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Abstract

Symbolic execution is increasingly being utilized in verification tools and software analysis.
Despite its theoretical ability to explore all possible paths in the execution tree of a pro-
gram under test, it is often a lengthy and resource-intensive process due to factors such as
solver waiting time. One notable symbolic execution tool currently under active develop-
ment is KLEE, an interpretation-based engine. We have extended this tool and introduced
KLEEWT, a multi-threaded engine capable of parallelizing the symbolic execution process.
Our results demonstrate that KLEEWT not only uses fewer resources compared to similar
works like Cloud9, but also enhances the original KLEE’s performance.

Keywords: Symblic Execution; KLEE; Parallelization; Multiple Solvers

iii



Dedication

To my loving mom and dad, for all their support and love.

iv



Acknowledgements

I would like to express my sincere gratitude to my advisor, Prof. Steven Ko, for his invaluable
guidance, support, and encouragement throughout my master’s studies. He has been a great
mentor and a source of inspiration for me. He always challenged me to think critically and
creatively and helped me improve my research skills and writing abilities.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Background 3
2.1 Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Loops in Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Concolic Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Execution-Generated Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Binary-Level Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 KLEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Query Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Problem description and Motivation 10
3.1 Challenges in Symbolic Execution . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Cumulative Percentage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Related Work 16

5 Approach 21

vi



5.1 Why KLEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Input programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 State Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 State Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Approach Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6 Thread Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Modified State Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Challenges 27
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Evaluation 30
7.1 Why GNU Coreutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Command structure and options . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Speed Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.5 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.6 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.7 Solver time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Conclusion and future work 36

Bibliography 37

vii



List of Tables

Table 7.1 Termination time comparison between KLEE and KLEEWT for 33
Coreutils applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



List of Figures

Figure 2.1 An execution tree representation . . . . . . . . . . . . . . . . . . . . 4
Figure 2.2 A simple example to demonstrate concolic execution flow . . . . . . 7
Figure 2.3 A simple example to demonstrate concolic execution . . . . . . . . 8

Figure 3.1 A simple example to demonstrate memory modeling challenges in
symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 3.2 The distribution of execution time for each state in KLEE on GNU
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.3 The cumulative percentage plot of KLEE running on GNU echo . . 15

Figure 5.1 The general flow of the execution after adding threads to the engine 24
Figure 5.2 An abstract view of the main interpreter loop . . . . . . . . . . . . 24
Figure 5.3 An abstract view of worker threads actions . . . . . . . . . . . . . . 24
Figure 5.4 An unbalanced exploration of a program . . . . . . . . . . . . . . . 26

Figure 6.1 A possible scenario where the order of locks is critical . . . . . . . . 28

Figure 7.1 Memory usage pattern is very similar to the original KLEE, but with
more memory being used . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 7.2 Average solver time for the 33 GNU coreutils programs . . . . . . . 34

ix



Chapter 1

Introduction

In the programming realm, if we exclude the software development and project management
methods[26] and just focus on a single developer while coding, one way to make software
is starting with designing an algorithm and then translating those logical decisions in each
step to a piece of code in the target programming language. There have been plenty of
changes affecting the aforementioned procedure, like introducing new concepts and features
in programming languages (for example, introducing auto in C++) or even new languages
(like Rust[6]). Those changes are not only making the programming easier and more or-
ganized, but they also focus on the safety and reliability of the programs, sometimes even
a language is introduced having safety and reliability as one of its core goals[6]. Having
features regarding the safety of the code helps reduce the cost of testing and debugging
software eventually. One good example would be ownership rules in Rust or smart pointers
in C++ which help developers to write more reliable programs.

With all the efforts in programming language design and debugging tools, programs still
can show unexpected behaviors at run-time, there are well-known approaches for testing a
program like Unit-testing and Fuzzing, which will be briefly introduced.

Unit Testing is a common practice in computer science where developers write test
cases along with regular code. This approach has been popularized by automation frame-
works such as JUnit[4] for Java, which allows for frequent and automatic execution of unit
test suites. Despite the widespread use of unit testing in practice, software engineering re-
searchers see the potential for improvement and are investigating advanced techniques such
as automated unit test generation[11].

Fuzzing[25], also known as fuzz testing, is an automated software testing technique that
involves providing invalid, unexpected, or random data as inputs to a computer program.
The program is then monitored for exceptions such as crashes, failing built-in code asser-
tions, or potential memory leaks. Fuzzing is often used to test programs that take structured
inputs. This structure is specified, e.g., in a file format or protocol, and distinguishes valid
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from invalid input. An effective fuzzer generates semi-valid inputs that are valid enough in
that they are not directly rejected by the parser, but do create unexpected behaviors deeper
in the program and are invalid enough to expose corner cases that have not been properly
dealt with[25].

To clarify the differences between unit testing and fuzzing it can be said that unit
testing usually leverages positive testing, as it investigates a program’s behavior given valid
inputs (while it is not necessary to associate positive testing with unit testing). Unit tests
are usually done by developers, and they are good solutions for deterministic tests and for
verifying if a piece of code functions correctly given a specific input. On the other hand,
fuzzing can leverage negative testing alongside positive testing as it investigates how a
program behaves given a big set of invalid or unexpected inputs. Fuzzing is traditionally
done by security teams. Instead of asserting how a system should behave, fuzzers explore
how it should not behave, by automatically generating thousands, or hundreds of thousands
of invalid inputs and seeing if any of them will trigger an undesired behavior.

Formal verification is a technique that uses mathematical logic and reasoning to prove
or disprove the correctness of a system or a program for a given specification. Formal
verification can help and is important when compared with unit testing and fuzzing because
it can provide a higher level of confidence and assurance that the system or program is free
of errors or vulnerabilities. Unit testing and fuzzing are both testing techniques that rely on
executing the system or program with various inputs and checking the outputs or behaviors.
However, these techniques cannot guarantee that they cover all possible inputs or scenarios,
and they may miss some edge cases or hidden bugs. Formal verification, on the other hand,
can exhaustively analyze the system or program and verify its properties without running
it. Formal verification can also guide and complement unit testing and fuzzing by providing
valuable assumptions and feedback that can reduce and direct the testing efforts[42].
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Chapter 2

Background

Unfortunately, neither unit testing nor fuzzing can prove that the program-under-test is
error-free. If we consider the execution tree of a program where each node of the tree is
a state between the execution of two instructions and each edge represents the transition
of an instruction that leads to the next node[2.1], it is understandable that even in small
programs, there might be an enormous number of paths from the root to each leaf of the
tree. Here comes the symbolic execution method for software testing to generate test cases
that ideally can cover all possible paths in a program. Usually, full-coverage is something
that is not achievable even in relatively small programs, but symbolic execution, as will be
discussed more, can generate high-coverage test cases to find deep errors in complicated
programs[9].

To clarify more about the execution tree, An execution tree, also known as the sym-
bolic execution tree or program path tree, is a data structure that represents the different
execution paths that a program can take based on the symbolic inputs. The nodes of the
tree correspond to the program states, and the edges correspond to the transitions between
states. The root node represents the initial state of the program, and the leaf nodes repre-
sent the final states or the termination points. Each node contains the symbolic variables
and their corresponding constraints, and each edge is labeled with the condition that leads
to the next state. The execution tree grows as the symbolic execution progresses, and it
branches out whenever the program encounters a decision point, such as an if statement or
a loop condition. The execution tree can be used to analyze the program behavior, identify
vulnerabilities, generate test cases, and verify properties[41].

