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Abstract

In this thesis we investigate sufficient conditions for the Hamiltonicity of highly symmetric graphs.
The subject of Hamiltonicity in such graphs, in particular, vertex-transitive graphs and specifically
Cayley graphs has attracted significant attention from researchers over the years. The thesis focuses
on a class of highly symmetric graphs known as regular coverings of graphs, or lifts of voltage graphs.
We restrict our attention to lifts of voltage trees over cyclic groups. This class of graphs had been
investigated for Hamiltonicity already by Batagelj and Pisanki in [11] and later by Hell et al. in [26].
Our results in Chapter 3 generalize the results in [11] and are independent of the results in [26].
Informally, we derive sufficient conditions for Hamiltonicity of covering graphs of trees based on
special decompositions of such trees. In Chapter 4, we first derive two sufficient conditions for the
existence of Hamiltonian cycle in covering graphs of trees over a cyclic group of large prime order.
Then we use these conditions to prove a probabilistic result that given a tree T and a random
voltage assignment on T with a fixed probability distribution, the limit of the probability that the
covering graph over T is Hamiltonian for large enough cyclic group of prime order tends to 1 as the
order of T tends to infinity. Finally, we prove that the covering graph of a tree T of a fixed maximum
degree contains a cycle through almost all vertices provided the voltage assignment assigns elements
to every loop of T that are coprime to the order of a large enough cyclic group. Most of the results
of this thesis are included in the submitted manuscript [12].

Keywords: Hamiltonicity; Voltage graph; Covering graph; Cayley graph; Vertex-transitive graph;
Cyclic group
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Chapter 1

Basic Notation and Overview

1.1 Definitions and Notation

We follow notation and terminology of graph theory as in the book Introduction to Graph Theory
by West [37]. We say a graph G is a triple consisting of a vertex set V (G), an edge set E(G), and
a function assigning each edge an unordered pair of vertices. With the same notation, a directed
graph G is a triple consisting of a vertex set V (G), an arc set A(G), and a function assigning each
arc (oriented edge) an ordered pair of vertices. Sometimes, if no confusion can arise, in directed
graphs, these arcs are referred to as edges. In this thesis, we often will interchange a graph with
a special directed graph where each edge of the graph gives rise to two oppositely directed arcs
(including loops) without explicitly speaking about this graph as directed. Two vertices v, w ∈ V (G)
are called adjacent and are neighbours if there exists an edge e ∈ E(G) such that v and w are both
endpoints of e. We write NG(v) to denote the set of all neighbours of v in G. A loop is an edge
whose endpoints are equal. Multiple edges are edges having the same pair of endpoints. If a graph
has no loops and multiple edges we call the graph simple graph. We say that a graph is reflexive
if there exists exactly1 one loop at every vertex. A subgraph of a graph G is a graph H such that
V (H) ⊆ V (G) and E(H) ⊆ E(G). A decomposition of a graph G is a list of subgraphs such that
each edge of G appears in exactly one subgraph in the list. A spanning subgraph of G is a subgraph
containing each vertex of G.

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that, for 1 ≤ i ≤ k, the edge ei, has
endpoints vi−1 and v. A path is a simple graph whose vertices can be ordered so that two vertices
are adjacent if and only if they are consecutive in the list. When we say a path P is in a graph G,
it means that P is a path as a subgraph of G. We denote P , a u, v-path if the endpoints of P are
vertex u and v. We say G is connected if there exist a u, v-path for all u, v ∈ V (G), otherwise G
is disconnected. The connectivity of a graph G is the minimum size of a vertex set S ⊆ V (G) such

1The common definition of a reflexive graph requires at least one loop at every vertex of the graph. Our definition
in the thesis is slightly stricter by restricting the number of loops to be exactly one
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that G− S is disconnected or has one vertex. G is k-connected if its connectivity is at least k. An
independent set in a graph is a set of pairwise nonadjacent vertices and the independence number
of a graph is the maximum size of an independent set of vertices. The components of G are G’s
maximal connected subgraphs. A cycle is a simple graph with the same number of vertices and
edges whose vertices can be placed in a cyclic order so that two vertices are adjacent if and only
if they are consecutive in the order. A Hamiltonian path in a graph G is a spanning path in G,
and a Hamiltonian cycle in G is a spanning cycle in G. We call a graph G Hamiltonian if G has a
Hamiltonian cycle. The circumference of a graph is the length of its longest cycle.

An isomorphism from a graph G to a H is a bijection f that maps V (G) to V (H) and E(G) to
E(H) such that each edge of G with endpoints u and v is mapped to an edge with endpoints f(u)
and f(v), respectively. An automorphism of a graph G is an isomorphism from G to G. We follow
notation and definitions related to vertex-transitive graphs found in Godsil and Royle’s Algebraic
Graph Theory [22]. It is customary to denote a group by the letter G. Therefore when groups and
graphs will be involved in our discussion, we will reserve G to denote the group and Γ to denote the
graph. A group G is called a cyclic group if there is an element a ∈ G such that every element of G
is some integral power of a. The order of an element a in a group G is the least positive integer n
such that an = id, where id ∈ G is the identity of the group. A non-empty subset H of a group G

is said to be a subgroup of G if H itself is a group under the operations of G. If H is a subgroup
of G and a ∈ G, then the set aH = {ah : h ∈ H} is called the left coset of H in G and the set
Ha = {ha : h ∈ H} is called the right coset of H in G. A homomorphism is a map from one group
to another that preserves the group operation and it is isomorphism if the map is one-to-one and
onto. An isomorphism from a group G onto itself is called an automorphism of G. A graph Γ is
vertex-transitive if its automorphism group acts transitively on V (Γ) and is edge-transitive if its
automorphism group acts transitively on E(Γ). Let G be a group and let S be a subset of G that is
closed under taking inverses and does not contain the identity. Then the Cayley graph Cay(G,S) is
the graph with the vertex set V (Cay(G,S)) = G and the edge set E(Cay(G,S)) = {gh : hg−1 ∈ S}.

1.2 Thesis Overview

The thesis has two parts divided into four chapters. The first part, which includes the first two
chapters, starts with an introduction to the topic. We will first provide necessary definitions and
notation which will be used throughout the thesis. Then we will review several fundamental results
in the area of existence of Hamiltonian cycles, including Dirac’s theorem and Ore’s theorem as the
fundamental results in the study of Hamiltonicity. After this overview, the thesis will re-focus on
the review of results on highly symmetric graphs and their Hamiltonicity. Chapter 2 concludes with
previous known results on which this thesis will build.

In the second part of the thesis, we will focus on the Hamiltonicity of covering graphs of voltage
graphs. In Chapter 3, we will introduce a useful tool called “Billiard Strategy” and will improve
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it to “Extended Billiard Strategy”. These strategies are designed for studying the Hamiltonicity of
covering graphs of trees. We will prove new sufficient conditions for the Hamiltonicity of the lifts
of trees based on a decomposition of these trees into paths similar to the one described in [26]. In
Chapter 4, we start by deriving two sufficient conditions for the existence of the Hamiltonian cycle
in covering graphs of trees over a cyclic group of large prime order. Following this, we use these
conditions to prove a probabilistic result that given a tree T and a random voltage assignment on T
with a fixed probability distribution, the limit of the probability that the covering graph over T is
Hamiltonian for some large enough cyclic group of prime order tends to 1 as the order of T tends
to infinity. The last part of Chapter 4 is devoted to proving that the covering graph of a tree T of a
fixed maximum degree contains a cycle through almost all vertices provided the voltage assignment
assigns elements to every loop of T that are coprime to the order of a large enough cyclic group.

3



Chapter 2

Background and Known Results

The concept of Hamiltonian cycle is due to Sir William Rowan Hamilton. In 1857, he invented the
mathematical game the “Icosian Game”. The aim of this game is to find a walk along the vertices
(in the game named by major cities) and the edges of a dodecahedron, which visits every vertex
exactly once and then returns to the starting vertex. The game did not gain much popularity, but
it turned out that it had much more fundamental theoretical value. Instead of a dodecahedron,
one can ask about the existence of such a walk (cycle) on any graph. Such a walk (cycle) is today
referred to as the Hamiltonian cycle, and this concept has secured a central place within graph
theory. Until the 1970s, interest in Hamiltonian cycles was more focused on their relationship to
the Four Color Problem [37] and a few closely related problems. Since the late 1970s, there has been
a rapid increase in research concerning Hamiltonian cycles and paths. The area of Hamiltonicity
stands out for its breadth and complexity, addressing and linking together a variety of topics which
are not limited only to the coloring problem. These subtopics include but are not limited to the
existence or construction of Hamiltonian cycles and paths, Hamiltonian problems in special graph
classes, relationship to various graph invariants, travelling salesman problems, related complexity
issues etc. Determining whether a graph contains a Hamiltonian cycle is an NP-complete problem
[21]. One of the main lines of research on the topic of Hamiltonian cycles is sufficient conditions
for their existence [14, 17, 25, 28, 34]. Further research on the topic includes graphs with some
structure, such as planar graphs, graphs with high symmetry, chordal graphs, sparse graphs, etc.
[3, 4, 15, 32]

In this thesis, we will concentrate on graphs with some degree of symmetry. In 1969, Lovász [32]
asked whether every connected vertex-transitive graph has a Hamiltonian path, and since then, this
question motivated considerable interest in questions about the existence of Hamiltonian paths and
cycles in graphs with a high degree of symmetry. While Lovász’s question has not yet been answered
affirmatively, a vertex-transitive graph with no Hamiltonian path has not yet been found either.
Furthermore, there are only four known vertex-transitive graphs (on at least three vertices): the
Petersen graph, the Coxeter graph, and a modification of each of the two which are not Hamiltonian
(but they all have a Hamiltonian path).
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One particular type of vertex-transitive graph are Cayley graph. A simple fact that none of
the four known vertex-transitive non-Hamiltonian graphs is a Cayley graph has led to a folklore
conjecture that every Cayley graph is Hamiltonian. This conjecture appears, for example, in [31]. A
partial result of this conjecture is the classical result which states that Cayley graphs of finite abelian
groups are guaranteed to be Hamiltonian [33]. In contrast to the original conjecture by Lovász,
Babai [9] conjectured that there exists a positive constant ϵ > 0 so that there exist infinitely many
connected vertex-transitive graphs G with the length of a longest cycle at most (1 − ϵ)V (G). Babai
in [8] also proved that every connected vertex-transitive graph on n ≥ 4 vertices has circumference
greater than

√
3n. Further research has focused on proving special cases of Lovász’s conjecture

[2, 3, 4, 5, 6, 7, 13, 30].
Voltage graphs were introduced by Gross [23] to provide an efficient procedure for constructing

a larger graph from a smaller one, the larger being called a lift or covering graph. In this thesis, we
will focus our attention on voltage graphs and their lifts/coverings in regard to their Hamiltonicity.

Below, we will survey in more detail some of the ideas and concepts sketched above. In particular,
we will focus on the relationship of covering graphs of voltage graphs to Hamiltonian cycles.

2.1 Hamiltonicity of General Graphs

There exist many sufficient conditions guaranteeing Hamiltonicity of a given graph. Many of these
conditions are based on edge density requirements. Many of these conditions are derived from the
fundamental idea described in the following theorem proved by Dirac.

Theorem 2.1.1. [17] If G is a simple graph on at least three vertices and the minimum degree
δ(G) ≥ |V (G)|

2 , then G is Hamiltonian.

Proof. We first claim that G is connected, for otherwise we can suppose G has more than one
component, and then the degree of any vertex in the smallest component will be less than n

2 , a
contradiction.

Let |V (G)| = n and P = v1v2 . . . vk be a longest path in G. We can observe that both v1 and vk
cannot be adjacent to any vertex not in P , otherwise P can be extended to a longer path. Therefore
NG(v1) ⊆ V (P ) and NG(vk) ⊆ V (P ) since G is simple. Because deg(v1) ≥ δ(G) ≥ n

2 , we can get
that |NG(v1)| ≥ n

2 , and we can argue similarly about vk. Therefore v1 has at least n
2 neighbours

in {v2 . . . vk} and vk has at least n
2 neighbours in {v1 . . . vk−1}. We know k ≤ n so by pigeonhole

principle, there exist a vertex vi ∈ {v2 . . . vk−1} such that vi is adjacent to vk and vi+1 is adjacent
to v1. Now we can see that there exists a cycle C = v1vi+1vi+2 . . . vkvivi−1 . . . v2v1. We claim that
C is a Hamiltonian cycle of G. Suppose not, then V (G) \ V (C) ̸= ∅ so there must exist a vertex u
in G such that u ∈ V (G) \ V (C). Because G is connected u must be adjacent to a vertex in P ,
say vj . Then we can break C into a path P ′ with endpoints vj and vj+1 and the path uP ′ is a
longer path than P , contradicting with P being the longest.

5



While Dirac’s theorem sets a foundational basis for Hamiltonicity, by careful examination of
vertices in Dirac’s argument, Ore in 1960 established the following theorem as a generalization
of Dirac’s theorem. He took into account the degree restriction on pairs of non-adjacent vertices,
rather than individual vertices.

Theorem 2.1.2. [34] Let G be a simple graph on at least three vertices. If for each pair of distinct
non-adjacent vertices u, v ∈ V (G), d(u) + d(v) ≥ |V (G)|, then G is Hamiltonian.

The correlation between Hamiltonicity and the degree of vertices of the graphs is an example
of edge density conditions. Also, note that both Dirac’s theorem and Ore’s theorem are the best
possible as there exist non-Hamiltonian graphs having just one vertex of degree less than |V (G)|

2
or having pairs of vertices with degree sum just one less than Ore’s bound requires. The degree
conditions can be relaxed in the presence of other graph theoretic properties such as regularity,
planarity, high connectivity, high toughness, or high symmetry.

Both theorems above are foundational in Hamiltonian graph theory. Since their introduction,
many significant results have been build upon them and the concept of degree conditions has come
to form a major discussion point in Hamiltonicity problems. In what follows, we offer a short survey
of such results.

By imposing some regularity condition on the graph, Jackson in [28] established that the degree
condition in Dirac’s theorem can be notably lowered.

Theorem 2.1.3. [28] Every 2-connected d-regular graph G with d ≥ |V (G)|/3 is Hamiltonian.

Later, in 1986, the degree condition was slightly refined to |V (G)|/3 − 1 by Hilbig [27], with
the exception of the Petersen graph and a graph obtained by replacing one vertex of the Petersen
graph with a triangle.

Besides degree conditions, connectivity is also a major factor in Hamiltonicity problems. Hag-
gkvist and Nicoghossian et. al. [25] were able to greatly decrease the minimum degree requirement
for Hamiltonicity when the graph has sufficient connectivity, as presented in the following theorem.

Let κ(G) denote the vertex connectivity of a graph G.

Theorem 2.1.4. [25] Let G be a graph on n vertices and κ(G) = k ≥ 2. If the minimum degree
δ(G) ≥ 1

3(n+ k), then G is Hamiltonian.

