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Abstract

Over the past decade, backscatter nodes have received booming interest for many emerging
mobile applications, such as sports analytics and interactive gaming. However, problems re-
main in making backscatter communication into general-purpose battery-free data transfer
for IoTs. First, backscatter networks are not ready to provide a high-throughput and stable
communication platform for billions of such mobile nodes. The common mapping paradigm
that chooses the optimal rate based on RSSIs is hardly adaptable to hardware diversity,
and the current probing processes are not optimized for mobile scenarios due to inefficient
probing trigger. Second, although backscatter communication can already be achieved with
ambient signals, the current system suffers from several key issues, including redundant
modulation, productive-data dependency, and lack of interference countermeasures.

To address those issues, we propose a mobility-aware rate adaptation link-layer that fully
exploits the mobility hints from PHY information to deliver a high-throughput link-layer for
mobile backscatter networks. The key insight is that mobility-hints can greatly benefit link-
layer design, including rate selection and channel probing. Moreover, we introduce robust
modulation designs with ambient signals, e.g., BLE, WiFi. Specifically, we propose direct
frequency shift modulation with the single tone generated by an excitation BLE device,
making robust single-bit modulation possible. Besides, we present a novel backscatter mod-
ulation design that can take uncontrolled OFDM WiFi signals as excitations and efficiently
embeds tag data at the single-symbol rate.

The prototype is implemented using COTS RFID readers, commodity radios, commercial
RFID tags, and customized tags with FPGAs. Our extensive experiments demonstrate that
the mobility-aware link-layer achieves up to 3.8x throughput gain over the state-of-the-art
methods across a wide range of mobility, channel conditions, and tag types. Besides this, the
BLE modulation design achieves more than 17x uplink goodput gains over FreeRider under
indoor and outdoor environments. And the maximum throughput of our WiFi modulation
design is 3.92x and 1.97x better than FreeRider and MOXcatter.

Keywords: Backscatter networks; link layer; modulation design; RFID; commodity radio;
tags
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Chapter 1

Introduction

1.1 Backscatter technology

In recent years, backscatter communications have been dramatically revolutionizing tra-
ditional active-radio sensors [36] as they can provide a battery-free, small form-factor,
and cheap alternative while achieving comparable sensing capabilities. Various novel new
backscatter nodes have been designed and applied in a range of mobile applications [69,
90, 80, 30, 31, 35]. For example, [63] presents a backscatter design to constantly check the
pressure for sports balls. [26] proposes a tag-free solution to monitor human activities for
elderly healthcare. Even though researchers have made decent progress in backscatter com-
munication, we observe that backscatter networks that promise to deliver a high-throughput
interconnected platform are not well prepared. Several advances, like rateless coding [76] and
parallel decoding [43], have been proposed to enhance backscatter communication through-
put significantly, but they are incompatible with existing standards and thus leave billions
of deployed backscatter nodes, like RFID tags, behind.

Meanwhile, to get rid of the dependence on the dedicated excitation signal generator
(such as RFID readers), a seminal work, ambient backscatter [54], begins a new era of using
ambient signals as excitation. Since then, many researchers work along this line and various
backscatter systems have emerged, e.g., WiFi backscatter [17, 88, 85, 82, 40, 22, 23, 55, 16],
Bluetooth backscatter [25, 87, 45, 47, 53], ZigBee backscatter [78], LoRa backscatter [42, 69],
FM backscatter [73], LTE backscatter[21], and others [27, 28, 66, 50, 71, 56, 44, 72, 81,
83]. BackFi [17] provides a high-throughput WiFi backscatter system using full-duplex
techniques. WiFi-backscatter uses CSI/RSSI modulation to transmit tag data and achieves
rates of up to 1 kbps. The common goal is to make backscatter communication into general-
purpose battery-free data transfer for IoTs.

Thanks to widespread Bluetooth and WiFi radios in our daily life, e.g., smartphones,
speakers, and access points, Bluetooth-based and WiFi-based backscatter systems have re-
ceived ever-increasing interest for embedded electronics. FS-backscatter [88] can successfully
demodulate backscattered BLE (Bluetooth Low Energy) signals, but requires hacking into
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a specific chip and thus is not a general solution. Interscatter [46] novelly presents how to
backscatter BLE signals into Zigbee and WiFi but fails to interface with Bluetooth receivers.
BLE-backscatter [25] introduces how to produce BLE backscatter signals using a dedicated
continuous wave (CW) generator. None of the above provides a backscatter solution that is
completely compatible with commercial Bluetooth radios.

To get closer to universal backscatter, some researchers also explore new backscatter
systems that can work with uncontrolled ambient signals. The packet-level WiFi solutions
are proposed first. The idea is that tag data can be embedded in the signal-strength changes
of packets [88, 48]. However, such methods suffer from low data rates, typically ∼1 kbps,
since a packet can only carry one bit and they are susceptible to environmental changes.
The most recent advances have increased the data rate to some extent. FreeRider [87] and
MOXcatter [89], can provide symbol-level data transmissions for tags based on ambient
OFDM WiFi signals, realizing about 60 kbps. To ensure decent BERs for the receiver, most
prior arts employ multi-symbol modulation for tag data. Although backscatter communica-
tion can already be achieved with ambient signals, they suffer from several issues, including
redundant modulation, low data rates, and controlled excitation signals.

1.2 Background

1.2.1 Rate Adaptation

Although state-of-the-art systems have proposed several advances, like rateless coding and
parallel decoding to enhance backscatter communication throughput significantly, they are
incompatible with existing standards. We discuss rate adaptation in the following three
aspects.
Mapping based: Usually, the common assumption of mapping-based schemes is that the
best rate is highly related to SNR metrics, e.g., BER, RSSI. Along this line, a number
of proposals are designed according to different SNR metrics. FARA [62] is designed for
OFDM protocols, which allows each subcarrier to choose the best modulation and code
rate. Its rate selection module contains an SNR-rate mapping table. Differently, ESNR [41]
proposes a delivery model by leveraging CSIs to deal with frequency-selective fading. Also,
it employs effective SNR, a new metric for looking up optimal rates in a table. Blink [86] and
CARA [33] share similar ideas and exploit both the RSSI and loss rate to combat multipath
self-interference. Yet, both of them cannot deal with hardware diversity [84, 31].
Throughput based: In contrast, throughput-based methods can be made universal and
robust for different environments. Besides Minstrel [8] and Ath9k [3] from commercial im-
plementations, the most famous solution of this category is SampleRate [18]. However, it
cannot make timely responses to location changes because of unawareness of mobility states.
To address this challenge, a mobility-assisted rate adaptation is designed [68]. Unfortunately,
its coarse-grained mobility hints do not work for backscatter scenarios.
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New Backscatter Designs: There are also some works trying to overhaul the current
network layers of the C1G2 standard [59]. Buzz [76] innovatively introduces a new PHY
layer based on rateless coding and compressive sensing and achieves significant throughput
gains. Flit [39] designs a new MAC protocol for computational RFIDs by exploiting burst
transmission and uses duty-cycling to achieve power efficiency. Yet, such designs are not
standard-compatible. In contrast, our proposed system, MobiRate, is readily available to
benefit tons of currently deployed RFIDs that comply with the C1G2 standard.

In summary, inspired by the prior works, our work’s novelty lies in obtaining real-time
fine-grained mobility-hints and using these hints to design an efficient and C1G2-compatible
solution exclusively for backscatter networks.

1.2.2 BLE Backscatter

Our work is inspired by recent progress on backscatter systems. The closely related work
and corresponding differences are discussed as follows.

FreeRider[87] extends codeword translation to Bluetooth technologies using two-step
modulation. As shown in Section 3.2, it suffers from serious problems and cannot make
robust modulation. Although FreeRider is the first full BLE backscatter system, it requires
two BLE receivers to decode while we only need one. FS-backscatter [88] modulates tag
data on Bluetooth exciting signal through amplitude-shift keying (ASK) modulation so
it requires hacking into a specific Bluetooth chip to demodulate the amplitude informa-
tion. Interscatter [46] enables WiFi backscatter through reversely-whitened BLE signals.
It proposes reversely-whitening techniques to generate the BLE single-tone. This inspires
us to generate a single-tone as the carrier for BLE backscatter. Although our single-tone
generation uses reversely-whitening techniques proposed by Interscatter, Interscatter’s goal
is totally different from ours. Specifically, Interscatter intends to generate WiFi 802.11b
signals using DBPSK modulation while we need to regenerate BLE signals using BFSK
modulation.

[24] first fine-tunes and applies BFSK modulation to BLE backscatter. BLE-backscatter
[25], an expanded version of [24], improves the tag implementation by changing the labora-
tory instruments including the arbitrary waveform generator to MSP430. BLE-Backscatter
[25] requires a specialized CW generator while we use commodity BLE devices, reducing
the deployment cost of the system. Moreover, the specialized CW generator solution can
completely jam a BLE channel and has no downlink capability whereas we employ an en-
velope detector to identify exciting BLE signals and to receive commands from excitation
BLE devices. As far as the modulation part is concerned, the changes we made compared
to BLE-backscatter [25] are: changing the carrier generator from a specialized device to
a commodity BLE device and conducting BER performance evaluations to find the op-
timal modulation index for BLE backscatter. [64] applies BLE-Backscatter [25] to uplink
for wireless neural recording. NeuroDisc BLE-compatible backscatter [65] improves BLE
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Backscatter [25] by introducing single sideband (SSB) backscatter and CPFSK to BLE
backscatter. It improves the spectral efficiency of BLE backscatter, but still shares the
same limitations as BLE backscatter. Nevertheless, none of the above systems had in-depth
examined backscatter reliability issues. Relacks [47] proposes a closed-loop configuration
selection algorithm that uses frequency, antenna, and wake-up source diversity to deliver
reliable transmissions in indoor environments. Relacks implements frequency reconfigura-
tion through channel reconfiguration of the BLE transceiver and the tag simply frequency
shift by a fixed amount. In this way, the tag does not need to have the capability of dynamic
channel configuration. System complexity migrates to the BLE transceiver.

Inspired by prior work, we build RBLE using only commodity BLE radios and provide
direct frequency shift modulation, dynamic channel reconfiguration, and adaptive encoding
techniques to improve backscatter reliability.

1.2.3 WiFi Backscatter

WiFi backscatter has attracted much attention since WiFi excitations are ubiquitous, e.g., in
offices, homes, and malls. Researchers have made considerable effort to improve throughput
and ranges of WiFi backscatter systems [48, 87, 89, 85, 49, 17, 88]. Early WiFi backscat-
ter systems suffer from extremely low rates due to packet-level modulation, such as FS-
Backscatter [88] and WiFi Backscatter [48]. [48] attempts to piggyback information on top
of WiFi signals at a packet level and achieves 1 kbps and 2.1 m uplink range. Later, the focus
shifts to the sub-packet level and many novel solutions are proposed. By using a dedicated
device generating continuous waves or specialized hardware, much higher rates are achieved,
e.g., [17, 49]. [49] employs a dedicated CW generator to backscatter 802.11b packets using 4-5
orders of magnitude lower power than normal WiFi. Subsequently, backscatter systems with
commodity radios receive significant interest since it is easy to deploy [42, 85, 87, 46, 89, 90].
Hitchhike [85] and FreeRider [87] leverage novel codeword translation to build commodity
WiFi backscatter systems for 802.11b and 802.11n. MOXcatter further provides the design
of how to backscatter spatial stream WiFi [89], and X-Tandem introduces the first multi-hop
backscatter paradigm that enables multiple tags to transmit sensor data on the same carrier
packet [90], attempting to combine PHY and routing design together; therefore large-scale
and high-throughput backscatter networks can be made possible. The modulation schemes
of the WiFi backscatter tags [85, 49, 87, 89] are mainly based on Phase Shift Keying (PSK)
modulation because 802.11b WiFi uses DBPSK modulation, while 802.11n WiFi uses QAM
modulation that combines phase and amplitude modulation. Multiscatter [37] is the first
work to identify different protocols and pave the way for leveraging various excitation sig-
nals. However, those WiFi backscatter solutions cannot deal with single-symbol decoding
with uncontrolled OFDM WiFi. In contrast, our work identifies the root cause of incom-
patibility between OFDM WiFi operations and codeword translation and proposes novel
deinterleaving-twins decoding that works perfectly on the single-symbol level.
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Other backscatter paradigms. Meanwhile, there are lots of backscatter systems that take
advantage of popular RF signals. Some works propose to backscatter LoRa packets for long-
range low-power communication [69, 71]. Apart from digital backscatter, FM backscatter
[73] and HD backscatter [57] present how to backscatter analog signals, opening the door for
low-power audio and video streaming. Yet, those backscatter excitations are not as popular
and abundant as OFDM WiFi. We intend to investigate the interoperability between OFDM
WiFi and other RF sources in the future.

1.3 Motivation

In this thesis, we target at delivering a fast and reliable link layer and modulation design
for mobile backscatter networks (MBN) in a standard-compatible way, which can benefit
tons of currently deployed backscatter devices. To achieve this, however, there are several
key challenges:
Hardware-Dependent Rate Selection. Rate adaptation is of high importance to all
kinds of wireless networks. Ideally, a good rate adaptation method should timely choose
the optimal rate to maximize network throughput based on changing channel conditions
that are time-varying and location-dependent. Although prior methods [86, 33] can adapt
rates through a well-trained 2D map, they suffer from hardware-dependent problems. We
observe that those trained maps are drastically different from tag to tag, and thus they
would experience severe performance degradation when applying one well-trained map to
other types of tags. The root cause is that the tags are from various vendors or designed for
diverse usages, which inevitably exhibit diverse signal responses due to different antenna
designs, circuit structures, and manufacturing processes.

Probing cost is a critical factor in throughput optimization. Backscatter networks have a
unique characteristic, self-interference. When it happens, both the received signal strength
indicator (RSSI) and loss rates of received signals are high, which is quite different from
normal cases: high RSSIs indicate low loss rates. Therefore, the unique self-interference
problem makes obtaining accurate channel conditions even more difficult [86].
Unreliable modulation. The requirement for specialized and expensive readers has long
bedeviled this near zero-power technology’s wider adoption. Therefore, a bunch of new
backscatter paradigms that work with commodity radios have been proposed recently
[42, 69, 51, 52, 91, 70, 37]. For example, Passive WiFi [49] can decode backscattered WiFi sig-
nals using commercial WiFi radios. BLE-backscatter [25] introduces how to produce BLE
backscatter signals using a dedicated continuous wave (CW) generator. The most recent
work, FreeRider [87], for the first time realizes this goal with only commodity BLE radios.
However, several key reliability issues hinder the progress of interacting with commodity
radios, including unreliable modulation, productive-data dependency, and lack of interfer-
ence countermeasures. For example, to be compatible with BLE signals, FreeRider employs
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two-step modulation. It first shifts the exciting signal to the target channel, e.g., 6 MHz
frequency shift, and then uses an additional frequency shift, e.g., 500 kHz, to do codeword
translation. Doing so would inevitably introduce unreliability due to self-interference or no
solid signal in the target frequency. Hence, a new modulation scheme that does not rely on
codeword translation is needed to fix this problem.
Redundant modulation. Although backscatter communication can already be achieved
with ambient signals, a controlled excitation signal is required. For the systems based on
controlled excitations, the dedicated device sends single tones as carriers, and tags generate
standard packets using backscatter, e.g., WiFi [49], LoRa [69], ZigBee [46]. The advantage
of such a system is that it can deliver standard-compliant data rates for low-power tags.
But generally, the widespread signals in life are not continuous waves, so these systems
can’t reuse the existing ambient signals carrying productive data. Some researchers explore
new backscatter systems that can work with uncontrolled ambient signals. The packet-
level WiFi solutions are proposed first[88, 48], but suffer from low data rates. FreeRider
[87] and MOXcatter [89], can provide symbol-level data transmissions for tags based on
ambient OFDM WiFi signals, realizing about 60 kbps. However, to ensure decent BERs
for the receiver, they employ multi-symbol modulation for tag data. Such redundancy is
introduced to combat the nonlinearity brought by tag modulation. When using every single
OFDM symbol for tag modulation, those systems fail due to highly unstable demodulation
errors.

1.4 Thesis Contribution

This thesis tackles these challenges and seeks to enable robust general-purpose backscatter
with commodity radios.

1.4.1 Contribution Summary

The key contributions of this thesis are as follows:

• MobiRate - A Mobility-aware link layer for rate adaptation in backscatter networks.
MobiRate achieves overall throughput gains of 3.8x over Blink and 2.9x over CARA
on average.

• RBLE - A robust BLE backscatter modulation design that works with an excitation
BLE device and a single BLE receiver. RBLE achieves more than 17.3x and up to 78.8x
goodput gains in LoS cases and achieves more than 17.1x and up to 66.0x goodput
gains in NLoS scenarios.

• RapidRider - A novel WiFi backscatter design that can take uncontrolled OFDM
WiFi signals as excitations and efficiently embeds tag data at the single-symbol rate.

6



direct 
frequency shift 
modulation-

RBLE

BLE

single-symbol 
modulation -
RapidRider

WiFi

mobility-aware 
rate adaptive 
link layer -
MobiRate

RFID

General Purpose

Dedicated Commercial

Figure 1.1: An overview of thesis.

The maximum throughput of RapidRider is 3.92x and 1.97x better than FreeRider
and MOXcatter.

1.4.2 Thesis Overview

A framework of the thesis is shown in Fig. 1.1. This framework includes three components
to address the three key challenges of backscatter systems.

1.4.3 Rate adaptive approach for link layer - MobiRate

In chapter 2, we propose a Mobility-aware Rate adaptation method using PHY information
for backscatter networks. The whole design eliminates hardware dependency by introducing
a throughput-based rate adaptation framework and extensively uses fine-grained mobility
hints to optimize probing processes. It has four major components. First, it introduces a
velocity-based loss-rate estimation, which makes use of PHY information to deduce tag
velocity, resulting in more accurate packet-loss estimation based on mobility history. Sec-
ond, it employs a mobility-assisted probing trigger that uses both position and direction
to considerably reduce unnecessary probes. Third, it designs a selective probing method
that novelly leverages the built-in system command to enable per-tag probing, eliminating
potential MAC collisions. Fourth, a hybrid self-interference detection scheme is proposed to
combat high-loss cases where the received strong RSSIs do not come with low packet losses.
The design philosophy is to achieve high throughput while being compatible with standard
and commercial RFID readers. We prototype MobiRate using a Thingmagic M6e reader
and evaluate it with 12 types of tags across different vendors. MobiRate achieves overall
throughput gains of 3.8x over Blink and 2.9x over CARA on average.
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1.4.4 Reliable backscatter design with BLE - RBLE

In chapter 3, we propose a robust BLE backscatter design that works with an excitation
BLE device and a single BLE receiver. Upon receiving signals from excitation BLE de-
vices, the tag modulates sensor data onto them and backscatters new BLE packets. Prior
BLE backscatter system FS-backscatter [88], Interscatter [46], BLE-backscatter [25] can
not provide a backscatter solution that is completely built by commercial Bluetooth radios.
FreeRider [87], for the first time realizes this goal with only commodity BLE radios but suf-
fers from unreliable two-step modulation. To address this problem, RBLE uses BLE signals
with partial single tones as excitations and finds the optimal modulation index, enabling
robust BLE packet regeneration bit-by-bit. Compared to FreeRider, RBLE achieves more
than 17.3x and up to 78.8x goodput gains in LoS cases and achieves more than 17.1x and
up to 66.0x goodput gains in NLoS scenarios.