2.1 Symbolic Execution

Symbolic Execution is a program analysis method that was introduced in the mid-’70s[21],
in this kind of analysis we are looking for certain properties in a program and ideally want
to generate a concrete test case to re-produce a behavior in the program under verification.
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Figure 2.1: An execution tree representation

That desired behavior can be reaching division by zero, dereferencing NULL pointers, etc
[2].

In a concrete execution of a program (i.e. giving concrete data as input) the program
gets executed alongside a single control flow path according to the branches and conditions
inside the program. Thus, giving a single set of data as input only explores one path out of
many and cannot give a sound and complete report about the behavior(s) of the program
under test.

Symbolic execution is theoretically sound and complete if it can guarantee that:

• Soundness: Soundness: any property violation reported by symbolic execution is a
true violation that can be reproduced with a concrete input (no false positives).

• Completeness: symbolic execution can find all property violations that exist in the
program (no false negatives).

However, in practice, symbolic execution faces many challenges that limit its soundness
and completeness, such as path explosion, undecidable constraints, environment interac-
tions, and approximation errors. Therefore, researchers have proposed various methods and
tools to improve the soundness and completeness of symbolic execution, such as paralleliza-
tion, abstraction, concolic execution, and formal verification.

Here comes the main idea of the symbolic execution, take symbolic input instead of
concrete input. This gives the capability of exploring several control flow paths in one round
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of execution. Theoretically, symbolic execution can enable covering all possible execution
paths in a program and generate facts about the program behavior.

The program that does symbolic execution on other programs is usually called a sym-
bolic execution engine and it maintains two important pieces of information alongside the
execution of any program[2]:

• Condition: a first-order Boolean formula generated by the satisfying or not-satisfying
branch conditions alongside the execution path.

• State: which includes the symbolic values for all the variables defined and used so far
in the execution.

So each assignment is going to update the state and each if-else statement is going to
update the conditions we have so far. At the end of each execution path, we have a set of
conditions that have been considered satisfiable so far. In order to detect whether we can
reach such a state or not, The conditions must go through an SMT (Satisfiability Modulo
Theories) solver and the solver usually gives either a set of concrete values to satisfy the
condition or just says that the condition is not satisfiable [30]. In some cases, the solver is
unable to make a decision and outputs a statement like Unknown.

If the solver decides that the conditions are satisfiable and gives the concrete values, using
those values as the program input will make the execution follow the exact same path that
we have covered to generate the aforementioned conditions and if the solver says that the
conditions are not satisfiable, that specific path is not reachable. An important application
here is that sometimes developers put assertion statements to throw an exception, error, or
undesired behavior in the program. A program path being not satisfiable guarantees that
very specific errors, exceptions, etc. will not happen in that path.

2.1.1 Loops in Symbolic Execution

Loops are a common source of difficulty for symbolic execution, especially when the loop
condition is symbolic. This is because loops can introduce non-linear constraints, unbounded
iterations, and implicit flows that can affect the feasibility and scalability of the analysis.
There are different techniques to handle loops in symbolic execution, such as:

• Loop Bounding: This technique limits the number of iterations that a loop can
execute, either statically or dynamically. This can reduce the complexity of the path
constraints and the number of paths to explore, but it can also introduce soundness
issues or miss some behaviors[2].

• Loop summarizing: This technique computes a summary of the loop’s effect on
the program state, without executing every iteration. This can improve the precision
and efficiency of the analysis, but it can also be challenging to compute accurate and
general summaries[44].
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• Loop invariant generation: This technique infers properties that hold for every
iteration of the loop, and uses them to reason about the loop’s behavior. This can
enhance the expressiveness and completeness of the analysis, but it can also be hard
to generate loop invariants automatically[24].

Loop summarizing is a technique that computes the overall effect of a loop on the
program state, without going through each iteration. A loop invariant is a formula
that describes a property that is true before and after each iteration of a loop and is
used to verify the loop behavior. Both techniques are used to handle loops in symbolic
execution, but they have different goals and challenges.

2.2 Concolic Execution

A modified approach to analyze the programs based on symbolic execution is Directed
Automated Random Testing (DART)[16] or concolic testing. In this approach, the engine
requires a concrete input that can even be random, to start the execution and follow the
corresponding path. While doing concrete execution, a set of constraints on branches will be
gathered during the path exploration and when reaching the end of a path, the constraints
or a modified version of them will be fed into the solver to generate concrete values for
exploring another execution path in the program under test.

As an example, in figures[2.3][2.2] we have a simple program with a single if branch.
If the concolic execution engine starts with x=12 and y=9, the if will be taken and the
constraint x + y > 20 will be added to the list of constraints. Now, in order to explore
another path in the program, the x + y > 20 will be negated to x + y <= 20 and will be
given to a solver. Since in this simple case, the condition is satisfiable, the solver will return
concrete values for x and y to take the else branch.

2.3 Execution-Generated Testing

Execution-Generated Testing (EGT) leverages both concrete and symbolic execution po-
tentials in a program. In this approach, before each operation in a program, the engine
will check whether it can be executed concretely. This can happen only if all the variables
involved in an operation are concrete at the moment. If at least one of the variables is
symbolic, the operation needs to be done symbolically and the set of constraints gathered
alongside the path should be updated. This approach is significantly useful when calling
functions from libraries outside the code base in order to continue the execution while
being sure that we have received a correct behavior from a function to which we do not
have access to its source code. There are known tools such as EXE[8] and KLEE[7] that
implemented EGT in their engine.
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Figure 2.2: A simple example to demonstrate concolic execution flow

2.4 Binary-Level Symbolic Execution

The level of abstraction in the source code of a program under test varies between different
tools. Some tools such as KLEE[7] and SymCC[29] work on the LLVM[23] intermediate
level code, while Manticore[27] work in the binary level. Binary-level symbolic execution
is interesting because the code being analyzed is not going to change by a compiler or get
optimized ultimately so there will be no concerns about possible compiler modifications on
the code[35]. Based on that, it seems the intermediate-level codes are suitable for program
analysis as they contain relatively enough details about the final instructions to be executed
while preserving some high-level information.

2.5 KLEE

As the goal of this work affects the KLEE engine, it is required to give an introduction to
its architecture and some design decisions.
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void main() {
int x,y;
//assigning values to x and y
if (x+y>20)

safe();
else

error();
}

Figure 2.3: A simple example to demonstrate concolic execution

2.5.1 Architecture

It can be said that KLEE is composed of three main components: the executor, the expres-
sion library, and the constraint solver interface.

The executor is responsible for executing the LLVM IR code symbolically, generating
test cases, and reporting errors. The executor maintains a set of states, each representing
a possible execution path of the program. Each state has a symbolic store, which maps
memory locations to symbolic expressions, and a path condition, which is a conjunction of
constraints on the symbolic inputs that must hold for the state to be feasible. The executor
also always maintains a set of states that are ready to be executed.

The expression library is a data structure that represents symbolic expressions and
supports various operations on them, such as arithmetic, bit-wise, logical, and comparison
operations. The expression library uses a common sub-expression elimination technique to
reduce the size and complexity of the expressions. The expression library also supports
constant folding, which simplifies expressions that involve only concrete values.

The constraint solver interface is a component that interacts with an external SMT
solver to check the satisfiability and validity of the constraints generated by the executor.
The constraint solver interface also performs constraint optimization, which simplifies and
eliminates redundant constraints before sending them to the SMT solver. It can use different
SMT solvers, such as STP, Z3[12], or Yices[1], depending on the availability.