Let α(G) denote the independence number of a graph G. In contrast to many previously known
degree conditions for Hamiltonicity, Chvátal and Erdős [14] obtained an important sufficient con-
dition for a graph to be Hamiltonian in terms of its connectivity and independence number.

Theorem 2.1.5. [14] If G is a simple graph with at least three vertices and κ(G) ≥ α(G) then G

is Hamiltonian.
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Proof. If α(G) = 1, G is a complete graph and thus Hamiltonian. Suppose that κ(G) ≥ α(G) > 1.
Let k = κ(G) and C be a longest cycle in G. Since every graph with δ(G) ≥ 2 has a cycle of length
at least δ(G) + 1, and since δ(G) ≥ κ(G) = k, C has at least k + 1 vertices.

Let H be a connected component of G− V (C). The cycle C has at least k vertices with edges
to H; otherwise, deleting the vertices of C with edges to H contradicts κ(G) = k. Let u1, . . . , uk

be the k vertices of C with edges to H.
For i = 1, . . . , k, let ai be the vertex immediately following ui on C. If any two of these vertices

are adjacent to each other, say aiaj then we construct a longer cycle by using aiaj , and the portions
of C from ai to uj , aj to ui, and a ui, uj−path through H. Since H is a connected component, the
last path exists. This longer cycle contradicts the choice of C.

If ai has a neighbour in H, then we can detour to H between ui and ai along C, again resulting
in a longer cycle that C. Thus, we also conclude that no ai has a neighbour in H. Therefore
{a1, . . . , ak} plus any vertex of H forms an independent set of size k + 1, a final contradiction.

The inequality κ(G) ≥ α(G) is called “Chvátal-Erdős” condition. The condition can be con-
siderably improved to κ(G) ≥ α(G2) if G is claw-free, as proved by Ainouche et al. [1]. In 1990,
Jackson and Ordaz conjectured in [29] that “Chvátal-Erdős” condition also implies pancyclicity,
having cycles of all possible lengths. A recent result in [19] proves asymptotically this conjecture
by showing that a graph G with κ(G) > (1 + o(1))α(G) is pancyclic.

Beyond the theorems that we have outlined above, Hamiltonian graph theory is rich with other
theorems and conjectures which make the subject very fruitful for research, and our list of results
above is just a brief glimpse on the subject.

2.2 Highly Symmetric Graphs

An important class of highly symmetric graphs is the class of transitive graphs which are graphs
whose automorphism group acts vertex, edge, or arc transitively on the corresponding sets. In
particular, a transitive graph G is vertex-transitive if its automorphism group acts transitively on
the vertex set V (G), and G is edge-transitive, if its automorphism group acts transitively on the
edge set E(G).

A graph is symmetric (or arc-transitive) if its automorphism group acts transitively on ordered
pairs of adjacent vertices, that is, the set of arcs. By definition, symmetric is a stronger property
than vertex-transitive.

An s-arc is a sequence of s+ 1 vertices (v0, . . . , vs) such that consecutive vertices are adjacent
and vi−1 ̸= vi+1 for all 0 < i < s. A graph is called s-arc-transitive, if it has an s-arc and if there
is always a graph automorphism of G sending each s-arc onto any other s-arc. When s = 0, G is
vertex-transitive. A 3-arc graph of G, denoted by X(G), is defined to have the vertex set A(G) such
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that two vertices corresponding to two arcs (u, v) and (x, y) are adjacent if and only if (v, u, x, y)
is a 3-arc of G.

Example 2.2.1. A few examples of s-arc transitive graphs for small values of s are as follows.

• The cubical graph is 2-arc-transitive but is not 3-arc-transitive. Figure 2.1 shows that any
3-arc that is contained in a 4-cycle is not equivalent to any 3-arc that is not contained in a
4-cycle, we cannot find a graph automorphism sending each 3-arc onto any other 3-arc.

• The complete bipartite graph Kn,n is 3-arc but not 4-arc-transitive, for all n ≥ 2.

• The Heawood graph is 4-arc-transitive, but not 5-arc-transitive.

Figure 2.1: An example of two 3-arcs that fail cubical graph to be a 3-arc-transitive graph.

Theorem 2.2.2. [39] A 3-arc graph is Hamiltonian if and only if it is connected.

Corollary 2.2.3. [39] If a vertex-transitive graph is isomorphic to the 3-arc graph of a connected
arc-transitive graph of degree at least three, then it is Hamiltonian.

We next introduce a class of graphs which will be important for this thesis.
In our thesis the definition of a covering graph will be described in terms of voltage graph,

informally speaking, a covering graph is constructed from a base graph Γ, a group G, and a mapping
σ : E(Γ) → G. In the construction, each vertex of Γ is replicated for every element of G, and
its edges are added based on specific criteria influenced by the labels given by σ. Gross initially
proposed covering graphs as a way to describe graph embeddings on surfaces [23]. Their importance
has grown since then, for example being used in the construction of graphs that possess large girth
while maintaining a small number of vertices, providing a counterexample to Greenwell and Kronk’s
conjecture on an edge coloring and Hamiltonicity of cubic graphs [36]. Despite not being vertex-
transitive, covering graphs still exhibit high symmetry. This makes them have many properties in
common with vertex-transitive graphs. In this thesis, we focus on the covering graphs of voltage
graphs, and we provide a formal definition of the covering graph in terms of a voltage graph in
Definition 2.2.6. Note that the covering graph is a special case of a more general notion in topology
called covering projections. We refer an interested reader to [24].
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Before we formally define a covering graph we need to define voltage assignment and voltage
graph. Voltage graphs are obtained from ordinary graphs (we think of them as directed graphs
where every edge is thought of as two oppositely directed arcs) by assigning a group element to
each arc over a fixed group, in this thesis, usually a cyclic group.

Definition 2.2.4. Let Γ be a graph with a loop at every vertex. For each edge [u, v] ∈ E(Γ),
we say that Γ has corresponding arcs (u, v) and (v, u), which correspond to the two opposite
directions in which the edge [u, v] can be traversed. Accordingly, we define the arc set of Γ as
A(Γ) = {(u, v), (v, u) : [u, v] ∈ E(Γ)}. If [v, v] is a loop of Γ, then we let A(Γ) contain two
elements (v, v) corresponding to [v, v].

Definition 2.2.5. Given a group G, we say that a voltage assignment on Γ is a function σ : A(Γ) →
G that satisfies σ(u, v) = σ(v, u)−1 for every edge [u, v] ∈ E(Γ), and such that σ also assigns inverse
elements to each pair of loops (v, v). The triple (Γ, G, σ) is called the voltage graph. We will often
refer to the values assigned by σ as labels or voltages.

Definition 2.2.6. Given a voltage graph (Γ, G, σ), where σ : A(Γ) → G is a voltage assignment to
a group G, we define the covering graph of (Γ, G, σ), written Γσ, to be the graph defined as follows:

• V (Γσ) = V (Γ) × G. Thus, for each vertex v ∈ V (Γ) and element a ∈ G, there is a vertex
(v, a) in Γσ, and we will often write va instead of (v, a).

• For any vertices u, v ∈ V (Γ) and elements a, b ∈ G, (u, a) ∼ (v, b) if and only if there exists
an arc e = uv ∈ A(Γ) satisfying σ(e) = a−1b.

Definition 2.2.7. For a vertex v ∈ V (Γ), we write vσ for the subgraph of Γσ induced by the vertex
set {vg : g ∈ G}. We say that vσ is the fibre of Γ over v.

Let us observe a simple example that familiarize ourselves with the concept.
In all voltage graphs that we will present in the thesis, we always assume G is a cyclic group

with an additive operator. Therefore −a denotes the inverse of a for all a ∈ G.

Example 2.2.8. Figure 2.2 shows an example of constructing a covering graph (on the right) from
a voltage graph (on the right) with voltage assignment σ : E(H) → Z3 such that σ(v, v) = 1,
σ(v, u) = 0, and σ(u, u) = 2.

We will next list some properties of covering graphs. We will particularly explore how a walk or
a component in the voltage graph lifts into the covering graph. We aim to provide a clearer picture
of the underlying mechanics of the process.

Theorem 2.2.9. [24] Let W be a walk in a voltage graph (Γ, G, σ) with initial vertex u. Then for
each vertex ua in the fibre over u, there is a unique lift of W that starts at ua.
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Figure 2.2: Covering graph (on the right) of the voltage graph (on the left). The corresponding
group is Z3.

Proof. Consider the first oriented edge of W , say e+ or e−. 1 If it is e+ then since only one plus-
directed edge of fibre over e starts at the vertex ua, i.e, the edge e+

a , that edge must be the first
edge in the lift of W starting at ua. If it is e−, then since only one minus-directed edge of the fibre
over e starts at ua, it follows that the edge must be the first edge in the lift of W starting at ua.

Similarly, there is only one possible choice for a second edge of the lift of W , since the initial
point of that second edge must be the terminal point of the first edge, and since that second edge
of the lift must lie in the fibre over the second edge of the base walk W . This uniqueness holds, by
the same arguments, for all the remaining edges as well.

Definition 2.2.10. Given a voltage graph (Γ, G, σ), the net voltage on a walk W = eψ1
1 , . . . , eψn

n

where each ψi = − or + is defined to be the sum σ(eψ1
1 )+· · ·+σ(eψn

n ) of the voltages on the directed
edges of W in the order and their direction along W . Note that the voltage on a minus-directed
edge e− is understood to be the group inverse of the voltage on e+, in our case, σ(e−) = −σ(e+).

Theorem 2.2.11. [24] Let W be a walk from u to v in a voltage graph (Γ, G, σ), and let b be the
net voltage on W . Then the lift Wa starting at ua terminates at the vertex va+b.

Proof. Let b1, . . . , bn be the successive voltages encountered on the walk W such that ∑n
i=1 bi = b.

Then the subscripts of the vertices of Wa are

a, a+ b1, a+ b1 + b2, . . . , a+ b1 · · · + bn = a+ b

Since Wa terminates in the fibre over v, its final vertex is va+b.

1Note that in directed voltage graph whereas e+
l runs from ul to vl+k the reverse edge e−

l runs from vl+k to ul,
for some k.
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Theorem 2.2.12. [24] Consider a voltage graph (Γ, G, σ). Let C be a k-cycle in the base graph Γ
such that the net voltage on C has order m in G. Then each component of the preimage p−1(C) is
a km-cycle and there are |G|/m such components.

Proof. Let the cycle C be represented by a closed u−base walk W , let b be the net voltage on W ,
and let ua be a vertex in the fibre over u. Then the component of p−1(C) containing ua is formed by
the edges in the walks Wa,Wa+b, . . . ,Wa+bm−1 , which attach end-to-end to form a km−cycle. For
each of the |G|/m left cosets of the cyclic group generated by the net voltage b, there is a unique
component of p−1(C).

Although covering graphs are not vertex-transitive graphs in general, they are still highly sym-
metric and share many properties with vertex-transitive graphs. As we will show in the following
examples, several classes of vertex-transitive graphs can be thought of as covering graphs of very
small graphs. In particular, complete graphs, Cayley graphs, and n-cube graphs are covering graphs
of a graph with only one or two vertices with a possible edge and some loops.

Example 2.2.13. Any complete graph Kn can be constructed from a single vertex base graph
Γ = v with loops. Figure 2.3 shows an example of construction of K4 by σ : A(Γ) → Z4 where Γ is
a single vertex with two loops with σ(e) = 1, σ(f) = 2.

a

a

bb

a

v

v0

v1

v2v3

1
e

2
f

Γ Γσ

Figure 2.3: A base graph Γ of single vertex with a loop and the covering graph Γσ = K4

Example 2.2.14. Observe that any generalized Petersen graph can be constructed from a voltage
graph with two vertices, two self-loops, and one other edge, that is, a dumbbell graph. Figure 2.4
shows an example of lifting a dumbbell graph to GP (5, 2), a Petersen Graph by Z5.

Example 2.2.15. All Cayley graphs are lifts of a one-vertex bouquet of loops. In particular, a
Cayley graph Cay(G,S) is a covering graph of the voltage graph with one vertex and a loop for
each element of S.
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Figure 2.4: Petersen graph as a lift of a dumbbell graph by Z5

2.3 Hamiltonicity of Highly Symmetric Graphs

Lovász posed the question of whether every connected vertex-transitive graph has a Hamiltonian
path in 1969. There is a great interest in solving this long-standing problem and still, it remains
widely open.

Conjecture 2.3.1. [32] Every finite connected vertex-transitive graph contains a Hamiltonian path.

It’s known that just four connected vertex-transitive graphs with a minimum of three vertices do
not possess a Hamiltonian cycle: the Petersen graph, the Coxeter graph, and two variations formed
from the Petersen graph and the Coxeter graph by substituting every vertex with a triangle in each.
Given that all of these are cubic graphs, hinting that a comprehensive study of the Hamiltonicity
of cubic vertex-transitive graphs is essential to address the stated conjecture.

Another important class of highly symmetric graphs is the class of generalized Petersen graphs.
We have seen one example of such graph above. In general, let n and k be two integers such that
1 ≤ k ≤ n − 1. The generalized Petersen graph GP (n, k) is defined to have vertex-set {ui, vi | i =
0, 1, ..., n − 1} and edge-set {uiui+1, uivi, vivi+k | 0 ≤ i ≤ n − 1} where subscripts are reduced
modulo n.

A generalized Petersen graph can also be defined as a covering graph as follows. We let Γ be
a K2 with a loop at each vertex, and we let σ : A(Γ) → Zn assign the values 1 and −1 to the pair
of loops at one vertex of Γ, the values k and −k, for some 1 ≤ k ≤ n − 1, to the pair of loops at
the other vertex of Γ, and finally a value of 0 to the arcs corresponding to the cut-edge of Γ. Then,
the covering graph Γσ is isomorphic to the generalized Petersen graph P (n, k). For examples, see
Figure 2.5.

Theorem 2.3.2. [3] The generalized Petersen graph GP (n, k) is Hamiltonian if and only if it is
neither

• GP (n, 2) ∼= GP (n, n− 2) ∼= GP (n, (n− 1)/2) ∼= GP (n, (n+ 1)/2) when n ≡ 5 (mod 6), nor
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Figure 2.5: Examples of generalized Petersen graph GP (5, 1), the 5-prism graph and GP (5, 2), the
Petersen Graph

• GP (n, n/2) when n ≡ 0 (mod 4) and n ≥ 8

The proof of the above theorem in the original paper [3] is long, and we offer an outline of the
original proof.