1.4.5 Single-symbol backscatter with WiFi - RapidRider

In chapter 4, We present RapidRider, the first WiFi backscatter design that can take un-
controlled OFDM WiFi signals as excitations and efficiently embeds tag data at the single-
symbol rate. We believe such a design brings us closer to pervasive backscatter communica-
tions. Thanks to RapidRider, for the first time, we can use the abundant uncontrolled WiFi
signals around us freely for backscatter. To do so, we first explain why previous systems
fail in single-symbol backscatter and then propose our solution based on deinterleaved data.
Further, a deinterleaving-twins decoding scheme, incorporating a forward deinterleaver and
a backward deinterleaver, is designed to enable using uncontrolled excitations. Moreover,
we deeply explore how the MCS of excitation affects tag demodulation, and further design
and discuss several translation methods for the first time. To break the two-receiver limit,
we introduce a novel aggregated transmission mechanism that allows productive data and
tag data on the same packet. The key insight is to take the pilot symbol as the reference
symbol for tag data demodulation; thus a single receiver is adequate for decoding both data.
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Chapter 2

A Mobility-aware Link Layer
Design

2.1 Background and Motivation

2.1.1 Backscatter Primer

In contrast to active radios, a backscatter link includes a downlink (Reader-to-Tag) and
an uplink (Tag-to-Reader). As the capabilities of tags, e.g., computations and storage, are
quite limited, the downlink usually adopts a simple amplitude modulation, Pulse Interval
Encoding (PIE), which can be decoded using simple circuits on tags. In C1G2, the length
of a bit ‘0’ is defined as Tari (Type A Reference Interval), and the length of a bit ‘1’ is
between 1.5Tari and 2Tari. As PIE is the only encoding scheme for downlinks, the downlink
rate is solely determined by Tari values. C1G2 specifies three options for Tari values, 6.25,
12.5, and 25 µs, corresponding to the maximum downlink rates, 160, 80, and 40 kbps if
all the downlink bits are ‘0’s. If more bit ‘1’s are included, the practical rate would be a
bit lower. On the contrary, the decoding ability of the reader is strong, which allows more
flexible encoding schemes for uplinks. C1G2 describes four encoding schemes for uplinks,
FM0, Miller2, Miller4, Miller8 1. The uplink rate can be configured by the encoding scheme
and BLFs (Backscatter Link Frequency). For example, if BLK=250 kHz, the uplink rates
are 250, 125, 67, and 34 kbps where FM0, M2, M4, and M8 are used, respectively. Note that
all the above configurable parameters, including Tari, uplink encoding, BLF, are completely
controlled by the reader. C1G2 also includes various frame formats and commands between
the reader and tags, such as Query, ACK, and RN16. Basically, what the tag needs to do
is follow the reader’s commands and respond accordingly.
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Figure 2.1: Experiments showing the hardware diversity across 7 types of tags: T1-High
point piano tag; T2-SMARTRAC DogBone; T3-ImpinJ Monza 4D; T4-Alien Higgs 3; T5-
Vulcan folded tag; T6-Vulcan Windshield tag; T7-confidex steelwave tag.

2.1.2 Observation

Rate adaptation is of high importance to all kinds of wireless networks. Ideally, a good rate
adaptation method should choose the optimal rate to maximize network throughput based
on changing channel conditions that are time-varying and location-dependent. Key issues
of rate adaptation include channel estimation and rate selection. In other words, how to
obtain accurate channel status and then choose the optimal rate for it.

In mobile backscatter networks (MBN), Blink [86] is the first work that proposes to
exploit both the loss rate and RSSI as reliable channel measurements because RSSIs alone
are not adequate and may lead to inaccurate prediction due to multipath self-interference.
Thus, Blink builds a rate selection map to select the optimal rate according to the probed

1We use M2/M4/M8 to denote Miller2, Miller4, and Miller8.
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Table 2.1: RSSIs and loss rates for 7 types of tags at the same location where FM0 is the
optimal rate: T1-High point piano tag; T2-SMARTRAC DogBone; T3-ImpinJ Monza 4D;
T4-Alien Higgs 3; T5-Vulcan folded tag; T6-Vulcan Windshield tag; T7-confidex steelwave
tag.

T1 T2 T3 T4 T5 T6 T7
RSSI(dBn) -55 -39 -48 -43 -44 -43 -61

Loss Rate (%) 99 90 94 93 99 95 72

loss rate and RSSI, as shown in Figure 2.1a. CARA [33] follows this approach and makes it
more universal by utilizing both spatial and frequency diversity. While these two work well
in their proposals, we observe that such mapping-based methods can experience significant
performance loss when faced with various types of tags.

We first investigate how channel measurements and optimal rates are related across
different types of tags. In this experiment, we test seven kinds of tags from different manu-
facturers 2. Table 2.1 depicts a group of results averaged over 20 traces where all the tags
are tested on the same spot and the optimal rate is FM0. The only difference is the tag
type. From those results, we observe that the channel measurements, including loss rates
and RSSIs, differ significantly across diverse tags, even for almost the same channel quality,
indicated by the optimal rate (FM0) and the same location. Specifically, for T1 and T5,
they have the same loss rates. Yet, the RSSI gap is -44-(-55)=11, which is huge. More-
over, the ranges of RSSIs and loss rates are considerably wide, namely, RSSIs∈[-61,-39],
loss rates∈[0.72,0.99]. The root cause for this phenomenon is that those tags have diverse
signal responses due to hardware diversity, including different antennas, circuits, and man-
ufacturing processes. For example, T7, a confidex steelwave tag designed for mounting on
steel, has the best loss rate. It has an IP67 rating, which means it can be protected from
dust and is capable of withstanding water immersion between 15 cm and 1 meter for 30
minutes. We consistently observe the same phenomenon through similar experiments in
different environments.

To further examine how hardware diversity impacts network throughput, we select three
tags as a group, including T1, T2, and T3. Then we adopt Blink’s map learning algorithm
and apply the maps learned from T1, T2, and T3 against each other. The results averaged
across 50 different locations are shown in Figure 2.1b. We have two observations here. First,
the tag has the best performance using its own trained map. Specifically, T1, T2, and T3
achieve 120, 114, and 116 reads/s in this case. Second, the throughput degrades remarkably
when the maps are from others. For example, the reading rate of T3 drops from 116 reads/s
to 60 reads/s using T1-trained map.

2The specific types of tags are included in the caption of Figure 2.1
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From the above experiments, we know that mapping-based methods are difficult to deal
with different hardware-dependent channel measurements and thus could degrade network
throughput significantly.

2.1.3 Contribution

We make the following contributions:

• We present a novel rate adaptation framework that efficiently uses PHY information
and interference awareness for MBN.

• We introduce a mobility-aware channel estimation scheme that accurately predicts
channel statues in a lightweight way.

• We design a hybrid self-interference detection method that can handle RFID-specific
high-loss problems.

• We build a working prototype with commodity C1G2 devices, and extensive experi-
mental results show that MobiRate outperforms prior arts in various cases, including
interferences, hardware diversity, and diverse mobility.

We prototype MobiRate using a Thingmagic M6e reader and evaluate it with 12 types of
tags across different vendors. We compare MobiRate against two state-of-the-art solutions,
Blink and CARA, in a wide range of settings. Through extensive experiments, we show that

• When tested with different scenarios (classroom, lounge, etc) and velocities under self-
interferences, our countermeasures can first detect such interferences stably with an
accuracy of more than 90%, and then shift probing direction for better rate selection,
delivering 1.21x throughput gains on average.

• On average, MobiRate reduces probing cost significantly by 7.5x compared to Blink,
and by 6.1x compared to CARA; MobiRate’s rate selection module achieves through-
put gains of 2.4x over Blink and 1.9x over CARA.

• MobiRate achieves overall throughput gains of 3.8x over Blink and 2.9x over CARA
on average.

2.2 System Design

2.2.1 Overview

The previous observations have demonstrated that mapping-based methods, e.g., Blink
and CARA, cannot deal with hardware diversity very well. Hence, we seek another way
around. Unlike mapping-based methods, throughput-based methods are widely adopted in
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WiFi networks [18, 60], and some have been successfully deployed in commercial prod-
ucts, e.g., Minstrel [8] for Linux OS, ATH9k [3] for Atheros WiFi cards. The basic idea
of throughput-based methods is simple. Different from mapping-based methods using sig-
nal strength-related indicators, throughput-based methods primarily rely on the loss rate
deduced from the packet delivery history, which is more reliable and more direct for opti-
mizing throughputs across various environments. A typical drawback of throughput-based
methods [18, 60, 8, 3], however, is that while they work very well with static channels, they
are unable to promptly respond to mobile channels because there is no fast motion indicator
available in the PHY layer.

To achieve the best of two worlds, we design a novel link layer based on loss-rate esti-
mation and show its framework in Figure 2.2. The key distinction of this estimation from
those for WiFi networks is that it is not fixed but velocity-based. Such a design is pre-
ferred in MBNs because when the node moves faster, the channel should change faster, and
the optimal rate should become out-of-date faster. In addition, it has a mobility-assisted
probing trigger that can eliminate unnecessary probing based on velocity and position esti-
mates. Third, it introduces selective probing that creatively makes use of the built-in C1G2
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commands to avoid MAC collisions and enables per-tag rate adaptation, saving significant
probing time. Finally, we compare the probing result against the current rate and choose
the rate that has the smallest predicted average packet transmission time.

2.2.2 Velocity-based Loss-Rate Estimation

Exponential Moving Average. In this section, we show how mobility hints can help
rate adaptation and how we can obtain those hints in a lightweight way. At the start, we
investigate how the optimal rate changes with mobility 3. As depicted in Figure 2.3, we see
that there is a strong correlation between the optimal rate and the intensity of mobility.
In particular, when the tag is static, it is easy to catch up with the optimal-rate change
using a large time window; but when it is mobile, we will have to put more weight on
the recent history. In light of this, MobiRate introduces a packet (throughput) based rate
adaptation method with a mobility-based smoothing factor. It does not require any training
like mapping-based methods [86, 33]. Specifically, the loss rate is estimated as follows,

p′
c = ηpr + (1 − η)pc, (2.1)

where pc is the current loss rate at the current rate, pr is the most recent packet delivery
state, p′

c is the new current loss-rate estimate, η is the smoothing factor that is adjusted
according to the velocity. p′

c is updated for every packet sent. To measure loss rates, we
adopt the classic probing-based method [18, 60, 8, 3]. For example, if we transmit 10 probing
packets and receive 8 acknowledgments, then we estimate the loss rate as 20%. Given the
estimated loss rate, p′

c, and ground truth rate, p′
g, the loss rate error would be p′

e = p′
c − p′

g.
Smoothing Factor. The above equation has been adopted by several prior works of WiFi
networks [8, 3], but they cannot adapt to different mobility. Because η is the key here.
Intuitively, a larger η would put less weight on pc, the current loss rate, which is the
previous history. Thus, a proper high η can ideally smooth out the effects of the past when
the mobility is high, and a proper low η should work well when the mobility is minimal or
even 0. Currently, we set η empirically based on the trace analysis. In particular, we collect
optimal-rate traces based on different velocities ranging from 0 m/s to 1.5 m/s with a step of
0.1 as [41]. Then, we generate 10 random trajectories for each velocity setting and simulate
the mobility for different discrete η values. Some typical results are reported in Figure
2.6. For example, when the velocity is 0.3 m/s, the maximal throughput is achieved with
η = 0.24. Similar trends can be observed for other velocity settings, which means optimal η

values do exist. Therefore, we put those results into three equally spaced groups, v = 0 m/s,
0 < v < 0.8 m/s, v ≥ 0.8 m/s. Then we average their optimal η values within the group
and the obtained group η values are 0.07, 0.28, 0.39, respectively. Note that our smoothing

3The optimal rate is obtained from trace-based analysis as in [41].
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Figure 2.6: We investigate how different η values affect link layer throughput under various
velocity settings. We observe that optimal η values can always be found for different mobility
cases.

factor settings are not optimal in terms of throughput maximization. For example, finer-
grained η searching can be realized by either introducing more velocity groups (≫ 3) or
more subgroups for η discretization.
Deducing Mobility Hints. Different from prior work in WiFi that adjusts η indirectly,
our design is able to choose the best η according to the directly measured mobility. To
accurately set η, we need to estimate the velocity of the tag. Here, we introduce a novel
single-antenna based tracking method that can predict position and velocity in real-time for
rate adaptation. Although there are lots of related work of RFID real-time localization, they
do not fit our purposes. They either introduce undesired tracking delay (at least seconds
[79]) or require antenna arrays [77, 34, 75] to do localizations. Our solution is simple and
elegant, which uses only a single antenna and phases, a PHY-hint, to measure distances.
Phase measurements are supported in most commercial readers as specified in the LLRP
standard [7]. For every successful identification process, the reader outputs a phase reading.
This reported phase can be used to measure the distance between the reader and tag,
denoted as R. From the electromagnetic theory, we can model R and the measured phase,
θ, as follows [79],

θ = 2π
2R

λ
+ θD + θR + Nπ + n, (2.2)

where λ is the wavelength, θD, θR, are phase errors brought by tag and antenna diversity,
and reflection characteristics, respectively, N is the integer ambiguity as the measured phase
is with period π, n is the noise. If we know two phases at two locations, then the distance
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between the two can be approximated as

∆R ≈ λ

4π
∆θ, (2.3)

where θD, θR, and N are perfectly canceled out, and only noise n is left.
The insight of our single-antenna tracking method is to trade the number of anchor

points with the number of antennas. Because we need to adapt the rate for each antenna,
we require the tag to pass two (known) anchor points. Afterward, when the tag moves to
any new position, we can localize it using Equation 2.3 by leveraging the distances between
the new position and the two anchor points. As shown in Figure 2.4, let C1 and C2 denote
two anchor points, and px is the current position, which is unknown. Using Equation 2.3,
it is easy to obtain r1 and r2 reliably. Then by intersecting two circles, we can deduce the
position of px. When there are two intersection points, we can remove this ambiguity by
simply adding another anchor point or using additional constraints.

The complete details of this estimation process can be found in [74]. Here, a brief esti-
mation process is described as follows. As a general time-varying system, we can model the
tracking transition between snapshots k + 1 and k as a Gaussian process,

Θk+1 = AΘk + sk =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 Θk + sk (2.4)

where ∆t is the time difference, sk is the system-state Gaussian noise, A is the system matrix
depicting mobility. Both Θk and sk follow Gaussian distribution, i.e., Θk ∼ N (mk, Σk),
sk ∼ N (0, Qk). Besides the above transition equation, we need to model the observation
process. In particular, the observed distance, zk, can be modeled as two points in Euclidean
space as follows,

zk = (
√

(px,k − Cx,i)2 + (py,k − Cy,i)2) + uk. (2.5)

where Cx,i and Cy,i are the positions of the antenna i that reports ϕk, and uk ∼ N (0, Rk)
is Gaussian noise. When transition and observation equations are ready, we can use Kalman
filters to iteratively estimate future states. Note that since the above observation equation
is nonlinear, we need to use the Extended Kalman Filter. Hence, we change the observation
equation into

zk = Dkθk + uk,

where Dk = ( ∂zk
∂Px,k

, ∂zk
∂Py,k

, ∂zk
∂Vx,k

, ∂zk
∂Vy,k

), is the observation matrix. After this, we just follow
standard Kalman filter processes to do prediction and calibration.

One thing to note is that we can see that N can be cancelled in Equation 2.3. Yet, the
remaining phase may still contain a fractional part (between 0 and π) and an integer part.
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Figure 2.7: (a) is an example of a good channel, which favors the fastest uplink rate (FM0)
and downlink rate (Tari=6.25); (b) is an example of a bad channel. Specifically, both FM0
and M2 encoding settings do not work, and the performance of Tari 6.25 is even worse than
that of Tari 12.5, which suggests Tari 6.25 is an aggressive choice.

Therefore, we employ phase unwrapping [29] to track this integer, as shown in Figure 2.5.
Otherwise, the distance from Equation 2.3 would be always less than λ/4.

2.2.3 Mobility-Assisted Probing Trigger

After knowing how to adaptively compute the current loss rate based on the velocity, the
next question is when we may need to probe channels and in which directions. Generally,
MobiRate starts with the highest rate. When there are four successive failures, it will probe
the next lower rate, which is similar to SampleRate [18]. To avoid being trapped in low
rates, if it stays at some rate over a probing interval, it tries to probe the next higher rate.
Probing Direction. Traditionally, Blink and CARA only consider the downlink rate,
because they think uplinks do not make too much difference in rate adaptation. On the
contrary, MobiRate takes both the uplink and downlink rates into account. To better show
why the uplink rate is essential to backscatter networks, we present two examples in Figure
2.7. Recall that the downlink rate is decided by Tari values, and the uplink rate is con-
trolled by BLFs and FM0/M2/M4/M8. In this test, we fix the BLF at 250 kHz. To examine
how different Tari values affect the throughput, we put the tag at a known spot. As shown
in Figure 2.7a, in the beginning, the link quality is good where faster rates deliver better
throughput. The optimal rates in this case are Tari=6.25 and FM0. From this case, we know
that in the case of good channels, we would miss the chance to increase the throughput if
a too conservative Tari is adopted. Later, we move the tag 1-meter away, we observe dra-
matically different behaviors. As shown in Figure 2.7b, the backscatter link is experiencing
difficulties because the throughputs of both FM0 and M2 are almost 0. The optimal rates
become Tari=12.5 and M4 for this case, which tells that too aggressive rates may even hurt
the overall throughput when the channel condition is not good. The root cause for this is
that if the downlink rate is not properly set, the uplink would be discontinued. Thus, different
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Figure 2.8: Optimal rate distribution at different distances. a) optimal rates are diverse
within 10 m but become dominated by M8/Tari25 around 12 m; b) the similar phenomenon
is observed around 5 m.

from Blink which only focuses on uplink rates, MobiRate always probes in both directions
whenever it needs to test the next higher or lower rate.
Lower-Rate Probing Control. Besides a fixed interval that is used for probing higher
rates, our MobiRate also controls the times of lower-rate probing to reduce probing costs.
There are two special cases we need to take care of. First, when the tag is in dead zones, we
need to probe at the lowest rate, M8/Tari25, and cut all the probing triggers. There are two
kinds of dead zones we observed: a) within the antenna’s beam, about 12 m from the reader;
b) at the beam’s edge, about 5 m from the reader. This rule comes from the observations
in Figure 2.8. We find that while the optimal rate distributions are not the same across
different distances, M8/Tari25 is dominating in the above two zones. The reason of such
dead-zone formation is that when path loss becomes the dominating factor for channel
quality, no one can survive but the lowest rate. Fortunately, our mobility hints can help us
quickly judge whether tags are in those dead zones.