2.5.2 Query Optimization

One of the main challenges in symbolic execution is the high cost of constraint solving,
which involves solving complex problems in an NP-complete logic. KLEE authors have
used various techniques to simplify expressions and avoid queries as much as possible before
sending them to their constraint solver. It is worth mentioning that even with these query
optimization strategies, constraint solving is still a bottleneck in symbolic execution. The
main query optimization techniques are:
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Expression Rewriting: This technique applies basic compiler optimizations, such as
simple arithmetic simplifications (x + 0 = x), strength reduction (x ∗ 2n = x << n), and
linear simplification (2 ∗ x − x = x).

Constraint Set Simplification: This technique reduces the number of constraints
in the path condition by rewriting previous constraints when new equality constraints are
added. For example, if x < 10 and x = 5 are added, the first constraint can be simplified
to true and eliminated.

Implied Value Concretization: This technique detects when a constraint implies a
concrete value for a variable, such as x+1 = 10 implies x = 9, and writes the concrete value
back to memory. This ensures that future accesses of that memory location can return a
cheap constant expression.

Constraint Independence: This technique splits the constraint set into disjoint inde-
pendent subsets based on the symbolic variables they reference. By tracking these subsets,
KLEE can often eliminate irrelevant constraints before sending a query to the solver. For
example, given the constraints i < j, j < 20, k > 0, a query of whether i = 20 only requires
the first two constraints.

Counter-example Cache: This technique eliminates redundant queries by using a
cache that maps sets of constraints to counter-examples (i.e., variable assignments) or a
special sentinel when there is no solution. The cache is stored in a custom data structure
that allows efficient searching for cache entries for both subsets and super sets of a constraint
set. By storing the cache in this way, the counter-example cache can eliminate queries in
three additional ways. For example, assume that the cache has entries for i < 10, i = 10
(no solution) and i < 10, j = 8 (satisfiable, with variable assignments iß5, jß8). Then if a
subset of a constraint set has no solution, the original constraint set also has no solution.
Adding constraints to an unsatisfiable constraint set cannot make it satisfiable. For example,
i < 10, i = 10, j = 12 is also unsatisfiable. If a superset of a constraint set has a solution,
that solution also satisfies the original constraint set. Dropping constraints from a constraint
set does not invalidate a solution to that set. For example, iß5, jß8 satisfies either i < 10 or
j = 8 individually. If a subset of a constraint set has a solution, likely, this is also a solution
for the original set. This is because the extra constraints often do not interfere with the
existing solution. For example, iß5, jß8 is also a solution for i < 10, j = 8, k = 0[7].
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Chapter 3

Problem description and
Motivation

Although Symbolic execution seems promising both theoretically and practically, it has some
challenges along the way. In order to describe the problem that this thesis addresses, it is
needed to briefly discuss the general challenges of symbolic execution. In theory, symbolic
execution provides a sound and complete analysis of the program under test. Soundness
means that all possible inputs that can trigger different behaviors of the program can be
found and completeness means that generated test cases for unsafe behavior are actually
valid. Practically, it has some limitations.

3.1 Challenges in Symbolic Execution

Here are some of the major practical problems with symbolic execution:

• Memory modeling: When dealing with pointers and addresses, symbolic values
become harder to deal with. When a program uses pointers, the symbolic executor may
not know which memory location a pointer refers to, or how many memory locations
are affected by a pointer operation. This can lead to a combinatorial explosion of
possible states or a loss of precision due to concretization or approximation[22][3].

In figure[3.1], the function swap takes two pointers as parameters and swaps the values
they point to. The function input is a symbolic input that returns a non-deterministic
boolean value. The main function declares two variables x and y, and two pointers p
and q that initially point to them. Depending on the value of the input, the pointer p
may be reassigned to point to y instead of x. Then, the function swap is called with
p and q as arguments, and an assertion is checked at the end.

A symbolic execution engine that tries to analyze this code will face several challenges.
First, it will have to deal with the symbolic condition input(), which creates two
branches: one where p points to x and q points to y, and another where p and q both
point to y.
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void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

int main() {
int x = 10;
int y = 20;
int *p = &x;
int *q = &y;
if (input()) {

p = q;
}
swap(p, q);
assert(x == 20 && y == 10);

}

Figure 3.1: A simple example to demonstrate memory modeling challenges in symbolic
execution

Second, it will have to handle the pointer dereferencing and assignment operations in
swap, which may affect multiple memory locations depending on the values of p and
q.

Third, it will have to check the assertion, which involves the values of x and y, which
may have been modified by swap.

• Environment and External Modules

This problem arises when the program under analysis interacts with external compo-
nents, such as a library or system code, that are not under the control of the symbolic
execution engine. These interactions can cause side effects, such as creating a file,
modifying a global variable, or sending a network message, that could later affect the
execution and must be accounted for. However, evaluating any possible interaction
outcome may be unfeasible or impractical, due to the complexity or unpredictability
of the external components. Therefore, the symbolic execution engine needs to find a
way to handle these interactions without compromising the soundness or completeness
of the analysis.

One possible solution to this problem is to model the external components with stubs
or wrappers that simulate their behavior and effects in a simplified or abstract way.
For example, a stub for a file system operation could create a symbolic file object
instead of a concrete file on disk, and update a symbolic file system state accordingly.
Another possible solution is to interleave symbolic execution with concrete execution,
by running the external components on a concrete state derived from the symbolic
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state and then transferring the concrete effects back to the symbolic state. For ex-
ample, a concrete execution of a network operation could send a real message to a
server and receive a real response, and then use the response as a symbolic value for
the subsequent symbolic execution steps.

A paper that discusses this problem and proposes a solution based on interleaving sym-
bolic and concrete execution is SYMBION[17]. It is a system that combines symbolic
execution with dynamic binary instrumentation to analyze complex software systems
that interact with the environment. SYMBION uses concolic execution, which exe-
cutes the program on both concrete and symbolic inputs and switches between them
depending on the type of interaction. SYMBION can handle interactions with library
and system code, as well as hardware devices, by using concrete execution as a source
of symbolic values and constraints.

• Path Explosion: The path explosion problem in symbolic execution is a fundamental
challenge that limits the scalability and completeness of the technique. The number
of paths grows exponentially with the size and complexity of the program, and the
symbolic execution engine may not be able to handle them all within a reasonable time
and space budget. This problem can affect the quality and coverage of the analysis,
as well as the feasibility of finding bugs or vulnerabilities. Although there are some
proposed ways to deal with this challenge[32], path explosion remains a hot spot in
symbolic execution.

• Constraint Solving: The constraint-solving problem in symbolic execution is a ma-
jor challenge that affects the scalability and effectiveness of the technique. To de-
termine the feasibility of each path and generate concrete inputs for it, symbolic
execution relies on constraint solvers, which are often the bottleneck of the analysis.
The constraints are typically derived from the program’s conditional statements and
represent the path conditions that must hold for a given path to be executed.