Proof. To describe a Hamiltonian cycle for a given generalized Petersen graph, an important tool
for proving the theorem is the definition and the construction of a lattice diagram for a GP (n, k).
A lattice diagram corresponds to a Hamiltonian cycle in GP (n, k). In a plane for integers x and y

we call (x, y) a lattice point. We label lattice points in a plane with elements 0, . . . , n − 1 in Zn
such that whenever point (x, y) is labelled with i ∈ Zn, then point (x+ 1, y) is labelled with i+ 1
and (x, y − 1) is labelled with i + k. By the labelling, we can construct a labelled graph H(n, k)
with vertices (x, y) and (x′, y′) adjacent if and only if |x − x′| + |y − y′| = 1. Then one considers
a subgraph L(n, k) of H(n, k) containing a closed or an opened Eulerian trail which satisfies the
following three conditions:

• If a vertex of degree four is entered vertically (horizontally), then it must be departed vertically
(horizontally);

• Each label 0, 1, . . . , n − 1 is encountered once in the horizontal direction and once in the
vertical direction;

• If L(n, k) has an open Eulerian trail, then the two vertices of odd degree must have the same
label and either both have degree one or one has degree one and the other has degree three.

Using these properties, one can show that such a trail in L(n, k) represents a Hamiltonian cycle
in GP (n, k), and such L(n, k) can be defined as a lattice diagram for GP (n, k). Since each lattice
diagram corresponds to a Hamiltonian cycle in GP (n, k), to prove the Hamiltonicity of GP (n, k)
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0 1 2 3 4

1 2 3 4 0

Figure 2.6: Example of a lattice diagram L(5, 1) (in bold) and it can represent a Hamiltonian cycle
in GP (5, 1).

it is sufficient to find certain labelled Eulerian graphs. Figure 2.6 is an example of labelled lattice
points and lattice diagram L(5, 1).

If k = n/2, for GP (n, n/2) and n even, it is not hard to see that GP (n, n/2) is Hamiltonian if
and only if n = 4 or n ≡ 2 mod 4 by observing that any Hamiltonian cycle must contain paths
uivivi+n/2ui+n/2 for i = 0, . . . , (n− 2)/2.

If k ̸= n/2, it is necessary to have k ≤ ⌊n/2⌋ since GP (n, k) ∼= GP (n, n−k). Based on Bannai’s
result in [10], we only need to show that GP (n, k) is Hamiltonian when n and k are not relative
primes. Alspach [3] proved the following two lemmas in order to prove this case.

• The cubic generalized Petersen graph GP (n, k) is Hamiltonian whenever gcd(n, k) is even.

• Let n and k be relatively prime with 1 ≤ k < n/2. If there exists an extendible lattice diagram
L(3n, 3k), then GP (dn, dk) is Hamiltonian for all odd d > 1.

The first statement leaves us with the case of showing that GP (dn, dk) is Hamiltonian for all
odd d > 1 when gcd(n, k) = 1 which leads to the second statement. Proofs of both statements
use the lattice diagram technique. Due to its extensive nature, incorporating the complete proof
here would detract from the conciseness and focused narrative we aim to maintain. Therefore,
we encourage interested readers to refer to the original paper for a detailed examination of the
proof.

Theorem 2.3.3. [2] With the exception of the Petersen graph, every connected vertex-transitive
graph of order 2p, where p is prime, is Hamiltonian.
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Moreover, it is known that connected vertex-transitive graphs of order pq, where p and q are
primes, admitting an imprimitive subgroup 2 of automorphisms contains a Hamiltonian cycle. Also,
a Hamiltonian path is known to exist in connected vertex-transitive graphs of order 5p and 6p.

We observed above that every Cayley graph of a group G is a covering graph of a graph on
a single vertex, with one loop for each generator of G. Among the four non-Hamiltonian vertex-
transitive graphs, none of them is a Cayley graph. In view of the Lovász conjecture, the attention
has focused more toward the Hamiltonicity of Cayley graphs.

Theorem 2.3.4. [33] Let G be a finite abelian group with at least three elements. Then any Cayley
graph of G has a Hamiltonian cycle.

Before proving the theorem, Marušič introduced several notations that will be used specifically
for the proof: Let G be a group with identity element id. If M is a subset of G then we denote
M−1 = {x−1 : x ∈ M}, M0 = M − {id} and M∗ = M0 ∪ M−1

0 . Let S = [s1, s2, . . . , sr] and
T = [t1, t2 . . . , tq] be sequences onG. We say S is Hamiltonian if r = |G|,∏r

i=1 si = id and the partial
products ∏j

i=1 si = gj where gj are all distinct non-empty elements of G for different j. If si ∈ M ,
for i = 1, 2, . . . , r then S is called an M -sequence on G. We use H(M,G) to denote the set of all
Hamiltonian M∗-sequence on G. The inverse sequence S−1 of S is the sequence [s−1

r , s−1
r−1, . . . , s

−1
1 ].

S̄ denotes the sequence [s1, s2, . . . , sr−1] and Ŝ denotes the sequence [s2, s3, . . . , sr−1] for r ≥ 2.
Furthermore, the product ST is defined to be the sequence [s1, s2, . . . , sr, t1, t2, . . . , tq].

In his proof, Marušič used the following lemma.

Lemma 2.3.5. Suppose G is a finite abelian group with a generating set M . Let M ′ be a non-empty
subset of M0. If we have a Hamiltonian (M ′)∗-sequence on ⟨M ′⟩ denoted S, then there exist some
sequence Q in G such that S̄Q is a Hamiltonian M∗-sequence on G.

Proof. The proof will use the induction on the cardinality of M0 \ M ′. For the base case, if
M0 \ M ′ = ∅, then ⟨M ′⟩ = ⟨M⟩ = G and take Q = sn.

Now suppose M0 \ M ′ ̸= ∅ so there is some g in M0 \ M ′. Then let H = M0 \ {g}, and
by inductive hypothesis, there exist some Q in H such S̄Q is a Hamiltonian (M0 \ g)∗-sequence
on H. Let W = S̄Q. Let j be the smallest integer such that gj is in H. Then if j is odd, let
T = Q̄(W, [g]j)lw[g−1] Then S̄T is a Hamiltonian M∗-sequence on G. We can see this by noting
that the removal of a non-redundant generator g yields disjoint isomorphic subgraphs. We move
through copies of H, gH, . . . , gj−1H and then backtrack by way of g−1. If j is even, let T =
Q̄(W, [g]j)[g](W̄ )−1[g−1]j−1. Then S̄T is a Hamiltonian M∗-sequence on G.

Now we can briefly explain the proof of Theorem 2.3.4.

2In contrast to primitive permutation group, if a group is transitive and does preserve a nontrivial partition, then
it is called imprimitive.
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Proof. Using the previous lemma, when G is finite and abelian with generating set M , if for some
nonempty subset M ′ of M0, where M0 denote M − {id}, we have S ∈ H(M ′, ⟨M ′⟩), then there
exists some sequence Q in G such that S̄Q is a Hamiltonian M∗-sequence on G.

By claiming that Cay(G,M) is Hamiltonian if and only if H(M,G) ̸= ∅, it suffices to show that
if M is a generating set of an abelian group G of order at least 3, there exists S ∈ H(M,G) such
that S ̸= ∅. If exists an element c ∈ M of order ≥ 3, then let M ′ = {c} and S = [c]n. If there is
no element in M that has order ≥ 3, then M contains two distinct elements a, b so that each have
order 2. Then let M ′ = {a, b} and S = [abab] is a Hamiltonian M ′-cycle on ⟨M ′⟩, as follows by
above lemma.

Theorem 2.3.6. [20] Every connected Cayley graph of a group with prime order commutator group
has a Hamiltonian cycle.

The condition above has later been generalized to that with the exception of the Petersen graph,
every connected vertex-transitive graph whose automorphism group contains a transitive subgroup
with a cyclic commutator subgroup of prime power order is Hamiltonian [18].

While Cayley graphs have received significant attention in the literature, most established results
rely on sets of restrictions, either to the group’s class and order or to the generating sets used in
the Cayley graph.

Theorem 2.3.7. [35] Any finite group G of size |G| ≥ 3 has a generating set S of size |S| ≤ log2 |G|,
such that the corresponding Cayley graph Cay(G,S) is Hamiltonian.

Theorem 2.3.8. [38] Every connected Cayley digraph on a group of prime-power order greater
than 2 is Hamiltonian.

Theorem 2.3.9. [15] Let S be a set of generators for a finite group that gives a Coxeter presentation
for G. Then the Cayley graph Cay(G,S) is Hamiltonian.

Inspired by Example 2.2.14, we can ask a motivational question

Question 2.3.10. Given a reflexive tree Γ, a cyclic group G, and a corresponding voltage graph
(Γ, G, σ) where σ : E(Γ) → G. Under what conditions does the covering graph Γσ contain a Hamil-
tonian cycle?

Addressing this question proves to be a nontrivial task even when dealing with small trees.
For instance, when the base tree Γ consists of a single vertex, there exists a variety of potential
covering graphs, among which Cayley graphs constitute a specific category. It is noteworthy that
the conjecture stating “Every finite connected Cayley graph contains a Hamiltonian cycle” remains
unproven. In the case where Γ is a 2-vertex reflexive tree, the class of all corresponding covering
graphs contains generalized Petersen graphs.
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Next, we will focus on finding sufficient conditions for Hamiltonicity of covering graphs of trees.
The aim is to extend the discussion from specific cases involving a tree on one or two vertices to
larger trees. Our inspiration is the following result.

Theorem 2.3.11. [11] Let Γ = T × Cn be the Cartesian product of an n-cycle Cn and a tree T
with maximum degree ∆(T ) ≥ 2. Then G has a Hamiltonian cycle if and only if ∆(T ) ≤ n.

Proof. For any vertex u ∈ V (T ) with deg(u) = ∆(T ), let S be a set such that S = {ui ∈ V (G) | i ∈
Zn}. Let H be the graph obtained from G by removing the n vertices in S. We can observe that H is
disconnected and has at least ∆(T ) components. If n < ∆(T ) then G has no Hamiltonian cycle. In
the case n ≥ ∆(T ), we construct a Hamiltonian cycle: Take an arbitrary proper edge-coloring of T
with n colors. For notational convenience, we choose the color set to be Zn. The n-edge-coloring
of T exists as n ≥ ∆(T ) and the tree T is a bipartite graph which is ∆(T )-edge-colorable.

Let V (T ) = V − ∪ V + be the bipartition of T . Define a permutation h : V (G) → V (G) by
following rules:

• If an edge (s, t) of T with s ∈ V − and t ∈ V + is colored with i ∈ Zn, then let h(si) = ti and
h(ti+1) = si+1;

• If s ∈ V − and there is no edge (s, t) colored with i ∈ Zn then h(si) = si+1;

• If t ∈ V + and there is no edge (s, t) colored with i ∈ Zn then h(ti+1) = ti

Observe that h is a cyclic permutation which defines a Hamiltonian cycle in G.

We can reformulate Theorem 2.3.11 in terms of lifts (covering graphs) of special voltage graphs.
We observe that the graph T × Cn can be seen as the lift of a reflexive tree Γ, isomorphic to T

(after deleting all loops from Γ), with a voltage assignment σ : A(Γ) → Zn, where each arc of Γ
corresponding to a cut-edge has voltage 0, and each loop of Γ has voltage 1. Theorem 2.3.11 gives a
necessary and sufficient condition for the lift Γσ to be Hamiltonian. Hell et al. [26] considered lifts
of reflexive trees Γ with more general voltage assignments σ on Zn. They allowed every loop of Γ be
assigned a value coprime to n, the order of the group, and gave a necessary and sufficient condition
for the lift Γσ to be Hamiltonian. They proved two results (stated in the following theorem as part
(a) and (b), respectively).

Theorem 2.3.12. [26] Let Γ be a reflexive tree and let L be the set of self-loops. Let σ : A(Γ) → Zp.
Suppose the voltage graph (Γ,Zp, σ) satisfies the following conditions:

1. There exists a system of paths P1, P2, . . . , Pk of Γ such that E(P1), E(P2), . . . E(Pk) is a
partition of E(Γ) \L, the paths Pi and Pj are internally vertex disjoint for any i ̸= j, and for
all i, (1 ≤ i ≤ k), Pi satisfies either of the following:
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(a) the two ends of Pi have the same label, or

(b) there are two adjacent vertices ui, vi in Pi which have the same label, both ui and vi have
degree at most two in Γ − L

2. σ(w,w) is coprime to p for every w ∈ V (Γ).

Then the covering graph Γσ is Hamiltonian if and only if p ≥ ∆, where ∆ is the maximum
degree of Γ − L.
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Figure 2.7: Two examples that satisfy either condition 1(a) or 1(b) in Theorem 2.3.12. The left
figure is an example satisfying the condition 1(a). The right figure is an example satisfying the
condition 1(b). The number at a vertex denotes the label of its self-loop. If a vertex has no number
next to it, it means its self-loop can have any label coprime to p. Then, the paths with different
types of lines form a system of paths satisfying the conditions in Theorem 2.3.12.

For an example of trees that satisfy the conditions of Theorem 2.3.12, see Figure 2.7.
This thesis aims to find further conditions under which the lift of a reflexive tree with a voltage

assignment on a cyclic group is Hamiltonian.

2.4 Long Paths and Cycles in Highly Symmetric Graphs

Recall that in the previous section, we mentioned that there are only four known connected vertex-
transitive graphs that do not have a Hamiltonian cycle. These four graphs include the Petersen
graph, the Coxeter graph and two graphs derived from them. Although they are not Hamiltonian,
we can observe that the Petersen graph and the Coxeter graph both have cycles of length n−1. The
two graphs derived from them have a longest cycle of length n − 3. Thus it is natural to consider
the circumference of a graph as an approximation to a Hamiltonian cycle length. For example for
vertex-transitive graphs, we can also approach Lovàsz’s conjecture by finding a lower bound on
path or cycle lengths in connected vertex-transitive graphs. The best-known result in this direction
is that of Babai, who has shown the following.

18



Theorem 2.4.1. [8] Every connected vertex-transitive graph with n ≥ 3 vertices contains a cycle
of length at least

√
3n.

Proof. Let Γ be a graph and let G be the automorphism group of Γ. It is shown and proved in [8]
that a connected vertex-transitive graph with minimum degree at least three is at least 3-connected.
Let C be a maximum length cycle of Γ. It follows from [8] that any two cycles of maximum length
in a 3-connected graph have at least three vertices in common. Therefore, |C ∪ Cg| ≥ 3 for any
automorphism g ∈ G. Consider the number of pairs (g, x) where x ∈ C ∪ Cg. For each element
of G there are at least 3 such vertices in C, and therefore there are at least 3|G| such pairs. On the
other hand, the elements of G that map x to y form a coset of Gx, and so there are exactly |C||Gx|
elements g−1 of G such that xg−1 ∈ C, that is, x ∈ Cg. Therefore, 3|G| ≤ |C|2|Gx|, and since G is
transitive, |G|/|Gx| = |V | = n by orbit stabilizer theorem. That is, |C| ≥

√
3n.

DeVos recently modified Babai’s approach and gave a better bound for long cycles in vertex-
transitive graph.

