique used to address data processing

bottlenecks. It involves breaking up the data processing tasks into smaller, more

manageable ones and distributing them across multiple processors or nodes. This

technique can improve performance and reduce processing time by allowing multiple

processors to work on different parts of the same task simultaneously [13].

If the bottleneck is caused by slow network connectivity, increasing the network

bandwidth can help. It can involve upgrading network hardware, such as routers and

switches, or using techniques such as load balancing to distribute traffic across multiple

network links [14].

These solutions use the general von Neumann architecture, which has several

limitations that impact the performance of computers. The von Neumann architecture is a

computer design paradigm proposed by mathematician and computer scientist John von

Neumann in the 1940s [15]. One of the main limitations of the von Neumann architecture

is the separation of memory and processing units. In this architecture, the CPU fetches

instructions from memory, decodes them, and executes them one at a time. It requires the

CPU to constantly access the memory to fetch instructions, which can be slow and

inefficient. It is known as the von Neumann bottleneck.

Many modern computers use caching, pipelining, and parallel processing

techniques to improve performance to overcome the von Neumann bottleneck. However,

these techniques can only do so much to overcome the fundamental limitations of the

architecture. In this regard, researchers are exploring alternative architectures, such as

5

neuromorphic computing, analog computing based on Hebbian Learning, and reservoir

computing. Neuromorphic computing is inspired by the human brain's structure and

function. It involves the development of hardware and software systems that mimic the

neural architecture and processes of the brain to perform tasks such as perception,

learning, and decision-making. Neuromorphic computing systems are designed to be

highly energy-efficient and capable of processing large amounts of data in real-time [16].

One example of neuromorphic computing is spiking neural networks, which use

pulses or "spikes" to encode and transmit information, similar to how neurons in the brain

communicate. Neuromorphic chips are specialized microprocessors designed to

implement spiking neural networks or other types of neural architectures in hardware. For

example, Intel introduced Loihi, a neuromorphic processor with on-chip learning [17]. IBM

has also developed the neuromorphic TrueNorth chip with 70mW power consumption

when implementing artificial neural networks for pattern recognition [18]. These chips can

perform certain types of calculations much more efficiently than traditional CPUs, making

them suitable for pattern recognition and classification tasks.

While neuromorphic computing shows promise for overcoming the limitations of

von Neumann's architecture, its development and implementation still have challenges

and limitations. Neuromorphic computing systems are often highly complex and can be

challenging to design and implement. Programming neuromorphic computing systems

can also be complicated due to their complexity and the lack of standardized approaches

and tools. Moreover, neuromorphic computing systems can be expensive to develop and

implement [16].

On the other hand, around the 1990s feedforward neural networks (FNNs) through

analog components were implemented, which were able to harness the continuous nature

of analog signals, aligning more closely with the principles of neural computation [19].

Researchers have explored diverse architectures to instantiate FNNs, leveraging the

inherent parallelism and efficiency of analog circuits [20]. Analog implementations of FNNs

typically involve neurons modelled with analog components, such as transistors, to

simulate the dynamic behaviour of biological neurons. Synaptic connections, essential for

weight adjustments, were often realized through tunable conductance.

6

An alternative computing approach called reservoir computing (RC) emerged in

2001 [5], [7], [21], [22]. RC is a machine learning algorithm designed to address the

complexities in training recurrent neural networks (RNNs). It uses a fixed network of

coupled nonlinear elements with a finite memory of past events, called a reservoir, and a

trainable output layer, known as the readout. The reservoir maps sequential input data to

a multi-dimensional state space, and the readout generates context from raw data using

simple linear regression. RC offers temporal data processing capabilities and can go

beyond the von Neumann architecture due to its short-term memory and computation

combination.

RC has been successfully applied to various nonlinear time-series applications,

such as sequential pattern classification, time series prediction, adaptive filtering and

control, and feature extraction on complex time series [23]. It offers low training costs,

real-time processing with high accuracy, and simple training algorithms, often using linear

regression or generalized ridge regression. It has led to the development of physical

reservoir computing, in which proposed physical systems leverage materials or devices'

specific and nonlinear responses to perform well-defined tasks in the physical domain.

Once a reservoir is designed, it can perform well on multiple tasks by training the output

layer.

The randomly connected and temporally internal connections in a reservoir benefit

the hardware implementation of next-generation computing platforms. This has led to

recent developments in physical RC systems based on connected mechanical oscillators

[12], [24], [25], memristors [26]–[32], photonic circuits [33]–[40], carbon nanotube/polymer

composites [41]–[43], soft body [44], and connected atomic switches [11]. For example,

bio-computers were developed at the organism or molecular level to interface with and

respond to stimuli such as light and chemicals [45], [46]. In addition, reaction-diffusion

computers use chemical reactions to perform highly parallel computations [47].

In a physical RC system, the nonlinearities of the materials or devices provide the

mapping function, the system's transient response creates a fading memory which makes

the network output independent of events in the distant past, and the fixed coupling and

internal connections give the system a time-dependent response. For a reservoir to

perform well in computational tasks, it must meet specific requirements [23]:

7

• The reservoir must exhibit nonlinearity, which is essential for tasks that are not
linearly separable and for extracting nonlinear dependencies in time-series
predictions.

• The reservoir must have fading memory, which is necessary to keep a short
enough memory of past inputs to the system and is essential for temporal
pattern recognition.

• The reservoir must have high dimensionality to map inputs into a high-
dimensional state space and facilitate the separation of originally inseparable
inputs and the retrieval of temporal dependencies of inputs.

• The reservoir must have a separation property, which ensures that the
reservoir responses to different signals are sufficiently different, separating
them into different classes.

• The reservoir must have an approximation property, which refers to the
consistency of the reservoir and promotes the ability to be insensitive to small
fluctuations such as noise.

1.2. Motivation

The development of physical RC platforms in this thesis has been motivated by

the need for efficient and practical approaches to processing and analyzing data

generated by sensory networks. As the amount of data generated by these networks

continues to grow, there is a need for computing approaches that can handle this data

more efficiently and effectively. RC platforms offer several benefits, including low training

cost, real-time processing, and high accuracy using simple training algorithms.

Another motivation for developing physical RC platforms is the potential for

improved energy efficiency. Traditional von Neumann computing architectures rely on

data transfer between memory and processing units, which can be energy-intensive. In

contrast, RC platforms can operate in a more distributed, local manner, with computation

integrated within each sensory node throughout the network. This approach can lead to

improved energy efficiency, particularly in the case of large-scale sensory networks.

Physical RC platforms also offer the potential for increased flexibility and

adaptability. Training the output layer of an RC network makes it possible to adapt the

network to perform different tasks without redesigning the entire system. This attribute can

benefit applications where the data or task requirements may change over time.

8

One of the intrinsic motivations for my thesis is the development of near-sensor

processors for integrating sensors and processors. We aim to help advance the

knowledge in this field and pave the way for in-sensor processing. While there have been

advancements in the development of physical computing platforms from various materials

and devices, there is currently a lack of processors specifically designed for the compatible

integration of sensors and processors. In this regard, there are many open questions and

challenges in the development of these platforms, including:

• How can physical RC platforms be designed and implemented for near-sensor
computing applications?

• What are the key challenges and limitations in developing physical RC
platforms for near-sensor computing?

• How does the performance of physical RC platforms compare to traditional
computing approaches?

• Can physical RC platforms be adapted to perform various tasks, or are they
limited to specific tasks?

Specifically, I demonstrate the following:

• Design and implement physical RC platforms for near-sensor computing
applications.

• Assess the feasibility and potential of physical RC for near-sensor computing
applications.

• Evaluate the performance of physical RC platforms compared to traditional
computing approaches.

• Determine the adaptability of physical RC platforms to perform a range of
tasks.

• Identify and address the key challenges and limitations in developing physical
RC for near-sensor computing.

• Provide recommendations for the design and development of physical RC for
near- or in-sensor computing applications based on the findings of this
research.

1.3. Structure

This thesis is organized as follows:

9

• Chapter 2 elaborates on the theory of reservoir computing and reviews the
literature on physical reservoir computing platforms.

• Chapter 3 presents the initial efforts to identify materials and devices with
specific properties for use in physical RC and the design of physical neurons.
It also includes descriptions of our prototypes using off-the-shelf components
and the implementation of basic information transfer mechanisms within the
proposed reservoirs.

• Chapter 4 focuses on exploring printable materials with specific properties,
developing information transfer mechanisms using thermal energy transfer,
and the 3D printing of proposed processors.

• Chapter 5 evaluates and optimizes the performance of the 3D-printed
processors.

• Chapter 6 discusses the future direction of the research and potential
applications for physical RC.

10

Chapter 2.

Physical RC Systems

Physical reservoir computing is a form of machine learning that utilizes the

dynamics of a physical system as the "reservoir" to perform computations. The basic idea

behind physical RC is to use the intrinsic dynamics of the physical system to map input

data into a high-dimensional feature space, where a simple linear model can be trained to

produce the desired output [23]–[25].

Any dynamic system, such as electronic circuits, lasers, mechanical systems, or

fluid, can serve as the physical system in RC [51]. The choice of the system is based on

the application's specific requirements, including factors like speed, accuracy, and energy

consumption. To process the input data, it is fed into the chosen physical system as a

time-varying signal. The response of the system to the input signal is then recorded

through an interface circuitry and analyzed to extract relevant features. These features

are then used to train a linear model, also known as the "readout layer," which maps the

features to the desired output. The readout layer is trained using a supervised learning

algorithm like linear or ridge regression. The training process aims to find the optimal set

of readout layer weights that minimize the error between the predicted and actual output.

Physical RC has been the subject of extensive research over the past decade, and

numerous studies have investigated its theoretical properties and practical applications

[52]. One of the key advantages of physical RC is that it can be implemented using low-

power, analog hardware, which makes it well-suited for applications in embedded systems

and the IoT. Moreover, physical RC has been shown to be effective in various applications,

including speech recognition, image processing, and control of nonlinear systems.

Physical RC is a promising machine learning approach that harnesses physical systems'

dynamics to perform computations. Physical RC is specifically promising for developing

the next generation of processors that can be located close to or inside sensory networks,

offering energy-efficient and real-time information processing [3]. Here a brief literature

study on the recently developed physical RC using various physical phenomena utilized

for the reservoir is provided.

11

2.1. Statistical Learning for Time-series Data

Neural networks are a class of machine learning models that can be used for data

analysis. In a feedforward neural network, as shown in Figure 2.1 (a), information flows in

one direction, from the input layer through one or more hidden layers to the output layer.

The input to a feedforward neural network can be represented as a sequence of samples,

𝑛. The weights and biases in the network are learned through a process called

backpropagation, which involves minimizing a loss function that measures the discrepancy

between the network's predictions and the actual values. The forward pass of a neural

network can be represented as follows [53]

𝒙(𝑛) = 𝒇(𝑊 𝒖(𝑛) + 𝑏)

𝒚(𝑛) = 𝑊𝑜𝑢𝑡 𝒙(𝑛)
(2-1)

where x(n) represents the hidden state at step n, u(n) represents the input at step n, W

represents the weight matrix connecting the input to the hidden layer, b represents the

bias vector for the hidden layer, f is a nonlinear activation function applied element-wise

to the hidden state, Wout represents the weight matrix connecting the hidden layer to the

output layer, y(n) represents the predicted output at step n. The weight matrices W and

Wout are learned during the training process to optimize the network's performance on the

given time-series data.

While NNs can effectively capture complex patterns in data, they lack the ability to

explicitly model temporal dependencies. This is where recurrent neural networks (RNNs)

excel [53]. By introducing recurrent connections, as shown in Figure 2.1 (b), RNNs can

maintain an internal memory or hidden state that retains information about past inputs,

allowing them to capture long-term dependencies in sequential data. This memory allows

RNNs to process time-series data more effectively than traditional feedforward NNs. The

recurrent connections in RNNs enable them to dynamically adapt their hidden state based

on both current and previous inputs, making them well-suited for tasks that involve

sequential information, such as speech recognition. The hidden state of an RNN at each

time step can be calculated using the following formula

12

𝒙(𝑛) = 𝒇(𝑾ℎℎ 𝒙(𝑛 − 1) +𝑾𝒊𝒏 𝒖(𝑛) + 𝑏ℎ) (2-2)

where x(n) represents the hidden state at timestep n, u(n) represents the input at timestep

n, Whh represents the weight matrix connecting the previous hidden state to the current

hidden state, Win represents the weight matrix connecting the input to the current hidden

state, bh represents the bias vector for the hidden state, and f is a nonlinear activation

function applied element-wise to the hidden state. The output of an RNN at each time step

can be obtained by multiplying the hidden state by an output weight matrix and applying

an activation function.

Figure 2.1. A graphic representation of (a) a neural network, (b) recurrent neural
network, and (c) a reservoir computer. The reservoir has fixed nodes
and connections. Only the weights at the readout layer require
updates for specific data at the input.

2.2. Reservoir Computing

Recurrent neural networks have been used for temporal pattern recognition since

the 1980s. Internal connections inside a conventional recurrent network require training,

13

a complex, time-consuming problem to solve [54], [55]. To tackle this issue, Jaeger

introduced echo state networks (ESNs) in 2001, which focused on training dynamical

systems for temporal learning tasks using RNNs [56]. Alternatively, Maass et al., proposed

liquid state machines (LSMs) in 2002 for realistic modelling of the computational properties

of neural microcircuits [57]. These solutions rely on a fixed, connected network of specific

nodes (i.e., fixed connection weights). Later, reservoir computing was coined by

Verstraeten et al. in 2007 [22] to include these two approaches for implementing and

training recurrent neural networks. RC successfully reduces the training of RNNs to a

simple linear regression problem. Compared to a typical neural network, training is

conducted only on the output layer with configurable weights. RC structure is compared

to a typical neural network in Figure 2.1 (c). In general, RC consists of three parts [54]:

• An input layer for scaling and introducing the input to the reservoir: The input
layer maps the input signal to the nonlinear functions in the reservoir with a
bias.

• The reservoir of connected nonlinear functions with fixed internal weights: This
reservoir structure remains unchanged for all applications.

• The output or readout layer is the trainable layer, in which a linear weighted
sum of the input-excited reservoir states creates the predicted/classified
output. Usually, linear regression is utilized to update and optimize the weights
of this linear combination by introducing the label (or target output).

Since the LSMs were proposed for neuroscience applications, the nonlinear

elements in the reservoir are based on spiking neurons. The spiking neurons are built on

the idea that the information is transmitted once it reaches a specific value. When the

neuron exceeds the threshed level, the neuron fires and generates a corresponding signal.

One of the well-known spiking neuron models is the leaky integrate-and-fire model [58].

Thus, if the RC is constructed using an LSM structure with spiking neurons, it is called

LSM-based RC; otherwise, it is referred to as an ESN-based RC.

2.2.1. Echo State Networks

Echo state networks have developed in the frame of machine learning applications.

An ESN consists of an input layer with an input weight matrix of Win, which scales the

temporal data and applies it to the fixed reservoir. Additional input can also be provided to

bias the network, Wbias. The reservoir is a random, fixed recurrent network of nonlinear

nodes with a non-trainable, internal weight matrix of Wres, driven by a temporal input, u(n);

14

where n = 1, 2, 3, . . . indicates the different data points in the dataset. The reservoir states,

x(n), are the nonlinear mappings of the input signals. Nonlinear expansion of the input to

a higher dimension space is widely used in ML algorithms, including support vector

machines (SVMs). This nonlinear expansion function that transforms the input into a high-

dimensional vector is usually referred to as ‘kernel’. Therefore, one may introduce RC as

a nonlinear expansion approach, which uses the nonlinear dynamic reservoir as a kernel

with a memory of the input history as

𝒙(𝑡) = 𝒇(𝑾𝑖𝑛 𝒖(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-3)

where x(n) represents the vector of the reservoir states at the discrete timestep n, 𝒙(𝑛 − 1)

is the reservoir states’ vector in the previous time step, f is the nonlinear activation function

(typically the hyperbolic tangent, tanh, or another sigmoid function), Win and Wres are the

matrices of input and internal network connections, respectively. The formula considers

bias terms to reduce the written complexity implicitly. A more general model can include

the possibility of feedback connections (Wback) from the output layer units to the reservoir

𝒙(𝑛) = 𝒇(𝑾𝑖𝑛 𝒖(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1) +𝑾𝑏𝑎𝑐𝑘 𝒚(𝑛 − 1)) (2-4)

where y(n) is the weighted sum of the internal reservoir states, and y(n - 1) is the most

recent output.

The trainable readout layer with the weight matrix Wout is trained and reconfigured

for various temporal applications. The state matrix x is then utilized to get an estimation

of the desired output function ytarget, as:

𝒚(𝑛) = 𝑾𝑜𝑢𝑡 𝒙(𝑛) (2-5)

In some networks, a constant bias term is implemented in the x(n), and Wout must

contain a corresponding column of weights. On the other hand, some include the input

u(n) as an extra feature in x(n), corresponding to a direct connection from the input to the

output layer. The goal is then to minimize the error between the weighted linear sum of

reservoir states x(n) trained on the linear regression of reservoir states x(n) and target

signals ytarget(n). The readout layer is trained through any least-squares matrix solution

15

such as ridge regression, also called Tikhonov regularization with the regularization

constant β used to penalize large Wout, which is defined as:

𝑾𝑜𝑢𝑡 = 𝒀𝑡𝑎𝑟𝑔𝑒𝑡𝑿
𝑇(𝑿𝑿𝑇 + 𝛽𝑰)−1 (2-6)

2.2.2. Physical RC Models

In the physical domain, models are more complex compared to software-based

models. The specific form of the reservoir model varies depending on the physical system

being studied. Let us consider an example of photonic RCs [34]. In this case, the physical

system under study involves the propagation of light through an optical medium, such as

a waveguide. In photonic RC, the input signal is usually encoded as variations in the

intensity or phase of the optical signal. The input signal can be modulated using different

techniques, such as intensity modulation or phase modulation. In an intensity modulation

scheme, for example, the input signal is used to control the power or intensity of the optical

signal propagating through the waveguide. This can be achieved using various methods,

including electro-optic modulation or optoelectronic feedback loops. The optical signal,

after being modulated by the input signal, propagates through the waveguide and interacts

with various elements, such as optical amplifiers, couplers, and nonlinear elements. These

interactions introduce nonlinear transformations to the optical signal, making the

waveguide act as a nonlinear reservoir. The output of the reservoir is then measured using

photodetectors or other optical sensors. The measured output can be processed further

to extract useful information or perform specific tasks such as pattern recognition, time-

series prediction, or classification.

The physical reservoir model in photonic RC can be described using equations

that capture the behavior of light propagation through the waveguide, taking into account

the nonlinearities and interactions with the optical elements. These equations may include

terms that describe the input modulation, the optical propagation, and the dynamics of the

optical elements in the system [34] as

𝒙(𝑛) = 𝒇(𝑾𝑖𝑛 𝑼(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-7)

where 𝑼(𝑛) can be the modulated optical signal that carries the input information.

16

Another example is the origami-based RC. Origami-based RC is a physical

computing platform that uses folded origami structures as the reservoir for processing

input signals [52]. In this system, the goal is to transform an input signal, 𝑢(𝑛), which

represents a desired pattern or behaviour, into mechanical movements of the origami

structure, 𝑥(𝑛). This input signal is used to modulate or manipulate the behaviour of the

origami structure. Input signals may involve applying external forces to the origami

structure such as tension, compression, or pressure. However, in some structures, an

actuation mechanism is implemented to deliver input, 𝑢(𝑛), to the reservoir [49]. In angle

encoding techniques, mechanical actuators such as motors or servos can be integrated

into the origami structure [52]. These actuators can manipulate specific parts of the

origami to achieve desired angular changes in response to input signals. Therefore, the

input signal, 𝑢(𝑛), undergoes mechanical transformation (denoted as 𝑈(𝑛)) before driving

the origami-based reservoirs. The configuration of the origami structure, then, changes

over time due to mechanical folding and unfolding, and these dynamic transformations

introduce nonlinear dynamics into the system. The output of the reservoir was measured

using sensors that track the position or shape of the origami structure as it unfolds and

moves. The measured output is processed further to control the robotic crawling motion

or other desired tasks.

Another example is physical reservoirs constructed using mechanical oscillators.

Mechanical oscillators are physical systems designed to generate periodic motion or

vibrations. They produce oscillations, which are repetitive back-and-forth movements or

vibrations, and these oscillations can occur in various forms, such as mechanical

vibrations or waves. In this case, the input signal to the reservoir is the driving voltage

signal, 𝒖(𝒕), which creates a driving force 𝐹𝑑~𝒖
𝟐(𝑡). This force then acts on the oscillators,

resulting in a displacement that can be measured using strain sensors (resistors). The

measurement of this displacement is used as part of the reservoir model [25]. Hence, the

physical reservoir model can be described by the equation:

𝒙(𝑛) = 𝒇(𝑾𝑖𝑛 𝒖
𝟐(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-8)

Comparing this equation with the previous equation (2-3) for software RC, we can

observe that the input signal to the physical reservoir has a different representation in this

context. The input signal, 𝒖(𝑛), in the form of voltage signal gets squared to generate the

17

required force to drive the oscillator, multiplied by the input weight matrix and then

combined with the weighted output from the previous time step before being passed

through the activation function. This highlights the distinction between the software-based

RC models, where the input signal is typically provided directly, and the physical reservoir

models, where the input signal may undergo transformations based on the characteristics

of the physical system being studied.

2.2.3. Performance Evaluation

The process of implementing an RC for temporal tasks includes a specific

nonlinear transformation, ytarget(n), of an input signal, u(n). In a temporal task ytarget(n) and

u(n) represent signals in a discrete-time domain, and the desired output function may have

a memory of previous input values. In a temporal task, the function to be learned depends

on the input history: y(n) = y(u(n), u(n−1), u(n−2), . . .). Different functions can be used for

measuring the error, such as the mean squared error (MSE), root mean squared error

(RMSE), the normalized mean squared error (NMSE), or the normalized root mean

squared error (NRMSE) [59]

𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) = 〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖
2
〉 (2-9)

𝑅𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) = √〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖
2
〉 (2-10)

𝑁𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) =
〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖

2
〉

〈‖𝒚(𝑛) − 〈𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)〉‖
2
〉
 (2-11)

𝑁𝑅𝑀𝑆𝐸(𝒚, 𝒚𝑡𝑎𝑟𝑔𝑒𝑡) = √
〈‖𝒚(𝑛) − 𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)‖

2
〉

〈‖𝒚(𝑛) − 〈𝒚𝑡𝑎𝑟𝑔𝑒𝑡(𝑛)〉‖
2
〉
 (2-12)

where 〈… 〉 stands for the mean and ‖…‖ denotes the Euclidean distance.

2.2.4. On Nonlinearity and Memory

Memory refers to the neurons/nodes' capability to store information in a system.

Fading memory, also known as short-term memory, is present in almost any physical

18

system. Fading memory is required to satisfy the so-called echo state property (ESP),

which Jaeger introduced for ESNs: the system must forget its previous states as time

passes [60]. That is, the current state is a pure injective function E on all previous inputs

as

𝒙(𝑛) = 𝐸(… , 𝒖(𝑛 − 1), 𝒖(𝑛)) (2-13)

meaning that the network acts as a fading memory where the states contain information

from previous time steps. However, the most weight is given to recent inputs. In an RC

system, we require fading memory terms long enough to store information from the recent

past but short enough to forget the distant past. Usually, the memory is implemented

digitally, while in physical RC, there are suitable alternatives that can be a reliable source

of memory.

The nonlinearity of nodes inside a reservoir can be of different types. For example,

spiking neuron models are utilized in RC based on liquid-state machines. However,

analog, differentiable functions such as sigmoid and hyperbolic tangent (tanh) are

primarily employed in RCs based on ESNs. Alternatively, some functions that are widely

used in NNs, such as rectified linear unit (ReLU), leaky ReLU, and exponential linear unit

(ELU) for ESN-based RCs, can be employed in these structures, as illustrated in Figure

2.2. The first two functions are the traditional nonlinear functions used in ML, while the last

three are among the nonlinearities used in more recent ML. While some nonlinearities can

be achieved in many saturable physical systems or devices, other ones can be obtained

from diode-like circuits. Simply including nonlinear functions in a node's activation function

does not adequately communicate the importance of input range in facilitating nonlinear

behaviour. A nonlinear element may act linearly if the input range is too small or set to its

linear region, as shown in Figure 2.3. A reservoir built using several nonlinear nodes

reacting linearly to the input range is called a linear reservoir. The nonlinear reservoir is

defined as a network in which most of its internal nodes have nonlinear responses with

respect to a given input range. In a saturated reservoir, most of the nodes are driven into

the saturation region for a given input range.

19

Figure 2.2. Various forms of nonlinear functions in a reservoir.

Figure 2.3. Examples of reservoirs in an RC system.

2.2.5. Global Parameters of RC

One should adhere to certain guidelines to create a high-quality reservoir in

software-based reservoir computing. These include generating a vast reservoir

comprising numerous nonlinear nodes (ranging from tens to thousands) that are sparsely

and randomly connected (with connectivity typically set at 1-20%). It's important to note

that multiple factors impact the performance of reservoir computing systems, such as:

Reservoir size is the number of nonlinear nodes in a reservoir that directly

contributes to the weighted output sum of the RC. Larger reservoirs produce a higher

dimensional state space, promising better performance.

Input scaling refers to the process of scaling the input weight matrix used to

connect the input to the internal nodes of the reservoir. It is an important step in the design

of an RC system as it directly affects the performance and behaviour of the reservoir. The

input weight matrix is typically randomly generated, and values are drawn from a specific

distribution. For uniformly distributed matrices, the input scaling factor, a, is defined as the

20

range of the interval [−a, a] from which values of the input matrix are sampled. The

standard deviation is often used as a scaling measure for normally distributed input

weights. The goal of input scaling in RC is to create a reservoir where most of its internal

states perform nonlinearly for a given input. This is achieved by selecting an appropriate

scaling factor that shifts the reservoir to operate in its linear, nonlinear, or saturation

regions. If the scaling factor is too small, the input signal may not be strong enough to

drive the reservoir to perform nonlinearly, resulting in poor performance. On the other

hand, if the scaling factor is too large, the reservoir may become saturated, causing the

performance to degrade. Therefore, the choice of the scaling factor is critical for achieving

optimal performance in an RC system. The scaling factor can be chosen based on the

specific application and the characteristics of the input data.

𝑾𝑖𝑛
′ = 𝑎 𝑾𝑖𝑛 (2-14)

The spectral radius is a measure of the fixed weights inside the reservoir,

representing the connections between different nonlinear nodes. The spectral radius

refers to the largest absolute value of the eigenvalues of the reservoir connection matrix,

Wres. It is denoted by the symbol 𝜌 and has a direct impact on the performance of RC

systems. When the spectral radius is close to 1, the highest eigenvalue of the reservoir

weights, the RC system provides an extended memory of input, making it suitable for

applications requiring more information from past events. On the other hand, when the

spectral radius is 0, the RC system becomes a feedforward network. Since the memory

of past inputs is lost in this case, the system is unsuitable for applications that require past

events.

The leaking rate, α, is a parameter used in RC to control the rate at which the

current state of the reservoir decays and is replaced by the new state. It is often used in

RC systems that include leaky-integrator nodes [61] with some memory of past events. In

these systems, the state update equation is expressed as

𝒙(𝑛) = (1 − 𝛼)𝒙(𝑛 − 1) + 𝛼𝒇(𝑾𝑖𝑛 𝒖(𝑛) +𝑾𝒓𝒆𝒔𝒙(𝑛 − 1)) (2-15)

where x(n) is the current state of the reservoir, u(n) is the current input, f is the node's

nonlinear function, and 𝑾𝑖𝑛 and 𝑾𝒓𝒆𝒔 are the input and reservoir weight matrices,

respectively. In a software-based RC, the leaking rate can be adjusted easily, and it is

21

proposed to set it to match the speed of the input dynamics and/or the target to provide

longer short-term memory of the information [54].

The number of connections from the input to a reservoir node and the number

of recurrent connections of internal nodes determine the sparseness of a reservoir. It is

recommended to make the reservoir connections sparse enough (≈20% recurrent

connection) [43] for improved performance.

Selection of input scaling, spectral radius, and leaking rate are essential for good

performance and are pretty task-specific in software RC. However, many of these

parameters require a thorough understanding of the problem and developing a suitable

physical RC accordingly by considering external restrictions in physical RCs.

2.2.6. Reservoir Configurations

Standard ESNs consist of many simple processing units called nodes, organized

in an arbitrary and fixed network of connections in their reservoir layer. The random

connectivity of the nodes allows the reservoir to have rich, dynamic internal

representations that are applied to solve a variety of tasks, such as time series prediction,

speech recognition, and image classification.

Since the reservoir plays a vital role in the performance of RCs, researchers have

studied and developed different reservoir topologies [21]. A study conducted in 2011

compared the performance of several topologies, including the delay line reservoir (DLR),

DLR with feedback connections (DLRB), simple cycle reservoir (SCR), and leaky reservoir

(LR) with standard ESNs, as shown in Figure 2.4 [54].

The DLR configuration comprises nodes organized in a line, with only a

feedforward connection in the reservoir with the same connection weight. The DLRB

topology has the same structure as DLR except for the feedback connections between a

reservoir node and the preceding one in the DLRB. In this topology, all the feedforward

connections have a similar weight, and all the feedback connections are set to a fixed

value. The SCR topology organizes nodes in a cycle where all connections have the same

weight. The LR topology consists of a standard ESN and a layer with leaky integrator

nodes. A leaky integrator node, a first-order low-pass filter, follows each node in a standard

reservoir.

22

Figure 2.4. The representatives of (a) standard reservoir, (b) delay line reservoir,
(c) delay line with feedback, (d) simple cyclic reservoir, and (e) leaky
reservoir © 2011 IEEE [21].

The study found that all the structures performed similarly on a wide range of time

series benchmarks, suggesting that ordered and random connections offer similar

performance. However, each topology has advantages and disadvantages, such as ease

of implementation, computational efficiency, or ability to handle specific data types.

Therefore, the choice of topology for a reservoir should be based on the specific

requirements of the task at hand.

Another type of reservoir was developed to tackle some practical implications in

physical RC, known as single dynamical node (SDN) RC. SDN RC uses a dynamical

system with a single nonlinear node coupled to itself through a delay line. Also known as

delay-based RC systems [62], the nonlinear nodes in this reservoir are multiplexed in time

and must be retrieved sequentially in the time domain in the readout layer. The nonlinear

nodes in an SDN reservoir are called virtual nodes, as unlike the spatially distributed nodes

in classical reservoirs (ESNs and LSMs), these virtual nodes are temporally distributed.