Second, when the tag is moving towards the reader, we increase the number of successive
failures to 8, which is twice of the original setting, in order to suppress a lower-rate probing.
The rationale of doing so is that while the tag moves closer to the reader, more transient
failures can be caused by the fast fading or multipath effects. As observed from Figure 2.8,
when the closer the tag is from the reader, the higher the percentage (probability) the faster
rates become optimal. For example, when the tag is 1 m away, FM0/Tari6.25 takes 81%
share in Figure 2.8a. Thus, to keep from being trapped into lower rates and save probing
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Figure 2.9: Comparison of traditional and selective probing by the message breakdown. The
additional SELECT command is only 46-bit long excluding the MASK field.

Table 2.2: Measurements of RSSIs and loss rates along different lines.

LineA-Distance (m) RSSI (dBm) Loss rate (%)
1 -61 9.4

1.7 -51 98.6
3 -64 23.2
5 -66 71.8

LineB-Distance (m) RSSI (dBm) Loss rate (%)
1 -61.5 10.1
2 -62 14.6

3.2 -53 89.8
4 -64.5 53.8

time, we choose to allow more transient interferences by increasing the limit of tolerable
successive failures.

2.2.4 Selective Probing

After solving the problem of when to probe, we come to the next one: how to probe and
deduce accurate channel measurements. As shown in Figure 2.9, since we intend to keep full
compatibility with C1G2, the minimum unit for probing is the identification process where
the downlink should have Query and ACK commands, and the uplink requires RN16 and
EPC responses. After a correctly decoded EPC is received, we mark the probe as positive,
otherwise negative. Blink [86] adopts similar strategies but has a main drawback: multiple
tags could collide, which is incorrectly counted towards packet loss. To solve this, CARA
[33] proposes to estimate the collision probability. Yet, it still suffers from the problem of
unpredictable capture effects [20]. To overcome the aforementioned difficulties, we observe
the opportunity brought by the built-in command, SELECT.
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Figure 2.10: Illustration of self-interference. When the reader receives the reflected signals
from the tag and the wall at the same time, the signal strength could be high due to
constructive interference, but the loss rate is high as the backscattered signal is not strong.

2.2.5 Self-Interference

For backscatter communication, self-interference is another phenomenon that affects wireless
channels [86]. Different from multipath that usually contains multiple copies of the same
signal at different delays, self-interference happens when the reader receives both reflected
signals from the wall (not backscattered by the tag) and backscattered signals from a tag,
as shown in Figure 2.10. Those two kinds of signals may result in high RSSI if both two
superimpose constructively. This is problematic because usually high RSSI indicates a good
wireless channel. In this case, however, the channel for backscatter signals may be poor
(highly likely) but the reader is ‘fooled’ by high RSSIs brought by self-interference. Further,
such fake high RSSIs can mislead the rate adaptation probing mechanism.
Self-interference observation. To deal with it, we first need to examine how self-interference
affects wireless communication. Through extensive experiments, we observe that there is a
distinct feature with self-interference, which exhibits itself as high RSSIs and loss rates. To
examine how it behaves, we move the tag along different lines and measure RSSIs and loss
rates at different distances. The results of two typical lines are shown in Table 2.2. Along
Line A, the tag at 1.7 meters away experiences self-interference. It has an RSSI of 51 dBm,
much higher than the RSSIs at 1 meter and 3 meters. Meanwhile, it has a loss rate of 98.6%,
which is even greater than loss rates at 3 and 5 meters. Similarly, we observe that when
the tag moves along Line B, it experiences a loss rate of 89.8% and an RSSI of -53 dBm,
which shows an unreasonably high loss rate than even further distances. Actually, the same
phenomena are observed for other line movement results not shown in Table 2.2.
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Figure 2.11: Loss rate estimation for self-interference cells by different interpolation ap-
proaches.

Self-interference detection. From the above observations, we design a detection strategy
to capture self-interference. The key idea is to filter out the measurements that have higher
RSSI and loss rates than usual. First, we do a site survey. In particular, we empirically
build a grid of 10 m × 10 m, with each column and row of 50 cm width. Each unit records
the average of RSSIs and loss rates. After we obtain this initial measured map, we need to
remove self-interference cells that have high RSSIs and loss rates.

Second, we need to refill those blank cells after self-interference removal. Here, we employ
interpolation for refills. In particular, we compare several classic approaches, including mean,
least square (LS), spline, and weighted least square (WLS), and choose the best one. From
the results in Figure 2.11, it is easy to tell that WLS is always the best among all four
interpolation methods in different scenarios, so we adopt it for estimating self-interference
cells due to its robustness. The primary reason for this is that WLS properly estimates the
RSSI first and then uses the RSSIs as the weights for loss rate estimation. For the ground
truth channel statues, we use a USRP to emulate the tag to do channel estimation by filling
out the interference signals from the reader.

After the map is fully rebuilt without self-interference, we empirically set two thresholds,
Rt and Lt. For each measured Rm and Lm, we compare them against the closest unit based
on the estimated location. If the deviations are more than Rt and Lt at the same time, we
estimate the state to be self-interference. Otherwise, it is self-interference free.
Probing after detection. Based on the states detected, we need to take different probing
measures. If there is no self-interference, we just follow the previously bi-directional probing
based on the current rate. However, if self-interference is detected, bi-directional probing is
wasting time. Because in this case, it is the SINR (Signal to Interference and Noise Ratio)
that determines the rates. The real backscattered signal is weak, and thus there is no chance
that a higher rate can provide better throughput. As such, the probing strategy is to check
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with lower rates to jump out of the high ’loss rate’ trap. The pseudo-code for self-interference
of rate adaption is outlined in Algorithm 1.

Algorithm 1 Self-interference detection for rate adaption
//Site survey, N=400 in a 10x10m area
for i = 0 to N − 1 do

R(i)=average RSSIs in this cell
L(i)=average loss rates in this cell

end for
Remove self-interference cells.
Refill those cells using WLS interpolation.
//self-interference detection
Find the localization cell x //Given Rm and Lm

Obtain the corresponding R(x), L(x)
if R(x) − Rm > Rt and L(x) − Lm > Lt then

self-interference-state = true
else

self-interference-state = false
end if
//Probing after detection
if self-interference-state then

probe the lower rates
else

bi-directional probing for the best rate
end if

2.3 Implementation

In our implementation, we employ a Thingmagic M6e reader, which is fully compatible with
the C1G2 standard. The tags we test include 12 types, such as the Alien Higgs 3 tag (T4),
the metal resistant tag (T7), the SMARTRAC ShortDipole tag (T12), which are the same
as [30]. As the sensor data is not important for transmissions, we simply write random bits
into those tags. The rate adaptation programs are written in C# using Mercury API SDK
v1.29.3.

Other experimental parameters include: BLK 250 kHz, Tari 6.25/12.5//25, uplink en-
coding methods FM0/M2/M4/M8, ID 96-bit long, reader power 30 dBm. We also compare
MobiRate against Blink [86] and CARA [33], two state-of-the-art MBN rate adaptation
methods.

2.4 Evaluation

Mobility Hints. At the start, we examine how the single-antenna tracking works. For the
first group of experiments, we put the tag at different locations but within the reader’s

22



1m 4m 7m 10m

20

40

60

80
A

ve
ra

ge
E

rr
or

(c
m

)
Raw Filtered

(a) Localization errors at different distances from the
reader

0.1m/s 0.2m/s 0.3m/s 0.4m/s 0.5m/s

20

40

60

80

100

R
el

at
iv

e
E

rr
or

(%
)

Raw Filtered

(b) Velocity relative errors at different mobility

Figure 2.12: Comparison of raw estimates and Kalman filtered results. (a) The filtered
results are always better than raw estimates and the localization errors grow with the
distance due to attenuated RSSIs; b) The filtered velocity estimates are also better than
raw results, while the velocity error is well under control across different mobility.
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(b) Comparison of cases that are with and without
our lower-rate probing control mechanism.

Figure 2.13: (a) shows that adapting both rates is necessary as adapting a single link can
only achieve around half of the optimal throughput; (b) shows that the lower-rate probing
control mechanism helps optimize throughput about 25% across different velocities.

beam. They are 1 m, 4 m, 7 m, and 10 m away. The results are depicted in Figure 2.12a.
We can see that the average localization errors of the raw and Kalman filtered estimates
are 31 cm and 20 cm, which are adequate for rate adaptation. This is achieved using only
a single antenna, and all the processing are done is real-time as well. In addition, we want
to investigate the quality of velocity estimates. To do so, we use a programmable robot
(iRobot Create 2 ) carrying a tag, whose velocity could be controlled by reprogramming. As
demonstrated in Figure 2.12b, the velocity relative error is within a reasonable range for
different velocities. Specifically, the errors of all the filtered velocity estimates are less than
12%. In a word, our mobility deduction is rewarded since it can deliver high-quality location
and velocity estimates in real-time.
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Figure 2.14: Estimation errors with high mobility and its impact on system performance.

Probing Trigger. Next, we continue to examine how well our probing module performs.
Here, we focus on two things: 1) adapting both the uplink and downlink; 2) the lower-rate
probing control mechanism. First, we conduct a comparison for three scenarios: adapting
only the uplink, only the downlink, and both. As shown in Figure 2.13a, we see the through-
put of adapting both links is always better than the other two. In particular, when the tag
moves at 0.3 m/s, adapting only the uplink brings 58 reads/s while adapting only the down-
link has a throughput of 60 reads/s. On the contrary, when both links are considered, the
throughput improves to 138 reads/s. Similar trends are observed for different mobilities.
This confirms that both rates should be well adapted to maximize network throughput.

Furthermore, we perform a microbenchmark test on our lower-rate probing control mech-
anism. As shown in Figure 2.13a, the system with a probing-control mechanism has better
performance. For example, when the robot travels at 0.4 m/s, the system without a probing-
control mechanism can only deliver 90 reads/s throughput while it improves to 120 reads/s
after probing-control is introduced, corresponding to a gain of 1.34x. In short, we prove
the lower-rate probing control mechanism is effective and useful, which delivers a 1.25x
throughput gain on average.
Performance with High Mobility. Previously, we have shown velocity estimation errors
with low mobility under 0.5 m/s, which is mainly due to the moving speed of the robot.
In the case of channel hopping, our method supports up to 2.67 m/s mobility 4. Within
a channel, the supporting velocity increases to 10 m/s 5. Although high mobility robots
are not affordable (e.g., more than $100,000) at the moment for us, we ask our volunteers
to carry tags moving at 0.5 m/s, 1 m/s, 1.5 m/s, and 2 m/s, respectively. Also, we use

4Since the gap of phase measurements from two channels is 30 ms and as long as the phase rotation is
less than π, which corresponds to 8 cm displacement, there is no ambiguity.

5The time of two consecutive phase measurements in a channel is around 8 ms.
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Figure 2.15: Detection accuracy for different scenarios in (a) and tag velocities in (b). Both
show that our self-interference detection scheme is robust and achieves more than 90%
accuracy for all cases.

0.1 m/s 0.2 m/s 0.3 m/s 0.4 m/s
0

100

200

300

T
hr

ou
gh

pu
t(

re
ad

s/
s)

w/ self-interference detection
w/o self-interference detection

(a) Impact of self-interference detection on mobile
tags.

1 tag 5 tags 10 tags
0

100

200

300

T
hr

ou
gh

pu
t(

re
ad

s/
s)

w/ self-interference detection
w/o self-interference detection

(b) Impact of self-interference detection on tag
populations.

Figure 2.16: Throughput comparison for mobile tags in (a) and tag populations in (b). The
results show that the throughput with the self-interference detection is on average more
than 20% better than that without such detection.

an OptiTrack system [15] to ensure the human moving speed is as close to our predefined
setting as possible.

The results of high mobility are shown in Figure 2.14. From Figure 2.14a, we can see
that our velocity estimation errors are within 20%, demonstrating that even though our
estimation scheme is lightweight but still quite robust to higher mobility. In particular, when
the tag moves at 0.5 m/s and 1.5 m/s, the velocity estimation errors are 13% and 14.3%,
respectively. Then we investigate how high mobility affects overall reading performance.
Besides different mobility statuses shown in Figure 2.14b, for each status, we try three
different tag populations, which are 1, 5, 10 tags, and report the average. We observe that
all three systems are negatively impacted by mobility, but MobiRate stays strong whereas
the other two surrender. Particularly, when the tags moves at 2 m/s, MobiRate achieves
2.4x and 4.5x throughput gains over Blink and CARA. CARA is the worst because it lacks
mobility hints.
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Figure 2.17: Overall throughput comparison.

Self-Interference Detection. Next, we examine how our self-interference detection works.
First, we perform tests in different scenarios, including lounge, office and corridor. Results
in Figure 2.15a demonstrate that our detection is very robust because the accuracies are
all above 90% in all three cases. As offices and corridors tend to have more reflectors than
lounges, which brings more self-interferences, the detection achieves the best accuracy in
lounges. Also, we need to investigate how the detection scheme works with tag mobility.
Figure 2.15b shows that decent accuracies are achieved for a range of different velocities,
which means our detection is resilient to tag mobility. It is mainly due to our accurate
single-antenna localization scheme. It not only outputs precise locations but also reliable
velocity estimates. Thus, the detection can make use of such estimates to find the right
closest unit of the empirical grid.

Besides, we conduct microbenchmark tests to check the effectiveness of probing based
on the detection results. For a single mobile tag, we let it move at different velocities
and compare the throughputs of our probing scheme against the partial implementation
without self-interference detection. Figure 2.16a plots the results. We observe that for tags
of different velocities, the probing with self-interference is consistently better than that
without detection, which is a 1.28x throughput gain on average. This is because of shorter
probing time as we only need to probe lower rates once self-interference is found. Also, we
examine how self-interference detection impacts different tag populations. Results in Figure
2.16b show that successful self-interference detection also benefits the whole tag population,
which is on average a 1.21x throughput gain. It can be primarily attributed to high-accuracy
detection and selective probing, which avoids unnecessary time waste on empty slots.
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Overall Performance. In the end, we study the overall performance. In particular, we
conduct more than 120 tests for a wide range of parameters. The velocity of tags varies
from 0 to 1 m/s and tag populations are from 1 to 15. Those experiments are performed
for 10 days at two different places, an indoor office and a lobby. We report the overall gains
and their breakdown in Figure 2.17. From those, we observe that MobiRate is the best
and achieves overall throughput gains of 3.8x over Blink and 2.9x over CARA on average.
To break down these gains, MobiRate reduces probing cost significantly by 7.5x compared
to Blink, and by 6.1x compared to CARA. This is attributed to the design of mobility-
assisted probing trigger and selective probing. In the meantime, MobiRate is 2.4x and 1.9x
better than Blink and CARA in terms of data transmission. Those gains are primarily due
to throughput-based rate selection that can adapt rates according to both the uplink and
downlink.

2.5 Discussion

Probing Process: MobiRate uses full identification processes for probing, which incurs
some unnecessary delays, like collecting EPC. However, such limitation is mainly due to
COTS device compatibility. Therefore, for a lighter probing scheme, we may introduce an
SDR reader that can probe tags using much shorter packets and ACKs, like Query or other
customized commands. Also, we may borrow the WiFi probing packet design from [8], where
the length of the payload is made as short as possible.
Opportunity-based Fairness: Currently, MobiRate is fully compatible with C1G2, which
means it follows C1G2 MAC protocols. In C1G2 protocols, not every tag has equal ac-
cess time because it only provides opportunity-based fairness. Actually, opportunity-based
fairness methods are widely adopted in mainstream wireless networks, e.g., WiFi [2] and
Bluetooth. The key to opportunity-based fairness methods is to provide equal chances to
all the nodes while access time and communication throughput are not guaranteed. In most
real-world applications, like asset tracking [79], opportunity-based fairness methods work
well since they can easily adapt to complex wireless environments.
Starving Tags: In our current design, there may be starving tags, i.e., some tags may
never be interrogated. To deal with such a problem, we may design a throughput-based
access protocol, where it is guaranteed that each participant can achieve equal throughput.
For such a design, usually the rate is fixed (e.g., FM0) in the link layer because it would
be quite challenging to ensure the same throughput for multiple rates. One solution for
multi-rate cases is that we may try to provide equal access time to all the nodes, instead of
throughput. In the future, we intend to improve the current link layer design to ensure no
starving tags.
Smoothing Factor: In theory, the main factors that affect the smoothing parameter are
mobility and environment. In this paper, we mainly employ velocity to denote mobility, and
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future work may further investigate acceleration and orientation. Meanwhile, modeling the
environments includes RF propagation properties, frequency fading, polarization, etc. In
addition, we guess deep reinforced learning may be an excellent way to set the smoothing
factor better. For example, we can infer η by collecting more data traces and employing the
interaction between η and real-world rate feedback. This way, we can dynamically change η

according to different environments and mobility statutes. However, this method may incur
unwanted processing delays; thus, how to make it lightweight is worth further examination.

2.6 Conclusion and Future Work

We have presented MobiRate, a mobility-aware rate adaptation for MBNs. Specifically,
we have designed a novel single-antenna tracking method, which can accurately deduce
mobility hints from the PHY layer. Future work includes distributed rate adaptation for
unsync readers, fair MAC accesses, and extensions to other general-purpose backscatter
systems, including WiFi, Bluetooth, and LTE.
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Chapter 3

A Reliable Modulation Design For
BLE Backscatter

3.1 Background and Motivation

3.1.1 BLE Primer

BLE is a massive overhaul of the previous Bluetooth specifications by providing significant
power saving for peripheral devices that do not require high data rates but the lengthened
battery life, such as healthcare and fitness applications. It achieves huge market success and
thus most operating systems including iOS, Android, as well as macOS, Linux, Windows 8
and 10, natively support BLE [10, 11, 4, 9]. BLE operates at 2.4 GHz, the unlicensed ISM
band, and has a 1 Mbps raw data rate. It has 40 pre-defined channels ranging from 2400
to 2483.5 MHz, each of which is 2 MHz wide. To build connections and transmit data, the
specification defines two kinds of packets: advertising and data packets. BLE devices send
advertising packets to broadcast data and allow other devices to find and connect to them.
The BLE device advertises on three channels, channel 37 (2402 MHz), channel 38 (2426
MHz), and channel 39 (2480 MHz).

3.1.2 Problems of Prior System

The backscatter solutions offered by FS-backscatter [88], Interscatter [46], and BLE-backscatter
[25] cannot be entirely built using off-the-shelf Bluetooth radios. However, the latest work
in this area, FreeRider [87], has achieved this goal for the first time, using only commodity
BLE radios. It, however, suffers from several key reliability issues.

1. Unreliable two-step modulation. To be compatible with BLE signals, FreeRider em-
ploys two-step modulation. It first shifts the exciting signal to the target channel, e.g.,
6 MHz frequency shift, and then uses an additional frequency shift, e.g., 500 kHz, to
do codeword translation. Detailed later in Section III, doing so would inevitably in-
troduce unreliability due to self-interference or no solid signal in the target frequency.
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Figure 3.1: RBLE conceptual design. The RBLE tag modulates its sensor data on BLE
exciting signals and backscatters new BLE packets that any commodity BLE device can
decode.

Hence, a new modulation scheme that does not rely on codeword translation is needed
to fix this problem.

2. Productive-data dependency. Besides the unreliable modulation, FreeRider has another
serious issue that it requires the data sequence of exciting signals to decode the tag
data, which means if the data sequence of the original channel is corrupted, there is
no way to successfully decode the tag data even when the backscatter data sequence is
error-free. Though working with productive data is a nice property, such productive-
data dependency would significantly impact the BER of the tag data, especially when
the quality of the original channel becomes unstable due to mobility or occlusion.