Theorem 2.4.2. [16] Every connected vertex-transitive graph with n ≥ 3 vertices contains a cycle
of length at least (1 − o(1))n3/5.
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Chapter 3

Decomposition Theorems for
Hamiltonicity of Coverings of Trees

3.1 Billiard Strategy and Extended Billiard Strategy

The billiard strategy was first introduced in [26] as a method to construct a Hamiltonian cycle of a
covering graph Γσ of a voltage graph (Γ, G, σ). Recall that G is a cyclic group of order n, and let us
assume that Γ is a path with ends u and v. Start by considering the u0 − u1 Hamiltonian path in
the fibre over u, leaving its two ends u0 and u1 open. Extend the path to the next fibre on the right
from these ends to their corresponding vertices in this new fibre. Next include all remaining vertices
of this fibre onto the constructed path by adding them in clockwise (or counter-clockwise) order
from these starting vertices. This process will create new ends in this fibre, which are extended to
the next fibre to the right. Repeat this process until we get to the fibre over v.

An important fact here is that the two new ends have the difference of their labels equal to 1,
the same as the difference of u0 and u1. This difference is preserved in the fibre over v as well. If
certain conditions are satisfied, using this process we can build a Hamiltonian cycle in Γσ.

The billiard strategy is at the heart of constructing a Hamiltonian cycle in a covering graph
of a tree as presented in [26]. The focus of the remainder of this section is a refinement of the
billiard strategy. We will describe and prove the refinement in the following lemmas. We call the
new strategy the “extended billiard strategy”.

Roughly speaking, given a covering graph of a reflexive path Γ over a cyclic group, we will be
able to guarantee the existence of a family P of paths in the covering graph such that the paths
in P include all vertices in the fibres over internal vertices of Γ, and such that the endpoints of
paths in P appear in the fibre over each endpoint of Γ at voltages form an arithmetic progression
in Zn. The original billiard strategy in [26] can be obtained from this by requiring that every voltage
assignment on the path Γ be coprime to our group size n and then setting |P| = 2.

For a path P with endpoints u and v, we will often give a direction to P and say that P begins
at u and ends at v, or that P begins at v and ends at u. For a path P that begins at u and ends at v,
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if S is a vertex set satisfying S ∩ V (P ) ̸= ∅, then we say that P arrives in S at w if w ∈ V (P ) ∩ S
and w is at the minimum distance from u along P among all vertices in V (P ) ∩ S.

Before stating and proving our lemma, we will state the following lemma from [26], by which
we can always assume that σ(e) = 0 for each non-loop edge of Γ.

Lemma 3.1.1. Let Γ be a reflexive graph, and let (u, v) ∈ A(Γ) be an arc corresponding to a cut-
edge [u, v] ∈ E(Γ). Let G be a group, and for a pair g, h ∈ G, let σg : A(Γ) → G and σh : A(Γ) → G

be voltage assignments. Suppose that σg and σh satisfy the following properties:

• σg(u, v) = g, and σh(u, v) = h;

• For each arc e ∈ A(Γ) satisfying e ̸∈ {(u, v), (v, u)}, σg(e) = σh(e).

Then Γσg ∼= Γσh.

The following is the extended billiard strategy lemma.

Lemma 3.1.2. For an integer m ≥ 1, let Γ = (v1, . . . , vm) be a reflexive path, and let σ : A(Γ) → Zn
be a voltage assignment. Let l, r ∈ [0, n− 1] and d ∈ [1, gcd(r, n)] be constants. Then, there exists a
family of d vertex-disjoint paths P = {P0, . . . , Pd−1} in Γσ satisfying the following properties:

• The paths P0, . . . , Pd−1 begin at the vertices (v1, l), (v1, l+r), . . . , (v1, l+(d−1)r), respectively.

• For each 2 ≤ t ≤ m, the paths of P arrive in the fibre vσt at a set of d vertices {(vt, it), (vt, it+
r), . . . , (vt, it + (d− 1)r)}, for some value it ∈ Zn, where addition is calculated in Zn.

• For each 2 ≤ t ≤ m− 1, if a path P ∈ P visits a component K of a fibre vσt , then every vertex
of K is visited by a path from P.

• For each 1 ≤ t ≤ m− 1, after a path P ∈ P leaves a fibre vσt , P never returns to vσt .

Proof. By Lemma 3.1.1, we may assume that σ(e) = 0 for each arc e ∈ A(Γ) that is not a loop. By
applying an appropriate automorphism to Γσ, we may also assume without loss of generality that
l = 0.

We induct on m, the number of vertices of Γ. When m = 1, for j ∈ {0, . . . , d− 1}, we let Pj be
a path of length 0 containing the single vertex (v1, jr). Since d ≤ gcd(r, n), the first statement of
the lemma holds, and the other three statements hold vacuously.

Now, suppose m ≥ 2. We construct our family of paths as follows. By the induction hypothesis,
there exists a vertex-disjoint family of paths P0, . . . , Pd−1 starting at (v1, 0), (v1, r), . . . , (v1, (d − 1)r)
ending at a vertex in the set {(vm−1, i), (vm−1, i + r), . . . , (vm−1, i + (d − 1)r)}, respectively, and
satisfying the last three conditions of the lemma after replacing m with m− 1.
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Let a = σ(vm−1) be the voltage of the primary loop at vm−1. Consider each path Pj , which
arrives at the fibre vσm−1 at the vertex (vm−1, im−1 + jr) ∈ V (vσm−1), where im−1 ∈ Zn. If a ̸= 0,
then we perform the following steps for each Pj . We extend Pj by adding the vertices

(vm−1, im−1 + jr + a), (vm−1, im−1 + jr + 2a), (vm−1, im−1 + jr + 3a), . . .

until we reach a vertex (vm−1, im−1 +jr+sa) such that (vm−1, im−1 +jr+(s+1)a) already belongs
to a (not necessarily distinct) path Pk. This extension is depicted in Figure 3.1. As (vm−1, im−1 +
jr + (s + 1)a) is the first vertex encountered by Pj that already belongs to a path Pk, it follows
from the way that we have extended Pj that (vm−1, im−1 + jr + (s + 1)a) must be the vertex at
which Pk arrived at the fibre vσm−1; that is, jr+ (s+ 1)a = ik At this point, we stop adding vertices
from vσm−1 to Pj , with (vm−1, im−1 + jr + sa) being the last vertex from vσm−1 added.

We claim that after applying this technique at vσm−1, the endpoints of the paths P0, . . . , Pd−1

form the set

Sm−1 := {(vm−1, im−1 − a), (vm−1, im−1 − a+ r), . . . , (vm−1, im−1 − a+ (d− 1)r)}.

(Note that we do not make any claims about the order in which these vertices appear as the
endpoints of paths P0, . . . , Pk−1.) Indeed, if a = 0, then this claim clearly holds. If a ̸= 0, then we
recall that the paths P0, . . . , Pd−1 arrive at vσm−1 at vertices of the set

{(vm−1, im−1), (vm−1, im−1 + r), . . . , (vm−1, im−1 + (d− 1)r)}.

Then, in the process of extending our paths, each path Pj is extended by adding vertices of the
fibre vσm−1 to Pj until Pj reaches a vertex (vm−1, im−1 + tr− a), where t ∈ {0, . . . , d− 1}. Further-
more, after extending each path Pj , the endpoints of the paths P0, . . . , Pd−1 must still be distinct.
Therefore, it must follow that after extending each path Pj , the endpoints of P0, . . . , Pd−1 make up
the set Sm−1. Thus, the claim holds.

Finally, for each path Pj , we add an edge [(vm−1, im−1 +jr−a), (vm, im−1 +jr−a)] to extend Pj
to vσm. This completes our construction of paths P0, . . . , Pm−1. Observe that our family of paths is
still vertex-disjoint.

We check that the four properties of the lemma hold. The first property holds by the induction
hypothesis. The second property holds for 2 ≤ t ≤ m− 1 by the induction hypothesis and holds for
t = m by the construction. The third property holds for 2 ≤ t ≤ m−2, by the induction hypothesis.
For t = m − 1, the statement must hold, as each component is a cycle and each path Pj does not
exit a component of vσm−1 until Pj cannot visit any more vertices in that component. The fourth
statement also holds by the induction hypothesis and by construction. Thus, induction is complete,
and the theorem is proven.
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Recall we will use the name extended billiard strategy to refer to the method used in Lemma 3.1.2
to generate our family P of paths. Lemma 3.1.2 tells us that given a path Γ, a voltage assignment σ,
and a value d as outlined in the lemma statement, if we follow the extended billiard strategy as
outlined to produce paths P0, . . . , Pd−1, then for each value 2 ≤ t ≤ m− 1, the paths arrive at the
fibre vσt at a set of d vertices {(vt, it), (vt, it + r), . . . , (vt, it + (d − 1)r)}, for some value it ∈ Zn,
where addition is calculated modulo n. By following the proof of Lemma 3.1.2, we see that this
value it is in fact −(σ(v2) + σ(v3) + · · · + σ(vt−1)). Furthermore, after applying our method at vσt
so that the paths in P contain all vertices of vσt , we see that the endpoints of the paths occupy the
vertex set {(vt, αt), (vt, αt + r), . . . , (vt, αt + (d− 1)r)}, where αt = it −σ(vt, vt). Using this fact, we
define the order of the paths P0, . . . , Pd−1 at vσt as follows. After applying our method at vσt , the
paths with endpoints at (vt, αt), (vt, αt + r), . . . , (vt, αt + (d − 1)r), respectively, are Pa1 , . . . , Pad

,
where (a1, . . . , ad) is some permutation of the set {0, . . . , d− 1}. We write π(vt) = (a1, . . . , ad), and
we say that the permutation π(vt) gives the order of the paths P0, . . . , Pd−1 at vt. Note that π(vt)
depends on t, d, n, σ, and r. It will be convenient to define π(v1) = id.

4

0

3 2

1

Figure 3.1: The figure shows an example of the path extension in Lemma 3.1.2. The underlying
group is Z5. The cycle is a fibre over some vertex vi with the voltage assignment σ(vi) = 2. We
have depicted two paths P0 (the solid path) and P1 (the dashed path). The path P0 arrives at the
fibre at 0, and P1 arrives at the fibre at 1. We then extend P0 to 0 + 2 = 2 (mod 5), and then to
2 + 2 = 4 (mod 5), and then stop because 4 + 2 = 1 (mod 5), and this vertex is already visited
by P1.

Definition 3.1.3. Let Γ = (v1, . . . , vm) be a reflexive path with a voltage assignment σ : A(Γ) → Zn.
When m ≥ 3, we define

c(Γ) =
⌈1

2 max{gcd(n, σ(vt, vt)) : 2 ≤ t ≤ m− 1}
⌉
.

When m = 2, we say c(Γ) = 1.

The following corollary gives a simple condition for when a system of paths constructed in
Lemma 3.1.2 includes all vertices in fibres over the internal vertices of Γ.
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Figure 3.2: The figure shows a fibre vσ in the lift Γσ of a voltage graph Γ. The edges in bold show
the intersection of a subgraph H ⊆ Γσ with vσ, and the dashed edges represent the edges of H
outside of vσ. The subgraph H intersects vσ at all edges except for three edges, and these three
missing edges form an alternating consecutive edge set in vσ.

Corollary 3.1.4. For an integer m ≥ 2, let Γ = (v1, . . . , vm) be a reflexive path, and let σ :
A(Γ) → Zn be a voltage assignment. Let P = {P0, . . . , Pd−1} be a family of paths on Γσ constructed
according to Lemma 3.1.2 with a value r coprime to n. If 2c(Γ) ≤ d ≤ n, then the paths of P visit
all vertices in each fibre vσi , for 2 ≤ i ≤ m− 1.

Proof. Consider the fibre vσt for a value 2 ≤ t ≤ m − 1. This fibre contains a component Ca for
each coset a + ⟨σ(vt)⟩ of Zn, and the number of such cosets is gcd(n, σ(vt)). By Lemma 3.1.2,
the paths P0, . . . , Pd−1 arrive at vσt at a vertex set of the form {(vi, t), (vi, t + r), . . . , (vi, t +
r(d − 1))}, so as (r, n) = 1, by the assumption d ≥ 2c(Γ) ≥ gcd(n, σ(vt)), the vertices of the
paths P0, . . . , Pd−1 meet every component of vσt . Therefore, by the third property of Lemma 3.1.2,
V (vσt ) ⊆ V (P0) ∪ . . . ∪ V (Pk−1).

3.2 2-Factors in Covering Graphs of a Path

Given a path Γ satisfying the conditions of Corollary 3.1.4, we would like to find conditions for
when the paths P0, ..., Pd−1 can be joined together to form a Hamiltonian cycle.

Our first step in locating a Hamiltonian cycle involves establishing a necessary definition and a
key lemma. The lemma provides the conditions for the presence of a 2-factor with special properties
in the covering graph. We will apply this lemma later to find a Hamiltonian cycle in the lift of a
path.

Definition 3.2.1. Given a vertex v whose loop has a nonzero voltage assigned by σ, we say that
a set of edges E ⊆ E(vσ) is in alternating consecutive order if E forms a color class of a proper
2-coloring of the edges of some path in vσ. We sometimes call E an alternating consecutive edge
set.

For a graph Γ with a voltage assignment σ, we will often consider subgraphs of Γσ that intersect
some fibre vσ of Γσ in all edges except for some alternating consecutive edge set. In other words, we
may consider a subgraph H ⊆ Γσ for which E(H) ∩E(vσ) = E(vσ) \E, where E is an alternating
consecutive edge set in vσ. We show an example of such a subgraph H in Figure 3.2.
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In the following lemma and in later lemmas, we consider a path whose endpoints both have
the label r which is coprime to n . However, we note that given a path Γ with such a voltage r at
its endpoints, we can give each vertex v ∈ V (Γ) a new label φ(v) = σ(v)r−1 ∈ Zn, and then Γφ

is isomorphic to Γσ. Therefore, by relabelling group elements appropriately, we may assume in the
proofs of this lemma and later lemmas that the endpoints of our path Γ have a voltage of 1.

Lemma 3.2.2. Let Γ = (v1, . . . , vm) be a reflexive path with a voltage assignment σ : A(Γ) → Zn.
Suppose that σ(v1) = σ(vm) = r, where r is coprime with n. Then, for each even integer d satisfying

2c(Γ) ≤ d ≤ n,

and for each integer l satisfying 0 ≤ l ≤ n− 1, there exists a 2-factor F of Γσ, as well as two edge
subsets EL ⊆ E(vσ1 ) and ER ⊆ E(vσm), such that

• |EL| = |ER| = d/2;

• EL = {[(v1, l), (v1, l + r)], [(v1, l + 2r), (v1, l + 3r)], . . . , [(v1, l + (d− 2)r), (v1, l + (d− 1)r)]};

• EL and ER are alternating consecutive edge sets in vσ1 and vσm, respectively;

• F contains all edges of vσ1 except EL and all edges of vσm except ER.