Delay-based RC is practically useful in the physical realizations of RC systems and has

been utilized in different physical RC systems. Mathematically speaking, the SDN

reservoir is integrated into the sampled solutions of a single delay differential equation

(DDE) as [23]:

23

𝑑𝒙(𝑡)

𝑑𝑡
= 𝑭(𝑡, 𝒙(𝑡), 𝒙(𝑡 − 𝜏)) (2-16)

where t represents continuous time, x is the vector of the reservoir states, F is a function

determining the flow of this system, and 𝜏 > 0 is the delay period. DDE fundamentally

differs from ordinary differential equations as the time-dependent solution of a DDE is not

uniquely determined by its state at a given moment. The general concept of this approach

is depicted in Figure 2.5, which illustrates how the recurrent reservoir network is realized

using the single nonlinear dynamical node (NL) with delayed feedback. The N virtual

nodes in the reservoir are distributed uniformly in time over the delay interval 𝜏, with each

virtual node having a width of 𝜃 = 𝜏/𝑁. The physical nonlinearities of the nodes generate

the reservoir states x(t) at the end of each time segment. These states are a combination

of both the memory and the nonlinear transformation of the input signal, as they are

integrated into the transient response of the nonlinear node to a specific input at a given

time. To generate the random virtual nodes, a masking signal, m(t), is combined with the

discrete input signal, with each time segment having a width of 𝜃. This approach simplifies

the system structure but comes at the cost of slower processing speed compared to

spatially distributed reservoir computing. To compensate for this disadvantage, the

dynamical behavior in the system must operate at N times the higher rate than in a

spatially distributed reservoir with N internal states.

Figure 2.5. Schematic view of a reservoir computer based on a single nonlinear
node (NL) with delay (τ). Virtual nodes are defined as temporal
positions in the delay line, Copyright © 2011, L. Appeltant et al. [62].

2.2.7. RC Evaluation Tests

Reservoir computing has been applied to and optimized for many applications,

from classification to time series prediction. Some benchmark tasks have been developed

24

to assess the performance of RC for these applications [23], summarized in Table 2-1.

The RC system's input and target output signals are determined based on the selected

task.

In a pattern classification task, the input is a time series, while the discrete output

value represents the class label. The input and output signals are temporal data in the

time series prediction.

Temporal XOR Task

Temporal XOR is an XOR function which is integrated in time. The input is a

random sequence of binary or real values, and the output is the XOR (or multiplication) of

the input signals at a given time t, u(t), and the one before u(t − 1): y(t) = u(t). u(t – 1).

Prediction of this temporal benchmark requires a network's nonlinearity and memory

properties. Training the network makes it possible to perform more delayed operations,

which are useful for applications that require a larger memory of past information. In such

cases, the network needs to remember inputs from further back in time. The XOR

operation can be computed for the inputs u(t – k) and u(t – k - 1), where k is an integer

representing the delay size. Importantly, the reservoir dynamics are independent of the

RC system's output.

Table 2-1. Applications and related evaluation tests on RC

Problems Benchmark tasks

Pattern classification Spoken digit recognition [63]

Waveform classification [64]

Human action recognition [65]

Handwritten digit image recognition [66]

Time series prediction Chaotic time series prediction [56]

NARMA time series prediction [67]

Pattern generation Wave generation [68]

Limit cycle generation [69]

Adaptive filtering and control Channel equalization [70]

System approximation Temporal XOR task [71]

Temporal parity task [71]

Short-term memory Memory capacity [60]

25

NARMA Task

The performance of RC systems can be examined using the nonlinear

autoregressive moving average (NARMA) task. NARMA is a discrete-time temporal task

with an nth-order time lag. The NARMA time series is given by [72]

 𝒚(𝑡) = 𝛼 𝒚(𝑡 − 1) + 𝛽 𝒚(𝑡 − 1) ∑ 𝒚(𝑡 − 𝑖)𝑛
𝑖=1 + 𝛾 𝒖(𝑡 − 𝑛) 𝒖(𝑡 − 1) + 𝛿 (2-17)

where α = 0.3, β = 0.05, γ = 1.5, and δ = 0.1 [72]. If we consider the NARMA task as a

dynamical system whose output is given as equation (14), the stability of the system, its

divergence to infinity, and its capability to store input streams, are determined by the

parameters above. Thus, these values are constant for this task to keep the NARMA in a

determined dynamical region. The input u(t) is a uniform distribution in the interval [0,0.5].

u(t − 1) is a one-step delayed input, y(t) is the current approximation of the system (using

linear readout), and y(t − 1) is the prediction at the output of the RC system once u(t − 1)

is given as input. The dependence of NARMA on its nonlinearity and long-time lags makes

it a challenging problem for any computational system. For example, calculating

NARMA10 requires a device capable of algorithmic programming and perfect memory of

the input and the outputs of up to 10 previous time steps.

Waveform Classification

The waveform classification problem involves identifying different types of

waveforms, such as sinusoidal, triangular, and square waves. It is a fundamental task in

classification. Multiple waveform data with different frequencies are first generated to

tackle this problem. The data can be presented to the RC system as an electrical signal

or physical stimulation. Each waveform type is assigned a class label, and the linear

readout layer is optimized to recognize the patterns in the data and correctly classify the

waveforms.

Memory Capacity

The short-term memory capacity of the RC system is essential in applications

requiring memory of past events. The concept of memory is based on the RC system's

ability to retrieve past information from the reservoir using the linear combinations of its

internal states. To evaluate the short-term memory capacity, we compute the k-delay

memory capacity (MCk) may be computed, as introduced and derived in [60]

26

𝑀𝐶𝑘 =
𝑐𝑜𝑣2(𝒖(𝑡 − 𝑘), 𝒚𝑘(𝑡))

𝜎2(𝒖(𝑡)) 𝜎2(𝒚𝑘(𝑡))
 (2-18)

where u(t − k) is a k-step delayed input and yk(t) = u(t − k) is its reconstruction at the output

of the RC system. cov represents the covariance of the two under-study time series, and

σ2 is the variance of the time series signal, either the input or the output of the linear

readout layer. The overall short-term memory capacity is then approximated as:

𝑀𝐶 =∑ 𝑀𝐶𝑘
𝑘𝑚𝑎𝑥

𝑘=1
 (2-19)

2.3. Sample Physical RC Platforms

2.3.1. Photonic RC

The history behind photonic RC goes back to 2008 when a research group

implemented a photonic RC using an on-chip network of semiconductor optical amplifiers

(SOAs) distributed in a cascade way [73]. The power-saturation behaviour of an SOA is

naturally a nonlinear function (tanh). As the first hardware realization of a photonic RC,

the same group developed a passive, linear photonic reservoir using optical waveguides,

optical splitters, and combiners on a silicon-on-insulator substrate (SOI), serving as a

complex interferometer [74]. The existing technology fails at injecting inputs and making

measurements at the rate of Gbit/s. Thus, the photonic reservoirs mostly used a photonic

delay line (such as a spiral waveguide) to be integrated with the nodes to achieve slower

dynamics. On the other hand, the system requires a nonlinearity to highly expand the input

states, which was realized using a fast photodetector that detects the optical power,

resulting in the reservoir states as Xn ∝ ‖E
2‖, where E is the optical field. Incorporating

photodetectors in optical systems introduces an element of non-pure optical hardware, as

the conversion of optical signals to electrical signals occurs within the detector.

The first optical hardware implementation of a delay-based RC was based on an

optical ring cavity [64], as shown in Figure 2.6. This optoelectronic RC uses a Mach-

Zehnder modulator for the nonlinear modulation of the incoming light (sin2), the system

dynamics was employed as the source of the fading memory, and a fibre spool is used to

provide the feedback delay line. In an all-optical delay-based RC, the nature of the input

27

and the reservoir is optical. The first two experimental implementations of this type were

based on active devices. In one, SOA (providing the tanh nonlinearity) was placed in an

optical ring cavity [75]. In another, a semiconductor laser (providing the ReLU-like

nonlinearity) was located in a loop with a feedback delay line [37]. However, passive

devices are an essential step towards developing high-speed, low-consumption, photonic

computers because they do not require a power supply, making them energy-efficient and

ideal for high-speed operation.

Figure 2.6. Scheme of the optoelectronic reservoir computer, Copyright © 2012,
Y. Paquot et al. [64]. The optical (electronic) path is depicted in red
(blue) colour.

A delay-based photonic RC system based on a semiconductor saturable absorber

mirror placed in a ring-like optical cavity has been demonstrated [76], in which the external

input modulates a light-emitting diode (LED), providing the injected light. Alternatively, a

simple linear fibre cavity can be used as a reservoir computer if the output layer is

nonlinear, such as detecting the propagated optical field inside the cavity using a

photodetector. Apart from the photonic reservoirs, some researchers were focused on the

physical implementations of the entire computers using photoelectronic devices [34], i.e.,

the input layer, readout layer and the reservoir itself. Summarized information on nonlinear

and memory elements and the coupling mechanism is provided in Table 2-2.

2.3.2. Memristors and Atomic Switches

The three fundamental electrical components (resistors, capacitors and inductors)

create relationships between current, voltage, charge, and magnetic flux. Memristors link

28

the charge and flux and were first theorized in 1971 by Chua [77]. The first nano-scale

memristors were demonstrated in 2008 [77]. Two equations define memristors

𝑉 = 𝑅(𝑥, 𝐼). 𝐼 (2-20)

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝐼) (2-21)

where V and I are the voltage and currents of the device, R is the resistance, the function

f is device-specific, and the variable x is a state variable used as a mathematical analogy

of the physical changes within the device.

Table 2-2. Nonlinearity, memory, and coupling in photonic RC

Optical Element Input-Output Signal Nonlinearity Type

Mach Zehnder modulator [40], [64] Optical - Optical Sin2

Semiconductor optical amplifier [73] Optical - Optical Tanh

Semiconductor laser [37] Optical – Optical Diode nonlinearity

Photodetector [33] Optical - Electrical Quadratic

Optical limiter [78] Optical – Optical Sigmoid

Fading Memory

Fibre optics spool [64], Laser’s relaxation oscillations in SL [37], Fibre cavity, Multimode ring resonator
[78]

Coupling in spatially distributed RC Coupling in temporally distributed RC

Multimode interferometers (MMIs) [33], laser-to-laser
coupling using spatial light modulator (SLM) [79]

Multiplexed in time [64]

Atomic switches [80] switch between high- and low-conductance states with a

negligible intermediate transition. Atomic switches have a current threshold at which the

switch breaks. Due to the random fabrication of atomic switch networks, they are easier

to produce than memristor networks.

There is a wide range of research to exploit computing capabilities from memristors

and atomic switches. In one approach, researchers created a memristive reservoir of silver

nanowires [81]. This network contains different patterns within the various sections of the

network, which can be combined using a readout layer for computations. Another research

explored the possibility of reservoir computing using silver nanowire atomic switches [11].

Their networks have been used to generate higher harmonics of the input waves and

generate various waveforms of the same frequency, highlighting the advantages of

29

network dynamics. The studies were then directed towards the topologies of memristor

networks, the design of memristors operating in both the “learning” and “predicting” modes

instead of continuous conductance updates, and the effectiveness of arbitrary memristor

networks.

2.3.3. Mechanical RC

A mechanical model available as a physical reservoir is a network of mass-spring

systems, which can be regarded as coupled mechanical oscillators. A mass-spring

network reservoir where mass points are randomly connected to neighbouring mass

points via nonlinear springs was first proposed in [24]. When each oscillator is described

with a first-order ordinary differential equation (ODE), a system of N coupled oscillators

can be described in the following general form

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝐹(𝑥𝑖(𝑡)) + 𝐺(𝑥1(𝑡), … , 𝑥𝑁(𝑡)), 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 (2-22)

where t represents continuous time, xi(t) is the state of oscillator i at time t, F determines

the dynamics of isolated oscillators, and G is a coupling function. The input signal is given

to some randomly chosen nodes as the external force, inducing nonlinear responses of

the mass-spring oscillators. The output signal is obtained from a linear combination of the

lengths of the springs, for instance. Simulations demonstrated the computing power of RC

based on the mass-spring network in time series approximation [24].

Figure 2.7. The proposed RC system based on a single beam and SEM image of
the device [25].

30

Micro-electro-mechanical systems (MEMS) technology can reliably produce small

and energy-efficient devices exhibiting rich, dynamic behaviour, promising alternatives to

computing using conventional electronics [82]. MEMS resonators often demonstrate

nonlinear behaviour when driven above a certain critical amplitude. When oscillating at

large amplitudes, the structure’s stiffness changes result in nonlinear resonance frequency

shifts. Frequently, the Duffing equation for nonlinear oscillators is used to describe the

motion of MEMS resonators.

In their work, Dion et al. developed reservoir computers using a network of virtual

nodes multiplexed in time, as depicted in Figure 2.7 [25]. The network utilizes a single

oscillating silicon beam, which exhibits a classical Duffing nonlinearity, serving as the

system's source of nonlinearity. This innovative approach enables using a single physical

component to generate the nonlinearity required for reservoir computing, simplifying the

system and reducing its complexity. The reservoir is electrically stimulated using amplitude

modulation. The input signal (amplitude A and frequency fd) is preprocessed in the digital

domain, modulated, and amplified before being supplied to the drive electrode. Measuring

the response involves amplifying the piezoresistive signal, bandpass filtering it around fh,

detecting its envelope, digitizing it, and reinjecting it with a delay and a gain in the

preprocessing stage. The bandpass filter is locked at fh = 4fd due to the quadratic relation

between the applied force to the beam, the drive signal, and the frequency shift in the

stiffed beam.

Later, a delay-based RC was developed to process the acceleration information

provided by an inertial mass [12]. The device consists of an inertial mass electrostatically

coupled to an oscillating beam through a gap. The motion of the inertial mass modulates

an AC electrostatic field that drives the beam in its nonlinear regime. This nonlinearity is

then used to implement machine learning in the mechanical domain.

2.3.4. In-materio Computing

In 2012, the European discovery project 'NASCENCE' was established to explore

the computational properties of materials. NASCENCE employed a hybrid approach to

create reservoir computers, combining computer and physical domains [41], [48], [83].

Reservoirs were configured using physical substrates consisting of single-walled carbon

nanotubes (SWCNTs)/polymer composites spin-coated onto a PCB electrode array, as

31

illustrated in Figure 2.8 (a). Different materials were investigated, including

SWCNT/PBMA, SWCNT/LC (liquid crystal), and gold nanoparticles, with the reservoirs

eventually being based on SWCNT/PBMA composites.

The behaviour of the SWCNT/PBMA composite was found to be nonlinear for low

concentrations of SWCNTs, with the nonlinearity related to the percolation of conducting

pathways within the composite [84]. The network's time scale or dynamics were

determined by how fast the SWCNTs could create the paths due to the applied electric

field. The coupling between nodes (i.e., specific electrodes) was determined based on

random conductive pathways. An evolutionary algorithm in the computer domain was used

to determine the optimal configuration of the substrate, the control voltage signals, and

the locations of the input/output electrodes. The experimental results showed that these

substrates could be configured and trained as reservoir computers.

Figure 2.8. (a) Hardware reservoir system and CNT/polymer deposited onto
PCB electrode array, © 2019 M. Dale et. al. [84]. (b) a reservoir of in-
vitro cell cultures, Copyright © 2007 Elsevier B.V. All rights reserved.
[85].

2.3.5. Biological Computers

Some researchers developed in vitro RC with biological nodes for biological

information processing. Microelectrode arrays (MEAs) are the main substrates to stimulate

cultured cells or bacteria and measure their responses electrically [85]. A sample reservoir

of in vitro cell cultures is shown in Figure 2.8 (b). In 2015, Obien et al. developed an RC

based on cultured cells on MEAs, which was stimulated by two rectangular voltage pulses

applied on the electrodes to generate action potentials of the cultured cells [85]. A leaky

integrator was used to transform the MEA measurements into a time-continuous reservoir

state, and a readout layer successfully classified the spike patterns. Some researchers

have changed the direction toward the electrical stimulation protocols, where the influence

32

of low and high-frequency stimulations on living cortical networks was studied [86]. Some

introduced optogenetic stimulation instead of electrical stimuli to control neural activities

precisely [87]. Rat cortical neurons were cultured on MEAs as a reservoir in this study,

and the reservoir was stimulated using random dot patterns. Finally, reservoirs based on

other living organisms, such as the bacterium Escherichia coli (E. coli), were proposed

[88], which react to different chemical inputs and generate complex temporal patterns.

2.3.6. Quantum Reservoirs

Reported quantum computers are based on qubits (or quantum bits), which contain

information and can simultaneously be in the ground and excited states. The qubits

considered for quantum reservoirs must represent a scalable physical system and be able

to initialize their state. The scalability enables the building of larger reservoirs that can

handle more complex computational tasks. If the qubits used are not scalable, building

larger reservoirs with more qubits would be challenging, limiting the system's

computational power. Additionally, the qubits should offer a coherence time longer than

the gate operation time and have the capacity to conduct qubit-specific measurements

[89].

Over the years, researchers have developed several physical realizations of qubits

such as silicon qubits, nuclear magnetic resonance, ion traps, superconducting qubits,

and Nitrogen vacancies in the diamond. Obst et al. introduced a nano-scale reservoir with

quantum dots and chemical compounds that change their absorption spectrum depending

on their environment's pH or redox potential [90]. An input signal is given as a change in

the chemical properties of the compounds, which affect the signal transfer between

quantum dots randomly dispersed in space, encoded as an emission pattern. Simulations

confirmed the potential computational performance in an image recognition task.

2.4. Summary

The main advantage of physical reservoir computing is that it creates highly

efficient and scalable computing platforms that can perform complex computational tasks

in real-time. Additionally, physical reservoir computing can be implemented using various

materials and technologies, making it a versatile and adaptable approach to machine

learning. Physical RC is promising in bringing low-power data processing closer to the

33

sensors or even inside them. Whereas with RNNs deployed on hardware processors, the

amount of power being consumed for loading the weight values or training the network

especially when the model size is large is comparably higher than physical RC. However,

there are also some limitations to physical reservoir computing, such as the need for

precise control over the physical system, the potential for noise and other disturbances to

affect the system's performance, and the difficulty of integrating physical reservoir

computing with traditional computing architectures.

34

Chapter 3.

The Electro-Thermal Computing Platform

The development of physical computing platforms starts with the design of physical

reservoirs. The design of physical reservoirs begins with exploring devices and materials

that exhibit nonlinear responses to various types of input stimulation, such as physical,

electrical, optical, or chemical. This initial step involves identifying materials that possess

the intrinsic memory property, which refers to the time it takes for the material to respond

to a specific stimulus applied for a short time and return to its initial state. Once the target

material or devices has been identified, the next step is to implement a neuron that can

operate with the appropriate input signal (e.g., physical, chemical, electrical, optical, etc.)

and produce target readings (e.g., physical, chemical, electrical, optical, etc.). This

process involves selecting the correct type of neuron and configuring it nonlinearly to

respond to the specific stimuli that will be applied. Finally, the role of connections inside a

reservoir is to enable the flow of information among the neurons. Information flows within

the network through energy exchange among the neurons in the physical domain. This

energy can take various forms, such as electrical or optical energy, and can be either

already present in the material or explicitly created to flow in the reservoir. Finding the

right balance of the energy that flows among neurons is crucial to get the most efficient

results. This chapter partly contains my article published in Advanced Materials

Technologies entitled “A Neuromorphic Electrothermal Processor for Near‐Sensor

Computing” [91]. All the steps taken to build a physical RC are explained in detail and the

resulting physical RC is evaluated using standard tasks.

3.1. Development of a Physical Computing Platform

In the early stages of this research, we have been seeking new materials and

devices for physical reservoir computing by exploiting the physics of sensors and sensor

systems to go beyond linear readings of information and simplify the generation of context.

One promising device for this purpose is the negative temperature coefficient (NTC)

thermistor, a temperature-sensitive resistor. Thermistors are inexpensive devices used for

temperature measurement and control in various applications. Their operating principle

relies on the dependence of material resistivity on temperature. NTC thermistors are

35

generally made of nickel, cobalt, iron and silicon oxides, employed as pure elements or

as ceramics and polymers. Thermistors such as bead, disk, and chip, as well as glass-

encapsulated thermistors, are categorized according to their manufacturing processes.

Disk NTC thermistors (used in this work) have metalized surface contacts and are featured

as accurate, stable, and highly sensitive. NTC thermistors have several attractive

properties for physical reservoir computing, including a wide resistance range, fast thermal

response time, and high precision and accuracy. In this Chapter, we will investigate the

use of NTC thermistors for physical reservoir computing and explore their potential for

real-time data processing under standard tasks.

Nonlinearity

NTCs experience a reduction in their resistance when their temperature is

increased. The resistance of an NTC thermistor as a function of temperature, 𝑇, is given

by [92]

𝑅(𝑇) = 𝑅(𝑇0) 𝑒
𝛽(
1
𝑇
−
1
𝑇0
)

(3-1)

where 𝑇0 is the nominal operating temperature, and 𝛽 is a material constant. Current

passing through a thermistor generates heat, raising its temperature above the

environment. Its electrical power is calculated as 𝑃𝐸 = 𝑉. 𝐼, where I and V are the is the

current passing through and the voltage drop across the thermistor, respectively. Newton’s

law of cooling describes the heat transfer rate as [92]

𝑃𝑇 = 𝐾(𝑇 − 𝑇0) (3-2)

where K is the dissipation constant in mW/°C, which is a measure of the thermal

connection of the thermistor to its surroundings. At equilibrium, these two rates (i.e.,

electrical and thermal power) must be equal, giving the current-voltage (IV) characteristic

of the thermistor as:

𝑉. 𝐼 = −
𝑇𝑎 𝐾 ln (R(T) R(𝑇0)⁄)

(ln (R(T) R(𝑇0)⁄) + 𝛽 𝑇0⁄)

(3-3)

The IV characteristic of NTC thermistors exhibits interesting nonlinearities as a

result of the self-heating of the device under large currents (see Figure 3.10 (a)). This

36

nonlinearity is a fundamental criterion in devices performing as reservoir nodes. When

used as a sensor, the thermistor's resistance is measured using a small current to avoid

self-heating. Under large currents, however, the device self-heats (Joule heating), which

causes the resistance to decrease. If driven by a current source, the resistance drop

continues until electrothermal equilibrium with the environment and the device reaches a

stable operating point. When driven by a voltage source, the current through a device can

continue to increase as its resistance drops due to self-heating. This can lead to potential

damage to the device if the current is not limited through another mechanism.

Fading Memory

In addition to their nonlinear response to slow-changing signals, thermistors exhibit

an interesting dynamic response to their input electrical excitation. This time-dependent

response results from the heat-up and cool-down times of the thermistors, which are

governed by the heat conduction dynamics of the medium (see Figure 3.1 (b)). This

dynamic response provides the fading memory function.

When the thermistors operate in their self-heating mode, they show a dynamic

response. The voltage across the NTC in response to an abrupt change in its current can

be represented by

𝑉𝐿𝐻(t) = 𝑉𝐿𝐻1 [1 − exp (
−𝑡

𝜏1
)] + 𝑉𝐿𝐻2 exp (

−𝑡

𝜏2
) (3-4)

where t in this context shows a continuous time, and 𝑉𝐿𝐻1 and 𝜏1 represent the fast

dynamics due to the abrupt increase in the current passed through the NTC. As a result

of this change, the temperature of the NTC increases. Once the thermistor self-heats, its

resistance decreases with a thermal time constant of 𝜏2. 𝑉𝐿𝐻2 expresses the change in the

voltage until it reaches the equilibrium state. While the voltage for a decrease in the current

will be:

𝑉𝐻𝐿(t) = 𝑉𝐻𝐿1 exp (
−𝑡

𝜏1
) + 𝑉𝐻𝐿2 [1 − exp (

−𝑡

𝜏2
)] (3-5)

Figure 3.1 (b) illustrates the dynamics of the NTC voltage due to the change in the

current passing through it. This dynamic response can be utilized to leverage the desired

fading memory.

37

Figure 3.1. (a) V-I characteristics of an NTC thermistor (NT0515291) and (b)
thermal dynamics of the NTC thermistor for changes in the current
injected into the NTC.

The voltage across the NTC thermistor in response to an abrupt change in its

current can be represented by a thermal time constant (TTC), a measure of the slow

dynamics of the thermistor. The TTC is determined by the time it takes for the thermistor

to reach ~63% of its maximum elevated temperature from the ambient temperature when

it is driven into its self-heating mode. As highlighted earlier, 𝜏2 describes the thermal time

constant of the NTC thermistor. The TTC for the thermistor (NT0515291) is reported in the

datasheet and measured to be approximately 20 seconds.

Coupling

Coupling between thermistors requires a flow of energy between them which can

happen in electrical or thermal domains. The first type of coupling is thermal coupling,

when the heat generated by one thermistor can affect another nearby one. This can create

recurrent nodes within the reservoir but is more effective on a micro scale when the

thermistors are integrated onto a single substrate. The second type of coupling is electrical

coupling, which can be achieved, for instance, by using a diode and a series resistance.

Different types of electrical coupling structures can be used in different reservoirs.

Electro-Thermal Neurons

We developed active and passive neurons for potential use in a physical

computing system. An active neuron uses nonlinear feedback in an amplifier with a

(s

))

(s)

38

significant gain to produce a nonlinear output. As illustrated in Figure 3.2 (a), this topology

consists of a high-gain amplifier and a nonlinear function in the feedback path.

𝑌 = 𝐴 (𝑋 − 𝑓(𝑌)) (3-6)

where X and Y are the input and output of the system, respectively, A is the amplifier gain,

and f is the nonlinear feedback. Since the feedback is nonlinear, the output will behave

nonlinearly by considering a high gain, A, for the amplifier:

𝑌 = 𝑓−1(𝑋) (3-7)

Inverting/non-inverting amplifiers with an NTC thermistor in the feedback are

potential options for such a system, as illustrated in Figure 3.2 (b). This way, the current

flowing through the thermistor will be independent of the temperature and/or NTC

thermistor. The system will directly transfer the nonlinearity of the thermistor to the output

in magnitude. The coupling in a reservoir based on these nodes can be realized using a

coupling resistor Rc. The coupling resistor can be adjusted to inject an attenuated version

of the second physical state, x2.

𝐼1 =
u(t)

𝑅𝑖𝑛
, 𝐼𝑐 =

𝑥2(𝑡)

𝑅𝑐
 (3-8)

𝑥1(𝑡) = −𝑅𝑁𝑇𝐶(𝐼1 + 𝐼𝑐) (
u(t)

𝑅𝑖𝑛
+
𝑥2(𝑡)

𝑅𝑐
)

(3-9)

Figure 3.2. (a) A closed-loop system with dynamic, nonlinear feedback and (b)
an inverting amplifier based on an NTC thermistor as the dynamic,
nonlinear feedback. The coupling is shown in blue colour. Here, x1
and x2 are the output of neurons 1 and 2, respectively.

39

Figure 3.3. Characteristics of feedback-based nodes for various input resistance
values.

As can be seen in Figure 3.3 (a), by changing the input resistance value, Rin, the

current injected into the system is changed. As a result, the nonlinear region seems to be

shifted, promising adjustable nonlinear nodes.

We have implemented an XOR gate using a reservoir composed of three active

nonlinear nodes based on inverting amplifiers. The measurement results have

demonstrated promising outcomes for the temporal XOR task. This achievement

demonstrated the potential of reservoir computing for solving computationally challenging

tasks using relatively simple hardware. The reservoir consisting of a network of nonlinear

nodes can generate complex dynamics that enable efficient computation of a given task.

In this case, implementing an XOR gate using a simple reservoir of only three active

nonlinear nodes highlights the efficiency and effectiveness of reservoir computing.

The second active structure may be constructed by positioning the NTC thermistor

in the drain terminal of a metal oxide semiconductor field-effect transistor (MOSFET), as

shown in Figure 3.4 (a). By doing so, the MOSFETs nonlinearly convert the input voltage

signal into a current signal. The nonlinear current combined with the thermal memory and

nonlinearity from the self-heating of the NTC thermistors results in a highly nonlinear

neuron. This approach offers several advantages, including increased computational

power and improved accuracy. The use of a highly nonlinear neuron can enable more

complex computations to be performed, leading to improved accuracy and better

performance. The coupling, though, can be realized using another transistor, which injects

40

additional current into the NTC depending on the neighbour state’s value.

𝐼1 = 𝐾1(𝑢(𝑡) − 𝑉𝑡ℎ)
2, 𝐼𝑐 = 𝐾𝑐(𝑥2(𝑡) − 𝑉𝑡ℎ)

2 (3-10)

𝑥1(𝑡) = 𝑉𝐷𝐷 − 𝑅𝑁𝑇𝐶(𝐼1 + 𝐼𝑐)(𝐾1(𝑢(𝑡) − 𝑉𝑡ℎ)
2 + 𝐾𝑐(𝑥2(𝑡) − 𝑉𝑡ℎ)

2) (3-11)

where K1 and Kc are the parameters specific to the transistor and can be scaled to shift

the nonlinearity of nodes, VDD is the supply voltage, and Vth is the threshold voltage of the

transistor. Figure 3.4 (b) illustrates the nonlinear responses of the various nodes using

various transistor sizes, K1, with respect to the input.

(a) (b)

Figure 3.4. (a) An active node based on MOSFETs with nonlinear coupling and
(b) characteristics of an active nonlinear node with varying width
sizes for the MOSFET, K1. The coupling is shown in blue.

On the other hand, passive neurons do not have a gain or any other type of

amplification and are driven by the input signal. They can be used to introduce nonlinearity

into a system and offer simple and low-cost microfabrication/implementation. The simplest

passive structure for reading the electrical signal at states is the resistive divider in a single

branch, as shown in Figure 3.5 (a), where x is the state voltage. The neurons can be driven

into various operating regions by adjusting the R1. The possible coupling between the

nodes can be realized using a diode and a resistor, as shown in Figure 3.5 (b), affecting

the nonlinear response of both nodes. However, one may use coupling to create a delayed

response. In that case, we may not be able to develop delayed states using passive

structures, and we mainly use them to create various orders of nonlinearity.

