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Abstract 

Digital soil mapping requires input data, which often are sourced from legacy soil 

datasets. These datasets may be incomplete and require the use of pedotransfer 

functions (PTFs) to estimate the missing soil attribute values. Two methods of increasing 

the accuracy of PTFs are explored: the use of nonlinear least squares (NLS) to 

recalibrate existing equation-based functions; and the machine learner Random Forest 

(RF) to develop new PTFs. The target attribute used as a case study was bulk density 

(BD), which is a soil variable often missing in legacy soil datasets. To test the 

effectiveness of the NLS method in recalibrating existing PTFs, 73 PTFs from literature 

were tested on three regional datasets, two from British Columbia (BC) and one from 

Ontario. Improvement in accuracy was gauged through the comparison of root mean 

square error (RMSE) and concordance correlation coefficient (CCC) values determined 

before and after recalibration. Results showed that the accuracy of almost every PTF 

improved; PTFs with fewer variables and those recalibrated on the largest dataset 

showed the highest accuracy. The machine learner RF was also used to develop PTFs. 

Eleven variables were available in the legacy dataset from BC used as a case study 

region, and all possible combinations of these variables were used to create 512 models 

for predicting BD. After testing the models, they were ranked based on their CCC value, 

and showed a range of 0.92 for the best performing model, to 0.51 for the lowest ranked 

model. The number of horizons which could be estimated by each model also varied, as 

many of the variables were limited in their availability. To estimate missing BD values in 

the dataset, models were chosen on their performance and number of horizons which 

could be estimated, with 27 models used to estimate the missing BD values. Lastly, as 

most developed PTFs lack accompanying uncertainty estimates, quantile regression 

(QR) was used to address this gap. PTF uncertainty was shown to be related to the size 

of the training dataset used as well as the input variables. A framework that coupled a 

quantile regression approach both with PTF recalibration and with PTF development 

was constructed that produced region specific PTFs along with uncertainty estimates; 

the predictions were used to fill legacy soil datasets. 

Keywords:  Pedotransfer Function; Machine Learning; Nonlinear Least Squares; 

Quantile Regression; Legacy soil data; Random Forest 
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Chapter 1.  
 
Introduction 

Soil data are needed for many applications. It may be used to produce maps of 

soil attributes or used as input for modelling processes. The products which soil data are 

used for, such as maps, are themselves used as decision-making tools; to convey 

information and discover soil processes. Soil data come from a variety of sources, 

ranging from small, regional case studies, to large national datasets; and data are 

constantly being produced. Globally, most countries have generated soil data, through 

soil surveying and mapping (Arrouays et al., 2017). Through multiple initiatives, there 

has been a push to incorporate existing soil data into harmonized, global datasets, such 

as the GlobalSoilMap project (Arrouays, 2017). The data can be used in digital soil 

mapping projects, where the use of predictive modeling and uncertainty assessments 

have been identified as current topics (Arrouays, 2020).   

 Lagacherie and McBratney (2007) defined digital soil mapping (DSM) as “the 

creation, and population of spatial soil information systems by the use of field and 

laboratory observational methods, coupled with spatial and non-spatial soil inference 

systems”. DSM began in the 1990s (Minasny and McBratney, 2016) and has expanded 

with the development of other technologies, such as geographic positioning systems and 

remote sensing (Brevik et al., 2016). DSM projects require input in the form of data; 

good data are essential in the creation of an accurate DSM, but acquiring good data is 

often a limiting factor (Lagacherie, 2008). Data may come from legacy sources, such as 

soil maps or existing soil databases, and it may also be acquired from environmental 

observations. Legacy data are often incomplete, however; the data may come from 

different studies, with measurements made using different methods, and collected over 

long time periods and for different purposes. Further, data may not be harmonised, and 

spatial locations and soil descriptions may be imprecise (Lagacherie, 2008). 

To utilize existing data to its fullest extent, it is useful to “fill the gaps” in the 

dataset using pedotransfer functions (PTFs), which are methods of predicting soil 

attributes, and which describe relationships between soil variables. When soil data are 

missing, a PTF can be applied to estimate the missing values. In the words of the soil 
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scientist who coined the term, they “translate the data we have to the data we need” 

(Bouma, 1989). McBratney et al. (2002) defined PTFs as “predictive functions of certain 

soil properties from other easily, routinely, or cheaply measured properties”. McBratney 

et al. (2003) noted that relationships between soil attributes, and only soil attributes, 

without the inclusion of spatial position, fall under the definition of pedotransfer functions 

(PTFs). What might be considered PTFs, but which include variables categorized as one 

of the soil formation factors such as parent material and which have a spatial 

component, would be defined as soil spatial prediction functions (SSPFs), rather than as 

PTFs. The authors contend that a PTF, such as s = f(r), where a soil attribute is 

predicted based on topography, “extends the definition too far”. However, with machine 

learning becoming prevalent in PTF development, more and more PTFs incorporate soil 

formation factors as variables. 

There are many PTFs available in the literature. While much of PTF development 

has focused on soil hydraulic properties and bulk density, there are also PTFs available 

for soil organic carbon (SOC; Benke et al., 2020; Mwango et al., 2019; Fernández-

Ugalde and Tóth, 2017; Zinn et al., 2005), for sand, silt, and clay content (Levi et al., 

2017), for sand or silt percent (Furze and Arp, 2018). PTFs have been developed for 

many regions around the globe, for varying types of soil and environmental conditions. 

However, it is not recommended to use a PTF outside the region or soil type for which it 

was developed (McBratney et al., 2002). When faced with a choice of choosing a 

literature PTF or developing a new PTF, a third option exists: recalibrating an existing 

PTF to suit the study region. With recalibration, an existing equation is used, for which 

new coefficients are generated. This fits the equation better to the dataset under 

consideration. Recalibration can be accomplished through the use of non-linear least 

squares (NLS), an iterative process which provides an averaged best estimate of 

coefficients appropriate for the dataset.  

The option of developing a new PTF can be achieved using machine learning. 

There are many types of machine learners available; examples of machine learners 

which have been used to estimate soil bulk density include boosted regression trees 

(Martin et al., 2009; Gharahi Ghehi et al., 2012); artificial neural networks (Al-Qinna and 

Jaber, 2013); generalized boosted regression (GBM), Chen et al., 2018; Jalabert et al., 

2010; k-nearest neighbour (Gharahi Ghehi et al., 2012; Botula et al., 2015) and support 

vector machines (Guo et al., 2019). A machine learner which has shown good results in 
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many modeling applications (Boulesteix et al., 2012) is Random Forest (RF; Breiman, 

2001) which is an ensemble of tree-based learners. Advantages of RF include its ability 

to resist overfitting (Breiman, 2001); it can handle high dimensional data, where the 

number of predictors is greater than the number of observations (Grimm et al., 2008); 

and it can handle continuous and categorical variables (Ließ et al., 2012), which is an 

advantage when including environmental variables. 

The inclusion of uncertainty estimates when developing PTFs is important, both 

to have an uncertainty estimate with any predicted variable, and because the predictions 

produced by PTFs are often used in further modelling work. The uncertainty of one 

variable can depend on the uncertainty of another variable, and so propagate through 

the model (Heuvelink and Brown, 2007). For example, when modelling soil acidification, 

Finke et al. (1999) investigated the uncertainty associated with categorical data used as 

input to the model, and found that the error of the input data had a definite effect on the 

uncertainty of the model results (Finke et al., 1999). PTFs have not usually been 

accompanied by an uncertainty estimate (McBratney et al., 2002), but this has been 

recognized as an issue to be addressed by several studies (Tranter et al., 2010; Malone 

et al., 2011; Van Looy et al., 2017). There have been different approaches to quantifying 

uncertainty, in both DSM and PTF literature. For example, Goovaerts (2001) used two 

techniques, kriging-based and simulation-based, to estimate the uncertainty of 

continuous soil attributes. One available method is Quantile Regression (QR; Koenker 

and Bassett, 1978) which is especially useful for applications where the residuals may 

not be normally distributed, and it allows for exploration of the residuals beyond the 

mean; QR is also not sensitive to outliers (Koenker, 2017), and it is computationally 

efficient.  

1.1. Background Information 

This section provides background information for Chapters 2 and 3. Section 1.1.1 

provides motivation for the research, in the importance of soil; 1.1.2 focuses on the 

development of soil science and soil surveying, which provided the basis and data which 

are used in the research; 1.1.3 describes issues with legacy soil data; section 1.1.4 

describes the development of PTFs; 1.1.5 details the method used in Chapter 2 to 

recalibrate existing equation-based PTFs; Section 1.1.6 discusses using a machine 

learning approach to predicting soil attributes, as expanded on in Chapter 3; and lastly, 
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section 1.1.7 looks at the importance of including uncertainty estimates when generating 

pedotransfer functions, and is further demonstrated in both Chapter 2 and Chapter 3.  

1.1.1. Soil and Humanity 

As agriculture became important to humanity, so did soil. Agricultural tools used 

11,000 years ago have been found in Iraq (Brevik and Hartemink, 2010). The same 

region has yielded evidence of irrigation from 9,500 BP, and an early type of plough 

called the ard, from 6000 to 4000 years BP (Brevik and Hartemink, 2010). In China, rice 

grains dating to 9100 years BP were found in Pengtoushan (Gong et al., 2003); millet 

and rice were being cultivated 7000 to 6000 years BP (Gong et al., 2003). Evidence of 

ancient agriculture has also been found dating to 7,500 years BP in Poland (Brevik and 

Hartemink, 2010); in Uzbekistan 6,000 years BP (Brevik and Hartemink, 2010); and in 

India 4-5,000 years BP (Miller and Schaetzl, 2014). While our ancestors may not have 

understood the chemical and physical qualities of the soil in the same way we do today, 

they did comprehend the importance of soil to their survival. For example, ancient 

peoples often were the cause of soil erosion through agricultural practices (Dotterweich, 

2013); however, there is also evidence from around the globe that solutions to this 

problem were implemented – people from the Phoenicians to the Maya and Inca built 

terraces to prevent erosion (Brevik and Hartemink, 2010). 

 So too now, we face the problem of degraded soil; for example, soil carbon has 

been lost through erosion, decomposition, and leaching caused by land use change and 

land management practices (Lal, 2018). Loss of carbon from the soil is one source of 

atmospheric CO2; in 2021, the total CO2 emissions from fossil fuels was 9.9 +/- 0.5 Gt 

C/year, an increase of 0.46 Gt C/year from the previous year; and the total CO2 

emissions from land use change was 1.1 +/- 0.7 Gt C/year, with both emissions 

estimations including the cement carbonation sink (Friedlingstein et al., 2022). The 

increased CO2 in the atmosphere is a major contributor to global climate change (Lal, 

2018). 

The idea that carbon influences the global climate is not a new one. Although he 

was interested in ice ages rather than global warming, in 1896 Svante Arrhenius 

calculated that if the carbon dioxide concentration of Earth’s atmosphere were to double, 

the global temperature would increase by 4.0 – 6.1°C (Schils, 2011). In 1750, the 
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concentration of carbon dioxide (CO2) in the atmosphere was estimated to be 278 ppm, 

while in 2021 it was 414.7 +/- 0.1 ppm (Friedlingstein et al., 2022). Soil is the largest 

terrestrial store of carbon, holding 1550 Gt of organic carbon and 950 Gt of inorganic 

carbon (Lal, 2004a). Through management, there is the potential to decrease 

atmospheric CO2 by increasing carbon stored in soil (Lal, 2004a), to mitigate the 31% 

increase of CO2 concentration in the atmosphere since 1750 (Lal, 2004b).  

1.1.2. Soil Surveys and Science 

In China, land quality data and associated crop type was recorded from 300 AD 

(Miller and Schaetzl, 2014). Chernozem soils were mapped by the Russian Dokuchaev 

during the late 1800s, and the US Soil Survey began mapping soils in 1899 (Miller and 

Schaetzl, 2014). The first Canadian soil survey report was published in 1923, based on 

soil surveying done from 1914 to 1920 in southwestern Ontario (McKeague and Stobbe, 

1978). In BC, soil surveying first occurred in 1926, and was focused on determining 

whether the land was arable or suitable for inclusion in forest reserves (McKeague and 

Stobbe, 1978). Soil surveying was carried out by the provinces, and as a result there 

were differences in the scale of surveys and mapping units used (McKeague and 

Stobbe, 1978). To develop a cohesive national survey system, in 1945 the National Soil 

Survey Committee was formed (McKeague and Stobbe, 1978). A five-category 

classification system based on soil associations was adopted (Anderson and Smith, 

2011). In 1955 a classification system based on soil taxonomy was initiated and 

accepted for use in 1960 (Anderson and Smith, 2011). This system was formalized as 

the System for Soil Classification in Canada, published in 1974 (Anderson and Smith, 

2011).  

 While soil science has long focused on agricultural applications, in more recent 

years there has been broadening of the scope of soil science, with environmental issues 

receiving more attention (Hartemink and McBratney, 2008). Soil has many important 

functions, from providing a medium for plants to grow in, holding and filtering water, as a 

component of construction, to regulating the carbon cycle, among many others (Omuto 

et al., 2013). To study these functions, data are required; and there have been multiple 

initiatives undertaken to centralize, harmonize, and make soil data accessible (Omuto et 

al., 2013). However, legacy data are often inconsistent, with varying amounts of 

accompanying observations available for any given data point.  



6 

1.1.3. Legacy data 

 Legacy data may be available from soil maps or from soil profile data gathered 

from sampling (Lagacherie, 2008). When in the form of soil maps, this information must 

be disaggregated. In the case of soil profile data, there can be issues such as lack of 

harmonization, missing data, and imprecise location information (Lagacherie, 2008); 

data may have been collected for different objectives and through different 

methodologies (Krol, 2008) One issue is the location of sampling sites, which were 

chosen for specific purposes such as investigating agricultural potential; this can result in 

sampling bias in the data (Carré et al., 2007). However, there may not be an option to 

collect new data, and so legacy data should be used to the greatest extent possible 

(Lagacherie, 2008). 

There are numerous studies which utilize legacy data. Bui et al. (2006) used 

legacy data from a national Australian soil database to model multiple soil attributes 

using piecewise linear decision trees. In Saskatchewan, Canada, Sorenson et al. (2021) 

used legacy soil data in conjunction with remotely sensed imagery from the Landsat 5 

satellite to model soil organic carbon, clay, and cation exchange capacity. Many studies 

have drawn from large, national or international soil databases; Sequeira et al. (2014) 

used the USDA-NRCS National Soil Survey Center database to compare approaches to 

predicting bulk density; Vaysse and Lagacherie (2015) used legacy soil data in France, 

including a map of soil classes and a dataset of soil profiles, as well as another dataset 

of previously collected composite profiles which was used for validation. For that study, 

they used four different models to predict 8 soil attributes: clay, silt, sand, coarse 

fragment, organic carbon, pH, CEC, and depth to bedrock. When legacy datasets are 

incomplete, the missing values may be estimated through PTFs to provide a complete 

dataset for further digital soil mapping endeavours. This was the approach taken by 

Silatsa et al. (2020) when comparing different methods of predicting soil carbon stocks in 

Cameroon. Bulk density values missing in the dataset were estimated using Minasny 

and Hartemink’s (2011) method of first predicting the bulk density of the mineral soil, 

then inputting that value into the PTF developed by Adams (1973).  
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1.1.4. Pedotransfer Function Development 

The term “pedotransfer function” was created by Bouma (1989) and based on the 

term “pedofunctions” used by Lamp and Kneib in 1981 (Bouma, 1989), and “transfer 

functions” from Bouma and van Lanen in 1987 (Bouma, 1989). As defined, 

“Pedotransfer functions relate different soil characteristics and properties with one 

another or to land qualities.” (Bouma, 1989). Two types of PTFs were identified: class 

and continuous. Continuous functions are equations which use continuous variables 

such as percent sand as input variables; class functions relate a soil attribute to a class, 

such as soil taxonomic horizon.  

While the term was novel, the idea was not. It can be argued that the earliest 

PTF was van Bemmelen’s conversion factor, published in 1889, which relates soil 

organic matter to soil organic carbon, using a factor of 1.724 (Minasny et al., 2020). 

However, van Bemmelen referred to the conversion factor as “the factor of Wolff: 1.724” 

(Minasny et al., 2020); Emil Theodor von Wolff likely used this factor based on the work 

of Carl Sprengel, who published works in 1826 and 1827 which stated that humic acid 

was composed of 58% carbon (Minasny et al., 2020). Although multiple studies have 

shown that the ratio of OC to OM is variable and this conversion factor overestimates 

OC, it is still used as the default today (Pribyl, 2010). 

Later, regression analysis was used to identify relationships between soil 

variables and bulk density, such as by Eschner et al. (1957), who developed two 

equations for bulk density based on soil organic matter, for different depth intervals; as 

well as Curtis and Post (1964), Saini (1966), Jeffrey (1970), Stewart et al. (1970), Drew 

(1973), and Adams (1973), who all used organic matter or organic carbon to determine 

bulk density. As PTF development continued for different regions, other variables began 

to be included more frequently, although organic matter/organic carbon continued to be 

one of the most frequent variables included. PTFs continue to be developed using MLR, 

such as by Foldal et al. (2020) whose bulk density estimates had an RMSE of 0.190 

g/cm3; some studies had very good results, such as Obidike-Ugwu et al. (2022) whose 

bulk density PTF had an RMSE of 0.07 g/cm3. An advantage of using MLR is its ease of 

use (Obidike-Ugwu et al., 2022). Whichever approach is used to develop a PTF, a PTF 

should “not predict something that is easier to measure than the predictor” (McBratney et 

al., 2002).  
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1.1.5. Recalibrating Existing Equation-Based PTFs 

While many PTFs have been developed for different regions and soil conditions, 

there has been general consensus that a PTF should not be applied outside of the 

region or conditions for which it was developed (McBratney et al., 2002; De Vos et al., 

2005; Benites et al., 2007; Casanova et al., 2016). An alternative to developing a new 

PTF or to using an existing PTF is recalibration, where for an existing equation, the 

coefficients of the variables can be adjusted to better suit the data in the study. A 

method that has previously been used to recalibrate existing PTFs is nonlinear least 

squares (De Vos et al., 2005; Nanko et al., 2014; Chen et al., 2018). Khodaverdiloo et al. 

(2022) used nonlinear least squares, and compared the results to unrecalibrated PTFs, 

as well as to PTFs developed using MLR. They tested these on their whole dataset 

(n=360), as well as smaller subsets of the dataset. They noted that the size of the 

dataset affects the results; as the dataset size increased, accuracy decreased.  

Nonlinear least squares (NLS) is a method of fitting a nonlinear function to a set 

of data points, which minimizes the sum of the squares of the residual (Sun and Yuan, 

2006). Like linear least squares, NLS fits an equation to a dataset by finding the optimal 

parameters (Johnson and Frasier, 1985). Johnson (2008) identifies the difference 

between a linear and nonlinear least-squares fit is “if the second and higher order 

derivatives of the fitting function with respect to the parameters being estimated are all 

equal to zero, then the fit is a linear fit. If any of these derivatives are not equal to zero 

then it is a nonlinear fit.” There are multiple weighted NLS fitting algorithms (Johnson, 

2008), including the Levenberg-Marquardt method, the Gauss-Newton approach, and 

the Quasi-Newton method (Sun and Yuan, 2006). The methods are iterative and act in a 

stepwise way to reach the optimal values for the parameters of the equation; this is 

known as convergence (Ritz and Streibig, 2008). When applying NLS, a model must be 

specified (Bates and Watts, 1988); an existing literature PTF equation can be used. It is 

important to provide the best starting values for the parameters, as this will result in 

convergence being reached more quickly (Bates and Watts, 1988). Convergence may 

not always be reached, and this could be due to a number of factors: there may be too 

many parameters in the model, there could be too little data in some areas of the 

function, the starting values may be poor or have the wrong sign (Bates and Watts, 

1988). 
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1.1.6. Machine Learners and Random Forest 

Wadoux et al. (2020) defined machine learning as “the computer-assisted 

practice of using data-driven (and mostly non-linear) statistical models which resort to a 

large amount of input data to learn a pattern and make a prediction.” Machine learning 

was identified as a trend in digital soil mapping (Arrouays et al., 2020) and has also been 

increasingly used in PTF development. An advantage of using machine learning to 

predict a soil attribute is that there is no assumption of the character of the relationship 

between the target variable and the input variables (Wadoux et al., 2020). However, 

unlike regression, machine learners do not produce a readily understandable equation 

(Sequeira et al., 2014). Instead, the models they produce have been referred to as 

“black boxes” (Breiman, 2001), and are difficult to interpret (Wadoux et al., 2020). 

With the availability of machine learners, many studies have compared multiple 

approaches to PTFs – often multiple linear regression (MLR) and one or several 

machine learners. For example, Katuwal et al. (2020) found that all of the machine 

learners tested - RF, regression rules, and ANN - outperformed MLR in predicting bulk 

density; Schillaci et al. (2021) compared stepwise MLR, backward stepwise MLR, and 

ANN, and also found that ANN performed better than either of the MLR approaches. 

Other studies have compared different machine learners to each other to estimate bulk 

density; these include Gunarathna et al. (2019) who compared ANN, kNN, and RF; and 

Gharahi Ghehi et al. (2012) whose study compared kNN and BRT. Of multiple machine 

learners assessed, including RF, ANN, and support vector machine, Zihao et al. (2022) 

found that RF performed the best, with the model’s prediction accuracy having an RMSE 

of 0.147 g/cm3.  

RF has been used by many studies to estimate soil bulk density; for example, 

Ramcharan et al. (2017) used RF to estimate bulk density, with a resulting RMSPE of 

0.13 g/cm3 for the estimates produced. Other studies using RF include Hikouei et al.  

(2021); Akpa et al. (2016); de Souza et al. (2016); Palladino et al. (2022). RF (Breiman, 

2001) is a type of decision tree algorithm, where multiple trees are grown. Trees are 

grown on bootstrapped data, and the results from the trees are aggregated. For 

classification, the majority vote of the trees is the result; in regression, the predictions of 

the trees are averaged (Hastie et al., 2009). Certain characteristics of RF make it an 

attractive machine learner to use: it does not overfit (Breiman, 2001); it is nonparametric; 
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it can be used for problems which have more variables than observations; it can handle 

categorical and continuous variables; and it has few parameters to configure (Genuer 

and Poggi, 2020). 

1.1.7. Uncertainty and Quantile Regression 

Wadoux et al. (2020) reported that of 150 studies which used machine learning 

for digital soil mapping purposes, approximately 30% included uncertainty quantification 

with their predictions. The authors recommend that uncertainty originating from both the 

data and the model be reported in future DSM studies (Wadoux et al., 2020). Model 

error has multiple sources; Jansen (1998) identified input uncertainty, uncertainty 

associated with the model structure, and system randomness. Prediction error may be 

underestimated, because the focus of uncertainty analysis is on input uncertainty, and 

other sources of uncertainty may be neglected (Jansen, 1998). For PTFs specifically, 

McBratney et al. (2002) pointed out the lack of uncertainty estimates and identified it as 

a problem to be addressed.  

The probability distribution of error is often assumed to be a certain shape, such 

as a normal or Poisson distribution (Heuvelink and Brown, 2007). These characteristic 

distributions need few parameters to describe them – the normal distribution requires a 

mean and standard deviation, while the Poisson distribution requires the mean 

(Heuvelink and Brown, 2007). But the assumption that the probability distribution 

function follows a characteristic distribution may not be true; it may be non-parametric, 

and so require a different method of quantifying and conveying the uncertainty 

(Heuvelink and Brown, 2007). An advantage of QR is that it does not assume that the 

error distribution has any parametric form (Cade and Noon, 2003). 

While QR has been used in other fields, such as flood forecasting (Amina and 

Chithra, 2023) and medical research (Beyerlein, 2014), its application in soil science has 

been limited. Lombardo et al. (2018) used QR when modeling soil organic carbon; van 

Zijl et al. (2014) used QR to investigate the relationships between soil properties and soil 

dispersion; Kasraei et al. (2021) coupled QR with multiple machine learners to assess 

model performance and uncertainty estimates.  
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1.2. Research Problem 

The goal of the research in both chapters was to investigate methods of 

improving the accuracy of PTFs. These PTFs are necessary to fill the gaps in legacy soil 

datasets, so that existing data can be used to the greatest extent possible in further 

digital soil mapping endeavours. There are PTFs available for many soil attributes, 

including pH; remaining phosphorus, which is used as an anion-adsorption index 

(Cagliari et al., 2011); cation exchange capacity (Liao et al., 2015; Krogh et al., 2000); 

electrical conductivity (Benke et al., 2020), and more. As a case study variable, bulk 

density was chosen, as it had low coverage in available datasets, is required for soil 

carbon stock estimations and other calculations, such as soil water matric potential (Box 

and Taylor, 1962), and has many existing PTFs with which results can be compared. 

Two methods, recalibration of existing equation based PTFs using NLS, and 

development of new PTFs using machine learning, were investigated as means of 

improving PTF performance for legacy dataset gap filling. For both methods, QR was 

applied as a method of generating uncertainty estimates, as many PTF studies lack 

uncertainty estimates. 

1.3. Research Objectives 

The research objectives were as follows: 

1) Determine the potential for recalibrating existing equation based PTFs to 

improve accuracy using NLS on regional datasets 

2) Generate new PTFs through a machine learning approach using RF 

3) Produce uncertainty estimations for both recalibrated and new PTFs through a 

quantile regression approach 

1.4. Thesis Overview 

 The thesis has four chapters: Chapter 1 is the introduction, which positions the 

research in context and provides background information on the material presented in 

Chapters 2 and 3. 
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Chapter 2 addresses multiple research objectives: 1) identifying existing 

equation-based PTFs; 2) recalibrating these PTFs through the use of nonlinear least 

squares; 4) producing uncertainty estimates for each recalibrated PTF. Existing 

equation-based PTFs were identified in the literature, and selected for having the case 

study variable, bulk density, as their target variable, as well as using input variables 

which were available in the case study datasets. Datasets from two regions of Canada, 

the province of BC, and an area of southwestern Ontario, were used to test the existing 

PTFs in their literature form, and then compare these results to the accuracy of the PTFs 

after recalibration. Recalibration was conducted through nonlinear least squares (NLS), 

which produces new existing coefficients for existing model forms. Coupled with 

recalibration, uncertainty estimates were generated through a quantile regression (QR) 

approach. The validated results of the recalibration, expressed through root mean 

square error (RMSE) and the concordance correlation coefficient (CCC), as well as the 

uncertainty estimates as conveyed through PICP and MPI graphs, were used to identify 

the PTFs with the highest accuracy and lowest uncertainty. It was found that when 

recalibrated on larger datasets, PTFs showed lower uncertainty values. The PTFs which 

had the highest accuracy when recalibrated included those with fewer variables, and 

minimal transformations to those variables; further, organic carbon (OC) was found to be 

the most important variable for bulk density prediction.  

Chapter 3 address the research objectives 3) generating a new PTF through a 

machine learning approach; 4) producing uncertainty estimates for new PTFs; and 6) 

developing a method for gap filling legacy soil datasets. To generate new PTFs, all 

possible combinations of the variables available in the case study dataset were 

determined, resulting in over 500 possible model forms. Using the machine learner 

Random Forest, these model forms were then tested on the case study dataset, which 

covered the province of BC. Testing the models for accuracy was coupled with quantile 

regression to produce uncertainty estimates for each model. The models were then 

ranked for accuracy, based on the CCC value; these models were then applied to the 

dataset to estimate missing bulk density values. 