Proof. Let d and l be as in the statement of the lemma. By our previous discussion, we may assume
that r = 1 by relabelling our group elements. We construct a family of d paths P = {P0, ..., Pd−1}
by the process of Lemma 3.1.2 (using our values l and r = 1), each with one endpoint in the fibre vσ1
and other endpoint in the fibre vσm. By Lemma 3.1.2, we may assume that the endpoints of each
path Pi are (v1, l+ i) and (vm, l+ i+ g), for a single value g ∈ Zn. Furthermore, by Corollary 3.1.4,
we may assume that the paths of P contain all vertices of the fibres vσ2 , vσ3 , . . . , vσm−1. We construct
the 2-factor F from the union P0 ∪ P1 ∪ · · · ∪ Pd−1 by adding the following edges:

• all edges in the unique perfect matching on the vertex set {(v1, l + i) : 1 ≤ i ≤ d− 2} in vσ1 ;

• all edges in the unique perfect matching on the vertex set {(vm, l + i+ g) : 1 ≤ i ≤ d− 2} in
vσm;

• all edges of the path (v1, l + d− 1), (v1, l + d), (v1, l + d+ 1), . . . , (v1, l − 1), (v1, l);

• all edges of the path (vm, l + d + g − 1), (vm, l + d + g), (vm, l + d + g + 1), . . . , (vm, l + g −
1), (vm, l + g).

It is straightforward to check that F is a 2-factor of Γσ. We let EL to consist of all edges in
the unique perfect matching on {(v1, l + i) : 0 ≤ i ≤ d − 1} in vσ1 . Similarly, we let the set ER to
consist of all edges in the unique perfect matching on {(vm, l + i + g) : 0 ≤ i ≤ d − 1} in vσm. By
construction, all four properties of the lemma are satisfied for sets EL and ER.
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Example 3.2.3. In Figure 3.3 an example illustrating application of Lemma 3.2.2 is presented.
The underlying group is Zn, and the voltage of each vertex from Zn is shown. Here, we suppose
that d = 4 ≥ 2c(Γ) and g = 3. The two different shades of vertices show the two components of
the 2-factor F . Moreover, the component of F containing P1 and P2 is highlighted in bold. The set
EL is depicted by the two dashed edges in vσ1 , and the set ER is depicted by the two dashed edges
in vσm.
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Figure 3.3: An example of construction of the 2-factor F described in Lemma 3.2.2 constructed
using a family P = {P0, P1, P2, P3} of paths. The underlying group is Zn, and voltage of each vertex
from Zn is shown. Here, we suppose that d = 4 ≥ 2c(Γ) and g = 3. The two different shades of
vertices show the two components of the 2-factor F . Moreover, the component of F containing P1
and P2 is highlighted in bold. The set EL is depicted by the two dashed edges in vσ1 , and the set
ER is depicted by the two dashed edges in vσm.

The Lemma 3.2.2 will be the key ingredient in proving the Hamiltonicity of coverings of trees
in the later sections.

3.3 Spider Decomposition

In the previous section, we have proved a sufficient condition when a lift of a path has a 2-factor.
Using this result, in this section and the following one, we give sufficient conditions that guarantee
that a lift of a tree is Hamiltonian. Our sufficient conditions will resemble the condition of [26].

Proposition 3.3.1. Let Γ be a reflexive spider with m leaves v1, ..., vm, and a center v0. Let
σ : A(Γ) → Zn be a voltage assignment. For each leaf vi, let Pi be the path in Γ with endpoints v0

and vi. Suppose that for some value p, coprime to n, and for all 0 ≤ i ≤ m, σ(vi, vi) = p, and that∑m
i=1 2c(Pi) ≤ n. Then there exists a 2-factor F of Γσ and m+ 1 edge sets Ei ⊆ E(vσi ), 0 ≤ i ≤ m,

satisfying the following properties:

26



• |Ei| = c(Pi), 1 ≤ i ≤ m, and |E0| = ∑m
i=1 c(Pi);

• Ei is alternating consecutive edge set, 0 ≤ i ≤ m;

• F contains all edges of vσi except Ei, 0 ≤ i ≤ m.

Proof. We write Γ as the union of m paths P1, . . . , Pm, where for 1 ≤ i ≤ m, Pi has endpoints v0

and vi. Then, by Lemma 3.2.2, for each 1 ≤ i ≤ m, each P σi contains a 2-factor Fi along with an
alternating consecutive edge sets ELi ⊆ vσ0 and ERi ⊆ vσi such that E(Fi)∩E(vσ0 ) = E(vσ0 )\ELi and
E(Fi) ∩ E(vσi ) = E(vσi ) \ ERi . As ∑m−1

i=0 2c(Pi) ≤ n, by applying an appropriate automorphism to
the lift P σi of each path Pi, we may assume that

E0 := EL1 ∪ · · · ∪ ELm

is an alternating consecutive set, and |E0| = ∑m
i=1 c(Pi). Since, E0 ⊆ E(vσ0 ), E0 satisfies both

conditions of the proposition. Similarly, we set Ei = ERi for i = 1, ..,m. We obtain F as the graph
on V (Γσ) with the following edge set:(

m⋃
i=1

E(Fi) \ E(vσ0 )
)

∪
m⋂
i=1

(E(Fi) ∩ E(vσ0 )) .

By construction of F , every vertex outside of vσ0 has degree 2. Furthermore, E(F ) ∩ E(vσ0 ) =
E(vσ0 ) \ E0, and since E0 an alternating consecutive set, each vertex of vσ0 also has degree 2 in F .
Therefore, F is a 2-factor on Γσ. Finally, since Ei = ERi for i = 1, ..,m, and each ERi is an alternating
consecutive edge set, so is Ei.

Proposition 3.3.2. Let Γ be a reflexive spider with m leaves v1, ..., vm, a center v0, and a voltage
assignment σ : A(Γ) → Zn. For 1 ≤ i ≤ m, let Pi be the path in Γ with endpoints v0 and vi.
Suppose that for some value p coprime to n, for 0 ≤ i ≤ m, σ(vi, vi) = p, and

∑m
i=1 2c(Pi) ≤ n.

Further suppose that the length of P1 is one, i.e., v0 and v1 are adjacent in Γ.Then Γσ contains a
Hamiltonian cycle C, as well as edge sets Ei ⊆ E(vσi ) 0 ≤ i ≤ m satisfying the following properties:

• E0 is a consecutive edge set, |E0| = ∑m
i=1 2c(Pi), and C contains all edges of vσ0 except those

of E0;

• E1 is an alternating consecutive edge set, |E1| = ∑m
i=1 c(Pi), and C contains all edges of vσ1

except those of E1;

• For 2 ≤ i ≤ m, Ei is alternating consecutive edge sets, |Ei| = c(Pi), and C contains all edges
of vσi except those of Ei.

Proof. We first write Γ as the union of the reflexive 2-path P (v0, v1) and the reflexive spider S
with center v0 and leaves v2, . . . , vm. For i ∈ {2, 3, , . . . ,m}, let Pi be the path in Γ with endpoints
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v0 and vi. By Proposition 3.3.1, we may find a 2-factor F on Sσ and an alternating consecutive
edge set F0 ⊆ E(vσ0 ) of size ∑m

i=2 c(Pi) such that E(F ) ∩ E(vσ0 ) = E(vσ0 ) \ F0. Furthermore, as∑m
i=2 2c(Pi) ≤ n, there exists an alternating consecutive edge set F ⊆ E(vσ0 ) of size |F0| such that

F contains at least one edge of each component of F . Now for each edge vj0v
j+1
0 ∈ F where 0 ≤ j ≤ n,

we remove the edge from vσ0 and edge vj1v
j+1
1 from E(vσ1 ). By connecting each endpoint vj0 to the

corresponding vertex vj1 in vσ1 we can get a Hamiltonian cycle C where E(C) ∩ E(F ) = E(F ) \ F .
Let E0 = F0 ∪F and we can see that E0 is a consecutive edge set on vσ0 of size 2∑m

i=2 c(Pi). Let E1

be the set of edges that are removed from vσ1 and we can see that |E1| = |F | = |F0| = ∑m
i=2 c(Pi)

and E(C)∩E(vσ1 ) = E(vσ1 )−E1, that is, C contains all edges of vσ1 except E1. By Proposition 3.3.1
F contains all edges of vσi except Ei which is an alternating consecutive edge set of size |c(Pi)| for
all 2 ≤ i ≤ m. We can see that E(C) = (E(F ) \ E0) ∪ (E(vσ1 \ E1), so C contains all edges of vσi
except Ei as well.

We define a base spider as a triple (T,G, σ), where T is a subdivision of a star, and T has
a central vertex v with σ(v, v) = 1. We also require each leaf l of T to have voltage σ(l, l) = 1.
Finally, we require that T \ v has at least one single-vertex component, and we choose one such
single-vertex component and name this vertex w. We give every leaf of T a weight of 1, except
for w. We give w the weight of ∑ c(Ci), where the sum runs over each component Ci of T \ v apart
from the vertex w. The central vertex v, and all leaves of T are called joint vertices.

We say two base spiders S1 and S2 are spider internally vertex disjoint if they satisfy one of
the following:

1. S1 and S2 are vertex disjoint;

2. V (S1) ∩ V (S2) = {v}, where v is a joint of both S1 and S2;

Example 3.3.3. Figure 3.4 gives an example of a spider with that satisfies the Proposition 3.3.2.

1

1

1

11

Figure 3.4: A spider graph Γ with voltage assignment σ : A(Γ) → Zn such that each leaf and the
center have a voltage that coprime to n, i.e 1. The spider graph also contains a “short leg” that
meets the condition in Proposition 3.3.2.
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Now, we have the following main result of this section.

Theorem 3.3.4. Let T be a reflexive tree, and let L be the set of loops and σ : E(T ) → Zn be a
voltage assignment on T . If the voltage graph (T,Zn, σ) satisfies the following conditions:

• There exists a system of base spiders S1, S2, . . . Sk such that {E(S1), E(S2), . . . E(Sk)} is a
partition of E(T ) \ L and any pair of base spiders are spider internally vertex disjoint.

• For each vertex v ∈ V (T ) that is a joint of some base spider, the total weight that v receives
from all of the base spiders to which it belongs is at most n.

Then T σ is Hamiltonian.

Proof. The proof is by induction on k, the number of base spiders in T , and we that there exists a
Hamiltonian cycle C in T σ that satisfies the following stronger property:

(1) For each leaf or branching vertex v ∈ V (T ), there exist a consecutive edge set Ev ⊆ E(C) ∩
E(vσ) such that,

|Ev| ≥ n−
∑

i:v∈V (Si)
ωSi(v).

For a vertex v ∈ V (T ), we use deg(v) to denote the number of edges in T incident to v, not
counting loops. In a base spider S with center v0, we let Pi be the path with endpoints v0 and vi

for 1 ≤ i ≤ deg(v0). Note that the path P1 is the short leg of S, i.e., have the length one. For
the base case, when k = 1, Proposition 3.3.2 implies that there exists a Hamiltonian cycle C in T .
Furthermore there exist a set of consecutive edges of size 2∑deg(v0)−1

i=1 c(Pi) on vσ0 that are not
in E(C). Therefore Hamiltonian cycle in a base spider contains

|E(vσ0 )| − 2
deg(v0)∑
i=2

c(Pi) = n− 2
deg(v0)∑
i=2

c(Pi)

consecutive edges of E(vσ0 ). For the short leg P1 and its leaf v1, Proposition 3.3.2 implies that there
exists a set of alternating consecutive edges of size ∑deg(v0)

i=2 c(Pi) on vσ1 that are not in E(C), so C
contains

|E(vσ1 )| −
deg(v0)∑
i=2

c(Pi) = n−
deg(v0)∑
i=2

c(Pi)

edges of E(vσ1 ). It follows that n−2∑deg(v0)
i=2 c(Pi) of these edges are consecutive in the fibre vσ1 . For

remaining leaves v2, . . . , vdeg(v0), by Proposition 3.3.2, C contains n−2c(Pi) consecutive edges in vσi
for i = 2, . . . ,deg(v0). Therefore for any leaf or branching vertex in the base spider S, statement (1)
holds.

For the inductive step, suppose the proposition holds for all values up to k − 1. Let T be a
tree with a corresponding system S1, . . . , Sk of base spiders that satisfies both conditions of the
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proposition. There exists at least one base spider, say Sk, such that

T0 =
k−1⋃
i=1

Si

is connected.
We can see that |V (Sk) ∩V (T )| = 1, as otherwise, T0 is disconnected. Let {u} = V (Sk) ∩V (T ),

and let

ωT0(u) =
k−1∑

i=1,u∈V (Si)
ωSi(u).

By the induction hypothesis, T σ0 has a Hamiltonian cycle C0 and there is a consecutive edge set

F = {e1, e2, . . . , ex} ∈ E(C0) ∩ E(uσ)

of x edges, where x ≥ n− ωT0(u) and ei, ei+1 are consecutive for all ei ∈ F .
Recall that ωSk

(u) is the weight that u received in Sk. By the second condition of the proposition,

ωSk
(u) ≤ n− ωT0(u).

Now we show that we can extend C0 to a Hamiltonian cycle in T σ, say C, and C also satisfies
statement (1). Following the notation of Proposition 3.3.1, we let v0 be the central vertex of Sk,
and we write degSk

(v0) = m. Then, we let v1 be the leaf of Sk that is adjacent to v0, and we let
v2, . . . , vm denote the other leaves of Sk, for 2 ≤ i ≤ m. By strictly internally vertex disjoint rule,
u belongs to one of following three cases:

1. u ∈ {vi : 2 ≤ i ≤ degSk
(v0)};

2. u is v1;

3. u is v0 .

In Case 1, ωSk
(u) = 2c(Pi). As Sk is base spider, we know that Sσk is Hamiltonian and contains

a Hamiltonian cycle CSk
such that there is a alternating consecutive edge set Eleaf of size c(Pi) and

E(CSk
) ∩E(uσ) = E(uσ) \Eleaf . Since x ≥ n− ωT0(u) ≥ ωSk

(u) = 2c(Pi), we can remove c(Pi) al-
ternating consecutive edges e1, e3, . . . , e2c(Pi)−1 from F and obtain Eleaf = F \{e1, e3, . . . , e2c(Pi)−1}
satisfying the requirement above.