The constraint-solving problem arises from the fact that constraint solvers are often
slow, incomplete, or unsound for the kinds of constraints that symbolic execution
generates. For example, some constraints may involve complex arithmetic operations,
such as floating-point, bit-vector, or nonlinear arithmetic, which are hard or impossible
to solve efficiently and precisely. Other constraints may involve string operations, such
as concatenation, sub-string, or regular expressions, which are not well supported by
most solvers. Moreover, some constraints may be undecidable in general, such as
those involving recursive functions, loops, or data structures, which require either
approximation or manual annotation to be handled. Furthermore, some constraints
may be too large or too numerous to be solved within a reasonable time and space
budget, due to the exponential growth of the number of paths and the size of the path
conditions. This problem is going to be the main focus of this work.
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There are some solutions to alleviate this problem. Some papers have proposed to
optimize the constraints before sending them to the solver, by simplifying, pruning,
or partitioning them, to reduce their complexity and size. For example,[14] introduces
an optimization strategy that uses domain and contextual information to optimize
the performance of constraint solvers during symbolic execution. Other papers have
proposed to use of alternative or complementary methods to constraint solving, such
as concolic execution, dynamic test generation, or machine learning, to overcome the
limitations of the solvers. For example[39] introduces DeepSolver, an approach to
constraint solving with deep learning for symbolic execution, which uses a neural
network to classify path conditions for their satisfiability. Other papers have proposed
to design new or improved constraint solvers that can handle the specific kinds of
constraints that symbolic execution generates, by using advanced techniques such as
constraint programming, or model counting. For example[37]. introduces a new form
of symbolic execution that allows users to specify uninteresting parts of the code to
exclude during the analysis, and uses various on-demand static analyses at runtime
to automatically exclude code fragments while resolving their side effects.

3.2 Problem description

As the symbolic execution engine goes through the source code of a program, the condition
set after each branch usually gets more complicated in logic and length. Hence, the queries
that the engine sends to the solver get harder to solve (there are even some cases in which the
solver cannot decide whether the conditions are satisfiable or not) and require a relatively
long time to finish.

The difference in execution time of each instruction in a case that requires query solving
with a case that does not require query solving can be significant. For example in KLEE,
sometimes the difference is a multiple of 400 times, i.e. if a state does not require query
solving or if the query is simple enough, and it takes about 100-time units to complete, a
complicated query can take up to 40000-time units to complete and it is a significant wait
time for the engine.

As an example, figure[3.2] shows the execution time for the latest version of GNU echo
command in each iteration of the execution in KLEE. As shown in the figure[3.2], the
majority of the iterations (each iteration means the execution of state with respect to the
next instruction) take small time units to complete and they are close to each other. On the
other hand, the iterations containing longer time for constraint solving, have a significant
gap with the other ones. Considering the fact that they are executing sequentially, shows
that the process of analyzing the program is facing significant delays during the execution.
So leveraging parallelism, if possible, is going to help increase the speed of the process and
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Figure 3.2: The distribution of execution time for each state in KLEE on GNU echo

reduce the overall wait time for solving queries. To reach this goal, more than one solver
needs to be created with the engine.

Technically, Using multiple solvers to lift the burden of long waiting times heavily de-
pends on the engine itself and how it is implemented. As will be shown in the next chapter,
KLEE, although being a very big and complicated code base, has a good potential to support
this approach and leverage parallelism to analyze programs.

Theoretically, each state in the execution tree is a root of a sub-tree and can be executed
almost independently from other states. An important thing to consider here is that when
the engine is processing a state, the state’s parent has already been executed and led to the
creation of the child. So the order of program instructions is preserved as it should be in a
pure sequential execution.

3.3 Cumulative Percentage

As it has been discussed in figure[3.2], the majority of the iterations do not take a significant
amount of time. It can be useful to illustrate that the large execution times are taking what
portion of the total execution time in an analysis. A cumulative percentile plot might give
a clearer view of what is the effect of long iterations on total execution time.

Figure[3.3] illustrates a cumulative percentage plot of GNU echo. A noticeable and yet
important note about the analysis is that the total execution time of the analysis is highly
under effect by long iterations. This effect is obviously quantified differently in each program.
For example, the top 1 percent of the iterations occupy a significant amount of 78 percent
of the total execution time of the analysis.

14



Figure 3.3: The cumulative percentage plot of KLEE running on GNU echo

This means that only a small fraction of the iterations are responsible for the majority
of the computational cost. This shows a hot spot in the execution process that explains
leveraging multiple solvers and parallel work distribution can be effective. This behavior is
not limited to a single program like echo, several other programs in the GNU coreutils set
are showing the same pattern with different numbers.
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Chapter 4

Related Work

There are more than 150 publications about the KLEE tool but only a few of them have
connections with this work, which will be discussed in this chapter. For completeness, more
related works in parallel symbolic execution that use different tools from KLEE have been
discussed as well.

In[28] they present the main features of the SMT queries that are produced during
symbolic execution, and describe a modified version of KLEE that can use different SMT
solvers (Boolector, STP[15], and Z3) through the metaSMT[31] solver framework. They
have also evaluated the performance of these solvers on large sets of QF ABV queries that
come from the symbolic execution of real-world software. Moreover, they proposed several
alternatives for building a parallel portfolio solver for symbolic execution tools but it was a
proposition and they did not implemented something parallel and tested it for improvement.

Cloud9, a parallel symbolic execution engine (SEE) that runs on a commodity cluster.
Symbolic execution is very expensive in terms of resources, especially memory, so Cloud9
aims to distribute the work among multiple nodes. Cloud9 partitions the execution tree
dynamically, as it is being explored, rather than statically, as the shape and size of the tree
are unknown beforehand.

It has a set of distributed computing nodes and assigns each of them a job using an
orchestration module. Each node runs an instance of the KLEE symbolic execution engine
rather than creating multiple threads inside the Engine and runs the analysis in parallel
using those nodes. Each node is a machine with 4GB of RAM and they have used 12 nodes
for experiments on the GNU coreutils which has more capacity than the workstation we used
for the experiments. If we consider that the memory usage in each node is high enough, They
are using more resources to do the experiments. Also, since the nodes are doing the execution
separately based on an initial state that has been fed to them, the coordination and data
consistency between computing nodes bring more load to the system. Also, they have not
shared the exact commands that they have used for long execution of the GNU coreutils
programs which made the exact comparison almost impossible. But they are showing better
results for the cost of more computing power and complexity. KLEEWT does not need a
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distributed set of nodes to run and it occupies less memory, making it more available for
developers to test their software.

The work by Kumar et al.[18] has done a field study on Cloud9, and found that it
has poor performance on large-scale code. The paper has also identified three bottlenecks
that cause performance degradation: the communication time gap, the job transfer policy,
and the cache management of the solved constraints. The paper has proposed some tuning
techniques to address these bottlenecks and evaluated them on benchmarks and a real appli-
cation. The paper has shown that the tuned Cloud9 can significantly reduce the execution
time and improve the effectiveness of parallel symbolic execution.

The staged symbolic execution[40], proposes a new way of checking if a program behaves
as expected by using assertions, which are statements that express some conditions that
should be true at certain points in the code. The paper’s approach is called staged symbolic
execution, and it works in two steps: The first step is to find all the possible ways that the
program can reach the assertions, and mark them as targets for the next step. This step uses
symbolic execution. The second step is to check if the assertions are true or false along each
target path and report any violations. This step can be done in parallel by multiple workers,
each focusing on one or more paths depending on the available computing resources. This
way, the property checking can be done faster and more efficiently. The paper claims that
this approach is effective in checking assertions in two Java programs and that it can find
more bugs than existing techniques.

Cloud-based parallel concolic execution[10] presents a new way of speeding up concolic
execution, which is a technique that combines concrete and symbolic execution to generate
test inputs that cover different paths in a program. Concolic execution is often slow and
inefficient because it has to explore many possible paths, which is called path explosion.
The paper’s approach is called PACCI, and it works by using cloud infrastructures to
parallelize concolic execution and adapt to the changes in computing resources. PACCI
uses the MapReduce programming model, which is a framework that allows the processing
of large amounts of data in parallel using multiple nodes. PACCI also solves some challenges,
such as making each node explore different paths independently and prioritizing the test
inputs that are more likely to find bugs. The paper claims that PACCI is scalable and shows
promising results.