3. Lack of interference countermeasures. None of the previous Bluetooth-based backscat-
ter systems has provided proper countermeasures to interference. In fact, those sys-
tems do not perform well in the presence of overlapping channel interference caused by
other wireless technologies, including WiFi, ZigBee, cordless phone, microwave oven,
which simultaneously work on the crowded 2.4 GHz ISM band.

3.1.3 Contribution

To make BLE backscatter reliable, RBLE makes the following technical contributions:

• RBLE uses BLE signals with partial single tones as excitations and finds the optimal
modulation index, enabling robust BLE packet regeneration bit-by-bit.

• RBLE designs dynamic channel configuration that allows RBLE tags to perform
channel hopping to bypass seriously interfered channels while none of the previous
BLE-based backscatter systems has provided proper countermeasures to overlapping
channel interference.
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• RBLE presents BLE packet regeneration that uses adaptive encoding to further en-
hance backscatter reliability for challenging situations, e.g., low SNRs. The introduced
adaptive encoding for BLE backscatter significantly reduces BERs.

We prototype RBLE using TI CC2540 radios and customized tags implemented by FP-
GAs. Through extensive empirical evaluation, our main results are summarized as follows.

• Compared to FreeRider, RBLE achieves more than 17.3x and up to 78.8x goodput
gains in LoS cases, and achieves more than 17.1x and up to 66.x goodput gains in
NLoS scenarios.

• The maximum goodput RBLE can achieve is 16.6 kbps, which is 95% of the theoretical
capacity for a single excitation commodity BLE radio. Also, the maximum uplink
ranges of RBLE are 25 m for indoors and 56 m for outdoors.

• By the help of dynamic channel configuration, RBLE with channel hopping achieves
1.92x goodput gain over the one without such help in the presence of strong WiFi
interference.

• Our adaptive encoding can significantly reduce BERs. When the uplink distance is 5
m, the BER can be reduced from 0.56% using M1 encoding to 0.1% using M8, and
when the uplink distance increases to 20 m, the BER drops from 9.2% using M1 to
0.45% using M8.

• We also implement RBLE with only off-the-shelf phones, including iPhones and An-
droid phones. The experiments show that RBLE is able to work with both data and
advertise packets from smartphones as carriers, and the maximal uplink range is 16
m for an iPhone as the receiver.

3.2 System Design

3.2.1 Overview

Figure 3.2 shows the framework of RBLE. A BLE device generates exciting BLE signals
to control RBLE tags. Upon BLE signals are detected, the RBLE tag parses commands
including hopping sequence, channel dwelling time, encoding coefficient, etc. Those core
command parameters drive a state machine to dynamically configure channels. Those chan-
nel parameters together with tag data are used for BLE packet regeneration to produce raw
binary bits, and to decide how to modulate the exciting BLE signals.

3.2.2 Modulation Using Direct Frequency Shift

The core of RBLE is how to modulate an exciting BLE signal into another BLE signal.
Although we share the same motivation as the seminal work, FreeRider, our solutions are
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Figure 3.2: RBLE framework. After the RBLE tag detects exciting signals, commands are
parsed using packet length demodulation. Then it drives dynamic channel configuration
module together with tag data to regenerate corresponding BLE signals using direct fre-
quency modulation.

quite different. Before the discussion of how well FreeRider performs, let us briefly review
how original BLE signals modulate. As shown in Figure 3.3(a), in a channel of 2 MHz, the
symbol 1 is represented by a position frequency deviation fd, 250 kHz, and the symbol 0
is represented by a negative frequency deviation of the same amount, following Gaussian
frequency shift keying (GFSK). According to BLE specifications, there are two mandatory
tests to make sure that first, such deviations should be within 225 kHz and 275 kHz, which
is 50 kHz wide, and second, at least 99.9% of all deviations must be greater than fl, 185
kHz.

In order to make backscattered signals still BLE legitimate, FreeRider novelly proposes
codeword translation, which translates one codeword to another. Note that this codeword
translation happens after a frequency shift that moves the exciting signal from the original
channel to the target channel. So we call it two-step modulation. While this proposal works
really well with phase modulation for WiFi signals, some unexpected issues arise with GFSK
modulation. As in GFSK, there are only two codewords, 0 and 1, which means codeword
translation has to encode information by changing 0 to 1 or 1 to 0. In particular, such
requirement of GFSK-based codeword translation leaves FreeRider only two choices, which
is a dilemma. The first choice is shown in Figure 3.3(b), where the original symbol is 0 and
FreeRider wants to make it 1. So it directly performs a frequency shift, ∆f = 500 kHz,
then the shifted symbol becomes 1. However, this operation inevitably produces another
unwanted copy at −250 − 500 = 750 kHz, which is still within the BLE channel, creating
self-interference. As said in FreeRider [87], single side-band cancellation solutions do not
apply here because codeword translation is not aware of the original symbol and thus does
not have any idea which side should be cancelled. Hence, the other choice left for FreeRider
is to move this unwanted copy out of the channel, then built-in filters on the BLE receiver
would ignore it, as depicted in Figure 3.3(c). So for the same purpose translating 0 to 1,
∆f has to be more than 750 kHz. In this case, it indeed moves the unwanted copy signal
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௖݂ ൌ 0
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2 MHz

symbol  0

(a) BLE GFSK modulation

250݇െ250݇
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self-interference

(b) FreeRider: Case 1

250݇െ250݇

Δ݂ ൌ 800݇

no solid signal

(c) FreeRider: Case 2

Figure 3.3: The BLE specifications require a symbol 0 to be encoded as a negative frequency
deviation around 250 kHz and a symbol 1 as a positive 250 kHz deviation, shown in (a).
When FreeRider does codeword translation, it makes two cases. Case one chooses frequency
shift as 500 kHz to translate 0 to 1 as in (b) brings self-interference caused by the unwanted
copy at -750 kHz. Case two is to move this unwanted copy outside the channel by performing
a frequency shift of more than 750 kHz as in (c), leaving no solid signal at 250 kHz. Both
cases lead to unreliable modulation for FreeRider.

out of the channel but leaves no solid signal at 250 kHz deviation, where the BLE receiver
looks for. In other words, case 2 makes translated codeword susceptible to noise. From the
above, we can see that both choices result in unreliable modulation for FreeRider.
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Figure 3.4: Direct frequency shift modulation example. To modulate a symbol 0 to target
channel 3, we only need to shift a frequency of 8 MHz on the zeros single tone of the exciting
signal on channel 37. A frequency shift of 8.5 MHz is for the symbol 1.

We empirically test FreeRider for various ∆f and find that for single-bit modulation,
BERs are all above 30% when ∆f is between 500 kHz and 1 MHz, which presents huge
challenges for practical applications. By investigating this problem in depth, our direct
frequency-shift works as follows. First, we make the single tone part of a BLE signal as the
modulation carrier. Inspired by Interscatter [46], by properly performing reversely-whitening
techniques, the payload of the BLE signal can be made all ones or zeros, which are single
tones. Next, we directly apply frequency shifts to modulate 0 or 1 in the target channel.

As shown in Figure 3.4, suppose we have all zeros single tone in advertising channel 37,
and our target channel is data channel 3. If we need to modulate a symbol 0, a frequency
shift of 8 MHz, ∆f1, would be chosen to modulate. Similarly, a frequency shift of 8.5 MHz,
∆f2, would be able to modulate a symbol 1. While such a design is simple, it is efficient and
easy to implement. Also, it removes the productive-data dependency brought by FreeRider
and requires only a single BLE receiver to decode. Moreover, while the Cyclic Redundancy
Check (CRC) result of FreeRider packets is always erroneous, ours can be made right, which
is important when the receiver is a smart device supporting BLE because many application
software cannot display CRC-error packets [14, 13, 12]. In addition, for the unwanted copy
of our frequency shift, though it would never fall into our target channel, we can still either
apply single side-band cancellation techniques [46, 85] or just rely on the filters on the BLE
receiver to take care of it, reducing unnecessary interference for other channels.

3.2.3 Dynamic Channel Configuration

Most existing backscatter systems [85, 46, 87] are all static, which means targeting a single
channel. Meanwhile, those systems are working on the same 2.4 GHz ISM band, which
is quite crowded and thus full of interference. So, we intend to design a dynamic channel
configuration scheme to enable channel hopping for RBLE and to reduce interference impact.
To do so, first, we need a configurable clock generator that produces two different clocks
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Figure 3.5: Configurable clock generator providing two clocks for modulation.

for our modulation. Hence, we design a Phase Locked Loop (PLL) based clock generator as
shown in Figure 3.5. A phase-locked loop is a negative feedback control circuit that utilizes
the voltage generated by phase synchronization to tune the voltage-controlled oscillator
to produce a target frequency. The clock generator circuit mainly consists of a voltage-
controlled oscillator (VCO), a phase frequency detector (PFD), a charge pump (CP), a
loop filter (LP) and a lock monitor. The heart of the clock generator is the VCO. The VCO
outputs a signal, part of which is divided by the input frequency to generate clock1 and
clock2. The other part (CLKFB) is phase-compared with the reference signal in PFD to
realize feedback; therefore the VCO can output a stable clock signal. O1, O2, M, and D are
programmable frequency dividers with configuration registers that adapt the VCO to our
clock generator. By configuring these registers, clock generator can generate the required
frequencies. The VCO frequency can be determined by:

FV CO = FCLKIN (M

D
) (3.1)

FV COMIN ≤ FV CO ≤ FV COMAX (3.2)

Frequency of two frequency modulation (FM) clocks can be calculated using this formula:

FF M = FCLKIN ( M

D · O
) (3.3)

where FV COMIN and FV COMAX represent the controllable frequency range of the VCO,
and FCLKIN is the frequency of CLKIN. The M, D, O1, and O2 values come from config-
uration registers of programmable frequency dividers. The values of M , D must be chosen
appropriately to keep the VCO within its frequency range. Based on two generated clocks,
we can feed them into the modulation module that uses different clocks to control the RF
switch accordingly.

To enable channel hopping, we need multiple sets of different clocks. One way is to
generate multiple sets of clocks at the same time and select one set for output at a time.
Nevertheless, it inevitably boosts power consumption if too many clocks are involved. For
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Figure 3.6: Channel hopping happens from user logic that parses hopping commands from
exciting signals and then tells a state machine where to hop. Upon receiving this command,
the state machine controls the reconfigurable clock generator through a set of ports, includ-
ing Point, Read, Write, Locked, and Reset. After the generator state is locked, it produces
two different clocks for the target channel.

example, there are 40 channels for BLE, which requires 80 clocks for hopping across them.
To get around this, we design a dynamic reconfiguration technique to produce the required
two clocks for each hopping. Thanks to our previous configurable clock generator design,
dynamic reconfiguration only needs to vary the voltage level of VCO and reconfigure the
registers of programmable frequency dividers. Specifically, dynamic reconfiguration is to
dynamically change values of M, D, O1, and O2 in our configurable clock generator.

Our dynamic reconfiguration is performed through a reconfiguration port which provides
access to the configuration bits stored in configuration registers. We design a state machine
to drive the reconfiguration port. The state machine is used to generate control and data
signals for the reconfiguration port using pre-computed values stored in ROM. This state
machine ensures the configuration registers in clock generator are controlled and reconfig-
ured in the correct sequence. Specifically, after the state machine receives the hopping signal
from user logic, it first points to the configuration register of the clock generator through
the reconfiguration port and then reads the previously configured parameters of the output
frequency. Next, it masks the range of bits that need to be changed in configuration regis-
ters and chooses the appropriate ROM address according to the reconfiguration state. After
that, it writes the updated values of M, D, O1, and O2 to configuration registers. Finally, it
waits for the locked signal from the clock generator which indicates the completion of this
reconfiguration event. When the frequencies of two clocks are changed, the state machine
becomes ready again for the next reconfiguration. The configuration parameters including
the addresses, masks, and new configuration values, are stored in a pre-initialized ROM.
Figure 3.6 shows the block diagram of our channel hopping process. The state machine pro-
vides multiple reconfiguration states for user logic. The first set is the default state. Other
sets correspond to user-configuration loaded into the configuration registers. Each state has
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a set of pre-computed values of M, D, O1, and O2. The user logic is generated by parsing
commands from exciting signals, e.g., hopping sequence.

3.2.4 Packet Regeneration

After we have direct frequency shift modulation and channel hopping support, it comes to
BLE packet regeneration. Suppose that we already have an exciting advertising packet where
the Adv payload is single tone using reversely-whitening techniques [46]. To backscatter a
legitimate packet with tag data, we have two options. First, we backscatter it to another
advertising packet in a different advertising channel. In this case, we only need to modulate
the tag data onto the Adv Payload field and keep all the fields before it unchanged. The
second case is we can backscatter the exciting packet into a data packet. To do so, we need
to fabricate the Preamble, Access Address, and Header for the regenerated data packet, and
modulate tag data in the Data Payload field. By enabling regenerating both advertising and
data packets, RBLE can hop freely and communicate across all 3 advertising channels and
37 data channels. To enable modulating on the single tone part of the signal, we need to
find the starting position of the Adv Payload. Particularly, we employ an RF signal power
detector and a voltage comparator. There are lots of off-the-shelf solutions. For example,
AD8313 can convert an RF signal to an equivalent DC voltage with high accuracy, and has
40ns signal response time, which fits BLE applications. After the detector discovers a BLE
signal, we can have a positive edge generated by the following voltage comparator. Then it
skips 104 µs, which is the length of the preamble, access address, header, and adv address.
Our modulation starts right after this at the rate of 1 µs per bit. Although our modulation
is quite robust as a single-bit solution, it could become relatively unstable when the channel
condition changes fast. To tackle this, we borrow the idea in the C1G2 standard [5, 32, 33]
that uses Miller encoding to achieve a tradeoff between channel conditions and data rates.
Specifically, RBLE enables 3 other different encoding coefficients: 2, 4, 8, which correspond
to 2 µs, 4 µs, 8 µs encoding rates. This way, the tag can adapt different encodings based
on channel qualities.

3.2.5 Downlink Communication

Control communication is required between the tag and the receiver because the tag and
receiver need to be synchronized. The BLE receiver performs channel hopping according
to the channel quality. Before the receiver hops to a new receiving channel, it needs to
send channel parameters to the transmitter. The transmitter forwards these parameters to
the tag through downlink communication and then continuously transmits exciting signals
for backscatter until it receives the new parameters from the receiver again. Note that
most complexities, e.g., when to hop channels, and what kind of encoding should be used,
lie at the excitation and receiver BLE devices, the RBLE tag just follows orders from
standard BLE devices, similar to the RFID tag design. Upon BLE signals are detected, the
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Figure 3.7: Adjustment of modulation index. We empirically test RBLE for various modu-
lation indexes and found that when the modulation index is set to 1, the system has the
lowest BER.

RBLE tag parses commands including hopping sequence, channel dwelling time, encoding
coefficient, etc. Those core command parameters drive a state machine to dynamically
configure channels and choose the encoding coefficient for BLE packet regeneration. For
downlink communication mainly responsible for disseminating parameters, we adopt Packet
Length Modulation (PLM) that is widely used by other state-of-the-art systems [90, 87, 89].
For better efficiency and confusion avoidance, the predefined sequence using PLM is used
to trigger the command parsing process.

3.2.6 Modulation Index of RBLE

RBLE tag regenerates BLE packets using direct frequency shift modulation. Direct fre-
quency shift is essentially a binary frequency shift keying (BFSK) modulation adapted to
backscatter. BFSK uses a pair of discrete frequencies to transmit binary (0s and 1s) infor-
mation [61].

The modulation index of commodity BLE is 0.5. The modulation index indicates how
much the modulated variable varies around its unmodulated level. The modulation index
(M) is given by:

M = 2 · fd/R (3.4)

where R is the symbol rate of BLE signal which is 1 Mbps. fd is frequency deviation. 0.5
is the smallest BFSK modulation index that can be chosen such that the waveforms for
symbol 0 and symbol 1 are orthogonal. To regenerate a valid BLE signal, we first set the
parameter like this when performing direct frequency shift modulation:

fd = |∆f2 − ∆f1|/2 = 250kHz (3.5)

|∆f2 + ∆f1|/2 = |fc2 − fc1| (3.6)

That is, the RBLE modulation index is set to 0.5, which is the same as commodity BLE
transmitters. However, through experiments, we find that when the modulation index is
0.5, the modulation performance is poor. This is due to the fact that the GFSK modulation
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Figure 3.8: Direct frequency shift modulation example with a modulation index of 1. In this
case, we set the parameter like this: |∆f2 − ∆f1|/2 = 500kHz; |∆f2 + ∆f1|/2 = |fc2 − fc1|.

of commodity BLE is more complex than the modulation scheme of RBLE tag. GFSK
supports a modulation index of 0.5, which is not the optimal modulation index for RBLE’s
BFSK modulation. So we need to find the most suitable modulation index for RBLE. We
can easily adjust the modulation index of RBLE by changing ∆f1 and ∆f2 used in direct
frequency shift. Since frequency deviation must be less than 1 MHz (Channel bandwidth
of BLE is 2MHz), the modulation index should be in the range of 0.5 to 2. We empirically
test RBLE for various modulation indexes and found that when the modulation index is set
to 1, the lowest BER can be obtained at the receiver, as shown in Figure 3.7. The selected
modulation index (1) ensures a sufficiently reliable modulation performance. In summary,
we set the parameter like this when performing direct frequency shift modulation:

fd = |∆f2 − ∆f1|/2 = 500kHz (3.7)

|∆f2 + ∆f1|/2 = |fc2 − fc1| (3.8)

The bandwidth of the frequency-modulated signal is related to the modulation index.
The approximate bandwidth of a frequency-modulated signal can be estimated by Carson’s
bandwidth rule:

BW = (M + 1) ∗ 1/Ts (3.9)

where Ts is the symbol duration of BLE (1 µs). M is the modulation index. Setting the
modulation index to 1 achieves the lowest BER for BLE backscatter, but the bandwidth of
the backscatter signal is increased accordingly. It is worth noting that this does not affect
the reception of the backscatter signal by the BLE receiver because the backscatter signal
is still within the receiving channel with a bandwidth of 2 MHz.
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(a) BLE transceivers (b) RBLE tag prototype

Figure 3.9: The photos of TI CC2540 BLE transceivers and RBLE tag prototype.