Chapter 4 is the conclusion. Conclusions drawn from the research are presented: 

the results from Chapter 2, where NLS was used to recalibrate existing PTFs, showed 

that for almost every PTF tested, an NLS approach increased the accuracy of the PTF; 

the results from Chapter 3, where RF was used to produce new PTFs using a variety of 
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input variables, showed that this approach resulted in PTFs with high accuracy. Further, 

it was shown that QR can quantify and communicate the uncertainty of the PTFs 

resulting from both approaches. Limitations with the research were also addressed, such 

as the limited amount of data available to train new models; the effect of the accuracy of 

the measured value of the target variable on the model results; the availability and 

quality of input variables; the importance of different input variables to the production of 

more accurate models; and potential ways of improving PTFs, such as the incorporation 

of environmental variables, and testing multiple machine learners to determine which 

one produces the most accurate PTF. 
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Chapter 2. A Framework for Recalibrating 
Pedotransfer Functions using Nonlinear Least 
Squares and Estimating Uncertainty using Quantile 
Regression 

A version of this chapter has been published in the journal Geoderma: 
 
Arbor, A., Schmidt, M., Saurette, D., Zhang, J., Bulmer, C., Filatow, D., Kasraei, B., 
Smukler, S., Heung, B. 2023. A framework for recalibrating pedotransfer functions using 
nonlinear least squares and estimating uncertainty using quantile regression. Geoderma, 
439: 116674. 

2.1. Abstract 

Pedotransfer functions (PTFs) have been developed for many regions to 

estimate values missing from soil profile databases. However, globally there are many 

areas without existing PTFs, and it is not advisable to use PTFs outside their domain of 

development due to poor performance. Further, developed PTFs often lack 

accompanying uncertainty estimations. To address these issues, a framework is 

proposed where existing equation-based PTFs are recalibrated using a nonlinear least 

squares (NLS) approach and validated on two regions of Canada; this process is 

coupled with the use of quantile regression (QR) to generate uncertainty estimates. 

Many PTFs have been developed to predict soil bulk density, so this variable is used as 

a case study to evaluate the outcome of recalibration. New coefficients are generated for 

existing soil bulk density PTFs, and the performance of these PTFs is validated using 

three case study datasets, one from the Ottawa region of Ontario and two from the 

province of British Columbia, Canada. The improvement of the performance of the 

recalibrated PTFs is evaluated using root mean square error (RMSE) and the 

concordance correlation coefficient (CCC). Uncertainty estimates produced using QR 

are communicated through the mean prediction interval (MPI) and prediction interval 

coverage probability (PICP) graphs. This framework produces dataset-specific PTFs 

with improved accuracy and minimized uncertainty, and the method can be applied to 

other regional datasets to improve the estimations of existing PTF model forms. The 

methods are most successful with large datasets and PTFs with fewer variables and 

minimal transformations; further, PTFs with organic carbon (OC) as one of or the sole 

input variable resulted in the highest accuracy. 
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2.2. Introduction 

Soil data are an invaluable resource, and the demand for soil data is increasing. 

Soil data are used for monitoring soil health, functions, and nutrient fluxes and storage. 

The need for accessible, standardised global soil databases has long been identified 

(Batjes et al., 1994), and soil data repositories around the world have been growing as 

records and maps have been digitised (Arrouays et al., 2017). Soil data are a prime 

source of input for data repositories from local- to global-scales, however, they are often 

incomplete. Pedotransfer functions (PTFs) have been used to estimate values missing 

from soil profile databases (Baritz et al., 2010; Benites et al., 2007; Tranter et al., 2007). 

PTFs are quantitative functions that explain relationships between soil variables, which 

“translate the data we have to the data we need” (Bouma,1989) — they are numerous 

and have been developed for many soil attributes, especially soil hydraulic properties 

and bulk density. While PTFs are useful tools, their application comes with several 

issues. Firstly, there are many PTFs available to choose from—this is especially true for 

bulk density, with papers cataloguing up to 63 bulk density PTFs tested on a dataset and 

compared (Nasta et al., 2020). Secondly, a selected model generated from another 

geographical region may not be transferrable to a new region (McBratney et al., 2002). 

Lastly, PTFs often do not have accompanying uncertainty estimates—a concern which 

has previously been identified (McBratney et al., 2002). 

With existing soil datasets, filling in the missing values required for a particular 

study requires selecting an existing PTF or developing a new one; a third option is to 

recalibrate an existing PTF. PTFs are continuously being developed for regions for 

which few or none exist, such as for tropical soils (Obidike-Ugwu et al., 2023). Selecting 

an existing PTF may be difficult, as it has been argued that PTFs should not be 

transferred from outside their region of development (Casanova et al., 2016; De Vos et 

al., 2005; McBratney et al., 2002; Van Looy et al., 2017). Recalibrating existing equation-

based PTFs is an alternative to developing a new PTF and has the advantage that it 

does not require that the dataset used to calibrate the original function be similar to the 

dataset on which it is being recalibrated. Recalibration has been carried out in previous 

studies; for example, De Vos et al. (2005) recalibrated two bulk density PTFs; Reidy et 

al. (2016) used multiple regression analysis to recalibrate functions; Nanko et al. (2014) 
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and Chen et al. (2018) used Levenberg-Marquardt (Marquardt, 1963) nonlinear least 

squares (NLS) to revise existing PTFs, and to recalibrate six model forms, respectively.  

Estimates of uncertainty are rarely provided with developed PTFs (McBratney et 

al., 2002), and this has been noted as a limitation of many studies which use or develop 

PTFs (Nemes, 2015). Uncertainty estimates should be provided with a PTF, and the one 

with the smallest error variance should be chosen (McBratney et al., 2002; Minasny and 

Hartemink, 2011). The provision of uncertainty estimates ensures that the data they 

generate are used with appropriate care, particularly in the context of management of 

policy decisions. One method of estimating uncertainty uses quantile regression (QR; 

Koenker and Bassett, 1978). The QR approach has been used for a variety of 

applications (Muthusamy et al., 2016; Rahmati et al., 2019; López López et al., 2014); in 

soil science, Kasraei et al. (2021) developed a generic framework for estimating the 

uncertainty of digital soil maps produced from machine-learning techniques, using QR. 

While there has been much work invested in developing PTFs, there is a need 

for establishing clear protocols for adapting PTF equations to regional datasets and 

generating their uncertainty. This study focusses on PTFs generated for bulk density as 

a case study due to their wide availability, as well as their importance in estimating soil 

organic carbon (SOC) stocks and hydrological soil properties. Bulk density may be 

measured through multiple methods, which include excavation, the core and the clod 

methods (Al-Shammary et al., 2018); however, bulk density values are often missing or 

have limited availability in soil databases. To estimate missing values, approaches 

include regression and machine learning (Minasny et al., 1999). Hence, the goals of this 

study are (1) to provide a framework to recalibrate and validate existing PTF model 

forms for local datasets using the NLS approach to generate new model coefficients; (2) 

to compare the predictive performance of the PTFs generated using NLS to both the 

original PTFs found within the literature, and to other recalibrated PTFs in order to 

identify the best performing model form; and (3) to generate and evaluate the 

performance of uncertainty estimation using QR. Here, we apply a framework to expand 

the coverage of PTFs for regions or conditions for which no PTFs exist by using the 

Province of British Columbia (BC) and the Ottawa region of Ontario, Canada, as case 

study areas. 
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2.3. Methodology 

Two case study regions were considered in this study: the Province of BC, and 

the Ottawa region of southern Ontario, Canada. Three datasets were developed to test 

PTFs: Ontario (All Variables), BC (All Variables), and BC (Carbon and Bulk Density). A 

literature search for existing, equation-based PTFs targeting bulk density was 

conducted. Two datasets, Ontario (All Variables) and BC (All Variables), were tested on 

all PTFs obtained from the literature search. The BC (Carbon and Bulk Density) dataset 

was tested with functions that only contained SOC or organic matter (OM) as an input 

variable. Model forms common to multiple PTFs were identified, and PTFs were divided 

into 8 groups; these groups were based on both the form of the equation and the input 

variables utilized. Following this, recalibration of the functions was performed using the 

NLS approach, and new coefficients for the PTFs were generated. The results of the 

NLS approach were compared to the performances of the PTFs in their original literature 

coefficients, and to other recalibrated PTFs of varying model forms and input variables. 

Simultaneously, QR was performed, and the accuracy and uncertainty metrics 

generated for the PTFs. 

2.3.1. Datasets 

The datasets from BC and Ontario contained data from mineral soil horizons with 

SOC values < 17% (by weight). The data was limited to mineral soil with the anticipated 

result that the PTFs could be better fit to a dataset that contained a smaller range of 

values: in this case, a restricted range of SOC values. BD shows an inverse relationship 

with SOC, and organic horizons with high SOC values have very low BD values. For the 

BC data, organic soil had a mean BD of 0.38 g/cm3 and SOC of 39.7%, while the mineral 

soil had a mean BD of 1.33 g/cm3 and SOC of 2.19%. For the Ontario data, organic soils 

had a mean BD of 0.24 g/cm3 and SOC of 34.1%, while mineral soils had a mean BD of 

1.17 g/cm3 and SOC of 2.29%. Some previous studies which tested or developed PTFs 

have focused on doing so for specific soil conditions, such as Nanko et al. (2014), which 

examined volcanic influenced forest soils in Japan; or have partitioned datasets based 

on attributes such as depth (Kätterer et al., 2006), parent materials (Heinonen, 1977), 

cultivation status (Hollis et al., 2012), mineral or organic (Hossain et al., 2015), taxonomy 

(Saini, 1966; Alexander, 1989), the presence of a particle size in certain quantities, such 
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as clay (Beutler et al., 2017) or sand (Bernoux et al., 1998); or other environmental 

variables. Partitioning a dataset allows a PTF to be developed for a certain condition, 

which has the potential result of increasing the accuracy of the PTF. 

Soil Datasets 

Attributes, such as bulk density, SOC, depth (calculated as midpoint of the 

horizon), pH (H2O), coarse fragment content, silt, sand, and clay were included in the 

Ontario (All Variables) and the BC (All Variables) datasets. The BC (Carbon and Bulk 

Density) dataset only contained SOC and bulk density as attributes, to maximise the 

number of points that could be included in the dataset. This dataset included the 

horizons contained in the BC (All Variables) dataset, plus an additional 803 horizons; 

these additional horizons had observations of BD and SOC, but did not have the full set 

of attributes required for inclusion in the BC (All Variables) dataset. Summary statistics 

for all datasets are available in Table 2.1. No bulk density points that were < 0.3 g/cm3 

were included; it was assumed that it would be unlikely for any mineral soil to have a 

bulk density value that low. In other studies, (Périé and Ouimet, 2008; Tremblay et al., 

2002; Federer et al., 1993), for context, the bulk density of pure OM was estimated to be 

0.11 – 0.12 g/cm3. Honeysett and Ratkowsky (1989) estimated pure OM to have a bulk 

density of 0.163 g/cm3, and Adams (1973) found a range of 0.207 to 0.291 g/cm3, 

depending on moisture state. As a mineral soil contains < 17% organic carbon (OC), 

rather than 58% OC in pure OM (using the traditional van Bemmelen conversion factor), 

the minimum bulk density value for a mineral soil should therefore be higher. Abdelbaki 

(2018) removed any sample whose bulk density was < 0.30 g/cm3; and other studies, 

which based their PTFs on mineral soils (rather than on depth interval or other 

specification), had minimum bulk density values in a similar range: 0.35 g/cm3 (Barros 

and Fearnside, 2015), 0.35 g/cm3 (Grigal et al., 1989), and 0.31 g/cm3 (Hollis et al., 

2012). Further, the Canadian System of Soil Classification (Soil Classification Working 

Group, 1998), provides ranges for BD values for fibric, mesic, and humic materials found 

in the O horizons (i.e., Of, Om, and Oh). These have been found to be very low, with the 

BD of fibric material < 0.075 g/cm3. The BC datasets did not contain any bulk density 

values < 0.3 g/cm3, so no points were removed from the datasets on that basis. The 

Ontario (All Variables) dataset did contain 16 horizons with bulk density values < 0.3 

g/cm3, which were removed. 
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British Columbia Case Study 

The complete BC dataset contains points that occur at various locations in the 

province of BC. The province extends from 48°17’ 52.9” N in the south to 60°00’00” N, 

the Yukon border; and from 114°04’00” W at the Alberta border to 139°03’00” W. 

Multiple north-south mountain ranges cross the province, and elevation ranges from 0 m 

above sea level to the 4,663 m summit of Mount Fairweather on the Alaskan border. The 

province has an area of 944,735 km2, and encompasses a wide range of topography, 

geology, climate, and vegetation; as a result of this diversity, the soils of BC are also 

diverse, and all soil orders defined by the Canadian System of Soil Classification 

(CSSC) are found in BC.  

All data were acquired from the BC Soil Information System (BCSIS) datasets. 

For BC (All Variables), there were 396 horizons, from 129 sites, for a density of 7,324 

km2 per site; BC (Carbon and Bulk Density) had 1,199 horizons, from 441 sites, for a 

density of 2,142 km2 per site. Conversion factors were applied to several variables, to 

maximise the number of available points. pH in CaCl2 values were correlated to pH in 

H2O using a linear regression with an R2 of 0.73. The pH (CaCl2) values were then 

converted using the equation: 

pH(H2O) = 0.9757*pH(CaCl2) + 0.7143     (1) 

The use of the conversion factor does introduce error into the measurement; this 

error could then be propagated through the bulk density estimations made using 

converted values. However, only a small percentage of pH values were calculated using 

this conversion factor, and the presence of these values allowed the inclusion of more 

horizons in the dataset. Bulk density values were acquired from BCSIS with no 

conversion between analytical methods, which included the following four methods: 

volumeter, saran (also known as the clod method), excavation, and core (Blake, 1965). 

Three lab methods were used to analyse carbon: LECO (Wang and Anderson, 1998), 

Walkley-Black (Walkley and Black, 1934), and loss on ignition (LOI; Ball, 1964; 

Skjemstad and Baldock, 2007). Carbon was analysed using LOI for only 12 horizons, 

and these were not included because the conversion factor was developed on a small 

sample size, which would introduce additional error. Only LECO and Walkley-Black 

values were used, with the determined OM values already converted and presented as 

OC in the dataset, so no additional conversion was necessary. Sand, silt, and clay were 
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measured using either the hydrometer method or the pipette method (Kroetsch and 

Wang, 2007) and expressed as percentages, so no conversion was necessary. Coarse 

fragment content was defined as the gravel content, material that that is between 2.0 

and 80 mm in diameter (Kroetsch and Wang, 2007). It was expressed as the unit mass 

of coarse fragments per unit mass of bulk soil. Depth (cm) was calculated as the 

midpoint between the top and bottom depth values for each horizon or sample depth 

interval. Sample site locations for the BC (All Variables) dataset and the BC (Carbon and 

Bulk Density) dataset are shown in Figure 1. 

Ottawa Case Study  

The Ontario dataset covers a 2,824 km2 region near Ottawa, Ontario, extending 

between 44°57’43” N to 45°32’02” N, and from 75°14’45” W to 76°21’20” W, in the 

Mixedwood Plains Ecozone of southern Ontario (Figure 2.1). Agricultural uses dominate, 

with 57% of the land cover classified as cropland, pasture, and abandoned fields. 

Forests are predominantly deciduous, although coniferous and mixed forest are 

represented in the 30.1% of forested area (Crins et al., 2009). Elevation differences in 

the study area are modest, ranging from 55 to 171 m above sea level. Most soils in the 

area are classified as Orthic Humic Gleysols or Orthic Melanic Brunisols (Soil 

Classification Working Group, 1998). The density of points was much higher than for the 

BC dataset. The Ontario dataset contains 3,242 horizons from 2,110 sites, for a density 

of 1.3 km2 per site.  

There were no analytical conversions necessary for the Ontario dataset. Both pH 

(H2O) and pH (CaCl2) were available for all horizons; however, pH (H2O) was used as 

this was also the method used in the BC datasets and because the PTFs being tested, 

which included pH as an input variable, used this method as well. Both coarse fragment 

content (field estimated) and gravel content (determined in laboratory as part of particle 

size analysis) values were available. If a horizon had both attributes available, the 

highest of the two was chosen. All SOC values were determined using the LECO 

method and hence, an analytical conversion factor was not needed. Samples with 

extremely low values of SOC were removed (<0.01%), and typically associated with C 

horizons, or parent material. Sample depth (cm) was represented as the midpoint 

between the top and bottom of the sampled horizons. 
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2.3.2. Selecting PTFs and Classification into Model Forms 

Previous studies have evaluated and compared existing literature PTFs; studies 

relevant to this research are presented in Table 2.2. For this study, PTFs for bulk density 

whose input attributes were contained in the datasets used in the current study were 

selected from the literature. The input attributes included SOC, coarse fragments, pH, 

sand, silt, clay, and depth. Other studies have incorporated other variables such as 

electrical conductivity and CaCO3 concentration (Alaboz, 2020), or environmental 

variables (Akpa, 2018); for example, Schillaci et al. (2021) incorporated bioclimatic and 

topographic covariates and found that their inclusion improved model accuracy. 

However, these variables were not available for the datasets used as case studies. 

Further, environmental variables were not used because this study was focused on 

recalibrating PTFs using only the intrinsic properties of soil and whereby the predicted 

bulk density data could subsequently be used to generate digital soil maps using soil-

environmental variables in future studies. In total, 73 PTFs from the literature were 

selected and are presented in Table 2.3; each PTF was assigned a unique identifier 

number for the purposes of this study. The original form of each PTF was included, as 

well as the soil type or region for which the PTF was developed; other information 

included was the units used in the original function, the original results of evaluation 

metrics used in the study, and the sample size used to develop the PTF. 

Model Types 

Recurring model forms were identified within the 73 PTFs selected for this study, 

and the PTFs were divided into groups based on their model form (Table 2.4). Some 

model forms have been used in multiple PTFs with varying coefficients, while others 

were unique. Previous studies, such as De Vos et al. (2005), Nanko et al. (2014) and 

Chen et al. (2017) have identified and categorized model forms. For example, De Vos et 

al. (2005) classified the PTFs tested in their study into five model groups: those with log-

transformed variables; square root-transformed variables; the reciprocal of bulk density; 

log-transformed variables and second order polynomials; and multiple predictor 

variables. Similarly, Nanko et al. (2014) classified the PTFs into six model types: the 

Stewart/Adams physical model (Adams, 1973) that used the bulk densities of the pure 

organic and mineral fractions; those with radical root variables; logarithmic-transformed 

variables; exponential variables; decimal variables; and polynomial variables. Chen et al. 
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(2017) identified four model types: the Adams equation (Adams, 1973); “logarithmic or 

exponential functions of SOM”; “radical functions of SOM”; and “functions of multiple 

variables associated with soil physiochemical properties”. In this study, we categorized 

PTFs based on the form of the model and the input variables used. Group A contains 

linear functions with OC or OM as an input. Group B contains radical root-transformed 

values of OC. Group C contains reciprocal equations. Group D is based on Curtis and 

Post’s (1964) equation with multiple natural log terms. Group E uses the natural 

exponent with an intercept term; the natural exponent multiplied by a term; or a natural 

exponent with a root as well. Group F contains functions with only OC or OM as input 

variables, but which do not fall into any of the above categories. Group G functions have 

OC or OM and any of the other attributes (sand, silt, clay, depth, pH, coarse fragment) 

as input variables; and Group H functions contain any input variables except OC or OM. 

Lastly, functions in Group X were not successfully recalibrated with NLS.  

One model type that has been used multiple times but was not included as it was 

based on inputs of the bulk densities of pure OM and pure mineral soil (Adams, 1973; 

Federer, 1993; Nanko, 2014; Prévost, 2004; and Tranter, 2007). It has been referred to 

as a “physical equation” (Nanko, 2014), and the “organic density approach” (Prévost, 

2004). The equation takes the form: 

𝐵𝐷 =  
100

𝑂𝑀

𝐵𝐷𝑂
+

100−𝑂𝑀

𝐵𝐷𝑀

      (2) 

where OM is the percent organic matter; BDO is the bulk density of pure organic matter; 

and BDM is the bulk density of pure mineral matter. The bulk densities it requires are 

measurements which must be experimentally determined for the specific dataset for 

which the PTF is to be used. As this study utilized legacy data, it was not possible to 

determine pure bulk densities for OM and mineral soil. Furthermore, as these PTFs do 

not contain coefficients, which can be recalibrated through NLS, they were not included 

in the study. 

2.3.3. Nonlinear Least Squares 

NLS is an optimisation method to estimate new model coefficients. The Gauss-

Newton method of solving NLS problems is an iterative method that locates the 
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minimizer of the function which is a weighted sum of squared terms (Teunissen, 1990). 

The iterative technique uses an initial estimate of a solution, and then generates a 

further sequence of estimates based on predetermined rules, with the goal of converging 

on the solution (Teunissen, 1990). A model form is specified, along with starting values 

for each coefficient, the starting values used in this study being the original literature 

coefficients for the PTF. The stats package within the R statistical software (R Core 

Team, 2022) includes an NLS function, which uses the Gauss-Newton algorithm by 

default. This function iteratively improves estimations for the coefficients (Bates and 

Watts, 1988). Coefficient values generated in each of the 200 loops were then averaged, 

and these averaged values were used as the final coefficients for the model. For the 

PTFs that used OM as an input variable, the van Bemmelen conversion factor of 1.724 

was used to convert the OC values in the dataset to OM so that the output coefficients 

and evaluation metrics could be compared to the original literature coefficients. For this 

reason, PTFs equation forms that used OM and OC as input variables were listed with 

coefficients for both. Although the original coefficients used in the literature PTFs varied 

in the number of decimal places used, to be consistent, three decimal places were 

chosen for the NLS generated coefficients. 

Assessment of Recalibrated PTFs 

All PTFs were cross-validated using repeated nested k-fold cross-validation, 

whereby the validation statistics were based on the outer loop of the nested cross-

validation (see Figure 2.2 for a schematic of the process). While using a separate 

dataset to validate the results is ideal, dividing the dataset into training/calibration and 

validation is the more typical approach as acquiring soil data is expensive (McBratney et 

al., 2011). To minimise autocorrelation between soil measurements made from the same 

soil profile, model validation was carried out using leave-profile-out cross-validation to 

ensure that the accuracy metrics were not compromised. 

To assess the accuracy of the PTF estimations, two metrics were included: root 

mean square error (RMSE), and the concordance correlation coefficient (CCC). RMSE is 

a measurement of fit of a predictive model to a dataset. It calculates the average 

distance between the predicted values and the observed values, with a lower RMSE 

indicating a better fit to the data. It is calculated as follows: 
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𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖− 𝑥̂𝑖)2𝑛

𝑖=1

𝑛
     (3) 

where xi is the observed value, and 𝑥i is the predicted value, of the ith 

observation, with n being the number of observations. The CCC is a measurement of the 

agreement between two variables, the predicted values and the observed values. A 

higher CCC value indicates greater agreement between the variables. It is calculated as 

follows:  

𝐶𝐶𝐶 =  
2𝜌𝜎𝑥 𝜎𝑦

𝜎𝑥 
2 + 𝜎𝑦

2 +( 𝜇𝑥− 𝜇𝑦 )2
       (4) 

where μx and μy are the means of the observed and predicted values; σx and σy are the 

corresponding variances. 

2.3.4. Quantile Regression 

To generate uncertainty estimates for PTFs we used QR, which is an alternative 

to the least squares estimator for linear models (Koenker and Bassett, 1978). An 

advantage of QR is that it does not assume a parametric distribution of the data and 

hence, it can be used with data that has a heterogeneous distribution (Cade and Noon, 

2003); furthermore, it is also robust to outliers (Lopez Lopez et al., 2014). Another 

advantage of the QR method is that it considers every source of uncertainty, rather than 

only one source as most other methods do (Rahmati et al., 2019). 

When using QR to estimate uncertainty, a linear relationship between the 

observed and predicted value of a target variable is assumed. Linear regression models 

are developed for each specified quantile, with the response variable being the selected 

quantile of the variable’s conditional distribution. A framework for applying QR follows 

that of López López et al. (2014), Dogulu et al. (2015), Rahmati et al. (2019) and Kasraei 

et al. (2021). A linear relationship is assumed between observed values (y) and 

predicted values (ŷ) for each quantile (τ):  

𝑦 = 𝑎𝜏𝑦̂ +  𝑏𝜏        (5) 

where aτ is the slope and bτ is the intercept of the linear regression. To determine aτ and 

bτ, the sum of residuals is minimized in the following loss function: 
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𝑚𝑖𝑛 ∑ 𝜌𝜏
𝐽
𝑗=1 (𝑦𝑗 − (𝑎𝜏𝑦̂𝑗 +  𝑏𝜏))     (6) 

where y
j
 and ŷ

j
 are the jth paired samples, J is the total number of samples, and ρ

τ
 is the 

QR function for the quantile τ: 

 𝜌𝜏 (𝜖𝑗) =  {
(𝜏 − 1)𝜖𝑗 ,   𝜖𝑗 < 0  

𝜏𝜖𝑗 ,             𝜖𝑗 > 0
    (7) 

where ϵj are the model residuals, calculated as the difference between the observed and 

predicted values from Eq (1), for the τth quantile. For the desired quantile τ, the QR 

function is applied to the residual, ϵj in Eq (3). 

Readers should note that a full description of QR and its implementation within R 

is provided in Kasraei et al. (2021), and includes a methodological framework for 

integrating QR into predictive modelling (see Section 2: Theoretical Background). In 

Kasraei et al. (2021), the framework was used for generating uncertainty estimates for 

digital soil maps using machine learning; however, by replacing the machine learner with 

either a PTF from the literature or a refitted PTF using NLS, uncertainty estimates may 

be generated for those PTFs. Here, it is important to note that the framework consists of 

an ‘inner’ and ‘outer’ loop to ensure that a matrix of the observed and predicted values 

can be generated for QR within the ‘inner’ loop; and that the quality of the uncertainty 

estimates can be assessed using a fully independent dataset in the ‘outer’ loop – 

effectively forming a nested cross-validation procedure. When generating the uncertainty 

estimates for the literature-based PTFs, the ‘inner’ loop does not require a model to be 

fitted to the calibration dataset as model coefficients have already been determined a 

priori from the literature. Within the repeated nested cross-validation procedure, the 

‘inner’ loop uses 10-fold cross-validation and the ‘outer’ loop is repeated 20 times. The 

repeats were used to ensure stability in the accuracy metrics. Coefficient values are 

generated for each iteration, and then are averaged to calculate the new coefficients for 

the respective PTF equations. Accuracy metrics, such as RMSE and CCC, are also 

calculated from the outer loop. 
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2.3.5. Uncertainty Assessment 

Quantile regression can be used to calculate mean prediction interval (MPI) and 

PICP, which can be displayed graphically (see Appendix B). A prediction interval is the 

range of values which future predicted values are expected to fall within, with a 

prescribed probability, and it is bounded by upper and lower limits (Shrestha and 

Solomatine, 2006). Prediction intervals are defined for selected confidence levels, with 

PICP then calculated for each confidence level as follows (Kasraei et al., 2021):  

PICP  =  
1

𝑛
 ∑ 𝐶,𝑛

𝑡=1  𝐶 = {
1, 𝑃𝐿𝑡

𝑙𝑜𝑤𝑒𝑟  ≤  𝑦𝑡 ≤  𝑃𝐿𝑡
𝑢𝑝𝑝𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (8) 

where yt is the observed value, PLt
upper is the upper limit and PLt

lower is the lower limit. To 

evaluate the PICP results, it is plotted against the corresponding confidence level. A 1:1 

relationship between the values is the desired outcome meaning that the predicted 

values are within the prediction interval (Malone et al., 2011). If the PICP is less than or 

greater than the confidence level, the uncertainty has been under- or over-estimated, 

respectively. 

To calculate the MPI, the widths of the prediction intervals are averaged 

(Rahmati et al., 2019). Narrower MPI widths indicate lower uncertainty, and wider MPI 

widths indicate higher uncertainty (Kasraei, 2021; Rahmati, 2019). 

MPI  =  
1

𝑛
 ∑ (𝑃𝐿𝜏

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡  −  𝑃𝐿𝜏
𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡)𝑛

𝜏=1   (9) 

where PLτ
upper limit is the upper limit and PLτ

lower limit is the lower limit of the PI.  