In LLSC[38] they proposed a novel approach called LLSC, and it works by compiling
the program into code that can do symbolic execution by itself. The compiled code can run
faster, because it does not need an interpreter to execute the program, and it can explore
multiple paths in parallel using multiple cores or machines, this is relatively similar to [29].
LLSC uses a technique called the 1st Futamura projection, which is a way of transforming
an interpreter into a compiler by specializing it for a specific program. The interpreter is
written in a language that supports multi-stage programming, which is a way of generating
code at run time. The paper claims that LLSC is the first compiler for fork-based symbolic
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execution semantics that can generate parallel execution code. The paper also shows some
experiments that demonstrate that LLSC is much faster than interpretation-based symbolic
execution engines.

Parallel chopped symbolic execution[34] approach is called PChop, and it works by
combining two ideas: Chopped symbolic execution, which is a technique that allows the
user to specify parts of the code that are not important for the analysis and can be skipped
or delayed until they affect the main parts of the code. This way, the analysis can focus
on the essential parts of the code first and avoid unnecessary exploration of irrelevant
paths. This way, the analysis can speed up the exploration of the paths and utilize the
available computing resources. The paper claims that PChop is effective in finding security
vulnerabilities in the GNU libtasn1 library, which is a library for encoding and decoding data
using the ASN.1 standard. The paper shows that PChop can reproduce two vulnerabilities
faster than Chopper when using a specific search strategy and that PChop can also identify
a new code location for each vulnerability that was not reported before.

The ParSym[33] introduces ParSym, a novel parallel algorithm that leverages a cluster of
machines to scale symbolic execution. Symbolic execution faces the path explosion problem,
which limits its applicability to large programs. ParSym tackles this problem by distributing
multiple branches of a path condition among available workers in a parallel fashion, resulting
in a more efficient and scalable version of symbolic execution. The paper demonstrates that
ParSym achieves more than two orders of magnitude speedup using 512 processors.

The paper also describes the design and implementation of ParSym, which is based on
the KLEE symbolic execution engine and the MPI parallel programming library. The paper
evaluates ParSym on a set of benchmark programs, comparing it with the sequential version
of KLEE and another parallel symbolic execution tool called Cloud9[5]. The paper shows
that ParSym outperforms both KLEE and Cloud9 in terms of scalability, coverage, and
performance. The paper also discusses the limitations and challenges of ParSym, such as
load balancing, communication overhead, and memory consumption.

Parallel Symbolic Execution for Structural Test Generation[36] proposes a new tech-
nique, Simple Static Partitioning, for parallelizing symbolic execution. The technique uses
a set of pre-conditions to partition the symbolic execution tree, allowing it to effectively
distribute symbolic execution and decrease the time needed to explore the symbolic execu-
tion tree. The paper claims that the technique can scale to hundreds of cores and achieve
significant speedup over sequential symbolic execution.

Parallel Symbolic Execution for Structural Test Generation[36] also describes the design
and implementation of the technique, which is based on the Java PathFinder verification
tool-set and evaluates it on six case studies concerning the performance improvement when
exploring a finite symbolic execution tree and performing automatic test generation. The
paper shows that the technique outperforms the sequential version of KLEE, another sym-
bolic execution engine, and is competitive with ParSym, another parallel symbolic execution
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tool, in some cases. The paper also discusses the challenges and limitations of the technique,
such as load balancing, fault tolerance, and memory consumption. The paper concludes by
highlighting the contributions and future work of the technique.

Scalable Distributed Concolic Testing Approach[19] presents a scalable distributed con-
colic testing framework that utilizes large numbers of computing nodes to generate test
cases in a scalable manner. Concolic testing is a technique that combines concrete and sym-
bolic execution to explore execution paths in a program under test. The paper claims that
concolic testing can improve the quality of software testing, but it suffers from high compu-
tational cost and scalability issues. The paper proposes a novel approach that distributes
the concolic testing workload among multiple nodes and uses a master node to coordinate
the exploration of execution paths. The paper evaluates the proposed framework on several
benchmarks and compares it with the original concolic testing approach. The paper reports
that the proposed framework can achieve a several orders-of-magnitude increase in test case
generation speed, and also demonstrates clear potential for scalability. The paper concludes
that the proposed framework can overcome the limitations of concolic testing and make it
more practical for software testing.

Also, Optimizing Parallel Korat Using Invalid Ranges[13] proposes a novel approach
to optimize parallel Korat, a technique that generates test inputs for Java programs using
bounded exhaustive testing. The key idea is to use invalid ranges, which are intervals of
values that cannot appear in any valid test input, to prune the search space and reduce
the communication overhead among parallel workers. The paper presents an algorithm to
compute invalid ranges for a given program and a bound and shows how to use them to
enhance parallel Korat. The paper evaluates the proposed approach on several benchmarks
and compares it with the original parallel Korat and the sequential Korat. The paper reports
that the proposed approach can achieve significant speedup and scalability, and outperforms
the original parallel Korat in most cases.

Park[45] proposes a new technique called symbolic execution with abstract matching
that can efficiently analyze programs with complex data structures and pointer manipula-
tions. The technique combines symbolic execution, which explores program paths by using
symbolic values, and abstract matching, which checks the equivalence of data structures
by using abstract domains. The paper introduces a novel algorithm to perform abstract
matching on heap-allocated data structures and shows how to integrate it with symbolic
execution. The paper evaluates the technique on several benchmarks and compares it with
state-of-the-art symbolic execution tools. The paper reports that the technique can achieve
significant improvement in coverage, scalability, and precision, and can handle programs
that are challenging for existing tools.

There is also a related thesis[20], The main contribution of the thesis is the design and
implementation of a parallel version of symbolic execution, exploring all possible paths of
execution. Symbolic execution can be used for various purposes, such as testing, debugging,
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verification, and security analysis. However, symbolic execution is also very computationally
expensive and memory intensive, especially for large and complex software units. Therefore,
the thesis proposes a parallel version of symbolic execution that can take advantage of
modern multi-core and multi-processor systems to reduce the analysis time and increase
the scalability.

The thesis defines the concept of symbolic execution and its applications, challenges, and
limitations. It then reviews the existing approaches and tools for symbolic execution, both
sequential and parallel, and identifies their strengths and weaknesses. It also presents the
design and implementation of a parallel symbolic execution tool called PSE, which is based
on the KLEE symbolic execution engine and the MPI message-passing library. And, finally,
evaluates the performance and scalability of PSE on several benchmarks and compares it
with KLEE and other parallel symbolic execution tools.
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Chapter 5

Approach

In order to explain the approach, it is necessary to discuss the KLEE engine in more details
and take a look at its architecture. Also, the reason behind choosing KLEE and GNU
coreutils will be discussed further in this chapter.

5.1 Why KLEE

KLEE is a symbolic execution engine that can be used to automate test-case generation
as well as be used to find bugs. It is open source originates from academia, and has been
actively maintained and developed for more than a decade. KLEE is built on top of the
LLVM compiler infrastructure and can execute LLVM bitcode modules with support for
symbolic values.

KLEE also provides a POSIX/Linux emulation layer that can handle system calls, file
operations, environment variables, and command line arguments. KLEE has a large com-
munity spanning both academia and industry, with more than 150 publications about it.
Although being actively developed, it still encounters some bugs during the execution of
some programs, and it is not error-free. Also, KLEE is not limited to application codes[7],
it has been used to analyze the core of the HiSTAR[43] kernel and found security bugs in
it.