3.3 Implementation

We build a prototype of RBLE using off-the-shelf BLE radios and customized backscatter
tags. The implementation is detailed as follows.
BLE transceiver. We use TI CC2540 radios for both the excitation device and the receiver
as shown in Figure 3.9(a). It transmits at 1 Mbps raw data rate and supports transmission
power at 0 dBm and 4 dBm. The frequency deviation is 250 kHz and the modulation index
is 0.5. The reversely-whitened sequence for each channel is computed offline.
RBLE tag. Our RBLE tag prototype shown in Figure 3.9(b) has two antennas, one for
receiving and the other for backscatter. We use the AD8313 envelope detector connected
to the receiving antenna. Its detection delay is measured around 0.4 µs, which is negligible
for BLE applications. The backscatter antenna is connected to an ADG902 RF switch and
baseband processing is implemented using an XILINX Artix-7. The modulation index is set
to 1.
Low-power tag design. The biggest challenge for low-power tag design is the oscillator.
Our solution is to employ the ring oscillator from [88, 46] that can generate a 35 MHz clock
at the power consumption of 28 µW . We simulated the RBLE tag design using TSMC 65
nm technology and the overall power consumption is around 37 µW . 23 µW is consumed
by the 30 MHz clock and 11 µW is needed for the RF switch. All the rest goes to running
the control logic and modulation.
Experiment setup. Our experiments are conducted in indoor environments with line-
of-sight and non-line-of-sight deployments. The downlink (transmitter-to-tag) distance is
0.3 m. For line-of-sight deployment, we move the receiver along a straight line to increase
the uplink (tag-to-receiver) distance. For non-line-of-sight deployment, we place both the
transmitter and tag in the room, then move the receiver in the corridor.
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Metric. One of the performance metrics is the uplink goodput. There are two types of
goodput. One is total goodput, which counts all the bits the tag modulates on the single
tone. The other is the payload goodput, which only counts tag data bits transmitted. Note
that there is no difference between these two goodput types for adv target channels because
the backscattered adv packet is of the same length as the original exciting packet. But for
data target channels, the total goodput is always higher than the payload goodput. Unless
otherwise specified, we refer payload goodput as goodput in the rest of this paper. Although
the random delay of the link layer for advertising events is unknown, we empirically confirm
that the maximum advertising packet rate is stable at around 70 packets/s. Therefore, the
goodput capacity using a single excitation device is about 17.4 kbps.
Competition. We mainly compare our system with FreeRider because it is so far the
only backscatter system that works entirely with commodity BLE radios. Our FreeRider
implementation is based on the Github codes published by the original author [6]. We set
the FreeRider encoding length as 16-symbol for two reasons. The published data [6] uses
this setting and for shorter encoding lengths, BERs surge significantly according to our
experiments.

3.4 Evaluation

3.4.1 End-to-End Performance

Line-of-sight Deployment. Figure 3.10 shows the RBLE performance with increasing
uplink distances in LoS deployment. The maximum goodput RBLE can achieve is 16.6
kbps. Given that the goodput capacity is 17.4 kbps, our system reaches up to 95% of the
theoretical capacity. When the uplink range increases, RBLE is still able to achieve more
than 10 kbps rates within 15 m. In addition, backscattered packets of RBLE can be decoded
as far as 25 m. Such goodput and coverage are sufficient for many IoT applications.

More importantly, RBLE achieves significant goodput gains over FreeRider for all cases.
In particular, RBLE achieves a goodput of 15.4 kpbs at the distance of 3m and a goodput of
11.8 kbps at 15 m away, which are 17.3x and 40.2x better than counterparts of FreeRider.
An interesting observation is that while RSSI gaps are not that obvious for RBLE and
FreeRider shown in Figure 3.10(c), the BER gaps are distinct as in Figure 3.10(b). This is
mainly because our direct frequency shift modulation is much more robust than codeword
translation which either causes self-interference or leaves no solid signal at the desired
frequency. In other words, our single-bit modulation can achieve much lower BERs than 16-
symbol(bit) modulation of FreeRider. We note that the two-step modulation of FreeRider
does not cause a significant impact on the power of the backscattered signal. Compared to
RBLE, we did not add an analog mixer when replicating FreeRider. We use the FPGA to
complete a digital mixing of the clock for codeword translation and the clock for frequency
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Figure 3.10: Backscatter goodput, BER, and RSSI across uplink distances in the line-of-sight
deployment (downlink distance is 0.3 m).

shifting to the target backscatter channel. The intermediate frequency (IF) signal output
from the GPIO port of FPGA will be mixed with the exciting signal in the RF switch.
Non-line-of-sight Deployment. We also investigate the performance of RBLE in the non-
line-of-sight scenarios. The exciting signal power is set at 4 dBm and both the transmitter
and tag stay in the room while the receiver moves in the corridor. As shown in Figure 3.11(a),
RBLE is still capable of decoding backscattered signals at the uplink distance of 14 m.
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Figure 3.11: Backscatter goodput, BER, and RSSI across uplink distances in the non-line-
of-sight deployment (downlink distance is 0.3 m).

Similar to LoS cases, the maximum achieved goodput is 16.4 kbps at a distance of 2 m. At
further distances, RBLE still achieves more than 10 kbps within 10 m, which confirms that
our RBLE is able to deliver decent BLE transmissions for short-range IoT applications, like
headphone, smartwatch, and other personal electronics. Figure 3.11(b) shows that RBLE
achieves low BERs even in NLoS cases, and the RSSI degrades to -90 dBm at 14 m so
backscatter communication stops as well. This is because when the uplink distance increases
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Figure 3.12: Impact of channel hopping on interfering WiFi sources with different WiFi
packet rates and different interfering distances.

more than 14 m, the signal has to penetrate more walls. In consequence, the backscattered
signal becomes too weak to decode the packet preamble.

3.4.2 Micro Benchmarks

Impact of BLE Transmission Power. Next, we evaluate the performance of RBLE
when the exciting BLE signals are transmitted at 0dBm and 4dBm. Figure 3.10(a) shows
the goodput results and RBLE again outweighs FreeRider significantly. When the distance
is less than 7 m, RBLE’s BERs are basically below 1% for both power levels. In contrast,
FreeRider’s BERs are always above 7% even if it uses 16-symbol encoding, which con-
firms the superiority of direct frequency shift modulation over the two-step modulation of
FreeRider. Regarding RSSIs in Figure 3.10(b), we can see that stronger transmission power
brings longer uplink ranges. When the transmission power is 0 dBm, the backscattered
packets can be received within 21m, and when the power increases to 4 dBm, the uplink
distance reaches 25 m. There is no obvious gap between RBLE and FreeRider.
Impact of Channel Hopping. Then, we conduct a set of comparisons to examine the
impact of channel hopping in the presence of WiFi interference. We let the interfering WiFi
source work at 2412 MHz of 20 MHz wide. The center frequency of the target BLE data
channel is 2414 MHz (data channel 5) where this BLE channel is completely within the
range of the interfering WiFi channel. Exciting signals are transmitted on adv channel 38.
The downlink distance is 0.3 m and the uplink distance is 5 m. We compare performance
for two cases, without channel hopping and with channel hopping where the RBLE tag
hops across a number of channels set by the exciting BLE signals. We refer to the channel
hopping mechanism of active BLE and pre-set a channel hopping sequence on the receiving
end. The receiver and tag perform channel hopping according to this sequence. The pre-set
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channel hopping sequence can not ensure that the tag will jump directly out of the interfered
channels, but the tag will perform channel hopping across about 80 MHz. After the channel
hopping is activated, the communication time on the interfered channels covered by the
interference source will be significantly reduced. In the experiment, we set the receiver to
calculate the BER every 10 seconds. If the BER exceeds a pre-set threshold, the receiver
will hop to a new receiving channel. Before the hopping, it sends parameters (including
the index of the new channel) to the transmitter, which forwards these parameters to the
RBLE tag through downlink communication. Since we use one packet to modulate one bit,
the downlink data rate is about 50 bps.

Figure 3.12(a) shows the goodput comparison for those two cases with different WiFi
transmission rates. The interfering WiFi source is 1 m away from the BLE receiver. We
observe that as the interfering level increases, the goodput of RLE without channel hopping
degrades much more than that of RLE with channel hopping. For instance, when the WiFi
packet rate increases from 200 to 2000, the goodput without channel hopping drops 6.9
kbps, from 13.7 kbps to 6.8 kbps, whereas the goodput with channel hopping only degrades
2.3 kbps, from 15.3 kbps to 13 kbps. In other words, RBLE with channel hopping achieves
1.92x goodput gain over the one without channel hopping in the presence of strong WiFi in-
terference. Undoubtedly, such gains are brought by our dynamic channel configuration that
enables channel hopping as soon as the BLE receiver discovers there are interfering sources
and notifies RBLE tags. Figure 3.12(b) compares two cases against different interference
source distances where the WiFi packet rate is fixed at 2000 packets/s. The results confirm
that significant performance gaps exist between RBLE with channel hopping and the one
without such. As the interference distance becomes further away, RBLE tends to get closer
to the theoretical capacity goodput, 17.4 kbps. When the WiFi interference source is 20 m
away, it basically does not affect our backscatter transmission.
Impact of Adaptive Encoding. In order to examine the impact of adaptive encoding
on backscatter transmission, we conduct two sets of experiments. Results in Figure 3.13
demonstrate that with the help of adaptive encoding, BERs can be greatly reduced across
a range of different uplink distances. For example, the first group of experiments shown in
Figure 3.13(a) is to examine the effect of adaptive encoding on BER for different uplink
ranges. When the uplink distance is 5 m, the BER can be reduced from 0.56% using M1
to 0.1% using M8. Also, when the uplink distance increases to 20 m, the BER drops from
9.2% using M1 to 0.45% using M8. The same observation can be made in the second group
of tests shown in Figure 3.13(b). To keep the BER at a predefined level, increasing the
encoding coefficient can enlarge uplink ranges accordingly.
Goodput of Adv and Data Channels. We examine the goodput of our regenerated
adv and data packets. We compare the frequency modulation performance (BER) and
goodput of five different target channels, which are adv channel 37, data channel 5, data
channel 21, data channel 25 and adv channel 39. We set RBLE to hop across these channels.
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Figure 3.13: Impact of adaptive encoding on backscatter transmission. Figure 3.13(a) shows
the impact of adaptive encoding on BER for different uplink distances. Figure 3.13(b) shows
to keep the BER at a predefined level, increasing the encoding coefficient can enlarge uplink
ranges.
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Figure 3.14: BER and goodput for five different target channels. Figure 3.14(c) shows good-
put differences between Adv and Data channels under different excitation packet rates.

Figure 3.14(a) shows the performance results of five channels. While the five channels use
different frequency shifts, the bit error rates are all less than 1%. Figure 3.14(b) shows the
backscatter goodput of the five channels. We can see that the goodput of data channels
is less than that of adv channels. The main reason is that we reuse the preamble, access
address, and header of the excitation packet while regenerating advertising packets. In
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Figure 3.15: Estimated RSSI and throughput at a variety of uplink distances.

particular, a regenerated adv packet has a payload of 31 bytes while a regenerated data
packet has only 21 bytes for the data payload. The same observation can be made from
Figure 3.14(c) as well where we examine goodput differences between Adv and Data channels
under different excitation packet rates. We can see that the goodput varies almost linearly
with the excitation packet rate.
Link Budget. Borrowing the theoretical model for bistatic radar [38, 25], we can estimate
RSSIs given link parameters. The received power at the BLE receiver is estimated as PR =
PtGt∆σGrλ2

(4π)3D2
1D2

2
, where D1 is the downlink distance. D2 is the uplink distance. Pt and Gt are the

CW source output power and gain of the transmitter’s antenna, respectively. Gr is the gain
of the receiver’s antenna. λ is the carrier-frequency wavelength. ∆σ is the differential radar
cross-section (RCS) [58] given by ∆σ = λ2

4π G2
N |Γ∗

1 − Γ∗
2|2, where GN is the antenna gain

of the tag and Γ∗ is the conjugate match reflection coefficient Γ∗ = Z∗
a−ZL

Za+ZL
for a resonant

antenna impedance Za and the complex load impedance ZL.
ZL1 and ZL2 are measured at the frequency of the exciting signal (2426 MHz in our

case), representing impedance of the ADG 902 switch in both on and off states. Values for
ZL1, ZL2, and Za are measured as 7 − j 52 Ω, 12 + j 9 Ω, and 50 + j 0 Ω respectively.
The estimated RSSI at a variety of uplink distances D2 is displayed in Figure 3.15(a).
The downward trend of the estimated and measured RSSI is roughly similar. We can also
roughly estimate the throughput through simulation, given the backscatter signal strength
and the environmental noise floor (-85 dBm). We assume the modulation scheme of the
tag is standard BFSK modulation and the demodulation method of the BLE receiver is
standard BFSK demodulation. We also assume that the propagation channel is an additive
white Gaussian noise (AWGN) channel. The estimated throughput at a variety of uplink
distances D2 is displayed in Figure 3.15(b). The physical layer data rate of BLE is 1 Mbps.
SNR decreases as the uplink distance increases. As BER gradually increases, throughput
gradually decreases.
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(a) BLE advertising packets as excitation. (b) BLE data packets as excitation.

Figure 3.16: Generated BLE packets received by an unmodified iPhone. Using BLE adver-
tising packets as excitation, "Tag" can be included in the payload of the regenerated BLE
packet. Using longer BLE data packets as excitation, "IOT_USTC" can be included in the
payload of the regenerated BLE packet.

3.4.3 Compatibility with Commercial Radios

Phone-to-Phone Verification. To verify that RBLE is compatible with commodity smart
devices with BLE radio, we conduct a phone-to-phone experiment. We use a Huawei P30
and an iPhone 8 Plus as excitation device and receiver respectively. We place the excitation
phone at a distance of 0.3 m from the tag. The distance between the receiver (iPhone) and
the tag is 2 m. We perform reversely-whitening techniques [46] so that the payload of the
BLE advertising packet from the excitation phone can be made all ones or zeros, which
are single tones. The target channel of RBLE tag is advertising channel 38. RBLE tag
needs to regenerate a complete BLE packet, including the CRC field. Only when the CRC
check result is correct, the smartphone will display the information of the received packet.
Figure 3.16(a) shows the regenerated BLE packets received by an unmodified iPhone with
the "BLE Scanner" software. Using BLE advertising packets as excitation, we can only get
a single tone no more than 31 bytes. Thus, the length of the whole regenerated packet is
no more than 31 bytes, the payload for modulating tag information is less than 21 bytes.
RBLE can also be extended to work with BLE data packets. The data packet has a payload
of up to 255 bytes. We reversely-whiten BLE data packets using the seed of a specific data
channel so that the payload part of the data packet can be used as a longer single-tone to
regenerate a BLE packet carrying more information. As shown in Figure 3.16(b), the name
"IOT_USTC" is included in the payload of the regenerated BLE packet while using BLE
data packets as excitation.
Co-existence with Ambient BLE Transmission. In addition, we investigate the co-
existence of our backscatter system with ambient BLE devices. In this experiment, we
deploy our backscatter system 1 m away from an ambient BLE transmitter, which transmits
advertising packets on adv channel 37 at 40 packets/s. Our backscatter system’s excitation
sources are advertising packets on adv channel 38. Our RBLE tag backscatters the excitation
signal onto adv channel 37. We temporarily stop channel hopping to fully investigate the
interaction between the backscatter and ambient BLE signals on the same channel.
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Figure 3.17: Impact of BLE and backscatter goodput on each other when sharing an adver-
tising channel.
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Figure 3.18: Impact of BLE and backscatter goodput on each other when sharing a data
channel.

• Backscatter’s Impact on Ambient BLE: Figure 3.17(a) shows the ambient BLE
goodput when our backscatter is present and absent. When we turn on the backscatter
transmission, the median BLE goodput is 9.3 kbps. When we turn off the backscat-
ter transmission, the median BLE goodput is 9.5 kbps. Backscatter causes a very
slight drop in ambient BLE’s goodput, indicating the backscatter communication has
no severe interference to the ambient BLE transmission. There are several reasons.
First, the backscattered signal strength is usually below -55 dBm, much lower than
the signal strength of the ambient BLE transmission. Moreover, our system enables
backscatter communication during advertising events, which reduces the time of chan-
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nel occupancy for backscatter transmissions. In addition, the advertising events have
already been perturbed by the random delay, which somehow coordinates the adver-
tising events of different BLE devices. In short, our system does not severely impact
ambient BLE devices.

• Ambient BLE’s Impact on Backscatter: Figure 3.17(b) shows the backscatter
goodput when ambient BLE transmission is present and absent. When we turn off
the ambient BLE devices, the median backscatter goodput is 16.4 kbps. When the
ambient BLE is turned on, the median backscatter goodput decreases to 16.2 kbps.
The ambient BLE’s impact on backscatter is slight due to the short channel occupancy
time of the backscatter transmission.

We also evaluate the impact of backscatter communication when the backscatter signal
is transmitted on a data channel. We deploy our backscatter system 1 m away from
two ambient BLE devices which communicate on data channels after establishing a
connection. Our RBLE tag backscatters the exciting signal onto data channel 21.
As shown in Figure 3.18 the impact of BLE and backscatter goodput on each other
when sharing a data channel is small, even smaller than the impact when sharing an
advertising channel. We believe that this is because the time for backscatter and active
BLE transmissions to share a data channel is extremely short. After two active BLE
devices have established a connection, they will communicate in 37 data channels in
a frequency-hopping manner, so the time to occupy a specific data channel is short.
In addition, the channel occupancy time of the backscatter transmission is also short.
As a consequence, the impact of backscatter communication on data-channel BLE
transmissions is not obvious. RBLE can coexist well with ambient BLE transmissions
on both advertising and data channels.

We add two sets of experiments to evaluate the co-existence of backscatter and ambient
BLE transmissions on the same advertising channel when increasing the backscatter
signal strength and increasing the packet rate of the ambient BLE transmission re-
spectively. For the first set of experiments, we add an amplifier to the excitation device
to increase the backscatter signal strength. As shown in Figure 3.19(a), if we turn on
the backscatter transmission, the median BLE goodput drops from 9.5 kbps to 9.25
kbps. The impact is slightly stronger compared to that in Figure 3.17(a). Relative
signal strength impacts the ability of these systems to coexist to a certain extent.
For the second set of experiments, we increase the packet rate of the ambient BLE
transmission to 70 packets/s, which is the maximum advertising packet rate we can
set. As shown in Figure 3.19(b), if we turn on the ambient BLE transmission, the
median backscatter goodput drops from 16.3 kbps to 15.9 kbps. The ambient BLE’s
impact on backscatter is slightly stronger compared to that in Figure 3.17(b). The
probability of collision impacts the ability of these systems to coexist. However, when
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Figure 3.19: Impact of BLE and backscatter goodput on each other when increasing the
backscatter signal strength and increasing the packet rate of the ambient BLE transmission
respectively (on the same advertising channel).

ambient BLE is transmitting packets at the maximum rate, the goodput drop caused
by ambient BLE is not severely intolerable.

To summarize the above experimental results, when the backscatter signal and the
ambient BLE share the same advertising channel, there is no strong mutual interference. In
addition, both the ambient BLE devices and our backscatter tags have a channel hopping
mechanism, which would further reduce collision chances. Therefore, our backscatter system
can coexist well with ambient BLE transmissions.
Continuous CW Excitation. In addition to the single tone obtained by setting the
application layer data of commodity BLE, we can also use the test mode of commodity
BLE chips to generate CW signal. Using CW as excitation, we can freely control the packet
generation rate of the RBLE tag. We experiment to compare these two types of excitations.
For CW excitation, we set the packet generation rate of the tag to 250 packets/s. For
single-tone excitation, the BLE transmitter transmits BLE advertising packets at a rate
of 70 packets/s which is consistent with previous experimental settings. The tag’s packet
regeneration rate is limited by the excitation packet rate. We measure the backscatter
goodput of two different types of excitations at the BLE receiver respectively. Backscatter
goodput across distances in indoor LoS scenario is shown in Figure 3.20(a). When the
uplink distance is within 10m, the goodput of CW excitation is always above 46 kbps and
the goodput of single-tone excitation is always below 17 kbps. Compared to using single-
tone excitation, using CW excitation can greatly increase the packet generation rate and
thus improve the final backscatter goodput. We have already seen that the goodput varies
almost linearly with the excitation packet rate in Figure 3.14(c). It can be further inferred
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Figure 3.20: Backscatter goodput and spectrum when using CW excitation.

that the goodput of RBLE is limited by the excitation packet rate. As long as the excitation
packet rate is increased, the goodput of RBLE will also increase.