2.4. Results & Discussion 

2.4.1. Accuracy Assessment 

In nearly all cases, NLS was able to generate coefficients that improved the 

performance of the PTF. For example, with the Ontario (All Variables) dataset, the 

average RMSE after recalibration was reduced to 0.19 g/cm3, from an initial range of 

0.19 to 12.48 g/cm3; the average CCC increased to 0.63, from an initial range of -0.09 to 

0.68; and the average R2 value increased to 0.43 from a range of 0.001 to 0.51. 
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Recalibration with NLS was most successful with the Ontario dataset. This was likely 

due to it being the largest dataset, with 3224 observations, and a far higher sampling 

density. Table 2.5 shows the new coefficients generated for each model form, for each 

dataset. Table 2.6 contains the performance results, measured in RMSE and CCC, of 

the original PTFs compared to the PTFs recalibrated with NLS coefficients for Ontario 

(All Variables); Table 2.7 contains the same comparison but for BC (All Variables); and 

Table 2.8 contains the results for BC (Carbon and Bulk Density). Figure 2.3 shows an 

example PTF from Group D, with the observed vs predicted values both before and after 

recalibration plotted. Figures 2.12 to 2.15 are plots of example PTFs for each dataset, 

showing Groups A, B, C and E. 

It is important to note that of the 73 publications that were reviewed, only 13 

publications explicitly stated that an external test dataset was used to generate accuracy 

metrics while the remaining 60 publications either reported only model fit statistics or 

were not clear in what their accuracy metrics were representing (Table 2.3). Given that 

these PTFs are intended to predict bulk density, there is the need to ensure that external 

test data is used to generate meaningful accuracy metrics and that users of bulk density 

PTFs should be vigilant when interpreting those metrics when selecting an appropriate 

PTF. 

Preferred model type by dataset 

For the Ontario (All Variables) dataset, the model types with the highest accuracy 

were Groups B, C and E. These were the radical root functions with OC/OM, the 

reciprocal functions with OC/OM, and functions with natural exponent terms using only 

OC/OM as an input variable. Recalibration resulted in CCC values of 0.67 and RMSE 

values of 0.19 g/cm3 for Group B functions. For Group C PTFs, initial starting CCC 

values ranged from 0.33 to 0.58, and initial RMSE values from 0.34 to 0.25 g/cm3. After 

recalibration, all functions had a resulting CCC of 0.67 and RMSE of 0.19 g/cm3. Group 

E PTFs had a greater diversity of model forms, and variously included an intercept term, 

a root transformation of the OC/OM input, or additional coefficients. Testing of the PTFs 

with their literature coefficients showed a range of results; CCC values were as low as 

0.02, and RMSE values as high as 2.45 g/cm3. With recalibration, all functions improved: 

the resulting CCC was either 0.66 or 0.67, and RMSE values were all 0.19 g/cm3. 
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PTFs from Groups C, D and E produced estimates with the greatest accuracy 

after recalibration on the BC (All Variables) dataset. Results for Group C functions had 

average CCC values of 0.57, and RMSE of 0.29 g/cm3 after applying NLS. Group D 

models used natural log transformations of OC/OM, and performed poorly when tested 

with their original coefficients. This model form is a function which showed large 

fluctuations in its form when the OC/OM values approached zero; and therefore, the 

portion of the function used to fit a curve to the data behaved drastically differently when 

the input data range was altered. Group D functions improved substantially with 

recalibration, such as PTF-22 (Federer 1983), whose CCC improved from 0.02 to 0.57 

and RMSE improved from 1.28 to 0.28 g/cm3. For Group E functions, some PTFs 

showed large improvements, such as PTF-37 where an initial CCC of 0.12 increased to 

0.57, and the RMSE decreased from 1.10 to 0.29 g/cm3; or PTF-63, where an initial 

CCC of 0.03 increased to 0.52, and RMSE decreased from 0.61 to 0.25 g/cm3. 

For the BC (Carbon and Bulk Density) dataset, it was Groups D and E whose 

estimates had the highest accuracy. Large improvements in accuracy were shown with 

recalibration with Group D functions; for example, the RMSE of PTF-22 (Federer 1983) 

decreased from 1.29 to 0.30 g/cm3, and its CCC increased from 0.03 to 0.54. The 

recalibrated PTFs from Group E had CCC values ranging from 0.44 – 0.54 and RMSE 

values of 0.30 – 0.33 g/cm3. 

 PTFs from Group A (linear functions) also showed good recalibration results 

across datasets, although their accuracy was less than the previously mentioned model 

types. For example, all were recalibrated to an average CCC of 0.62 and RMSE of 0.20 

g/cm3 on the Ontario (All Variables) dataset. Certain PTFs that were not part of the 

previously discussed model groups but nonetheless showed high accuracy results 

across datasets include PTF-68 (Sevastas et al., 2018), PTF-14 (Beutler et al., 2017), 

PTF-31 and PTF-33 (Hollis et al., 2012), and PTF-50 (Kaur et al., 2002). For an 

overview of how the RMSE and CCC of each PTF differed before and after recalibration, 

see Figures 2.6 to 2.11. For each dataset, a graph of RMSE values and CCC values is 

available with every PTF included. 

Comparison to results from other studies 

Other studies have also tested a variety of PTFs and reported their results; Table 

2.9 shows a selection of studies which have tested some of the same PTFs included in 
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this study and reported their RMSE values. Many original studies only reported the R2 

value, so the RMSE results from other datasets are especially useful for comparison. 

PTFs which have been tested by many other studies but which only report R2 values in 

the original study include PTF-5, PTF-6, PTF-22, PTF-39, PTF-19, PTF-55, and PTF-72.  

PTF-50 (Kaur et al., 2002) has been tested multiple times by other studies; 

RMSE values obtained range from 0.26 to 0.56 g/cm3. This compares to 0.15 g/cm3 

obtained in the original study; when recalibrated, produced 0.19 g/cm3 on Ontario (All 

Variables) and 0.32 on BC (All Variables). PTF-31 and PTF-33 (both Hollis et al., 2012) 

also had low RMSE values reported by the original study, at 0.13 and 0.15 g/cm3 

respectively. After recalibration, these PTFs both showed an accuracy of 0.19 g/cm3 on 

the Ontario (All Variables) dataset and 0.28 g/cm3 on the BC (All Variables) dataset. 

PTF-14 (Beutler et al., 2017) had an RMSE of 0.22 g/cm3 when developed for soils in 

Brazil; recalibration on two Canadian datasets generated an RMSE range of 0.19 g/cm3 

on the Ontario (All Variables) to 0.29 g/cm3 on the BC (All Variables) dataset. PTF-68 

(Sevastas et al., 2018) had an original study RMSE of 0.12 g/cm3; recalibrated on 

Ontario (All Variables) it was 0.19 g/cm3, on BC (All Variables) 0.29 g/cm3, and on BC 

(Carbon and Bulk Density) 0.32 g/cm3. Of any PTF tested in this study, PTF-60 (Qiao et 

al., 2019) had the lowest RMSE in its original study, of 0.079 g/cm3. When recalibrated, 

the accuracy on Ontario (All Variables) was 0.24 g/cm3, and 0.33 g/cm3 on the BC (All 

Variables) dataset. 

2.4.2. Uncertainty Assessment 

Uncertainty estimates for PTFs were generated using a QR approach. Graphs of 

the PICP with respect to the CL were also generated, and a representative PTF from 

Group D is shown in Figure 2.4; representatives from Groups A, B, C, and E are plotted 

for each dataset in Figures 2.17 to 2.20. The PICP plots suggest that the greatest factor 

influencing PICP is the size of the dataset. Within each dataset, PICP plots were nearly 

indistinguishable for the various PTFs; however, for a given function, its PICP plot varied 

depending on the dataset used. The example given in Figure 2.4 (PTF-19, Curtis & Post 

1964), was typical of the variation between datasets for the same PTF. When the 

function was recalibrated on the Ontario dataset (with 3,243 horizons), the resulting 

PICP plot showed estimates tightly grouped on the 1:1 line, indicating low uncertainty. 

When the BC (All Variables) dataset was used, estimates had a greater spread both 
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above and below the 1:1 line, indicating greater uncertainty; this also corresponds to the 

BC (All Variables) dataset being the smallest, with only 396 horizons. The BC (C and 

BD) dataset is larger, with 1,199 horizons, and the PICP plots reflect lower uncertainty 

for PTFs tested on that dataset. These results were consistent for all PTFs tested, with 

the lowest uncertainty estimates for those tested on the Ontario (All Variables) dataset; 

increased uncertainty for functions tested on the BC (Carbon and Bulk Density) dataset, 

and the greatest uncertainty for functions tested on the smallest dataset, BC (All 

Variables).  

MPI values were generated, and a comparison of model forms on different 

datasets was produced, with the MPI for each confidence level displayed in the graphs. 

Figure 2.5 compares recalibrated functions from Groups A to D for all three datasets; 

Figure 2.21 shows recalibrated PTFs from Group E; Model forms in Group F are 

displayed in Figure 2.22. Group G results are shown in Figure 2.23. The results for the 

final group of recalibrated model forms, Group H, is shown in Figure 2.24.  

While the datasets show similar patterns of which model forms had greater or 

lesser uncertainty associated with their predictions, when the absolute values of MPI are 

compared across datasets, the Ontario (All Variables) dataset showed the lowest MPI 

values, indicating the lowest uncertainty. For example, when Groups A to D are 

considered, the highest MPI value for the 99% CL is 1.13 on the Ontario (All Variables) 

dataset for the Group A model, but 1.83 on the BC (C and BD) dataset. These findings 

correspond to the PICP results, which showed the PICP values for Ontario (All 

Variables) fell in a narrower range than for BC (All Variables), which had the largest 

range of values. This indicates that lower uncertainty is associated with a larger dataset 

such as the Ontario (All Variables); the greatest uncertainty occurs when the PTFs are 

recalibrated on the smallest dataset, the BC (All Variables). 

2.4.3. Challenges with NLS 

Issues with using NLS to generate new coefficients included sensitivity to starting 

values; functions with many terms or transformations to terms; certain functions whose 

behaviour changes drastically when input values are different than the literature values 

(or approach zero); and dataset size.  
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For this study, the literature coefficients were used as the starting values when 

using NLS. As NLS is sensitive to starting values, when the literature coefficient was too 

far from the solution value for the dataset, NLS would terminate before convergence. For 

example, PTF-39 produced an error, and the algorithm terminates before coefficients 

can be generated if the a-coefficient is negative, as it is in the literature; by changing the 

sign of the a-coefficient to positive, the function can then be recalibrated. The a- 

coefficient of PTF-39 is quite different from the a-coefficient of other PTFs in the same 

group (Group D), which led to termination of the algorithm when this PTF was tested on 

all datasets. There are multiple approaches to generate starting values if suitable initial 

coefficients cannot be determined or if literature values cause recalibration to fail; these 

include knowledgeable guesses, trying out multiple values (brute force), plotting the data 

and fitting a rough curve, or utilizing one of the available self-start functions (Ritz and 

Streibig, 2008). 

Functions with many terms or transformations to terms, such as log or exponent 

transformations, more frequently produce errors when NLS is attempted; this was the 

case with PTF-57 (Pereira et al., 2016). The failure to recalibrate for PTF-57 was likely 

due to the large number of coefficients in the equation, as well as the nested sin 

transformations of the variables.  A solution which corrects most failures to recalibrate is 

to transform the variables before using NLS. This allows inspection of the transformed 

variables before use; for example, log transformed variables which have an initial value 

of zero will produce a null value that causes recalibration to fail. These values can then 

be identified and changed to zero before using the NLS algorithm. Further, some PTFs 

needed to be simplified, such as with the Ruehlmann & Körschens (PTFs-61, 62, 63), as 

recalibration did not work when all the terms were assigned as coefficients. Nguyen 

(2020) also cites a model that is too complex as a reason that the algorithm could fail to 

reach convergence. 

Functions which have drastic behaviour differences such as those in Group D 

have varying recalibration results; Group D functions had multiple natural log terms, and 

only OC or OM as input variables. When this function is graphed using original literature 

coefficients, it is notable that the behaviour of the function shows extreme changes in the 

bulk density values it produces when OC/OM values approach zero. This can make it an 

unsuitable function to use for low OC/OM soils, and makes this function especially 

sensitive to starting values. For example, with PTF-30 this error seemed to be 
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associated with the addition of the natural log transformed depth term; functions which 

were identical except for that term (i.e., PTF-24, PTF-25, PTF-26, PTF-27, PTF-36, PTF-

37, PTF-40) had been successfully recalibrated. 

Lastly, dataset size affects the ability of NLS to reach convergence. In addition to 

the three datasets presented in this study, multiple smaller datasets were generated and 

used to test PTFs. These datasets were based on carbon content or depth interval, with 

the largest being 116 horizons. However, NLS frequently terminated and generated error 

messages when these datasets were used; when convergence was successful and new 

coefficients generated, the accuracy was low and uncertainty high. It is therefore 

recommended that the use of small datasets be avoided. 

2.4.4. Selection of PTFs for Recalibration 

When approaching the task of selecting a PTF for use in predicting missing data, 

the first step is to consider which other variables are available. Choosing a smaller 

number of variables which results in a larger dataset has shown to be an advantage. In 

this study, recalibrated PTFs showed the best performance and the lowest uncertainty 

when recalibrated on the largest dataset, which was the Ontario (All Variable) dataset. 

Similarity of the data will also affect the performance and uncertainty estimations; the 

Ontario data was from a much smaller area, with predominantly agricultural soils, while 

the BC datasets were drawn from an area more than three hundred times greater in size 

and from a wide variety of ecological zones. 

Choosing which variables to include also may depend on the region for which the 

PTF is being developed. In this study, OC and OM were shown to be the most important 

variables to include, which is consistent with other studies which developed PTFs for 

similar regions. For example, PTFs-36, 37 and 38 (Hossain et al., 2015) were developed 

for Arctic and sub-Arctic soils in Canada; PTFs-7, 8, 9, and 10 (Alexander, 1989) were 

developed for soils in Alaska. All these PTFs only contained OC as an input variable and 

showed high performance both before and after recalibration. OM has shown to be 

influential on bulk density since early PTFs (Saini, 1966), and for soils found in very 

different environments, such as the tropical rainforest (Gharahi Ghehi et al., 2012) The 

many PTFs that use only OC or OM attest to the strong inverse relationship between 

OC/OM and bulk density. Further, Minasny and Hartemink (2011) recommended that the 
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PTF with the fewest parameters should be chosen, and functions with simple model 

forms and only one input variable, such as those in groups A, B, C, D, and E, performed 

well across datasets in this study. Other variables may be important for different soil 

forming conditions, for example, texture and pH variables were included in PTFs 

developed for Brazil (Barros et al., 2015; Bernoux et al., 1998; Beutler et al., 2017; 

Pereira et al., 2016; Tomasella and Hodnett, 1998). While these PTFs performed well in 

their region of development, inclusion of texture and pH as input variables did not 

improve their performance in this study, even after recalibration.  

Using the uncertainty metrics of MPI and PICP graphs can be useful when 

choosing between model forms. In this study, the coefficients were recalibrated for every 

PTF, and the MPI results of model forms in Groups A to D are shown in Figure 2.5. From 

this information, PTFs from Group B would have the lowest uncertainty when 

recalibrated on the Ontario dataset, while PTFs from Group D have the lowest 

uncertainty when recalibrated on both BC datasets. Finally, accuracy metrics such as 

RMSE and CCC can be used to identify suitable PTFs; PTFs from Groups B, C, D and E 

showed strong performance across datasets. Linear model forms (Group A) performed 

slightly less well, and model forms which included other soil attributes such as texture, 

pH or coarse fragment showed results that varied significantly. Overall, PTFs which 

contained only OM/OC as an input, and which showed a non-linear relationship between 

OC/OM and bulk density, performed the best and had the lowest uncertainty of the PTFs 

which were tested. 

2.5. Conclusion 

Using bulk density as the example target variable, 73 PTFs were recalibrated 

using an NLS approach, on multiple case study datasets. It was demonstrated that NLS, 

with few exceptions, improves the accuracy of the PTF, potentially significantly. The 

performance of the recalibrated functions depended on multiple factors – the model 

form; the type of input variable; and the dataset which was used. PTFs which have fewer 

input variables, and minimal transformations of those variables (i.e., log transformations, 

multiple exponents, or trigonometric functions) are more easily recalibrated with NLS. 

The best performing recalibrated PTFs were those with only OC or OM as input 

variables; and which were recalibrated on the largest dataset. When recalibrating PTFs 

in the future, these factors must be taken into account when choosing a PTF model form 
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for recalibration. The most suitable model for use would be one with few terms, using 

starting values that are carefully chosen. 

Uncertainty estimates generated through quantile regression demonstrate that 

the uncertainty of a PTF is dataset dependent; PTFs recalibrated on the largest dataset 

all had low uncertainty, while those recalibrated on the smallest dataset had the highest 

uncertainty. This is a potential limitation to the use of NLS; it is not recommended to 

recalibrate PTFs on small datasets, as this will reduce the accuracy and increase the 

uncertainty of the resulting PTF. 

Other studies have shown the usefulness of including environmental covariates 

to PTFs, such as climatic and topographic variables (Schillaci et al., 2021), and it could 

be beneficial for future studies to explore the inclusion of environmental variables when 

developing PTFs. However, when recalibrating existing PTFs, the choice of PTF may be 

limited by the variables available in the case study dataset, as was the case in this 

study; the legacy datasets used did not include environmental variables.  

The framework presented here will allow users to select a PTF based on the 

input variables that are available, after consideration of the region or soil conditions for 

which the PTF was developed. With a lack of regional PTFs available for many parts of 

the world, especially Canada, recalibration of existing PTFs through NLS provides an 

accessible framework to generate a PTF suitable for the dataset for which it is being 

used. The coupling of recalibration with quantile regression to produce uncertainty 

estimates in the same process can then allow the user to select a PTF with minimal 

uncertainty, and to present the uncertainty estimates along with the accuracy metrics 

and final recalibrated PTF. 
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2.8. Tables and Figures 

Table 2.1. Summary statistics of all datasets: Ontario (All Variables), BC (All 
Variables), BC (Carbon and Bulk Density) 

Dataset Attribute Min 1st Quartile Median Mean 3rd Quartile Max 

Ontario Bulk Density (g/cm3) 0.30 0.99 1.18 1.17 1.35 1.89 

(All Variables) Organic Carbon (%) 0.03 0.84 1.89 2.29 2.87 16.90 

(n = 3242) Depth (Midpoint, cm) 2.00 11.00 14.00 21.45 33.00 112.50 

 pH (H2O) 3.82 6.05 6.86 6.73 7.54 8.34 

 Coarse Fragment (%) 0.00 0.00 1.00 4.28 5.00 65.00 

 Silt (%) 0.00 24.90 35.80 34.96 45.30 86.40 

 Sand (%) 0.90 20.95 41.30 42.24 60.90 99.20 

 Clay (%) 0.0 10.90 18.60 22.80 31.20 83.20 

BC Bulk Density (g/cm3) 0.42 1.07 1.32 1.33 1.56 2.66 

(All Variables) Organic Carbon (%) 0.05 0.37 1.01 1.92 2.22 17.06 

(n = 396) Depth (Midpoint, cm) 1.10 10.00 28.50 40.86 71.50 142.00 

 pH (H2O) 4.40 5.40 5.80 5.94 6.30 8.90 

 Coarse Fragment (%) 0.00 1.04 15.00 27.58 40.00 658.20 

 Silt (%) 0.70 21.56 37.00 37.87 55.25 92.76 

 Sand (%) 2.00 26.18 43.70 48.54 71.00 97.57 

 Clay (%) 0.72 6.18 12.08 13.77 19.00 72.00 

BC Bulk Density (g/cm3) 0.35 1.08 1.29 1.33 1.55 2.66 

(Carbon and 
Bulk Density) 
(n = 1199) 

Organic Carbon (%) 0.00 0.46 1.18 2.19 2.57 17.06 
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Table 2.2. List of studies which have compared the performance of PTFs for 
soil bulk density. 

Reference Region/Soil No. PTFs Tested Evaluation Metrics 

Abdelbaki, 2018 USA 48 ME, RMSE, EF (modelling efficiency) 

Boschi et al., 2018 Brazil 25 MAE, ME, RMSE, R2, REC 

Casanova et al., 2016 Chile 10 R2 

De Vos et al., 2005 Flanders, Belgium 12 MPE, SDPE, RMSPE, R2 

Han et al., 2012 China 19 MPE, RMSPE, SDPE, R2 

Kaur et al., 2002 India 12 ME, RMSPD 

Nanko et al., 2014 Japanese volcanic 
soils 

29 MPE, SDPE, RMSPE, R2, % of 
prediction data within +/- 10 and 
20% in relative error 

Nasta et al., 2020 Italy 63 RMSE, R2 

Reidy et al., 2016 Ireland 12 MPE, SDPE, RMSPE, R2 

Sevastas et al., 2018 Greece 56 ME, MAE, SDPE, RMSE 

Taulya et al., 2005 Uganda 8 ME, RMSPD, R2 

Vasiliniuc and 
Patriche, 2015 

Romania 22 MPE, RMSPE, SDPE, R2 

Yi et al., 2016 Qinhai Province, 
China 

14 ME, SDE, RMSE, R2 

Legend: Mean prediction error (MPE); standard deviation of the prediction error (SDPE); root mean square prediction 
error (RMSPE); coefficient of determination (R2); regression error curve (REC); mean absolute error (MAE); root mean 
square prediction difference (RMSPD); and mean error (ME). 
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Table 2.3. Equation-based PTFs from the literature that were tested and recalibrated in this study. 

PTF # Study PTF Soils/Region Units Evaluation Sample size 

1 Abdelbaki, 2018 BD = 1.449e-0.03*OC USA BD in Mg/m3, OC in % R2 0.680 

RMSE 0.13 

EF 0.59 

ME 0.0 

45,195 

2 Akpa, 2016 BD = 1.177 + 0.00263*Sand - 
0.0439*log(Silt) + 0.00208*Silt 

Nigeria 

(All data) 

BD in Mg/m3, Sand 
and Silt in % 

MAE 0.140 

RMSE 0.179 

R2 0.109 

CCC 0.185 

1161 

3 Akpa. 2016 BD = 1.172 + 0.0025*Sand - 
0.0341*log(Silt) + 0.000877*Silt 

Nigeria  

(Topsoil) 

 

BD in Mg/m3, Sand 
and Silt in % 

MAE 0.116 

RMSE 0.152 

R2 0.161 

CCC 0.255 

1161 

4 Akpa, 2016 BD = 1.512–0.00322*Clay-
0.0865*log(Silt) 

Nigeria 

(Subsoil) 

BD in Mg/m3, Sand 
and Silt in % 

MAE 0.151 

RMSE 0.189 

R2 0.139 

CCC 0.25 

1161 

5 

 

Alexander, 1980 BD = 1.66 – 0.308*OC0.5 

 

Upland soil, California 
USA 

BD in g/cm3, OC in % R2 0.462 

SE 0.19 g/cm3 

386 total 

6 

 

Alexander, 1980 BD = 1.72 – 0.294 × OC0.5  

 

Alluvial soil, California, 
USA 

BD in g/cm3, OC in % R2 0.332 

SE 0.16 g/cm3 

335 total 

7 

 

Alexander, 1989 BD = 1.83*exp(-0.121*OC0.5) 

 

Alaska, USA BD in Mg/m3, OC in % R2 0.81 55 

8 

 

Alexander, 1989 BD = 2.24*exp(-0.120*OC0.5) 

 

Loamy sands; Alaska, 
USA 

BD in Mg/m3, OC in % R2 0.85  55 

9 

 

Alexander, 1989 BD = 1.86*exp(-0.120*OC0.5) 

 

Sandy loams; Alaska, 
USA 

BD in Mg/m3, OC in % R2 0.85 55 

10 Alexander, 1989 BD = 1.73*exp(-0.120*OC0.5) 

 

Silt loams; Alaska, USA BD in Mg/m3, OC in % R2 0.85 55 

11 

 

Barros et al., 2015 BD = 1.495 – 0.011*Clay – 0.079*pH 

 

Amazonia, Brazil BD in kg/dm3, pH in 
H2O 1:1 

R2 0.73 

AIC -250.29 

140 for training, 125 for testing 
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PTF # Study PTF Soils/Region Units Evaluation Sample size 

12 

 

Bernoux et al., 
1998 

BD = 1.52 – 0.0038*Clay – 0.050*OC – 
0.045*pH + 0.0010*Sand 

Overall PTF; Brazil soils BD in Mg/m3, Clay, 
Sand and OC in %, 
pH in H2O 1:1 

R2 0.56 

SE 0.09 

323 

13 

 

Bernoux et al., 
1998 

BD for sandy soils = 0.0181*Sand – 
0.08*OC 

Sandy soils; Brazil BD in Mg/m3, OC and 
Sand in % 

R2 0.66 14 

14 Beutler et al., 2017 BD = [1.6179 – 0.0180*(Clay+1)0.46 – 
0.0398*OC0.55]1.33 

Organic soil with clay, 
Brazil 

BD in Mg/dm3, clay in 
g/kg, OC in g/kg 

ME -0.04 

RMSE 0.22 

R2 0.47 

280 

15 Beutler et al., 2017 BD = [4.0899 – 2.3978*OC0.06]3.85  Organic soil 

Brazil 

BD in Mg/dm3, OC in 
g/kg 

ME -0.10 

RMSE 0.26 

R2 0.37 

280 

16 Botula et al., 2015 BD = 1.64581 – 0.00362*Clay – 
0.0016*Sand – 0.0158*OC 

 

Congo, Africa BD in Mg/m3, OC in 
%, Clay and Sand in 
% 

R2 0.244 

MAD 0.110 
Mg/m3 

RMSD 0.137 
Mg/m3  

196 training; 72 test 

17  Brahim et al., 2012 BD = 1.65 – 0.117*OC – 0.0042*Clay – 
0.0036*Coarse Sand + 0.031*pH 

All horizons; Tunisia, 
Africa 

BD in Mg/m3, OC, 
Clay, Coarse Sand in 
%, pH in H2O 1:1 

R2 0.55 

SE 0.14 

348 

18  Brahim et al., 2012 BD = 0.9 – 0.08*OC + 0.007*FineSand + 
0.007*FineSilt + 0.05*pH 

Superficial horizons 
(<40 cm depth). Tunisia, 
Africa 

BD in Mg/m3, OC, 
Fine Silt, Fine Sand in 
%, pH in H2O 1:1 

R2 0.58 

SE 0.14 

286 

19  Curtis and Post, 
1964 

Y = 2.09963 – 0.00064X1 – 0.22302X2  
 
Y = log(BD*100) 

X1 = log (%LOI) 

X2 = X12  

Vermont, USA OM % 

BD g/cm3 

R 0.96 

SE 0.054 

78 

20  De Vos et al., 2005 BD = 1.775 – 0.173(OM)0.5  

 

Belgium BD in Mg/m3, LOI in 
% 

R2 0.57 

MPE -0.004 
Mg/m3 

RMSPE 0.16 
Mg/m3  

1614 

21 Drew, 1973 BD = 1/(0.6268 + 0.0361*(OM)) Minnesota OM in %, BD in g/cc R2 0.842 80 
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PTF # Study PTF Soils/Region Units Evaluation Sample size 

22  Federer, 1983 ln(BD) = -2.314 – 1.0788*ln(OM) – 
0.1132*(lnOM)2 

New England, USA BD in Mg/m3, OM in 
g/g 

Not given; in 
previous study 

130 

23 Gosselink et al. 
1984 

BD = 0.026/OC *100 Louisiana marsh soils BD in g/ml, OC in % R2 0.93 288 

24 Grigal et al., 1989 BD = 0.073 + 2.369*exp(-0.073*OM) Forest floor. North-
central USA 

BD in Mg/m3, LOI in 
% 

R2 0.75 

 

812 

25 Grigal et al., 1989 BD = 0.669 + 0.941*exp(-0.240*OM) Surface mineral soil (0-
25 cm). North-central 
USA 

BD in Mg/m3, LOI in 
% 

R2 0.95 800 

26  Grigal et al., 1989 BD = 0.043X + 4.258*exp(-0.047*OM) Peat, where X = 0 for 
surface peat (0-25 cm) 
and X = 1 for 25-175cm 
depth peat 

BD in Mg/m3, LOI in 
% 

R2 0.89 232 

27  Grigal et al., 1989 BD = 0.075 + 1.301*exp(-0.060*OM) All data. North-central 
USA. 

BD in Mg/m3, LOI in 
% 

R2 0.93 1612 

28  Han et al., 2012 ln(BD) = 0.5379 – 0.0653*OM0.5  China Db in g/cm3, OM in 
g/g  

MPE 0.0 

RMSPE 0.13 

SDPE 0.13 

R2 67.1 

Training 75% Data; Validation 
25% 

 

29 Heinonen, 1977 BD = 1.42 – 0.0016*Clay + 0.0021*Silt Finland  

Glaciofluvial soils at 30-
50 cm depth 

BD in g/cm3, Silt and 
Clay in % 

R 0.79 20 

30 Hollis et al., 2012 BD = 1.5868 – (0.4682*exp(0.0578*OC)) 
– (0.07778*ln(horizon mid-point) 

Volcanic materials. 
Europe 

BD in g/cm3, OC in %  RMSE 0.17 
g/cm3, model 
efficiency 0.44 

34 training; 3 validation 

31 Hollis et al., 2012 BD = 0.80806 + (0.823844*exp(-0.27993* 
OC) + (0.0014065*Sand)  – 
(0.0010299*Clay) 

Cultivated topsoils 
(mineral A horizons). 
Europe 

BD in g/cm3, Sand, 
Clay and OC in % 
mass 

RMSE 0.13 
g/cm3, model 
efficiency 0.62 

333 training; 126 validation 

32 Hollis et al., 2012 BD = 1.1257 – (0.1140245*Ln(OC)) + 
(0.0555*Ln(Horizon mid-point)) + 
(0.002248*Sand) 

Compact subsoils. 
Europe 

BD in g/cm3, OC in % 
mass 

RMSE 0.14 
g/cm3, model 
efficiency 0.40 

64 training; 55 validation 



48 

PTF # Study PTF Soils/Region Units Evaluation Sample size 

33 Hollis et al., 2012 BD = 0.69794 + (0.750636* 
exp(−0.230355*OC) + (0.0008687*Sand) 
– (0.0005164*Clay) 

All other mineral 
horizons. Europe 

BD in g/cm3, Sand, 
Silt, Clay and OC in 
% mass 

RMSE 0.15 
g/cm3, model 
efficiency 0.63 

925 training; 604 validation 

34 Hollis et al., 2012 BD = 1.4903 – 0.33293* ln(OC) 

 

All organic horizons. 
Europe 

BD in g/cm3, Sand, 
Silt, Clay and OC in 
% mass 

RMSE 0.10 
g/cm3, model 
efficiency 0.68 

67 training; 24 validation 

35 Honeysett and 
Ratkowsky, 1989 

 

1/ρb = 0.564 + 0.0556 I 

 

BD = 1/(0.564 + 0.556*OM) 

 

Forest soils, Tasmania BD in g/cm3, I is % 
oven-dried weight of 
OC 

 136 

Four sampling depths: 0-5 cm; 0-
10 cm; 25-30 cm; 75-80 cm 

36 Hossain et al., 
2015 

BD = 0.701 + 0.952*exp(-0.29*OC) 

 

Mineral soil. 