5.2 Input programs

KLEE takes LLVM intermediate-level code as its input form. LLVM IR is a low-level inter-
mediate representation that can be generated from various source languages and compiled
into different target architectures. LLVM IR is designed to be type-safe, flexible, and ex-
pressive, while also enabling various optimizations and analyses usually done by LLVM
passes.

Using LLVM IR as the input form has several advantages for symbolic execution. First,
it allows KLEE to handle programs written in different languages, as long as they can be
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compiled to LLVM IR. Second, it simplifies the implementation of KLEE, as it does not need
to deal with the complexities and oddities of different source languages. Third, it enables
KLEE to leverage the existing LLVM infrastructure, such as the compiler front-end, the
optimizer, and the code generator.

5.3 State Representation

In this tool, the state is a representation of a symbolic process that contains a mapping of
variables to their symbolic value and it also contains the constraints gathered so far in the
execution. Also in each state, there is a pointer to the next instruction to be executed.

Inside each state object, there are even more variables and functionalities of interest.
For example stack, depth of the state in the execution tree, covered lines so far, etc.

The state space grows rapidly in practice, even small programs can produce tens or
hundreds of thousands of states that are available for execution at the same time in the first
few minutes of execution. This makes the size of each state very important. KLEE can keep
track of all memory objects, so it can use copy-on-write for each object (instead of each
page), which greatly reduces the memory needed for each state. By using an immutable
map for the heap, parts of the heap structure can also be shared by multiple states (similar
to how fork() can share parts of the page tables). Moreover, this heap structure can be
copied in constant time, which is crucial because this operation happens very often.

Also KLEE has been inspired by EXE[8] they are different in state management. EXE
uses one operating system process for each state. By keeping the state representation inside
the system, the number of states that are ready to be explored at the same time has been
increased, both by lowering the cost of each state and by allowing states to share memory
at the object level (instead of the page level). This also made it easier to implement caches
and search strategies that work in all states.

5.4 State Selection

KLEE started with using two search heuristics to choose the state to execute at each step
of the analysis. One is Random Path Selection, which picks a state by randomly following a
tree that records the program path for all active states. This strategy can favor states that
have fewer constraints on their inputs and can reach new codes more easily. It also avoids
starvation when some part of the program creates many new states quickly. The other is
a Coverage-Optimized Search, which picks a state that is likely to cover new code soon. It
uses heuristics to assign a weight to each state and then selects a state randomly based on
these weights. These heuristics consider the minimum distance to an uncovered instruction,
the call stack of the state, and whether the state covered new code recently.

KLEE alternates between these two strategies in a round-robin fashion. This prevents
a single strategy from getting stuck or dominating the execution time. It also improves the
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overall effectiveness, since the strategies share the same state pool. KLEE also limits the
time that each state can run by using a time slice that depends on both the maximum
number of instructions and the maximum amount of time. This ensures that a state that
executes expensive instructions (such as branches, memory accesses, or constraint solving)
will not take too long. This only tries to execute more states and does not necessarily help
coverage because a state that does not get executed completely, may cause plenty of new
states to be created. Ultimately it is not necessarily a good practice to stop the execution
of states if we want to have more coverage.

5.5 Approach Description

In figure[5.1], the most important events in the flow of the execution have been shown.
KLEE works on the LLVM bitcode of the programs and it loads LLVM modules to feed the
engine. After parsing the arguments passed to the KLEE, two important things happen,
first, initializing the variables that are responsible for controlling the flow of execution. For
example, if the user has specified the maximum execution time for the engine, the timer
variable will be set according to that. The next important step is detecting the main entry
point to the program under test, which is the main function by default. In this stage, a new
instance of the engine will be created and initialized. One of the most important actions that
take place in engine creation, is creating the solvers, which is of interest in the approach.
We create all the solvers needed at the engine creation and initialize them. This approach
might seem inefficient because if create more solvers that are not needed, we have wasted
memory and CPU time. To alleviate this problem, the thread scheduling strategy is going
to give a suitable number for the solvers (and threads) after one iteration of the execution.
The detailed thread scheduling strategy will be discussed in the next section.

To set a limit, we define MaxWorkerThreads at compile time to indicate the maximum
number of threads possible in the engine. The reason for defining the maximum number of
threads instead of defining the number of active threads, is based on the thread scheduling
strategy that has been added to the engine. We want to add a thread to the active working
threads, only when it is needed. Also, the MaxWorkerThreads does not need to be a big
number, according to the experiments, the number of worker threads needed is not going
to exceed 4 threads. The number of created solvers is equal to MaxWorkerThreads plus
one more solver, this is because the main execution thread also needs to access a solver in
the early steps of the program execution and after that. Furthermore, some objects in the
engine are going to use a solver provided by the engine so we cannot use a solver assigned
to worker threads for that.

After creating the solvers and worker threads, the main interpreter loop[5.2] picks a
state at each iteration and feeds the queue of states in the thread management section.
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Figure 5.1: The general flow of the execution after adding threads to the engine

Each active worker thread will pop a state from the queue and execute the instruction of it
using the executeInstruction() function and update the current tree of states.

while (!timer | !states.empty()) {
state = searcher->pickstate();
state.preprocessing();
ThreadManagement(state); //pushes state to statesQueue
}

Figure 5.2: An abstract view of the main interpreter loop

Each worker thread is responsible for processing only one state at a time, and after
finishing each iteration, it will update the states tree and check for the next available state
in the states queue, In[5.3] there is a compact view of what happens inside each worker
thread at each iteration.

while (!AllThreadsDone) {
state = statesQueue.pop();
Instruction = state.instruction();
executeInstruction(state, Instruction);
UpdateStates(state);

}

Figure 5.3: An abstract view of worker threads actions
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5.6 Thread Scheduling

Ideally, we want to create a suitable number of threads and solvers (each worker thread
has a premium solver for itself) because if we create more than enough, we are not using
resources efficiently and if we create fewer threads than required, we are losing a potential
to leverage more parallelism.

There are two main strategies implemented in thread scheduling:

• Adding a thread to the pool of working threads: At compile time, we just
define the maximum number of threads allowed but at the beginning of the execution,
only one additional thread is created. This enables the thread management section
to add threads as needed. Each thread has a boolean flag to indicate whether it is
active or not, it also has a boolean flag to indicate whether it is currently working on
a state or not. Whenever the thread management section wants to add a new state
to the StatesQueue, it will first check whether all active threads are actually working
on a state or not, if there is a thread that has been previously activated, but is not
currently working on any state, then no additional thread needed to be added to the
pool of active threads. But if all active threads are actually working on a state, then
another state will be added to the pool of active threads.

• Time taken for each thread: There is an array of time duration used by the thread
management system to actually monitor the latest execution duration of each thread.
When updating this array, if the newly added duration for a thread is more than
an order of the previous one, it means that the thread was probably working on a
complicated state containing a relatively big set of conditions that has been fed to the
solver. Because of that, we have likely reached a point in the program that is getting
harder to analyze, so another thread will be added to the pool of active threads.
According to the experiments, this strategy is currently limited to adding at most one
thread to the active threads pool during an analysis. If the total execution time is
longer, this approach can add even more threads.

5.7 Modified State Selection

Although it will not speed up the execution of the analysis, state selection can affect the
coverage in cases where the analysis takes a long time and does not terminate by finishing
the states.