41

The First Proposed Reservoir

It is important to consider specific factors and considerations to derive an analytical

model for a reservoir in the proposed reservoir computing platform. The first factor is that

the energy flow is one-directional due to the implementation of coupling using diodes. In

a physical RC, diodes can be used to ensure that energy flows in a specific direction rather

than being able to flow in both directions. The second factor considers that the electrical

energy flows from a neuron with high energy to one with lower energy, similar to the

concept of entropy in thermodynamics. This energy flow helps the network converge to a

stable state. Energy exchange in such a physical RC depends on the input signal at each

neuron (the amount of thermal energy generated by the neurons) and the diodes’

direction. Thus, the coupling weights and the weights inside the reservoir are typically

nonlinear, affecting how energy flows through the network.

When deriving an analytical model for the reservoir, it is essential to consider that

even though the same device is used, its temperature and resistance may vary based on

the input signal received at each neuron in the network. Additionally, the behaviour of the

neurons may differ based on the bias resistors used. These factors must be considered

when developing an accurate analytical model of the reservoir. However, the memory is

constant for all the neurons inside the reservoir, so we may not be able to integrate various

orders of memory into the network at this point. This can limit the network's ability to

process complex input patterns or sequences if other solutions to this challenge are not

introduced.

While a single neuron, as shown in Figure 3.6 (a), is formulated as:

𝑉𝑖𝑛 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗
) (3-12)

If the neuron (neuron j) drives another neuron (neuron j+1) with one branch of one-

directional energy transfer, as shown in Figure 3.6 (b), the behaviour of the neuron j is

described as:

42

Figure 3.5. (a) A single branch NTC-based node, and (b) an example of coupled
nodes.

𝑉𝑖𝑛 =

{

 𝑉𝑗 (1 +

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
𝑉𝑗+1 𝑉𝑗 ≥ 𝑉𝑗+1 + 𝑉𝐷

𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗
) 𝑉𝑗 < 𝑉𝑗+1 + 𝑉𝐷

 (3-13)

If the neuron (neuron j) drives another neuron (neuron j+1) with one branch of one-

directional energy transfer and, at the same time, is driven by another neuron (neuron j-

1), as depicted in Figure 3.6 (c), one may describe the relationship as:

𝑉𝑖𝑛 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 2⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
(𝑉𝑗−1 + 𝑉𝑗+1) (3-14)

A general formula for describing the behaviour of a neuron (neuron j) with m

connections is, only if 𝑉𝑗 > 𝑉𝑗+(1..𝑚) + 𝑉𝐷 for all:

𝑉𝑖𝑛 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 𝑚⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
∑𝑉𝑖

𝑗+𝑚

𝑖=𝑗

 (3-15)

43

Thus, the state of the neighbouring neurons (e.g., 𝑉𝑗+1) and the input signal

received at each neuron (𝑉𝑖𝑛,𝑗) affects its state (𝑉𝑗). As discussed and illustrated earlier,

the nonlinearity comes from the temperature dependence of the thermistor’s resistance,

𝑅𝑁𝑇𝐶(𝑇𝑗). The temperature of the thermistor (𝑇𝑗) in the proposed neuron structure

depends on the input signal, 𝑉𝑖𝑛,𝑗 and the state of the neuron, 𝑉𝑗. To align with the

definition of echo state networks, we can illustrate the equation (3-15) for neuron j as:

𝑊𝑖𝑛
(𝑗)
𝑢 = 𝑉𝑗 (1 +

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 2⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
(𝑉𝑗−1 + 𝑉𝑗+1) (3-16)

Even though it seems to be hard to solve the equation (3-16), the nonlinear

interactions of the neurons with each other are evident from this equation. For a reservoir

of N neurons, the weight matrix would be of the form:

𝑊𝑟𝑒𝑠
(𝑁×𝑁) = [

𝑊11 … 𝑊1𝑁
⋮ ⋱ ⋮
𝑊𝑁1 … 𝑊𝑁𝑁

] (3-17)

For a fully connected network, all the matrix elements are non-zero. However,

based on the signals received at each neuron and whether the diodes are turned on or

off, some or all non-diagonal elements can be zero. Thus, the weight matrix will self-adjust

depending on the signals received at the neurons, either from input or neighbouring

neurons.

There are two other types of coupling structures used in this chapter, nonlinear

summing two states using a neuron driven with a control signal (Figure 3.7 (d)) and

extraction of temporal features (Figure 3.7 (e)). Nonlinear summing, also known as

nonlinear element-wise summing in computer science, is a way in which the summing of

neurons can aid in feature extraction by allowing the network to learn complex, nonlinear

relationships between the input data and its features.

𝑉𝐶 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐 2⁄
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
(𝑉𝑗−1 + 𝑉𝑗+1) (3-18)

44

Figure 3.6. Different coupling mechanisms employed in the reservoir.

The reservoir could capture long-term dependencies in sequential data using a

temporal element-wise coupling, essential for time series analysis. The ability to

selectively retain or forget information from previous time steps allows the network to

maintain a memory of past inputs while adapting to new input patterns.

𝑉𝑖𝑛,𝑗 = 𝑉𝑗 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑗‖𝑅𝑐
) −

𝑅𝑁𝑇𝐶(𝑇𝑗)

𝑅𝑐
𝑉𝑗+1

𝑉𝑖𝑛,𝑗+1 = 𝑉𝑗+1 (1 +
𝑅𝑁𝑇𝐶(𝑇𝑗+1)

𝑅𝑗+1‖𝑅𝑐
) −

𝑅𝑁𝑇𝐶(𝑇𝑗+1)

𝑅𝑐
𝑉𝑗

(3-19)

The proposed physical reservoir is a nonlinear dynamical system in which the

coupling weights between the neurons change over time with every input signal received.

These nonlinear, varying coupling weights in the reservoir can be beneficial in processing

signals because they can introduce nonlinear interactions between the reservoir nodes.

These nonlinear interactions can lead to a more complex and dynamic response to input

signals, which can be helpful in certain types of signal-processing tasks. Nonlinear

interactions within the reservoir can enhance its ability to extract relevant features from

input signals, thereby improving its performance in various tasks such as pattern

recognition and time-series prediction.

45

Figure 3.7. Different coupling mechanisms employed in the reservoir: (a)
nonlinear summing of two states using a neuron driven with a control
signal and (b) extraction of temporal features.

3.2. The Electrothermal Reservoir: The Prototype

In this study, an electrothermal reservoir developed using NTC thermistors is

introduced. Advanced Material Technologies published this work [91], and the results

demonstrate the effectiveness of this approach for generating more complex and efficient

dynamics in various applications.

The Electrothermal Reservoir

The electrothermal reservoir is composed of a passive network of randomly

coupled NTC thermistors. We utilized NT0515291 from Ametherm for the NTC

thermistors, offering desired nonlinear characteristics. Each NTC is biased in a different

but close to the nonlinear region using a bias resistance picked among 47Ω, 100Ω, 150Ω,

220Ω, 280Ω, 330Ω, and 470Ω. These bias resistances set the diagonal elements of the

reservoir’s fixed weight matrix, Wres, to the range of [0.03 0.24].

SB130-T Schottky diodes (Diodes Incorporated) and 10Ω resistors were used to

implement one-directional, random electrical energy paths in the network. These

connections set the off-diagonal elements of the reservoir weight matrix, Wres. While these

46

elements ought to be fixed in the reservoir, the proposed coupling offers off-diagonal

weights, a nonlinear function of the input signal at each node and depends on the energy

state of the two neighbouring nodes. Thus, these elements provide various off-diagonal

weight values regardless of their similar and exact coupling. Another aspect is the direction

of the energy flow set using these one-directional couplings, which are set to flow the

energy from the highest gradient to the lowest. Additionally, almost all reservoir nodes are

driven by the input signal, and some are biased using a control signal either in a self-

heating mode or just below that.

Unless otherwise stated, the time step is set to 0.25*TTC, a quarter of the thermal

time constant of the under-study NTC. The electrothermal reservoir was built on a regular

printed circuit board (PCB), as shown in Figure 3.8. The connections between the source

and measurement equipment were realized using jumper wires. The NTCs were mounted

at a 0.5 cm distance from each other and 1 cm from the substrate to prevent heat

convection among the reservoir nodes. Diodes are mounted to the back end of the PCB

substrate to avoid the possible temperature-dependent shift in the diode characteristics

due to the generated heat in the thermistors.

Figure 3.8. The prototype mounted on a PCB.

Figure 3.9 illustrates the realized thermo-reservoir with a size of 48, consisting of

6 sub-reservoirs with eight principal nonlinear neurons. Each sub-reservoir of size eight is

driven with shifted inputs {u(t), u(t-d), …, u(t-5d)} in the range of d = {0, …, 5}, where d is

the timestep at which the data are introduced to the reservoir.

Figure 3.10 illustrates the couplings where input or control signals can drive all or

some states. Control signal biases the states, either in a self-heating mode or just below

that. Each state driven by the input signal can share some of its electrical energy with the

47

lower state through the designated path in an ordinal way. However, when a control signal

is used, the lower energy states share more of their energy rather than the states with

higher energy levels, creating a highly nonlinear electrical energy exchange between the

states. The states of the reservoir are depicted in Figure 3.11.

Figure 3.9. Realized thermo-reservoir consisting of 6 sub-reservoirs with eight
principal nonlinear neurons each, driven by shifted inputs {u(t), u(t-
d), …, u(t-5d)} in the range of d = {0, …, 5}."

Figure 3.10. The electrical energy exchanged between coupled nodes. Each node
is represented by a neuron having a distinct bias resistance value.
The diagram highlights the variability in bias resistance values across
the neurons by labelling the neurons by their resistance value.

48

Figure 3.11. States of a rich thermo-reservoir consisting of six sub-reservoirs,
each with eight nonlinear neurons. The sub-reservoirs are driven with
shifted inputs in the range of 0 to 5 timesteps.

Input Layer

For physical RC, the input layer may be realized in different ways. The most

straightforward approach scales the input data to the reservoir and applies it to the

nonlinear nodes of the reservoir). A richer nonlinear dynamic may be created by keeping

a history of the input data and applying it sequentially to the reservoir (Figure 3.12). Both

these approaches may be employed for near-sensor processing applications. However,

the additional computational power offered by the second approach necessitates using a

sample-and-hold mechanism which adds to the system's complexity. A final approach in

physical RC is to remove the input layer and build the reservoir from nonlinear, coupled

sensors. The output layer then monitors the state of the reservoir and produces a signal

that reflects the state of the reservoir. In this case, the reservoir state changes directly with

the parameter of interest.

The input layer used in this study, as shown in Figure 3.12, consists of an analog

shift register, shifting the input signal up to five timesteps, mapping six shifted, sequential

signals {u(n), u(n-1), …, u(n-5)} into the reservoir.

Output Layer

The output layer runs a linear regression and decision tree implemented in a

MATLAB® environment for the time-series prediction and event detection. The code is

designed to apply to all the selected output signals from the reservoir (i.e., 48 temporal

signals).

49

Figure 3.12. The realized input layer for the electrothermal RC.

3.3. Benchmark Analysis

The proposed electrothermal reservoir was utilized to perform two tasks. The first

task involves using the reservoir to predict a times-series signal. The reservoir detected a

particular event in incoming data for the second task. The data collection setup is

illustrated in Figure 3.13. The input signals and output data were collected using a National

Instruments PXIe-6363 I/O module through a LabVIEW interface at a rate of one sample

per second. Due to the limited number of data acquisition channels (32 AI channels), I

utilized an NI switch module (NI PXI-2564) to measure various signals if more than 32

neurons were employed.

Figure 3.13. Data acquisition setup.

50

3.3.1. Time-Series Prediction

There are some real-life applications where continuous monitoring of a parameter,

such as the concentration of specific gas species in an environment, is vital. The

performance of the physical computer can be evaluated using a time-series signal to

assess its capability in detecting a particular output function (e.g., concentrations) with the

time history of past incidents. In this case, a standard test uses a nonlinear autoregressive

moving average (NARMA) of the input signal. The input signal is a randomly distributed

sinusoidal, sawtooth, and square waveform at different frequencies with amplitudes falling

from 4.5V to 6.5V. NARMA is a discrete-time temporal task with an nth -order time lag.

In evaluating the NARMA time series prediction, a dataset of size ~570 was used,

which was split into a training set and a testing set. The training set comprised 70% of the

dataset, while the remaining 30% was allocated for testing. This division allowed for the

model to be trained on a substantial amount of data, which could improve its accuracy,

while also ensuring that the model's performance was evaluated on a sufficiently large

and diverse dataset. Figure 3.14 (a) shows the predicted and real values for various orders

of nonlinearity and memory requirement (represented by n). An electrothermal reservoir

with 48 nodes can compute up to a 5th-order NARMA with good agreement between the

actual and predicted values (see Figure 3.15 (a)). Increasing the orders of nonlinearity

and memory beyond the 7th order leads to increasing error. Recorded root mean squared

error (RMSE) reveals that the prediction error is less than 56mV for n ={1,2,…,5}, while it

experiences an increase and reaches 222mV for NARMA10.

Developing physical signal processors needs to account for the time the system

needs to respond to the input. The system will ignore changes at the input much faster

than its response time (i.e., fast changes are filtered). On the other hand, waiting too long

for the system response to become stable increases the computational time. For the

electrothermal computer, we used the NTC's thermal time constant (TTC) (i.e., the time

required for the voltage across the thermistor to reach 63.3% of its final value from 0) as

the measure of response time. Figure 3.15 (b) compares the system's response to inputs

that vary at different time scales (0.5 TTC and 1.5 TTC). As can be seen, when the input

changes quickly compared to the natural response time of the reservoir, the output retains

a significant portion of the past events. The stronger dependence on past events can be

balanced by using a larger reservoir exhibiting a more complex dynamic behaviour (Figure

51

3.15 (c)). These results demonstrate the importance of choosing the correct reservoir

parameters for the accuracy and speed of computations in physical sensor computing.

n = 1

n = 3

n = 5

n = 7

Figure 3.14. The capability of a reservoir of size 48 in computing problems with
different levels of memory requirements and nonlinearities.

3.3.2. Event Detection

This experiment aimed to evaluate the capability of a physical computer,

specifically an electrothermal computer, to detect a specific event based on incoming time-

series data. The approach taken in this experiment could potentially be used to build

event-based triggers that could wake up an intelligent system to perform specific tasks.

For example, the system could be designed to detect a particular seismic activity,

triggering an alert to be sent out or other action to be taken.

52

(a)

(b)

(c)

Figure 3.15. (a) RMSE and R2 of the reservoir versus various complexity levels of
the under-study task (n). (b) Transient response of a reservoir node
at various fs. (c) Importance of the fs on the reservoir performance.

In this experiment, the input signal was a decaying Gaussian pulse waveform

distributed in various time windows with varying pulse widths. The specific events were

mounted onto another pulse signal with various levels to challenge the system further. The

amplitude and duration of the events changed over time, making the event-detection

problem harder to solve. A limited demonstrative set of 52 specific events was introduced

to the electrothermal computer. The electrothermal processor was trained to detect these

events. As depicted in Figure 3.13, the experiment results showed that the electrothermal

computer could detect the events with 98% sensitivity and 100% specificity to all events.

In other words, the computer could correctly identify almost all events with few false

53

positives. We also achieved a 99% accuracy in event detection, indicating that the system

was highly effective at identifying specific events. A truth table for the event detection is

presented in Figure 3.17.

Figure 3.16. Performance of the proposed electrothermal reservoir in detecting a
specific event from non-event instances.

P
re

d
ic

te
d

 C
la

s
s

E
v
e

n
t

51 0

N
o

 E
v
e

n
t

1 53

 Event No Event

 True Class

Figure 3.17. The truth table for the specific event detection among non-event
instances of the proposed electrothermal reservoir.

54

3.4. Summary

Physical signal processing presents a plethora of opportunities for developing

specialized computers suitable for various applications. In particular, sensor signal

processing can significantly benefit from this approach since, in most cases, the context

produced from sensor data are more valuable than the raw data. This chapter introduced

the electrothermal RC model to develop physical signal processors, focusing on cases

more suitable for physical realization. The chapter also covered relevant aspects of

modelling for the electrothermal RC. Similar concepts can then be applied to develop

integrated physical computers using miniaturized integrated thermistors. Electrical

coupling was used for creating connections within the developed reservoir in this chapter.

However, since the platform operates based on the self-heating of thermistors, another

potential coupling mechanism might be thermal coupling, where the generated heat is

transferred from one neuron to another, as mentioned earlier in this chapter. The next

chapter focuses on the development of 3D-printed reservoir computing platforms based

on thermal coupling.

55

Chapter 4.

Exploring the Potential of 3D Printed Computing
Platforms

Additive Manufacturing or 3D printing is a rapidly developing technology that

enables the fabrication of complex, multi-layer, and even multi-material structures at once

using various printable materials [93]. Advances in 3D printing technologies and additive

manufacturing have been utilized to develop 3D-printed sensors and hence, 3D-printed

intelligent systems (i.e., structures with embedded sensing capabilities) [94]. However,

typical 3D-printed systems, including 3D-printed sensors, are generally passive

components, lacking computational capability.

The desire to add computation capability in analog or digital domains has

motivated research on developing 3D-printed transistors and active components [95].

Much of this research has thus far focused on developing transistors for analog signal

processing or conventional von Neuman digital processors. However, these transistors

are far from silicon devices in terms of performance and are printed at much lower

densities than the existing silicon microelectronic chips, severely limiting their utility as

computational elements.

Alternatively, 3D-printed neuromorphic devices and processors have been

proposed to add computing power to 3D-printed structures [96]–[98]. 3D-printed optical

signal processors have also been proposed as a solution to circumvent the challenges on

the electrical side for processing large quantities of input data [99]. Nonetheless, the

existing solutions for signal processing with 3D-printed structures face significant

challenges in scaling up the computation capabilities or requiring sophisticated tools to

recover the processed data.

The use of 3D printing technology in developing near-sensor computing platforms

has the potential to revolutionize the field of customized intelligent system development.

The ability to mass-customize processors, combined with the precise control of physical

structure offered by 3D printing, allows for the creation of small and lightweight processors,

making them ideal for many applications. Furthermore, 3D printing can also reduce the

cost and time of production, making it more accessible for a wide range of applications.

56

Additionally, 3D-printed computing platforms can offer real-time processing while easing

the integration of various sensors, leading to improved performance and efficiency.

 The material used for 3D-printed computing platforms is critical for the device's

performance. Carbon-filled Polylactic Acid (PLA) is a conductive filament that is

particularly well-suited for this application. This material is a thermoplastic polymer

reinforced with carbon particles, giving it high electrical conductivity. Additionally, it is a

low-cost and widely available material that is easy to work with using fused deposition

modelling (FDM) technology. FDM is presently the most common 3D printing technology,

where a filament of the printed material is melted and deposited selectively using a printer

head. Depending on the type, the nozzle temperature for printing these conductive

filaments is between 120℃ to 250℃ [100].

We will introduce carbon-filled PLA as a conductive filament for 3D-printed

computing platforms as an appropriate choice due to its electrical conductivity, low cost,

wide availability and suitability for FDM technology. It also provides nonlinear and time-

dependent responses beneficial for reservoir computing. Thus, this chapter focuses on

studying the behaviour of 3D-printed neurons and reservoirs. We build a mathematical

model for the 3D-printed reservoir with the mathematical weights defined based on the

electrical and thermal processes involved in the reservoir. Physical phenomena involved

with the thermal coupling of the neurons are described by heat transfer, and the electrical

coupling follows Ohm’s law. Finally, we will compare the derived model with the

experimental analysis and numerical simulation of the developed 3D-printed reservoir

using COMSOL Multiphysics.

4.1. The 3D-Printed Neuron

The 3D printing technology with carbon-filled PLA as a conductive filament offers

a solution for developing resistive networks for reservoir computing. These resistors are

printed using FDM technology, which involves the melting and depositing of a filament of

the printed material selectively using a printer head.

One of the key advantages of using 3D-printed resistors is that they exhibit

significant nonlinear responses due to self-heating at relatively low temperatures (50-

60℃). Figure 4.1 illustrates the reaction of a 3D-printed resistor under different conditions.

57

The resistors exhibit a nonlinear response under high currents due to self-heating. The

resistors exhibit a time-dependent response if the time spent at each current level is

shorter than the time needed to reach thermal equilibrium. For these IV characteristics, I

swept the current passing through a piece of 3D printed resistor forward and backward

and measured its voltage after various time intervals by Keysight 2901A precision

source/measure unit (SMU).

Δ𝑡 = 1𝑠 Δ𝑡 = 5𝑠 Δ𝑡 = 10𝑠

Figure 4.1. The current-voltage characteristic response of a free-hold 3D-printed
resistor under different test conditions. In each case, the resistor's
current was increased from zero to the maximum Imax and back to
zero. The resistors’ current was held constant for Δt (shown at the
top) before measuring the voltage across the resistor and proceeding
to the next step. Notably, under these test conditions, the resistor
response is repeatable, indicating a permanent change to material
response has not yet occurred.

58

Figure 4.2. The measurement setup for IV characteristics.

(a) (b) (c)

Figure 4.3. (a) The resistor/neuron model, (b) the 3D model of a resistor created
in SolidWorks where the black colour shows the resistor printed
surrounded by regular PLA, and (c) the 3D-printed resistor. Note that
regular PLA is available in different colours to print, while C-PLA is
available in black colour. There are not significant differences in
terms of thermal/mechanical properties between regular PLAs with
different colours.

The setup for these measurements is shown in Figure 4.2. The nonlinearity and

time dependence in the responses of these resistors makes them ideal candidates for

developing physical RC systems based on ESN topology. Figure 4.3 illustrates the 3D

model of a 3D-printed resistor developed in SolidWorks and its printed version.

The advancements in developing physical computing platforms promote the

importance of connecting RC to physical RC to enhance our understanding of the design

process. Nonlinearity in physical systems can arise from materials or devices while fading

59

memory may be attributed to the time required for these materials or devices to respond

to a stimulus. The connections between neurons within an RC play a vital role in facilitating

the exchange of information. Although the connections among neurons in a physical RC

can be realized using electrical couplings, thermal coupling can be an alternative in

systems employing 3D-printed temperature-sensitive elements. Heat is generated as

current (i.e., the input signal) passes through a 3D-printed resistor, and it can transfer from

one neuron to another under specific conditions. Consequently, thermal coupling involves

establishing pathways for heat transfer among neurons/resistors, with heat transfer

becoming a particularly crucial aspect to investigate. In the case of a reservoir consisting

of 3D-printed resistors, thermal coupling occurs when these resistors/neurons are printed

close to each other, ensuring a short path for the generated heat to transfer from one

resistor/neuron to another.

4.2. Analytical Model

A computational model was introduced in Section 2.1 for feedforward and recurrent

neural networks. Feedforward NNs, in their most general form, are modelled using the

weight matrices connecting neurons in different layers, W, the input signal u, and the

response of neurons, x, i.e., f(W, u, x). The weights are typically time-independent and

learned during training to optimize the network's performance on a specific task.

RNNs, on the other hand, are neural networks designed to process sequential or

time-series data by capturing temporal dependencies. RNNs are modelled using the

weight matrix connecting the previous hidden state to the current hidden state Whh, the

input signal u(t), and the response of neurons in the previous and current time steps, x(t-

1) and x(t), i.e., f(Whh, u(t), x(t), x(t-1)). The weight matrices in RNNs, similar to NNs, are

also time-independent. During the training process, the weights are typically learned

through backpropagation through time.

In digital implementations of RC, the weight matrix is typically fixed and time-

independent, similar to NNs and RNNs. Therefore, the reservoir can be modelled by f(Wres,

u(t), x(t), x(t-1)). However, in physical RC, the weight matrix, or its equivalent, can be time-

dependent. This time dependence arises from the dynamic properties of the physical

components used to implement the reservoir. By leveraging the time-dependent nature of

the physical system, physical RC systems can exhibit rich dynamics and complex

60

computations, which are beneficial for time-series analysis or other tasks. The time

dependence in the weight matrix allows the physical system to adapt and respond to input

signals, enhancing the reservoir's computational capabilities for processing time-varying

data. It is important to note again that the time dependence in the weight matrix of physical

RC is specific to its physical implementation and not inherent to traditional software RC.

Also, the time dependence sets limits on processing capabilities.

In this context, we derive a general analytical model for 3D-printed reservoirs to

gain insight into the reservoir weight matrices and design parameters required for

developing an efficient 3D-printed reservoir.

4.2.1. The Analytical Model of 3D-Printed Physical RC

For 3D-printed reservoirs, the weight matrix can be derived by understanding the

thermal coupling among the resistors. We can envision this scenario as neurons heating

up when current passes through them (Heat Generation) and the generated energy

transferring to the surrounding area (Heat Transfer). Consequently, the temperature

distribution in the medium where the resistor is located changes in response to self-

heating. The amount of heat transfer and temperature distribution depends on the

Boundary Conditions of the resistor. For instance, if the resistor is printed using a single

material and measured while kept in air, heat transfer to the surrounding area may occur

at a negligible rate. However, suppose the resistor is printed within a solid material, like

regular PLA. In this case, the heat generated in the resistor will conduct away from the

resistor and transfer to the surrounding material at a higher rate compared to the air due

to the higher thermal conductivity of PLA over air.

Therefore, temperature is one of the measurable quantities in the reservoir. To

obtain an approximate temperature value, heat transfer problems with specific boundary

conditions must be solved. Here, we begin modelling this process by

• discussing heat generation in resistors,

• providing a brief introduction to heat transfer in solids,

• defining various boundary conditions and

• deriving static and dynamic models for the reservoir.

61

Heat Generation in Resistors

When an electric current passes through a resistor, it undergoes resistive heating

process, where the resistor generates heat, causing its temperature to rise. The amount

of heat produced is directly proportional to the square of the current (𝐼) passing through

the resistor and the resistance value of the component (𝑅), as described by 𝐼2𝑅. The heat

transfer from the resistor to its surroundings increases with an increase in the resistor's

temperature. As an illustration, when an electric current start flowing through the resistor,

the resistor's temperature rises and continues to increase until steady operating conditions

are reached, and the heat generation rate equals the heat transfer rate to the

surroundings. The total rate of heat generation in a resistor of volume 𝒱 can then be

determined from:

𝐸̇𝑔𝑒𝑛 = ∫  
𝒱

𝑒̇𝑔𝑒𝑛𝑑𝒱 (W) (4-1)

Considering a uniform heat generation for an electric resistance heating

throughout a homogeneous material, Eq. (4-1) reduces to 𝐸̇𝑔𝑒𝑛 = 𝑒̇gen𝒱, where 𝑒̇g𝑒𝑛 is the

constant rate of heat generation per unit volume.

Heat Transfer Problems in Solids

The generated heat in the resistors is conducted away from the center of the

resistor to its surrounding medium. In the most general case, heat transfer through a

medium is three-dimensional (3D). The temperature varies along all three primary

directions within the medium during the heat transfer process. However, depending on the

relative magnitudes of heat transfer rates in different directions and the desired accuracy

level, the problem can be reduced to one-dimensional or two-dimensional. Suppose the

temperature in a solid object varies mainly in two primary directions, and the variation is

negligible in the third direction. In that case, the heat transfer problem is considered two-

dimensional (2D). In a one-dimensional heat transfer, the temperature varies in one

direction only, and the variation of temperature and, thus, heat transfer in other directions

are negligible or zero.

Heat transfer problems are solved by considering the energy balance inside the

medium. Energy balance in a 3D heat transfer problem during a small time-interval Δ𝑡 can

be expressed as [101]:

62

(
 Rate of heat
 conduction

 at 𝑥, 𝑦, 𝑧
) − (

 Rate of heat
 conduction

𝑎𝑡 𝑥 + 𝛥𝑥,

𝑦 + Δ𝑦, 𝑧 + Δ𝑧

) + (

 Rate of heat

 generation

 inside the
 element

) = (

 Rate of change

 of the heat energy

 content of the

 element

)

Which gives the general equation of heat conduction as [101]

𝜕

𝜕𝑥
(𝜅
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜅
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜅
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧
) + 𝑒̇gen

= 𝑚𝐶𝑝
𝜕𝑇(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑡

(4-2)

where 𝜅 is the thermal conductivity of the material, which is a measure of the ability of a

material to conduct heat. 𝑚 is the mass of the material and 𝐶𝑝 is the specific heat capacity

of the material. Heat conduction through a solid medium in a specified direction (e.g., in

the 𝑥-direction) is proportional to the temperature difference across the medium and the

area normal to the direction of heat transfer but is inversely proportional to the distance in

that direction, which is defined by Fourier's law of heat conduction as

𝑄̇cond = −𝜅𝐴
𝑑𝑇

𝑑𝑥
 (4-3)

where 𝑑𝑇/𝑑𝑥 is the temperature gradient. Heat flows in the direction of decreasing

temperature, and thus, the temperature gradient is negative when heat is conducted in the

positive 𝑥-direction.

Boundary Conditions

Heat flux and the temperature distribution in a medium depending on the surface

conditions. As discussed earlier, the general heat conduction equations were developed

using an energy balance on a differential element inside the medium. Thus, they remain

the same regardless of the thermal conditions on the surfaces of the medium. A heat

transfer problem in a medium is incomplete without a complete description of the thermal

conditions at the boundary surfaces, known as the boundary conditions. Some of the most

common boundary conditions are illustrated in Figure 4.4 and summarized in Table 4-1

[101].

63

Table 4-1. Some of the most common boundary conditions in heat transfer.

Boundary
Condition

Definition

Generalized
Boundary
Conditions

Generally, a boundary condition can be obtained from a surface energy balance,
expressed as

(
 Heat transfer

 to the surface
 in all modes

) = (
 Heat transfer

 from the surface
 in all modes

)

Specified
Temperature
Boundary
Condition

The specified temperature boundary conditions can be expressed as

𝑇(0, 𝑡) = 𝑇1 𝑇(𝐿, 𝑡) = 𝑇2

Specified Heat
Flux Boundary
Condition

When energy interactions at a surface are known, the rate of heat transfer (i.e., the
heat flux 𝑞̇) on that surface can be used as one of the boundary conditions.