Arctic and sub-Arctic of 
Canada 

BD in g/cm3, SOC in 
% 

R2 0.99 702 

37 Hossain et al., 
2015 

BD = 0.074 + 2.632*exp(-0.076*OC) 

 

Organic soil. 

Arctic and sub-Arctic of 
Canada 

BD in g/cm3, OC in % R2 0.93 674 

38 Hossain et al., 
2015 

BD = 0.071 + 1.322*exp(-0.071*OC) 

 

Combined mineral and 
organic soils. 

Arctic and sub-Arctic of 
Canada 

BD in g/cm3, OC in % R2 0.984 1376 

39 Huntington et al., 
1989 

ln (BD) = -2.39 – 1.316*ln(OM) – 
0.167*(ln(OM))2 

 

New Hampshire BD in Mg/m3, OC in % R2 0.75 60 profiles, with depth intervals 
and horizons 

40 Huntington et al., 
1989 

ln (BD) = 0.263 – 0.147*ln(OC) – 
0.103*(ln(OC))2 

 

New Hampshire BD in Mg/m3, OC in % R2 0.72 60 profiles, with depth intervals 
and horizons 

41 Jeffrey 1970 BD = 1.482 – 0.6786*log(OM) Compilation – Ohio, 
England, Europe, 
Australia 

BD in g/ml, LOI in % r = -0.9045 80 

42 Katterer et al., 
2006 

BD = 1.6384 – 0.0945*OC Sweden 

(Topsoil model 3) 

Topsoil is 0-25 cm 
depth; subsoil is 25-
100 cm depth. 

BD in g/cm3; OC in % 

R2 0.51 

RMSE 0.13 

337 
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PTF # Study PTF Soils/Region Units Evaluation Sample size 

43 Katterer et al., 
2006 

BD = 1.6444 – 0.1195*OC Sweden 

(Subsoil model 3) 

BD in g/cm3; OC in % R2 0.45 

RMSE 0.16 

1283 

44 Katterer et al., 
2006 

BD = 1.6693 – 0.1168*OC + 
0.0391*(OC*Clay) 

Sweden 

(Topsoil model 4) 

BD in g/cm3; OC and 
Clay in % 

R2 0.47 

RMSE  0.14 

337 

45 Katterer et al., 
2006 

BD = 1.5994 + 0.1111*Clay – 0.0787*OC  
- 0.0857*(OC*Clay) 

Sweden 

(Subsoil model 4) 

BD in g/cm3; OC and 
Clay in % 

R2 0.46 

RMSE 0.16 

1283 

46 Katterer et al., 
2006 

BD = 1.5815 + 0.1171*(Sand+Gravel) – 
0.1078*OC 

Sweden 

(Topsoil model 5) 

BD in g/cm3; OC, 
Sand, CF in % 

R2 0.53 

RMSE 0.13 

337 

47 Katterer et al., 
2006 

BD = 1.6270 + 0.0965*(Sand+Gravel) – 
0.1608*OC 

Sweden 

(Subsoil model 5) 

BD in g/cm3; OC, 
Sand, CF in % 

R2 0.46 

RMSE 0.16 

1283 

48 Katterer et al., 
2006 

BD = 1.6333 – 0.1233*OC + 
0.0433*(OC*Sand)  

Sweden 

(Topsoil model 6) 

BD in g/cm3; OC, 
Sand in % 

R2 0.53 

RMSE 0.12 

337 

49 Katterer et al., 
2006 

BD = 1.6552 -0.0561*Sand – 0.1525*OC 
-0.0533*(OC*Clay) + 0.1160*(OC*Sand) 

Sweden 

(Subsoil model 6) 

BD in g/cm3; OC, 
Sand, Clay in % 

R2 0.49 

RMSE 0.16 

1283 

50 Kaur et al., 2002 BD = exp(0.313 – 0.191*OC + 
0.02102*Clay – 0.000476*(Clay2) – 
0.00432*Silt 

India (agricultural, pine 
forest, oak forest, 
barren) 

OC in %(g/g), Sand, 
Silt, Clay in % (g/g), 
BD in g/cm3  

Adj. R2 0.62 

SE 0.25 

ME 0.0 

RMSPD 0.15 
g/cm3  

112 training, 112 validation 

51 Kobal et al., 2011 BD = 1.4842 – 0.1424*OC 

(for OC < 3.6%) 
BD = 1.1253 – 0.0452*OC  

(for OC >3.6%) 

Slovenia Forest mineral 
soils 

OC g/kg 

BD in g/cm3  

R2 0.7958 

SE 0.1257  

109 

52 Makovníková eta 

l., 2017 

BD = 3.1482 – 0.0118*Clay – 0.017*Sand 
– 0.0152*Silt 

Slovakia, 0-10 cm depth BD in g/cm3, OC in %, 
Silt (0.001-0.05mm), 
Sand (0.05-2mm) and 
Clay (<0.01mm) in % 

SD 0.084 g/cm3  

CV 

R2 0.27 

262 

53 Makovníková eta 

l., 2017 

BD = 2.662 – 0.0076*Clay – 0.0102*Silt – 
0.0108*Sand – 0.0855*OC 

Slovakia, 0-10 cm depth BD in g/cm3, OC in %, 
Silt (0.001-0.05mm), 
Sand (0.05-2mm) and 
Clay (<0.01mm) in % 

SD 0.110 g/cm3  

CV 

R2 0.46 

262 
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PTF # Study PTF Soils/Region Units Evaluation Sample size 

54 Manrique and 
Jones, 1991 

BD = 1.510 – 0.113*OC USA (incl. Hawaii and 
Puerto Rico); other 
countries. 

BD in Mg/m3, OC in % R2 0.36 19 651 

55 Manrique and 
Jones, 1991 

BD = 1.660 – 0.318*OC0.5  USA (incl. Hawaii and 
Puerto Rico); other 
countries. 

BD in Mg/m3, OC in % R2 0.41 19 651 

56 Nanko et al., 2014 BD = 1 / (0.882 + 0.133*OC) Japan. 

Forest soil affected by 
volcanic ash.  

BD in g/cm3, OC in % MPE -0.0021 

SDPE 0.138 

RMSPE 0.138 

R2 67.3 

Training: 3513 

Validation: 279 

57 Pereira et al., 2016 BD = 1.326 + 0.315*sin(1.045 – 
0.001*Clay – 0.052*OC) + 
0.0003*Clay*sin(sin(2.561 + 1.287*pH – 
0.0006*Clay)) – 0.134*sin(sin(2.561 + 
1.287*pH – 0.006*Clay)) 

Brazilian Amazon forest 
soils. 

BD in g/cm3, others in 
g/kg 

MSE 0.015 

RMSE 0.123 

 

Training dataset: 654 

Validation dataset: 230 

58 Premrov et al., 
2018 

BD0.71 = 13.801 – 13.446*OM0.02 Ireland BD, OM in [g/cm3]0.71 RMSPE 0.126 

AICcorr -56 

111 training 

28 testing 

59 Prévost, 2004 ln(BD) = -1.81 – 0.892*ln(OM) -
0.092*(ln(OM))2 

Forest soils. 
“Logarithmic approach” 

BD in Mg/m3, OM in 
g/g 

R2 0.767 318, 32, 89, 86 

Two sites, two treatments 

60 Qiao et al., 2019 BD = 1.68 + 0.001*Depth – 2.249*Clay-1 
– 0.089*Depth-1  

China; Loess Plateau 
deep layers (50-200m) 

BD in g/cm3, OC in 
g/kg, Silt, Clay in % 

R2 0.356 

RMSE 0.079 

ME -0.008 

Training: 427; Validation: 107 

61 Ruehlmann and 
Körschens, 2009 

BD = a*exp(b*OC) 
 
 

Original: 

BD = (2.684 – 140.943*b)exp(-b*OC) 

Arable, Reclaimed, 
Wetland. 

(b = 0.008 in original) 

BD in Mg/m3, OC in 
g/kg 

R2 0.872 

RMSE 0.215 

59 datasets used to create dataset 
used; n ranged from 3 to 193. 
Summary stats for each source 
available in paper. 

62 Ruehlmann and 
Körschens, 2009 

BD = a*exp(b*OC) 
 
Original: 

BD = (2.684 – 140.943*b)exp(-b*OC) 

Proctor. 

(b = 0.006 in original) 

BD in Mg/m3, OC in 
g/kg 

R2 0.872 

RMSE 0.215 

59 datasets used to create dataset 
used; n ranged from 3 to 193. 
Summary stats for each source 
available in paper. 
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PTF # Study PTF Soils/Region Units Evaluation Sample size 

63 Ruehlmann and 
Körschens, 2009 

BD = a*exp(b*OC) 

Original: 

BD = (2.684 – 140.943*b)exp(-b*OC) 

Volcanic. 

(b = 0.010 in original) 

BD in Mg/m3, OC in 
g/kg 

R2 0.872 

RMSE 0.215 

59 datasets used to create dataset 
used; n ranged from 3 to 193. 
Summary stats for each source 
available in paper. 

64 Saini, 1966 BD = 1.62 – 0.06*OM Humic-gley BD in g/cm3, OM in % r -0.858 

 

30 

65 Saini, 1966 BD = 1.53 – 0.05*OM Imperfectly drained BD in g/cm3, OM in % r -0.805 40 

66 Saini, 1966 BD = 1.52 – 0.06*OM Well drained BD in g/cm3, OM in % r -0.633 40 

67 Sevastas et al., 
2018 

BD = 2.268 – 0.179*ln(Sand) – 
0.345*ln(OC) 

 

River basin in Northern 
Greece 

BD in g/cm3; OC in %; 
use 2 as OC:OM 
conversion factor 

ME -0.00188 

MAE 0.0823 

SDPE 0.1215 

RMSE 0.1195 

30 

  

68 Sevastas et al., 
2018 

BD = 2.039 – 0.563*OC + 0.103*OC2 

 

River basin in Northern 
Greece 

BD in g/cm3, OC in %; 
use 2 as OC:OM 
conversion factor 

ME 0.00016 

MAE 0.09636 

SDPE 0.12662 

RMSE 0.12449 

30 

69 Song et al., 2005  BD = 1.3565*e-0.0046*OC  China, uncultivated soils BD in g/cm3, OC in 
g/kg 

R2 0.726 3645 

70 Song et al., 2005  BD = 1.3770*e-0.0048*OC  China, cultivated soils BD in g/cm3, OC in 
g/kg 

R2 0.787 4765 

71 Tamminen and 
Starr, 1994 

BD = 1.565 – 0.2298*(OM)0.5 Finland 

 

BD in kg/dm3, OM in 
% 

R2 0.61 

 

75 samples for 0-5 cm; 60 for 30-
35 cm; 23 for 60-65 cm 

72 Tomasella and 
Hodnett, 1998 

BD = 1.578 – 0.054*OC – 0.006*Silt – 
0.004*Clay 

Brazil BD in g/cm3, OC, Silt, 
Clay in % 

R2 0.774 396 

73 Yanti et al., 2021 BD = 1.2684 + 0.0011*Depth – 
0.1774*OC 

Indonesia BD in g/cm3,  

OC in %, 

Depth in cm 

R2 0.425 

ME 0.048 

RMSE 0.120 

45 

Legend: Mean prediction error (MPE); standard deviation of the prediction error (SDPE); root mean square prediction error (RMSPE); coefficient of determination (R2); regression 
error curve (REC); mean absolute error (MAE); root mean square prediction difference (RMSPD); and mean error (ME). 
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Table 2.4. List of model groups by type and reference. Model groups are based 
on model form and input variables used. Where soil organic carbon 
(OC) is indicated as an input variable, soil organic matter (OM) may 
also be substituted. If the PTF used OM, this is indicated in the 
reference column with (OM). 

Model Group Model Type References (PTF #) 

A 

(Linear) 

BD = a – b*OC 

 

Katterer et al. 2006 (42), (43) 

Kobal et al., 2011 (51) 

Manrique and Jones 1991 
(54) 

Saini 1966 (OM) (64), (65), 
(66) 

B 

(Radical root) 

BD = a – b*OC0.5 

 

Alexander 1980 (5), (6) 

De Vos 2005 (20) (OM) 

Manrique and Jones 1991 
(55) 

Tamminen and Starr 1994 
(71) (OM)  

C 

(Reciprocal) 

BD = 1 / (a + b*OC) Honeysett and Ratkowsky 
1989 (35) (OM) 

Nanko et al. 2014 (56) 

Drew, 1973 (21) (OM) 

D 

(Multiple ln terms) 

ln(BD) = a + b*ln(OC) + c*[ln(OC)]2 Curtis and Post 1964 (19) 

Federer 1983 (22) 

Huntington et al. 1989 (39 
OM), (40 OC) 

Prévost 2004 (59) 

E 

(Natural exponent) 

BD = a + b*exp(c*OC) Grigal et al. 1989 (24), (25), 
(26), (27) (OM) 

Hossain et al. 2015 (36), 
(37), (38) 

BD = a*exp(b*OC) Adelbaki 2018 (1) 

Grigal et al., 1989 (26) (OM) 

Song et al., 2005 (69), (70) 

Ruehlmann and Körschens, 
2009 (61), (62), (63) 

BD = a*exp(b*OC0.5) Alexander 1989 (7), (8), (9), 
(10) 

BD = exp(a – b*OM0.5) Han et al 2012 (28)  

F 

(With only OM/OC) 

BD = [a – b*OC0.06]3.85 Beutler et al., 2017 (15) 

BD = a/OC*100 Gosselink et al., 1984 (23) 

BD = a – b*ln(OC) Hollis et al., 2012 (34) 

BD = a – b*log(OM) Jeffrey 1970 (41) (OM) 

BD0.71 = (a – b*OM0.02) Premrov et al., 2018 (58) 

BD = a – b*OC + c*OC2  Sevastas et al., 2018 (68) 
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G 

(With OC/OM, other 
terms) 

BD = a – b*Clay – c*OC – d*pH + e*Sand Bernoux et al., 1998 (12) 

BD = a*Sand – b*OC Bernoux et al., 1998 (13)  

BD = [a – b*(Clay+1)0.46 – c*OC0.55]1.33 Beutler et al., 2017 (14) 

BD = a – b*Clay – c*Sand – d*OC Botula et al., 2015 (16) 

BD = a – b*OC – c*Clay – d*Sand + e*pH Brahim et al., 2012 (17) 

BD = a – b*OC + c*Sand + d*Silt + e*pH Brahim et al., 2012 (18) 

BD = a + (b*exp^(c*OC)) + d*Sand – e*Clay Hollis et al., 2012 (31), (33) 

BD = a – (b*ln(OC)) + (c*ln(Depth)) + (d*Sand) Hollis et al., 2012 (32) 

BD = a – b*OC + c*(OC*Clay) Katterer et al., 2006 (44) 

BD = a + b*Clay – c*OC – d*(OC*Clay) Katterer et al., 2006 (45) 

BD = a + b*(Sand + CF) – c*OC Katterer et al., 2006 (46), 
(47) 

BD = a – b*OC + c*(OC*Sand) Katterer et al., 2006 (48) 

BD = a – b*Sand – c*OC – d*(OC*Clay) + 
e*(OC*Sand) 

Katterer et al., 2006 (49) 

BD = exp(a – b*OC + c*Clay – d*(Clay2) – 
e*Silt) 

Kaur et al., 2002 (50) 

BD = a – b*Clay – c*Silt – d*Sand – e*OC Makovníková et al., 2017 

(53) 

BD = a – b*ln(Sand) – c*ln(OC) Sevastas et al., 2018 (67) 

BD = a – b*OC – c*Silt - d*Clay Tomasella and Hodnett, 
1998 (72) 

BD = a + b*Depth – c*OC Yanti et al., 2021 (73) 

H 

With only texture, pH 
or depth 

BD = a – b*Clay – c*pH Barros et al 2015 (12) 

BD = a – b*Clay + c*Silt Heinonen 1977 (29) 

BD = a – b*Clay – c*Sand – d*Silt Makovníková et al., 2017 

(52) 

BD = a + b*Depth - c*(1/Clay) – d*(1/Depth) Qiao et al., 2019 (60) 

X 

Could not NLS 

BD = a – (b*exp(c*OC)) – (d*log(Depth)) Hollis et al 2012 (30) 

BD = (a + b*sin(c - d*OC) +            
(e*Clay)*sin(sin(f + g*pH - h*Clay)) -  j*sin(sin(k 
+ m*pH - n*Clay))) 

Pereira et al., 2016 (57) 
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Figure 2.1. Sample site locations for the BC (All Variables) dataset (left); the BC (Carbon and Bulk Density) dataset 
(middle); and the Ontario (All Variables) dataset (right). 

 



55 

 

Figure 2.2. Schematic of the nested cross-validation which produces new 
coefficients for existing model forms through non-linear least 
squares; procedure also generates uncertainty estimates through 
the quantile regression. 
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Figure 2.3. Plots of observed versus predicted BD values for Group D (multiple 
natural log terms) functions. For each dataset used in this study, an 
example PTF was chosen for the model. This function was plotted 
using its literature coefficients, and then using its NLS-generated 
coefficients. Blue lines represent the 5th and 95th percentiles; red line 
is the 1:1 line. Ontario (All Variables) results are top left and right; 
BC (All Variables) are middle left and right; BC (Carbon and Bulk 
Density) results are bottom left and right. 
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Figure 2.4. PICP vs CL Graphs for each dataset. For Model Group D (functions 
with multiple natural log terms), a representative PTF was chosen, 
and the PICP vs CL graph for that PTF is shown for each dataset. 
Ontario (All Variables) is shown top left; BC (All Variables) is shown 
top right; and BC (Carbon and Bulk Density) is shown bottom left. 
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Figure 2.5. MPI Graphs for Model Groups A to D, for each dataset. For each MPI 
graph, the MPI values for each recalibrated model in Groups A to D 
are shown. Groups A to D have PTFs whose model form is identical 
within the group, and the recalibrated PTFs for each model group 
have the same MPI values. Results for Ontario (All Variables) is 
shown top left; BC (All Variables) is shown top right; and BC 
(Carbon and Bulk Density) is shown bottom left. 
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Figure 2.6. RMSE values produced by PTFs before and after recalibration on the 
Ontario (All Variables) dataset. 

 

 

Figure 2.7. CCC values produced by PTFs before and after recalibration on the 
Ontario (All Variables) dataset.   
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Figure 2.8. RMSE values produced by PTFs before and after recalibration on the 
BC (All Variables) dataset. 

 

 

Figure 2.9. CCC values produced by PTFs before and after recalibration on the 
BC (All Variables) dataset.  



61 

 

Figure 2.10. RMSE values produced by PTFs before and after recalibration on the 
BC (Carbon and Bulk Density) dataset. 

 

 

Figure 2.11. CCC values produced by PTFs before and after recalibration on the 
BC (Carbon and Bulk Density) dataset. 
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2.10. Supplementary Tables 

Table 2.5. Coefficients generated through NLS. PTFs grouped by model type. Where there is a mixture of PTFs which 
used OC and OM in a model group, the recalibrated coefficients are shown for the model form with both OC 
and OM versions. This is indicated for each coefficient in the model (ie the “a” coefficient is listed as both aOC 

and aOM). 

Model Group Model Form References Coeff. 

 Ontario 

Coeff.  

BC (All) 

Coeff. 

BC (C and BD) 

A 

(Linear) 

BD = a – b*OC Katterer et al. 2006 (42), (43) 

Kobal et al., 2011 (51) (OC) 

Manrique and Jones 1991 (54) (OC) 

Saini 1966 (OM) (64), (65), (66) 

aOC: 1.358 

bOC: 0.084 

 

aOM : 1.358 

bOM : 0.048 

aOC: 1.487 

bOC: 0.082 

 

aOM: 1.487 

bOM: 0.048 

 

aOC: 1.475 

bOC: 0.065 

 

aOM: 1.475 

bOM: 0.038 

 

B 

(Radical root) 

BD = a – b*OC0.5  

 

 

BD = a – b*OM0.5  

Alexander 1980 (5), (6) 

Manrique and Jones 1991 (55) (OC) 

De Vos 2005 (20) (OM) 

Tamminen and Starr 1994 (OM) (71) 

aOC : 1.590 

bOC: 0.307 

 

aOM: 1.59 

bOM : 0.234 

aOC : 1.732 

bOC : 0.341 

 

aOM: 1.732 

bOM: 0.259 

aOC: 1.695 

bOC: 0.287 

 

aOM:1.695 

bOM: 0.219 

C 

(Reciprocal) 

BD = 1 / (a + b*OM) Nanko et al. 2014 (56) (OC) 

Honeysett and Ratkowsky 1989 (OM) (35) 

Drew, 1973 (21) (OM) 

aOC: 0.681 

bOC: 0.090 

 

aOM : 0.681 

bOM: 0.052 

aOC: 0.608 

bOC: 0.103 

 

aOM: 0.608 

bOM: 0.060 

aOC: 0.623 

bOC: 0.077 

 

aOM: 0.623 

bOM: 0.045 

D 

(Multiple ln 
terms) 

ln(BD) = a + b*ln(OM) + 
c*[ln(OM)]2 

Huntington et al. 1989 (39 OM), (40 OC) 

 

Curtis and Post 1964 (19) (OM) 

aOC: 0.255 

bOC: 0.148 

cOC: 0.045 

aOC: 0.312 

bOC: 0.176 

cOC: 0.038 

aOC: 0.273 

bOC: 0.157 

cOC: 0.008 
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Federer 1983 (22) (OM) 

Prévost 2004 (59) (OM) 

 

aOM: 0.324 

bOM: 0.092 

cOM: 0.059 

 

aOM: 0.396 

bOM: 0.135 

cOM: 0.038 

 

aOM: 0.356 

bOM: 0.149 

cOM: 0.008 

E 

(Natural 
exponent) 

BD = a + b*exp(c*OC) Hossain et al. 2015 (36), (37), (38) 

 

 

Grigal et al. 1989 (24), (25), (26), (27) (OM) 

 

aOC: 0.466 

bOC: 0.995 

cOC: -0.178 

 

aOM: 0.466  

bOM: 0.995 

cOM: -0.103 

 

aOC: 0.769 

bOC: 0.925 

cOC: -0.403 

 

aOM: 0.769 

bOM: 0.925 

cOM: -0.234 

aOC: 1.023 

bOC: 0.809 

cOC: -0.910 

 

aOM: 1.023 

bOM: 0.810 

cOM: -0.528 

BD = a*exp(b*OC) Abdelbaki 2018 (1) 

Song et al., 2005 (69), (70) (OC)  

Grigal et al., 1989 (26) (OM) 

 

aOC: 1.427 

bOC: -0.097 

 

aOM: 1.43 

bOM: -0.056 

a: 1.582 

b: -0.109 

 

aOM: 1.582 

bOM: -0.063 

aOC: 1.537 

bOC: -0.075 

 

aOM: 1.537 

bOM: -0.044 

BD = a*exp(b*OC0.5) Alexander 1989 (7), (8), (9), (10) a: 1.68 

b: -0.274 

 

a: 1.882 

b: -0.315 

a: 1.826  

b: -0.266 

BD = exp(a – b*OM0.5) Han et al 2012 (28)  a: 0.519 

b: 0.209 

a: 0.632 

b: 0.240 

a: 0.602  

b: 0.203  

BD = a*exp(b*OC) 

 

Original, could not NLS: 

BD = (a – b*c)*exp(-c*OC) 

Ruehlmann and Korschens 2009 (61), (62), 
(63) 

a: 1.427 

b: -0.097 

 

a: 1.582 

b: -1.088 

 

a: 1.537 

b: -0.075 

F 

(With only 
OM/OC) 

BD = (a – b*OC0.06)3.85 Beutler et al., 2017 (15) a: 1.7302 

b: 0.6727 

a: 1.862 

b: 0.787 

a: 1.540 

b: 0.460 

BD = a/OC*100 Gosselink et al., 1984 (23) a: 35.88 a: 0.004 a: 0.002 
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BD = a – b*log(OC) Hollis et al., 2012 (34) a: 1.247 

b: 0.187 

a: 1.331 

b: 0.1225 

a: 1.357 

b: 0.201 

BD = a – b*log(OM) Jeffrey, 1970 (41) a: 1.348 

b: 0.187 

a: 1.453 

b: 0.225 

a: 1.466 

b: 0.201 

BD0.71 = a – b*OM0.02  

  

Premrov et al., 2018 (58) a: 7.622 

b: 6.386 

a: 8.770 

b: 7.472 

a: 4.442 

b: 3.185 

BD = a – b*OC + c*OC2  Sevastas et al., 2018 (68) a: 1.441 

b: 0.147 

c: 0.006 

a: 1.613 

b: 0.205 

c: 0.011 

a: 1.586 

b: 0.167 

c: 0.009 

G 

(With OC/OM, 
other terms) 

BD = a – b*Clay – c*OC – 
d*pH + e*Sand 

Bernoux et al., 1998 (12) a: 1.12 

b: 0.00007 

c: 0.081 

d: 0.033 

e: 0.0002 

a: 0.430 

b: 0.008 

c: 0.061 

d: 0.110 

e: 0.005 

  