Now we can join CSk
and C0 as one cycle C that is a Hamiltonian cycle of T . We can find a

consecutive edge set E = F \ {e1, e2, . . . , e2c(Pi)−1} = {e2c(Pi), e2c(Pi)+1 . . . , ex} ∈ E(C) ∩E(uσ) and

|E| = x− 2c(Pi) + 1 ≥ n− ωT0(u) − 2c(Pi) + 1 > n− (ωT0(u) + ωSk
(u)) = n− ωT (u)
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For Case 2, ωSk
(u) = 2∑deg(v0)−1

i=1 c(Pi). Proposition 3.3.2 implies that there is a Hamilto-
nian cycle CSk

in Sk such that there exist a alternating consecutive edge set E1 ∈ E(uσ) of size∑deg(v0)−1
i=1 c(Pi) such that

E(CSk
) ∩ E(uσ) = E(uσ) \ E1

Since x ≥ n − ωT0(u) ≥ ωSk
(u) = 2∑deg(v0)−1

i=1 c(Pi), we can remove ∑deg(v0)−1
i=1 c(Pi) alternating

consecutive edges e1, e3, . . . , ey from F and let it be E1, where y = 2∑deg(v0)−1
i=1 c(Pi) − 1. Now we

can join CSk
and C0 as one cycle C that is a Hamiltonian cycle of T . We can find a consecutive

edge set E = F \ {e1, e2, . . . , ey} = {ey+1, ey+2 . . . , ex} ∈ E(C) ∩ E(uσ) and

|E| = x− y = x− 2
deg(v0)−1∑

i=1
c(Pi) + 1 > n− (ωT0(u) + ωSk

(u)) = n− ωT (u)

For case 3, ωSk
(u) = 2∑deg(v0)−1

i=1 c(Pi). Proposition 3.3.2 implies that there is a Hamiltonian
cycle CSk

in Sk such that there exist a consecutive edge set E0 ∈ E(uσ) of size 2∑deg(v0)−1
i=1 c(Pi)

such that
E(CSk

) ∩ E(uσ) = E(uσ) \ E0

Since x ≥ n−ωT0(u) ≥ ωSk
(u) = 2∑deg(v0)−1

i=1 c(Pi) so we can remove 2∑deg(v0)−1
i=1 c(Pi) consecutive

edges e1, e2, . . . , ey from F and let it be E1, where y = 2∑deg(v0)−1
i=1 c(Pi). Now we can join CSk

and C0 as one cycle C that is a Hamiltonian cycle of T . We can find a consecutive edge set
E = F \ {e1, e2, . . . , ey} = {ey+1, ey+2 . . . , ex} ∈ E(C) ∩ E(uσ) and

|E| = x− y = x− 2
deg(v0)−1∑

i=1
c(Pi) ≥ n− (ωT0(u) + ωSk

(u)) = n− ωT (u)

In all three cases, we have enough edges to combine C0 and CSk
to a Hamiltonian cycle C that

satisfies (1).

3.4 Odd Shifting Decomposition

We now further generalize the labelling on trees which will give Hamiltonian lifts. For this, we need
more definitions and terminologies that allow us to define such labellings.

Definition 3.4.1. Let Γ = (v1, . . . , vm) be a reflexive path, and let σ : A(Γ) → Zn be a voltage
assignment satisfying σ(v1, v1) = σ(vm, vm). Let P = {P0, P1, ..., Pd−1} be a family of d = 2c(Γ)
paths in Γσ as defined in Lemma 3.1.2. For 2 ≤ t ≤ m−1, recall that π(vt) denotes the permutation
on {0, . . . , d−1} describing the order of the paths P0, . . . , Pd−1 as they leave vσt . Thus, the permuta-
tion π(vm−1) describes also the order of the paths in P as they enter vσm. We say that (Γ, G, σ) is an
odd shifting path if the permutation π(vm−1) is of the form (d−s, d−s+1, . . . , d−1, 0, 1, . . . , d−s−1)
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Figure 3.5: A voltage graph that is a tree that satisfies the conditions in Theorem 3.3.4 and can
be decomposed into three base spiders (in white, black and gray). The number beside each vertex
denotes the voltage assignment of its self-loop. If a vertex has no number beside it, it means that
its self-loop can be any voltage within Zn.

for some odd number 0 < s < d. In other words, if (Γ, G, σ) is an odd shifting path, then an odd
number of the d paths in P that were at the beginning of order π(v1) are shifted to the order π(vm−1)
at the end. We also say that the value r = σ(v1, v1) = σ(vm, vm) is the endpoint voltage of (Γ, G, σ).

In the following example, we will demonstrate what an odd shifting path may look like.

Example 3.4.2. For an integer m ≥ 1, let Γ = (v1, . . . , vm) be a reflexive path, and let σ :
A(Γ) → Zn be a voltage assignment. Let {P0, P1, ..., Pd} be the paths that are used to perform bil-
liard strategy on Γσ. Consider a pair of consecutive vertices on Γ, vi and vi+1. If π(vi−1) = π(vi+1)
then we call vi and vi+1 as order preserving pair. One can easily check that an inverse pair,
where σ(vi, vi) is the inverse of σ(vi+1, vi+1) in Zn is an order preserving pair.

Let v be an internal vertex on a path Γ and u,w are the two vertices adjacent to v. We remove v
and both edges adjacent to v and then connect u and w with an edge. The operation is called
smoothing out v from Γ.

For a path Γ with an even number of vertices, if we can recursively find and smooth out pairs
of order preserving pairs among internal vertices until there are only two endpoints left, we say the
path Γ is order preserving path.

If we form a single path Γ by joining an even number of order preserving paths Γ1, . . . ,Γ2k

all with a common voltage r coprime to n at their endpoints, then Γ is an odd shifting path. See
Figure 3.6.

We are now ready to state our result which is a sufficient condition when an odd shifting path
lifts to a Hamiltonian cycle. Because we will be using this result later for general trees, we prove a
stronger result where we put several conditions on the resulting Hamiltonian cycle, in particular,
how the cycle traverses through the fibres of the first and the last vertex of the path.
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Figure 3.6: The figure shows an example of an odd shifting path consisting of four order-preserving
paths Γ1,Γ2,Γ3,Γ4 with endpoints v0, vi1 , vi2 , vi3 , vm. In the figure, we show four paths P0, P1, P2, P3
in the lift that are constructed by the process of Lemma 3.1.2. Since each path Γi is order preserving,
the final order of the paths P0, P1, P2, P3 arriving at vσi4 is ultimately only affected by three single
shifts that occur in fibres vσi1 , vσi2 , and vσi3 , and therefore the final order of these paths in vσm
is P1, P2, P3, P0. Also note that while σ(v1) = σ(v2) = σ(v3) = 1 in for simplicity, the vertices
vi1 , vi2 , vi3 can have any common voltage r coprime to n in our construction.

Theorem 3.4.3. For an integer m ≥ 2, let Γ = (v1, . . . , vm) be an odd shifting path with a voltage
assignment σ : A(Γ) → Zn and an endpoint voltage r coprime to n. Let P = {P0, . . . , Pd−1} be the
family of paths constructed by the process of Lemma 3.1.2 using d = 2c(Γ) and an element l ∈ Zn.
Then, Γσ contains a Hamiltonian cycle C and two edge subsets EL ⊆ E(vσ1 ) and ER ⊆ E(vσm) such
that

• C contains all edges of the paths P0, . . . , Pd−1;

• |EL| = |ER| = d/2;

• EL = {[(v1, l), (v1, l + r)], [(v1, l + 2r), (v1, l + 3r)], . . . , [(v1, l + (d− 2)r), (v1, l + (d− 1)r)]};

• EL and ER are alternating consecutive edge sets;

• C contains all edges of vσ1 except EL and C contains all edges of vσm except ER.

Proof. As discussed before, we may assume without loss of generality that r = 1 and l = 0.
Let P0, . . . , Pd−1 be the d paths produced by the extended billiard strategy described in Lemma
3.1.2.

33



Since (Γ, G, σ) is an odd shifting path, the paths P0, . . . , Pd−1 arrive in vσm respectively at the
voltages

g + (d− s), g + (d− s+ 1), . . . , g + (d− 1), g, g + 1, . . . , g + (d− s− 1)

for some element g ∈ Zn and some odd number 0 < s < d. We now obtain a Hamiltonian cycle C
on Γσ from P0 ∪ P1 ∪ · · · ∪ Pd−1 by adding the following edges:

• all edges in the unique perfect matching on the vertex set {(v1, i) : 1 ≤ i ≤ d− 2} in vσ1 ;

• all edges in the unique perfect matching on the vertex set {(vm, g + i) : 1 ≤ i ≤ d− 2} ;

• all edges of the path (v1, d− 1), (v1, d), . . . , (v1, n− 1), (v1, 0);

• all edges of the path (vm, g + d− 1), (vm, g + d), . . . , (vm, g + n− 1), (vm, g).

We note that for each odd value 1 ≤ i ≤ d − 1, the endpoints of Pi and Pi+1 in vσ1 are joined
by a path in C ∩ E(vσ1 ) (with d and 0 identified). Furthermore, since (Γ, G, σ) is an odd shifting
path, for each even value 0 ≤ i ≤ d − 2, the endpoints of Pi and Pi+1 in vσm are joined by a path
in C ∩E(vσm). Hence, C is a Hamiltonian cycle that, starting in vσ1 , visits P0, P1, . . . , Pd−1 in order.

Finally, we let EL be the unique perfect matching on {(v1, i) : 0 ≤ i ≤ d− 1} in vσ1 which is not
in C. Similarly we let ER be the unique perfect matching on {(vm, g+ i) : 0 ≤ i ≤ d− 1} in vσm. We
observe that both EL and ER are alternating consecutive edge sets. This completes the proof.

Now we will show that if a tree can be decomposed into multiple odd shifting paths, then the
lift of this tree is often Hamiltonian. Beforehand, we need a bit more definitions.

Definition 3.4.4. Let T be a reflexive tree with a voltage assignment σ : E(T ) → Zn, and
L be its set of loops. If there exists a system of odd shifting paths {Q1, . . . , Qk} such that
{E(Q1) \ L, . . . , E(Qk) \ L} is a partition of E(T ) \ L, and if the paths Qi and Qj are strictly
internally vertex disjoint1 for any i ̸= j, then we say that T can be odd shifting decomposed, and
we say that {Q1, . . . , Qk} is the odd shifting decomposition of T . Observe that in an odd shifting
decomposition {Q1, . . . , Qk}, since the odd shifting paths only intersect at their endpoints which
we will call joints, the paths Q1, . . . , Qk all have the same endpoint voltage.

Definition 3.4.5. Let Qi be a path from an odd shifting decomposition {Q1, . . . , Qk} of T , with
endpoints u and v. We assign weight ωQi to u and v, as follows ωQi(u) = ωQi(v) = 2c(Qi). We define
the tree weight of v in T as ΩT (v) = ∑

ωQi(v), where the sum is over all paths in {Q1, . . . , Qk}
for which v is an endpoint. We say (T,Zn, σ) is properly weighted if ΩT (v) ≤ n (the order of the
group Zn) holds for each joint v of T .

1Two paths P and Q are strictly internally vertex disjoint if each vertex in V (P ) ∩ V (Q) is an endpoint of both
P and Q.
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Finally, we have the following sufficient condition for the existence of a Hamiltonian cycle in
the lift of a tree.

Theorem 3.4.6. Let T be a reflexive tree and let σ : E(T ) → Zn be a voltage assignment on T .
Suppose the voltage graph (T,Zn, σ) can be odd shifting decomposed into paths {Q1, . . . , Qk} whose
common endpoint voltage is coprime to n. If (T,Zn, σ) is properly weighted, then T σ is Hamiltonian.

Proof. As discussed before, we may relabel the elements of our group G so that our paths Qi all
have endpoint voltage 1. Our proof is by induction on k, the number of odd shifting paths in the
decomposition of T . We will prove the stronger statement that there exists a Hamiltonian cycle C
in T σ that satisfies the following property:

(1) For each joint vertex v ∈ V (T ), there exists a path P with E(P ) ⊆ E(C) ∩ E(vσ) such that

|E(P )| ≥ n− ΩT (v).

For the base case, when k = 1, T is a path with two joints u and v. Theorem 3.4.3 implies
that there exists a Hamiltonian cycle C in T along with two alternating consecutive edge sets
ER ⊆ E(vσ) and EL ⊆ E(uσ) of size at most c(Γ) such that C contains all edges of uσ and vσ

except ER and EL. Therefore, E(C) ∩ E(vσ) contains a path of at least n − 2c(T ) = n − ΩT (v)
edges; that is, (1) holds.

For the inductive step, suppose that (1) holds for all values up to k − 1. Let T be a tree
with a corresponding system {Q1, . . . , Qk} of odd shifting paths that satisfies the conditions of the
theorem. Since {Q1, . . . , Qk} is an edge-partition of the tree T , there exists at least one odd shifting
path, without loss of generality Qk, that intersects ⋃k−1

i=1 V (Qi) at only one of its endpoints. Observe
that

T0 :=
k−1⋃
i=1

Qi

is connected and hence a tree. Moreover, {Q1, . . . , Qk−1} is an odd shifting decomposition of T0,
and T0 is properly weighted. Let u be the vertex where Qk is joined to T0—that is, {u} = V (Qk) ∩
V (T0). Furthermore, let

ΩT0(u) =
∑

{i∈[1,k−1]:
u∈V (Qi)}

ωQi(u).

By the induction hypothesis, T σ0 has a Hamiltonian cycle C0, and for each joint vertex of T0, there
exists a path which satisfies (1). In particular, we can find a path

P = (e1, e2, . . . , es) ⊆ E(C0) ∩ E(uσ),

where s ≥ n− ΩT0(u).
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Now, recall that u is the endpoint of Qk, and u is in T0, and let v ̸= u be the other endpoint
of Qk. According to Theorem 3.4.3, Qσk contains a Hamiltonian cycle Ck along with two alternating
consecutive edge sets ELk ⊆ E(uσ) and ERk ⊆ E(vσ) of size c(Qk), for which

E(Ck) ∩ uσ = uσ \ ELk and E(Ck) ∩ vσ = uσ \ ERk .

Now, we show that we can combine C0 and Ck to a Hamiltonian cycle C in T σ, such that C will
also satisfy the statement (1). By our assumption, ωQk

(u) = 2c(Qk), and n − ΩT0(u) ≥ ωQk
(u).

Since
s ≥ n− ΩT0(u) ≥ 2c(Qk) = |ELk |,

by choosing an appropriate value for l in Theorem 3.4.3 such that (u, l) is an endpoint of e1 but
not of e2, we observe that ELk = {e1, e3, . . . , e2c(Qk)−1} in Ck. Without loss of generality, we assume
that l = 0, so that the endpoints of each edge ei ∈ P are (u, i− 1) and (u, i).

We define A0 = C0 \P , and we see that A0 is a Hamiltonian path on T σ0 \P with endpoints (u, 0)
and (u, s). Similarly, we define

Ak = Ck \ (E(uσ) \ P )

and we see that Ak is a Hamiltonian path on the graph Qσk \ (E(uσ) \ P ) with endpoints (u, 0)
and (u, s). Therefore, V (A0) ∪ V (Ak) = V (T σ), and since A0 and Ak only intersect at their end-
points, it follows that C = A0 ∪Ak is a Hamiltonian cycle on T σ. See Figure 3.7 for an example of
this construction.