𝑞̇ = −𝜅
∂𝑇

∂𝑥
= (

 Heat flux in the

 positive 𝑥 − direction
)

Special Case I:
Insulated
Boundary

The heat transfer would be zero at an insulated surface
∂𝑇(𝐿, 𝑡)

∂𝑥
= 0

Special Case II:
Thermal
Symmetry

For a large plate of thickness 𝐿 suspended vertically in the air with its two surfaces
exposed to the same thermal conditions, symmetry in the temperature distribution
about the center plane, 𝑥 = 𝐿/2, results in no heat flow across the center plane.
Therefore, the center plane can be treated as an insulated surface (zero heat flux
boundary condition)

∂𝑇(𝐿/2, 𝑡)

∂𝑥
= 0

Convection
Boundary
Condition

In practice, since most heat transfer surfaces are exposed to an environment with a
specific temperature, the most common boundary condition is convection, which is
defined as

(
 Heat conduction
 at the surface in a

 selected direction

) = (
 Heat convection
 at the surface in

 the same direction

)

For one-dimensional heat transfer in the x-direction, the convection boundary
conditions at the surface of 𝑥 = 0 can he expressed as

−𝜅
∂𝑇(0, t)

∂𝑥
= ℎ[𝑇∞ − 𝑇(0, t)]

where ℎ and 𝑇∞ are the convection heat transfer coefficient and temperature far
from the surface, respectively.

Interface
Boundary
Conditions

If an object consists of multiple layers of different materials, the heat transfer
problem must be solved in each layer considering the boundary conditions at each
interface. At the interface of two layers, A and B, with perfect contact at 𝑥 = 𝑥0, (1)

the two layers must have the same temperature at the contact area

𝑇𝐴(𝑥0, 𝑡) = 𝑇𝐵(𝑥0,, 𝑡)

and (2) energy is not stored at the contact area (same heat flux on the two sides of
the interface).

−𝜅𝐴
∂𝑇𝐴(𝑥0, 𝑡)

∂𝑥
= −𝜅𝐵

∂𝑇𝐵(𝑥0, 𝑡)

∂𝑥

where 𝜅𝐴 and 𝜅𝐵 are the thermal conductivities of the layers 𝐴 and 𝐵, respectively.

64

Figure 4.4. (a) Specified temperature boundary conditions. (b) Specified heat flux
boundary conditions. (c) A large plate with insulation. (d) Thermal
symmetry boundary condition. (e) Convection boundary condition. (f)
Boundary conditions at the interface of two bodies in perfect contact.

4.2.2. The Static Response of a Reservoir

Here, we derive an analytic model for the static response of a reservoir consisting

of four 3D-printed resistors (i.e., neurons). Consider the resistors are printed in a medium

of regular PLA, as shown in Figure 4.5. For simplicity in this section, we will assume the

resistors are printed with long (L) cylindrical cross-sections with a radius of 𝑟𝑖. We will

solve the heat transfer problem for the medium surrounding the resistors to develop the

weight matrix for the reservoir. We will consider that the temperature of the resistors does

not change significantly inside it, so the average temperature for each resistor is equal to

the temperature at its contact surface with the regular PLA, i.e., 𝑇(𝑟𝑖) (See Appendix A).

The input signal to the neuron/resistor is a current density (
𝐴

𝑚2
), neuron’s response is

calculated as its temperature (K), the neurons are electrically insulated, and for simplicity,

the electrical conductivity of the neurons is considered to be insensitive to temperature

(no nonlinearity introduced). We want to model the static response of thermally-coupled

neurons when subjected to an input signal J. The main focus is to gain insights into the

65

thermal coupling between these neurons, including their strength and the factors that

influence the strength of these connections.

The first step involves deriving the temperature distribution inside a regular PLA

resulting from the heating of the resistors. This entails solving the heat transfer problem

within the regular PLA to determine how heat spreads. In the subsequent step, the

temperature at the location of each neuron/resistor is calculated, taking into account the

influence of all other neurons. Since the medium is assumed to be linear, the principle of

superposition can be employed to determine the temperature distribution. In this

approach, one neuron is considered to heat the environment while the others remain off,

and the temperature distributions resulting from each neuron's contribution are summed.

By performing these calculations, the study aims to uncover the relationship between the

input signal, J, the temperature distribution within the PLA, T, and the resulting response

of the thermally-coupled neurons, T1, T2, T3, and T4. It seeks to shed light on the strength

of thermal coupling between the neurons and identify the key parameters that affect the

coupling between the neurons.

Figure 4.5. The heat transfer problem with four resistors/neurons. Resistors are
long cylinders with small radii compared to medium thickness.

For the resistors, the temperature distribution will be achieved by solving the

general heat conduction problem in a cylindrical coordinate system as [101]

66

1

𝑟

𝜕

𝜕𝑟
(𝜅𝑃𝐿𝐴𝑟

𝜕𝑇

𝜕𝑟
) +

1

𝑟2
𝜕

𝜕𝜑
(𝜅𝑃𝐿𝐴𝑟

𝜕𝑇

𝜕𝜑
) +

𝜕

𝜕𝑧
(𝜅𝑃𝐿𝐴

𝜕𝑇

𝜕𝑧
) + 𝑒̇gen = 𝜌𝑚𝐶𝑝

𝜕𝑇

𝜕𝑡
 (4-4)

where 𝜅𝑃𝐿𝐴 is the thermal conductivity of the PLA material and 𝜌𝑚 is the density of the

PLA. The regular PLA considered in this study has large dimensions, allowing us to

assume that at a location far from the resistors, the temperature reaches the ambient

temperature denoted as 𝑇𝑎. This assumption leads to the imposition of a constant

temperature boundary condition, where 𝑇(𝑟 = 𝑡𝑃𝐿𝐴) = 𝑇𝑎. To solve the heat transfer

problem within the regular PLA, a specific heat flux boundary condition is considered at

the interface between the resistor and the regular PLA. Mathematically, this condition is

expressed as −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
= 𝑞, where 𝑞 is the heat flux at the contact point of the neuron and

the PLA due to the heat generated in the resistor and conducted away from it to the contact

surface. According to the discussions in Appendix A, the heat flux for each resistor with

the radius of 𝑟𝑖 is given as 𝑞𝑖 = 𝜌𝑒 𝐽𝑖
2 𝑟𝑖, where 𝜌𝑒 represents the electrical resistivity.

Furthermore, if we assume that heat transfer ceases at the top surface of the PLA,

where it is in contact with the surrounding air, a thermal isolation boundary condition can

be applied. It is important to note that thermal isolation at a specific point can also be

introduced due to the system's symmetry. Thus, we can solve the general heat conduction

problem for a fully cylindrical structure instead of a half-cylindrical problem, as shown in

Figure 4.6. Neglecting the dynamic part and considering that there is no heat generation

within the regular PLA, the heat conduction problem described by Eq. (4-4) can be

simplified. This simplification reduces the problem to focusing solely on the heat

conduction process within the PLA and its interaction with the resistors.

1

𝑟

𝑑

𝑑𝑟
(𝜅𝑃𝐿𝐴𝑟

𝑑𝑇

𝑑𝑟
) = 0 (4-5)

These boundary conditions and the assumptions made allow for the formulation of

a simplified heat conduction problem within the regular PLA. This simplified problem omits

the dynamic aspects and considers a scenario where heat is only conducted through the

PLA material without any internal heat generation. By solving this reduced problem,

valuable insights can be gained regarding the temperature distribution and heat transfer

dynamics within the regular PLA, providing a foundation for understanding the behaviour

of the thermally-coupled neurons in the system.

67

Figure 4.6. Simplification of heat transfer for resistor/neuron 1. It is assumed that
the heat transfer ceases at the top surface of the PLA, where it
contacts the surrounding air, allowing to application of a thermal
isolation boundary condition. Thermal isolation at a specific point can
be caused due to the system's symmetry. Therefore, instead of
solving a half-cylindrical problem, the general heat conduction
problem for a fully cylindrical structure would result in the
temperature distribution due to the self-heating of resistor 1.

Solving this equation for resistor 1 considering −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟1

= 𝑞1, gives the

temperature distribution for 𝑟1 < 𝑟 < 𝑡𝑃𝐿𝐴 as

∆𝑇1(𝑟) =
𝜌 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
𝑟
) (4-6)

where ∆𝑇𝑖(𝑟) = 𝑇𝑖(𝑟) − 𝑇𝑎. Note that the 𝑇1(𝑟 = 𝑟1) gives an approximate temperature of

resistor 1. For resistor 3 in the regular PLA, a thermal isolation boundary condition is

introduced by considering a projection of resistor 3 along the negative z-axis, as illustrated

in Figure 4.7. This ensures that the thermal isolation due to the surface with direct contact

with air is properly accounted for. Additionally, it is essential to note that the area through

which heat transfers from resistor 3 and its projection to the surrounding area differs from

the previous case. Consequently, the heat flux boundary condition for resistor 3 and its

68

projection is modified as −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟3

= 𝜌𝑒𝐽3
2 𝑟3 and −𝜅𝑃𝐿𝐴

𝑑𝑇

𝑑𝑟′
|
𝑟′=𝑟3

= 𝜌𝑒 𝐽3
2 𝑟3. Thus

solving Eq. (4-5) for 𝑟3 < 𝑟, 𝑟
′ < 𝑡𝑃𝐿𝐴 results in

∆𝑇3(𝑟) =
𝜌𝑒 𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑟 𝑟′
) (4-7)

where 𝑅𝑑 represents the distance of the neuron 3 from the top surface. Now, by going

back to the Cartesian coordinate system, we can find the temperature distribution for other

resistors. We will keep the Cartesian coordinate system’s origin at the center of resistor 1;

therefore we replace 𝑟 = √𝑦2 + 𝑧2 in Eq. (4-6). Whereas, for resistor 3, we replace 𝑟 =

√𝑦2 + (𝑧 − 𝑅𝑑)
2 and 𝑟′ = √𝑦2 + (𝑧 + 𝑅𝑑)

2. These changes result in (for 𝑟1 < √𝑦
2 + 𝑧2 <

𝑡𝑃𝐿𝐴)

∆𝑇1(𝑦, 𝑧) =
𝜌𝑒 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√𝑦2 + 𝑧2
) (4-8)

And for 𝑟3 < √𝑦
2 + (𝑧 − 𝑅𝑑)

2 < 𝑡𝑃𝐿𝐴

∆𝑇3(𝑦, 𝑧) =
𝜌𝑒 𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

√(𝑦2 + (𝑧 − 𝑅𝑑)
2)(𝑦2 + (𝑧 + 𝑅𝑑)

2)
) (4-9)

A reservoir consisting of four resistors/neurons, as shown in Figure 4.5 with the

specific dimensions provided in Table 4-2, was simulated using COMSOL Multiphysics®

5.5 software. Several physics modules must be combined to simulate and model self-

heating in a resistor. Two physics were employed here: electric currents (ec) from the

AC/DC module and heat transfer in solids from the Heat Transfer module, and a coupled

physics (i.e., Multiphysics) known as electromagnetic heating to study the effect of self-

heating in the under-study electrothermally conductive material (i.e., the conductive PLA).

Readers are referred to Appendix A for more information on the material properties used

for the simulations and the specific boundary conditions. The current densities injected

into the resistors/neurons were set to 𝐽1 = 𝐽3 =
10 𝜇𝐴

𝜋𝑟3
2 = 0.127 (

𝜇𝐴

(𝜇𝑚)2
).

69

Figure 4.7. Simplification of heat transfer for Resistor/Neuron 3. To accurately
represent the thermal isolation boundary condition at the top surface
in contact with the air, we can consider a projection of resistor 3 along
the negative z-axis.

Table 4-2. Specific dimensions used for the COMSOL MultiPhysics Simulations.

Parameter Definition Value

𝑟1 & 𝑟2 Radius of resistors/neurons in the top layer 5√2 [µm]

𝑟3 & 𝑟4 Radius of resistors/neurons in the second layer 5 [µm]

𝑡𝑃𝐿𝐴 The thickness of the 3D-printed piece PLA 10 [mm]

𝑊𝑃𝐿𝐴 Width of the 3D-printed piece PLA 100 [mm]

𝐿𝑃𝐿𝐴 Length of the 3D-printed piece and the resistors/neurons 100 [mm]

𝑅12 & 𝑅34 Shortest spacing between two neighboring resistors/neurons in one layer 2 [mm]

𝑅13 & 𝑅24 Shortest spacing between two neighboring resistors/neurons in two
different layers

2 [mm]

The simulation results were compared to those of the derived models in Equations

(4-8) and (4-9). The findings are presented in Figure 4.8. The analytical model describing

temperature distributions when current flows through each resistor aligns closely with the

developed analytical model. Furthermore, isothermal surfaces (i.e., surfaces with uniform

temperature) exhibit a strong agreement with the simulation results, affirming a high level

of harmony between the analytical model and the simulation outcomes. The isothermals

closely match the simulations, particularly at elevated temperatures near the resistors.

70

However, it is worth noting that due to the dimensions extending in directions other than

depth (𝑊𝑃𝐿𝐴 & 𝐿𝑃𝐿𝐴 >> 𝑡𝑃𝐿𝐴), the isothermals may exhibit a slightly larger expansion than

anticipated in these directions.

(a) (b)

(c) (d)

(e) (f)

Figure 4.8. Comparing analytic model and simulations for resistors 1 and 3. ∆𝑻
of (a) resistor 1 and (b) resistor in z direction when y=0. (c) Simulated
isothermal surfaces for resistor 1 compared to its analytic model (d).
(e) Simulated isothermal surfaces for resistor 3 compared to its
analytical model (f).

71

Now that we have solved the problem for two types of temperature distribution

inside a material, i.e., neurons located on the top layer and buried at any depth, they can

describe the temperature distribution of the rest of the resistors/neurons in the reservoir.

Therefore, for resistors 2 and 4, by replacing 𝑦 = 𝑦 − 𝑅12 and 𝑦 = 𝑦 − 𝑅34 the

temperature distribution for resistor 2 in 𝑟2 < √(𝑦 − 𝑅12)
2 + 𝑧2 < 𝑡𝑃𝐿𝐴 is given as:

∆𝑇2(𝑦, 𝑧) =
𝜌𝑒 𝐽2

2 𝑟2
2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√(𝑦 − 𝑅12)
2 + 𝑧2

) (4-10)

For resistor 3 is given as (for 𝑟3 < √(𝑦 − 𝑅34)
2 + (𝑧 − 𝑅𝑑)

2 < 𝑡𝑃𝐿𝐴):

∆𝑇4(𝑦, 𝑧)

=
𝜌𝑒 𝐽4

2 𝑟4
2

𝜅𝑃𝐿𝐴
Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

√((𝑦 − 𝑅12)
2 + (𝑧 − 𝑅𝑑)

2)((𝑦 − 𝑅34)
2 + (𝑧 + 𝑅𝑑)

2)
)

(4-11)

Superposition then implies that the temperature distribution can be achieved by

summing over the temperature distribution of all resistors/neurons.

∆𝑇(𝑦, 𝑧) =∑∆𝑇𝑖(𝑦, 𝑧)

4

𝑖=1

 (4-12)

Now, with the equation described above, we can calculate the temperature of each

resistor or neuron by integrating their respective locations into the equation. This results

in the static model of the reservoir, which is represented as follows

[

∆𝑇1
∆𝑇2
∆𝑇3
∆𝑇4

] = 𝑊𝑟𝑒𝑠
(4×4)

.

[

𝐽1
2

𝐽2
2

𝐽3
2

𝐽4
2]

 (4-13)

where ∆𝑻 is the vector describing the neuron responses, 𝑱.𝟐is the input signal, and 𝑊𝑟𝑒𝑠 is

the weight matrix of the neural network. Considering 𝑟𝑖 ≪ 𝑅𝑖𝑗 where 𝑖 ≠ 𝑗, this weight

matrix is given as

72

𝑊𝑟𝑒𝑠 = [

𝑊11 𝑊12 𝑊13 𝑊14
𝑊21 𝑊22 𝑊23 𝑊24
𝑊31 𝑊32 𝑊33 𝑊34
𝑊41 𝑊42 𝑊43 𝑊44

]

=
𝜌𝑒

𝜅𝑃𝐿𝐴

[

 𝑟1

2Ln (
𝑡𝑃𝐿𝐴
𝑟1
) 𝑟2

2 Ln (
𝑡𝑃𝐿𝐴
𝑅12

) 𝑟3
2 Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑅13
2) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅14
2)

𝑟1
2 Ln (

𝑡𝑃𝐿𝐴
𝑅12

) 𝑟2
2Ln (

𝑡𝑃𝐿𝐴
𝑟2
) 𝑟3

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅23
2) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅24
2)

𝑟1
2 Ln (

𝑡𝑃𝐿𝐴
𝑅13

) 𝑟2
2 Ln (

𝑡𝑃𝐿𝐴
𝑅23

) 𝑟3
2 Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

2 𝑟3𝑅𝑑
) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

𝑅24𝑅𝑑
′)

𝑟1
2 Ln (

𝑡𝑃𝐿𝐴
𝑅14

) 𝑟2
2 Ln (

𝑡𝑃𝐿𝐴
𝑅24

) 𝑟3
2 Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑅34𝑅𝑑
′) 𝑟4

2 Ln (
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

2 𝑟4𝑅𝑑
)
]

(4-14)

where 𝑅12 = 𝑅34, 𝑅𝑑 = 𝑅13 = 𝑅24, 𝑅14 = 𝑅23 = √𝑅12
2 + 𝑅𝑑

2, and 𝑅𝑑
′ = √𝑅34

2 + 4𝑅𝑑
2. The

unit of the weight matrix is
Ω.𝐾

𝑊
𝑚4. The weight matrix is contingent upon the spacing

between the resistors/neurons, represented as 𝑅𝑖𝑗. As the distance between neurons

increases, their connection becomes more tenuous; conversely, bringing them closer

results in stronger connectivity. Several material characteristics can influence the weight

matrix, such as the thermal conductivity of the PLA—the material encasing the

resistors/neurons. Another parameter is the resistivity of the resistors/neurons. A

temperature-independent resistivity yields a linear reservoir matrix, while nonlinear

temperature-dependent resistivity gives rise to nonlinear interactions among the

resistors/neurons. A pivotal aspect in reservoir design entails incorporating diverse weight

elements, which can be actualized by introducing distinct resistors/neurons with varying

radii. Therefore, by manipulating the dimensions of the resistor, it is possible to create

complex temperature distributions that can be utilized as part of a larger system.

To further validate our analytical model, we compared it to the simulation results

for the temperature distribution within the reservoir, as outlined in Equation (4-12). This

comparison, illustrated in Figure 4.9, revealed a consistent temperature distribution in both

the y and z directions, further affirming our analytical model's reliability. Subsequently, the

weight elements were graphed in Figure 4.10 to observe the impact of spacing between

neurons, denoted as 𝑅𝑖𝑗. As anticipated, the coupling between the neurons depends on

their separation. It is noteworthy that the similarity in spacings contributes to a reduction

in network complexity, owing to the presence of analogous weight elements.

73

(a)

(b)

(c)

Figure 4.9. Comparison among analytic model and simulations for the reservoir
when (a) resistor 1 is self-heated, (b) resistor 3 is self-heated, and (c)
resistors 1 and 4 are self-heated.

74

Figure 4.10. Normalized weight elements of the reservoir with four
resistors/neurons with different spacings.

4.2.3. Dynamic Response of a Reservoir

It is essential to understand the transient behaviour of the processor because it

provides insight into how the system will respond to changes in operating conditions, such

as sampling frequency and response time to changes in the injected current (density), and

can help to predict the system's performance under various scenarios. In this context,

transient heat transfer analysis is used to model, simulate, and analyze the dynamic

behaviour of the reservoir of neurons with thermal coupling and to optimize their

performance. Most of the heat transients follow the response of the 1st order system

through the equation below [101]

𝑇(𝑡) = 𝑇𝑓 + (𝑇𝑖 − 𝑇𝑓)𝑒
−𝑡 𝜏⁄ (4-15)

where, 𝑇𝑖 and 𝑇𝑓 are the initial and final temperatures of the medium, and t represents the

continuous time. The thermal time constant, 𝜏, appears in these equations as a parameter

75

that affects the rate of heat transfer and the rate of temperature change in the system. The

time constant depends on the thermal properties and geometry of the materials involved

in the heat transfer process.

When the transient response of resistors was studied both in experiments and

simulations, two different types of transients were observed. Self-heating resistors exhibit

a transient response characterized by two thermal time constants; the internal time

constant (𝜏𝑖𝑛𝑡) and the substrate thermal time constant (𝜏𝑡ℎ). The internal time constant

represents the duration it takes for the heat generated inside the resistors to be conducted

away from its center. The substrate time constant signifies how fast the heat is conducted

away from the resistors’ contact surface deep into the substrate. The thermal time

constants rely on the physical properties of the thermistor and substrate, including their

dimensions, thermal mass, and thermal conductivity. In a reservoir with effectively large

dimensions for the substrate compared to the resistors, the substrate time constant would

dominate the response time and determine the transient behaviour of the neurons and

their design. Therefore, understanding the factors that affect 𝜏𝑡ℎ are important.

Figure 4.11. Dynamic behaviour of self-heated resistors and the neighbouring
ones without self-heating.

Here, let us delve into the analytical understanding of 𝜏𝑡ℎ, which plays a crucial

role in the transient behavior of the neurons. The regular PLA is assumed as a medium

that conducts the generated heat until it reaches equilibrium. By introducing thermal

diffusivity as 𝛼 =
𝜅𝑃𝐿𝐴

𝜌𝑚𝐶𝑝
, and assuming the temperature does not change significantly in all

directions except for 𝑟, Eq. (4-4) reduces to:

76

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇(𝑟, 𝑡)

𝜕𝑟
) =

1

𝛼

𝜕𝑇(𝑟, 𝑡)

𝜕𝑡
 (4-16)

To solve this equation, we assume that the temperature can be expressed as a

product of radial and temporal components as 𝑇(𝑟, 𝑡) = 𝑅(𝑟) . 𝑇(𝑡). By substituting this

assumed form into the heat conduction equation in (4-16), we get:

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝑟
𝑑2𝑅(𝑟)
𝑑𝑟2

𝑟
 𝑇(𝑡) =

𝑅(𝑟)

𝛼

𝑑𝑇(𝑡)

𝑑𝑡
 (4-17)

Dividing both sides by 𝑅(𝑟) . 𝑇(𝑡), we have:

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝑟
𝑑2𝑅(𝑟)
𝑑𝑟2

𝑟 𝑅(𝑟)
 =

𝑑𝑇(𝑡)
𝑑𝑡

𝛼 𝑇(𝑡)
 (4-18)

Since the left side depends only on 𝑟 and the right side depends only on 𝑡, both

sides must be equal to a constant. Let us denote this constant as −𝜆2 and summarize the

equations as:

𝑑𝑅(𝑟)
𝑑𝑟

+ 𝑟
𝑑2𝑅(𝑟)
𝑑𝑟2

𝑟 𝑅(𝑟)
 = −𝜆2

𝑟2 𝑅(𝑟)
→ 𝑟2

𝑑2𝑅(𝑟)

𝑑𝑟2
+ 𝑟

𝑑𝑅(𝑟)

𝑑𝑟
 + 𝜆2𝑟2𝑅(𝑟) = 0

𝑑𝑇(𝑡)
𝑑𝑡

𝛼 𝑇(𝑡)
= −𝜆2 →

𝑑𝑇(𝑡)

𝑑𝑡
+ 𝛼𝜆2𝑇(𝑡) = 0

(4-19)

We now have two separate ordinary differential equations. The first equation is

Bessel's equation, which can be solved using Bessel functions. The second equation is a

simple first-order linear ordinary differential equation. The solution considering the initial

boundary condition of 𝑇(0) = 0 is given by

𝑇(𝑡) = 𝐶1(1 − 𝑒
−𝛼𝜆2𝑡) (4-20)

where 𝐶1 is an amplitude coefficient. The thermal time constant from equation Eq. (4-20)

can be derived as 𝜏 = 1
𝛼𝜆2⁄ .

77

For the first equation, the solution depends on the specific boundary conditions or

geometry of the problem. For the problem under study, where the heat is generated in the

center of the cylinder and conducts away through the regular PLA, the solution would take

the form of

𝑅(𝑟) = 𝐵1𝐵𝑒𝑠𝑠𝑒𝑙𝐽(0, 𝜆𝑟) (4-21)

where 𝐵𝑒𝑠𝑠𝑒𝑙𝐽(0, 𝜆𝑟) is the Bessel function of the first kind of order zero. This function

appears as a solution to the cylindrical heat conduction equations.

To determine the value of 𝜆, we need to apply appropriate boundary conditions

and solve the problem numerically. A numerical value is found from [101],

𝜏𝑡ℎ =
𝐿𝑐ℎ

2

2.42𝛼
 (4-22)

where 𝐿𝑐ℎ is the characteristic length of the material surrounding the resistors/neurons. In

this case, it is the distance from the resistor to the PLA surface with constant temperature.

For the resistors in the top layer, the characteristic length is equal to 𝑡𝑃𝐿𝐴. This yields 𝜏ℎ

value as 225 seconds for a PLA with a thickness of 10mm encapsulating the resistors.

Consequently, a reservoir comprising multiple resistors/neurons will exhibit dynamics with

a time constant of approximately 225 seconds, with slight variations based on which

resistors/neurons are self-heating. Resistors in the first layer generally possess smaller

thermal time constants than those in the PLA's depth. This distinction arises from the fact

that the characteristic length for resistors/neurons in the depth of the PLA is modified to

𝐿𝑐ℎ = √(𝑡𝑃𝐿𝐴 − 𝑅𝑑)
2 + (𝑡𝑃𝐿𝐴 + 𝑅𝑑)

2 = √𝑡𝑃𝐿𝐴
2 + 𝑅𝑑

2 rather than simply 𝑡𝑃𝐿𝐴. Look at the

symmetric model in Figure 4.7 for this distance explanation.

Reservoir dynamics when all resistors are self-heated is illustrated in Figure 4.12.

To analyze transient responses, simulation data are processed using MATLAB®,

employing a combination of two exponentials. This computational approach facilitates the

automated calculation of thermal time constants. It is worth noting that resistors within the

same layer tend to exhibit similar time constants, but there can be noticeable differences

in dynamics between neurons located in distinct layers. Moreover, a deviation from the

calculated values for the thermal time constants was observed. This deviation may be

78

attributed to the fact that, although the dynamics of an individual neuron or resistor are

defined by Eq. (4-15), the entire reservoir, comprising multiple interconnected elements,

exhibits a unique and distinct dynamical behavior. When all the resistors are self-heated,

the dynamic response of the reservoir is described by (assuming a linear medium):

∆𝑇(𝑡) =∑𝑇𝑓,𝑗 + (𝑇𝑖,𝑗 − 𝑇𝑓,𝑗)𝑒
−𝑡 𝜏𝑗⁄

4

𝑗=1

 (4-23)

This equation accounts for the combined thermal effects across the different layers

and their respective time constants 𝜏𝑗. Therefore, the dynamic temperature of the resistors

evolves from an initial condition of ∆𝑇𝑖(𝑦, 𝑧, 0), as expressed as:

[

∆𝑇1
∆𝑇2
∆𝑇3
∆𝑇4

] =

[

∆𝑇𝑖,1𝑒

−𝑡 𝜏1⁄

∆𝑇𝑖,2𝑒
−𝑡 𝜏2⁄

∆𝑇𝑖,3𝑒
−𝑡 𝜏3⁄

∆𝑇𝑖,4𝑒
−𝑡 𝜏4⁄]

+𝑊𝑟𝑒𝑠(𝑡)
(4×4).

[

𝐽1
2

𝐽2
2

𝐽3
2

𝐽4
2]

 (4-24)

Figure 4.12. Dynamics of the reservoir under different conditions when all
resistors are self-heated together.

79

where

𝑊𝑟𝑒𝑠(𝑡)

=

[

𝑊11(1 − 𝑒

−𝑡 𝜏1⁄) 𝑊12(1 − 𝑒
−𝑡 𝜏2⁄) 𝑊13(1 − 𝑒

−𝑡 𝜏3⁄) 𝑊14(1 − 𝑒
−𝑡 𝜏4⁄)

𝑊21(1 − 𝑒
−𝑡 𝜏1⁄) 𝑊22(1 − 𝑒

−𝑡 𝜏2⁄) 𝑊23(1 − 𝑒
−𝑡 𝜏3⁄) 𝑊24(1 − 𝑒

−𝑡 𝜏4⁄)

𝑊31(1 − 𝑒
−𝑡 𝜏1⁄) 𝑊32(1 − 𝑒

−𝑡 𝜏2⁄) 𝑊33(1 − 𝑒
−𝑡 𝜏3⁄) 𝑊34(1 − 𝑒

−𝑡 𝜏4⁄)

𝑊41(1 − 𝑒
−𝑡 𝜏1⁄) 𝑊42(1 − 𝑒

−𝑡 𝜏2⁄) 𝑊43(1 − 𝑒
−𝑡 𝜏3⁄) 𝑊44(1 − 𝑒

−𝑡 𝜏4⁄)]

(4-25)

Each 𝜏𝑗 has a unique value for different neurons. Importantly, as time (𝑡)

approaches infinity, 𝑊𝑟𝑒𝑠(𝑡) converges to the static weight matrix derived in the previous

section, mathematically represented as:

𝐿𝑖𝑚
𝑡→∞

𝑊𝑟𝑒𝑠(𝑡) = 𝑊𝑟𝑒𝑠 (4-26)

Despite the reservoir's continuous operation, it usually interacts with a digital

system whose output is sampled at specific time intervals, ∆𝑡. This leads to the weight

matrix expressed as:

𝑊𝑟𝑒𝑠,∆𝑡

=

[

𝑊11(1 − 𝑒

−∆𝑡 𝜏1⁄) 𝑊12(1 − 𝑒
−∆𝑡 𝜏2⁄) 𝑊13(1 − 𝑒

−∆𝑡 𝜏3⁄) 𝑊14(1 − 𝑒
−∆𝑡 𝜏4⁄)

𝑊21(1 − 𝑒
−∆𝑡 𝜏1⁄) 𝑊22(1 − 𝑒

−∆𝑡 𝜏2⁄) 𝑊23(1 − 𝑒
−∆𝑡 𝜏3⁄) 𝑊24(1 − 𝑒

−∆𝑡 𝜏4⁄)

𝑊31(1 − 𝑒
−∆𝑡 𝜏1⁄) 𝑊32(1 − 𝑒

−∆𝑡 𝜏2⁄) 𝑊33(1 − 𝑒
−∆𝑡 𝜏3⁄) 𝑊34(1 − 𝑒

−∆𝑡 𝜏4⁄)

𝑊41(1 − 𝑒
−∆𝑡 𝜏1⁄) 𝑊42(1 − 𝑒

−∆𝑡 𝜏2⁄) 𝑊43(1 − 𝑒
−∆𝑡 𝜏3⁄) 𝑊44(1 − 𝑒

−∆𝑡 𝜏4⁄)]

(4-27)

After each timestep ∆𝑡. When ∆𝑡 is significantly smaller than the thermal time

constants (∆𝑡 ≪ 𝜏𝑗), the weight matrix approaches zero, indicating that the input at the

current timestep has little influence on the thermal response at the current timestep.