BD = a*Sand – b*OC Bernoux et al., 1998 (13) a: 0.018 

b: 0.065 

a: 0.021  

b: 0.042 

 

BD = [a – b*(Clay+1)0.46 – 
c*OC0.55]1.33 

Beutler et al., 2017 (14) a: 1.40344 

b: -0.00078 

c: 0.1993 

a: 1.534 

b: 0.020 

c: 0.222 

 

BD = a – b*Clay – c*Sand – 
d*OC 

Botula et al., 2015 (16) a: 1.3818 

b: 0.0004 

c: 0.0003 

d: 0.0842 

a: 1.166  

b: -0.008  

c: -0.004  

d: 0.076 

 

  

BD = a – b*OC – c*Clay – 
d*Sand + e*pH 

Brahim et al., 2012 (17) a: 1.12 

b: 0.081 

c: 0.00007 

d: 0.00022 

e: 0.033 

a: 0.428 

b: 0.061 

c: -0.008 

d:- 0.005 

e: 0.110 

  

BD = a – b*OC + c*Sand + 
d*Silt + e*pH 

Brahim et al., 2012 (18) a: 1.12 

b: 0.081 

a: 1.213  

b: 0.061  
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c: 0.0001 

d: 0.00008 

e: 0.033 

c: -0.0003  

d: 0.008 

e:  0.110 

BD = a + (b*exp(c*OC)) + 
d*Sand – e*Clay 

Hollis et al., 2012 (31), (33) a: 0.508 

b: 0.991 

c: -0.179 

d: -0.0005 

e: 0.0008 

a: 0.577  

b: 0.880  

c: -0.383 

d: 0.003 

e: -0.005  

  

BD = a – (b*ln(OC)) + 
(c*ln(Depth)) + (d*Sand) 

Hollis et al., 2012 (32) a: 1.448 

b: 0.220 

c: 0.064 

d: 0.0001 

a: 1.132  

b: 0.188  

c: -0.032  

d: -0.002 

  

BD = a – b*OC + c*(OC*Clay) Katterer et al., 2006 (44) a: 1.365 

b: 0.099 

c: 0.0005 

a: 1.486 

b: 0.076 

c: 0.0004 

  

BD = a + b*Clay – c*OC – 
d*(OC*Clay) 

Katterer et al., 2006 (45) a: 1.411 

b: 0.002 

c: 0.110 

d: 0.001 

a: 1.489 

b: 0.0003 

c: 0.077 

d: 0.0003 

  

BD = a + b*(Sand + CF) – 
c*OC 

Katterer et al., 2006 (46), (47) a: 1.363 

b: 0.0001 

c: 0.084 

a: 1.249 

b: 0.003 

c: 0.070 

  

BD = a – b*OC + c*(OC*Sand) Katterer et al., 2006 (48) a: 1.363 

b: 0.072 

c: 0.0003 

a: 1.481 

b: 0.092 

c: 0.003 

  

BD = a – b*Sand – c*OC – 
d*(OC*Clay) + e*(OC*Sand) 

Katterer et al., 2006 (49) a: 1.319 

b: 0.001 

c: 0.071 

d: 0.0002 

e: 0.0005 

a: 1.335 

b: -0.003 

c: 0.056 

d: 0.0001 

e: -0.0006 
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BD = exp(a – b*OC + c*Clay – 
d*(Clay2) – e*Silt) 

Kaur et al., 2002 (50) a: 0.334 

b: 0.099 

c: 0.005 

d: 0.0001 

e: 0.0005 

a: 0.509 

b: 0.102 

c: 0.004 

d: 0.00001 

e: 0.003 

  

BD = a – b*Clay – c*Silt – 
d*Sand – e*OC 

Makovniková et al., 2017 (53) a: 7.080 

b: 0.057 

c: 0.057 

d: 0.057 

e: 0.084 

a: 1.302 

b: -0.006 

c: 0.0014 

d: -0.003 

e: 0.076 

 

BD = a – b*ln(Sand) – 
c*ln(OC) 

Sevastas et al., 2018 (67) a: 1.191 

b: 0.016 

c: 0.187 

a: 1.043  

b: -0.078 

c: 0.215 

  

BD = a – b*OC – c*Silt - 
d*Clay 

Tomasella and Hodnett, 1998 (72) a: 1.3470 

b: 0.0842 

c: -0.0004 

d: 0.00005 

a: 1.591 

b: 0.076 

c: 0.004 

d: -0.003 

  

BD = a + b*Depth – c*OC Yanti et al., 2021 (73) a: 1.268 

b: 0.0011 

c: 0.1774 

a: 1.307 

b: 0.003 

c: 0.060 

 

H 

With only 
texture, pH or 
depth 

BD = a – b*Clay – c*pH Barros et al 2015 (11) a: 0.7 

b: 0.002 

c: 0.074  

a: 0.330 

b: 0.005 

c:-0.180 

  

BD = a – b*Clay + c*Silt Heinonen 1977 (29) a: 1.177 

b: 0.001 

c: 0.0004 

a: 1.544 

b: -6.878 

c: -0.006 

  

BD = a – b*Clay – c*Sand – 
d*Silt 

Makovníková et al., 2017 (52) a: 2.636 

b: 0.016 

c: 0.015 

d: 0.014 

a: 1.073 

b: -0.005 

c: -0.005 

d: 0.001 
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BD = a + b*Clay – c*log(Silt) Akpa 2016 (4) a: 1.1900 

b: 0.0010 

c: 0.0005 

a: 1.671 

b: 0.0002 

c: 0.102 

 

BD = a + b*Sand – c*log(Silt) 
+ d*Silt 

Akpa 2016 (2), (3) 

 

a: 1.2299 

b: 0.0009 

c: 0.0678 

d: 0.0037 

a: 1.486 

b: 0.0002 

c: -0.024 

d: -0.007 

 

BD = a + b*Depth - c*(1/Clay) 
– d*(1/Depth) 

Qiao et al., 2019 (60) a: 1.173 

b: 0.004 

c: -0.052 

d: 1.256 

a: 1.129 

b: 0.004 

c: -0.372 

d: 0.450 

 

X 

Could not 
NLS 

BD = a – (b*exp(c*OC)) – 
(d*log(Depth)) 

 

Hollis et al 2012 (30) Error: 
stepfactor 
below minfactor 

  

BD = (a + b*sin(c - d*OC) +            
(e*Clay)*sin(sin(f + g*pH - 
h*Clay)) -  j*sin(sin(k + m*pH - 
n*Clay))) 

Pereira et al., 2016 (57) Error: 
arguments 
imply differing 
number of rows 
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Table 2.6. Results of PTFs tested on Ontario (All Variables) and recalibrated using NLS. For both the Literature 
coefficients and the NLS generated coefficients, accuracy metrics of R2, CCC and RMSE were generated. 

Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

A 

(Linear) 

 

BD = a – b*OC 

Katterer et al. 2006 (42) 0.45 0.40 0.32 0.45 0.62 0.20 

Katterer et al. 2006 (43) 0.45 0.51 0.29 0.45 0.62 0.20 

Kobal et al., 2011 (51) (OC < 3.6%) 0.45 0.67 0.23 0.45 0.62 0.20 

Kobal et al., 2011 (51) (OC > 3.6%) 0.45 0.34 0.26 0.45 0.62 0.20 

Manrique and Jones 1991 (54) 0.45 0.63 0.22 0.45 0.62 0.20 

Saini 1966 (OM) (64) 0.45 0.47 0.30 0.45 0.62 0.20 

Saini 1966 (OM) (65) 0.45 0.47 0.30 0.45 0.62 0.20 

Saini 1966 (OM) (66) 0.45 0.47 0.30 0.45 0.62 0.20 

B 

(Radical root) 

 

BD = a – b*OC0.5 

 

Alexander 1980 (5) 0.50 0.64 0.20 0.50 0.67 0.19 

Alexander 1980 (6) 0.51 0.54 0.24 0.51 0.67 0.19 

De Vos 2005 (20) (OM) 0.51 0.30 0.35 0.51 0.67 0.19 

Manrique and Jones 1991 (55) 0.51 0.66 0.19 0.50 0.67 0.19 

Tamminen and Starr 1994 (OM) (71) 0.51 0.67 0.19 0.51 0.67 0.19 

C 

(Reciprocal) 

 

BD = 1 / (a + b*OC) 

Honeysett and Ratkowsky 1989 
(OM) (35) 

0.51 0.58 0.26 0.51 0.67 0.19 

Drew, 1973 (21) (OM) 0.51 0.52 0.25 0.51 0.67 0.19 

Nanko et al. 2014 (56) 0.51 0.33 0.34 0.51 0.67 0.19 

D 

(Multiple ln terms) 

 

ln(BD) = a + b*ln(OC) + 
c*[ln(OC)]2 

Curtis and Post 1964 (19) (OM) 0.39 0.18 1.65 0.49 0.65 0.19 

Federer 1983 (22) (OM) 0.25 0.02 1.13 0.49 0.65 0.19 

Huntington et al. 1989 (39 OM) 0.21 0.02 1.15 0.49 0.65 0.19 

Huntington et al. 1989 (40 OC) 0.44 0.63 0.21 0.49 0.65 0.19 

Prévost 2004 (59) 0.29 0.03 1.09 0.49 0.65 0.19 

E 

(Natural exponent) 

Grigal et al. 1989 (24) (OM) 0.50 0.19 0.78 0.51 0.67 0.19 

Grigal et al. 1989 (25) (OM) 0.47 0.68 0.20 0.51 0.67 0.19 
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Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

 

BD = a + b*exp^(c*OC) 
Grigal et al., 1989 (26) (OM) (Peat 
25-175 cm) 

0.49 0.03 2.49 0.51 0.67 0.19 

Grigal et al. 1989 (27) (OM) 0.50 0.65 0.19 0.51 0.67 0.19 

Hossain et al. 2015 (36) 0.50 0.65 0.21 0.51 0.67 0.19 

Hossain et al. 2015 (37) 0.49 0.08 1.17 0.51 0.67 0.19 

Hossain et al. 2015 (38) 0.49 0.58 0.20 0.51 0.67 0.19 

 

BD = a*exp(b*OC) 

Adelbaki 2018 (1) 0.47 0.26 0.29 0.50 0.67 0.19 

Grigal et al., 1989 (26) (OM) (Peat 
0-25 cm) 

0.49 0.03 2.45 0.50 0.67 0.19 

Song et al., 2005 (69) 0.45 0.05 0.31 0.50 0.67 0.19 

Song et al., 2005 (70) 0.45 0.04 0.32 0.50 0.67 0.19 

 

BD = a*exp(b*OC0.5) 

Alexander 1989 (7) 0.51 0.18 0.44 0.50 0.66 0.19 

Alexander 1989 (8) 0.51 0.08 0.76 0.50 0.66 0.19 

Alexander 1989 (9) 0.51 0.17 0.46 0.50 0.66 0.19 

Alexander 1989 (10) 0.51 0.23 0.37 0.50 0.66 0.19 

BD = a*exp(b*OC) Ruehlmann and Körschens 2009 
(61) 

0.46 0.04 0.44 0.50 0.67 0.19 

Ruehlmann and Körschens 2009 
(62) 

0.46 0.02 0.70 0.50 0.67 0.19 

Ruehlmann and Körschens 2009 
(63) 

0.46 0.12 0.26 0.50 0.67 0.19 

BD = exp(a – b*OM0.5) Han et al 2012 (OM) (28) 0.51 0.14 0.42 0.50 0.66 0.19 

F 

(With only OM/OC) 

 

BD = [a – b*OC0.06]3.85 

Beutler et al., 2017 (15) 0.42 0.02 5.98 0.45 0.61 0.20 

BD = a/OC*100 Gosselink et al., 1984 (23) 0.19 0.05 4.68 0.26 0.14 0.95 
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Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

BD = a – b*ln(OC) Hollis et al., 2012 (34) 0.46 0.56 0.30 0.46 0.63 0.19 

BD = a – b*log(OM) Jeffrey, 1970 (OM) (41) 0.46 0.38 0.62 0.46 0.63 0.19 

BD = (a – b*OMc)d Premrov et al., 2018 (58) 0.46 0.07 1.10 0.46 0.50 0.21 

BD = a – b*OC + c*OC2 Sevastas et al., 2018 (68) 0.09 -0.09 1.65 0.51 0.67 0.19 

G 

(With OC/OM, other terms) 

BD = a – b*Clay – c*OC – d*pH 
+ e*Sand 

Bernoux et al., 1998 (12) 0.21 0.34 0.26 0.46 0.63 0.19 

BD = a*Sand – b*OC Bernoux et al., 1998 (13)  0.07 0.11 0.77 0.03 -0.11 0.63 

BD = [a – b*(Clay+1)0.46 – 
c*OC0.55]1.33 

Beutler et al., 2017 (14) 0.29 0.05 0.59 0.51 0.67 0.19 

BD = a – b*Clay – c*Sand – 
d*OC 

Botula et al., 2015 (16) 0.25 0.08 0.38 0.45 0.62 0.20 

BD = a – b*OC – c*Clay – 
d*Sand + e*pH 

Brahim et al., 2012 (17) 0.44 0.54 0.28 0.46 0.63 0.19 

BD = a – b*OC + c*Sand + 
d*Silt + e*pH 

Brahim et al., 2012 (18) 0.35 0.23 0.48 0.47 0.63 0.19 

BD = a + (b*exp^(c*OC)) + 
d*Sand – e*Clay 

Hollis et al., 2012 (31) 0.47 0.52 0.26 0.51 0.67 0.19 

BD = a + (b*exp^(c*OC)) + 
d*Sand – e*Clay 

Hollis et al., 2012 (33) 0.49 0.62 0.19 0.51 0.67 0.19 

BD = a – (b*ln(OC)) + 
(c*ln(Depth)) + (d*Sand) 

Hollis et al., 2012 (32) 0.37 0.43 0.26 0.47 0.64 0.19 

BD = a – b*OC + c*(OC*Clay) Katterer et al., 2006 (44) 0.19 -0.05 3.93 0.46 0.63 0.20 

BD = a + b*Clay – c*OC – 
d*(OC*Clay) 

Katterer et al., 2006 (45) 0.26 0.04 6.56 0.47 0.63 0.19 

BD = a + b*(Sand + CF) – c*OC Katterer et al., 2006 (46) 0.01 0.003 6.49 0.46 0.62 0.20 

BD = a + b*(Sand + CF) – c*OC Katterer et al., 2006 (47) 0.01 0.01 5.31 0.46 0.62 0.20 
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Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

BD = a – b*OC + c*(OC*Sand) Katterer et al., 2006 (48) 0.27 -0.03 6.10 0.46 0.63 0.19 

BD = a – b*Sand – c*OC – 
d*(OC*Clay) + e*(OC*Sand) 

Katterer et al., 2006 (49) 0.15 -0.01 12.48 0.47 0.63 0.19 

BD = exp(a – b*OC + c*Clay – 
d*(Clay^2) – e*Silt) 

Kaur et al., 2002 (50) 0.43 0.46 0.67 0.51 0.68 0.19 

BD = a – b*Clay – c*Silt – 
d*Sand – e*OC 

Makovnikova et al., 2017 (53) 0.41 0.31 0.37 0.45 0.62 0.20 

BD = a – b*ln(Sand) – c*ln(OC) Sevastas et al., 2018 (67) 0.35 0.37 0.45 0.46 0.63 0.19 

BD = a – b*OC – c*Silt - d*Clay Tomasella and Hodnett, 1998 (72) 0.21 0.42 0.24 0.45 0.62 0.20 

BD = a + b*Depth – c*OC Yanti et al., 2021 (73) 0.45 0.46 0.40 0.46 0.62 0.20 

H 

(only texture, pH or depth) 

BD = a – b*Clay – c*pH 

Barros et al 2015 (11) 0.001 -0.01 0.56 0.07 0.13 0.26 

BD = a – b*Clay + c*Silt Heinonen 1977 (29) 0.002 0.01 0.39 0.01 0.01 0.26 

BD = a – b*Clay – c*Sand – 
d*Silt 

Makovníková et al., 2017 (52) 0.003 -0.01 0.55 0.008 0.01 0.27 

BD = a + b*Depth - c*(1/Clay) – 
d*(1/Depth) 

Qiao et al., 2019 (60) 0.46 0.07 1.1 0.18 0.30 0.24 

BD = 1.177 + 0.00263*Sand - 
0.0439*log(Silt) + 0.00208*Silt 

Akpa 2016 (2) 

 

0.003 0.02 0.27 0.01 0.01 0.26 

Akpa 2016 (3) 0.002 0.02 0.27 0.01 0.01 0.26 

BD = 1.512–0.00322*Clay-
0.0865*log(Silt) 

Akpa 2016 (4) 0.003 0.03 0.28 0.01 0.01 0.26 

RMSE root mean square error; R2 prediction coefficient of determination; CCC concordance correlation coefficient. 
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Table 2.7. Results of PTFs tested on BC (All Variables) and recalibrated using NLS. For both the Literature coefficients 
and the NLS generated coefficients, accuracy metrics of R2, CCC and RMSE were generated. 

Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

A 

(Linear) 

 

BD = a – b*OC 

Katterer et al. 2006 (42) 0.31 0.47 0.34 0.43 0.40 0.33 

Katterer et al. 2006 (43) 0.31 0.53 0.34 0.40 0.39 0.32 

Kobal et al., 2011 (51) (OC <3.6%) 0.31  0.53 0.38 0.40 0.39 0.33 

Kobal et al., 2011 (51) 

(OC > 3.6%) 

0.31 0.20 0.44 0.40 0.39 0.33 

Manrique and Jones 1991 (54) 0.31 0.53 0.33 0.41 0.39 0.33 

Saini 1966 (OM) (64) 0.31 0.50 0.34 0.41 0.39 0.33 

Saini 1966 (OM) (65) 0.31 0.50 0.34 0.41 0.39 0.33 

Saini 1966 (OM) (66) 0.31 0.50 0.34 0.41 0.39 0.33 

B 

(Radical root) 

 

BD = a – b*OC0.5 

 

Alexander 1980 (5) (OC) 0.42 0.56 0.29 0.47 0.53 0.30 

Alexander 1980 (6) (OC) 0.42 0.54 0.30 0.45 0.52 0.29 

De Vos 2005 (20) (OM) 0.42 0.40 0.35 0.46 0.52 0.29 

Manrique and Jones 1991 (55) 0.42 0.57 0.30 0.46 0.53 0.29 

Tamminen and Starr 1994 (OM) (71) 0.42 0.52 0.32 0.33 0.14 0.41 

C 

(Reciprocal) 

 

BD = 1 / (a + b*OC) 

Honeysett and Ratkowsky 1989 (OM) (35) 0.44 0.61 0.31 0.47 0.57 0.29 

Drew, 1973 (21) (OM) 0.41 0.53 0.30 0.49 0.58 0.28 

Nanko et al. 2014 (56) 0.43 0.26 0.50 0.45 0.55 0.29 

D 

(Multiple ln terms) 

 

lnBD = a + b*ln(OC) + 
c*[ln(OC)]^2 

Curtis and Post 1964 (19) 0.32 0.21 1.79 0.48 0.57 0.28 

Federer 1983 (22) 0.29 0.02 1.28 0.48 0.57 0.28 

Huntington et al. 1989 (39) (OM) 0.25 0.02 1.30 0.48 0.56 0.28 

Huntington et al. 1989 (40) (OC) 0.37 0.48 0.34 0.48 0.58 0.28 

Prévost 2004 (59) (OM) 0.33 0.04 1.23 0.47 0.57 0.28 

E Grigal et al. 1989 (24) (OM) 0.41 0.27 0.76 0.47 0.57 0.28 
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Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

(Natural exponent) 

 

BD = a + b*exp^(c*OC) 

Grigal et al. 1989 (25) (OM) 0.46 0.61 0.30 0.47 0.57 0.28 

Grigal et al. 1989 (26) (OM) (Peat 25-175cm) 0.45 0.04 2.47 0.47 0.57 0.28 

Grigal et al. 1989 (27) (OM) 0.40 0.48 0.34 0.47 0.56 0.29 

Hossain et al. 2015 (36) 0.45 0.61 0.28 0.47 0.57 0.28 

Hossain et al. 2015 (37) 0.38 0.12 1.10 0.47 0.57 0.29 

Hossain et al. 2015 (38) 0.38 0.44 0.32 0.48 0.57 0.28 

 

BD = a*exp(b*OC) 

Adelbaki 2018 (1) 0.34 0.27 0.34 0.45 0.52 0.30 

Grigal et al., 1989 (26) (OM) (Peat 0-25 cm) 0.46 0.61 0.30 0.45 0.53 0.30 

Song et al., 2005 (69) 0.31 0.05 0.37 0.43 0.50 0.30 

Song et al., 2005 (70) 0.31 0.05 0.37 0.44 0.52 0.30 

 

BD = a*exp(b*OC0.5) 

Alexander 1989 (7) 0.43 0.28 0.41 0.46 0.55 0.28 

Alexander 1989 (8) 0.43 0.14 0.69 0.48 0.57 0.28 

Alexander 1989 (9) 0.43 0.27 0.43 0.47 0.56 0.29 

Alexander 1989 (10) 0.43 0.32 0.36 0.47 0.57 0.28 

 

BD = a*exp(-c*OC) 

Ruehlmann and Korschens 2009 (61) 0.32 0.07 0.42 0.44 0.52 0.29 

Ruehlmann and Korschens 2009 (62) 0.31 0.03 0.61 0.44 0.52 0.29 

Ruehlmann and Korschens 2009 (63) 0.32 0.09 0.37 0.44 0.52 0.29 

BD = exp(a – b*OM0.5) Han et al 2012 (28) (OM) 0.43 0.23 0.40 0.47 0.57 0.28 

F  

(With only OM/OC) 

 

BD = [a – b*OC0.06]3.85 

Beutler et al., 2017 (15) 0.46 0.03 5.66 0.47 0.56 0.29 

BD = a/OC*100 Gosselink et al., 1984 (23) 0.23 0.05 5.73 0.32 0.23 0.94 

BD = a – b*ln(OC) Hollis et al., 2012 (34) 0.44 0.61 0.35 0.47 0.57 0.29 

BD = a – b*log(OM) Jeffrey, 1970 (41) 0.44 0.50 0.63 0.48 0.56 0.29 

BD = (a – b*OMc)d Premrov et al., 2018 (58) 0.44 0.10 1.16 0.47 0.44 0.31 
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Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

BD = a – b*OC + c*OC2 Sevastas et al., 2018 (68) 0.03 -0.05 2.44 0.45 0.54 0.29 

G 

(With OC/OM, other terms) 

BD = a – b*Clay – c*OC – d*pH 
+ e*Sand 

Bernoux et al., 1998 (12) 0.24 0.28 0.38 0.42 0.48 0.32 

BD = a*Sand – b*OC Bernoux et al., 1998 (13)  0.21 0.24 0.80 0.11 0.15 0.65 

BD = [a  – b*(Clay+1)0.46 – 
c*OC0.55]1.33 

Beutler et al., 2017 (14) 0.41 0.11 0.50 0.45 0.53 0.29 

BD = a – b*Clay – c*Sand – 
d*OC 

Botula et al., 2015 (16) 0.09 0.06 0.40 0.42 0.44 0.32 

BD = a – b*OC – c*Clay – 
d*Sand + e*pH 

Brahim et al., 2012 (17) 0.25 0.48 0.36 0.42 0.48 0.31 

BD = a – b*OC + c*Sand + 
d*Silt + e*pH 

Brahim et al., 2012 (18) 0.31 0.34 0.45 0.41 0.47 0.32 

BD = a + (b*exp^(c*OC)) + 
d*Sand – e*Clay 

Hollis et al., 2012 (31) 0.46 0.57 0.30 0.48 0.58 0.28 

BD = a + (b*exp^(c*OC)) + 
d*Sand – e*Clay 

Hollis et al., 2012 (33) 0.46 0.53 0.30 0.48 0.58 0.28 

BD = a – (b*ln(OC)) + 
(c*ln(Depth)) + (d*Sand) 

Hollis et al., 2012 (32) 0.45 0.54 0.30 0.48 0.57 0.28 

BD = a – b*OC + c*(OC*Clay) Katterer et al., 2006 (44) 0.27 -0.13 2.53 0.41 0.39 0.34 

BD = a + b*Clay – c*OC – 
d*(OC*Clay) 

Katterer et al., 2006 (45) 0.29 0.08 4.64 0.39 0.37 0.34 

BD = a + b*(Sand + CF) – c*OC Katterer et al., 2006 (46) 0.22 0.02 9.57 0.45 0.51 0.30 

BD = a + b*(Sand + CF) – c*OC Katterer et al., 2006 (47) 0.24 0.02 7.85 0.44 0.50 0.30 

BD = a – b*OC + c*(OC*Sand) Katterer et al., 2006 (48) 0.16 -0.05 5.13 0.41 0.39 0.33 

BD = a – b*Sand – c*OC – 
d*(OC*Clay) + e*(OC*Sand) 

Katterer et al., 2006 (49) 0.14 -0.03 9.78 0.42 0.43 0.33 
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Model Group Reference Original NLS 

R2 CCC RMSE R2  CCC RMSE 

BD = exp(a – b*OC + c*Clay – 
d*(Clay^2) – e*Silt) 

Kaur et al., 2002 (50) 0.44 0.47 0.42 0.42 0.50 0.32 

BD = a – b*Clay – c*Silt – 
d*Sand – e*OC 

Makovnikova et al., 2017 (53) 0.27 0.40 0.36 0.13 0.14 0.37 

BD = a – b*ln(Sand) – c*ln(OC) Sevastas et al., 2018 (67) 0.33 0.45 0.45 0.49 0.58 0.28 

BD = a – b*OC – c*Silt - d*Clay Tomasella and Hodnett, 1998 (72) 0.29 0.44 0.35 0.42 0.44 0.32 

BD = a + b*Depth – c*OC Yanti et al., 2021 (73) 0.33 0.42 0.54 0.43 0.49 0.31 

H 

(only texture, pH or depth) 

BD = a – b*Clay – c*pH 

Barros et al 2015 (11) 0.01 -0.02 0.61 0.20 0.23 0.36 

BD = a – b*Clay + c*Silt Heinonen 1977 (29) 0.10 -0.06 0.42 0.16 0.16 0.36 

BD = a – b*Clay – c*Sand – 
d*Silt 

Makovníková et al., 2017 (52) 0.05 -0.07 0.48 0.15 0.16 0.36 

BD = a + b*Depth - c*(1/Clay) – 
d*(1/Depth) 

Qiao et al., 2019 (60) 0.03 -0.18 0.62 0.32 0.40 0.33 

BD = a + b*Sand – c*log(Silt) + 
d*Silt 

Akpa 2016 (2) 

 

0.07 

 

0.09 

 

0.38 

 

0.13 

 

0.13 

 

0.37 

 

Akpa 2016 (3) 0.09 0.11 0.38 0.14 0.14 0.37 

BD = a – b*Clay – c*log(Silt) Akpa 2016 (4) 0.07 0.12 0.40 0.17 0.11 0.38 

RMSE root mean square error; R2 prediction coefficient of determination; CCC concordance correlation coefficient. 
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Table 2.8. Results of PTFs tested on BC (C and BD) and recalibrated using NLS. For both the Literature coefficients and 
the NLS generated coefficients, accuracy metrics of R2, CCC and RMSE were generated. 