Now, we show that C satisfies (1). We observe that E(C) ∩ vσ = vσ \ ERk . Since ERk is an
alternating consecutive edge set of size c(Qk), E(vσ)∩E(C) contains a path of at least n − 2c(Qk) =
n− ΩT (v) edges. Next, we consider E(uσ) ∩ E(C). When constructing C from Ck, only the edge
set {e1, e3, . . . , e2c(Qk)−1} was deleted from C0, so by the induction hypothesis, uσ ∩E(C) still has
a path (e2c(Qk), . . . , es) with

r − 2c(Qk) + 1 > (n− ΩT0(u)) − ωQk
(u) = n− ΩT (u)

edges. Hence, both joint vertices satisfy the condition (1), and the condition (1) has not changed
for the remaining joint vertices of T . Therefore, (1) holds for all vertices of T , and induction is
complete.
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Figure 3.7: The figure shows four graphs. The first (top) graph represents T σ0 , and a Hamiltonian
cycle C0 is shown. The second graph shows the Hamiltonian cycle Ck constructed on Qσk using
Theorem 3.4.3. The third graph shows the combination of C0 and Ck that gives a Hamiltonian
cycle C on T σ as in the proof of Theorem 3.4.6. (In the second and third graphs, we write γ =
2c(Qk) − 1.) Finally, the last figure shows the base graph T .
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Chapter 4

Cycles in Coverings of Trees Over a
Large Prime Order Cyclic Groups

We want to acknowledge that the main ideas of the work presented in this chapter are of Peter
Bradshaw.

4.1 Hamiltonicity of coverings of trees over a large prime order
cyclic groups

Results so far have been for special voltage assignments and worked even for smaller order groups. In
this chapter, we want to consider general voltage assignments when the group order is large prime.
Before starting our discussion on this topic we will establish some terminologies and notations for
convenience.

Given a reflexive tree T , let φ : E(T ) → Z be an assignment of integers to the edges of T , and
we will always let φ be positive at each loop of T . We define a homomorphism ψ : Z → Zp such that
x 7→ x + ⟨p⟩ where p will always be prime and typically large. Then, for each edge e ∈ E(T ) with
corresponding arcs e+, e− ∈ A(T ), we let σ(e) be ψ◦φ(e) and −ψ◦φ(e) for e+ and e−, respectively.
When interpreting the integers given by φ as group elements in Zp, we can observe that given T

and φ, σ gives a voltage assignment to A(T ) over Zp. For a vertex v ∈ V (T ), we will often say
that σ(e) is the voltage of v, where e is the loop at v, and we often abuse the notation to σ(v).
Note that since p is prime and φ is nonzero, for each vertex v ∈ V (T ), σ(v) is a generator for Zp,
and therefore every fibre of T σ contains a single cycle. Now we can consider the following specific
question:

Question 4.1.1. Let T be a reflexive tree, and let φ be an assignment of integers to E(T ) as
described above. Does there exist a number N ∈ N such that T σ is Hamiltonian whenever p ≥ N?

We do not have an answer to Question 4.1.1, but we are able to show the following results.
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Theorem 4.1.2. Let T be a reflexive tree, and let φ be an assignment of integers to E(T ) as
described above. Suppose that there exists a vertex v ∈ V (T ) such that for every neighbour u of v,
φ(u) = φ(v). Then, when p is a sufficiently large prime, T σ is Hamiltonian.

3 3 3

3

Figure 4.1: This figure shows a reflexive voltage tree (with loops omitted) that satisfies the condi-
tions in Theorem 4.1.2. The number beside each vertex denotes the voltage assignment of its loop.
If a vertex has no number beside it, then its loop can have any nonzero voltage within Zp.

Theorem 4.1.3. Let T be a reflexive tree, and let φ be an assignment of integers to E(T ) as de-
scribed above. Suppose that there exist two adjacent vertices u, v ∈ V (T ) for which φ(u) = φ(v) = 1.
Then, when p is a sufficiently large prime, T σ is Hamiltonian.

11

Figure 4.2: A reflexive voltage tree (with loops omitted) is shown that satisfies the conditions of
Theorem 4.1.3. The number next to each vertex denotes the voltage assignment on its loop. If a
vertex has no number next to it, its loop can have any nonzero voltage from Zp assigned.

Trees that satisfy the conditions of Theorem 4.1.2 and Theorem 4.1.3 are depicted in Figures 4.1
and 4.2.

Before presenting our proofs, we first make some assumptions, state some definitions and prove
lemmas that will help us prove the two results. As before, we will assume without loss of generality
that φ(e) = 0 for every cut-edge e ∈ E(T ), which can be done according to Lemma 3.1.1. Moreover,
we will assume that the order of the group p is a sufficiently large prime number, and finally, we
will write φ(v) instead of φ(v, v) for a vertex v ∈ V (T ).

For a vertex v ∈ V (T ), and for two integers 0 ≤ a, b ≤ p− 1, we define vσ[a, b] to be the graph
induced by the vertex set {(v, i) : a ≤ i ≤ b}. We also have the following definition.

Definition 4.1.4. Let v ∈ V (T ). Then for each positive multiple N of 2φ(v), we let Mv(N) denote
the matching in vσ containing all edges of the form

{(v, 2aσ(v) + i), (v, (2a+ 1)σ(v) + i)}
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for a ∈ {0, 1, . . . , N
2φ(v) − 1}, i ∈ {0, 1, . . . , φ(v) − 1}. Furthermore, for an element g ∈ G, we

say that Mv(N) + g denotes the matching obtained from Mv(N) by applying the automorphism
(v, t) 7→ (v, t+ g).

Examples of Mv(12) and Mv(12) + 1 where φ(v) = 3 are shown in Figure 4.3. The matchings
described in Definition 4.1.4 will be useful in proofs of our theorems when we build a 2-factor
in T σ under certain conditions and then connect all components of the 2-factor into a Hamiltonian
cycle. Informally, for two adjacent vertices w, x ∈ V (T ), if we have a 2-factor F of the lift of the
component of T − x containing w that contains many edges of wσ and a second 2-factor F0 of the
lift of the component of T −w containing x that contains many edges of xσ, then we may “join” F
and F0 by removing two matchings of this form of equal size from wσ and xσ and replacing them
with a matching consisting of edges of the form [(w, g), (x, g)]. Figure 4.4 shows two 2-factors being
joined in a similar way to what we have described here. The removed edges are depicted in gray,
and the added edges are shown as vertical edges. The following observations will be useful for us
when we use these matchings.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 4.3: We show here a part of a fibre vσ of a vertex v with φ(v) = 3 which belongs to the
lift of a voltage graph over a large cyclic group. On the top row, the bolded edges make up the
edges in the matching Mv(12). In the bottom row, the bolded edges make up the edges in the
matching Mv(12) + 1.

Observation 4.1.5. For each positive integer N , when p is sufficiently large, the matchings Mv(N)
and Mv(N) + σ(v) are edge-disjoint.

Observation 4.1.6. Mv(2N) = Mv(N) ∪ (Mv(N) +N).

In next lemma, we show that for any vertex v ∈ V (T ), T σ has a 2-factor H each of whose
components contains at least one edge in a certain local structure of the fibre vσ. This property
will be later used to “attach” components of a 2-factor together into a Hamiltonian cycle. We have
this property that an edge of every component of the 2-factor can be found in a specific part of T σ.

Lemma 4.1.7. Suppose that p is a sufficiently large prime in terms of T and φ. Then, there
exists a positive integer N = N(φ, T ) such that for each vertex v ∈ V (T ), T σ contains a 2-factor H
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satisfying Mv(N) ⊆ E(H), and such that each component of H has an edge in the matching Mv(N).
Furthermore, H may be chosen such that H contains every edge of vσ[N, p− 1].

Proof. The proof is based on induction on the number of vertices of T . For the base case, |V (T )| = 1,
we can observe that T σ is a cycle. Therefore we can let H = T σ and N = 2φ(v), and the statement
holds.

For the inductive steps, we suppose |V (T )| > 1. Let v ∈ V (T ) with neighbours u0, . . . , ur−1.
Let T \ {v} have components T0, . . . , Tr−1, so that each neighbour of v is contained in each
component, i.e. ui ∈ V (Ti) for each i ∈ {0, . . . , r − 1}. By the induction hypothesis, for each
i ∈ {0, . . . , r − 1}, we may choose an integer Ni = Ni(φ|Ti

, Ti) and a 2-factor Fi on Ti such that
the matching Mui(Ni) is a subset of E(Fi) and contains an edge of each component of Fi, and such
that Fi contains every edge of uσi [Ni, p− 1]. Then, we define

N ′ = 2φ(v)N1N2 . . . Nr,

and by applying automorphisms to each Fi, it follows that for each i ∈ {0, . . . , r− 1}, we may find
a 2-factor Hi on Ti such that the matching Mui(Ni) + iN ′ +σ(v) is a subset of E(Hi) and contains
an edge of each component of Hi. Furthermore, since Fi contains every edge of uσi [Ni, p − 1], and
since p is sufficiently large, we can also assume that Mui(N ′) + iN ′ +σ(v) ⊆ E(Hi) is also a subset
of E(Hi).

Next, we consider the graph H ⊆ G containing the edges of the cycle vσ as well as E(H0) ∪
· · ·∪E(Hr−1). As H is a union of the 2-factors H0, . . . ,Hr−1 as well as the cycle vσ, H is 2-regular.
Let us modify the graph H as follows. For each i ∈ {0, . . . , r − 1}, add the edges

[(v, σ(v) + iN ′ + a), (ui, σ(v) + iN ′ + a)]

for each value a ∈ {0, . . . , N ′ − 1} into H, and for each i ∈ {0, . . . , r − 1}, remove the matching
Mui(N ′) + iN ′ + σ(v) from H. Furthermore, remove the matching Mv(rN ′) + σ(v) from H. This
leaves us with a new 2-factor H in T σ. An example of a construction of H is shown in Figure 4.4.
In the figure, r = 2, φ(u0) = 1, φ(u1) = φ(v) = 2, and N ′ = 8.

After the set-ups, we will prove the lemma by demonstrating the existence of an integer
N = rN ′ + 2φ(v) that satisfies the conditions of Lemma 4.1.7. We will first observe two claims
that will help to complete the proof.

Claim 4.1.8. Mv(N) ⊆ E(H). Furthermore, H contains every edge of vσ[N, p− 1].

Proof of claim: It follows from the construction, that E(H) contains every edge of vσ except for
those contained in Mv(rN ′)+σ(v), which gives that H contains every edge of vσ[N, p−1]. To prove
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v

u0 u1

vi denotes the vertex (v, i), and uij denotes the vertex (ui, j)

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16

u0
0 u0

1 u0
2 u0

3 u0
4 u0

5 u0
6 u1

10 u1
11 u1

12 u1
13 u1

14F0 F1

Figure 4.4: The drawing on the left-hand side shows part of a reflexive tree T with a voltage
assignment σ and a specified vertex v which has two neighbours u0 and u1. The drawing on the
right-hand side shows parts of the fibres vσ, uσ0 , and uσ1 , with the dashed lines representing the
undrawn parts of the fibres. We may seek a 2-factor F each of whose components has an edge in a
certain matching in vσ as follows. We find 2-factors F0 and F1 in the two components of T \ {v},
which are shown as cycles. We then may remove a matching from each of F0 and F1, as well as
from vσ and add the dotted edges between the fibre vσ and the other two fibres. The removed edges
are shown in gray. Finally, we obtain a larger 2-factor H, each of whose components must contain
at least one of the edges in the bolded matching.

that Mv(N) ⊆ E(H), it will suffice to show that Mv(N) is disjoint from Mv(rN ′) + σ(v). As

Mv(rN ′) + σ(v) ⊆ Mv(rN ′ + 2φ(v)) + σ(v) = Mv(N) + σ(v)

it suffices to show that Mv(N) is disjoint from Mv(N) + σ(v). It follows directly from Obser-
vation 4.1.5 that Mv(N) is disjoint from Mv(N) + σ(v). Hence, we see that when we remove
Mv(rN ′) +σ(v) from vσ, we do not remove any edges from Mv(N). Therefore, each edge of Mv(N)
belongs to E(H) and the claim is proved.

Claim 4.1.9. Each component of H has an edge in Mv(N).

Proof of claim: It follows from our construction, that E(H) ∩ E(vσ) = E(vσ) \ (Mv(rN ′) + σ(v)).
Let S = {σ(v), . . . , σ(v) + rN ′ − 1} be a subset of Zp. One can see that elements of S are the
group values of the endpoints of Mv(rN ′) + σ(v). Furthermore, S is a subset of the group values
of the vertex set V (Mv(N)). Therefore, as H is 2-regular, any component in H that contains a
vertex (v, b) for b ∈ S must also have an edge in Mv(N).

Let Hi be 2-factors obtained from the induction hypothesis. Consider H∩Hi for each 2-factor Hi.
We note that H ∩ vσ is a forest of paths. Therefore, since H is 2-regular, every component C of H
must contain both a vertex from vσ and a vertex from a 2-factor Hi. Hence, it follows that C must
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contain an edge of the form

[(v, σ(v) + iN ′ + a), (ui, σ(v) + iN ′ + a)]

for some value i ∈ {0, . . . , r− 1} and some value a ∈ {0, . . . , N ′ − 1}. Since b = σ(v) + iN ′ + a ∈ S,
it then follows from the argument above that C must contain an edge in Mv(N), that is, each
component of H has at least one edge in the matching Mv(N). The claim is proved now.

Claims 4.1.8 and 4.1.9 directly imply Lemma 4.1.7.

Using Lemma 4.1.7 we are now ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Let T be a reflexive tree, and let v be a vertex of T with r neighbours
u0, . . . , ur−1. Furthermore, for every neighbour ui of v, let φ(ui) = φ(v). For each i ∈ {0, . . . , r−1},
let Ti be the component of T \{v} containing ui and Fi be a 2-factor of T σi . It follows by Lemma 4.1.7,
there exist 2-factors Fi, along with a corresponding integer Ni = Ni(φ|Ti

, Ti), such that each
component of Fi has at least one edge in Mui(Ni) and such that each edge induced by uσi [Ni, p− 1]
belongs to E(Fi). We let

N = 2φ(v)N1N2 . . . Nr.

By an appropriate application of automorphisms on T0, . . . , Tr−1, we may obtain that for each
i ∈ {0, . . . , r − 1} a 2-factor Hi, each of whose components contains at least one edge in the
matching Mui(N) + iN .

Now we will describe the process of constructing a Hamiltonian cycle by connecting each com-
ponent of each 2-factor together. For each i ∈ {0, . . . , r−1} and each component C of Fi, we choose
an edge

[(ui, a), (ui, a+ σ(v))] ∈ Mui(N) + iN

of C, by choosing an appropriate a. (Note that this is possible, since σ(ui) = σ(v).) Then, we remove
the edges [(ui, a), (ui, a+ σ(v))] and [(v, a), (v, a+ σ(v))] from C and vσ, respectively, and add the
edges [(ui, a), (vi, a)] and [(ui, a+ σ(v)), (v, a+ σ(v))]. We can perform the above steps for each i,
by beginning with a cycle A = vσ, and each time we replace edges for a component C as described
above, we extend A to include every vertex of C. After repeating the process for every component
of every 2-factor Hi, A will be extended to a cycle that visits every vertex of T σ. Therefore, T σ is
Hamiltonian. Finally, note that a sufficient bound on p is p > 2|V (T )|∏

v∈V (T ) φ(v).

Next, we will prove Theorem 4.1.3 with the similar technique using Lemma 4.1.7.