Consequently, the reservoir retains the previous response, albeit slightly attenuated, and

inter-neuron interactions become negligible. Conversely, when ∆𝑡 is much larger than the

thermal time constants (∆𝑡 ≫ 𝜏𝑖𝑗), the input at the current timestep has a substantial

impact on the system's response. Interactions among neurons reach their maximum

potential value. Thus, for a physical reservoir, the choice of timesteps at which it is

sampled, or the sampling frequency (𝑓𝑠 =
1

∆𝑡
), plays a crucial role in determining its

80

performance. The experimental validation of these principles was conducted in the

previous chapter along with the next chapter.

Figure 4.13 provides insight into the relationship between thermal time constants

and the thickness of the PLA medium for resistors 1 and 3, considering the scenario where

all resistors within the reservoir undergo self-heating. The graph illustrates how varying

the thickness of the medium influences the system's thermal behaviour. Decreasing the

thickness of the PLA medium reduces the thermal time constants, resulting in faster

dynamics within the reservoir. Conversely, increasing the medium's thickness

corresponds to a slower response. Therefore, the thickness of the medium plays a

significant role in shaping the overall temporal characteristics of the reservoir's thermal

responses.

Figure 4.13. Thermal time constants of the resistors 1 and 3 vs. different PLA
thicknesses.

4.2.4. Connecting the Analytical Model to Reality

In practice, the resistors we are dealing with are 3D printed and possess

rectangular cross-sections, deviating from the cylindrical cross-section assumed in the

developed model. To bridge this gap between theoretical assumptions and real-world

conditions, a slight adjustment is made to the existing model to accommodate the actual

dimensions of the resistors. Specifically, let's consider a scenario where all resistors share

the same dimensions: thicknesses of 2𝑟0, and widths,
𝜋𝑟0

2
. By setting 𝑟1,2 = √2 𝑟0 and 𝑟3,4 =

 𝑟0, the previously established model can be effectively extended to predict the

81

temperature distribution within the reservoir accurately. This modification is depicted in

Figure 4.14, illustrating how the adjustment aligns with the rectangular cross-sections of

the resistors. Incorporating these adjusted dimensions, simulation results for the

rectangular cross-section resistors are presented in Figure 4.15. utilizing the realistic

dimensions detailed in Table 4-3. It is notable that the derived model effectively captures

and predicts the temperature distribution surrounding the resistors, demonstrating a high

degree of agreement between the model's predictions and the simulation outcomes. The

successful alignment between the derived model and the simulation results bolsters

confidence in its applicability for analyzing and understanding temperature distribution in

the reservoir.

Figure 4.14. Model justifications for the real dimensions: a transisition from
resistors/neurons with cylindrical cross-section to rectangular one.

Table 4-3. Real dimensions used for the COMSOL MultiPhysics Simulations.

Parameter Definition Value

2𝑟0 Thickness of resistors/neurons 0.5 [mm]

𝑡𝑃𝐿𝐴 Thickness of the 3D-printed piece 5 [mm]

𝑊𝑃𝐿𝐴 Width of the 3D-printed piece 50 [mm]

𝐿𝑃𝐿𝐴 Length of the 3D-printed piece and the resistors/neurons 30 [mm]

𝑅12 & 𝑅34 Spacing between two neighbouring resistors/neurons in one layer 7 [mm]

𝑅13 & 𝑅24 Spacing between two neighbouring resistors/neurons in one layer
from another

0.25 [mm]

82

(a) (b)

Figure 4.15. Temperature distribution around resistors 1 and 3 when (a) resistor 1
is self-heated and (b) resistor 3 is self-heated for rectangular cross-
sections within real dimensions.

To delve further into the behavior of these 3D-printed reservoirs, we explore

several key aspects: nonlinear temperature-dependent electrical resistivity, the

temperature dependence of thermal conductivity, direction dependence of thermal

conductivity, and developing a general reservoir model. These elements will provide a

comprehensive understanding of how these resistors interact with temperature variations

and how these properties can be incorporated into a broader reservoir modelling

framework.

Nonlinear Temperature-Dependent Electrical Resistivity: The electrical

conductivity of certain materials exhibits a temperature dependence. Conductive PLA

demonstrates a nonlinear relationship between its electrical resistivity and temperature.

Despite this characteristic, the presented analytical model does not account for this

nonlinear temperature dependence. Nevertheless, incorporating this aspect into the

model would introduce implications for various system components. An immediate

consequence would be the alteration of the heat generation rate equation within the

resistor, where the expression −𝜅𝑃𝐿𝐴
𝑑𝑇𝑖(𝑟)

𝑑𝑟
= 𝑞𝑖 is impacted. Specifically, the heat

generation term 𝑞𝑖 = 𝜌(𝑇𝑖) 𝐽𝑖
2 𝑟𝑖 needs to be adjusted to consider the temperature-

dependent resistivity, 𝜌(𝑇𝑖). This modification in the heat generation rate would

reverberate throughout the model, directly influencing the temperature distribution

equations for the resistors/neurons. Furthermore, the weight matrix described in Equation

(4-14) would also be affected due to the changes in the temperature distribution equations.

83

While incorporating such complexity into the model could potentially capture more

nuanced behaviours, it's worth acknowledging the challenges that arise. The introduction

of nonlinear temperature-dependent resistivity would render the resulting equations

challenging to solve. Developing closed-form solutions may become significantly more

complex, if possible at all, potentially negating the benefits of adding this level of detail.

Temperature Dependence of Thermal Conductivity: The thermal conductivity of a

material, in general, varies with temperature. However, this variation is mild for many

materials in the range of practical interest and can be disregarded. In such cases, we can

use an average value for the thermal conductivity and treat it as a constant. This is also

common practice for other temperature-dependent properties such as density and specific

heat. Sufficiently accurate results can be obtained using a constant thermal conductivity

value at an average temperature.

Direction Dependence of Thermal Conductivity: The analytical modelling discussed

earlier assumes isotropic engineering materials, where properties remain consistent in all

directions. This simplification holds true for many practical scenarios, obviating the need

to account for directional property variations. However, it is crucial to acknowledge that

certain materials, particularly anisotropic ones like fibrous or composite materials, exhibit

distinct properties along different axes. Notably, the layer-by-layer 3D printing process

introduces the potential for directional discrepancies in thermal conductivity. In this

context, the thermal conductivity along the x and y directions might diverge from the z

direction. This disparity arises due to factors such as the type and percentage of carbon

filler utilized, printing conditions, and the orientation of printed layers. Therefore, while the

analytical model discussed earlier does not consider the direction dependence of thermal

conductivity, it is paramount to recognize that in practical applications involving anisotropic

materials and layer-by-layer 3D printing, variations in thermal conductivity along different

axes may impact the system's thermal behaviour.

Develop a General Reservoir Model: A systematic approach involving superposition can

be employed to create a comprehensive model accommodating N resistors/neurons within

a reservoir. This method enables the derivation of a generalized model capable of

addressing diverse configurations and scenarios. Specifically, this model considers a

range of neurons within the reservoir, each contributing to the overall temperature

distribution. For resistors/neurons situated in the top layer, the temperature distribution

84

can be expressed as follows: A general model for N number of resistors/neurons in a

reservoir can be derived by applying superposition on all the N neurons knowing that the

temperature distribution for the resistors/neurons in the top layer will be (for 𝑟𝑖 <

√(𝑦 − 𝑅𝑙,𝑖)
2
+ 𝑧2 < 𝑡𝑃𝐿𝐴):

∆𝑇𝑖(𝑦𝑖, 𝑧) =
𝜌 𝐽𝑖

2 𝑟𝑖
2

𝑘𝑃𝐿𝐴
𝐿𝑛

(

𝑡𝑃𝐿𝐴

√(𝑦 − 𝑅𝑙,𝑖)
2
+ 𝑧2)

 (4-28)

In this equation, 𝑅𝑙,𝑖 signifies the lateral distance of the neuron from the coordinate

system's origin, which is the neuron located at the center. The provided equation accounts

for the temperature distribution as a result of the neuron 𝑖 within the top layer of the PLA.

For resistors/neurons located deeper within the PLA, at a distance 𝑅𝑑,𝑖 from the top

surface, the temperature distribution is determined by (for 𝑟𝑖 < √(𝑦 − 𝑅𝑙,𝑖)
2
+ (𝑧 − 𝑅𝑑,𝑖)

2
<

𝑡𝑃𝐿𝐴):

∆𝑇𝑖(𝑦, 𝑧)

=
𝜌 𝐽𝑖

2 𝑟𝑖
2

𝑘𝑃𝐿𝐴
𝐿𝑛

(

𝑡𝑃𝐿𝐴

2 − 𝑅𝑑,𝑖
2

√((𝑦 − 𝑅𝑙,𝑖)
2
+ (𝑧 − 𝑅𝑑,𝑖)

2
) ((𝑦 − 𝑅𝑙,𝑖)

2
+ (𝑧 + 𝑅𝑑,𝑖)

2
)
)

(4-29)

These definitions are depicted in Figure 4.16 for a sample reservoir configuration.

Their spatial arrangement and thermal interactions then determine the temperature

distribution. By establishing this comprehensive framework, practitioners gain a powerful

tool to analyze and predict temperature dynamics within a reservoir housing multiple

resistors/neurons with different spacings and number of layers. This model's adaptability

accommodates different configurations and assists in optimizing system performance for

a wide array of real-world applications.

85

Figure 4.16. A sample reservoir with a general, random configuration defining the
neurons in the top layer and in-depth of PLA.

4.3. Computer-Aided Design and Model Verification

In this section, we present a critical component of our research where we bridge

the theoretical aspects of our developed model with practical insights through computer-

aided design (CAD) and verification. The implementation of a MATLAB® script serves as

a valuable tool to not only create physical reservoirs but also to validate our theoretical

framework. A simplified flowchart outlining the pivotal steps involved in this process is

depicted in Figure 4.17. The MATLAB® script is designed to receive critical parameters

that are fundamental to creating and developing physical reservoirs. These parameters

are: the number of neurons, specific neuron locations (if provided; otherwise, it generates

a reservoir with a random spatial distribution), neuron dimensions, and PLA dimensions.

Using these inputs, the script configures the reservoir. Leveraging the insights from our

general model, the script employs superposition to create isothermal contours. These

contours serve as powerful visualizations, providing an intuitive representation of the

temperature distribution within the reservoir. Furthermore, the script goes beyond

visualization; it generates both static and dynamic weight matrices based on a specified

input signal. The generation of static and dynamic weight matrices enables an assessment

of how the reservoir processes information over time. This dynamic evaluation allows us

to gain insights into how the system's dynamics evolve in response to varying inputs,

providing an understanding of its computational behavior. To validate our theoretical

model and ensure its practical utility, the MATLAB® script conducts a critical verification

step. It compares the temperature across each resistor or neuron within the physical

reservoir to the corresponding temperatures obtained from COMSOL Multiphysics

86

simulations. This verification process plays a pivotal role in solidifying the theoretical

foundation of our model and confirming its real-world applicability. Figure 4.18 provides a

visual illustration of the verification step, offering a clear depiction of how the temperature

verification is conducted and emphasizing the alignment between our analytical model

and the empirical data obtained through simulations.

Figure 4.17. Flowchart of the processes involved with creating a physical
reservoir. It outlines the script initialization, parameter handling,
visualization, and dynamic evaluation with a time series input.

In the subsequent phase, we introduced a time series as an input to the model and

simulations, unlocking the ability to observe the dynamic response of the reservoir system

in real time. Within the MATLAB® script, the temperature distribution across the entire

reservoir was calculated and monitored the temperature of individual neurons at one-

second intervals. This approach allowed us to closely track and analyze the behavior of

the system over time. As illustrated in Figure 4.19, a high level of agreement between the

simulation results was observed and the predictions generated by our theoretical model

when subjected to the provided time series input. This agreement highlights the model's

ability to faithfully capture the intricate dynamics of the reservoir computing system in real-

87

time scenarios. It validates not only the static aspects of our model but also its dynamic

predictive power, further affirming its practical applicability and relevance in real-world RC

applications.

Figure 4.18. (a) Step-by-step outcomes of the MATLAB® script following the
developed general model in the previous section. The reservoir is
configured first, isothermal contours are visualized, both static and
dynamic weight matrices are derived based on a specified input, and
a comparison between the temperature across each resistor/neuron
within the physical reservoir to the corresponding temperatures
obtained from COMSOL Multiphysics simulations are made.

Using the previously outlined reservoir, we successfully addressed a nonlinear

problem with memory constraints. Figure 4.20 illustrates the input signal introduced into

the reservoir alongside NARMA1 designated as the output for prediction by the reservoir.

This comprehensive performance assessment encompasses both the reservoir

constructed within the MATLAB® environment, utilizing the developed analytical model

and the reservoir simulated using COMSOL Multiphysics to solve the nonlinear task.

Remarkably, the performance of both reservoirs demonstrates a substantial level of

comparability.

88

Figure 4.19. Comparison of the developed general model and the simulations from
COMSOL Multiphysics in response to a time series signal in the input.

Figure 4.20. Performance of the reservoir built in MATLAB® environment using the
developed analytical model with the reservoir simulated in COMSOL
Multiphysics in solving a nonlinear problem.

89

4.4. Summary

In this chapter, we elaborated on the idea of 3D-printed processors as a solution

to address the requirements for computing units in processing applications. Energy

transfer could be a valuable source of information transfer in hardware reservoirs and

identified two types of energy that can be harnessed to this end in the 3D printed

processors working based on the self-heating as a source of memory and nonlinearity

within the reservoir. We conducted analytical studies on the reservoir's thermal energy

transfer and weights matrix to explore this concept further.

This chapter ends with laying a synergy between physical RC and software RC. In

the realm of physical RC, the selection of appropriate physical components or materials

is a crucial step. These components could encompass a range of possibilities, including

mechanical, optical, or electronic elements. The choice of components is not arbitrary; it

depends on the desired dynamics, compatibility with the overall system design, and how

the chosen materials respond to different stimuli. These choices determine the nonlinearity

the physical RC exploits and dictate how the reservoir's behaviour changes over time.

Different systems with exponentially decaying behaviour, various forms of damping, and

even chaotic systems can offer the desired dynamic properties that show fading memory.

For instance, mechanical oscillators exhibit exponential decay, where the energy or

amplitude of oscillations gradually decreases over time due to damping mechanisms.

Another example can be found in resistor-capacitor circuits, where discharging a capacitor

through a resistor results in an exponential decrease in voltage across the capacitor over

time (~𝑒−𝑡/𝜏), where 𝜏 is the time constant of the system.

Moving on, we discuss how energy is exchanged when we consider the interaction

between physical components within the reservoir. These mechanisms can be of various

types—electrical, mechanical, thermal, or hybrid. The selection of these coupling

mechanisms profoundly impacts how energy flows, signals propagate, and computations

are carried out within the physical RC system. Balancing the connectivity patterns and

choosing appropriate coupling mechanisms is pivotal for achieving the desired

computational performance. The physical layout and geometry of the reservoir also play

an equally crucial role. This includes how the components are arranged and distributed

spatially and the system's overall structure. These factors determine how strongly

components are interconnected and the system's overall complexity. These aspects

90

collectively determine a key parameter called the "spectral radius" of the physical

reservoir, which characterizes the system's dynamic behaviour.

Physical RC systems require suitable input signals to operate and generate

desired outputs in the context of input signals. These input signals can take various forms,

such as electrical, optical, thermal, etc., depending on the nature of the physical

components being used. The generated output signals correspond to changes in physical

quantities like displacements, currents, or light intensity. Ensuring that input and output

signals are designed efficiently and controllably is critical for achieving the desired

computational performance. The concept of input scaling in physical RC corresponds to

adjusting the amplitude of input signals to guide the reservoir to its intended operating

state. This ensures that the input values fall within a suitable range that the reservoir can

process effectively. It's analogous to tuning the gain or amplification of input signals in

electronic systems.

The analogy between physical and software RC parameters, which is summarized

in Table 4-4, provides a bridge that enables researchers and engineers to translate their

understanding and strategies from one domain to the other, fostering a richer experience

and more effective design strategies. This synergetic relationship amplifies our

comprehension and design capabilities, paving the way for more informed and efficient

development across both fields. As we transition to the next chapter, we delve into the

practical realization of these concepts, showcasing the proposed 3D printed computing

platform's ability to process real-time data and its remarkable classification capabilities

with real sensory information. Through tangible demonstrations and benchmark

assessments, we underscore the platform's potential to perform intricate computations,

ultimately ushering in a new era of versatile and powerful computing solutions.

Table 4-4. Synergy between Software and Physical RC.

Parameters Software RC Physical RC

Activation function 𝑓(.) Material/device nonlinearity e.g., 𝜌(𝑇)

Leaking rate 𝛼
𝑒−1/𝑓𝑠𝜏

for an exponentially decaying system

Input scaling 𝑎 Gain/scaling of the input signal

Spectral radius 𝜌 Coupling strength

Neuron connections Information flow Coupling/energy flow

Reservoir size # neurons # devices/electrodes

91

Chapter 5.

The Proposed 3D-Printed Computing Platform

This chapter discusses the ability of the proposed 3D printed computing platform

to process real-time data and its classification capability for real sensory data. We will

demonstrate that a simple structure printed with regular 3D printers can be driven and

used with common measurement tools to perform sophisticated contextual computations,

including standard benchmarks and a demonstration of user activity detection from sensor

data. This chapter partly contains my article published in Advanced Intelligent Systems

entitled “A 3D-Printed Computer” [102]. Correlations between memory capacity,

nonlinearity, and sampling rates with this computer were examined. Despite its simplicity,

the computer can tackle complex standard tests and is used to solve the practical problem

of user activity detection. Adding to the computational capability of the demonstrated

computer is simply achievable by printing additional computational nodes. At a material

cost of less than $1, this processor can be used next to existing intelligent systems for

contextual signal processing. It can also be embedded within the structure of 3D-printed

intelligent systems, enabling the realization of cognizant 3D-printed systems.

5.1. The 3D-Printed Reservoir

One of the challenges in implementing physical RC is the choice of a physical

system to be used as the reservoir. In the previous chapter, we showed that 3D-printed

resistors could be a suitable candidate for developing RC computers based on ESN

topology. The nonlinearity and time dependence in resistors' responses make them ideal

for use as elements in a reservoir. In addition, the coupling between the elements can be

achieved through electrical or thermal coupling, as introduced earlier. Here, the proposed

3D-printed reservoir using 3D-printing technology is described. Several resistors were

printed close to each other such that the heat generated by one would reach and affect its

nearby neurons. Thus, the reservoir structure can be interpreted as a three-layer reservoir

in which the weighted connections between the neurons are realized through thermal and

random electrical couplings. Moreover, the neurons on each layer are electrically coupled

to each other. Three layers of resistors printed of Carbon-PLA composite were stacked on

each other with a gap in between, filled with pure PLA as the insulating material, as shown

92

in Figure 5.1. The lateral dimensions of the 3D printed reservoir are 3.9 cm × 3.5 cm, while

its height depends on the thickness of the resistors (i.e., the number of printed layers).

The width of the resistors is 1.6mm, and the gap between the resistors (layers) is set to

0.2mm. Three samples with similar lateral dimensions that differed only in the thickness

of the conductive layers (resistors) were 3D printed. The thicknesses of the resistors in

Samples 1 to 3 were 2 mm, 1 mm and 0.5 mm, respectively.

Figure 5.1. Components of the 3D printed computer. (a) The proposed reservoir
structure; (b) The 3D-printed reservoir with electrical connections for
applying or reading electrical signals; (c) the top view of the computer
with three conductive layers printed between the insulating material
next to a Canadian ₵10 coin.

93

These resistors' nonlinear, time-dependent responses and their coupling satisfy

the requirements for building an ESN. Contact pads were used to apply the input signals

or to read the data from specific nodes. The input layer is driven by an analogue shift

register which shifts and scales the input signal, 𝑢(𝑛), multiple times (i.e., past three

samples 𝑢(𝑛 − 1), 𝑢(𝑛 − 2), and 𝑢(𝑛 − 3)) and maps the generated signals to the

reservoir. The output layer is trained by running a linear regression on all the outputs from

the reservoir in MATLAB®.

These structures were initially studied to evaluate the nonlinearities and time

dependencies of the responses of neurons at different locations and the couplings

between them. Figure 5.2 shows test results from these samples on individual neurons'

responses to electrical excitations. The hysteresis in the resistor's response, shown in

Figure 5.2 (b), represents both memory and nonlinearity. Hysteresis refers to a

phenomenon in which the output of a system depends not only on its current input but

also on its past inputs. Hysteresis in a system or device can then be considered a form of

memory. Together, these two characteristics can make it difficult to predict the behaviour

of a system. It was also observed that the neurons' responses might be affected by

injecting a control current, IC, into different neurons in the structure (Figure 5.2 (c)). This

effect may be used to bias different neurons post-fabrication to make them respond

differently from other similarly fabricated devices, adding another parameter that can be

used to enhance the reservoir complexity.

Figure 5.2 (e) demonstrates a resistor's measured electrical and thermal

responses on the top layer of the 3D printed processor over time due to a step current

input. After the current injection, the voltage across the resistor and its temperature slowly

rise until thermal equilibrium with the environment is reached. In this case, the resistor

exhibited a thermal time constant (TTC) of ~62s. TTC will differ for different neurons in the

structure and depend on the thermal boundary conditions, such as being embedded within

the structure or being exposed to the environment on one or more surfaces. This property,

too, adds a degree of randomness and helps with using the 3D-printed structure as a

contextual processor.

94

Figure 5.2. Electrical response of printed structures. (a) Schematic of the
conductive paths in the fabricated reservoir and its close-up view; (b)
The nonlinear I-V response of the reservoir obtained by sweeping a
current through two one of the resistors in steps with a time delay of
10s or 50s between the steps; (c) The effect of control current, I_C, on
the response of a resistor; (d) Comparison of the I-V responses of
three reservoir samples with similar lateral dimensions but different
thicknesses for the conductive resistors (e) Temperature and the
voltage across the two electrodes over time in response to an I=8mA
step current input.

95

In physical reservoir computing, reservoir richness refers to the ability of a physical

system to generate a high-dimensional and nonlinear response to a given input signal,

which is a key property required for performing complex computations such as pattern

recognition, time-series prediction, and control. It is a critical factor in the design and

optimization of physical reservoir computing systems, as it determines the computational

power and accuracy of the system. The physical system's complexity and nonlinearity

determine a physical reservoir's richness. It can be characterized by various measures,

such as the system's dimensionality (the combination of the number of neurons and their

interconnections), the system's sensitivity to initial conditions, and the system's memory

capacity, a measure of its ability to store and retrieve information.

One aspect of richness is the nonlinear or linear response of individual neurons in

the reservoir. Neurons in a reservoir can exhibit various nonlinear and linear response

characteristics. The nonlinear and linear responses of neurons in a reservoir can interact

with each other in complex ways, leading to the emergence of even more complex

behaviours. For example, the nonlinear responses of some neurons in a reservoir can

modulate the linear responses of other neurons, resulting in dynamic and adaptive

processing capabilities. The nonlinear and linear interactions of neurons in a reservoir can

also create feedback loops that allow the reservoir to store and manipulate information

over time. Thus, richness in reservoir computing encompasses a wide range of complex

and diverse nonlinear and linear responses of neurons, as well as their interactions, that

enable the reservoir to perform complex computations. Figure 5.3 demonstrates some

characterization results for Sample 3. The neurons in the printed reservoir exhibited linear

and nonlinear responses to different ranges of input signals, as expected.

A single printed computer provides numerous possibilities to arrange input and

output layers by applying or reading signals to different contacts. See Table 5-1 for the

arrangement used in this study. Figure 5.4 illustrates thermal images of the reservoir at

different instances of time after the application of an input to the reservoir, showing the

evolution of reservoir characteristics through heating and its subsequent effect on the IV

characteristics of the neurons.

96

Figure 5.3. Electrical and thermal response of coupled components. (a) IV
characteristics of various pairs of electrodes; (b) The electrode labels.

Figure 5.4. Thermal images of the reservoir at different computation times.

Table 5-1. Arrangement of the electrodes in the reservoir and their functions.

Electrode # Status

2, 4, 7, 9, 12, 14 Output States (Wout)

3, 8, 11 GND

1, 6, 10, 13 Input States (Win)

5, 15 VC

Figure 5.5 illustrates how the reservoir computing (RC) approach uses the

reservoir outputs to distinguish between different events in a time-series signal. The

incoming signal is first fed into the reservoir, and time-shifted copies of the signal are

applied. The reservoir outputs, which represent the nonlinear and linear combinations of

the input signals, are then combined using weights that were previously calculated during

the training stage. This combination process results in a filtered and transformed version

of the original signal, which can be used to distinguish between different events.

97

Figure 5.5. A sample time-series signal (top), its time-shifted copies applied to
the reservoir input by the analogue shift-register (middle), and the
reservoir output (bottom).

The reservoir’s output neurons are a mapping of the reservoir states to the desired

output of the system. How the output neurons respond to different initial input signals

provides insight into the complexity of the reservoir. For example, if the reservoir is linear,

then the output neurons may respond in a highly correlated way to an input. In contrast,

in a nonlinear complex reservoir, the output neurons may react more independently. This

property depends on the range of the input signals (i.e., operating point) and the number

of nonlinear neurons within the reservoir. Four identical and two different control signals

(as control signals) were introduced to the reservoir without any time shifts. The output

neurons were read when the reservoir was initiated at a specific input value and increased

with an increment of 1V. Figure 5.6 illustrates the different reservoir states that each of the

output neurons (shown in coloured markers) were initiated and evolved. All the output

neurons respond in a highly nonlinear way to certain initial input signals, especially when

they are self-heated enough (i.e., ≥ 3𝑉). Sometimes, the states were distributed and the

distribution did not change but a shift happened (b). Sometimes, the states were initially

close to each other but departed and diverged in the next step (c). Sometimes, two furthest

states can get closer and two far states can get away from each other (c)-(e). These

suggest that the reservoir is highly complex and nonlinear and can respond complexly or

unpredictably. However, another important factor in the complexity of a system is the time-

dependence.

98

Figure 5.6. Initiation and evolution of the reservoir when stimulated with different
input signals. Responses of the output neurons are illustrated to
capture the evolution. (a) The 3D-printed reservoir with specified
input, output and ground electrodes. (b) A shift in the responses
happened, (c) departing and diverging happened, (c)-(e) two furthest
states got closer and two far states got away from each other.

99

5.2. Performance Evaluation based on Standard Tasks

According to what we concluded from the previous section, we generated a sample

dataset which includes 360 samples in the range of [3 10] V. Two hundred fifty samples

from this data (~70%) were randomly selected and used to train the output layer weights.

The remainder of the data set was used to validate the computer performance. Figure 5.7

shows the response and the analysis of the response of the 3D printed processor to

NARMA tasks of varying order (𝑛 = 1…10). This simple processor with only 18 nonlinear

neurons performs well for 𝑛 ≤ 7. The performance of the processor can be improved

through several simple approaches, including adding computational neurons, varying the

control signal, or time-multiplexing the tasks between parallel computers.

Figure 5.7. Assessment of the computer performance to solve computational
tasks with varying orders of nonlinearity and memory. (a) The
reservoir response to predicting a time-series input produced by
varying orders of NARMA task with fS=fS3.

It is well-known that different dynamical systems have different characteristic

timescales (and/or frequencies) that govern their behaviour. Therefore, to excite different

dynamics in a given system, it is necessary to apply input signals at appropriate sampling

rates (and/or frequencies) that are tailored to the specific system. For instance, in chaotic

systems, minor variations in the input signal or sampling rate can result in vastly different

100

trajectories and outcomes, highlighting the sensitivity of these systems to their initial

conditions. On the other hand, in more regular systems, such as periodic or quasi-periodic

oscillators, the input signal can be designed to match the system's natural frequency,

allowing for optimal energy transfer and efficient excitation of the desired dynamics.

Therefore, the importance of selecting the appropriate input scaling and sampling rate

cannot be overstated when dealing with dynamic systems. It is crucial to carefully tailor

these parameters to the unique characteristics of each system to drive it to the desired

dynamic area.

We first study this phenomenon using a NARMA task of varying order and then

move to a more straightforward memory capacity task. The NARMA test helps study the

compromise between the input signal's sampling rate and retainable memory within the

system [103]. The system state approaches thermal equilibrium at a slow sampling rate

(i.e., low data rate). Although the reservoir exhibits the most nonlinear response in this

case, and hence the ability to solve complex problems, it may have lost information about

distant past events. On the other hand, a fast sampling rate (i.e., high data rate) reduces

the reservoir nonlinearity needed for contextual computing but helps the system retain

more information about past events. Figure 5.8 (a) and (b) demonstrate the performance

of the reservoir in solving NARMA tasks of varying orders with different sampling rates.

As can be seen, both fast and slow sampling rates result in more significant errors.

Therefore, proper selection of sampling frequency is essential in achieving optimal

performance from the reservoir in terms of accuracy.

Memory Capacity (MC) is a key concept in evaluating the performance of a

contextual processor when dealing with temporal data. It is defined as the ability of a

processor to retrieve past information from the reservoir using the linear combinations of

its internal states. The higher the MC, the better the processor's ability to recall past

events, making it useful for a wide range of applications that require processing time-

series data. Indeed, a high memory capacity means that the system can retain information

about past events for extended periods and use this information to solve complex

problems. This can be seen as a measure of how well the system can capture and model

the underlying dynamics of the data it is processing (i.e., higher expressivity). Thus, a

system with increased memory capacity is considered more expressive, as it can solve

more complex problems and capture more intricate patterns in the data.

101

Figure 5.8. Comparison of the reservoir performance when solving NARMA tasks
of different orders with different sampling frequencies.

On the other hand, memory capacity can be seen as a measure of how well the

system can handle large amounts of temporal data (i.e., scalability). For instance, a

system with high memory capacity can take longer data sequences, making it more

scalable. However, some other design parameters, such as the size and connectivity of

the reservoir, the type of nonlinearity, and the input/output mapping, can also play a

significant role in determining the processors’s expressivity and scalability.