Model Group Reference 
Original NLS 

R2 CCC RMSE R2  CCC RMSE 

A 

(Linear) 

 

BD = a – b*OC 

Katterer et al. 2006 (42) 0.23 0.43 0.36 0.24 0.36 0.34 

Katterer et al. 2006 (43) 0.23 0.47 0.38 0.24 0.36 0.34 

Kobal et al., 2011 (51) 

(OC < 3.6%) 

0.23 0.44 0.43 0.24 0.36 0.34 

Kobal et al., 2011 (51) 

(OC > 3.6%) 

0.25 0.18 0.46 0.24 0.36 0.34 

Manrique and Jones 1991 (54) 0.23 0.46 0.37 0.24 0.36 0.34 

Saini 1966 (OM) (64) 0.23 0.45 0.36 0.24 0.36 0.34 

Saini 1966 (OM) (65) 0.23 0.43 0.35 0.24 0.35 0.34 

Saini 1966 (OM) (66) 0.23 0.46 0.36 0.24 0.35 0.34 

B 

(Radical root) 

 

BD = a – b*OC^0.5 

 

Alexander 1980 (5) 0.33 0.50 0.32 0.33 0.48 0.32 

Alexander 1980 (6) 0.33 0.50 0.32 0.33 0.48 0.32 

De Vos 2005 (20) (OM) 0.33 0.38 0.36 0.33 0.48 0.32 

Manrique and Jones 1991 (55) 0.33 0.50 0.33 0.33 0.48 0.32 

Tamminen and Starr 1994 (OM) (71) 0.33 0.45 0.35 0.33 0.48 0.32 

C 

(Reciprocal) 

 

BD = 1 / (a + b*OC) 

Honeysett and Ratkowsky 1989 (OM) (35) 0.33 0.55 0.33 0.32 0.49 0.32 

Drew, 1973 (21) (OM) 0.31 0.47 0.32 0.32 0.49 0.32 

Nanko et al. 2014 (56) 0.32 0.23 0.53 0.32 0.49 0.32 

D 

(Multiple ln terms) 

 

lnBD = a + b*ln(OC) + 
c*[ln(OC)]^2 

Curtis and Post 1964 (19) (OM) 0.15 0.14 1.98 0.39 0.54 0.30 

Federer 1983 (22) (OM) 0.27 0.03 1.29 0.39 0.54 0.30 

Huntington et al. 1989 (39 OM) 0.24 0.03 1.30 0.39 0.55 0.30 

Huntington et al. 1989 (40 OC) 0.20 0.35 0.40 0.39 0.54 0.30 

Prévost 2004 (59) 0.31 0.04 1.24 0.39 0.55 0.30 
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E 

(Natural exponent) 

 

Db = a + b*exp^(c*OC) 

Grigal et al. 1989 (24) (OM) 0.30 0.26 0.75 0.39 0.54 0.31 

Grigal et al. 1989 (25) (OM) 0.36 0.53 0.34 0.39 0.54 0.30 

Grigal et al., 1989 (26) (OM) (Peat 0-25 cm) 0.28 0.04 2.38 0.28 0.44 0.33 

Grigal et al. 1989 (27) (OM) 0.29 0.40 0.38 0.39 0.54 0.31 

Hossain et al. 2015 (36) 0.35 0.54 0.31 0.39 0.54 0.31 

Hossain et al. 2015 (37) 0.27 0.12 1.08 0.39 0.54 0.30 

Hossain et al. 2015 (38) 0.27 0.38 0.35 0.39 0.54 0.30 

 

Db = a*exp(b*OC) 

Abdelbaki 2018 (1) 0.25 0.25 0.35 0.28 0.44 0.33 

Grigal et al., 1989 (26) (OM) (Peat 0-25 cm) 0.29 0.04 2.42 0.39 0.54 0.31 

Song et al., 2005 (69) 0.23 0.04 0.38 0.28 0.44 0.33 

Song et al., 2005 (70) 0.23 0.04 0.38 0.28 0.44 0.33 

 

Db = a*exp(b*OC^0.5) 

Alexander 1989 (7) 0.34 0.27 0.41 0.36 0.52 0.31 

Alexander 1989 (8) 0.34 0.14 0.68 0.37 0.53 0.31 

Alexander 1989 (9) 0.34 0.26 0.42 0.37 0.53 0.31 

Alexander 1989 (10) 0.34 0.31 0.36 0.37 0.53 0.31 

 

Db = (a – b*c)*exp(-
c*OC) 

Ruehlmann and Korschens 2009 (61) 0.23 0.07 0.42 0.28 0.44 0.33 

Ruehlmann and Korschens 2009 (62) 0.23 0.03 0.61 0.28 0.44 0.33 

Ruehlmann and Korschens 2009 (63) 0.23 0.08 0.38 0.28 0.44 0.33 

BD = e^(a – b*OM^0.5) Han et al 2012 (28) 0.34 0.22 0.40 0.37 0.53 0.31 

F 

(With only OM/OC) 

BD = [a – b*OC0.06]3.85 

Beutler et al., 2017 (15) 0.35 0.03 8.31 0.37 0.40 0.35 

BD = a/OC*100 Gosselink et al., 1984 (23) 0.31 0.47 0.32 0.22 0.13 1.17 

BD = a – b*ln(OC) Hollis et al., 2012 (34) 0.38 0.59 0.36 0.39 0.54 0.31 

BD = a – b*ln(OM) Jeffrey, 1970 (41) (OM) 0.38 0.43 0.71 0.39 0.54 0.31 

BD = (a – b*OMc)d Premrov et al., 2018 (58) 0.20 0.10 1.25 0.37 0.20 0.39 

BD = a – b*OC + c*OC2 Sevastas et al., 2018 (68) 0.04 -0.06 2.55 0.32 0.47 0.32 

RMSE root mean square error; R2 prediction coefficient of determination; CCC concordance correlation coefficient. 
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Table 2.9. Comparison of RMSE values for PTFs included in this study, with the RMSE values reported in the original 
paper (“Orig. study” column), and RMSE values produced when those PTFs were tested on regional datasets 
in selected studies. 

PTF# 

O
rig

in
al 

stu
d

y 

O
n

tario
 (A

ll 
V

ariab
les) 

B
C

 (A
ll 

V
ariab

les) 

B
C

 (C
 B

D
) 

A
b

d
elb

aki 

2018 

B
o

sch
i 2018 

A
l-Q

in
n

a &
 

Jab
er 

2013 

  D
e V

o
s 2005 

H
an

 2012 

K
au

r 2002  

N
an

ko
 2014 

S
evastas 

2018 

B
o

tu
la et al., 

2015 

V
asilin

iu
c 

an
d

 P
atrich

e 
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1 0.13 0.29 0.34 0.35        0.1406    

2 0.179 0.27 0.38             

3 0.152 0.27 0.38             

4 0.189 0.28 0.40             

5  0.20 0.29 0.32 0.16 0.19 0.326 0.30 0.14 0.19 0.319 0.1839  0.157 0.154 

6  0.24 0.30 0.32 0.17    0.17 0.23 0.438 0.1390  0.171 0.143 

7  0.44 0.41 0.41            

8  0.76 0.69 0.68            

9  0.46 0.43 0.42            

10  0.37 0.36 0.36            

11  0.56 0.61             

12  0.26 0.38          0.307   

13  0.77 0.80             

14 0.22 0.59 0.50             

15 0.26 5.98 5.66 8.31            

16 0.137 0.38 0.40         0.1673    

17  0.28 0.36             

18  0.48 0.45             

19  1.65 1.79 1.98 0.35 0.30    0.25 0.164 0.3362  0.263 0.276 

20 0.16 0.35 0.35 0.36       0.540 0.1493    

21  0.25 0.30 0.32        0.1413    
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22  1.13 1.28 1.29 0.33 0.31 1.594 0.45 0.23 0.23 0.153 0.3865  0.261 0.295 

23  4.68 5.73 0.32            

24  0.78 0.76 0.75            

25  0.20 0.30 0.34            

26  2.49 2.47 2.38            

27  0.19 0.34 0.38  0.23     0.187 0.2898    

28 0.13 0.42 0.40 0.40 0.23 0.24     0.276 0.1995  0.164  

29  0.39 0.42             

30 0.17 NA NA             

31 0.13 0.26 0.30  0.57        0.207 0.198  

32 0.14 0.26 0.30             

33 0.15 0.19 0.30  0.16         0.163  

34 0.10 0.30 0.35 0.36 0.45       0.1535    

35  0.26 0.31 0.33    0.25   0.271 0.1517    

36  0.21 0.28 0.31        0.1741    

37  1.17 1.10 1.08            

38  0.20 0.32 0.35            

39  1.15 1.30 1.30 0.58 0.31 1.599 0.45 0.40 0.45  0.2737 0.503  0.337 

40  0.21 0.34 0.40 0.27 0.24   0.18 0.20 0.209   0.213 0.230 

41  0.62 0.63 0.71  0.25  0.34   0.204 0.3016    

42 0.13 0.32 0.34 0.36            

43 0.16 0.29 0.34 0.38            

44 0.14 3.93 2.53             

45 0.16 6.56 4.64             
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46 0.13 6.49 9.57             

47 0.16 5.31 7.85             

48 0.12 6.10 5.13             

49 0.16 12.48 9.78             

50 0.15 0.67 0.42  0.32 0.38 0.515 0.56 0.26   0.3972 0.362 0.371 0.545 

51  0.23 0.38 0.43        0.2061    

52  0.55 0.48             

53  0.37 0.36             

54  0.22 0.33 0.37 0.24 0.17   0.35 0.20  0.1502  0.175 0.189 

55  0.19 0.30 0.33 0.16 0.19 0.335 0.32 0.14 0.18 0.301  0.637 0.160 0.159 

56 0.138 0.34 0.50 0.53 0.42           

57 0.123 NA NA             

58 0.126 1.10 1.16 1.25            

59  1.09 1.23 1.24 0.23 0.23   0.15  0.190 0.2691  0.202  

60 0.079 1.1 0.62             

61 0.215 0.44 0.42 0.42  0.47      0.1335    

62 0.215 0.70 0.61 0.61 0.15 0.47 0.142         

63 0.215 0.26 0.37 0.38  0.47          

64  0.30 0.34 0.36            

65  0.30 0.34 0.35        0.1338    

66  0.30 0.34 0.36            

67 0.1195 0.45 0.45             

68 0.12449 1.65 2.44 2.55            

69  0.31 0.37 0.38        0.1844    
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70  0.32 0.37 0.38            

71  0.19 0.32 0.35 0.19 0.26  0.37   0.211 0.2813    

72  0.24 0.35  0.26 0.19 0.421  0.21 0.18  0.2156  0.205 0.254 

73  0.40 0.54             
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2.11. Supplementary Figures 
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Figure 2.12. Plots of observed versus predicted BD values for Group A (linear) 
functions. For each dataset used in this study, an example PTF was 
chosen for the model. This function was plotted using its literature 
coefficients, and then using its NLS-generated coefficients. Blue 
lines represent the 5th and 95th percentiles; red line is the 1:1 line. 
Ontario (All Variables) results are shown top left and right; BC (All 
Variables) are shown middle left and right; and BC (Carbon and Bulk 
Density) are shown bottom left and right. 
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Figure 2.13. Plots of observed versus predicted BD values for Group B (radical 
root) functions. For each dataset used in this study, an example PTF 
was chosen for the model. This function was plotted using its 
literature coefficients, and then using its NLS-generated 
coefficients. Blue lines represent the 5th and 95th percentiles; red line 
is the 1:1 line. Ontario (All Variables) results are shown top left and 
right; BC (All Variables) are shown middle left and right; BC (Carbon 
and Bulk Density) are shown bottom left and right. 
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Figure 2.14. Plots of observed versus predicted BD values for Group C 
(reciprocal) functions. For each dataset used in this study, an 
example PTF was chosen for the model. This function was plotted 
using its literature coefficients, and then using its NLS-generated 
coefficients. Blue lines represent the 5th and 95th percentiles; red line 
is the 1:1 line. Results for Ontario (All Variables) are shown top left 
and right; BC (All Variables) are shown middle left and right; and BC 
(Carbon and Bulk Density) are shown bottom left and right. 
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Figure 2.15. Plots of observed versus predicted BD values for Group E (natural 
exponent terms) functions. For each dataset used in this study, an 
example PTF was chosen for the model. This function was plotted 
using its literature coefficients, and then using its NLS-generated 
coefficients. Blue lines represent the 5th and 95th percentiles; red line 
is the 1:1 line. Results for Ontario (All Variables) are shown top left 
and right; BC (All Variables) are shown middle left and right; and BC 
(Carbon and Bulk Density) are shown bottom left and right. 

 

 

 

 

 

Figure 2.16. PICP vs CL Graphs for each dataset. For Model Group A (linear 
functions), a representative PTF was chosen, and the PICP vs CL 
graph for that PTF is shown for each dataset. Ontario (All Variables) 
is shown top left; BC (All Variables) top right; and BC (Carbon and 
Bulk Density) bottom left. 



96 

 

 

 

 

Figure 2.17. PICP vs CL Graphs for each dataset. For Model Group B (radical 
root functions), a representative PTF was chosen, and the PICP vs 
CL graph for that PTF is shown for each dataset. Ontario (All 
Variables) is shown top left; BC (All Variables) is shown top right; 
and BC (Carbon and Bulk Density) is shown bottom left. 
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Figure 2.18. PICP vs CL Graphs for each dataset. For Model Group C (reciprocal 
functions), a representative PTF was chosen, and the PICP vs CL 
graph for that PTF is shown for each dataset. Ontario (All Variables) 
is shown top left; BC (All Variables) is shown top right; and BC 
(Carbon and Bulk Density) is shown bottom left. 
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Figure 2.19. PICP vs CL Graphs for each dataset. For Model Group E (functions 
with natural exponent terms), a representative PTF was chosen, and 
the PICP vs CL graph for that PTF is shown for each dataset. Ontario 
(All Variables) is shown top left; BC (All Variables) is shown top 
right; and BC (Carbon and Bulk Density) is shown bottom left. 
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Figure 2.20. MPI Graphs for Model Group E PTFs, after recalibration with NLS, for 
each dataset. Ontario (All Variables) is shown top left; BC (All 
Variables) is shown top right; and BC (Carbon and Bulk Density) is 
shown bottom left. 

 

 

 

 

 

Figure 2.21. MPI Graphs for Model Group F PTFs, after recalibration with NLS. 
Ontario (All Variables) is shown top left; BC (All Variables) is shown 
top right; and BC (Carbon and Bulk Density) is shown bottom left. 
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Figure 2.22. MPI Graphs for Model Group G PTFs, after recalibration with NLS. 
Ontario (All Variables) is shown top; BC (All Variables) is shown 
bottom. 

 

 
 

Figure 2.23. MPI Graphs for Model Group H PTFs, after recalibration with NLS. 
Ontario (All Variables) is shown left; BC (All Variables) is shown 
right. 
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Chapter 3. Machine Learning Approaches to Gap 
Filling Using Multiple Models Produced with Random 
Forest and Uncertainty Estimates Generated by 
Quantile Regression 

3.1. Abstract 

Legacy soil datasets are a valuable resource and should be used to the greatest 

extent possible. However, such datasets may be incomplete, and lack observations for 

every attribute, as the dataset may be a compilation of multiple studies. To use these 

datasets in soil mapping and modeling work, it is useful to fill the gaps in the dataset with 

estimated values. Machine learning is an approach that can provide estimates with high 

accuracy. In this study, the machine learner Random Forest (RF) was used to estimate 

bulk density values in an existing dataset from the province of British Columbia (BC), 

Canada, which was used as a case study dataset. As the dataset had missing 

observations across all attributes, multiple models need to be generated and tested to 

determine the accuracy of the estimated values produced. A total of 513 models were 

tested using RF, which were then ranked based on the concordance correlation 

coefficient (CCC) of their estimates; the CCC of all models ranged from 0.51 to 0.92. 

The estimates of 27 of these models were then used to fill the missing observations in 

the dataset; the accuracy of these models ranged from a CCC of 0.63 to 0.92. Further, 

uncertainty estimates for the predictions were generated using Quantile Regression 

(QR), which was coupled with the RF approach. Each model tested therefore had an 

accuracy measurement and an uncertainty estimate. This approach, of using multiple 

models developed in RF, can be applied to other legacy soil datasets with inconsistently 

missing values to produce estimates which can fill the missing observations, and 

produce uncertainty estimates for those estimates. 

3.2. Introduction 

Soil has many important functions: from an essential role in agriculture to being 

the largest reservoir of terrestrial carbon (FAO, 2004). Soil data are a valuable resource; 

however, it is often cost prohibitive to collect new data, so existing soil data must be 

used to the greatest extent possible (Arrouays et al., 2017). As soil datasets can be 
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compiled from many different sources, there are often gaps in the data, leading to 

incomplete coverage of soil attributes. Pedotransfer functions (PTFs) have been used to 

estimate values missing from soil databases; for example, bulk density is a frequently 

missing attribute, and there are many PTFs, which have been developed to estimate this 

property (Abdelbaki et al., 2018; Nasta et al., 2020; Nanko et al., 2014; Sevastas et al., 

2018). In cases where the available data is patchwork, multiple models with different 

input variables must be applied to provide estimates for all horizons in the dataset. The 

estimates produced may vary in their accuracy and uncertainty, but their inclusion in soil 

datasets allows a greater amount of legacy data to be utilized. When used in conjunction 

with digital soil mapping, the estimates produced by PTFs increase the density of data 

available for mapping purposes.  

Many regions have sparse soil data coverage, and there are not always financial 

resources available to acquire new data; however, using legacy soil data to the greatest 

extent possible is an option to provide data for DSM projects (Lagacherie, 2008). To 

discard existing data is “wasteful and scientifically irresponsible” (Rossiter, 2008). The 

density of coverage of existing data varies by country, and there is little traditional soil 

surveying currently taking place (Hartemink, 2008). Legacy data may come in the form 

of soil maps or soil profile data (Lagacherie, 2008); these data can be “renewed” so that 

it is accessible and useable (Rossiter, 2008). Legacy soil data have been used in digital 

soil mapping (DSM) projects in many regions around the world; Hendriks et al. (2019) 

found that regional studies relied more heavily on legacy soil data than did local studies. 

These legacy datasets are often augmented before modeling takes place using PTFs; 

for example, Silatsa et al. (2020) modelled soil carbon stock in Cameroon and used the 

Adams (1973) PTF to estimate missing BD values before calculating carbon stocks.  

PTFs can take different forms: they may be in the form of look-up tables; 

regression-derived equations; or relationships developed through machine learning (Van 

Looy et al., 2017). The term “pedotransfer function” was introduced by Bouma (1989), 

who developed a PTF through regression analysis, which estimated bulk density from 

organic matter and particle size fraction. Earlier researchers had also developed 

equations relating soil attributes, such as Curtis and Post (1964) who developed an 

equation relating the density of pure mineral matter and pure organic matter to soil bulk 

density; or Breeuwsma et al. (1986) who estimated cation exchange capacity (CEC) 

from organic matter and clay.  PTFs have been developed for specific soil conditions 



103 

and regions around the world, and there has been consensus that PTFs should not be 

applied to areas or soil conditions for which they were not developed (McBratney et al., 

2002; De Vos et al., 2005; Benites et al., 2007; Casanova et al., 2016). Recalibrating an 

existing PTF for a regional dataset is an approach that improves the accuracy of the 

predictions generated by the PTF (Arbor et al., 2023). Recalibration can be performed 

using the nonlinear least squares method to generate new coefficients for existing PTFs 

(De Vos et al., 2005; Nanko et al., 2014; Khodaverdiloo et al., 2022; Arbor et al., 2023); 

the updated function is then better fitted to the dataset being used. 

To generate a new PTF, an increasingly popular option is the use of machine 

learning (Padarian et al., 2020). An advantage of machine learners is that they are able 

to handle non-linear relationships (Padarian et al., 2020). While PTFs produced through 

machine learning do not produce an equation, they are based on a model with input 

variables whose importance may vary by region or soil conditions. As examples, Yi et al. 

(2016) used OC, silt, clay and depth as predictors for bulk density in China; Ramcharan 

et al. (2017) used OC, clay, sand, pH and depth for the United States; Chen et al. (2018) 

used OC, clay, sand, gravel, pH, silt and depth as input variables, while finding that OC 

and clay were the most important variables, for a region in France. Even PTFs 

developed in similar geographic areas may not produce accurate results when applied to 

different datasets; it has been asserted that it is the underlying data structure, and 

correlation between soil attributes, that determines the performance of a PTF (Fuentes-

Guevara et al., 2022; Laurence et al., 2023). This supports the argument that a PTF 

should either be recalibrated for a given dataset, or a new PTF developed. 

There are multiple different learners to choose from when producing PTFs, but a 

frequently used machine learner is Random Forest (Breiman, 2001). Random Forest has 

been used to estimate bulk density in many studies (Hikouei et al., 2021; Liu et al., 2021; 

Ramcharan et al., 2017; Sequeira et al., 2014; Martinelli and Gasser, 2022; Zihao et al., 

2022). Szabó et al. (2021) also generated PTFs using Random Forest, as well as 

accompanying uncertainty estimates. The produced PTFs were for soil hydraulic 

properties where they tested 32 combinations of variables to assess their ability to 

predict different soil hydraulic properties. Random Forest is an ensemble of tree 

learners. For each tree, a dataset is selected from the training data with replacement, 

and trees are not dependent on previous trees (Liaw and Wiener, 2002).  The output is 

the average result of all the trees. Advantages of Random Forest include that it resists 
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overfitting (Breiman, 2001); it can handle both categorical and continuous variables; and 

it is easy to use (Liaw and Wiener, 2002).  

The generation of uncertainty estimates to accompany estimates of soil attributes 

has been noted as an issue to be addressed by multiple authors (Minasny and 

McBratney, 2002; Tranter et al., 2010; Malone et al., 2011; Van Looy et al., 2017), as 

estimates should be accompanied by some information on their precision (Koenker, 

2017). Minasny and McBratney (2002) identified two types of uncertainty associated with 

PTFs: uncertainty associated with the input variables, and model uncertainty; and 

discussed methods to quantify this uncertainty. In PTFs developed for soil hydraulic 

properties, uncertainty has been addressed by multiple studies; examples include Deng 

et al. (2009); Kotlar et al. (2019); and Chirico et al. (2010). Tranter et al. (2010) used the 

Shreshtha and Solomantine (2006) method of fuzzy k-means clustering, as well as the 

fuzzy k-means with extragrades method, to assess the uncertainty of PTF estimates 

through prediction interval coverage probability (PICP). 

To provide uncertainty estimates along with the output of the machine learning 

predictions, quantile regression (Koenker and Bassett, 1978) can be used. Quantile 

regression (QR) is an alternative to traditional regression analysis of the relationship 

between a response and predictor variable. Regression analysis such as ordinary least 

squares models a function of the mean of the response variable (Staffa et al., 2019). 

However, to understand the median of the distribution of the response variable, if it is 

skewed, or other characteristics, then modeling the conditional quantiles is informative 

(Hao and Naiman, 2007). It has broad applications, having been used in fields such as 

medical research (Beyerlein, 2014) and econometrics (Conyon and He, 2017). QR has 

previously been used in soil science, by Lombardo et al. (2018) to produce soil maps of 

OC; also by Arbor et al. (2023) to quantify uncertainty of recalibrated equation-based 

PTFs for bulk density. Kasraei et al. (2021) used quantile regression post processing 

with four machine learners, as well as Quantile Random Forest (QRF), to generate 

uncertainty maps for digital soil mapping and found that coupling QR with a machine 

learner produced stable results. Schmidinger and Heuvelink (2023) compared quantile 

regression post processing of Random Forest to four other methods of producing 

probabilistic predictions and found it to produce the best probabilistic predictions 

alongside QRF.  
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Many studies have addressed how to predict missing soil variables, but an issue 

that has not frequently been addressed is how to handle inconsistently, missing 

predictors. When only one predictor is missing or has low coverage, a PTF can be 

developed and applied for the whole dataset (Akpa et al., 2016). While there may be a 

model that produces predictions with the highest accuracy, the input variables used to 

generate that model may not always be available for all observations of the target 

variable. If the goal is to fill an entire dataset, then multiple models, based on various 

combinations of predictors will need to be applied. Using a similar approach, Benke et al. 

(2020) tested over 500 models to determine the best models for predicting electrical 

conductivity (EC) and organic carbon. They used a Generalized Linear Mixed Model with 

Residual Maximum Likelihood estimation, and validated using 5-fold cross validation.  

The objectives of this paper were (1) to apply the machine learning algorithm 

Random Forest to estimate a target variable based on a set of input attributes; (2) to 

generate uncertainty measurements associated with those predictions; and (3) to 

develop a framework for gap-filling soil datasets with varying coverage of input variables, 

using multiple machine-learning generated models, with accompanying uncertainty 

estimates. Bulk density was selected as the case study variable for this paper; bulk 

density often has low coverage, due to the nature of the data collection, which can be 

costly, time-consuming, and labour intensive (Harrison and Bocock, 1981; Kaur et al., 

2002; Botula et al., 2015; Sequeira et al., 2014). The province of British Columbia (BC), 

Canada was used as the case study region, where only 1.5% of available soil 

observations have measured values for bulk density. 

3.3. Methodology 

Using the province of British Columbia (BC), Canada as a case study region, and 

bulk density as a case study variable, the machine learner Random Forest was applied 

to all possible combinations of the input variables available to generate potential models 

to fill missing bulk density values. These models were cross-validated using k-fold cross 

validation. Further, for each estimated value, an uncertainty estimate was generated 

using QR. 
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3.3.1. Study Area 

The study area was the province of BC, Canada. The western border of the 

province is the Pacific Ocean and the Alaskan panhandle; the eastern border runs from 

48o 17’52.9” W to the northwest through the Rocky Mountains, then north to 60o 00’00” 

N. As a very diverse province, divisions into regions based on climate, geography, and 

ecology have been made. Using a combination of climate, physiography, vegetation, and 

soil, BC was classified into 14 biogeoclimatic (BEC) zones. Further divisions of these 

zones into subzones and variants are based on other factors such as elevation (Ministry 

of Forests, 2003). More broadly, BC was divided into five physiographic regions 

(Valentine et al., 1978): the Coast Mountains and Islands, the Interior Plateau, Columbia 

Mountains, and Southern Rockies, Northern and Central Plateaus and Mountains, and 

the Great Plains. The Coast Mountains and Islands are characterized by a marine 

climate, with moderate temperatures throughout the year, and high amounts of 

precipitation (Valentine et al., 1978). Common tree species of the coastal forest include 

western redcedar, Douglas-fir, western hemlock, amabilis fir and Sitka spruce (BC 

Ministry of Forests, 2003). The Interior Plateau receives much less precipitation than the 

coastal region, as it falls in the rainshadow of the coastal mountains. The continental 

climate of the region results in a 25°C temperature range and periods of aridity 

(Valentine et al., 1978). It is characterized by low relief landscapes formed from lava 

flows and deposited glacial drift (Meidinger and Pojar, 1991), with grasslands and forests 

dominated by lodgepole pine (BC Ministry of Forests, 2003). The Columbia Mountains 

and Southern Rockies have highly varied climatic conditions; mountain slopes receive 

high amounts of precipitation annually, from 1500 mm to 2000 mm, with half of this 

precipitation in the form of snow (Valentine et al., 1978). Glacial and fluvial deposits are 

frequent in valleys, with colluvium on steep slopes (Meidinger and Pojar, 1991). 

Common tree species include Englemann spruce and subalpine fir at higher elevations, 

and western redcedar and western hemlock on lower slopes (BC Ministry of Forests, 

2022). The Northern and Central Plateaus and Mountains region is topographically 

diverse, extensively covered by glacial drift left after glacial retreat (Meidinger and Pojar, 

1991). Precipitation is varied, from 400 mm annually in western valleys, up to 2000 mm 

annually in the eastern part of the region on the slopes of the Rocky Mountains. 

Summers are short with cool temperatures, and winters are cold; as a result, soils are 

often frozen from mid-autumn to April (Valentine et al., 1978). Tree species such as 
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spruce, aspen and pine are mixed with areas of alpine tundra and black spruce bogs 

(Ministry of Forests, 2003). Lastly, the Great Plains are found to the north and east of the 

Rocky Mountains, and have a similar climate to the Northern and Central Plateaus and 

Mountains regions; with slightly warmer summers and lower precipitation (Valentine et 

al., 1978). 