Figure 3.20(b) shows the spectrum of the CW excitation and the backscattered signal.
The backscattered signal (generated BLE signal) is 20 MHz away from the CW excitation.
The RBLE tag was configured to generate BLE advertising packets with a frequency shift of
20 MHz away from the CW excitation. We use a NI PXIe-5663 RF Vector Signal Analyzer
as our spectrum analyzer. Note that the backscatter signal has harmonic components. These
harmonics have a negative impact on the legacy transmissions on the other channels and we
cannot guarantee that harmonics are not generated outside of the 2.4 GHz band. However,
the negative impact of harmonics is very small. The energy of the first harmonic is about 10
dB lower than the energy of the main signal, and the energy of the higher harmonics will be
lower. We have evaluated the coexistence of the main backscatter signal and ambient BLE
transmission in subsection 3.4.3 and found that RBLE’s main backscatter signal can coexist
well with ambient BLE transmissions. The energy of the harmonics is much lower than the
energy of the main backscatter signal, so the impact of the harmonics is also limited. Similar
to prior systems, RBLE cannot fully eliminate backscatter harmonics, which we intend to
investigate in the future.

3.5 Discussion

Productive and unproductive exciting signals. There are trade-offs in choosing an
unproductive single tone or a productive data-carrying signal as the carrier. FreeRider
requires the data sequence of exciting signals to decode the tag data. If the data sequence
of the original channel is corrupted, it is difficult to decode tag data even when the data from
the backscattered channel is error-free. Such productive-data dependency would significantly
impact the BER of the tag data when the quality of the original channel becomes unstable.
In addition, using a productive signal with bandwidth as a carrier will also degrade the
BER performance of the modulation.
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On the other hand, backscattering with productive exciting signals is a significant step
towards exploiting rich ambient signals because it does not need to control the payload
content of the exciting signal. We are actively looking for a compromise solution, which
can not only use productive exciting signals but also guarantee the reliability of backscatter
transmission. One way is to properly control the data content of exciting signals, maintaining
a certain amount of productive data goodput.
Choice of codeword scheme. The codeword scheme used by RBLE is essentially a repe-
tition code with several different code rates. The error correction capability of the repetition
code is limited. We can adopt more complex codeword schemes with stronger error correc-
tion capability, such as BCH codes. If we choose BCH codes as the codeword scheme, we
could use different code rates of BCH codes to complete the adaptive encoding.

3.6 Conclusion

In this paper, we have proposed RBLE, a reliable BLE backscatter design that works with
a single commodity receiver. The main contributions lie in using BLE signals with partial
single tones as excitations for BLE backscatter, leveraging dynamic channel reconfiguration
to bypass interfered channels, and using adaptive encoding to further improve reliability
for challenging low SNR scenarios. Comprehensive field studies demonstrate significant per-
formance gains over state-of-the-art systems in terms of BER, goodput and uplink range.
Our future work includes an investigation of how to extend RBLE to work with Bluetooth
5.x environments, parallel transmission for multiple BLE tags, and interactions with other
protocols, e.g., WiFi and Zigbee.
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Chapter 4

An Efficient Modulation Design
For WiFi Backscatter

4.1 Background and Motivation

4.1.1 WiFi Backscatter Primer

OFDM WiFi The WiFi family consists of a series of over-the-air modulation techniques.
802.11 was the first widely accepted WiFi standard, which mainly relied on the direct-
sequence spread spectrum (DSSS). Later, 802.11a/g/n/ac were proposed to provide much
higher throughput and anti-interference using orthogonal frequency-division multiplexing
(OFDM). Nowadays, OFDM WiFi is so popular that it dominates in-home and in-office net
connectivity.

Although each OFDM WiFi protocol has its own distinctions, they all share much the
same basic architecture, as shown in Figure 4.1. At the physical layer, we are supposed to
transmit a bitstream over the air. The first operation is padding, which mainly patches a
bunch of data fields to make the bitstream ready for OFDM processing, including SERVICE,
TAIL, and PAD fields. Then it passes through a scrambler aiming to transform the original
bitstream into a random bitstream that is not all zeros or ones, which can bring bad Peak-to-
Average Power Ratio (PAPR) and degrades the efficiency of power amplifiers. The channel
encoding, which mainly refers to BCC encoding for WiFi, is designed to make the scrambled
bitstream more robust to channel interference as it can correct errors. Along with BCC,
an interleaver comes in to further improve anti-interference performance. Specifically, it
uses permutations to deal with cases where the number of burst errors exceeds the BCC
correction capability. When all the bit-level operations are over, a constellation mapper will
modulate each bit (0/1) to a complex number (IQ) according to modulation modes, e.g.,
BPSK, QPSK, QAM. Then the IFFT operation transforms the data from the frequency
domain into the time domain where subcarriers are orthogonal. Through the final analog
upconversion, all the baseband data are sent as RF over the air. Note that here we classify
those operations into two categories: symbol-wide and payload-wide. For an operation, if the
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Figure 4.1: Typical transmitter design for OFDM WiFi.

processing in a symbol would not affect other symbols, we call it symbol-wide operation;
otherwise, it is payload-wide. As such, padding, interleaving, modulation, and IFFT are
symbol-wide operations while scrambling, and encoding are payload-wide operations.
Codeword Translation The seminal work, FreeRider [87], introduces codeword transla-
tion to backscatter tag data on the productive carriers. For the first time, this brings us
closer to the vision that productive carriers, instead of CW, can be used as backscatter
excitations. The idea of codeword translation is simple and elegant. It is common that
codewords in the constellation map are related to each other by shifting phases, amplitudes
or frequencies. For example, as per BPSK, there are two codewords, C1 = ejθ1 , C2 = ejθ2 ,
where θ1 − θ2 = π. So if we want to transmit a tag bit ’1’, we can translate the current
codeword Cx by shifting π, and C ′

x = Cx · ejπ is still a valid codeword. Similarly, if we want
to transmit a tag bit ’0’, the current codeword keeps unchanged, which means no phase
shift. As such, the tag bit can be decoded at the receiver by simply XORing, Cx ⊕ C ′

x = tx.
Although a tag can choose from three degrees of freedom of a signal to do codeword

translation, e.g., amplitude, phase, and frequency, the most viable way for OFDM WiFi is
shifting phases. For amplitude backscatter, if a tag changes the amplitude on a subcarrier
i, other subcarriers, e.g., subcarrier j, experience the same amplitude modification as well.
While the amplitude change may lead to a legitimate codeword on subcarrier i, there is
no guarantee that the modified codeword on subcarrier j is still valid [87]. For frequency
backscatter, it is nearly impossible because all the codewords supported by OFDM WiFi do
not have frequency-based relations. Therefore, phase-based codeword translation fits OFDM
WiFi the most, and apparently, this operation is symbol-wide.

While codeword translation is easy to implement, it suffers from several drawbacks.
One of the biggest challenges is the dependency on redundant modulation. Prior knowledge
is that the need for such redundancy comes from burst errors [89] or interference from
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existing OFDM WiFi processing [87]. However, after extensive experiments and analysis,
we discover that the root cause is the incompatibility between symbol-wide and payload-
wide operations, which causes inter-symbol errors. Next, we will present how this problem
arises and our solution.

4.1.2 Problems of Prior Systems

FreeRider [87] and MOXcatter [89], can provide symbol-level data transmissions for tags
based on ambient OFDM WiFi signals, realizing about 60 kbps. They, however, still suffer
from three main drawbacks.

• Redundant modulation. To ensure decent BERs for the receiver, most prior arts em-
ploy multi-symbol modulation for tag data. For example, FreeRider [87] modulates a
tag bit using four OFDM symbols, and MOXcatter [89] does so with every two OFDM
symbols. Such redundancy is introduced to combat the nonlinearity brought by tag
modulation. When using every single OFDM symbol for tag modulation, those sys-
tems fail due to highly unstable demodulation errors. While multi-symbol modulation
greatly reduces BERs, it leaves much room for throughput improvement.

• Constrained ambient excitations. To embed tag data onto legitimate WiFi packets,
different excitation constraints have been attached to previous systems. Passive WiFi
[49] requires an extra helper device to provide continuous waves. Interscatter [46] relies
on the single-tones as carriers generated by de-whitened Bluetooth signals. MOXcatter
[89] only supports WiFi excitations that have a payload of all 0s or 1s. In short, none
of the state-of-the-art solutions can work with uncontrolled OFDM WiFi excitations
at single-symbol rates.

• Inconvenient two-receiver demodulation. A seminal work, Hitchhike [85], proposes the
first backscatter system that works with productive data at the symbol level. However,
it requires two receivers to demodulate tag data. Several other works, e.g. MOXcatter
[89], X-tandem [90], extend this idea in different ways and share the same limitation.
Not only the accurate synchronization of two separate receivers is demanded, but
more hardware costs will be incurred. Also, it’s not applicable to personal IoT since
today’s mobile devices, e.g., smartphones and smartwatches, commonly support one
single receiver.

4.1.3 Contribution

We introduce RapidRider, the first WiFi backscatter design capable of utilizing uncontrolled
OFDM WiFi signals as excitations and effectively embedding tag data at a single-symbol
rate. Our innovative approach brings us one step closer to achieving ubiquitous backscatter
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communications. Thanks to RapidRider, we can now freely use the abundant uncontrolled
WiFi signals around us for backscatter communication.

In this paper, we first explain why previous systems have failed to achieve single-symbol
backscatter, and then propose our solution, which is based on deinterleaved data. To enable
the use of uncontrolled excitations, we have designed a deinterleaving-twins decoding scheme
that incorporates both forward and backward deinterleavers. We have also conducted a
detailed exploration of how the modulation and coding scheme (MCS) of the excitation
affects tag demodulation, and have developed several translation methods.

To overcome the two-receiver limit, we have introduced a novel aggregated transmission
mechanism that enables the transmission of productive data and tag data on the same
packet. The key insight behind this mechanism is to use the pilot symbol as the reference
symbol for tag data demodulation, thereby making a single receiver sufficient for decoding
both types of data.

We prototype RapidRider using customized tags implemented by FPGAs, USRP N210,
ZedBoards, and commodity NICs. Through comprehensive field studies, we demonstrate
that:

• RapidRider achieves a maximum throughput of 235.3 kbps in LoS scenarios, which is
1.97x and 3.92x better than MOXcatter and FreeRider.

• For single-symbol modulation, the BER of RapidRider could be as low as 1.3%, while
that of FreeRider is 43% under the same setting, demonstrating that RapidRider is
state-of-the-art for single-symbol OFDM backscatter.

• Different MCS settings for excitation lead to different patterns of the bitstream after
XOR. The translation methods, which translate the bitstream into a single bit, have
a great impact on BER, and majority voting is the most common and efficient one.

• When there is only one receiver available, RapidRider+ achieves an aggregate goodput
of productive and tag data about 1 Mbps on average. In particular, when aggregated
transmission coefficient γ = 1/3, 1/2, 2/3, aggregated goodputs are 698.6 kbps, 950.9
kbps, 1,243.5 kbps.

• RapidRider is robust in diverse environments, including LoS and NLoS, indoor and
outdoor, different excitation protocols and frequencies, excitation rates, different MCS
of excitation, and interferences.

4.2 System design

4.2.1 Overview

As shown in Figure 4.2, the tag takes ambient WiFi as excitations and then applies single-
symbol modulation to embed sensor data onto the carrier. To avoid interference, the backscat-

57



Ambient 

WiFi

Single-symbol 

modulation on tag

AP1

AP2

Deinterleaving-

twins decoding

Figure 4.2: RapidRider framework.

tered signals are shifted to another WiFi channel from the original ambient channel. At the
receiver side, there are two APs, one for receiving ambient signals and the other for backscat-
tered signals. Then our novel deinterleaving-twins decoding method combines forward and
backward deinterleaving and successfully recovers tag data at a very low BER. To turn
this high-level idea into practice, it has several critical challenges: 1) how to demodulate
single-symbol backscattered signals? 2) how to work with uncontrolled ambient signals? 3)
how to enable a single AP to receive both tag and productive data?

4.2.2 Single-Symbol Modulation

To get a better understanding of the whole backscatter procedure, we go through it in a
formal way. At the transmitter side, suppose we have a bunch of OFDM symbols as payload,
t = (t1, t2, ..., tn). Then this payload has to go through a number of WiFi operations as shown
in Figure 4.1,

T (·) = TIF F T (Tm(Ti(Te(Ts(Tp(·)))))), (4.1)

where Tp, Ts, Te, Ti, Tm, TIF F T denote padding, scrambling, encoding, interleaving, mod-
ulation, and IFFT, respectively. After the tag backscatters OFDM signals, the received
backscattered signals, b, are the time-domain product of tag signals s = (s1, s2, ..., sn) and
excitations,

b = C(T (t), s) = (T (t)1 ⊕ s1, ..., T (t)n ⊕ sn), (4.2)

58



�

���

���

�
0x000000

WiFi

operations

0x000000 0x000000

0x000000 

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0xFFFFFF

0xFFFFFF

0x000000

0x000000

0x000000 0x09FFC1 0x500000

Codeword

translation

Inverse WiFi

operations

Expected

0x000000 0x09FFC1 0x500000
Decodeword

-translation

0x000000 0xFFFFFF 0x000000

(a) Backscatter decoding process.

≠

�

�
0x000000

WiFi

operations

0x000000 0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

Codeword

translation

�

�
Codeword

translation

WiFi

operations

0x000000 0x000000 0x000000

0x000000 0xFFFFFF 0x000000

0x111001

0x101000

0xA00000

0x000000

0xFFFFFF

0xFFFFFF

0xFFEEFE

0xFFFEAA

(b) T and C are not commutative.

=

�

��

0x000000

0x000000Interleaving

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

Codeword

translation

��

�
Codeword

translation

interleaving

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0x000000

0xFFFFFF

0xFFFFFF

0xFFFFFF

0xFFFFFF

0xFFFFFF

0xFFFFFF

(c) Ti and C are commutative.

Figure 4.3: A formal presentation of a complete backscatter decoding process. (a) shows that
decoding of single symbol backscatter does not work on the payload level; (b) explains the
root cause of such failures comes from WiFi operations T and codeword translation C are
not commutative; (c) demonstrates that interleave operation Ti and codeword translation
C are commutative, which is the basis of our deinterleaving-twins decoding scheme.

where C denotes codeword translation. For payload demodulation, the backscattered signals
at a WiFi AP have to go through a series of reverse processing, denoted as T −1(·). Hence,
the backscattered payload can be written as r = T −1(b) = (r1, r2, ..., rn).

At the same time, from another AP at the original channel, we would correctly receive
t. Together, the tag data, ŝ, is decoded by combining t and r as follows,

ŝ = C−1(t, r) = (t1 ⊕ r1, ..., tn ⊕ rn). (4.3)
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The above whole process seems perfect, but in reality, it cannot achieve the goal, which is
ti ⊕ ri = si.

The devil is in the detail. The root cause is that although all WiFi operations and code-
word translation (and their inverse counterparts ) are deterministic, there is no way to guar-
antee that ti ⊕ ri = si unless those WiFi operations are commutative with codeword trans-
lation. Let us examine this point in detail. Recall that to decode tag data, it goes through
WiFi operations, codeword translation, inverse WiFi operations, and then decodeword-
translation, which is ŝ = C−1(T −1(C(T (t), s)), t). The problem is that T and C are not
commutative 1, so C and C−1, T and T −1 cannot cancel each other to obtain s, which means
ŝ ̸= s. An toy example is shown in Figure 4.3a, where decoded ŝ is (0x000000, 0x09FFC1,
0x500000) while the expected s is (0x000000, 0xFFFFFF, 0x000000). The checking pro-
cessing of commutativity is shown in Figure 4.3b, indicating that C(T (t), s) ̸= T (C(t, s)).
It is just because T and C do not commute with each other, none of the prior schemes can
decode backscattered OFDM signals on the single-symbol level. While those prior schemes,
e.g., MOXcatter [89], FreeRider [87], have observed the same difficulty of single-symbol de-
coding, they all choose redundant encoding. In contrast, we are the first to discover this
root cause, the commutativity between codeword translation and WiFi operations. Thus,
we are able to design a single-symbol demodulation scheme based on this insight, which is
to keep some of the whole WiFi operations that are commutative with codeword translation
and to avoid those non-commutative ones. This deinterleaved-data based scheme works as
follows.

Unlike the priors that perform decoding on the payload level, our proposal works at the
deinterleaved-data level. As shown in Figure 4.5a, after two receivers obtain RF signals,
they apply inverse WiFi operations, including FFT, Demodulation, and Deinterleaving, to
acquire two deinterleaved data streams. Then we apply decodeword translation (XOR) on
the two streams to recover the tag data. Formally, this recovered data can be written as

ŝ′ = C−1(T ′−1(C(T ′(t′), s)), t′), (4.4)

T ′(·) = TIF F T (Tm(Ti(·))), (4.5)

1The commutative property means for two functions g and f , g(f(·)) = f(g(·)).
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where t′ is the data before interleaving, which means t′ = Te(Ts(Tp(t))). Hence, if T ′(·) is
commutative with codeword translation,

ŝ′ = C−1(T ′−1(C(T ′(t′), s)), t′) (4.6)

= C−1(T ′−1(T ′(C(t′, s))), t′) (4.7)

= C−1(C(t′, s), t′) (4.8)

= s. (4.9)

Now the only thing left is to verify whether C and T ′ commute with each other. Appar-
ently, there are three symbol-wide operations with T ′ now and we observe that as long as
the operation is symbol-wide, it is commutative with C. In particular, for the first operation
IFFT, it is well known for its linearity [67]. For any complex number, a, if F(xn)k = Xk,
then F(axn)k = aXk, where F denotes IFFT (or FFT), and k is the index. Since codeword
translation just applies a phase shift, a = ejθ, the FFT’s linearity ensures its commutativ-
ity for C. The second operation is modulation, which only performs one-on-one mapping
process. Because codeword translation is performed within all constellation points, demodu-
lation is obviously commutative to codeword translation. The last operation is interleaving,
which re-orders the bitstream symbol by symbol, and thus no cross-symbol interference
happens. As shown in Figure 4.3c, interleaving is commutative with codeword translation.
Since all three operations commute with C, T ′ is commutative with C as well.