One of the important features of the KLEE architecture is that it is possible to choose
a random state to execute from the state tree at each step. This also approves the Indepen-
dence of the states in the execution tree. The set of states that are ready to be executed is
the leaves of the states tree because in order to add children of a state to the current set, the
parent state needs to be executed first. But it is possible that the execution goes through
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a specific sub-tree more than other sub-trees and results in an unbalanced exploration[5.4]
which has the potential to result in less coverage.

Figure 5.4: An unbalanced exploration of a program

In order to deal with that problem, and inspired by the KLEE round-robin approach for
selecting a suitable state to execute, after several iterations of random-sate picking, another
strategy will be used to check the balance, which will select a leaf that is closer to root
in comparison with other leaves. The original KLEE has a similar approach with a weight
calculation, but the distance approach seems to be simpler in the implementation. In order
to keep track of the distances and choose the closest state, we store a pair involving the
state pointer and an integer and whenever we add new states to the tree, the distance of
the state will be incremented by one according to its parent’s distance and these pair are
getting stored in a min-heap with logarithmic complexity to update.
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Chapter 6

Challenges

Multi-threaded programs are very useful for executing multiple tasks concurrently. However,
they also face some challenges and problems, such as race conditions and deadlocks. It
becomes even more challenging if we consider that just the engine module of the KLEEWT
is about 7000 lines of code and there are plenty of shared variables that need to be taken
care of.

6.1 Background

A race condition is a situation where the outcome of a program depends on the order or
timing of the execution of multiple threads. For example, if two threads are trying to access
and modify the same shared variable, the final value of the variable might be different
depending on which thread executes first or last. Race conditions can cause unpredictable
and inconsistent results, and can be hard to detect and debug.

One way to prevent race conditions is to use locks, which are mechanisms that allow
only one thread to access a shared resource at a time. For example, if a thread wants to
modify a shared variable, it must first acquire a lock that is associated with that variable,
and then release the lock after it is done. This way, no other thread can access or modify
the variable while the lock is held.

However, locks can also introduce another problem, which is deadlock. A deadlock is a
situation where two or more threads are waiting for each other to release a lock, and none
of them can proceed. For example[6.1], suppose there are three shared variables, A, B, and
C, and each of them has a lock. Suppose also that there are two operations, X and Y, that
require different locks. Operation X requires the locks of A, B, and C, and operation Y
requires the lock of A. If operation X acquires the lock of A, and then operation Y acquires
the lock of B, then both operations will be stuck. Operation X cannot proceed because it
needs the lock of B, which is held by operation Y. Operation Y cannot proceed because it
needs the lock of A, which is held by operation X. This is a deadlock, and the only way to
resolve it is to abort one of the operations and release the locks.
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A = B = C = 0
lock_A = new Lock()
lock_B = new Lock()
lock_C = new Lock()

def operation_X():
lock_A.acquire()
lock_B.acquire()
lock_C.acquire()

A = A + 1
B = B + 2
C = C + 3

lock_C.release()
lock_B.release()
lock_A.release()

def operation_Y():
lock_A.acquire()
A = A * 2
lock_A.release()

thread_X = new Thread(target=operation_X)
thread_Y = new Thread(target=operation_Y)

Figure 6.1: A possible scenario where the order of locks is critical

One way to avoid deadlock is to ensure that all operations that require multiple locks
acquire them in the same order. For example, if operation X and operation Y both acquire
the locks of A, B, and C in that order, then there will be no deadlock. Another way to
avoid deadlock is to use a timeout mechanism, which means that a thread will give up on
acquiring a lock if it cannot get it within a certain time limit. This way, the thread can
release the locks it already holds and try again later.

6.2 Decisions

In order to deal with the shared variables, two approaches can be taken, first, we can create
separate variables to store the data for each thread separately, this will reduce the need to
add locks in some cases, but on the other hand, keeping the data consistent and synchronized
becomes harder. Also, more memory space will be needed. Second, as a simple but not easy
way, locks can be used to avoid race condition problems without being concerned about
using more memory or data inconsistency.
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As an example of the problems caused by adding new threads, in the state updating
mechanism, there are three main variables being used when updating a state:

• AddedStates

• RemovedStates

• CurrentState

All of them are needed at the same time to update the set of states. To be more specific,
the stateUpdater gets the current state and two lists addedStates and removedStates to
update a specific sub-tree. AddedStates is simply the set of children created from the parent
state and RemovedStates are based on a set of termination criteria by the KLEE engine,
these criteria include, program reaching abort() or a failed assertion, overflow occurrence,
reaching memory limit, etc. In order to keep a clean structure and maintain the consistency
and correctness of the set of the set of states, each thread has its own version of lists to
work with but the state updater needs to apply the changes one-by-one on the set of states.
Keeping all the added and removed states in just one corresponding variable and using locks
to access them confuses as it becomes very hard to keep track of which state has created
which sub-tree.
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Chapter 7

Evaluation

In this section, the evaluation process and results are presented. Generally, KLEEWT is
showing promising results in enhancing the execution speed of several programs in the latest
version of the GNU coreutils.

7.1 Why GNU Coreutils

GNU coreutils is a package of GNU software that contains implementations for many of
the basic tools, such as cat, ls, and rm, which are usually used on Unix-based operating
systems. These are the core utilities that are expected to exist on every operating system
and provide essential functionality for file, shell, and text manipulation.

GNU coreutils is a good tool to find bugs using software analysis approaches, such as
symbolic execution, for several reasons. First, GNU coreutils is open source and is publicly
available, and can be inspected, modified, and tested by anyone. Second, GNU coreutils is
widely used, which means that it has a large user base and a high impact on the reliability
and security of many systems. Third, GNU coreutils are complex, which means that it
contains many features, options, and corner cases that can be challenging to test and verify.
Therefore, applying software analysis approaches to GNU coreutils can be a reasonable way
to test software analysis approaches.

7.2 Setup

A desktop has been used to run the experiments with the following specifications:

• 13th Gen Intel® Core™ i9-13900

• 32GB RAM DDR5

One of the positive points about KLEE and KLEEWT is that there is no critical need
to use a very powerful and high-capacity machine to do the experiments, this point is also
important in comparison with the related works.
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7.3 Command structure and options

To use KLEE, it is needed to compile the target program to LLVM bitcode and then run
KLEE on the bitcode file with some options. Here are some of the most important options
that can be used with KLEE:

-sym-args <min> <max> <len>: This option tells KLEE to create symbolic ar-
guments for the program, where <min> is the minimum number of arguments, <max> is
the maximum number of arguments, and <len> is the maximum length of each argument.
For example, -sym-args 0 3 10 means that KLEE will explore all possible combinations of
0 to 3 arguments, each with a maximum length of 10 characters.

-sym-file <size> <name>: This option tells KLEE to create a symbolic file with
the given <size> and <name> for the program to read from. For example, -sym-file 20
input.txt means that KLEE will create a symbolic file named input.txt with 20 bytes of
symbolic data.

-sym-in <size>: This option tells KLEE to create a symbolic input of the given <size>
for the program to read from the standard input. For example, -sym-in 10 means that KLEE
will create a symbolic input of 10 bytes for the program to read from stdin.

-max-time <seconds>: This option tells KLEE to stop exploring paths after the
given <seconds> of elapsed time. For example, -max-time 60 means that KLEE will stop
after 60 seconds of execution time.

-search <name>: This option tells KLEE to use a specific search strategy for exploring
paths. For example, -search DFS means that KLEE will use depth-first search, -search
BFS means that KLEE will use breadth-first search, and -search random-path means that
KLEE will use random path selection. (DFS and BFS strategies have been added after the
publication of the original KLEE paper)

-posix=uclibc: This option tells KLEE to use the uClibc library for emulating POSIX/Linux
system calls. This can improve the compatibility and performance of KLEE for some pro-
grams.