3.3.2. Datasets 

Data was compiled from multiple studies and the BC Soil Information System 

(BCSIS), for a total of 101,722 observations. Soil attributes included bulk density, depth, 

organic carbon (OC), cation exchange capacity (CEC), total nitrogen (TN), pH, coarse 

fragment (CF) percent, and sand, silt, and clay percentages. Categorical variables 

included textural class, parent material, and soil order. The dataset was restricted to 

mineral soil samples, so any observations with > 17% organic carbon were removed, as 

were any horizons which had an “Organic” designation for soil order. Bulk density values 

≥ 2.65 g/cm3 were removed, as 2.65 g/cm3 is the commonly assumed value for particle 

density (Kroetsch and Wang, 2008); therefore, bulk density values equal to or greater 

than this were assumed to be erroneous. Any horizons with no depth measurements 

were also removed. Table 3.1 contains the summary statistics of the soil attributes for 

the whole dataset. 

Continuous Predictors 

Bulk density had been measured using four methods, including volumeter, saran 

(clod), excavation, and core (Blake, 1965). These values were available as “field state”, 

which includes all material <7.5 cm in diameter (Quesnel and Suttie, 1983).  Coarse 

Fragment (CF) values are available and reported as a percentage value. Depth was 

calculated as the midpoint value between the measured upper and lower horizon values, 

and is expressed in centimeters. Only observations with depth values which indicated 

mineral soil were included; forest floor observations were removed. Cation exchange 

capacity (CEC) values are reported in meq/100g. Total Nitrogen (TN) values are 

reported in percent. pH values are presented as pH in H2O; pH values which were 

reported as pH in CaCl2 in their source were converted, using an equation which was 

derived by regressing values of pHH2O and pHCaCl2 from the dataset, with an R2 value of 

0.73. The equation is as follows: 
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pH(H2O) = 0.9757*pH(CaCl2) + 0.7143    (1) 

Organic carbon (OC) was determined through three laboratory methods, LECO (Wang 

and Anderson, 1998); Walkley-Black (Walkley and Black, 1934); and loss-on-ignition 

(LOI) (CITE). OC values were converted to LECO: OC values measured through 

Walkley-Black were converted using the following equation: 

 OC(LECO) = 1.47*OC(Walkley-Black)    (2) 

OC values measured through LOI were converted to LECO using equation 3: 

 OC(LECO) = 0.48*OC(LOI) – 0.003    (3) 

Sand, silt and clay were reported as percentage values, and so no conversion was 

necessary. Measurements were made through dry sieving, wet sieving, the hydrometer 

method, and the pipette method (Quesnel and Suttie, 1983). Sand and clay are 

measured values, while silt is calculated as 100 – (sand + clay), so silt was not included 

as a predictor. 

Categorical Predictors 

Soil order was used as the soil taxonomic classification. Horizons with the 

“Organic” order designation were removed, as the dataset was restricted to mineral soil 

horizons. Also, any Cryosol observations were removed due to low representation in the 

dataset. The three most common orders were Brunisolic, Podzolic, and Gleysolic.  

Textural class was determined through hand texturing performed in the field. The 

textural classifications are those of the Canadian System of Soil Classification (Soil 

Classification Working Group, 1998). The most dominant classifications were Loamy 

Sand, with 12,591 observations, and Silty Loam with 12,376 observations. The textural 

classes with the lowest representation were Sandy Clay, with only 73 observations, and 

Silt, with 370 observations. 

Initially, there were 20 classes of parent material. Observations with the classes 

Ice, Bog Morainal, and Anthropogenic were removed. Other classes were combined: 

Active Eolian, Eolian, and Glacial Eolian were all classified as Eolian; Active Fluvial and 

Fluvial together classified as Fluvial; Active Marine and Marine were combined to be the 
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Marine class; Colluvial and Inactive Colluvial were combined to make the Colluvial class; 

and Lacustrine and Glacial Lacustrine together were classified as Lacustrine. The other 

classes, Glacial Fluvial, Morainal, Organic, Volcanic, Saprolite, and Bedrock, were 

unchanged. The most common classes in the dataset were Marine, Morainal and Fluvial. 

3.3.3. Model Development 

The dataset contained 11 variables available for inclusion in developing 

predictive models for bulk density: depth, OC, CF, sand, clay, pH, TN, CEC, PM, textural 

class, and soil order. Measured values for these attributes were not evenly distributed 

throughout the dataset, and so to estimate a bulk density value for each horizon, multiple 

models needed to be employed. The first step was to determine all possible 

combinations of input variables; with 11 variables, this meant a calculated 2,037 number 

of combinations. Each combination was treated as a potential model to be tested; 

models ranged from one to eleven variables, containing every combination of variables 

possible. Depth has previously been found to be an important variable for bulk density 

estimation (Hengl et al., 2017), and depth is universally reported in the dataset (100% of 

horizons contain depth values). Therefore, it was decided to include soil depth as an 

input variable in every model, which reduced the number of potential models to be tested 

to 1,023. The variables sand, silt, and clay were almost always present in the dataset 

together, and together describe particle size distribution. Sand and clay are both 

measured variables, while silt is calculated as the difference between 100% - (sand + 

clay). As a calculated value, silt was therefore not included as an input variable. Sand 

and clay were always either both included, or both excluded in potential model 

combinations, as they showed high collinearity. The number of models was therefore 

reduced to 512.  

When the number of potential models had been ascertained, then the training 

dataset size and number of potential horizons filled for each model were determined. 

Training dataset size was restricted by the number of bulk density horizons available, 

which at 1,450 represented only 1.43% of horizons in the dataset. The model with the 

largest training dataset was BD = f(depth, at 1,450 horizons; this model had the potential 

to fill 100,272 horizons with bulk density estimates. The model with the smallest training 

dataset was BD = f(CEC + CF + depth + OC + order + pH + sand + clay + PM + textural 

class + TN), at 190 horizons; this combination included all 11 available attributes. 
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3.3.4. Accuracy Metrics 

Models Tested using Random Forest 

Every model was tested using the machine learner Random Forest (Breiman, 

2001), which is available in the caret package for the R language (R Core Team, 2023). 

A feature of Random Forest is that it can handle both continuous and categorical data 

(Liaw and Wiener, 2002), which was important as both types of data were represented in 

the dataset. Due to the limited data available, and the need for applying multiple models 

to fill the gaps, cross-validation was used instead of partitioning the data into training and 

testing datasets. As soil measurements from the same profile can be correlated, a leave-

profile-out cross-validation procedure was followed to reduce autocorrelation, and k-fold 

cross-validation was repeated 5 times. 

Accuracy Assessment  

The primary accuracy metric which was used to determine which model to apply was the 

concordance correlation coefficient (CCC). The agreement between the observed values 

and the predicted values is measured by CCC; the higher the CCC value, the greater the 

agreement. It is calculated using the following equation: 

 CCC = 
2𝜌𝜎𝑥 𝜎𝑦

𝜎𝑥
2+ 𝜎𝑦

2+(𝜇𝑥 − 𝜇𝑦)2
      (4) 

where μx and μy are the means of the observed and predicted values and σx and σy are 

the variances of the observed and predicted values. The secondary metric used was 

root mean square error (RMSE). A lower RMSE value indicates a smaller average 

distance between the observed and predicted values, meaning that the model is well 

fitted to the data. It is calculated as: 

 RMSE = √
∑ (𝑥𝑖− 𝑥̂𝑖)2𝑛

𝑖=1

𝑛
     (5) 

Where xi  is the observed value, and 𝑥𝑖̂ is the predicted value of the ith observation; while 

n is the number of observations. 
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Uncertainty Estimates using Quantile Regression 

Uncertainty estimates have not typically been supplied with newly developed 

PTFs (Van Looy et al., 2017; Deng et al., 2009), however this has been identified as an 

area for improvement (Minasny and McBratney, 2002). Quantile regression (QR) was 

chosen to produce uncertainty estimates to accompany each PTF developed. Its 

advantages include that it is not sensitive to outliers (Staffa et al., 2019) and provides 

information about the effect of the predictors on selected quantiles rather than just the 

mean (Das et al., 2019). It has previously been used to estimate uncertainty of PTFs 

produced using Random Forest (Rahmati et al., 2019); in digital soil mapping using 

multiple machine learners (Kasraei et al., 2021; Deragon et al., 2023; Schmidinger and 

Heuvelink, 2023); and has been coupled with a nonlinear least squares method of 

recalibrating PTFs (Arbor et al., 2023). A thorough explanation of QR and how it can be 

integrated into predictive modelling is available in Kasraei et al. (2021); the approach 

here follows the use of QR in previous studies (López López et al., 2014; Dogulu et al., 

2015; Rahmati et al., 2019; Arbor et al., 2023). 

In QR, observed values (y) and predicted values (ŷ) for each quantile (τ) are 

assumed to have a linear relationship: 

 𝑦 = 𝑎𝜏𝑦̂ +  𝑏𝜏        (6) 

where aτ is the slope and bτ is the intercept of the linear regression. To determine aτ and 

bτ, the sum of residuals is minimized in the following loss function: 

 𝑚𝑖𝑛 ∑ 𝜌𝜏
𝐽
𝑗=1 (𝑦𝑗 − (𝑎𝜏𝑦̂𝑗 + 𝑏𝜏))    (7) 

where y
j
 and ŷ

j
 are the jth paired samples, J is the total number of samples, and ρ

τ
 is the 

QR function for the quantile τ: 

 𝜌𝜏 (𝜖𝑗) =  {
(𝜏 − 1)𝜖𝑗,   𝜖𝑗 < 0  

𝜏𝜖𝑗 ,             𝜖𝑗 > 0
     (8) 

where ϵj are the model residuals, calculated as the difference between the observed and 

predicted values from Eq (7), for the τth quantile. For the desired quantile τ, the QR 

function is applied to the residual, ϵj in Eq (8). 
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The uncertainty can be expressed through the prediction interval confidence 

probability (PICP). The estimated prediction limits are calculated for a significance level 

of 1 – α, and the probability that the observed values fall within the prediction limits is the 

PICP (Dogulu et al., 2015). It is expressed in the following equation, where PLt
upper is the 

upper prediction limit, PLt
lower is the lower prediction limit, and yt is the observed value: 

 PICP  =  
1

𝑛
 ∑ 𝐶,𝑛

𝑡=1  𝐶 = {
1, 𝑃𝐿𝑡

𝑙𝑜𝑤𝑒𝑟  ≤  𝑦𝑡 ≤  𝑃𝐿𝑡
𝑢𝑝𝑝𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (9) 

The mean prediction interval (MPI) is calculated as follows: 

 MPI  =  
1

𝑛
 ∑ (𝑃𝐿𝜏

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡
 −  𝑃𝐿𝜏

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡)𝑛
𝜏=1    (10) 

as with PICP, PLt
upper is the upper prediction limit and PLt

lower is the lower 

prediction limit.  

Gap Filling 

Each model was tested, using the available horizons with the variables included 

in the model. As each model was different, so too were the number of horizons available 

for use in training the models. Along with the BD estimates produced by the model, its 

accuracy was measured using CCC, and models were then ranked based on the CCC 

value of their estimates. The model with the best CCC was applied first; subsequent 

models were then applied, until all data points had been filled. Each point therefore has 

an associated CCC and uncertainty. A diagram of the procedure is available in Figure 

3.2. 

3.4. Results and Discussion 

In total, 512 models for BD estimation were tested. The models were ranked by 

CCC value, and the top 40 models are available in Table 3.3; the last 10 models are 

available in Table 3.4. All models used for gap filling, along with their rank, CCC value, 

number of horizons used in model training and number of horizons filled, are available in 

Table 3.5. The model with the highest CCC (0.92) was BD = f(depth + CF + OC + pH + 

sand + clay), which filled 6,379 missing values. The model with the lowest CCC used 

was BD = f(depth), with a CCC of 0.63, which estimated the remaining 528 bulk density 

values. This was not the worst performing model tested; the model with the lowest CCC 
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was BD = f(depth + TN + order + textural class), with a CCC of 0.51, however this model 

was not used to estimate any missing values. The number of models for each CCC 

value range is shown in Figure 3.3. The mean CCC of all models tested was 0.82 and 

the median CCC was 0.85. The mean of models used in gap filling was 0.87, while the 

median of those models was 0.89. 

The number of estimated horizons filled varied by model. Frequently, the BD 

value of a horizon would be estimated by multiple models, especially those horizons with 

many available attributes; therefore, the estimate with the highest CCC was used. The 

actual number of gaps filled by a given model was therefore usually less than the initial 

calculated potential number of horizons for which the model could provide estimates. As 

illustration of this, the second ranked model had the potential to fill 7,088 horizons, but 

6,379 of these horizons had already been filled by the first ranked model, and so the 

second model filled only 709 horizons. 

The difference in CCC value between models was sometimes extremely small; 

for example, there is only a 0.0025 difference between the first and second ranked 

model. Further, there are occurrences where several models have identical CCC values. 

When the values are identical, the model with the greatest number of horizons which 

could be estimated was chosen. This usually translated into the model with the fewest 

variables for a given CCC value being chosen; an advantage of a parsimonious model is 

that it is more likely to be used in other studies, if fewer predictors are required 

(Laurence et al., 2023). As an example, five models had a CCC value of 0.90, and were 

ranked as 30 to 34 of all models tested. Of these five, the model which had the fewest 

variables, and could fill the greatest number of horizons, was used. 

3.4.1. Model Performance and Variables 

The top 40 models had CCC values ranging from 0.92 for the first ranked model, 

to 0.90 for the 40th ranked model. The variables frequently appearing in these models 

include OC, sand and clay, pH, CEC, and CF. Order also was also often included in well 

performing models but was not as well represented in the models ultimately used for gap 

filling. OC as well as organic matter has been found to be highly correlated with BD and 

used in many PTFs (Abdelbaki, 2018; Adams, 1973; Alexander, 1980; Alexander, 1989; 

Curtis and Post, 1964; Drew, 1973; Federer et al., 1993; Grigal et al., 1989; Han et al., 
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2012; Hossain et al., 2015; Kobal et al., 2011; Manrique and Jones, 1991; Song et al., 

2005; Tamminen and Starr, 1994). OC appeared in 8 of the 27 models used in gap 

filling, and 29 of the top 40 ranked models. Likely the reason it did not appear in more of 

the models was due to its limited availability in the case study dataset; only 17% of 

horizons had an OC measurement. 

Particle size fractions such as clay, silt and sand have also been found to be 

influential variables for the prediction of bulk density (Heinonen, 1977; Qiao et al., 2019; 

Tomasella and Hodnett, 1998). While sand and clay had very limited availability in the 

dataset, with only 9.8% of horizons having a measured value, they were highly 

represented in the top 40 models; second only to OC, sand and clay were present in 28 

of the models, and in 10 of the models used for gap filling. The inclusion of OC with 

particle size fractions has also shown good results in published PTFs (Botula et al., 

2015; Hollis et al., 2012; Kätterer et al., 2006; Kaur et al., 2002). In a study on the 

influence of OC on soil physical properties, Dexter et al. (2008) recalibrated a model with 

the form 1/BD = a + b(OC) + c(clay) using the Marquardt-Levenberg algorithm. They fit 

this model for two types of soil, one with high OC content, the other with low OC content. 

They found 1/BD to be highly correlated with OC content in the soil with low OC content; 

however, in the soil with high OC content, 1/BD was strongly correlated with the clay 

content rather than the OC content. They posit that this is due to complexed organic 

carbon (COC), which they defined as the association of 1g of OC with n grams of clay; 

their findings indicate that it is COC content that is more strongly correlated with BD 

rather than OC. Qin et al. (2022) found that in soils with low OC content in China, a 

simple linear model with clay as the only variable produced the most accurate PTF. In a 

study where both the OC and clay content are variable and not uniform, including both in 

a PTF would likely result in increased performance; in this study the best performing 

model included both OC and clay. 

The inclusion of pH with particle size fractions or other variables has also yielded 

good PTFs in previous studies (Barros and Fearnside, 2015; Bernoux et al., 1998; 

Brahim et al., 2012; Pereira et al., 2016). pH was strongly represented in the top 40 

models, appearing in 24 of them; further, it was the variable with the largest number of 

appearances in models used in gap filling, at 16 of 27 models. Among other factors, pH 

has been shown to be affected by agricultural tillage practices (Li et al., 2020), glaciation 

patterns (Balstrøm et al., 2013), geology (Kassai and István, 2018), and topography 



115 

(Zhang et al., 2022). Environmental attributes such as topography, vegetation, or land 

use were not included in the models, as these attributes will be used in further mapping 

projects which include the predicted BD values. However, pH may be acting as a proxy 

variable for some of these attributes, and this may be a contributing factor in its frequent 

appearance in high performing models. 

The soil attributes which contribute the most to the prediction of CEC are clay 

content, OC, and pH (Minasny and Hartemink, 2011). As both OC and clay have been 

shown to be strong predictors for BD, it is unsurprising that a correlated attribute such as 

CEC would then also be a good predictor for BD. CEC was included in 21 of the top 40 

models, and 7 of the models used in gap filling. Like many of the continuous variables 

used in this study, CEC had limited representation in the dataset, with only 14% of 

horizons containing a measured value. De Souza et al. (2016) included CEC as a 

predictor in models developed through MLR and RF; they found that models which used 

soil properties were more accurate in predicting BD than environmental variables; their 

RF model showed an R2 of 0.51. 

CF was the third most prevalent attribute in the top 40 models, and was included 

in 22; it was also in 13 of the 27 models used in gap filling. CF is required for the 

calculation of fine fraction bulk density and soil organic carbon stocks (Mehler et al., 

2014). CF, or gravel as it is also referred to as, was the second most important variable 

in Martin et al.’s (2009) PTF Model M, which produced an R2 of 0.94. 

The last continuous variable included in the models was TN; it was present in 16 

of the top 40 models, and 5 of the models used in gap filling. TN has previously been 

found to be a strong predictor of BD, and highly correlated with OC, such that it could be 

used as a replacement for OC in PTFs (Benites et al., 2007). Han et al. (2012) also 

found TN to be an important predictor for BD.  

Variables with high numbers of observations in the dataset included order 

(90.06%), PM (93.56%), CF (98.42%); and depth (100%). Textural class was the 

categorical variable with the lowest coverage, at 84.40%. The models with the poorest 

performance among all models tested were dominated by categorical input variables, 

such as textural class, PM, and order. The advantage of the inclusion of these variables, 

however, is that they were well represented in the dataset. Models with lower CCC 
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values but with high coverage were then used to estimate those missing values without 

other variables. The model which filled the largest number of horizons was BD = f(depth 

+ CF + order + PM + textural class), which was the 25th model applied, but the 392nd 

ranked model overall. This model contained only categorical variables plus depth, but 

filled almost 64% of horizons with missing values. Relative to other models tested, the 

CCC value was moderate, but still near the mean of models used in gap filling, at 0.86. 

Soil order was the only categorical variable represented in the top 40 models, 

appearing in 7, and 3 of the models used in gap filling. Soil order is a Canadian 

taxonomic classification, but soil classifications have been used in previous PTFs for 

predicting bulk density. Soil taxon was included in Martin et al.’s (2007) PTF developed 

through Multiple Additive Regression Tree modelling, and was ranked the sixth most 

important predictor. Rather than use soil classifications as input variables, several 

studies have grouped data and developed PTFs for the classification. Heuscher et al. 

(2005) found that the performance of PTFs improved when data was divided into soil 

suborders for a US national dataset; Manrique and Jones (1991) similarly found that this 

method improved the results for some suborders. Other studies, such as de Souza et al. 

(2016) did not find any benefit to grouping data by soil classification. With the very 

limited availability of BD data in this study, subdividing the data was not an option, and 

so soil order was used as an input variable. 

Neither parent material nor textural class were represented in the top 40 models; 

however, 3 of the models for gap filling included parent material, and 1 included textural 

class, which was the model that predicted the majority of the missing BD values. 

Calhoun et al. (2001) developed PTFs which included both texture and parent material, 

and found that combining continuous, lab-derived variables with categorical, site 

descriptive variables produced the best models. They also investigated grouping their 

data by parent material type, and found it to improve the accuracy of the estimations. 

3.4.2. Comparison of Results to Other Studies 

In a study with a similar approach to estimating missing values, Benke et al. 

(2020) filled gaps in an existing dataset, with data gathered from almost a hundred 

different projects over 66 years. As in the dataset used in this study, many samples did 

not have the full suite of variables available, and so they tested 560 models to predict 
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each of EC and OC. Model performance was evaluated using mean squared prediction 

error (MSPE) and mean absolute percentage error (MAPE), and then the models were 

ranked based on their MSPE. The authors found a tradeoff between the number of 

potential filled values vs model performance; the 1st ranked model used all available 

variables and had an MSPE of 0.686, while the 35th ranked model for EC had an MSPE 

of 0.710, but could predict a large amount of missing values. This is similar to the results 

produced by this study, where the highest ranked model had a high CCC and filled a 

sizeable number of horizons at 6,379; however, the model which filled 63.9% of the 

horizons in the dataset was ranked 392nd. Unlike Benke’s finding, the highest ranked 

model in this study did not contain all available variables; it only contained 6 of 11 

potential variables. The model which used all available variables was ranked number 

225, with a CCC of 0.85, which was greater than the median value of all models tested. 

Comparison to other studies can be hampered by the metrics used to evaluate 

the accuracy of the PTF; for this study, CCC was chosen as the method of ranking the 

PTFs performance. Akpa et al. (2016) also used CCC to assess the PTFs which they 

developed. Multiple linear regression (MLR) and RF were used to estimate bulk density, 

incorporating environmental variables as well as soil attributes as input. They compared 

using only soil attributes or only environmental data with using both soil and 

environmental data, and found that the latter combination yielded the highest performing 

PTFs. Using RF, the highest CCC values were 0.800 for all data; when the samples 

were divided into topsoil and subsoil, the CCC results were 0.608 for topsoil (<0.40 m) 

and 0.839 for subsoil (>0.40 m). RMSE values for all data were 0.107 Mg/m3, 0.118 for 

topsoil and 0.102 for subsoil. This compares to the most accurate PTF produced in this 

study, with a CCC of 0.92 and an RMSE of 0.10 g/cm3. Due to limited data availability, 

this study did not subdivide the dataset based on depth or other characteristic, although 

other studies have found success with developing PTFs for specific designations such 

as horizon (Reidy et al., 2016) when filling missing values in a dataset.  

A previously used approach of recalibrating existing PTFs improved the accuracy 

of those PTFs (Arbor et al., 2023). The recalibrated PTFs were equation-based functions 

for the prediction of BD developed through regression analysis. After recalibration almost 

all PTFs showed improvement, with the highest reported CCC value of 0.68 for a PTF 

which included OC, clay and silt as predictors for BD. Overall, the study found that fewer 

predictors and simpler model forms were more easily recalibrated and produced the 
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most accurate estimates. In comparison, accuracy did not decrease with the addition of 

more predictors, and often increased. Further, the machine learner RF allowed easy 

incorporation of categorical variables into the models, while categorical variables were 

not included in any of the equation-based functions. Finally, the CCC values of the 

highest performing model in this study was significantly higher than the CCC values of 

the recalibrated PTFs. 

Palladino et al. (2022) used soil attribute variables and environmental variables 

to create eleven PTFs, which contained different combinations and numbers of 

variables, using RF. The best performing PTF had a Pearson correlation coefficient of 

0.616, and RMSE value of 0.163 g/cm3. This PTF used sand, clay, OC, pH, CaCO3, 

elevation, slope, and rock fragment. While many PTFs now incorporate environmental 

variables (Akpa et al., 2016; de Souza et al., 2016; Schillaci et al., 2021) this study 

focused on using only soil attributes as variables to fill missing gaps in the dataset; when 

further digital soil mapping is conducted using this augmented dataset, environmental 

variables will be incorporated in model development. 

3.4.3. Training Dataset Size and Model Performance 

The model used in gap filling with the largest training dataset was BD = f(depth), 

which was the 27th and last model applied, and which used 1,450 horizons to train the 

model. The model with the smallest training dataset incorporated all 11 available 

variables and had a training dataset size of 191. With limited data availability, it is 

desirable to maximize the use of that data, and to determine the minimal sample size 

acceptable for modelling purposes. It can be difficult to decide what the lower limit for the 

size of the training dataset should be. Heuscher et al. (2005) addressed this topic, 

determining how many samples would be required for a valid MLR model. Based on 

Muller and Fetterman’s (2002) work, they multiplied the number of predictor variables, 

plus one for the intercept, by 10 to calculate the minimum number of samples. Using this 

method, the minimum number of samples required for a model in this study with all 11 

available variables and developed using MLR would be 120. With this assessment, the 

191 horizons with the maximum combination of variables available in the case study 

dataset would be suitable to use for an MLR model.  
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There are multiple studies in the literature which investigate the use of different 

sample sizes for training machine learning algorithms. In a study which examined 

groundwater potential, Moghaddam et al. (2020) tested the effect of differing sample 

sizes on four machine learning algorithms, including RF. They found RF to perform the 

best of the four across all sample sizes. Wu et al. (2022) also used RF when 

investigating sample size effect on soil OC prediction. They used 10 sample sizes to 

train their model and found that the prediction accuracy increased as sample size 

increased, until the second to last sample size. They also noted that variable importance 

changed with sample size.  

Somarathna et al. (2017) tested multiple machine learners on different sized 

training datasets and found that the accuracy of the estimations of soil carbon was 

related to the size of the dataset. As training dataset size increased, so did the accuracy 

of the estimations, until a levelling off point was reached, which varied by model. While 

there were differences in accuracy between the models tested, sample size had a 

greater effect on accuracy. They also noted that the uncertainty of the estimations was 

also affected by sample size and decreased as sample size increased. Our findings 

indicated that small training datasets could produce estimates with high accuracy, but 

also higher uncertainty than when larger training datasets were used. 

3.4.4. Uncertainty Estimations 

For each model used, two types of graphs were generated: a PICP vs CI graph, 

and an observed vs predicted plot. Examples of the observed vs predicted plot for the 

first and last models used to estimate missing values, are shown in Figure 3.4. For the 

observed vs predicted plots, the blue lines on the graph are the 95th and 5th quantiles, 

with the distance between the lines at any given point on the x axis being the 90% 

prediction interval (PI), which is the interval in which 90% of predicted values are 

expected to fall. As shown in Figure 3.4, the highest ranked model has a narrow PI 

width, indicating low uncertainty of future predictions falling within this interval. In 

contrast, the last model used has a very wide PI, meaning that the range of values in 

which future predictions could be expected is much greater, reflecting the higher 

uncertainty of the results. 
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Figure 3.5 presents the PICP vs CL graphs for the first and last used models; 

graphs for all other models used for gap filling are presented as Figures 3.7 to 3.31. 

PICP is the preferred metric to evaluate uncertainty over MPI (Dogulu et al., 2015). 

When examining the PICP vs CL graphs, for each confidence level, the PICP should be 

the same or similar (Dogulu et al., 2015); this means that values should be close to the 

1:1 line. If the PICP is greater than its corresponding confidence level and shows a 

greater spread around the 1:1 line, it indicates greater uncertainty for the predicted 

values. Model 1 has a greater spread around the 1:1 line than Model 27; this also 

corresponds to the smaller training dataset size of Model 1 (381 horizons) than that of 

Model 27 (1450 horizons). Somarathna et al. (2017) found an inverse relationship 

between sample size and uncertainty; as sample size increased, uncertainty decreased. 

The same pattern was also observed by Arbor et al. (2023), where the PICP values 

reflected the uncertainty associated with the training dataset size. 

A graph of the MPI values for a selection of the models used in gap filling is 

available in Figure 3.6. A smaller MPI value indicates lower uncertainty (Muthusamy et 

al., 2016); it is the average range in which a future estimation is expected to occur 

(Rahmati et al., 2019). MPI values are plotted for the models at selected confidence 

levels, ranging from 5 to 99%. A confidence level expresses the probability of a value 

occurring; at a 99% confidence level there is a 99% probability that a future estimate will 

occur within the MPI. For models with wide MPI values, it indicates that there is a large 

range of future expected estimates. Model 27 has much larger MPI values for each 

confidence level (CL) than for the other models used in gap filling, while Models 1, 5, 

and 10 have much lower MPI values for every confidence level. This reflects the 

differences in accuracy of estimations for each model. 