We have qualitatively proved that when the operations are symbol-wide, these processes
are commutative with C. However, we still want to be able to quantify the different impacts
of symbol-wide and payload-wide operations on commutativity. Although BER, the existing
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well-known parameter, can describe the bit error rate of tag data well, it can’t reflect the
error rate of intermediate operations directly. Therefore, a new metric, BitStream Error Rate
(BSER), is defined to describe the error rate of the intermediate bitstream to highlight the
impact of each operation. For a receiver, the data exists in the form of a bitstream after the
demodulation step. So we focus on the later layers. The idea of BSER is shown in Figure 4.4.
First, expand tag data into bitstream as groundtruth, in which each tag data is expanded
into a subsequence containing the same number of bits as a symbol. In different layers, the
number of bits contained in a symbol is different. For example, in the interleaving layer, a
symbol contains 48 bits, while the final payload layer contains only 24 bits. Then, obtain a
bitstream by XORing the data of the same layer at the two receivers. Finally, calculate the
BSER, a ratio of the number of wrong bits to the total number of bits in the bitstream.

There are two main reasons why we use BSER as a new evaluation metric. First, it’s
more direct than BER and can accurately reflect the performance of each layer. When
calculating BER, it is necessary to translate the XORed bitstream into tag data first, and
then calculate the error rate. So the value of BER is highly related to the translation
method, which will be discussed in 4.2.3. In comparison, BSER calculates the error rate of
the bitstream directly without going through the translation process, so it won’t be affected
by the translation method. Second, by comparing the BSER values of the bitstream before
and after a certain operation, we can clearly see the effect of each operation on the accuracy
of the final decoding. Theoretically, when going through a symbol-wide operation, the value
of BSER is small since the operation is commutative with C. But when the operation is
packet-wide, the value of BSER will grow rapidly because of the non-commutativity. All in
all, we can intuitively verify our theoretical analysis through BSER.

4.2.3 Deinterleaving-Twins Decoding

While the aforementioned single-symbol demodulation scheme works well in principle, an
issue arises in practice: the excitation signal is always intended for commercial NICs, e.g.,
wireless router, smartphones, and smartwatches, which means if we try to use a software
defined radio to acquire deinterleaved data of excitations, it appears not productive as the
commercial NIC already recover excitation bits. Hence, we want to reuse the recovered
payload bits from the commercial NIC, instead of an SDR, to do codeword translation. One
big challenge of using this payload-level bits is we cannot do codeword translation on the
payload level due to the mentioned commutativity problem. To address this, we design a
deinterleaving-twins strategy as follows.

We first define a forward deinterleaver is that the received IQ data on an AP go through
fft, demodulation and deinterleaving, as shown in Figure 4.5a. Similarly, a backward dein-
terleaver is that the payload data go through padding, scrambling, and encoding. Because
all WiFi operations are invertible, it is easy to prove that a forward deinterleaver and a
backward interleaver should generate the same deinterleaved data. The difference is a back-
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Figure 4.5: Two deinterleaving-twins decoding paradigms. (a) two forward deinterleavers;
(b) one forward deinterleaver and one backward deinterleaver.

ward deinterleaver takes payload data as input and a forward one takes received IQ data.
Hence, this backward and forward translation can be written as

T −1
i (T −1

m (T −1
IF F T (t̂))) = Te(Ts(Tp(t))), t̂ = T (t). (4.10)

Based on this equation, as shown in Figure 4.5b, our deinterleaving-twins decoding contains
a backward deinterleaver for payload data from a commercial NIC (AP1), and a forward
deinterleaver for received IQ data from backscattered signals (AP2). Everything seems per-
fect; however, there remains a problem when we do backward deinterleaving: the commercial
NIC does not provide access to the scrambler seed, which is the key for scrambling. Our
insight is although there is no way to access the scrambler seed on AP1, we can recover
AP2’s scrambler seed. As long as we do not codeword translate the scrambler seed during
backscattering, the AP2’s seed would be the same as AP1’s seed. To do so, we observe
that the scrambler seed is at the beginning fields of the payload, and we can skip these
fields to keep them intact. Therefore different from prior schemes where the start position
of codeword translation is at the beginning of the payload, we choose this initial position
as the next symbol of the scrambler seed. This way, backward deinterleaved data can be
generated without any problem, and together with the forward deinterleaved data, recov-
ering tag data just requires XORing and translation operations. XORing is simple, while
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translation needs to select an appropriate method to translate bitstream after XORing into
tag data according to the characteristics of the bitstream.

Now, we can already use uncontrolled environmental signals as excitation. However,
another problem is that the MCS of excitation signals in the environment are diverse. Most
of the current work is based on the case where the modulation mode of the excitation signal
is BPSK. To make our system more universal, we explore the case of different MCS. We
focus on the situation when MCS = 0, 1 and 3, and the corresponding modulation modes are
BPSK, QPSK, and 16QAM. We use BPSK to modulate the tag data, and the constellation
diagrams under the three MCSs are shown in Figure 4.6. When the tag data is 0, the phase
does not change under any MCS, so the bitstream after XOR is all 0s. Therefore, we focus
on the situation when the tag data is 1. When MCS = 0 or 1, the bitstream after XOR of
the original data and the data with a phase shift of 180° is all 1s. This feature has been
widely used in the current work. Surprisingly, we have an interesting discovery when MCS
= 3. When the modulation mode of the excitation is 16QAM, the patterns after XOR are
all 1010. So the bitstream after XOR is an alternating sequence of 1s and 0s, which is quite
different from the first two cases.

However, it is not enough to only get the pattern of the bitstream after XOR. To recover
the tag data from the bitstream, a suitable translation method is also required. We can see
that the pattern is different under different conditions. So, the translation method is very
important for the correctness of data recovery, which can be reflected by BER. We’ll have an
in-depth discussion of translation methods, which has never been done before. The common
denominator is that we do all the translation by using a decoding window, and the length of
the window is the same as the number of symbols for tag modulation. The core difference is
that the translation method needs to be designed according to the pattern in the bitstream.

For the case where the pattern is all 1s, three methods can be used: majority voting,
subsequence matching, and Jaccard similarity.
Majority Voting. The idea of majority voting is to calculate the ratio of ’1’ or ’0’ in a
certain window. When the ratio exceeds the threshold, it is translated to ’1’ or ’0’. Since
there are two options to calculate ’1’or ’0’, this method can be further subdivided into two
categories. One is that when the ratio of 1 exceeds the threshold, the data is recovered to
be ’1’, otherwise, it is considered to be ’0’. And the other is the opposite.
Subsequence Matching. The basis of subsequence matching is that the bitstream after
XOR is consecutive ’1’ or ’0’, so the idea of this method is to use a subsequence of consecutive
0s or 1s of a certain length for matching. Like the previous one, it can also be subdivided
into two categories. One is to use a subsequence of consecutive ’1’ for matching, if successful,
the data bit will be translated as ’1’, otherwise, it is ’0’. The other uses a subsequence of
consecutive ’0’.
Jaccard Similarity. The third method is based on vector similarity calculation. There
are many ways to calculate similarity, and finally, the Jaccard coefficient has been chosen
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Figure 4.6: Constellation for different MCS when using BPSK modulation on tag data. The
pattern is all 1s when MCS = 0/1, and is alternating sequence of 1s and 0s when MCS = 3.

because it is more suitable for logical vectors, which contain only ’0’ or ’1’. The formula is
shown in Eq.4.11. We regard the bitstream in the decoding window as a vector and set a
vector of all 1s as the reference template. Then, calculate the Jaccard similarity coefficient
of two vectors. When the result exceeds a certain threshold, this data is considered to be
’1’, otherwise, it is ’0’.

jac = M11
M01 + M10 + M11

(4.11)

For the case where the pattern is an alternating sequence of ’0’ and ’1’, although the-
oretically, the above three methods can be modified and then applied to this situation, it
is found in the actual experiment that only majority voting can have satisfactory results.
The reason is that there will be some individual ’0’ or ’1’ insert in the middle, like ’101101’
or ’010010’, which makes it difficult to form a ’10’ alternating subsequence of stable length.
So subsequence matching and Jaccard similarity calculation do not work well in this case.
Because the majority voting method only cares about the ratio of ’0’ or ’1’, the only thing
that needs to be done is to modify the threshold settings.

Although it is difficult to form a continuous ’10’-sequence of sufficient length, fortunately,
this alternation can be well maintained in most cases. Therefore, a new method, difference
summation, is designed based on this phenomenon.
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Figure 4.7: For different MCS, the proportion of symbols occupied by the service field is
different, which makes the starting position of decoding change with MCS.

Difference Summation. This method is designed to make better use of the alternation
features. First, subtract the previous bit from the next bit of the bitstream for differential
calculation. Then, take the absolute value of each result obtained by the difference and
accumulate them. Finally, divide the accumulated sum by the window size. The formal
representation of this method is shown in Eq.4.12, where V represents the bitstream vector
within a decoding window.

diff = sum(abs(V(2 : end) − V(1 : (end − 1))))
length(V) (4.12)

Now, we can already decode tag data under different MCS. Interestingly, when conduct-
ing experiments, a new phenomenon is discovered. To recover the data correctly, we need to
find the starting position of a symbol as accurately as possible. In the deinterleaving level,
the starting position is always an integer multiple of the number of bits contained in the
symbol. However, for the payload level, not only is it not an integer multiple, but it will
change with the change of MCS. After analysis, we find that the key is the service field.

Service is padded before PSDU in the padding operation. We modulate tag data in units
of a symbol and the symbol division of the data part starts from the beginning of the data
field including the service. However, when doing decode translation in the payload layer,
the service field has been depadded. So, the starting position of demodulation will change
according to the proportion of a symbol occupied by the service. The specific situation is
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also shown in Figure 4.7. When MCS = 0,1,3, service accounts for two-thirds, one-third and
one-sixth of a symbol, respectively. Because the number of bits contained in a symbol is
different under different MCSs. This phenomenon brings more difficulties to the decoding in
the payload layer. Fortunately, this phenomenon does not exist in the deinterleaving layer,
since this layer contains the service field, so the positions of modulation and demodulation
are the same. Therefore, RapidRider is much more general than others relying on payload
data.

4.2.4 Single-Receiver for Aggregated Transmissions

In real-world scenarios, the current codeword translation suffers another serious problem:
it requires two receivers to decode tag data. There are at least three drawbacks to such
a requirement. First, it needs extra synchronization overhead between two receivers for
correct decoding, which is implicitly required by XOR operations. Second, it requires the
data from the ambient signals intended for unknown commercial NICs and acquiring such
data is not always available. Third, it takes two WiFi channels to transmit both productive
and tag data, and thus spectrum efficiency is not fully optimized. Therefore, we design
RapidRider+, a backscatter scheme that can transmit both productive and tag data on the
same packet, and one receiver is adequate for decoding both.

As shown in Figure 4.8, the design is mainly about excitations. In this design, the pay-
load of an excitation WiFi packet is composed of two parts. The first part is for transmitting
productive data, which means the symbols are arbitrary, while the second part is for code-
word translation, or more precisely, it is in another form of ‘continuous waves’ since all the
symbols are the same. The last symbol of the first part is designed as the reference symbol,
and the carrier part is full of reference symbols. Such a design is based on an insight: code-
word translation’s key is the reference for decoding. As long as the reference is known at

67



(NLoS)
Tx

(LoS)
Tx

Tag

Receiver position

16 meters

Figure 4.9: Experimental deployment.

the receiver, everything else, e.g., the previous requirement of the original payload, is not
necessary. The RapidRider+ encoding and decoding processes are as follows.
Encoding. To embed sensor data, the tag first detects the excitation signals, and then
jumps over the preamble fields, and the productive data part of the payload. Specifically, it
means no phase shift but just frequency shift on those fields. Then starting from the carrier
part, the tag employs phase-based codeword translation to put data onto the carrier. Note
that our encoding is single-symbol in nature, while prior arts use multiple symbols.
Decoding. At a single receiver, the AP processes the received signal as a normal WiFi
packet, first preamble then payload. During payload processing, the handling of the pro-
ductive data part is still the same as normal WiFi. But starting from the carrier part, it
decodes tag data by XORing the last symbol of the productive data part and every symbol
in the carrier part. Finally, both productive and tag data are recovered when the packet
ends.

From the above description, we can conclude there are three main advantages for
RapidRider+. First, the processing is much simpler as there is no need to coordinate with
two receivers anymore. Second, aggregated productive and tag transmissions are made pos-
sible, and various tradeoffs between two kinds of data can be achieved by adjusting the
lengths of two parts. In particular, we define aggregated transmission coefficient as γ = lp

l ,

where lp is the length of the productive data part, and l is the total length of the payload.
Hence, for different application demands, we can tweak γ to achieve balances between the
two. Third, RapidRider+ currently only works with restricted excitations, which means
the excitor has to generate carriers as in Figure 4.8. This arrangement incurs additional
restrictions for WiFi packets and thus may affect the overall WiFi throughput. Yet, such
restrictions are traded for requiring only a single receiver.
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4.3 Implementation

We prototype RapidRider using FPGAs, commodity radios, USRPs and ZedBoards. The
details are as follows.
Backscatter tag. Our prototype is based on MOXcatter [89] and X-Tandem [90]. It mainly
consists of a signal detector, an FPGA and an RF switch. The signal detector is constructed
using an AD8313 and TLV3501. AD8313 is a multistage demodulation logarithmic amplifier
and TLV3501 is a threshold voltage tuning circuit. The modulation and control logics are
implemented by a XILINX Artix-7 XC7A35T. Also, we employ a mixed-mode clock manager
(MMCM) to generate the same-frequency signals with different initial phases, which are used
to control the RF-switch ADG902.
Ambient excitations. We use two types of excitations, commercial and SDR. The com-
mercial one is a Dell laptop equipped with a Qualcomm Atheros AR938x as an ambient
excitation. This Qualcomm NIC supports 802.11a/g/n protocol with 2 antennas. To fa-
cilitate the control of ambient signals, we use commercial software CommView [1], which
provides access to various parameters, e.g., transmission rate and payload content. We also
use ZedBoard with an AD9361 daughterboard as excitation to have an in-depth look at the
intermediate processes.
WiFi AP receiver. We have three types of receivers, commercial and two types of SDR.
For commercial APs, we use the same setup as the ambient excitation. Meanwhile, a USRP
N210 with an SBX40 daughter board and a USRP B210 are assembled as SDR APs, which
have full access to the baseband signals. The USRPs are connected to an ASUS laptop
running a modified open-source WiFi receiver gr-ieee802-11 [19] on Ubuntu. When using
ZedBoard SDR as excitation, we also use the same setup. Two ZedBoards are connected to
the Dell laptops running the modified MATLAB sample program.
Deployment. We conduct comprehensive experiments in many different environments such
as indoor and outdoor, line-of-sight (LoS) and non-line-of-sight (NLoS). As Figure 4.9 de-
picts, we first conduct indoor experiments on a second-floor platform of an office building.
For LoS scenarios, we put the ambient excitation and backscatter tag together by the wall,
and then gradually move the WiFi receiver away along the straight line. In NLoS situation,
we move the ambient excitation and tag together to the other side of the wall, so that there
is no direct path between WiFi receivers and the tag.
Competitions. We compare our design against two state-of-the-art systems, FreeRider
[87] and MOXcatter [89]. FreeRider uses four OFDM symbols to encode one tag bit, and
MOXcatter takes two symbols.
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Figure 4.10: Backscatter RSSI, BER, and throughput across distances in LoS scenarios.

4.4 Evaluation

In this section, we fully evaluate RapidRider’s performance and compare it against state-
of-the-art works under various environments. We first measure the end-to-end performance
and then conduct micro-benchmark experiments.
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Figure 4.11: Backscatter RSSI, BER, and throughput across distances in NLoS scenarios.

4.4.1 End-to-End Performance

To evaluate the end-to-end performance, we measure RSSIs, BERs, and throughputs of
backscattered signals for both indoor and outdoor environments.
Indoor experiments. For indoor environments, we conduct experiments in both LoS
and NLoS scenarios. We deploy the backscatter tag 0.5 m away from the excitation. Then
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we move the receiver far away and measure the RSSI, BER, and throughput at different
distances.

From Figure 4.10a and 4.11a, we can observe as the distance increases, the RSSI of
the backscattered signal decreases rapidly, and the maximum communication range of
RapidRider is 14 m for LoS and 11 m for NLoS. This is because the signal strength of
backscattered signals under NLoS deployment is weaker than that with LoS. For the same
distances, RSSIs of the backscattered signal in NLoS environments are 5 to 10 dBm lower
than those in LoS scenarios.

As shown in Figure 4.10b and 4.11b, BERs gradually increase with longer distances,
and BERs in LoS are better than those in NLoS. When the distance between the receiver
and tag is within 8 m, BERs for RapidRider in LoS environments are lower than 10%.
However, in NLoS situations, when the receiver is just 5 m away, the BER rises to over
10%. Furthermore, in both LoS or NLoS scenarios, FreeRider’s BERs are significantly lower
than those of RapidRider and MOXcatter in all cases. It is mainly due to redundant coding.

Despite the advantages brought by redundant coding, FreeRider and MOXcatter are no
match for RapidRider in terms of throughput. As depicted in Figure 4.10c and Figure 4.11c,
the maximum throughputs of RapidRider are 237.8 kbps and 235.3 kbps in LoS and NLoS
scenarios, respectively. In contrast, counterparts of MOXcatter and FreeRider are 120.8
kbps and 60.7 kbps for LoS cases. In other words, for maximum throughput, RapidRider is
1.97x and 3.92x better than MOXcatter and FreeRider. This is mainly attributed to that
RapidRider is a single-symbol based system, while the other two are based on multiple
symbols. The above results show that RapidRider significantly improves raw-data rates and
achieves efficient OFDM backscatter.
Outdoor experiments. In addition, we also examine the performance of RapidRider in
outdoor environments. We conduct experiments in a parking lot on campus where there is no
obstruction, i.e., all LoS cases. As shown in Figure 4.12a, we observe that due to the lack of
obstacles for outdoors, RSSIs of the backscattered signals are significantly better than those
of indoors. Accordingly, the maximum communication range expands to 16 m. Similarly,
BERs also benefit from outdoors; even at the farthest distance - 16 m, the BER keeps
under 20%. Better BERs and RSSIs lead to better throughput: the maximum throughput
for outdoors is 239.1 kbps. When the tag and receiver are far away, the outdoor performance
is much better than indoor performance. For instance, at a distance of 14 m, the throughput
for outdoors reaches 214.7 kbps while the counterpart is 203.5 kbps for indoors.

4.4.2 Micro Benchmarks

Next, we first measure the performance at different layers when using a different number of
symbols for tag data modulation. Then, we evaluate RapidRider’s single-symbol encoding
performance and robustness to different excitation signals. Further, we compare and analyze
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Figure 4.12: Backscatter RSSI, BER, and throughput across distances in outdoor deploy-
ment.

the translation methods and find the optimal threshold setting. Finally, we evaluate the
system performance under different MCSs.
Impact of the number of symbols for modulation. We examine how symbol-wide
and packet-wide operations behave when using different numbers of symbols and focus on
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Figure 4.13: Perfomance comparison when using different numbers of symbols for tag data
modulation.

the deinterleaving layer and the payload layer, which are used for tag data demodulation
by RapidRider and FreeRider & MOXcatter, respectively. We fix the distance between the
backscatter tag and receiver at 2 m and place the transmitter close to the tag. The number
of symbols used to modulate a single tag data is set to 1, 2 and 4. We use the newly defined
new metrics, BSER, to do evaluation. The results are shown in Figure 4.13.