7.4 Speed Comparison

In this experiment, 33 programs from the latest version of the coreutils have been used. The
exact same command has been fed to both KLEE and KLEEWT with the same bitcode
file and all the experiments have been terminated without forcing termination by the timer.
while early termination and the same behavior of KLEE and KLEEWT is a good feature,
the longer experiments might be more useful to compare KLEEWT with a related work
named Cloud9[5].

In this experiment, the same command has been given to both KLEE and KLEEWT
to have a fair comparison. However, the commands for different programs vary. Since the
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input is exactly the same for each program, the coverage has been the same for both KLEE
and KLEEWT in these cases. We achieved a maximum improvement of 12.52 percent and
6.64 in arithmetic average and 5.56 in geometric mean. Each experiment has been done 10
times to get a reliable number to compare and ignore the noisy effects (if any).

7.5 Memory Usage

Adding four more threads makes us expect more memory usage, which can be fine as long
as the setup is strong enough and the memory usage does not grow all the time. Figure[7.1]
shows the memory time usage for the cat program on KLEE and KLEEWT. As shown,
there is an increase at the beginning of the plot which shows the additional memory needed
to create solvers and more threads, but the pattern is the same as expected. One argument
can be that now that we have more threads, we are creating more states at a unit of time
and it should need more memory to use, but, on the other hand, the state consumption rate
is also higher and this deals with state generation issues.

Figure 7.1: Memory usage pattern is very similar to the original KLEE, but with more
memory being used

Although it is obvious that memory usage has increased noticeably, according to the
setup of current workstations, it is not that much to raise a concern. This is a benefit
compared to the Cloud9 approach, which has used 12 computing nodes, each having 4GB
of RAM for testing the GNU coreutils.
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7.6 Coverage

Code coverage is a measure of how much source code is executed when you run your appli-
cation. Coverage comparison is trickier, not only both command line options for KLEE and
KLEEWT should be the same, but they both should terminate after a certain amount of
time to make the comparison fair enough. One of the challenges here is to create a combina-
tion of command line arguments to actually prevent termination of the program under test
and enable us to use a timer to terminate the execution instead of waiting for the analysis to
be terminated. Fortunately, KLEE has a built-in timer for that purpose. But the challenge
to start a long enough execution still remains. The execution does not necessarily take a
longer time when we make the input more complicated in size or number. The only program
that ran for more than 10 minutes is "getlimits" which has been running for 693 seconds
and resulted in a 4 percent increase in coverage in comparison with KLEE.

This has been done using gcov tool, gcov is a tool that can be used with GCC to test code
coverage in programs. gcov can generate exact counts of the number of times each statement
in your program is executed and annotate your source code with this information. gcov can
be used to improve the quality and performance of code by identifying untested or inefficient
code segments.

To use gcov, you need to compile your program with the -fprofile-arcs and -ftest-coverage
options. These options will enable the instrumentation of your code and the creation of data
files that store the coverage information. After running your program, you can invoke gcov
with the source file name as an argument to produce an annotated source listing. Each line
of the source code will be prefixed with the number of times it has been executed or a
##### symbol if it has not been executed at all.

7.7 Solver time

Another interesting factor is the total time the program is waiting for the solver to receive
a response and continue execution, or in other words, the amount of time that the solver
takes divided by the total execution time. The Solver time of KLEE can be obtained after
execution with the klee-stats command and is automatically calculated. Although it helps
the built-in approach is not effective for the multi-threaded option.

In order to measure this for KLEEWT, each thread stores a detailed time using the
std::chrono and after receiving the query it stores the arrival time for the response. Both
numbers get written in a file and each thread has its own file. Since this approach requires
IO instructions and those instructions take a significant amount of time, Solver time exper-
iments have been done completely separately from the execution time experiments. In each
execution, what we want is the total wait time for the solver divided by the total execution
time.
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It is worth mentioning that the solver time for each thread in KLEEWT might be
overlapped by other thread waiting times. So Total time that the analysis is waiting for
the solver should decrease, A limitation is that Since writing the start time and end time
in a file is not an accurate process, and since recording data is not atomic with the solver
instructions, the results are not going to be accurate enough, But it will give a good point
of view to assess the effects of parallelization in KLEEWT.

Figure[7.2] is the average solver time for all the 33 commands experimented in the table.
It shows about a 21 percent improvement in solver time for the GNU programs used in the
comparison table (the KLEE solver time average was 78.73 and the KLEEWT average was
58.33). As expected, in order for comparison to be fair, all the command line arguments fed
into KLEE and KLEEWT are the same for each program under test.

Figure 7.2: Average solver time for the 33 GNU coreutils programs
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Table 7.1: Termination time comparison between KLEE and KLEEWT for 33 Coreutils
applications

Program KLEE time (s) KLEEWT time (s) improvement (percentage)

echo 12.26 12.11 1.22
base32 14.85 14.36 3.3
fold 582.38 552.56 5.12
base64 17.59 16.50 6.2
basename 20.48 19.25 6.01
basenc 23.13 22.15 4.24
cat 26.02 25.34 2.61
factor 367.37 347.38 5.44
chcon 29.06 27.80 4.34
dir 150.49 141.96 5.67
chgrp 32.47 30.55 5.91
chmod 36.20 33.68 6.96
dd 112.13 103.84 7.39
chown 40.88 37.07 9.32
chroot 47.10 43.07 8.56
comm 54.20 49.54 8.6
cp 64.79 59.48 8.2
csplit 73.23 68.97 5.82
cut 86.00 80.46 6.44
date 99.19 91.94 7.31
df 126.25 110.44 12.52
dircolors 165.81 150.44 9.27
dirname 188.20 182.21 3.18
du 213.16 198.41 6.92
env 235.71 217.94 7.54
b2sum 13.25 13.11 1.06
expand 267.12 254.20 4.84
expr 306.55 285.26 6.95
fals 434.82 414.94 4.57
fmt 491.61 470.46 4.3
getlimits 693.38 653.86 5.7
groups 380.86 345.25 9.35
head 563.51 504.68 10.44
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Chapter 8

Conclusion and future work

In this work, we presented KLEEWT, a multi-threaded symbolic execution engine based
on KLEE. We also evaluated this extended tool using the latest version of GNU coreutils
applications. The results are promising according to the resources, it has been shown that
KLEEWT is faster than KLEE and can cover more code which leads to potentially find
more bugs in the analysis of the programs. It had some challenges and limitations including
the problem with running the analysis for a very long time to see its effect in extremely long
executions which can make a more fair comparison with the most related work(Cloud9). As
been stated, the commands used for their experiments has not been publicly available. It
seems that their source code was available for a period but not anymore, there is a repository
under their name on GitHub, however it seems incomplete and does not contain enough
documentation to guide users.

There are also some possible ways to improve the existing approach including:

• Using a combination of more complicated state selection strategies to see the effect
on coverage. The latest published version of the KLEE also supports strategies such
as DFS and BFS for analysis.

• Due to technical challenges, the only type of solver that has been used in this work
is Z3. While Z3 is considered as a powerful solver, but using different type of solvers
might lead to interesting results.

• A combination of solvers, running in parallel might be very effective. The queries can
be categorized using some criteria such as complexity (which needs further clarifica-
tion) and queries form each category can be fed to a different solver for enhancing the
performance.
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