 Figure 5.9 demonstrates how the memory capacity of the reservoir is affected by

the sampling frequency when solving a NARMA3 task. As can be seen, a slow sampling

rate results in the computer operating with the least error (because of the high nonlinearity)

but also a small MC (~2) because the system forgets about past events. On the other

hand, a high sampling rate results in poor accuracy, but the system remembers many past

events (~12). A balance may be struck for this reservoir by choosing a sampling frequency

around 6/TTC to achieve good computation accuracy with a high MC (~6). Thus, a slow

sampling rate results in the system operating with increased nonlinearity, leading to higher

computational accuracy. However, this comes at the cost of a smaller memory capacity,

limiting the types of problems that the system can solve.

On the other hand, a high sampling rate can help the system remember many past

events, enabling it to solve a broader range of problems. However, this also results in poor

accuracy due to reduced nonlinearity. Again, in the context of neural networks,

102

expressivity refers to the ability of a network to represent complex functions, while

scalability refers to the power of a network to handle large datasets or increase complexity

efficiently. The sampling rate affects both properties in the context of a physical contextual

processor. A slow sampling rate can improve the system's nonlinearity, allowing it to

represent more complex functions. This, in turn, leads to higher expressivity. However, it

may limit the system's ability to handle larger datasets, reducing scalability. Conversely, a

high sampling rate can help the system remember past events, increasing its ability to

handle larger datasets and potentially increasing scalability. However, this may come at

the cost of reduced nonlinearity, limiting its expressivity.

Figure 5.9. Demonstration of the dependence of reservoir memory capacity,
RMSE, and R2 to sampling frequency when solving a NARMA5 task.
The graph at the top shows a typical step response of one of the
reservoir's nonlinear neurons, which is used to estimate TTC and set
sampling frequencies.

103

Therefore, the choice of sampling rate is a crucial factor in determining the

expressivity and scalability of a contextual processor. We can establish a trade-off

between the two properties to achieve optimal performance depending on the problem.

The behaviour of the reservoir can be influenced by adjusting the sampling rate.

Consequently, we can alter the system's ability to solve certain problems or retain past

information. Therefore, the sampling rate can be an added degree of freedom to the

system.

In general, the optimal performance of physical processors depends on the

combination of network complexity, sampling rate, and nonlinearity. The processors need

to be designed to attain a certain level of performance through their physical design and

optimizing dimensions, number of neurons, types of materials, and other parameters that

affect their nonlinearity and time responses.

To justify our conclusions about the memory integrated within the reservoir and to

prove its presence in the reservoir, we compared the performance of the 3D-printed

processor with a feedforward neural network (FNN) constructed in MATLAB®. The FNN,

although consisting of multiple layers and neurons, cannot store and retain temporal

information, which limits its performance in certain tasks. In contrast, the 3D-printed

processor integrates memory within the reservoir, allowing it to consider past inputs when

making predictions, resulting in superior performance. The results in Figure 5.10 showed

that the 3D-printed processor outperformed the FNN, consisting of 3 hidden layers with

18 neurons. Each neuron in the FNN used a sigmoid activation function. It was found that

increasing the number of neurons in the FNN improved its performance to some extent,

but it still could not match the performance of the 3D-printed processor.

This discrepancy in performance between the 3D-printed processor and the FNN

can be attributed to the added degree of freedom that memory integration provides. The

memory integrated within the reservoir adds a layer of complexity to the system, allowing

it to process and retain temporal information. The added complexity and degree of

freedom enable the 3D-printed processor to perform better than the FNN in specific tasks,

demonstrating the importance of memory and temporal processing in computational

systems. The comparison between the 3D-printed processor and the FNN can also be

related to expressivity and scalability. Due to its ability to integrate memory and process

temporal information, the 3D-printed processor can be considered more expressive and

104

scalable than the FNN, which lacks these capabilities. The added degree of freedom

provided by memory integration expands the range of tasks the 3D-printed processor can

perform, making it a more versatile and powerful computational tool.

Figure 5.10. The 3D-printed processor’s performance (when driven into different
dynamical regions by adjusting the sampling rate) compared to a
feedforward neural network in solving computational tasks with
varying orders of nonlinearity and memory.

5.3. Near-Sensor Data Processing

Activity detection is an important application of wearable systems, which can be

used to monitor human conditions and health. In recent years, with the development of

mobile Internet-of-Things (IoT) platforms, wearable devices have become more advanced

and sophisticated, with various sensors and onboard computational capabilities that

communicate with remote servers. One of the most common features of many wearable

devices is their ability to detect the type of human activity. This ability is useful for various

applications, including sports training, healthcare, and security monitoring.

To develop statistical models for activity detection, data preparation and feature

extraction are crucial steps. The quality of the data and the features extracted from it will

105

significantly impact the accuracy and performance of the statistical models. In this case

study, we used data from a SensorTile kit from STMicroelectronics, which includes a pair

of microcontrollers, a 3-axis accelerometer, a 3-axis gyroscope, a 3-axis magnetometer,

as well as pressure, temperature, and humidity sensors [104]. The accelerometer signals

were used to identify the user activity between walking, stationary or on an elevator. The

data were collected by attaching a SensorTile kit to a user's wrist and storing the data

during different activities.

The inertial signals from all three axes (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) needed to be included in

developing the statistical model. However, it was noted that there is likely a strong

correlation between the three features. Therefore, one may make the acceleration data

independent of the module orientation by calculating an equivalent signal that retains the

important information. This equivalent acceleration was calculated using the formula

𝑎𝑒𝑞 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 (5-1)

This signal was then used to extract features provided to the 3D-printed computer

for activity detection. The next step was to define time windows during which we would try

to identify the activity. After some trials, a measurement window of 5 seconds was selected

in this case. This window should be long enough to let us calculate meaningful features

and short enough to allow for the timely detection of activity changes.

During each measurement window, the mean, standard deviation (STD), root

mean squared (RMS), and number of peaks of 𝑎𝑒𝑞 were calculated as features. Since the

range of feature values can vary widely, normalizing the features can help prioritize the

features by a human or event identification by a machine. These features were then

transformed into analog voltage signals and fed into the 3D-printed computer to indicate

the user's activity data in each time frame. Figure 5.11 shows a sample of raw data

collected from the accelerometers (𝑎𝑒𝑞) as well as features extracted from 5-second

timeframes for different activities.

The processor was trained on 196 instances of labelled user activity data. The

output layer weights were determined through linear regression, and the processor's

performance was evaluated using 60 cases of labelled activities that were not included in

106

the training dataset. We measured the processor’s accuracy in detecting patterns in the

data and compared the results with those of typical machine learning algorithms. Figure

5.12 depicts the entire procedure. A truth table shows the performance of the 3D-printed

computer in detecting patterns in the data after training. The processor performs the data

processing with 93.3% accuracy, 92.5%, 92.8%, and 100% sensitivity in determining

whether the user is in an elevator, stationary, or walking. Notice that the sampling period,

in this case, is 5 seconds, corresponding to a sampling frequency of about 12/TTC. This

level of performance for such a limited set of input features is on par with the performance

of typical machine learning algorithms on the same data.

Figure 5.11. Sample raw sensor data and normalized extracted features for
different activities.

5.4. Power and Speed Considerations

We used common 3D printer for printing the processor with promising computing

capability. The average power consumption for our processor in its current version is

approximately 125mW, while the thermal time constant is ~62s. This power is required for

heating each neuron to around 15 degrees above room temperature. Our current

prototype consumes a high amount of power and has a lower speed in processing data.

However, other 3D printing technologies, such as micro stereolithography (micro-SLA),

can achieve minimum feature sizes in the range of tens to hundreds of micrometres. These

107

technologies utilize a light source (such as a UV LED) to cure and solidify photopolymer

resin layer by layer into the desired 3D shape. The high precision of these technologies is

due to the fine control of the light source and the ability to produce fine layers of resin. The

minimum layer thickness in micro-SLA 3D printing technology can range from a few

micrometres to tens of micrometres, depending on the specific machine and process used.

Some micro-SLA systems can produce features with layer thicknesses as low as 1-2

micrometres. These capabilities are promising in printing processors with lower power

consumption and higher speeds.

Figure 5.12. Activities detection procedure by the 3D-printed processor. The data
were collected using a 3-axis accelerometer on a wearable device
worn on a user's wrist during different activities. A truth table shows
the performance of the computer in recognizing user activity from
sensor data.

The power required for each neuron is given as

𝑃𝐸 = 𝑅𝐼
2 = 𝜌𝑒(𝑇) (

𝐼

𝐴𝑥
)
2

(𝑑𝑡ℎ .𝑊. 𝐿) (5-2)

where 𝑑𝑡ℎ, 𝑊, and 𝐿 are the thickness, width and length of the resistors, respectively.

Therefore, the power consumption would be reduced by three orders of magnitude to

125μW if all the dimensions were reduced by a factor of 10.

108

On the other hand, the thermal time constant is related to the thermal conductivity,

specific heat capacity, and density of the printing material, as well as the thickness of the

entire structure, 𝑡𝑃𝐿𝐴.

𝜏 =
𝜌𝑚𝐶𝑝

𝜅𝑃𝐿𝐴
𝑡𝑃𝐿𝐴

2 (5-3)

Therefore, the thermal time constant reduces by two orders of magnitude to 620ms

if all the dimensions are reduced by 10. The resulting processor would be easily and

feasibly able to process 10 samples/s while consuming an average power of 125μW. The

power consumed by a single neuron is 7μW/neuron (i.e., 0.4μW/weight).

Transitioning from a 3D-printed reservoir to silicon offers a remarkable leap, due

to smaller feature sizes and better thermal properties reducing thermal time constant by

at least 5 orders of magnitude, resulting in a maximum timescale of ~0.6ms and a

minimum processing speed of 10000 samples/s. An average power consumption of

7nW/neuron (i.e., 0.4nW/weight) is achievable by dimension reduction from mm range to

tens of μm range using readily available microfabrication technologies, which can be

translated to 0.4pJ/weight for silicon reservoirs. This shift underscores the pivotal

advantages of silicon reservoirs compared to a standard feedforward neural network

running on the most efficient supercomputer on the Green500 list consuming 15pJ/weight

[105]. All the above is summarized in Table 5-2.

Table 5-2. Power consumption and speed justifications with change in material
and the 3D printing technology.

 Resistor
dimensions

Timescale Sampling rate Power consumption

3D-Printed
Reservoir

0.5mm x
1.6mm x

4.6mm

60s 0.1
samples/second

7mW/neuron 0.4mW/parameter

50μm x
160μm x

460μm

0.6s

(100X)

10
samples/second

(100X)

7μW/neuron

(1000X)

< 0.4μW/parameter

(1000X)

Silicon-
based
Reservoir

5μm x 16μm
x 46μm

600μs

(100,000X)

10,000
samples/second

(100,000X)

< 7nW/neuron

(1,000,000X) *

< 0.4nW/parameter

(100,000X) *

* Ignoring the thermal dissipation to the environment.

109

5.5. Comparison between the RC and Neural Networks

We developed the processor to predict time series data and tasks involving

sequential data. We will conduct a benchmark analysis to compare the proposed 3D

printed processor’s ability to process data with state-of-the-art software neural networks,

including feedforward neural networks (FNNs) and recurrent neural networks (RNNs). The

performance of the processor will be evaluated using predictive accuracy, memory

capacity, and number of parameters (trainable weights). Predictive accuracy is the most

commonly used metric to evaluate the performance of NNs on time series prediction tasks.

We will use RMSE and R2 to assess and compare the accuracy of the proposed 3D-printed

processor to the FNNs and RNNs. We will measure the ability of the network to accurately

predict future values in the NARMA task based on past values. As mentioned earlier in

this thesis, MC measures the network's ability to store and retrieve information from

previous inputs, which is important for tasks such as sequence generation. We will train

the network on a sequence of inputs and evaluate its ability to generate the next element

based on the previous elements. In a machine learning model, "parameters" refers to the

values the model must learn to make accurate predictions on new data. In a neural

network, the parameters typically include the weights and biases associated with the

neurons in the network. These parameters are adjusted during the training process to

minimize the error between the predicted outputs and the true outputs. The number of

parameters in a machine learning model is important because it affects its capacity and

ability to learn complex patterns. Models with too few parameters may underfit the data

and fail to capture important patterns. At the same time, models with too many parameters

may overfit the data and memorize the noise in the training set. Therefore, choosing an

appropriate number of parameters for a given problem is important. In addition, the

number of parameters can also affect the computational resources required to train and

use the model. Models with a larger number of trainable parameters may require more

time and memory to train and may be slower to make predictions at inference time.

Therefore, balancing the model's capacity with its efficiency and practicality in a given

application is essential.

A feedforward network was created as a benchmark analysis to compare the

performance of the 3D-printed processor against a more traditional machine learning

approach. The feedforward neural network (FNN) is a type of artificial neural network that

110

is widely used in machine learning applications. In MATLAB, the FNN was created using

the feedforwardnet function, which constructs a multilayer perceptron (MLP) architecture.

The feedforwardnet function allows the user to specify the number of hidden layers,

neurons in each layer, the activation functions used in each layer, and other parameters.

The FNN consisted of an input layer with four neurons, one hidden layer of size 24, and

an output layer, as depicted in Figure 5.13.

Figure 5.13. The feedforward neural network created to compare with the
proposed processor.

Figure 5.14. The layered recurrent neural network created to compare with the
proposed processor.

A recurrent neural network (RNN) was created for performance comparison. The

RNN was designed with a fully connected network structure. This memory retention

capability made the RNN suitable for processing sequential data, such as time series data,

where the current output depends on both the current and previous inputs. The RNN

consisted of an input layer with four neurons, one hidden layer of size 24, and an output

layer, as depicted in Figure 5.14. A layered RNN, or layrecnet, was implemented in

MATLAB®. This architecture includes multiple recurrent layers stacked on each other,

each taking the previous layer's output as input. In MATLAB®, the layrecnet can be easily

implemented using the layrecnet function, which inputs the number of layers, the number

of neurons in each layer, and the delay for each layer.

111

In comparing the performance of the proposed 3D printed processor with that of

RNNs and FNNs in modelling nonlinear and dynamic systems, as summarized in Table

5-3, it was found that RNNs and the proposed processor outperformed FNNs. Figure 5.15

illustrates the time-series processing performance of the proposed processor, FNNs, and

RNNs. Because of having a larger number of parameters than FNNs, RNNs could model

the system's temporal dynamics and capture long-term dependencies, resulting in higher

prediction accuracy. Regarding the number of parameters, it is worth noting that the

proposed 3D-printed processor has a significantly smaller number of parameters than both

FNNs and RNNs. FNNs typically have fewer parameters compared to RNNs, but their

performance suffers when modelling temporal dynamics. In contrast, RNNs have a much

larger number of parameters. They can capture the temporal dynamics in the data but

may suffer from overfitting if the data size is insufficient. The proposed processor offers a

middle ground, with a smaller number of parameters than RNNs, while still being able to

model temporal dynamics. The competitive performance of the proposed processor with

a smaller number of parameters suggests that it may be an efficient and effective solution

for tasks requiring the modelling of nonlinear and dynamic systems, especially when the

data size is limited. Therefore, the proposed physical processors could be a promising

alternative to traditional FNNs and RNNs in specific applications.

Table 5-3. Performance comparison among the proposed 3D-printed processor
and software neural networks

Model Name Software FNN Software RNN 3D-Printed
Processor

Pre-processing Normalization Normalization Gain/scaling

Architectural details One input layer

One hidden layer

One output layer

One input layer

One hidden layer

One output layer

One input layer

One hidden layers

One output layer

Number of neurons 4+24+1= 29 4+24+1 = 29 4+3*6+6 = 28

Nonlinear function Sigmoid Sigmoid Temperature-
dependent resistivity
of the material

Accuracy

RMSE (%) and R2 (%)

7.9% and 79.8%

3.4% and 96.7%

4.32% and 95.2%

Number of trainable
parameters

145 317 7

Memory capacity ~ 3 ~ 6 ~ 6

Hardware CPU CPU Hardware

112

(a)

Feedforward Neural
Network

(b)

Recurrent Neural
Network

(c)

The 3D-Printed
Processor

Figure 5.15. Performance comparison of the (a) FNN, (b) RNN, and (c) the
proposed 3D printed processor in modelling the NARMA3.

5.6. Summary

In conclusion, the proposed 3D-printed computing platforms using reservoir

computing (RC) principles offer a new and innovative approach to sensory data

processing. This approach uses conductive filaments, such as carbon-filled PLA, which

exhibit interesting time-dependent, nonlinear responses due to self-heating. These

responses make 3D-printed resistors suitable for developing RC computers based on ESN

topology. By using 3D-printed resistors as nonlinear, coupled physical elements, we have

demonstrated the feasibility of creating context from incoming time-series data.

One of the significant advantages of the proposed 3D-printed computing platforms

is that they can be designed and fabricated in any facility with access to regular 3D

printers. This eliminates the need for sophisticated measurement systems or highly

specialized manufacturing processes, making the technology accessible to a broader

range of researchers and practitioners. Additionally, the computational capabilities of the

printed computer can be increased by modulating control signals, increasing the number

of printed neurons, and adjusting the lateral and vertical distances between the neurons.

113

Another key benefit of the proposed 3D-printed computing platforms is the

potential for fully 3D-printed intelligent systems that combine 3D-printed sensors with a

3D-printed contextual computer. This would allow for the instant extraction of context from

environmental changes, enabling new possibilities for developing intelligent systems.

Furthermore, the principles of this approach can be applied to other manufacturing

techniques, such as using coupled temperature-sensitive resistors on silicon chips to

process data from micromachined sensors, creating context without digital computations.

The proposed 3D-printed computing platforms have the potential to revolutionize

the field of data processing by providing a cost-effective and accessible solution for the

development of intelligent systems. This approach can open up new opportunities for

researchers and practitioners in the field and pave the way for innovations in the future.

114

Chapter 6.

Conclusions and Future Work

The proposed 3D-printed computing platform can be useful in many near-sensor

applications. These processors can process sensor data in real-time, allowing for real-

time monitoring and analysis of various metrics such as movement and temperature. This

attribute can enable more advanced applications such as predictive maintenance, quality

control, and safety monitoring. One can exploit these processors to drive advanced user

interfaces, enabling more immersive and interactive user experiences. If printed and

developed in microscales, they will consume less power than traditional processors.

Consequently, this allows sensing devices to be powered by small batteries, making them

more portable.

The advantages and disadvantages of the proposed computing platform are

compared to the existing technologies and summarized in Table 6-1. A CPU, GPU, or

FPGA cost can vary widely depending on several factors. CPUs tend to be the most

expensive type of hardware, followed by GPUs and FPGAs. However, the cost is not the

only consideration when selecting a platform, as other factors such as performance,

capabilities, compatibility, and ease of use can also be important. Neuromorphic chips

mimic the electrical properties and dynamics of biological neurons and synapses, allowing

for low power consumption and high energy efficiency. They can perform multiple

computations simultaneously, greatly accelerating the processing of large data sets.

Neuromorphic chips can also tolerate high noise levels and errors, making them suitable

for harsh environments. However, neuromorphic chips are relatively expensive to

produce, which can limit their adoption in some applications. They offer limited scalability

due to a fixed number of neurons and synapses and limit the system's scalability. It also

suffers from limited programmability, which can limit the system's flexibility.

Physical computing platforms, on the other hand, offer high flexibility. Physical

systems developed for reservoir computing can be chosen from a wide range of systems

that exhibit nonlinear dynamic behaviour, allowing for increased flexibility regarding the

system's properties. These physical systems can be scaled up to larger systems, allowing

to processing of larger data sets. These platforms are typically less expensive than

115

neuromorphic chips. However, the dynamics of these physical systems can be hard to

control and may not be as robust to noise and errors as neuromorphic chips. Additionally,

these physical systems may be less energy efficient than neuromorphic chips.

The proposed computing platform utilizing 3D-printed processors presents a

promising solution for various processing applications. It offers several advantages over

traditional manufacturing methods. These include extremely low cost, compatibility with

wearable sensors, and the ability to encompass a passive nonlinear dynamical system.

Additionally, 3D-printed processors are easily reproducible, allowing for quick and efficient

scaling of the platform. Furthermore, the platform is capable of real-time data processing

and has the potential for low power consumption and energy efficiency if printed in

microscales.

Table 6-1. Advantages and disadvantages of the proposed computing platform
compared to the existing solutions

Technology Advantages Disadvantages

CPUs

Widely available and easy to program,

High performance for general-purpose
computing tasks

High power consumption,

Less efficient for parallelizable tasks

GPUs

High parallel processing power,

Lower power consumption than CPUs for
specific tasks

More expensive than CPUs,

More challenging to program,

Microcontrollers
Low power consumption,

Low cost

Limited computing power and memory,

Limited scalability

ASICs
High performance and energy efficiency,

Low power consumption

High development cost,

Limited flexibility

FPGAs

High performance and energy efficiency,

Low power consumption,

High flexibility

High development cost,

Complex programming

Neuromorphic
Computing

High energy efficiency,

Low power consumption

High Cost,

Limited scalability,

Limited programming flexibility

Existing
Physical RC
Platforms

High performance and energy efficiency,

Low power consumption,

High flexibility

Limited scalability

Proposed
Computing
Platform

Extremely low cost,

Compatible with 3D-printed sensors,

It encompasses a passive nonlinear
dynamical system,

Easily reproducible,

Energy efficient (if developed in
microscales)

Possibility of deformation if large signals
are applied,

Limited control over the dynamics,

Limited flexibility and scalability

116

On the other hand, there are a few limitations to consider with the proposed

computing platform. One limitation is the current technology of 3D printing, as the

resolution and precision of 3D printed components may not be as high as those produced

through traditional manufacturing methods. Additionally, the platform may not be suitable

for certain high-performance applications that require very high clock speeds or large

amounts of memory. Lastly, the printed processors may deform due to high electrical

signals applied to them, which could lead to reduced performance and reliability. Limited

expressivity is another challenge that can be addressed to some extent by appropriately

selecting the rate at which the input signals are mapped to the physical reservoir within

the processors.

6.1. Future Directions

Physical RC is a relatively new field of research, and the future of this field is

difficult to predict. However, physical RC will likely continue to be an active area of

research as it has the potential to enable the development of more efficient, low-power

computing systems for various applications. Physical RC platforms have been applied

across multiple research projects and have demonstrated promising results in various

tasks, such as time-series prediction, chaotic time-series prediction, and image processing

[6], [106]–[108]. However, it is essential to note that these platforms are still in the research

and development phase and may not yet be ready for practical applications.

The applicability and feasibility of physical RC platforms depend on various factors,

such as the type of platform, the specific application, and the current state of technology.

For example, electronic RC platforms are generally easier to implement and control than

other physical platforms, such as optical and mechanical RC. However, their performance

may be limited by the current state of technology and the devices' quality. Additionally, the

devices' cost and the fabrication process's complexity also play a role in the feasibility of

these platforms. For example, the fabrication of micro- and nano-electromechanical

systems (MEMS and NEMS) is relatively complex and costly, which may limit their

scalability and commercial feasibility. Thus, more development and research are needed

before these platforms can be easily realized and applied in practical applications.

One potential direction for future research in this field is the development of

compatible physical processors with different sensor technologies for power-efficient real-

117

world applications. This will lead to designing and developing physical reservoir computing

platforms for near- or in-sensor computing applications. Researchers can push the

boundaries of these computing platforms by addressing the challenges and knowledge

gaps that still exist in near-sensor computing platforms. By addressing these challenges

and knowledge gaps, we can create more effective and efficient near-sensor computing

platforms for various applications. Through my Ph.D. research, I have contributed to this

field by developing a prototype of a near-sensor computing platform. However, there is

much work to make these systems more effective and efficient. Thus, future research may

focus on finding ways to make various sensors in each sensory node, such as

temperature, humidity, and gas sensors, not only sense the environment but also

collaborate to process the data in real time and produce context-aware information. This

research can potentially revolutionize neuromorphic computing by significantly

contributing to knowledge generation and utilization. This research can also be applied to

other areas where energy efficiency and real-time processing are critical such as robotics,

and control systems. Additionally, there is a need to focus on the design of scalable

physical reservoir computing platforms for large-scale applications.

Specific Research Gap: In many physical reservoirs that have been developed

thus far, pre-processing is often required. This pre-processing is often necessary due to

adjustments needed for solving specific problems using physical RC, which may differ

from software-based approaches. One common requirement is to slow down the

introduction of events to the physical RC system, considering the slower timescales

associated with physical reservoirs and/or the external implications of the measurement

setups. For instance, in the context of photonics-based RC, pre-processing steps may be

employed to address the limitations or characteristics of the optical system [109]. Optical

systems often have inherent time delays due to various factors such as signal propagation

through optical fibers or the response time of optical elements. To account for these

delays, pre-processing techniques like introducing artificial time delays or adjusting the

timing of events may be necessary. This ensures that the events align appropriately with

the dynamics of the physical reservoir. Additionally, optical signals may undergo various

forms of distortion or noise during propagation. Pre-processing steps can involve signal

conditioning techniques such as filtering, amplification, or equalization to enhance the

quality and fidelity of the input signals before they are fed into the physical reservoir. As

mentioned earlier, photonics RC often utilizes intensity or phase modulation schemes.

118

Pre-processing may involve choosing the appropriate modulation technique, optimizing

the modulation parameters, or designing specific modulation waveforms to ensure efficient

signal encoding and decoding within the physical reservoir. Last but not least, physical

reservoirs may require calibration and synchronization procedures to align the

components, optimize the system parameters, and mitigate any non-idealities. This may

involve adjusting the optical power levels, aligning optical elements, or compensating for

nonlinearities introduced by the physical system. Therefore, the specific requirements and

techniques may vary depending on the characteristics of the physical system, the targeted

application, and the desired performance of the physical reservoir. Pre-processing at the

current level of research and development on physical RCs, plays a crucial role in adapting

the input signals and the measurement setup to the specific characteristics and constraints

of physical reservoirs, enabling them to effectively solve a wide range of computational

tasks. The next research question can be: how can we eliminate the demand for pre-

processing in physical RCs?

Specific Applications: One potential direction for future research in this field is the

integration of the physical reservoir computing platforms in Internet of Things (IoT) devices

to promote sustainability in smart cities. Researchers can focus on developing and using

unconventional processors to perform in-memory computing and identify potential

applications in various smart city contexts, such as monitoring the environment and public

safety. Another area of further research could be developing intelligent systems to address

the existing challenges. One example is the detection of specific gas concentrations in a

gas mixture, which is of great importance in industrial, residential, or agricultural

applications. Existing systems, often called electronic noses, utilize several gas sensors

and sophisticated algorithms to overcome cross-sensitivity issues, making such systems

prohibitively expensive, power-hungry, and large for wide-scale applications. Researchers

can develop a cognizant gas sensor to address these concerns and apply their findings to

other sensing applications with similar challenges, such as e-tongue or biomedical

sensing. Researchers can also focus on addressing a challenge existing gas sensing

systems face: the need for continuous communication of the gas content for processing

purposes. While it is crucial to quickly and accurately detect gas concentrations, constantly

transmitting this information is not always necessary. The system can reduce power

consumption and improve efficiency by processing data locally and only communicating

the necessary information.

119

On-Site Decision Making: Continuous data communication for processing

purposes may not be necessary for all applications. The system can reduce power

consumption and improve efficiency by processing data locally and only communicating

the necessary information. This goal can be achieved using physical reservoir computing

systems that perform real-time data processing and on-site decision-making without

constant communication with a central processing unit. All the potential future directions

are summarized in a mind map shown in Figure 6.1.

Figure 6.1. Future directions.

In conclusion, physical RC is a relatively new field of research with great potential

to revolutionize processing systems by enabling the development of more efficient and

low-power computing systems for various applications. Despite the promising results in

multiple tasks, physical RC platforms are still in the research and development phase and

may not yet be ready for practical applications. However, continued research and

development in this field will pave the way for creating more efficient and powerful

processing systems for various applications. Additionally, fostering collaborations

between researchers from different areas, such as physics, computer science, electrical

engineering, and materials science, will accelerate the development and application of

physical RC systems.

120

References

[1] Y. Yang, “Multi-tier computing networks for intelligent IoT,” Nat. Electron., vol. 2,
no. 1, pp. 4–5, 2019.

[2] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella, “Energy conservation
in wireless sensor networks: A survey,” Ad Hoc Networks, vol. 7, no. 3, pp. 537–
568, 2009.

[3] F. Zhou and Y. Chai, “Near-sensor and in-sensor computing,” Nat. Electron., vol. 3,
no. 11, pp. 664–671, 2020, doi: 10.1038/s41928-020-00501-9.

[4] Z. Konkoli, “On developing theory of reservoir computing for sensing applications:
the state weaving environment echo tracker (SWEET) algorithm,” Int. J. Parallel,
Emergent Distrib. Syst., vol. 33, no. 2, pp. 121–143, 2018, doi:
10.1080/17445760.2016.1241880.

[5] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir computing trends,” KI -
Künstliche Intelligenz, vol. 26, no. 4, pp. 365–371, 2012.

[6] Z. Tong, “Reservoir computing with untrained convolutional neural networks for
image recognition,” in 24th International Conference on Pattern Recognition
(ICPR), 2018, pp. 1289–1294.

[7] G. Holzmann, “Reservoir computing: A powerful black-box framework for nonlinear
audio processing,” in Proceedings of the 12th International Conference on Digital
Audio Effects, DAFx 2009, 2009, pp. 90–97.

[8] M. Santhosh, “Current advances and approaches in wind speed and wind power
forecasting for improved renewable energy integration : A review,” vol. 2, no. 6, pp.
e121781-20, 2020, doi: 10.1002/eng2.12178.

[9] Q. M. Saleh, “Design of a neuromemristive echo state network architecture,”
Rochester Institute of Technology, 2015.

[10] P. Antonik, A. Smerieri, F. Duport, M. Haelterman, and S. Massar, “FPGA
implementation of reservoir computing with online learning,” in Belgian-Dutch
Conference on Machine Learning, 2015, [Online]. Available:
http://homepage.tudelft.nl/19j49/benelearn/papers/Paper_Antonik.pdf.

[11] H. O. Sillin et al., “A theoretical and experimental study of neuromorphic atomic
switch networks for reservoir computing,” Nanotechnology, vol. 24, no. 38, p.
384004, 2013.

[12] B. Barazani, G. Dion, J. F. Morissette, L. Beaudoin, and J. Sylvestre,
“Microfabricated neuroaccelerometer: integrating sensing and reservoir computing
in MEMS,” J. Microelectromechanical Syst., vol. 29, no. 3, pp. 338–347, 2020.