First, we conduct simulation experiments on MATLAB. From the operations of receiver,
we select 4 layers’ bitstreams, which are demodulation, deinterleaving, decoding and pay-
load. The corresponding BSER calculation results are shown in Figure 4.13a. It’s obvious
that the BSER before the deinterleaving layer is much smaller than that after it since decod-
ing and descrambling are packet-wide operations. For deinterleaving layer, as the number of
symbols used for modulation decreases, the BSER only increases from 0.11% to 0.44%. In
comparison, BSER increases from 3.3% to 25.2% at payload layer. In the case of 1-symbol,
an interesting discovery is that there is a certain gap between the BSER of decoding and
the payload layer, which is due to descrambling. The above results demonstrate the non-
exchangeability of payload-wide operations and C. Further, we conduct a real experiment
to measure the BSER of the payload and deinterleaving layers. The results in Figure 4.13b
validate the findings of the simulation experiments. The value of BSER for the payload
layer is much higher than deinterleaving, which explains why FreeRider and MOXcatter
can’t achieve single-symbol modulation.
Impact of single symbol modulation. We examine how RapidRider and FreeRider
behave for single-symbol modulation 2. Besides throughput, goodput is another standard
metric for evaluating communication and networking systems. Goodput is the application-
layer throughput, which is affected by more factors than physical-layer throughput. For

2MOXcatter is not included here because single-symbol MOXcatter is equivalent to single-symbol
FreeRider.
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Figure 4.14: Performance comparison for RapidRider and single-symbol FreeRider.

example, goodput highly depends on excitation rates for backscatter systems. We fix the
distance between the backscatter tag and receiver at 1 m and put the transmitter at 0.3 m
and 1 m away from the tag. The excitation rates are set at 100 pkt/s, 500 pkt/s, and 1000
pkt/s, where each packet has 420 bytes, i.e., 150 OFDM symbols. The results are shown in
Figure 4.14.

We first investigate the impact of distance on backscatter communication and fix the
excitation rate at 500 pkt/s. As Figure 4.14a depicts, when the distance between the tag
and transmitter is only 0.3 m, the BER of RapidRider is only 1.3%, while the BER of
single-symbol FreeRider is 43%. When the tag is 1 m away from TX, the BER of RapidRider
slightly increases to 3% while FreeRider’s BER becomes 79%. Such high BERs for FreeRider
indicate that single-symbol FreeRider does not work for backscatter communication. By
contrast, RapidRider’s BERs stay within reasonable ranges thanks to the deinterleaving-
twins strategy.

Then, we check the impact of different excitation rates. According to Figure 4.14c and
Figure 4.14d, at various excitation rates, BERs of RapidRider are 4%, 3%, and 2.6%, which
means excitation rates do not affect BERs much. In addition, as the excitation rate in-
creases, the goodput of RapidRider grows accordingly. In particular, when the excitation
rate increases from 100 pkt/s to 1000 pkt/s, the corresponding goodput improves from 7.7
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kbps to 78.5 kbps. Therefore, we learn that the excitation rate is one of the dominating
factors for goodput.
Impact of translation methods. We measure the different translation methods for
RapidRider and FreeRider using single-symbol modulation. Moreover, we explore the op-
timal threshold settings for these methods. The excitation transmitter is placed close to
the backscatter tag and the receiver is 2 m away from the tag. To eliminate the sensitivity
of the decoding method to the tag data and make the results more reliable, we use three
groups of random tag data in the experiment and take the averaged results. For Majority
Voting and Subsequence Matching, we also average the results of two subcategories, which
take ’1’ or ’0’ as the translation core, respectively.

First, we compare translation methods applicable to the case where the sequence pattern
is consecutive ’1’. The range of the threshold is set from 0.1 to 0.9 with a step of 0.2. Figure
4.15a and 4.15b shows the results for RapidRider and FreeRider. For RapidRider, Majority
Voting and Jaccard Similarity are significantly better than Subsequence Matching in most
cases. However, for single-modulation FreeRider, BER is much higher and there is no obvious
difference between several methods, which is mainly due to the difficulty of implementing
single-symbol modulation at the payload layer. Therefore, we focus on Figure 4.15a to find
the optimal threshold setting. The optimal value of Majority Voting and Jaccard Similarity
is around 0.5. For Subsequence Matching, the BER decreases as the threshold decreases
within the current setting range. To find the optimal value, we carry out further experiments
that reduce the value of the threshold. The result is that if the threshold is too small, BER
will also increase, and find that the optimal threshold is around 0.1. Therefore, we learn
that translation methods have a great influence on the BER and choosing the appropriate
translation method is extremely important.

Then, we evaluate the two methods for the alternating sequence of ’1’ and ’0’ for
RapidRider. The range of the threshold is set from 0.375 to 0.525 with a step of 0.25.
According to Figure 4.15c, 0.425 is the best choice for Majority Voting and 0.5 for Dif-
ference Summation. In addition, we find that in the optimal case, the BERs of the two
methods are similar. Therefore, both methods can be used for tag data translation. From
the above results, it can be seen that Majority Voting is the most general method. It can
be applied to many scenarios as long as the threshold is set appropriately.
Impact of MCS. We examine how RapidRider and single-symbol FreeRider behave at
different MCSs. We fix the distance backscatter tag and receiver at 2 m and put the trans-
mitter close to the tag. We use the Majority Voting method for comparison and set the
threshold to the optimal value.

As Figure 4.16 depicts, the performance of RapidRider is much better than FreeRider
no matter what MCS is. When MCS = 0, the BER of FreeRider is 5.6%, while RapidRider
is only 0.7%. Further, when MCS increases to 3, the BER of FreeRider increases to 20.4%
rapidly, which is unacceptable for data transmission. But the BER of RapidRder is still only
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Figure 4.15: Performance comparison for four translation methods: Majority Voting, Sub-
sequence Matching, Jaccard Similarity and Difference summation, which can be used in
different cases. (a) and (b) shows the comparison of the first three and (c) shows the result
of Majority Voting and Difference Summation.

around 4.5%. Figure 4.16 tells us that RapidRider trades around 4kbps tag data throughput
for a 4x increase in carrier data. By comparison, FreeRider costs over 30kbps, which is 7.5x
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Figure 4.16: Performance comparison for different MCS.
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Figure 4.17: Performance comparison of three typical modes for RapidRider+.

more than RapidRider. Again, the universality of our method is demonstrated. RapidRider
can make full use of uncontrolled ambient wifi signals in the environment.

4.4.3 RapidRider+

Next, we evaluate RapidRider+ using a single receiver.
Impact of aggregated transmission coefficient. We fix the distance between excitation
transmitter and backscatter tag at 0.3 m, and the receiver is placed 1 m away from the tag.
The excitation rate is 1000 pkt/s. We choose three typical values (1/3, 1/2, 2/3) for γ. The
empirical results are shown in Figure 4.17. According to Figure 4.17a, BERs are very stable
across different γ settings.

Regarding goodput, as shown in Figure 4.17b, when γ is 1/3, the aggregate goodput is
698.6 kbps, where the productive goodput is 609.4 kbps and tag goodput is 49.2 kbps. When
γ = 1/2 and γ = 2/3, the aggregate goodputs are 950.9 kbps and 1,243.5 kbps, respectively.
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Figure 4.18: Comparison of BER and tag data throughputs with FreeRider and MOXcatter
when there are obstacles in the original channel but no obstacles in the backscatter channel.

These show that RapidRider+ can achieve decent goodputs for both productive and tag
data transmissions. Also, tradeoffs can be made by simply choosing a proper γ.
Impact of obstacles. In addition to being able to transmit productive data, supporting
a single receiver is another advantage of RapidRider+. Prior works require two receivers
with one working on the original channel and the other receiving backscattered packets.
Such design has an implicit assumption: the excitation signal should be correctly received
and decoded. Unfortunately, it is not always the case. To investigate the impact of the
original channel quality on tag data decoding, we conduct experiments with obstacles in
the way from the excitation to the AP. In particular, the tag is placed 0.5 m away from
the transmitter and receiver. The original channel is blocked by metal obstacles, while the
backscatter channel has LoS. The excitation rate is 1000 pkt/s, and γ is 1/3. Since FreeRider
and MOXcatter cannot transmit productive and tag data at the same time, we only compare
the BER and goodput for tag data transmissions.

Figure 4.18a shows the results of BERs for RapidRider+, FreeRider, and MOXcatter.
Obviously, the metal obstacles negatively impact the quality of the original channel and
further degrade the decoding of tag data. Specifically, BERs of FreeRider and MOXcatter
increase significantly to 28.4% and 30.2%, while RapidRider+’s BER is only 2.69%. This is
mainly due to that RapidRider+ only requires one receiver whose channel has clear LoS,
while FreeRider and MOXcatter have the original channel blocked. Moreover, RapidRider+
achieves better tag-data goodput than both FreeRider and MOXcatter, as shown in Figure
4.18b. Even the modulatable length of RapidRider+ is only 2/3 of FreeRider and MOX-
catter, the goodput of RapidRider+ reaches 49.4 kbps. On the contrary, FreeRider and
MOXcatter can only achieve 13.1kbps and 25.6kbps goodputs, respectively. Similar to BER
comparison, the main factor is that the low-quality data from the original channel seriously
affects tag data decoding. What is worse, if the original data packet is completely lost,
no tag data can be deduced even with perfect backscatter channels. Hence, RapidRider+’s
single-receiver solution is more robust in mobile wireless environments.
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4.5 Discussion

Excitation constraints. In RapidRider+ design, to accommodate single-receiver scenar-
ios, we have imposed some restrictions on excitations. So far, there is no available theory
or experiment that could bring up single-receiver decoding with random excitations. One
possible solution is to decode data by brute-force. Even though the complexity is super
high, pruning heuristic algorithms based on statistics may help when high-performance
supercomputing is accessible.
Decoding on other levels. According to our derivation in Section III.B, in fact, the
successful decoding can be made on any level between FFT and deinterleaving. Hence, the
choice of decoding level should meet real-world applications. Our choice of the deinterleaving
level here is based on that we want the computation overhead of deinterleaving twins (one
forward and one backward) is balanced.
Higher-order modulation. Higher backscatter throughput requires higher-order modu-
lation. To enable higher-order modulation, e.g., 16-QAM, 64-QAM, the current codeword
translation scheme has to be revamped. At the same time, the circuits of QAM modulation
for backscatter need to be designed, which is different from traditional RF front-end using
IQ mixers.

4.6 Conclusion

We have presented RapidRider, the first WiFi backscatter system that achieves 237.8 kbps
throughput with uncontrolled ambient OFDM signals. The key enabler is the single-symbol
decoding scheme that uses deinterleaving twins with a forward deinterleaver and a back-
ward one. The design of this decoding scheme is based on our insight that not all OFDM
WiFi operations are commutative with codeword translation. We also explore the MCS for
excitation and discuss several translation methods, finding the optimal threshold setting for
different methods. We prototype our design using off-the-shelf devices and customized tags.
Extensive field studies show that RapidRider achieves up to 3.92x and 1.97x throughput
gains over FreeRider and MOXcatter. We believe that RapidRider will benefit a range of
backscatter applications as it provides a low-power, high-throughput backscatter commu-
nication by reusing existing ambient signals.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis explores fundamental factors that hinder the development of robust general-
purpose backscatter with commodity radios. We analyze the root cause of these issues,
and propose some solutions, including link layer design, commercial-compatible modulation
techniques, and decoding methods, to significantly improve the compatibility with commod-
ity radios, thus making backscatter communication into general-purpose battery-free data
transfer for IoTs.

We present a Mobility-aware Rate Adaptation (MobiRate) method that uses Physical
(PHY) information for backscatter networks. Our goal is to achieve high throughput while
remaining compatible with standard and commercial RFID readers. We have observed that
current backscatter networks that aim to provide a high-throughput interconnected plat-
form are not adequately prepared. They are not fully compatible with ambient signals,
commodity devices, and protocol stacks. Our aim is to deliver high throughput for mobile
backscatter networks in a standard-compliant manner. Specifically, we focus on optimiz-
ing rate adaptation at the link layer for the widely used C1G2 standards [5]. Our design
eliminates hardware dependency by introducing a throughput-based rate adaptation frame-
work and extensively leveraging fine-grained mobility hints to optimize probing processes.
We compare MobiRate with two state-of-the-art solutions, Blink and CARA, in a wide
range of settings. Through extensive experiments, we demonstrate that MobiRate can first
detect self-interference accurately, with an accuracy of over 90%, and then shift probing
direction for better rate selection, resulting in an average of 1.21x throughput gains. We
tested MobiRate with different scenarios, such as classrooms, lounges, and various veloci-
ties, under self-interference. Our results show that MobiRate can provide stable and effective
countermeasures for self-interference detection and achieve better rate selection for higher
throughput.

We have proposed a reliable BLE backscatter modulation design that works with a single
commodity receiver. Providing a backscatter solution that is completely built by commercial
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radios is a common goal. Although the most recent work, FreeRider [87], realized this goal
with only commodity BLE radios, it suffers from key reliability issues. FreeRider employs
a two-step modulation to be compatible with BLE signals, which inevitably introduces
unreliability due to self-interference or no solid signal in the target frequency. Our proposed
design, RBLE, modulates the sensor data of the RBLE tag on BLE exciting signals and
backscatters new BLE packets that any commodity BLE device can decode. The main
contributions of RBLE include designing direct frequency shift modulation to enable bit-by-
bit packet regeneration and leveraging dynamic channel reconfiguration to bypass interfered
channels. RBLE achieves more than 17.3x and up to 78.8x goodput gains in Line-of-Sight
(LoS) cases, and more than 17.1x and up to 66x goodput gains in Non-Line-of-Sight (NLoS)
scenarios, compared to FreeRider. By the help of dynamic channel configuration, RBLE with
channel hopping achieves 1.92x goodput gain over the one without such help in the presence
of strong WiFi interference. We also implemented RBLE with only off-the-shelf phones,
including iPhones and Android phones, and the experiments showed that RBLE is able to
work with both data and advertising packets from smartphones as carriers. The maximal
uplink range is 16 m for an iPhone as the receiver. In summary, our RBLE design is a
reliable and efficient BLE backscatter modulation design that achieves high goodput gains
in both LoS and NLoS scenarios, while being compatible with commodity BLE devices.
It also leverages dynamic channel reconfiguration and is able to work with off-the-shelf
smartphones as carriers.

In the last, we introduce RapidRider, a new WiFi backscatter design that utilizes un-
controlled OFDM WiFi signals as excitations and efficiently embeds tag data at the single-
symbol rate. While backscatter communication with ambient signals is already achieved, it
requires a controlled excitation signal. Some packet-level WiFi solutions have been proposed
to work with uncontrolled ambient signals, but they suffer from low data rates (typically 1
kbps) since a packet can only carry one bit and are susceptible to environmental changes.
We first explain why previous systems fail in single-symbol backscatter and then present
our solution based on deinterleaved data. We also design a deinterleaving-twins decoding
scheme, incorporating a forward deinterleaver and a backward deinterleaver, to enable the
use of uncontrolled excitations. Additionally, we explore how the modulation and coding
scheme (MCS) of the excitation affects tag demodulation, and design several translation
methods for the first time. To break the two-receiver limit, we introduce a novel aggre-
gated transmission mechanism that allows productive data and tag data to be sent on the
same packet. The key insight is to use the pilot symbol as the reference symbol for tag
data demodulation, making a single receiver sufficient for decoding both data streams. For
single-symbol modulation, the BER of RapidRider could be as low as 1.3%, while that of
FreeRider is 43% under the same setting, demonstrating that RapidRider is state-of-the-art
for single-symbol OFDM backscatter. Thanks to RapidRider, for the first time, we can use
the abundant uncontrolled WiFi signals around us freely for backscatter.
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Figure 5.1: An overview of future work.

In summary, the proposed designs for backscatter communication, including MobiRate,
RBLE, and RapidRider, aim to overcome the limitations of existing solutions by leverag-
ing ambient signals for communication and achieving high-throughput and reliability with
commodity radios. The proposed designs show promising results in various scenarios and
can potentially enable new applications for backscatter communication in the future.

5.2 Future Work

5.2.1 Commercial

Productive and unproductive exciting signals. Choosing between an unproductive
single tone or a productive data-carrying signal as the carrier involves trade-offs. For in-
stance, FreeRider relies on the exciting signals’ data sequence to decode the tag data. If the
original channel’s data sequence is corrupted, it becomes challenging to decode tag data,
even if the backscattered channel’s data is error-free. This productive-data dependence can
significantly affect the bit error rate (BER) of the tag data when the original channel’s qual-
ity becomes unstable. However, backscattering with productive exciting signals represents
a significant step towards exploiting rich ambient signals, as it does not require controlling
the exciting signal’s payload content.

We have addressed the WiFi backscatter case by enabling the use of productive data-
carrying signals as the carrier. Nevertheless, we are still seeking a compromise solution for
BLE radios that can leverage productive exciting signals while ensuring the backscatter
transmission’s reliability. One possible approach is to properly manage the exciting signals’
data content, maintaining a certain level of productive data goodput.
Choice of codeword scheme. The RBLE employs a codeword scheme that relies on a
repetition code with multiple code rates. However, the error correction capability of such
a code is limited. To improve it, we can opt for more complex codeword schemes, such
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as BCH codes, which offer higher code rates and stronger error correction capabilities. By
using different code rates of BCH codes, we could achieve adaptive encoding.
Decoding on other levels. Based on our derivation in Section 4.2.2, successful decoding
can be performed at any level between FFT and deinterleaving. Therefore, the selection of
the decoding level should be based on the practical applications. Our choice of the dein-
terleaving level here is based on that we want the computation overhead of deinterleaving
twins (one forward and one backward) is balanced.
Higher-order modulation. Achieving a higher backscatter throughput necessitates the
adoption of higher-order modulation schemes, such as 16-QAM and 64-QAM. However,
to enable such modulation schemes, the current codeword translation technique needs to
be restructured. Additionally, the circuits of QAM modulation for backscatter need to be
designed, which is different from traditional RF front-end using IQ mixers.

5.2.2 Dedicated

Starving Tags. Currently, our design has a potential issue of starving tags, meaning
that some tags might not get interrogated. To address this problem, we can implement
a throughput-based access protocol that ensures each participant attains equal throughput.
In this type of design, the rate in the link layer is usually fixed (e.g., FM0) because main-
taining the same throughput for multiple rates is a difficult task. However, in multi-rate
scenarios, we can attempt to provide every node with equal access time rather than equal
throughput. We aim to enhance the existing link layer design in the future to prevent any
starving tags.
Smoothing Factor. The smoothing parameter is theoretically influenced by two primary
factors: mobility and environment. In MobiRate, velocity is mainly utilized to indicate
mobility, but future research may explore acceleration and orientation as well. On the other
hand, modeling the environment entails considering RF propagation properties, frequency
fading, polarization, and other factors.

We guess that deep reinforced learning could be a promising approach to optimizing the
smoothing factor. By gathering more data traces and examining the interaction between
η and actual rate feedback, we can deduce the appropriate value for η dynamically based
on different environments and mobility status. Nonetheless, this technique may result in
unwanted processing delays, so finding ways to make it more lightweight is a worthwhile
area for further investigation.
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