3.5. Conclusion 

To address the need to maximize the use of existing soil data, an approach to 

gap filling a legacy soil dataset with inconsistently missing values was applied. Using the 

available variables, every combination of those variables was identified and used as a 

predictive model to estimate missing values. Over 500 models were tested using 

Random Forest and ranked based on the CCC value of their estimations. The accuracy 

of the models ranged from a CCC of 0.92 for the first ranked model, to 0.51 for the last 

ranked model. Of these models, 27 were used to estimate bulk density values missing in 
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the dataset. The accuracy of the models used was 0.92 for the first model applied to 

0.63 for the 27th model applied. Variables that were included in high accuracy models 

were depth, OC, CEC, CF, pH, sand, and clay; however, these variables had low 

representation in the dataset and so could not be used to predict all missing values. 

Models with lower accuracy but which could predict a larger number of variables were 

used to fill the majority of the missing values; variables in these models included soil 

order, textural class, and parent material. Through QR, uncertainty estimates of the 

models output were produced, and expressed through PICP vs CL graphs, and MPI 

plots. The PICP graphs showed minimal variation from the 1:1 line for the models used 

in gap filling, indicating the low uncertainty of these models; those models with the 

largest training datasets corresponded with the lowest uncertainty. The MPI graphs were 

used as a secondary uncertainty measure, and provided a range of values in which 

future predictions will fall for a given confidence level, and indicated that models with 

higher accuracy had lower MPI values. The approach presented here can be used in 

further studies for gap filling datasets with inconsistently missing data, and could be 

applied to other target variables or utilized with different machine learners. 
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3.7. Tables 

Table 3.1. Summary statistics of Dataset (n = 101,722)  

Attribute Min 1st Quarter Median Mean 3rd Quarter Max 

BD 0.30 1.11 1.35 1.41 1.69 2.62 

Depth 0.00 11.00 34.50 40.86 65.00 1,322.50 

OC 0.00 0.71 1.53 2.58 3.25 16.96 

CEC 0.00 7.20 12.90 15.59 20.80 160.90 

TN 0.00 0.04 0.07 0.14 0.13 57.00 

pH 0.84 5.30 5.80 6.03 6.70 11.60 

CF 0.00 0.00 10.00 22.62 45.00 100.00 

Sand 0.00 31.00 46.72 46.38 62.50 99.00 

Silt 0.00 28.00 38.50 39.02 50.00 98.00 

Clay 0.00 6.53 11.50 14.65 18.50 96.21 

Order Brunisolic (36,264), Chernozemic (2,834), Gleysolic (12,967), Luvisolic (6,744), 
Podzolic (29,384), Regosolic (3,377), Solonetzic (41). 

PM Bedrock (81), Colluvial (6,560), Eolian (1,626), Fluvial (17,969), Glacial Fluvial 
(10,184), Glacial Lacustrine (1,463), Lacustrine (1,578), Marine (29,378), Morainal 
(25,187), Organic (925), Saprolite (93), Volcanic (124) 

Textural Class Clay (579), Clay Loam (2,425), Heavy Clay (121), Loam (12,937), Loamy Sand 
(12,591), Sand (9,801), Sandy Clay (73), Sandy Clay Loam (1,954), Sandy Loam 
(26,117), Silt (370), Silty Clay (1,266), Silty Clay Loam (5,245), Silty Loam (12,376) 
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Table 3.2. Number and percentage of horizons with measured values (of n = 
101,722) 

Attribute Number of Observations Percent Horizons with 
Observations 

BD 1,450 1.43 

Depth 101,722 100.00 

OC 17,336 17.04 

CEC 14,158 13.92 

TN 14,877 14.63 

pH 22,322 21.94 

CF 100,113 98.42 

Sand 9,951 9.78 

Silt 9,887 9.72 

Clay 9,916 9.75 

Order 91,611 90.06 

PM 95,169 93.56 

Textural Class 85,856 84.40 

 

Table 3.3. Top 40 best performing models 

Rank Model CCC RMSE 

1 BD = f(depth + CF + OC + pH + sand + clay) 0.92 0.10 

2 BD = f(depth + CF + OC + sand + clay) 0.92 0.11 

3 BD = f(depth + CEC + CF + pH + sand + clay) 0.91 0.11 

4 BD = f(depth + CF + pH + sand + clay) 0.91 0.12 

5 BD = f(depth + OC + order + sand + clay) 0.91 0.11 

6 BD = f(depth + OC + order + pH + sand + clay) 0.91 0.11 

7 BD = f(depth + CEC + OC + sand + clay) 0.91 0.11 

8 BD = f(depth + CF + OC + order + pH + sand + clay) 0.91 0.10 

9 BD = f(depth + OC + pH + sand + clay) 0.91 0.11 

10 BD = f(depth + OC + sand + clay) 0.91 0.12 

11 BD = f(depth + CF + OC + order + sand + clay) 0.91 0.11 

12 BD = f(depth + CEC + pH + sand + clay) 0.91 0.12 

13 BD = f(depth + CEC + OC + pH) 0.91 0.14 

14 BD = f(depth + CEC + OC + order + sand + clay) 0.91 0.11 

15 BD = f(depth + CEC + CF + OC + pH + sand + clay) 0.91 0.11 

16 BD = f(depth + CF + pH + sand + clay + TN) 0.91 0.11 

17 BD = f(depth + CEC + OC + pH + sand + clay) 0.91 0.11 

18 BD = f(depth + CEC + CF + OC + sand + clay) 0.91 0.11 

19 BD = f(depth + CEC + CF + sand + clay + TN) 0.90 0.11 

20 BD = f(depth + CF + order + pH + sand + clay) 0.90 0.12 

21 BD = f(depth + CEC + CF + OC + pH + TN) 0.90 0.14 
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Rank Model CCC RMSE 

22 BD = f(depth + CF + sand + clay + TN) 0.90 0.11 

23 BD = f(depth + CEC + OC + pH + TN) 0.90 0.14 

24 BD = f(depth + CEC + CF + pH + sand + clay + TN) 0.90 0.11 

25 BD = f(depth + CEC + CF + OC + sand + clay + TN) 0.90 0.11 

26 BD = f(depth + CEC + CF + OC + pH) 0.90 0.15 

27 BD = f(depth + OC + sand + clay + TN) 0.90 0.12 

28 BD = f(depth + CEC + CF + order + pH + sand + clay) 0.90 0.12 

29 BD = f(depth + CF + OC + pH + sand + clay + TN) 0.90 0.11 

30 BD = f(depth + CEC + pH) 0.90 0.15 

31 BD = f(depth + CF + OC + pH) 0.90 0.15 

32 BD = f(depth + CF + OC + pH + TN) 0.90 0.15 

33 BD = f(depth + CF + OC + sand + clay + TN) 0.90 0.12 

34 BD = f(depth + CEC + OC + sand + clay + TN) 0.90 0.12 

35 BD = f(depth + OC + pH) 0.90 0.15 

36 BD = f(depth + CEC + OC) 0.90 0.15 

37 BD = f(depth + CEC + OC + TN) 0.90 0.15 

38 BD = f(depth + OC + pH + sand + clay + TN) 0.90 0.11 

39 BD = f(depth + CEC + CF + OC + TN) 0.90 0.15 

40 BD = f(depth + CEC + pH + TN) 0.90 0.15 

 

Table 3.4. 10 worst performing models 

Rank Model CCC RMSE 

503 BD = f(depth + PM + textural class) 0.59 0.31 

504 BD = f(depth + order + textural class) 0.58 0.29 

505 BD = f(depth + CEC + TN + order + textural class) 0.58 0.25 

506 BD = f(depth + order + PM) 0.58 0.29 

507 BD = f(depth + OC + order + textural class) 0.56 0.25 

508 BD = f(depth + TN + order + PM) 0.54 0.26 

509 BD = f(depth + order) 0.53 0.31 

510 BD = f(depth + textural class) 0.53 0.33 

511 BD = f(depth + PM) 0.52 0.32 

512 BD = f(depth + TN + order + textural class) 0.51 0.26 
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Table 3.5. Models used for gap filling bulk density values 

Order 
Used  

Rank Model CCC No. of 
training 
horizons 

Horizons 

Filled  

1 1 BD = f(depth + CF + OC + pH + sand + 
clay)  

0.92 381 6,379 

2 2 BD = f(depth + CF + OC + sand + clay) 0.92 385 709 

3 3 BD = f(depth + CEC + CF + pH + sand + 
clay)  

0.91 369 460 

4 4 BD = f(depth + CF + pH + sand + clay) 0.91 454 964 

5 9 BD = f(depth + OC + pH + sand + clay) 0.91 415 190 

6 12 BD = f(depth + CEC + pH + sand + clay) 0.91 396 37 

7 13 BD = f(depth + CEC + OC + pH) 0.91 871 7,347 

8 30 BD = f(depth + CEC + pH) 0.90 971 2,379 

9 35 BD = f(depth + OC + pH) 0.90 986 169 

10 53 BD = f(depth + CEC + CF + OC + order 
+ pH + sand + clay) 

0.89 284 15 

11 54 BD = f(depth + pH + sand + clay) 0.89 492 574 

12 61 BD = f(depth + CEC + sand + clay) 0.89 402 2 

13 74 BD = f(depth + CF + OC + TN) 0.89 872 21 

14 89 BD = f(depth + CF + pH + TN) 0.89 876 245 

15 122 BD = f(depth + sand + clay) 0.88 513 43 

16 129 BD = f(depth + OC) 0.88 992 44 

17 133 BD = f(depth + CEC) 0.88 979 17 

18 167 BD = f(depth + pH + TN) 0.87 918 1 

19 183 BD = f(depth + CF + order + pH + PM) 0.86 409 1,728 

20 207 BD = f(depth + CF + TN) 0.86 879 10 

21 244 BD = f(depth + CF + pH + PM) 0.85 1,095 883 

22 265 BD = f(depth + CF + pH) 0.84 1,287 249 

23 283 BD = f(depth + pH) 0.84 1,343 21 

24 343 BD = f(depth + TN) 0.81 932 4 

25 392 BD = f(depth + CF + order + PM + 
textural class) 

0.78 561 64,069 

26 417 BD = f(depth + CF) 0.75 1,392 13,187 

27 496 BD = f(depth) 0.63 1,450 528  
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3.8. Figures 

 

Figure 3.1. Sampling locations in the province of BC, Canada. Horizons from 
these sites were either used to train the models, or were filled with 
model predictions.  
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Figure 3.2. Schematic of methods 
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Figure 3.3. Distribution of CCC values after testing all 512 models. 

 

Figure 3.4. Observed vs Predicted plots for the first model applied (left), BD = 
f(depth + CF + OC + pH + sand + clay); and last model applied (right), 
BD = f(depth). 
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Figure 3.5. PICP vs CL graphs for the first model applied (left) and last model 
applied (right). 

 

Figure 3.6. MPI values of selected models used in gap filling by confidence 
level. 
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3.9. Supplementary Figures 

 

Figure 3.7. Model 2, BD = f(depth + CF + OC + sand + clay). PICP vs CL graph, 
left; Observed vs predicted graph, right. 

 

Figure 3.8. Model 3, BD = f(depth + CEC + CF + pH + sand + clay). PICP vs CL 
graph, left; Observed vs predicted graph, right. 
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Figure 3.9. Model 4, BD = f(depth + CF + pH + sand + clay). PICP vs CL graph, 
left; Observed vs predicted graph, right. 

 

Figure 3.10. Model 5, BD = f(depth + OC + pH + sand + clay). PICP vs CL graph, 
left; Observed vs predicted graph, right. 
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Figure 3.11. Model 6, BD = f(depth + CEC + pH + sand + clay). PICP vs CL graph, 
left; Observed vs predicted graph, right. 

 

Figure 3.12. Model 7, BD = f(depth + CEC + OC + pH). PICP vs CL graph, left; 
Observed vs predicted graph, right. 
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Figure 3.13. Model 8, BD = f(depth + CEC + pH). PICP vs CL graph, left; Observed 
vs predicted graph, right. 

 

Figure 3.14. Model 9, BD = f(depth + OC + pH). PICP vs CL graph, left; Observed 
vs predicted graph, right. 
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Figure 3.15. Model 10, BD = f(depth + CEC + CF + OC + order + pH + sand + clay). 
PICP vs CL graph, left; Observed vs predicted graph, right. 

 

Figure 3.16. Model 11, BD = f(depth + pH + sand + clay). PICP vs CL graph, left; 
Observed vs predicted graph, right. 
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Figure 3.17. Model 12, BD = f(depth + CEC + sand + clay). PICP vs CL graph, left; 
Observed vs predicted graph, right. 

 

Figure 3.18. Model 13, BD = f(depth + CF + OC + TN). PICP vs CL graph, left; 
Observed vs predicted graph, right. 
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Figure 3.19. Model 14, BD = f(depth + CF + pH + TN). PICP vs CL graph, left; 
Observed vs predicted graph, right. 

 

Figure 3.20. Model 15, BD = f(depth + sand + clay). PICP vs CL graph, left; 
Observed vs predicted graph, right. 
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Figure 3.21. Model 16, BD = f(depth + OC). PICP vs CL graph, left; Observed vs 
predicted graph, right. 

 

Figure 3.22. Model 17, BD = f(depth + CEC). PICP vs CL graph, left; Observed vs 
predicted graph, right. 
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Figure 3.23. Model 18, BD = f(depth + pH + TN). PICP vs CL graph, left; Observed 
vs predicted graph, right. 

 

Figure 3.24. Model 19, BD = f(depth + CF + order + pH + PM). PICP vs CL graph, 
left; Observed vs predicted graph, right. 
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Figure 3.25. Model 20, BD = f(depth + CF + TN). PICP vs CL graph, left; Observed 
vs predicted graph, right. 

 

Figure 3.26. Model 21, BD = f(depth + CF + pH + PM). PICP vs CL graph, left; 
Observed vs predicted graph, right. 
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Figure 3.27. Model 22, BD = f(depth + CF + pH). PICP vs CL graph, left; Observed 
vs predicted graph, right. 

 

Figure 3.28. Model 23, BD = f(depth + pH).  PICP vs CL graph, left; Observed vs 
predicted graph, right. 
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Figure 3.29. Model 24, BD = f(depth + TN).  PICP vs CL graph, left; Observed vs 
predicted graph, right. 

 

Figure 3.30. Model 25, BD = f(depth + CF + order + PM + textural class).  PICP vs 
CL graph, left; Observed vs predicted graph, right. 
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Figure 3.31. Model 26, BD = f(depth + CF).  PICP vs CL graph, left; Observed vs 
predicted graph, right. 
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Chapter 4. Conclusion 

4.1. Research Conclusions 

Chapter 2 examined the use of nonlinear least squares to recalibrate existing 

PTFs on three regional datasets, using quantile regression to produce uncertainty 

estimates. The first objective of this thesis, identifying existing equation-based PTFs 

from the literature, was met when 73 PTFs which estimate bulk density were found. 

While there have been other studies which compared the performance of existing BD 

PTFs (Abdelbaki, 2018; Boschi et al., 2018; Casanova et al., 2016; De Vos et al., 2005; 

Han et al., 2012; Kaur et al., 2002; Nanko et al., 2014; Nasta et al., 2020; Reidy et al., 

2016; Sevastas et al., 2018; Taulya et al., 2005; Vasiliniuc and Patriche, 2015; Yi et al., 

2016) the focus of these studies was how existing PTFs performed on a regional dataset 

or specific type of soil; comparisons to a newly developed PTF were also made.  

This study assessed the accuracy and uncertainty of existing PTFs on three 

regional datasets; the PTFs were then recalibrated on each dataset. A few other studies 

had recalibrated existing PTFs using an NLS approach (Chen et al., 2018; De Vos et al., 

2005; Khodaverdiloo et al., 2022; Nanko et al., 2014) although they did not recalibrate as 

many PTFs as this study. Chen et al. (2018) recalibrated the six model forms defined by 

Nanko et al. (2014), which were all based on OC as the sole input variable; the RMSPE 

values of the results ranged from 0.186 to 0.278 g/cm3. Nanko et al. (2014) reported a 

range of RMSPE values between 0.137 to 0.145 g/cm3 after recalibration of the six 

model forms. De Vos (2005) also identified common model forms in PTFs, and 

recalibrated multiple PTFs. They reported the lowest standard deviation prediction error 

obtained after recalibration was 0.16 Mg/m3. Khodaverdiloo et al. (2022) obtained RMSE 

values of 0.10 to 0.13 Mg/m3 after recalibrating four PTFs. This study also identified 

common model forms amongst published PTFs, building on the categories developed by 

Nanko et al. (2014) and De Vos et al. (2005), categorizing PTFs into eight model types. 

The results after recalibration were affected by the dataset used, and the model type. 

The lowest RMSE obtained was 0.19 g/cm3, and the highest CCC value was 0.68; which 

is comparable to the results produced by previous studies. This showed that 

recalibration is a method which improved the accuracy of existing PTFs for a wide range 
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of PTF model types, beyond the often employed models based solely on OC; and it is 

applicable to different regions for which no PTFs have been developed. 

Chapter 3 investigated using machine learning to estimate missing values in 

legacy datasets. While other studies have compared the accuracy of different models 

when estimating soil attributes (Gharahi Ghehi et al., 2012; Gunarathna et al., 2019), this 

study faced the challenge of estimating missing values, but with a patchwork of available 

attributes with which to do so. The target attribute for this chapter was also BD, as it was 

present in less than 1.5% of horizons, and because it is required to calculate soil carbon 

stocks. However, other soil attributes in the dataset were also incomplete; for example, 

sand, silt and clay percentages were only available for ~10% of horizons, CEC and TN 

for ~14%, OC for 17%, and pH for 22%. To increase the number of horizons for which an 

estimated BD value could be made, other soil attributes with higher representation in the 

dataset were incorporated: depth, CF, order, PM, and textural class.  

Using all 11 available attributes, every possible combination of those attributes 

was determined. The result was 513 models for predicting BD, and each was tested 

using the machine learner RF. Only one other similar study was identified, Benke et al. 

(2020), who tested the accuracy of 560 models for prediction of OC and electrical 

conductivity (EC). The models were ranked based on mean square prediction error 

(MSPE), and the most important predictors for OC and EC were identified. This study 

used CCC as the basis for ranking the models, and the results ranged from 0.92 to 0.51. 

Many of the models provided predictions for the same horizons, so the prediction with 

the highest accuracy was chosen. Models which incorporated continuous variables such 

as OC, CEC, pH, sand, clay, and TN had the highest accuracy; the best performing 

model was BD = f(depth + CF + OC + pH + sand + clay). However, as the continuous 

variables also had limited coverage, models which used the categorical variables 

provided the greatest number of predictions. The model which estimated ~ 63% of the 

missing BD values was BD = f(depth + CF + order + PM + textural class); this model still 

had a strong CCC value, at 0.78. 

 When the accuracy of the recalibrated equation-based PTFs was compared to 

the accuracy of the machine learning generated PTFs, the latter showed higher 

accuracy. The recalibrated PTFs were an improvement over the unrecalibrated PTFs, for 

the three datasets on which recalibration through NLS was tested; some PTFs showed 
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very large improvements while others were minimal, but overall recalibration had a 

positive effect on the accuracy of the PTFs. The accuracy depended both on the model 

form of the equation, and on the dataset used for recalibration. The PTFs developed with 

the RF algorithm also varied in their accuracy; 513 models were produced with varying 

combinations of input variables, and the resulting CCC values showed a range from 0.51 

to 0.92. This range exceeded that of the recalibrated PTFs; while there were outliers in 

every dataset, the majority of the CCC values for those PTFs recalibrated on the Ontario 

(All Variables) dataset ranged from 0.63 to 0.68; for the BC (All Variables) the majority 

ranged from 0.40 to 0.58, and for the BC (Carbon and Bulk Density), the majority of the 

CCC values ranged from 0.36 to 0.55.  

For both approaches to estimating missing values using PTFs that were 

investigated in this research, uncertainty estimates were also generated through QR. For 

both approaches, uncertainty was affected by both dataset size and predictor variables. 

Recalibration was carried out on three different datasets: the largest was from Ontario, 

and had 3,424 horizons with 8 variables; the mid-sized dataset was from BC, contained 

1,199 horizons, and 2 variables; and the smallest was also from BC, had 396 horizons, 

with 8 variables. The PICP vs CL graphs showed that the uncertainty was overestimated 

by significant amount for the BC (All Variables) dataset, moderately overestimated for 

the BC (C and BD) dataset, and most accurately estimated for the Ontario (All Variables) 

dataset. The MPI graphs showed that uncertainty varied both by dataset used and by 

model form; uncertainty was greatest for the smallest dataset, and least for the largest 

dataset. The models with the lowest uncertainty overlapped with those with the highest 

accuracy; these were models with simple forms and OC or OM as the predictor. 

When RF was used to test the 513 models, each model had a different sized 

training dataset depending on their combination of attributes, ranging from 191 to 1,450 

horizons. Models with larger datasets showed through their PICP vs CL graphs that their 

uncertainty was more accurately estimated. Predictors played a secondary role in 

uncertainty, and models with less accurate predictors such as textural class and PM had 

higher uncertainty demonstrated on their MPI graphs. Somarathna et al. (2017) showed 

similar results when they tested the effect of dataset size on accuracy and uncertainty of 

soil OC predictions; as dataset size increased, accuracy increased, and uncertainty 

decreased. In this study, dataset size did not affect the accuracy of the machine learning 

results, but it did affect the accuracy of the PTFs which were recalibrated. 
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4.2. Limitations and Future Research 

Using legacy data comes with limitations, the foremost being the limited amount 

of data. Small dataset sizes have shown to reduce the accuracy and increase the 

uncertainty of modeling predictions (Wu et al., 2022; Somarathna et al., 2017). To 

increase the size of a dataset, existing data can be augmented with new samples, where 

the locations of existing samples are fitted into a sampling design, and new sampling 

locations identified (Zhang et al., 2016). This approach maximizes the use of legacy data 

and while adding new data in the optimal locations.  

The measurement of the target variable, in this case BD, is especially important, 

as these values are used to train every model used to predict missing values. In Chapter 

2, a maximum of 1450 horizons had BD values, and the models used these values to 

then estimate BD for approximately 100,000 horizons. BD values are used in many 

calculations of other soil properties, such as porosity, volumetric moisture content, 

thermal conductivity, volumetric heat capacity, and penetration resistance (Al-Shammary 

et al., 2018). BD can be measured through multiple methods, including the excavation, 

clod and core methods (Throop et al., 2012). Using the core method may result in high 

bulk density values due to compaction when the core is pressed into the soil (Page-

Dumroese et al., 1999). Throop et al. (2012) found that while the core method is the 

most often used way to determine BD, there are issues with the method such as coarse 

fragments too large to fit into the core and compaction due to core insertion. Al-

Shammary et al. (2018) reviewed the literature on soil bulk density sampling methods 

and found that the accuracy of the core method depended on sampling depth, the size of 

the core, and the experience level of the sampler. They also noted that soil texture 

affected the accuracy of the excavation method and concluded that the radiation method 

had the highest accuracy but was costly and accuracy declined with depth. There are 

also different ways that BD can be measured, which depend on whether the coarse 

fragment material greater than 2 mm in diameter is included (Throop et al., 2012). All 

these variations introduce uncertainty into the BD values, which can then be propagated 

using PTFs to other values which are calculated using BD. 

Another limitation to accurate predictions is the quality and availability of the input 

variables. Some variables, such as CF, have been found to be difficult to estimate, and 

their effect on soil can be variable (Holmes et al., 2021). There have been PTFs 
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developed on stony soils (Curtis and Post, 1964), but sampling for bulk density can be 

difficult in rocky soil (Frasier and Keiser, 1993). There are methods that were created to 

better sample soil with high stone or gravel content, such as filling a hole with paraffin 

wax consecutively in layers as it is excavated (Frasier and Keiser, 1993). Page-

Dumroese et al. (1999) compared five methods of sampling bulk density in rocky soil, 

and found the results to be variable, with each method having both advantages and 

disadvantages. CF is required to calculate the fine fraction bulk density from the whole 

soil bulk density, and to calculate soil carbon stocks. The way in which BD 

measurements handle CF can affect the BD value by up to 26% (Throop et al., 2012). 

Sand, silt and clay have been found to be good predictors for bulk density 

(Heinonen, 1977; Qiao et al., 2019; Tomasella and Hodnett, 1998) especially clay in low 

carbon soils (Dexter et al., 2008). This study showed mixed results; for recalibrated, 

equation-based PTFs, OC dominated as the most important predictor; however, when 

RF was used, sand and clay were present as attributes in the most accurate model and 

28 of the top 40 models. As particle size fractions can be important predictors, it was 

assumed that textural class would also be a good predictor for BD. However, models 

which included textural class had lower accuracy and higher uncertainty that models 

which included sand and clay percentages. This is likely due to the accuracy of hand 

texture assessment in the field. For example, Salley et al. (2018) found that professional 

soil scientists had a 66% accuracy rate, while that of seasonal field technicians ranged 

from 27 to 41% accuracy, when compared to lab-determined measurements of textural 

class. While the results of laboratory methods of determining particle size distributions, 

such as sieving, hydrometer, pipette and laser diffraction, may vary with method used, 

and there is no universal method to which other methods can be compared (Eshel et al., 

2004), hand texturing has been shown to still be less accurate than laboratory methods 

(Levine et al., 1989). Salley et al. (2018) suggested that hand texturing in the field could 

be improved through more training, providing a locally developed range of calibration soil 

samples for practice, and decision support tools such as mobile apps. Textural class 

was included in the model which predicted 63% of the missing BD values in this study; 

hence, an increase in its accuracy would have a large effect on model results. 

A soil attribute that was found to be the most important predictor for BD in 

Chapter 2, and the most often included variable of the top 40 models in Chapter 3, was 

OC. OC is often determined through the measurement of organic matter (OM), such as 
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by loss-on-ignition (LOI) (Ball, 1964), then calculated using a conversion factor. Pribyl 

(2010) investigated this issue, compiling results from the literature which showed that the 

OC:OM ratio is not static, and on average is closer to 2 than 1.724. Factors which affect 

the OC:OM ratio include the method used to determine OM; the age of the soil; and 

depth (Pribyl, 2010). Périé and Ouimet (2008) found that their study of forest soils in 

Quebec was consistent with previous research that showed the OC:OM ratio changing 

with depth. Including depth as a covariate may reduce the effect of the variability of the 

OC:OM ratio when used in a machine learning model, and depth was included in every 

model in this study. However, it is a covariate that is not often used in equation-based 

PTFs. If a PTF is being developed through regression or recalibrated, it would be useful 

to determine an OC:OM ratio by depth before using the PTF. 

Potential ways of improving the accuracy of PTF estimations include testing a 

variety of models and incorporating environmental variables. There are numerous 

machine learning algorithms which could be tested; for example, Shiri et al. (2017) 

compared heuristic gene expression programming (GEP), neural networks, RF, support 

vector machine, and boosted regression trees, and found the heuristic GEP model to 

have the highest performance. Artificial neural networks (ANNs) have produced good 

results in multiple studies (Al-Qinna and Jaber, 2013; Alaboz et al., 2021) as has k-

nearest neighbour (kNN) (Botula et al., 2015, Gharahi Ghehi et al., 2012). Incorporating 

environmental covariates has also been shown to improve accuracy (Schillaci et al., 

2021) and although this study focussed on using only soil attributes for BD prediction, it 

would be beneficial to explore including environmental covariates in future PTF studies, 

due to the limited availability of soil attribute values in the legacy dataset. 

The two methods of improving the accuracy of PTFs which were explored in this 

thesis, as well as the approach to quantifying uncertainty which was coupled with both 

methods, showed positive results. These methods can be applied to other legacy soil 

datasets, so that the valuable data which they contain can be used to the greatest extent 

possible. With the collection of new data being frequently infeasible, the use of legacy 

data is often the only option; further, the significant resources which were put into data 

collection previously should not go to waste. Therefore, improving the accuracy of PTFs 

allows both the utilization of legacy data and provides better quality data for future DSM 

projects. 
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