121

[13] T. T. Rogers and J. L. McClelland, “Parallel distributed processing at 25: Further
explorations in the microstructure of cognition,” Cogn. Sci., vol. 38, no. 6, pp. 1024–
1077, Aug. 2014, doi: https://doi.org/10.1111/cogs.12148.

[14] M. Bonfim, R. Roque, E. Coutinho, K. Dias, and S. Fernandes, “Identifying
performance bottlenecks in software data planes for cloud-based NFV services,” in
IEEE/IFIP Network Operations and Management Symposium: Cognitive
Management in a Cyber World, NOMS 2018, 2018, pp. 1–7, doi:
10.1109/NOMS.2018.8406161.

[15] J. Von Neumann, First draft of a report on the EDVAC. Moore School of Electrical
Engineering, University of Pennsylvania, 1945.

[16] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and B. Kay,
“Opportunities for neuromorphic computing algorithms and applications,” Nat.
Comput. Sci., vol. 2, no. 1, pp. 10–19, 2022, doi: 10.1038/s43588-021-00184-y.

[17] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip learning,”
IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[18] P. A. Merolla et al., “Network and interface,” Sciencemag.Org, vol. 345, no. 7812,
pp. 668–673, 2014.

[19] H. P. Graf and L. D. Jackel, “Analog electronic neural network circuits,” IEEE
Circuits Devices Mag., vol. 5, no. 4, pp. 44–49, 1989, doi: 10.1109/101.29902.

[20] H. C. Card, “Analog VLSI Neural Learning Circuits — A Tutorial BT - VLSI for
Neural Networks and Artificial Intelligence,” J. G. Delgado-Frias and W. R. Moore,
Eds. Boston, MA: Springer US, 1994, pp. 1–23.

[21] A. Rodan and P. Tiňo, “Minimum complexity echo state network,” IEEE Trans.
Neural Networks, vol. 22, no. 1, pp. 131–144, 2011.

[22] M. Verleysen, “Advances in computational intelligence and learning,” in 15th
European Symposium on Artificial Neural Networks ; ESANN 2007, 2007, no. April,
pp. 25–27.

[23] G. Tanaka et al., “Recent advances in physical reservoir computing: A review,”
Neural Networks, vol. 115, pp. 100–123, 2019.

[24] J. C. Coulombe, M. C. A. York, and J. Sylvestre, “Computing with networks of
nonlinear mechanical oscillators,” PLoS One, vol. 12, no. 6, p. e0178663, 2017.

[25] G. Dion, S. Mejaouri, and J. Sylvestre, “Reservoir computing with a single delay-
coupled non-linear mechanical oscillator,” J. Appl. Phys., vol. 124, p. 152132, 2018.

[26] F. Caravelli and J. Carbajal, “Memristors for the curious outsiders,” Technologies,
vol. 6, no. 4, p. 118, 2018.

122

[27] M. J. Marinella and S. Agarwal, “Efficient reservoir computing with memristors,” Nat.
Electron., vol. 2, no. 10, pp. 437–438, 2019.

[28] J. Moon et al., “Temporal data classification and forecasting using a memristor-
based reservoir computing system,” Nat. Electron., vol. 2, no. 10, pp. 480–487,
2019.

[29] R. Midya et al., “Reservoir computing using diffusive memristors,” Adv. Intell. Syst.,
vol. 1, no. 7, p. 1900084, 2019.

[30] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir computing
using dynamic memristors for temporal information processing,” Nat. Commun.,
vol. 8, p. 2204, 2017.

[31] V. Athanasiou and Z. Konkoli, “On using reservoir computing for sensing
applications: exploring environment-sensitive memristor networks,” Int. J. Parallel,
Emergent Distrib. Syst., vol. 33, no. 4, pp. 367–386, 2018.

[32] M. S. Kulkarni, “Memristor-based reservoir computing,” Portland State University,
2012.

[33] K. Vandoorne et al., “Experimental demonstration of reservoir computing on a
silicon photonics chip,” Nat. Commun., vol. 5, p. 3541, 2014.

[34] F. Duport, A. Smerieri, A. Akrout, M. Haelterman, and S. Massar, “Fully analogue
photonic reservoir computer,” Sci. Rep., vol. 6, p. 22381, 2016.

[35] A. Lugnan et al., “Photonic neuromorphic information processing and reservoir
computing,” APL Photonics, vol. 5, p. 020901, 2020.

[36] L. Larger et al., “Photonic information processing beyond Turing: an optoelectronic
implementation of reservoir computing,” Opt. Express, vol. 20, no. 3, p. 3241, 2012.

[37] D. Brunner, M. C. Soriano, C. R. Mirasso, and I. Fischer, “Parallel photonic
information processing at gigabyte per second data rates using transient states,”
Nat. Commun., vol. 4, p. 1364, 2013.

[38] A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight:
An integrated network for scalable photonic spike processing,” J. Light. Technol.,
vol. 32, no. 21, pp. 4029–4041, 2014.

[39] Y. Paquot, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, “Reservoir
computing: a photonic neural network for information processing,” Nonlinear Opt.
Appl. IV, vol. 7728, p. 77280B, 2010.

[40] Q. Vinckier et al., “High-performance photonic reservoir computer based on a
coherently driven passive cavity,” Optica, vol. 2, no. 5, p. 438, 2015.

123

[41] O. R. Lykkebø, S. Harding, G. Tufte, and J. F. Miller, “Mecobo: A hardware and
software platform for in materio evolution,” Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8553 LNCS, pp.
267–279, 2014.

[42] M. Dale, S. Stepney, J. F. Miller, and M. Trefzer, “Reservoir computing in materio:
A computational framework for in materio computing,” in Proceedings of the
International Joint Conference on Neural Networks, 2017, pp. 2178–2185.

[43] M. N. DALE, “Reservoir computing in materio,” University of York, 2018.

[44] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Information processing via physical
soft body,” Sci. Rep., vol. 5, p. 10487, 2015.

[45] V. Privman, “Biomolecular computing: Learning through play,” Nat. Nanotechnol.,
vol. 5, no. 11, pp. 767–768, 2010.

[46] A. Adamatzky, Advances in physarum machines, 1st ed. Springer International
Publishing, 2016.

[47] Andrew Adamatzky, B. D. L. Asai, and Costello Tetsuya, Reaction-diffusion
computers, 1st ed. Elsevier Science, 2005.

[48] M. K. Massey et al., “Computing with carbon nanotubes: Optimization of threshold
logic gates using disordered nanotube/polymer composites,” J. Appl. Phys., vol.
117, no. 13, p. 134903, 2015.

[49] K. Nakajima, H. Hauser, T. Li, and R. Pfeifer, “Exploiting the dynamics of soft
materials for machine learning,” Soft Robot., vol. 5, no. 3, pp. 339–347, 2018.

[50] V. Shirmohammadli and B. Bahreyni, “Development of a thermo-computing
platform,” in 2021 21st International Conference on Solid-State Sensors, Actuators
and Microsystems (Transducers), 2021, pp. 1307–1310.

[51] M. Cucchi, S. Abreu, G. Ciccone, D. Brunner, and H. Kleemann, “Hands-on
reservoir computing: a tutorial for practical implementation,” Neuromorphic Comput.
Eng., vol. 2, no. 3, 2022, doi: 10.1088/2634-4386/ac7db7.

[52] P. Bhovad and S. Li, “Physical reservoir computing with origami and its application
to robotic crawling,” Sci. Rep., vol. 11, p. 13002, 2021, doi: 10.1038/s41598-021-
92257-1.

[53] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[54] M. L. Alomar Barceló, “Methodologies for hardware implementation of reservoir
computing systems,” Universitat de les Illes Balears, 2017.

124

[55] H. Jaeger, “The ‘ echo state ’ approach to analysing and training recurrent neural
networks,” Tech. Rep. GMD Rep. 148, Ger. Natl. Res. Cent. forInformation
Technol., no. 148, pp. 1–47, 2001.

[56] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent neural
networks-with an erratum note,” Bonn, Ger. Ger. Natl. Res. Cent. Inf. Technol. GMD
Tech. Rep., vol. 148, Jan. 2001.

[57] W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable
states: A new framework for neural computation based on perturbations,” Neural
Comput., vol. 14, no. 11, pp. 2531–2560, 2002.

[58] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press,
2014.

[59] A. Stockdill, “Neuromorphic computing with reservoir neural networks on
memristive hardware,” University of Canterbury, 2016.

[60] H. Jaeger, “Short term memory in echo state networks,” GMD Rep. 152, no. 152,
pp. 1–60, 2002.

[61] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization and
applications of echo state networks with leaky- integrator neurons,” Neural
Networks, vol. 20, no. 3, pp. 335–352, 2007.

[62] L. Appeltant et al., “Information processing using a single dynamical node as
complex system,” Nat. Commun., vol. 2, p. 468, 2011.

[63] D. Verstraeten, B. Schrauwen, and D. Stroobandt, “Reservoir computing with
stochastic bitstream neurons,” in Proceedings of the 16th Annual ProRISC
Workshop, 2005, pp. 454–459.

[64] Y. Paquot et al., “Optoelectronic reservoir computing,” Sci. Rep., vol. 2, p. 287,
2012.

[65] H. Soh and Y. Demiris, “Iterative temporal learning and prediction with the sparse
online echo state gaussian process,” in Proceedings of the International Joint
Conference on Neural Networks, 2012, pp. 10–15.

[66] A. Jalalvand, G. Van Wallendael, and R. Van De Walle, “Real-time reservoir
computing network-based systems for detection tasks on visual contents,” in
Proceedings - 7th International Conference on Computational Intelligence,
Communication Systems and Networks, CICSyN 2015, 2015, pp. 146–151.

[67] H. Jaeger, “Adaptive nonlinear system identification with Echo State networks,” in
Proceedings of the 15th International Conference on Neural Information Processing
Systems, 2002, pp. 609–616.

125

[68] H. Jaeger, “Tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the echo state network approach,” GMD-Forschungszentrum
Informationstechnik, 2002., vol. 5, 2002.

[69] H. Hauser, A. J. Ijspeert, R. M. Füchslin, R. Pfeifer, and W. Maass, “The role of
feedback in morphological computation with compliant bodies,” Biol. Cybern., vol.
106, no. 10, pp. 595–613, 2012.

[70] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication,” Science (80-.)., vol. 304, no. 5667,
pp. 78–80, 2004.

[71] N. Bertschinger and T. Natschläger, “Real-time computation at the edge of chaos
in recurrent neural networks,” Neural Comput., vol. 16, no. 7, pp. 1413–1436, 2004.

[72] F. Stelzer, A. Röhm, K. Lüdge, and S. Yanchuk, “Performance boost of time-delay
reservoir computing by non-resonant clock cycle,” Neural Networks, vol. 124, pp.
158–169, 2020.

[73] M. R. Salehi and L. Dehyadegari, “Toward optical signal processing using photonic
reservoir computing,” J. Mod. Opt., vol. 16, no. 15, p. 111, 2008.

[74] K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman,
“Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural
Networks, vol. 22, no. 9, pp. 1469–1481, 2011.

[75] F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, “All-optical
reservoir computing,” Opt. Express, vol. 20, no. 20, pp. 1958–1964, 2012.

[76] A. Dejonckheere et al., “All-optical reservoir computer based on saturation of
absorption,” Opt. Express, vol. 22, no. 9, pp. 10868–10881, 2014.

[77] C. Verma and J. Singh, “Memristor-the missing circuit element,” Nanoelectron.
Devices Hardw. Softw. Secur., vol. CT-18, no. 5, pp. 507–519, 1971.

[78] M. N. Ashner, U. Paudel, M. Luengo-Kovac, J. Pilawa, T. J. Shaw, and G. C. Valley,
“Photonic reservoir computer with all-optical reservoir,” in SPIE 11703, 117030L,
2021, pp. 1–12.

[79] D. Brunner and I. Fischer, “Reconfigurable semiconductor laser networks based on
diffractive coupling,” Opt. Lett., vol. 40, no. 16, p. 3854, 2015.

[80] A. Sattar, S. Fostner, and S. A. Brown, “Quantized conductance and switching in
percolating nanoparticle films,” Phys. Rev. Lett., vol. 111, no. 13, p. 136808, 2013.

[81] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, C. Martin-Olmos, M. Aono, and J. K.
Gimzewski, “Emergent criticality in complex Turing B‐type atomic switch networks,”
Adv. Mater., vol. 24, pp. 286–293, 2012.

126

[82] K. Nakajima and I. Fischer, Reservoir computing theory, physical implementations,
and applications. Springer, 2021.

[83] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “A substrate-independent
framework to characterize reservoir computers,” in Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 2019, vol. 475, p.
20180723, doi: 10.1098/rspa.2018.0723.

[84] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “A substrate-independent
framework to characterize reservoir computers,” in Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 2019, vol. 475, no.
20180723, doi: 10.1098/rspa.2018.0723.

[85] S. Hafizovic et al., “A CMOS-based microelectrode array for interaction with
neuronal cultures,” J. Neurosci. Methods, vol. 164, no. 1, pp. 93–106, 2007.

[86] K. P. Dockendorf, I. Park, P. He, J. C. Príncipe, and T. B. DeMarse, “Liquid state
machines and cultured cortical networks: The separation property,” BioSystems,
vol. 95, no. 2, pp. 90–97, 2009.

[87] M. R. Dranias, H. Ju, E. Rajaram, and A. M. J. VanDongen, “Short-term memory in
networks of dissociated cortical neurons,” J. Neurosci., vol. 33, no. 5, pp. 1940–
1953, 2013.

[88] B. Jones, D. Stekel, J. Rowe, and C. Fernando, “Is there a liquid state machine in
the bacterium Escherichia coli?,” in Proceedings of the 2007 IEEE Symposium on
Artificial Life, CI-ALife 2007, 2007, pp. 187–191.

[89] F. Jazaeri, A. Beckers, A. Tajalli, and J.-M. Sallese, “A Review on Quantum
Computing: Qubits, Cryogenic Electronics and Cryogenic MOSFET Physics,” arXiv
Quantum Phys., Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.02656.

[90] O. Obst et al., “Nano-scale reservoir computing,” Nano Commun. Netw., vol. 4, no.
4, pp. 189–196, 2013.

[91] V. Shirmohammadli and B. Bahreyni, “A neuromorphic electrothermal processor for
near-sensor computing,” Adv. Mater. Technol., vol. 7, no. 11, p. 2200361, 2022,
doi: 10.1002/admt.202200361.

[92] A. Ü. Keskin, “A simple analog behavioural model for NTC thermistors including
selfheating effect,” Sensors Actuators A Phys., vol. 118, no. 2, pp. 244–247, 2005,
doi: https://doi.org/10.1016/j.sna.2004.06.034.

[93] A. J. Capel, R. P. Rimington, M. P. Lewis, and S. D. R. Christie, “3D printing for
chemical, pharmaceutical and biological applications,” Nat. Rev. Chem., vol. 2, no.
12, pp. 422–436, 2018, doi: 10.1038/s41570-018-0058-y.

[94] M. R. Khosravani and T. Reinicke, “3D-printed sensors: Current progress and future

127

challenges,” Sensors Actuators A Phys., vol. 305, p. 111916, 2020, doi:
https://doi.org/10.1016/j.sna.2020.111916.

[95] T. N. Mangoma, S. Yamamoto, G. G. Malliaras, and R. Daly, “Hybrid 3D/inkjet-
printed organic neuromorphic transistors,” Adv. Mater. Technol., vol. 7, p. 2000798,
2022, doi: 10.1002/admt.202000798.

[96] Y. Tuchman et al., “Organic neuromorphic devices: Past, present, and future
challenges,” MRS Bulletin, vol. 45, no. 8. pp. 619–630, 2020, doi:
10.1557/mrs.2020.196.

[97] C. Bao, T. H. Kim, A. Hassanpoor Kalhori, and W. S. Kim, “A 3D-printed
neuromorphic humanoid hand for grasping unknown objects,” iScience, vol. 25, no.
4, p. 104119, 2022, doi: 10.1016/j.isci.2022.104119.

[98] C. Wan et al., “An artificial sensory neuron with tactile perceptual learning,” Adv.
Mater., vol. 30, no. 30, p. 1801291, 2018, doi: 10.1002/adma.201801291.

[99] X. Lin et al., “All-optical machine learning using diffractive deep neural networks,”
Science (80-.)., vol. 361, pp. 1004–1008, 2018.

[100] P. F. Flowers, C. Reyes, S. Ye, M. J. Kim, and B. J. Wiley, “3D printing electronic
components and circuits with conductive thermoplastic filament,” Addit. Manuf., vol.
18, pp. 156–163, 2017, doi: https://doi.org/10.1016/j.addma.2017.10.002.

[101] Y. A. Cengel, Heat transfer: a practical approach, 2nd ed. New York: McGraw-Hill,
2004.

[102] V. Shirmohammadli and B. Bahreyni, “A 3D-printed computer,” Adv. Intell. Syst.,
vol. 5, p. 2300015, 2023, doi: 10.1002/aisy.202300015.

[103] M. Inubushi and K. Yoshimura, “Reservoir computing beyond memory-nonlinearity
trade-off,” Sci. Rep., vol. 7, p. 10199, 2017, doi: 10.1038/s41598-017-10257-6.

[104] “STEVAL-STLKT01V1 - SensorTile development kit - STMicroelectronics.”
https://www.st.com/en/evaluation-tools/steval-stlkt01v1.html.

[105] “Green500.” https://www.top500.org/lists/green500/2023/06/.

[106] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, big, simple
neural nets for handwritten digit recognition,” Neural Comput., vol. 22, no. 12, pp.
3207–3220, 2010, doi: 10.1162/NECO_a_00052.

[107] Francis Wyffels, B. Schrauwen;, and D. Stroobandt, “System modeling with
reservoir computing,” in Wyffels2008SystemMW, 2008, [Online]. Available:
https://api.semanticscholar.org/CorpusID:114159678.

[108] J. Wang, T. Niu, G. S. Member, H. Lu, and S. Member, “A novel framework of

128

reservoir computing for deterministic and probabilistic wind power forecasting,” vol.
11, no. 1, pp. 337–349, 2020.

[109] G. Van Der Sande, D. Brunner, and M. C. Soriano, “Advances in photonic reservoir
computing,” Nanophotonics, vol. 6, no. 3, pp. 561–576, 2017.

[110] “Ultimaker 3.” https://ultimaker.com/3d-printers/ultimaker-3 (accessed Mar. 22,
2023).

129

Appendix A.

Materials and Methods

3D Printing Setup

Fused deposition modelling (FDM) is the most widely used 3D printing technology.

It uses a filament spool fed to an extrusion head with a heated nozzle. Once the extrusion

head heats, it softens and lays down the heated material at set locations, where it cools

to create a material layer. The nozzle then moves down to deposit the next layer. The

reservoir is printed with a double extrusion 3D printer (Ultimaker 3) as shown in Figure A.1

[110]. The material is printed with a default nozzle size of 0.4 mm. The printer settings

were adjusted to have a layer height of 0.1 mm for each printed layer and a wall thickness

of 0.8 mm. Thus, the minimum feature size for the resistor is 0.8 mm in the x and y

directions, while it is 0.1 mm in the z-direction.

Figure A.1. 3D printing setup.

The key strength of FDM is the availability of a wide range of materials, including

thermoplastics such as Polylactic Acid (PLA), a vegetable-based, biodegradable

thermoplastic. PLA is an electrical insulator, so it was used as the substrate and insulating

material between the conductive layers. The resistors were printed using carbon-PLA

composite filaments. We used 2.85 mm pure PLA filament (Ultrafuse series from BASF)

130

for the main structure and 2.85 mm carbon-PLA composite (RM-PL0100 from Lulzbot) for

the conductive segments. Before 3D printing, the conductive PLA filament has a volume

resistivity of 15 Ω-cm. A 3D printed structure in the x- or y-directors has a resistivity of 30

Ω-cm. 3D printed layers printed in the z-direction have a resistivity of 115 Ω-cm. Multi-

layer resistors offer higher conductivity as more conduction paths will be possible due to

the increased connections between carbon elements within this structure. Silver

conductive paste/epoxy was utilized to attach wires to the printed contacts, which were

cured on a hot plate at 50 ℃ for 1 hour.

Evaluation of the Analytical Model

COMSOL Multiphysics® 5.5 software was used to perform the heat transfer

modelling. COMSOL Multiphysics is a simulation software that can be used to model and

analyze a wide range of physical systems, including the self-heating of a resistor. The

software combines multiple physics modules and allows users to create custom models

and simulations using a user-friendly graphical interface. To model self-heating in a

resistor using COMSOL Multiphysics, we select the appropriate physics modules, such as

electric currents, heat transfer in solids, and coupled physics like electromagnetic heating,

and define the material properties of the resistor and surrounding environment. We also

determine the geometry of the resistor and the thermal and electrical boundary conditions,

such as the applied current and temperature at the boundaries. Once the model is set up,

the software uses numerical methods to solve the governing equations and simulate the

system's behaviour over time. Specifically, several physics modules must be combined to

simulate and model self-heating in a resistor. Two physics were employed here; electric

currents (ec) from the AC/DC module and heat transfer in solids from the Heat Transfer

module, and a coupled physics (i.e., Multiphysics) known as electromagnetic heating to

study the effect of self-heating in the under-study electrothermally conductive material,

conductive PLA.

The boundary condition of the bottom of the device is set to a specific temperature,

i.e., room temperature. This is often referred to as a temperature boundary condition and

is used to specify the temperature at a particular surface or location in a simulation. All

other surfaces are set to be thermally isolated. Materials have been added manually with

the values summarized in Table A.1. The device's dimensions are mentioned in Table A.2.

We use these dimensions unless otherwise stated.

131

Table A.1. Material Characteristics

Material Tg (K) Tg (K) ρm (kg/m3) Cp (J/kg.K) k (W/m.K) ϵr ρe (Ω-
cm)

PLA 60 - 65 180 - 220 1210 -1240 1180 - 1210 0.12 – 0.15 2.88 – 3.48 -

Conductive
PLA

60 - 70 170 1220 1180 0.18 – 0.2 - 30 - 115

Table A.2. 3D-Printed Processor Specifications

Parameter Definition Value Minimum (Limit)

W Width of the resistor
1.6 [mm] 0.8 [mm]

th Thickness of the resistor
0.5 [mm] 0.1 [mm]

L Length of the resistor 4.8 [mm] 0.8 [mm]

W_Electrode Width of the electrodes 5 [mm] 5 [mm]

gap Spacing between resistor 0.5 [mm] 0.1 [mm]

Deriving the Analytical Model

To solve the heat transfer problem for resistors/neurons in a regular PLA, it is

indeed essential to start with solving two sets of problems: one for the resistor/neuron and

the second for the regular PLA. Therefore, we will need four types of boundary conditions.

For neuron/resistor 1, we will need to solve

1

𝑟

𝑑

𝑑𝑟
(𝜅𝑐 𝑟

𝑑𝑇𝑟
𝑑𝑟
) + 𝑒̇gen = 0

1

𝑟

𝑑

𝑑𝑟
(𝜅𝑃𝐿𝐴𝑟

𝑑𝑇𝑃𝐿𝐴
𝑑𝑟

) = 0

(A-1)

where 𝜅𝑐 is the thermal conductivity of the conductive PLA and 𝑒̇gen is the generated heat

in the resistor per volume. The set of boundary conditions is given as:

𝑇𝑃𝐿𝐴(𝑟)|𝑟=𝑡𝑃𝐿𝐴 = 𝑇𝑎

𝑇𝑃𝐿𝐴(𝑟)|𝑟=𝑟1 = 𝑇𝑟(𝑟)|𝑟=𝑟1
(A-2)

132

−𝜅𝑃𝐿𝐴
𝑑𝑇𝑃𝐿𝐴
𝑑𝑟

|
𝑟=𝑟1

= −𝜅𝑐
𝑑𝑇𝑟
𝑑𝑟
|
𝑟=𝑟1

+ 𝑒̇gen,1

𝜅𝑐
𝑑𝑇𝑟
𝑑𝑟
|
𝑟=0

= 0

The first is the specific temperature boundary condition, the second and third are

the interface boundary conditions at the interface of the resistor/neuron and the PLA, and

the last is the thermal symmetry boundary condition. Solving Eq. (A-1) for resistor 1

considering the boundary conditions in Eq. (A-2), gives the temperature distribution

around resistor/neuron 1 due to its self-heating as

∆𝑇1(𝑟) =

{

 𝜌𝑒 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

(1 − (
𝑟

𝑟1
)
2

) + Ln(
𝑡𝑃𝐿𝐴
𝑟1
)) 𝑟 ≤ 𝑟1

𝜌𝑒 𝐽1
2 𝑟1

2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
𝑟
) 𝑟1 < 𝑟 < 𝑡𝑃𝐿𝐴

0 𝑟 ≥ 𝑡𝑃𝐿𝐴

 (A-3)

where ∆𝑇𝑖(𝑟) = 𝑇𝑖(𝑟) − 𝑇𝑎. The equation above results in 𝑞1 = −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟1

= 𝜌𝑒 𝐽1
2 𝑟1.

This heat flux is used in the interface of the resistor/neuron and the PLA at 𝑟 = 𝑟1 as a

boundary condition in the main context. One important note is the negligible temperature

deviations inside the resistor if the resistor’s dimensions are comparably smaller than the

dimensions of the PLA.

For resistor/neuron 3, due to its self-heating, we have

∆𝑇3(𝑟)

=

{

 𝜌𝑒 𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

(1 − (
𝑟

𝑟3
)
2

) + Ln(
𝑡𝑃𝐿𝐴

2 − 𝑅𝑑
2

2 𝑟3𝑅𝑑
)) 𝑟 ≤ 𝑟3

𝜌𝑒 𝐽3
2 𝑟3

2

𝜅𝑃𝐿𝐴
Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

𝑟 𝑟′
) 𝑟3 < 𝑟 < 𝑡𝑃𝐿𝐴 − 𝑅13

0 𝑟 ≥ 𝑡𝑃𝐿𝐴 − 𝑅13

(A-4)

where 𝑞3 = −𝜅𝑃𝐿𝐴
𝑑𝑇

𝑑𝑟
|
𝑟=𝑟3

= 𝜌𝑒 𝐽3
2 𝑟3. To go back to the Cartesian coordinate system and

keep its origin at the center of resistor 1, we replace 𝑟 = √𝑦2 + 𝑧2 in Eq. (A-3). Whereas,

for resistor 3 in Eq. (A-4), we replace 𝑟 = √𝑦2 + (𝑧 − 𝑅𝑑)
2 and 𝑟′ = √𝑦2 + (𝑧 + 𝑅𝑑)

2.

These changes result in

133

∆𝑇1(𝑦, 𝑧) =

{

 𝜌𝑒 𝐽1

2 𝑟1
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

(1 −
𝑦2 + 𝑧2

𝑟1
2) + Ln (

𝑡𝑃𝐿𝐴
𝑟1
)) √𝑦2 + 𝑧2 ≤ 𝑟1

𝜌𝑒 𝐽1
2 𝑟1

2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√𝑦2 + 𝑧2
) 𝑟1 < √𝑦

2 + 𝑧2 < 𝑡𝑃𝐿𝐴

0 √𝑦2 + 𝑧2 ≥ 𝑡𝑃𝐿𝐴

∆𝑇3(𝑦, 𝑧) =

{

 𝜌𝑒 𝐽3

2 𝑟3
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

(1 −
𝑦2 + 𝑧2 + 𝑅𝑑

2

𝑟3
2) + Ln(

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

2 𝑟3𝑅𝑑
)) √𝑦2 + (𝑧 − 𝑅𝑑)

2 ≤ 𝑟3

𝜌𝑒 𝐽3
2 𝑟3

2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴
2 − 𝑅𝑑

2

√𝑦2 + (𝑧 − 𝑅𝑑)2√𝑦2 + (𝑧 + 𝑅𝑑)2
) 𝑟3 < √𝑦

2 + (𝑧 − 𝑅𝑑)
2 < 𝑡𝑃𝐿𝐴 − 𝑅𝑑

0 √𝑦2 + (𝑧 − 𝑅𝑑)
2 ≥ 𝑡𝑃𝐿𝐴 − 𝑅𝑑

(A-5)

Therefore, for resistors 2 and 4, by replacing 𝑦 = 𝑦 − 𝑅12 and 𝑦 = 𝑦 − 𝑅34 we have

∆𝑇2(𝑦, 𝑧) =

{

 𝜌𝑒 𝐽2

2 𝑟2
2

𝜅𝑃𝐿𝐴
(
𝜅𝑃𝐿𝐴
4𝜅𝑐

(1 −
(𝑦 − 𝑅12)

2 + 𝑧2

𝑟2
2) + Ln (

𝑡𝑃𝐿𝐴
𝑟2
)) √(𝑦 − 𝑅12)

2 + 𝑧2 ≤ 𝑟2

𝜌𝑒 𝐽2
2 𝑟2

2

𝜅𝑃𝐿𝐴
Ln (

𝑡𝑃𝐿𝐴

√(𝑦 − 𝑅12)
2 + 𝑧2

) 𝑟2 < √(𝑦 − 𝑅12)
2 + 𝑧2 < 𝑡𝑃𝐿𝐴

0 √(𝑦 − 𝑅12)
2 + 𝑧2 ≥ 𝑡𝑃𝐿𝐴

(A-6)

134

∆𝑻𝟒(𝒚, 𝒛)

=

{

 𝝆𝒆 𝑱𝟒

𝟐 𝒓𝟒
𝟐

𝜿𝑷𝑳𝑨
(
𝜿𝑷𝑳𝑨
𝟒𝜿𝒄

(𝟏 −
(𝒚 − 𝑹𝟑𝟒)

𝟐 + 𝒛𝟐 + 𝑹𝒅
𝟐

𝒓𝟒
𝟐) + 𝐋𝐧(

𝒕𝑷𝑳𝑨
𝟐 − 𝑹𝒅

𝟐

𝟐 𝒓𝟒𝑹𝒅
)) √(𝒚 − 𝑹𝟑𝟒)

𝟐 + (𝒛 − 𝑹𝒅)
𝟐 ≤ 𝒓𝟒

𝝆𝒆 𝑱𝟒
𝟐 𝒓𝟒

𝟐

𝜿𝑷𝑳𝑨
𝐋𝐧(

𝒕𝑷𝑳𝑨
𝟐 − 𝑹𝒅

𝟐

√(𝒚 − 𝑹𝟑𝟒)
𝟐 + (𝒛 − 𝑹𝒅)

𝟐√(𝒚 − 𝑹𝟑𝟒)
𝟐 + (𝒛 + 𝑹𝒅)

𝟐
) 𝒓𝟒 < √(𝒚 − 𝑹𝟑𝟒)

𝟐 + (𝒛 − 𝑹𝒅)
𝟐 < 𝒕𝑷𝑳𝑨 − 𝑹𝒅

𝟎 √(𝒚 − 𝑹𝟑𝟒)
𝟐 + (𝒛 − 𝑹𝒅)

𝟐 ≥ 𝒕𝑷𝑳𝑨 − 𝑹𝒅

135

On Developing a 3D-Printed Reservoir

Chapters 3 and 4 discuss two types of neuron connections in reservoirs: electrical

and thermal coupling. Thermal coupling, as emphasized in Chapter 4, adds complexity to

the reservoir's behaviour. To explore this further, we conducted an experiment using two

types of reservoirs: one with only thermal coupling and the other with only electrical

coupling among neurons. These setups are shown in Figure A.2. We created these

reservoirs to see how different coupling mechanisms affect their performance. For the

thermal coupling setup, we stacked five resistors on top of each other (Figure A.2 (a)),

relying solely on thermal interactions between neurons. On the other hand, we printed a

2D structure with all neurons in one layer for the electrical coupling setup (Figure A.2 (b)),

where information transmission happens through electrical interactions.