Proof of Theorem 4.1.3. Let T be a reflexive tree, and let u, v ∈ V (T ) be an adjacent pair of
vertices for which φ(u) = φ(v) = 1. We define Tu ⊆ T and Tv ⊆ T as the subtrees obtained
by removing the edge uv and taking the component with u and the component containing v,
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v

u0

vσ

uσ0

vσ

Figure 4.5: The figure on the left shows a tree T with a voltage assignment σ and a vertex v, all of
whose neighbours (here, just u0) have the same voltage as v. The figure on the right shows parts of
the fibres vσ and uσ (with their vertices depicted horizontally) and the graph T σ0 , with the dashed
lines representing the undrawn parts of the graphs. T σ0 has a 2-factor F0 each of whose components
has an edge in a certain local part of the fibre uσ0 . Here, we may create a Hamiltonian cycle on T σ
by removing one edge in uσ0 from each cycle of F0 and then replacing these edges with a matching
between uσ0 and vσ. Here, the removed edges are shown in gray, and the added edges are shown
vertically in bold.

respectively. By Lemma 4.1.7, there exists a 2-factor Fu in T σu in which each component of Fu has
an edge in the matching Mu(Nu), for some integer Nu = Nu(φ|Tu

, Tu). Similarly, there exists a
2-factor Fv in T σv in which each component has an edge in the matching Mv(Nv) + Nv, for some
integer Nv = Nu(φ|Tv

, Tv). Note that as φ(u) = φ(v) = 1, the edges induced by uσ[Nu, p − 1] all
belong to a single component Au of Fu, and the edges induced by vσ[Nv +Nu, p− 1] all belong to
a single component Av of Fv.

Let H = Fu ∪Fv, we will show the process of modifying H into a Hamiltonian cycle on T σ. For
each component C in Fu, we remove from H two edges, [(u, i), (u, i + 1)] ∈ E(C) ∩ Mu(Nu) and
[(v, i), (v, i+1)] ∈ E(C)∩Mv(Nv). Then, we add to H the edges [(u, i), (v, i)] and [(u, i+1), (v, i+1)].
Through the above steps, we can extend Av by connecting component C to it. Figure 4.6 shows
how we perform the “remove and attach” process described above. We repeat this process for
every component C of Fu, and we attach every component of Fu, apart from Au, to Av. Similarly,
through this process, we attach every component of Fv, apart from Av, to Au. This leaves us with
two cycles, which we may attach by choosing some value i satisfying Nu+Nv < i < p−1, removing
the edges [(u, i), (u, i+ 1)] from H and [(v, i), (v, i+ 1)], and adding the edges [(u, i), (v, i)] and
[(u, i+ 1), (v, i+ 1)] to H. This is possible because we can choose p > Nu +Nv + 1. Through this
process, we obtain a single Hamiltonian cycle H on T σ. This completes the proof.

A notable implication of Theorem 4.1.2 is that although the answer to Question 4.1.1 remains
open, we are able to answer Question 4.1.1 for “almost every” labelling in case of large enough trees
by following theorem.

Theorem 4.1.10. Let P : Z → [0, 1] be a fixed probability distribution on the positive integers. For
a positive integer n, let T be an arbitrarily chosen reflexive tree on n vertices, and let φ : E(T ) → Z
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vu

uσ

vσ

Figure 4.6: The figure on the left shows a tree T with a voltage assignment σ and two vertices u, v,
both of which have voltage 1. The figure on the right shows parts of the fibres uσ, vσ.We may seek
a 2-factor F each of whose components has an edge in a certain matching in vσ as follows. We
find 2-factors Fu and Fv in the two components of T \ {uv}, which are depicted using cycles in the
figure on the right, with the dashed lines representing the undrawn parts of the graph. We then
may remove a matching from each of Fu and Fv, as well as from vσ, and add edges between uσ

and vσ. The edges that we remove are shown in gray, and the edges that we add are shown in bold.
We then obtain a Hamiltonian cycle on T σ.

be a random assignment of positive integers to the edges of T , where each edge e ∈ E(T ) is given a
positive integer randomly according to the distribution P . If A is the event that for some sufficiently
large prime p, T σ is Hamiltonian, then limn→∞ Pr(A) = 1.

Proof. Without loss of generality, by Lemma 3.1.1, we will assume φ(e) = 0 for every cut-edge
e ∈ E(T ). Let a be some positive integer that has a positive probability ϵ > 0 under P . We show
that for large n, there almost surely exists a vertex v ∈ V (T ) such that, for each neighbour u of v,
φ(u) = φ(v) = a.

Since ∑v∈V (T ) deg(v) = 2n−2, and T is a connected graph, we can see that at least 1
2n vertices

of T must have degree at most 2. Therefore there must exist a set U ⊆ V (T ) of 1
6n vertices of degree

at most 2, and the closed neighbourhoods of the vertices in U are disjoint. For a vertex v ∈ U ,
let X be the event that v and all neighbours of v are assigned the value a to their loops and Y be
the event that no vertex in U has the same assignment as all its neighbours. Then we can see that
P (X) = ϵ3 so P (Y ) = (1 − ϵ3) 1

6n and P (Y ) approaches 0 as n approaches infinity. Therefore, as n
increases, the probability of a Hamiltonian cycle existing in T σ for a large prime p approaches 1.

4.2 Coverings of trees having large circumference

We’ve previously explored the Hamiltonian nature of covering graphs derived from base trees with
distinct voltages over a prime cyclic group. This relationship hinges on certain voltage conditions.
But what if these conditions falter? Our current focus shifts to this scenario. Interestingly, regardless
of how voltages are assigned, almost every vertex is included in a cycle of the covering graph when
any base tree is lifted over such a large prime cyclic group. A noteworthy observation is that even
with a non-prime order n for our group, this holds true if each T label is mutually prime with n.
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Theorem 4.2.1. Let ∆ ≥ 0 be an integer, let 0 < ϵ ≤ 1
2 , and let n ≥ 5∆

ϵ2 be an integer. If T is a
reflexive tree of maximum degree at most ∆, and if σ : Zn → E(T ) is a mapping that assigns group
elements coprime to n to each loop of T , then there exists a cycle C on T σ that contains at least
(1 − ϵ)|V (T σ)| vertices.

To use induction to prove Theorem 4.2.1, we will prove the following stronger theorem and will
also show that the stronger theorem implies Theorem 4.2.1.

Theorem 4.2.2. Let n and ω be positive integers satisfying n
(
1 − 1

⌈
√
ω⌉ − ⌈

√
ω⌉
ω

)
≥ ⌈

√
ω⌉. If T is

a reflexive tree of maximum degree at most n
ω , and if σ : Zn → E(T ) is a mapping that assigns

group elements coprime to n to each loop of T , then there exists a cycle C on T σ that contains at
least

(
1 − 1

⌈
√
ω⌉ − ⌈

√
ω⌉
ω

)
|V (T σ)| vertices.

Claim 4.2.3. Theorem 4.2.2 implies Theorem 4.2.1.

Proof. We assume that Theorem 4.2.2 holds and we will prove the theorem by induction on the
number of vertices of T . For the base case, |V (T )| = 0 so ∆ = 0 in Theorem 4.2.1, then the theorem
is trivial. Therefore we assume that ∆ ≥ 1. We will show that the hypotheses of Theorem 4.2.1
satisfy the hypotheses of Theorem 4.2.2, and we will also show that the conclusion of Theorem
4.2.2 implies the conclusion of Theorem 4.2.1.

Let n, ∆, and ϵ be chosen as in Theorem 4.2.1. We choose ω to be the smallest integer so that
1

⌈
√
ω⌉ + ⌈

√
ω⌉
ω < ϵ, and we observe that ϵ ≤ 1

⌈
√
ω−1⌉ + ⌈

√
ω−1⌉
ω−1 because ω is the smallest. We want

to show that when n ≥ 5∆
ϵ2 then n

(
1 − 1

⌈
√
ω⌉ − ⌈

√
ω⌉
ω

)
≥ ⌈

√
ω⌉ and ∆ ≤ n

ω . We note that since
1

⌈
√
ω⌉ + ⌈

√
ω⌉
ω ≥ 1

2 for 1 ≤ ω ≤ 16, it must hold that ω ≥ 17.
We start with proving the first inequality, n

(
1 − 1

⌈
√
ω⌉ − ⌈

√
ω⌉
ω

)
≥ ⌈

√
ω⌉. Since n ≥ 5

ϵ2 , and

ϵ ≤ 1
⌈
√
ω−1⌉ + ⌈

√
ω−1⌉
ω−1 , it is enough to show that

5(
1

⌈
√
ω−1⌉ + ⌈

√
ω−1⌉
ω−1

)2 ≥ ⌈ω⌉
1 − 1

⌈
√
ω⌉ − ⌈

√
ω⌉
ω

holds for ω ≥ 17. When ω approaches infinity, we have

⌈ω⌉
1 − 1

⌈
√
ω⌉ − ⌈

√
ω⌉
ω

(
1

⌈
√
ω − 1⌉

+ ⌈
√
ω − 1⌉
ω − 1

)2

→ 4

and it is easy to check for small values of ω that the inequality holds. Therefore, it holds that

n

(
1 − 1

⌈
√
ω⌉

− ⌈
√
ω⌉
ω

)
≥ ⌈

√
ω⌉

.
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Next, we show that ∆ ≤ n
ω holds. Since n ≥ 5∆

ϵ2 , and since ϵ ≤ 1
⌈
√
ω−1⌉ + ⌈

√
ω−1⌉
ω−1 , it is sufficient

to show that

5 ≥ ω

(
1

⌈
√
ω − 1⌉

+ ⌈
√
ω − 1⌉
ω − 1

)2

.

When ω approaches infinity, the right-hand side expression has a limit of 4, and it is easy to
check the inequality for small ω. Therefore, it holds that ∆ ≤ n

ω . Hence, we have shown that the
hypotheses of Theorem 4.2.2 hold, so by assumption, the conclusions of Theorem 4.2.2 hold as well.

Now, since 1
⌈
√
ω⌉ + ⌈

√
ω⌉
ω < ϵ, it is clear that the conclusion of Theorem 4.2.2 implies that the

conclusion of Theorem 4.2.1 also holds. This completes the proof of the claim.

The above claim shows that it is sufficient to prove Theorem 4.2.2 to prove Theorem 4.2.1. For
the proof of Theorem 4.2.2, we will need the following definition and lemma.

Definition 4.2.4. For an integer n ≥ 1 and a pair g, h ∈ Zn, we say that the distance between g

and h is the minimum number of terms 1 or −1 that must be added to g to obtain h.

Lemma 4.2.5. Let 1 ≤ m ≤ n be integers. For each generator g ∈ Zn, there exists an integer
1 ≤ k ≤ m and an element h ∈ Zn at a distance of at most ⌊ nm⌋ from 0 for which kg = h.

Proof. Consider the set K = {kg : 1 ≤ k ≤ m} ⊆ Zn. For each element a ∈ K, we define the
set Ra ⊆ Zn as the set {a, a+ 1, . . . , a+ ⌊ nm⌋}. For two distinct elements a, b ∈ K, if Ra ∩Rb ̸= ∅,
then a and b are at a distance of at most ⌊ nm⌋. Now, since g is a generator of Zn, all elements
of K are distinct. Therefore, since m(⌊ nm⌋ + 1) > n, there must be two elements k1g, k2g ∈ K for
which Rk1g and Rk2g intersect. Without loss of generality, we assume that k2g ∈ Rk1g, which implies
that modulo n, k2g − k1g is at most ⌊ nm⌋. However, this implies that |k2 − k1|g is at a distance of
at most ⌊ nm⌋ from 0, so letting k = |k2 − k1| and letting h = |k2 − k1|g gives us our result.

With Lemma 4.2.5 we can now prove Theorem 4.2.2 and then Theorem 4.2.1 will follow directly
by Claim 4.2.3.

Proof of Theorem 4.2.2. By Lemma 3.1.1, we may assume that every cut-edge e ∈ E(T ) satisfies
φ(e) = 0. We give an orientation to the cut-edges of T so that each vertex of T has out-degree at
most 1. We prove the stronger statement by choosing C such that C contains all but at most

deg+(v) n

⌈
√
ω⌉

+ deg−(v)⌈
√
ω⌉

edges from each fibre vσ in T σ. Furthermore, E(C) ∩ E(vσ) forms a path.
We prove the statement by induction on |V (T )|. For the base case, when |V (T )| = 1, T σ is a

single cycle, so the statement holds. For inductive steps, suppose |V (T )| > 1. Let ℓ be a leaf of T
with out-degree 1 and a neighbour v ∈ V (T ). By the induction hypothesis, (T − ℓ)σ contains a
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cycle C ′ that satisfies our stronger condition in Theorem 4.2.2, and in particular, C ′ contains all
but at most

deg+(v) n

⌈
√
ω⌉

+ deg−(v)⌈
√
ω⌉

edges of vσ and such that E(C ′) ∩ E(vσ) is a path.
Since σ(v) is coprime to n, we can assume that σ(v) = 1 by applying an appropriate automor-

phism. Now, we extend C ′ to ℓσ as follows. Using Lemma 4.2.5, we choose an integer 1 ≤ k ≤ n
⌈
√
ω⌉

and an element h ∈ Zn at a distance d ≤ ⌈
√
ω⌉ from 0 for which kσ(ℓ) = h. Now, since C ′

intersects vσ in at least
n− n

⌈
√
ω⌉

− n

ω
· ⌈

√
ω⌉ ≥ ⌈

√
ω⌉

edges, and since these edges form a path in vσ, we may find some path P ⊆ vσ ∩ C ′ of length
at least ⌈

√
ω⌉. By applying an appropriate automorphism to T σ, we may assume that P is of the

form (v0, v1, . . . , v|E(P )|) and that v0 is an endpoint of the path E(C ′)∩E(vσ). Let P ∗ = (v0, v1, . . . , vd).
Note that P ∗ is a subpath of C ′. We remove all edges of P ∗ from C ′ and add edges [v0, ℓ0] and [vd, ℓd]
to C ′. Now, since d ∈ {h,−h} modulo n, and kσ(ℓ) = h, there exists a path of length k from ℓ0

to ℓd in ℓσ. Then, since ℓσ is a cycle, there also exists a path P ′ of length n− k in ℓσ from ℓ0 to ℓd.
We add this path P ′ to C ′, which gives us our final cycle C.

Now we need to show that the induction hypothesis holds for C. We note that C contains all
but k ≤ n

⌈
√
ω⌉ edges of ℓσ. Additionally, when T − ℓ was extended to T and C ′ was extended to C,

the in-degree of v increased by one, and C lost d ≤ ⌈
√
ω⌉ edges from vσ compared to C ′. Therefore,

C contains all but at most
n

⌈
√
ω⌉

deg+(w) + ⌈
√
ω⌉ deg−(w)

edges from each fibre wσ in T σ. Since E(vσ) ∩E(C) was obtained from the path E(vσ) ∩E(C ′) by
removing a subpath containing an endpoint, we can see that E(C) ∩ E(ℓσ) and E(vσ) ∩ E(C) are
two paths. Therefore, the induction hypothesis holds for T and C, and the proof is complete.
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