(a) (b)

Figure A.2. The 3D-printed reservoir consisting of (a) five thermally coupled
neurons and (b) six electrically coupled neurons.

Comparing the performance of these reservoirs with different coupling

mechanisms is shown in Figure A.3. One key observation is the impact of the number of

neurons in the reservoir. Increasing the number of neurons improves the accuracy of

processing time-series data. This implies that more neurons lead to better data modelling,

enabling the reservoir to handle more complex tasks effectively. We found that thermally

coupled neurons perform well in modelling time series data. This suggests that the thermal

coupling mechanism adds analytical richness, making these neurons suitable for intricate

tasks.

136

Figure A.3. Performance of the 3D-printed reservoir when employing different
coupling mechanisms.

Additionally, comparing different coupling mechanisms, we noticed that a reservoir

with six electrically coupled neurons can perform similarly to one with four thermally

coupled neurons. This indicates that the choice of coupling mechanism directly influences

the reservoir's efficiency and performance. Therefore, an intelligent approach involves

utilizing a layered structure for thermal energy transfer to optimize reservoir efficiency.

Doing so can reduce the number of neurons while maintaining performance.

We expanded our reservoir size to include 18 neurons by maintaining the same

electrical coupling pattern across three layers while also incorporating thermal coupling

(depicted in Figure A.4 (a)). This structured arrangement facilitates efficient heat transfer.

Details concerning neuron resistance and thermal time constants are illustrated in Figure

A.4 (b). The experimental results when solving different problems using the 3D-printed

reservoir are shown in Figure A.5. When tackling more intricate challenges such as the

NARMA10 task, the reservoir comprising 18 neurons distributed over three layers

demonstrated superior performance compared to the reservoir with 12 neurons distributed

over two layers. This heightened performance can be attributed to several factors,

including the increased number of processing units and the added complexity introduced

by thermal coupling.

In our exploration, we also delved into the effects of neuron widths on reservoir

performance. A particularly intriguing approach emerged: the utilization of varying widths

for neurons or resistors. This reservoir with random neuron widths was carefully crafted,

137

as Figure A.6 (a) depicts. Its distinctive characteristic lies in the diverse distribution of

neuron resistances and thermal time constants across different layers, which is clearly

illustrated in Figure A.6 (b). This unique arrangement aimed to fill the reservoir with

heightened complexity, thereby fostering the potential for dynamic interactions.

(a) (b)

Figure A.4. (a) The 3D-printed uniform reservoir consisting of 3 thermally coupled
layers (N = 18) and (b) distribution of the resistance and thermal time
constants within the reservoir.

Figure A.5. Performance of the 3D-printed reservoir consisting of 3 thermally
coupled layers (N = 18) with uniform width distribution for the
resistors/neurons.

For a comprehensive assessment, we conducted a comparative analysis between

the random 3D-printed reservoir and its uniform-width counterpart in Figure A.4. These

reservoirs shared the same structure, consisting of three layers with 18 thermally coupled

neurons, providing a fair basis for comparison. These reservoirs were subjected to solving

various NARMA tasks, allowing us to evaluate their respective performance. The

experimental results in Figure A.8 revealed a notable trend: the random network

consistently exhibited superior accuracy when tackling various tasks. This enhanced

138

performance can be attributed to the inherent richness of dynamics in the random design.

The variability in neuron widths introduces a layer of complexity that seems to enhance

the reservoir's ability to handle a diverse range of tasks.

(a)

(b)

Figure A.6. (a) The 3D-printed reservoir consisting of 3 thermally coupled layers
(N = 18) and random width distribution, (b) the resistance distribution,
and (c) thermal time constant distribution along different layers.

Figure A.7. Performance of the 3D-printed reservoirs consisting of 3 thermally
coupled layers (N = 18) with uniform and random width distribution
for the resistors/neurons.

139

Setting Up the Input Layer

 In RC, the input layer serves a crucial role. It acts as the gateway for input signals,

channelling them into the reservoir layer for processing. This layer is equipped with

neurons that establish a connection with the incoming input, enabling the entire network

to interact with external information. Before delving into the reservoir's processing tasks,

it's imperative to ensure that the input signals are appropriately adjusted. This is similar to

preparing a tool for a specific task – the tool needs to be appropriately set up for optimal

performance. Similarly, for the reservoir to operate effectively, the input signals must be

adjusted to match its requirements. This can involve standardizing the signals to have a

consistent mean and variance or adapting them to a predefined range of values that align

with the reservoir's architecture.

In the 3D-printed reservoir, there is a particular range of temperature at which each

neuron can be safely driven to perform nonlinearly, showing thermal fading memory. The

material’s temperature-dependent resistivity changes the behaviour of the 3D-printed

resistor both in terms of the temperature and the voltage across it. Figure A.8 shows this

concept. The nonlinear behaviour starts at ~25-28oC, and the conductive PLA melts at 50-

60oC. Thus, the temperature deviation of resistors should fall in ~ [7oC 30oC] in the

presence of input signals. Hence, within our reservoir framework, it is imperative to

maintain a controlled temperature environment for the neurons during input signal

processing. Much like selecting the appropriate conditions for using a tool, we must ensure

that the neurons are exposed to a temperature range that promotes their optimal function.

This emphasis on temperature control is pivotal within our reservoir, as the neurons'

behaviour hinges on these conditions.

The maximum input voltage signal to be mapped to a reservoir depends on the

material properties (heat capacity, density, thermal conductivity, and electrical

resistivity/conductivity) and the reservoir itself (the number of thermally coupled layers,

dimensions of the printed resistors, and the gap between the resistors). Scaling the input

signal, 𝑎, can help improve the reservoir's performance by ensuring that the input values

fall within a range that the network can effectively process. Suppose the input values are

too large or too small. In that case, this can lead to problems with melting the entire

reservoir or losing the reservoir's computational power due to tapping into the linear region

140

of the nonlinear dynamic system. The ideal input scaling 𝑎 is achieved when the

environment temperature is set to room temperature.

Figure A.8. The nonlinearity of the material depends on the temperature of the
resistor.

The performance of the reservoir was studied under different environmental

temperatures, denoted as 𝑇𝑒𝑛𝑣. The reservoir was placed inside an oven, as shown in A.9

(a) and the temperature using the temperature control circuitry. In these experiments, we

adjusted the input scaling of the 3D-printed RC and retrained the output layer to observe

the effects of varying environmental temperatures on the system's performance. We set

up a controlled experimental environment to investigate the impact of environmental

temperature on the system's behaviour. The 3D-printed reservoir was placed inside an

oven to manipulate the environmental temperature. This allowed simulations of different

temperature conditions to observe how the system responded. We first adjusted the

environmental temperature to a specific value in each experiment, creating a controlled

setting. To monitor 𝑇𝑒𝑛𝑣, the circuit in Figure A.9 (b) was designed using an NTC thermistor

(NT0515291 from Ametherm), in which

𝑉𝑇𝐻 = −
𝑅𝑇𝐻
R
 𝑉𝐷𝐶 = −

𝑅𝑎
R
𝑒
𝛽(

1
𝑇𝑒𝑛𝑣

−
1
𝑇𝑎
)
 𝑉𝐷𝐶 (A-7)

If we set the 𝑅 = 𝑅𝑎 and 𝑉𝐷𝐶 = 1𝑉, the output voltage from this circuit would fall in

the range of [−1 0]𝑉. Therefore, the environment temperature is given as

141

(a) (b)

Figure A.9. (a) The experimental setup for studying the effect of environmental
temperature and (b) Environment temperature monitoring circuitry
used in the experimental temperature studies.

𝑇𝑒𝑛𝑣 =
1

ln (|𝑉𝑇𝐻|)
𝛽

+
1
𝑇𝑎

 (A-8)

We then modified the input scaling parameter to account for the influence of

temperature on input signals, considering 𝑇 ∝
𝑉2

𝑅
 for each neuron:

𝑎𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑎√
(𝑇𝑚𝑎𝑥 − 𝑇𝑒𝑛𝑣)

(𝑇𝑚𝑎𝑥 − 𝑇𝑎)
 (A-9)

This step was crucial to ensure that the system adapted to the changing

environmental conditions, maintaining its efficiency in processing. Following the input

scaling adjustment, the system's output layer was retrained based on the modified input

signals. This retraining process involved updating the output weights to align with the

newly scaled input signals, effectively tuning the system for optimal performance under

the specific environmental temperature. We repeated this process for various temperature

settings to create a comprehensive dataset of system behaviours under different

142

environmental conditions. The outcomes of each experiment were then recorded and

summarized in Table A.4. The results provided valuable information on how the system's

performance evolved across different temperatures, demonstrating the necessity of

adapting input scaling to maintain efficient operation across varying environmental

conditions in thermal reservoir computing systems. Therefore, to make the reservoir

adaptable across varying environmental temperatures, modifications in input scaling are

necessary, which in turn necessitates retraining the reservoir on training data. This

strategic approach ensures that the reservoir can effectively accommodate diverse

operating conditions, showcasing the critical interplay between environmental factors and

input scaling in the pursuit of optimized thermal reservoir computing platforms.

Table A.4. 3D-printed reservoir’s performance under different environment
temperatures with adjusted scaling.

Temperature (oC) Statistical Evaluation Task

NARMA3 NARMA5 NARMA10

RMSE (%) R2 (%) RMSE (%) R2 (%) RMSE (%) R2 (%)

22 3.45 97.32 6.8 87.8 10.4 70.2

28 3.88 95.5 4.99 93.2 11.9 67.6

32 4.39 93.4 5.99 90.2 10.5 73.3

38 4.91 91.3 6.9 88.4 9.98 74.64

Design of the Output Layer

The output layer can be trained by running a linear regression on all the outputs

from the reservoir in MATLAB®. Once trained, it can be replaced with an operational

amplifier (OpAmp) circuit, as shown in Figure A.10, in which the ratio of the resistors in

the feedback and input determine the trained weights. Let us consider we have ℓ trainable

weights, of which q negative weights are the result after training. The output signal would

take the form of

𝑉𝑜𝑢𝑡 =
1 + ∑

𝑅𝑓
𝑅𝑖

𝑞
𝑖=1

1 + ∑
𝑅𝑓
𝑅𝑖

ℓ
𝑖=𝑞+1

∑
𝑅𝑓

𝑅𝑖

ℓ

𝑖=𝑞+1

𝑉𝑖 −∑
𝑅𝑓

𝑅𝑖

𝑞

𝑖=1

𝑉𝑖
(A-10)

143

where 𝑉𝑖 is the signals received from the reservoir. To prevent the loading effects on the

reservoir, it is safe to consider 𝑅𝑓 = 1𝑀Ω, the rest of the resistor values can be derived

based on:

𝑊𝑜𝑢𝑡
(ℓ×1)

=

{

 −

𝑅𝑓

𝑅𝑖
 𝑖 ≤ 𝑞 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔𝑡ℎ𝑠)

1 + ∑
𝑅𝑓
𝑅𝑖

𝑞
𝑖=1

1 + ∑
𝑅𝑓
𝑅𝑖

ℓ
𝑖=𝑞+1

𝑅𝑓

𝑅𝑖
 𝑖 > 𝑞 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑤𝑒𝑖𝑔𝑡ℎ𝑠)

(A-11)

We solved the equation above in Maple for the proposed 3D-printed processor

once trained for solving a specific problem.

Figure A.11. The output layer of the proposed computing platform.

Proposed Design Procedure and Rules

Developing a physical reservoir computing platform involves a systematic

approach that draws upon insights gained from practical experiences. Through an

exploration of various design aspects, from selecting appropriate materials to configuring

coupling mechanisms, a general procedure emerges that guides the creation of efficient

and adaptable computational systems. Rooted in my own experiential journey, this design

process intertwines multiple realms of science, culminating in creating reservoirs that

harness the nuances of physical properties for information processing. This narrative

144

encapsulates the steps and considerations that pave the way for the development of

diverse and potent physical reservoir computing platforms.

• Identify the physical system: Determine the physical system to use as the
reservoir. It can be any physical system that exhibits rich dynamical behaviour,
such as a chaotic electrical circuit, a fluid flow system, or a mechanical system.
Make sure there is memory and nonlinearity in the system's response to
physical stimulation.

• Measure the response time of the physical dynamical system to know the time
scale and the speed of the resulting processor.

• Choose the sensing method: Select an appropriate sensing method for
measuring the state variables of the physical system. It can involve using
sensors, transducers, or other measurement devices.

• Look for appropriate energy transfer mechanisms to implement in the
dynamical system for information flow among the neurons. It will ensure the
presence of nonlinear interactions among the neurons.

• Design the input layer of the physical reservoir computing platform, which
should be capable of converting the input signals into a suitable range (i.e.,
operating point) that can be injected into the physical system.

• Construct the physical reservoir by connecting the sensing system to the input
and output layers. The reservoir should be designed to exhibit complex and
diverse dynamical behaviour.

• Train the output layer of the physical reservoir computing platform using
suitable machine learning algorithms. It involves using linear or nonlinear
regression techniques or other machine learning algorithms.

• Optimize the physical reservoir computing platform by tuning the various
parameters, such as the connectivity of the reservoir, to achieve the best
possible performance.

• Test and evaluate the physical reservoir computing platform using appropriate
benchmarks and datasets. It can involve using standard time-series prediction
tasks, such as the NARMA task, delayed XOR, or other real-world datasets.

• Refine and improve the physical reservoir computing platform based on the
evaluation results, and continue to optimize and refine the platform as
necessary to achieve the best possible performance.

145

Appendix B.

MATLAB Codes

The Recurrent Neural Networks

%%%% The layered RNN, or Layrecnet, is a recurrent neural network architecture

% implemented in MATLAB® that is used for sequence-to-sequence prediction tasks.

% This architecture includes multiple recurrent layers that are stacked on top

% of each other, with each layer taking the output of the previous layer as input.

% The Layrecnet architecture is particularly useful for tasks that require modeling

% complex sequences

clc

close all

clear all

%%%

%%%%%%%%%% Initialization %%%

RealVal = load('RealValue_N3.csv');

RealVal = RealVal/max(RealVal);

data = load('input2_310V.txt');

In0 = data(:,2)/max(data(:,2));

In1 = circshift(In0,1);

In2 = circshift(In0,2);

In3 = circshift(In0,3);

In = [In0 In1 In2 In3];

N1 = length(In0);

N2 = length(RealVal);

N = min(N1,N2);

%%%%%%% Train/Test Segmentation %%%

n = 10;

N = N - n;

Ratio = 0.7;

NTrain = ceil(Ratio*N);

trainData_In = In(1:NTrain,:);

trainData_RealVal = RealVal(1:NTrain,:);

testData_In = In(NTrain:N,:);

testData_RealVal = RealVal(NTrain:N,:);

%%%%%%% Create the Recurrent Neural Network %%%

% Define the number of input, hidden, and output nodes

input_nodes = 4;

hidden_nodes = [8 8 8];

output_nodes = 1;

layerDelays = [1 2 3];

% Define the activation functions for the hidden layers

hiddenActivationFunctions = {'logsig', 'logsig', 'logsig'};

outputActivationFunction = 'purelin';

% Define the recurrent neural network

net = layrecnet(layerDelays, hidden_nodes, 'traingdx');

% Set the nonlinear functions for the hidden layers and the output layer

net.layers{1}.transferFcn = hiddenActivationFunctions{1};

net.layers{2}.transferFcn = hiddenActivationFunctions{2};

net.layers{3}.transferFcn = hiddenActivationFunctions{3};

net.layers{4}.transferFcn = outputActivationFunction;

146

% Define the input and output data for training

input_data = trainData_In;

target_data = trainData_RealVal;

for i = 1:50

% Train the recurrent neural network

net = train(net, input_data', target_data');

view(net)

% nnet.guis.closeAllViews()

% Use the trained network to predict the output for the test data

y_pred = net(testData_In');

% Calculate the RMSE and R-squared value

rmse(i) = sqrt(mean((y_pred - testData_RealVal').^2));

r_squared(i) = 1 - (sum((y_pred - testData_RealVal').^2) / sum((testData_RealVal' -

mean(testData_RealVal')).^2));

end

rmse = sum(rmse)/50;

r_squared = sum(r_squared)/50;

% Print the results

fprintf('RMSE: %.4f\n', rmse);

fprintf('R-squared: %.4f\n', r_squared);

%%%

fig = figure

axes4 = axes('Parent',fig,'FontSize',13,'FontName','Times New

Roman','FontWeight','bold','LineWidth',1);

box(axes4,'on');

hold(axes4,'on');

grid on

%xlim([0 250])

%ylim([5.5 8.5])

plot(testData_RealVal,'b','LineWidth',2); hold on

plot(y_pred,'r','LineWidth',2); hold on

xlabel('Timestep','FontWeight','bold','FontSize',14);

ylabel('Norm. Output','FontWeight','bold','FontSize',14);

legend({'Real Values','Predicted Values'},'Location','southeast','FontName','Times New

Roman','FontWeight','bold','FontSize',12)

legend('boxoff')

set(fig, 'Position', [300, 50, 600, 200]);

147

The Feedforward Neural Network

%%%%% The feedforward neural network (FNN) is a type of artificial neural

% network that is widely used in machine learning and deep learning applications.

% In MATLAB®, the FNN can be created using the feedforwardnet function, which

% constructs a multilayer perceptron (MLP) architecture. The feedforwardnet

% function allows the user to specify the number of hidden layers, the number

% of neurons in each layer, the activation functions used in each layer, and other

% parameters.

clc

close all

clear all

%%%

%%%%%%%%%% Initialization %%%

RealVal = load('RealValue_N1.csv');

RealVal = RealVal/max(RealVal);

data = load('input2_310V.txt');

In0 = data(:,2)/max(data(:,2));

In1 = circshift(In0,1);

In2 = circshift(In0,2);

In3 = circshift(In0,3);

In = [In0 In1 In2 In3];

N1 = length(In0);

N2 = length(RealVal);

N = min(N1,N2);

%%%%%%% Train/Test Segmentation %%%

n = 10;

N = N - n;

Ratio = 0.7;

NTrain = ceil(Ratio*N);

trainData_In = In(1:NTrain,:);

trainData_RealVal = RealVal(1:NTrain,:);

testData_In = In(NTrain:N,:);

testData_RealVal = RealVal(NTrain:N,:);

%%%%%%% Create the Feedforward Neural Network %%%

% Define the number of inputs, hidden layers, nodes and outputs

inputs = 4;

hiddenLayers = 3;

% hiddenNodes = 18;

hiddenNodes = [6 200 10];

outputs = 1;

% Define the nonlinear functions for the hidden layers and the output layer

hiddenActivationFunctions = {'logsig', 'logsig', 'logsig'};

outputActivationFunction = 'purelin';

% 'purelin' for a linear transfer function

% 'logsig' for a log-sigmoid transfer function

% 'tansig' for a hyperbolic tangent sigmoid transfer function

% 'radbas' for a radial basis transfer function

% 'hardlim' for a hard limit transfer function

for i = 1:50

% Create the neural network with the defined architecture

net = feedforwardnet(hiddenNodes, 'traingdx');

% Set the nonlinear functions for the hidden layers and the output layer

net.layers{1}.transferFcn = hiddenActivationFunctions{1};

net.layers{2}.transferFcn = hiddenActivationFunctions{2};

net.layers{3}.transferFcn = hiddenActivationFunctions{3};

net.layers{2}.transferFcn = outputActivationFunction;

% Configure the network for training

net = configure(net, In', RealVal');

view(net)

% nnet.guis.closeAllViews()

% Train the network using the input and output data

148

[net, tr] = train(net, trainData_In', trainData_RealVal');

% Use the trained network to predict the output for the test data

y_pred = net(testData_In');

% Calculate the RMSE and R-squared value

rmse(i) = sqrt(mean((y_pred - testData_RealVal').^2));

r_squared(i) = 1 - (sum((y_pred - testData_RealVal').^2) / sum((testData_RealVal' -

mean(testData_RealVal')).^2));

end

rmse = sum(rmse)/50;

r_squared = sum(r_squared)/50;

% Print the results

fprintf('RMSE: %.4f\n', rmse);

fprintf('R-squared: %.4f\n', r_squared);

%%%

fig = figure

axes4 = axes('Parent',fig,'FontSize',13,'FontName','Times New

Roman','FontWeight','bold','LineWidth',1);

box(axes4,'on');

hold(axes4,'on');

grid on

%xlim([0 250])

%ylim([5.5 8.5])

plot(testData_RealVal,'b','LineWidth',2); hold on

plot(y_pred,'r','LineWidth',2); hold on

xlabel('Timestep','FontWeight','bold','FontSize',14);

ylabel('Norm. Output','FontWeight','bold','FontSize',14);

legend({'Real Values','Predicted Values'},'Location','southeast','FontName','Times New

Roman','FontWeight','bold','FontSize',12)

legend('boxoff')

set(fig, 'Position', [300, 50, 600, 200]);

149

Appendix C.

Maple Codes

Deriving Static Solutions for Resistor 1

#Thermal Analysis Steady State, Constant rho, Resistors in Layer 1

restart;

EQ1 := 1/r*diff(k*r*diff(T1a(r),r),r) + e_gen1 = 0;

EQ2 := 1/r*diff(k_PLA*r*diff(T1b(r),r),r) = 0;

A1 := Pi/2*r1^2: A_hflux1 := Pi*r1*L: q_gen1 := e_gen1 * L * A1 / (A_hflux1);

BC1 := eval(-k_PLA*diff(T1b(r),r),r=r1)= eval(-k*diff(T1a(r),r),r=r1) + q_gen1;

BC2 := T1b(t_PLA)=0;

BC3 := eval(T1a(r),r=r1) = eval(T1b(r),r=r1);

BC4 := eval(diff(T1a(r),r),r=0) = 0;

SOL := dsolve({EQ1,EQ2,BC1,BC2,BC3,BC4},{T1a(r),T1b(r)}):

T1a(r) := rhs(SOL[1]); T1b(r) := rhs(SOL[2]);

q1 := e_gen1 + eval(-k*diff(T1a(r),r),r=r1); q:= eval(-k_PLA*diff(T1b(r),r),r=t_PLA);

T1(r) := piecewise(r<=r1,T1a(r),r<t_PLA,T1b(r),r>t_PLA,0);

T1(y,z) := eval(T1(r),r=sqrt(z^2+y^2));

sigma:=3.3: rho:=1/sigma: L:=100e-3: r0:=5e-6: t_PLA:=10e-3: Iin:=10e-6:

Ta:=293.15: k:=0.2: k_PLA:=0.11: L_PLA:=100e-3: W_PLA:=100e-3: rho_m:=1210:

Cp:=1180: r1:=sqrt(2)*r0;

A1 := Pi/2*r1^2; R1 := rho*L/A1;

E_gen1 := R1*Iin^2; e_gen1 := E_gen1/(L*A1); q1 := e_gen1 * r1;

plot(T1(r),r=0...t_PLA);

plot3d(T1(y,z), y = -t_PLA...t_PLA, z = r0..t_PLA);

150

The Maple solution for Resistor 1

151

Deriving Static Solutions for Resistor 3

#Thermal Analysis Steady State, Constant rho, Resistors in Layer 2

restart;

EQ1 := 1/r*diff(k*r*diff(T3a(r),r),r) + e_gen3 = 0;

EQ2 := 1/r*diff(k_PLA*r*diff(T3b(r),r),r) = 0;

A3 := Pi*r3^2: A_hflux3 := 2*Pi*r3*L: q_gen3 := e_gen3 * L * A3 / (A_hflux3);

BC1 := eval(-k_PLA*diff(T3b(r),r),r=r3)= eval(-k*diff(T3a(r),r),r=r3) + q_gen3;

BC2 := T3b(t_PLA-R13)=0; BC2_p := T3b(t_PLA+R13)=0;

BC3 := eval(T3a(r),r=r3) = eval(T3b(r),r=r3);

BC4 := eval(diff(T3a(r),r),r=0) = 0;

SOL := dsolve({EQ1,EQ2,BC1,BC2,BC3,BC4},{T3a(r),T3b(r)}):

SOL_p := dsolve({EQ1,EQ2,BC1,BC2_p,BC3,BC4},{T3a(r),T3b(r)}):

T3a(r) := rhs(SOL[1]); T3a_p(r) := rhs(SOL_p[1]);

T3b(r) := rhs(SOL[2]); T3b_p(r) := rhs(SOL_p[2]);

q3 := q_gen3 + eval(-k*diff(T3a(r),r),r=r3);

T3(r) := piecewise(r<=r3,T3a(r),r<t_PLA-R13,T3b(r),r>t_PLA-R13,0);

T3_p(r) := piecewise(r<=r3,T3a_p(r),r<t_PLA+R13,T3b_p(r),r>t_PLA+R13,0);

T3(y,z) := eval(T3(r),r=sqrt((z-R13)^2+y^2))+eval(T3_p(r),r=sqrt((z+R13)^2+y^2));

sigma:=3.3: rho:=1/sigma: L:=100e-3: r0:=5e-6: t_PLA:=10e-3: Iin:=10e-6:

Ta:=293.15: k:=0.2: k_PLA:=0.11: R13:=2e-3: L_PLA:=100e-3: W_PLA:=100e-3:

rho_m:=1210: Cp:=1180: r3:=r0;

A3 := Pi*r3^2; R3 := rho*L/A3;

E_gen3 := R3*Iin^2; e_gen3:= E_gen3/(A3*L); q3 := e_gen3 * r3;

plot(T3(r),r=0...t_PLA); plot(eval(T3(y,z),y=r1/sqrt(2)),z=0...t_PLA);

plot3d(T3(y,z), y = -t_PLA...t_PLA, z = r0..t_PLA);

152

The Maple solution for Resistor 3

153

Plot Static Solutions for all Resistors 1, 2, 3, and 4

#Thermal Analysis Steady State, Constant rho

restart;

T1(y, z) := piecewise(sqrt(y^2 + z^2) <= r1, -e_gen1*(y^2 + z^2)/(4*k) - e_gen1*r1^2*(4*ln(r1)*k - 4*ln(t_PLA)*k -
k_PLA)/(4*k*k_PLA), sqrt(y^2 + z^2) < t_PLA, -e_gen1*r1^2*ln(y^2 + z^2)/(2*k_PLA) + e_gen1*r1^2*ln(t_PLA)/k_PLA,
t_PLA < sqrt(y^2 + z^2), 0);

T3(y, z) := piecewise(sqrt((z - R13)^2 + y^2) <= r3, -e_gen3*((z - R13)^2 + y^2)/(4*k) + e_gen3*r3^2*(4*ln(t_PLA - R13)*k
- 4*ln(r3)*k + k_PLA)/(4*k*k_PLA), sqrt((z - R13)^2 + y^2) < t_PLA - R13, -e_gen3*r3^2*ln((z - R13)^2 + y^2)/(2*k_PLA) +
e_gen3*r3^2*ln(t_PLA - R13)/k_PLA, t_PLA - R13 < sqrt((z - R13)^2 + y^2), 0) + piecewise(sqrt((z + R13)^2 + y^2) <= r3, -
e_gen3*((z + R13)^2 + y^2)/(4*k) + e_gen3*r3^2*(4*ln(t_PLA + R13)*k - 4*ln(r3)*k + k_PLA)/(4*k*k_PLA), sqrt((z + R13)^2
+ y^2) < t_PLA + R13, -e_gen3*r3^2*ln((z + R13)^2 + y^2)/(2*k_PLA) + e_gen3*r3^2*ln(t_PLA + R13)/k_PLA, t_PLA + R13
< sqrt((z + R13)^2 + y^2), 0);

T2(y,z) := eval(T1(y,z),y=y-R12);

T4(y,z) := eval(T3(y,z),y=y-R34);

T12(y,z) := T1(y,z)+ T2(y,z);

T13(y,z) := T1(y,z)+ T3(y,z);

T14(y,z) := T1(y,z)+ T4(y,z);

T23(y,z) := T2(y,z)+ T3(y,z);

T24(y,z) := T2(y,z)+ T4(y,z);

T34(y,z) := T3(y,z)+ T4(y,z);

T(y,z) := T1(y,z)+ T2(y,z)+T3(y,z)+ T4(y,z);

sigma:=3.3: rho:=1/sigma: L:=100e-3: r0:=5e-6: t_PLA:=10e-3: Iin:=10e-6:
Ta:=293.15: k:=0.2: k_PLA:=0.11: L_PLA:=100e-3: W_PLA:=100e-3: rho_m:=1210:
Cp:=1180: r1:=sqrt(2)*r0: r3:=r0: r2:=r1: r4:=r3: R13:=2e-3:

R12:=R13: R34:=R13:

A1 := Pi/2*r1^2; A3 := Pi*r3^2;

R1 := rho*L/A1; R3 := rho*L/A3;

E_gen1 := R1*Iin^2; E_gen3 := R3*Iin^2;

e_gen1 := E_gen1/(L*A1); e_gen3 := E_gen3/(L*A3);

plot3d(T12(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

plot3d(T13(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

plot3d(T14(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

plot3d(T23(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

plot3d(T24(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

plot3d(T34(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

plot3d(T(y,z), y = -t_PLA...t_PLA, z = sqrt(2)*r0..t_PLA);

