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Abstract

In many real-world applications of multi-agent systems, decentralized agents have to co-
operate to plan their collision-free paths under partial observation. Recently, many works
have introduced multi-agent reinforcement learning (RL) to solve this partially observable
variant of Multi-Agent Path Finding (MAPF) by learning homogeneous policies through
centralized training and decentralized execution. However, complex multi-agent cooperation
towards optimizing one or multiple objectives is hard to achieve by existing learning-based
methods due to the curse of multiagency.

In this thesis, we aim to design algorithms that learn multi-agent cooperation for path
planning towards various objectives. To tackle single-objective cooperation for partially ob-
servable MAPF, we propose Soft Actor-Critic with Heuristic-Based Attention (SACHA),
a novel multi-agent actor-critic RL framework for the learned model to generalize among
multiple instances. Moreover, we investigate the decentralized variant of another similar
problem, Moving Agents in Formation (MAiF), that combines path planning with forma-
tion control. To learn bi-objective cooperation, we propose Mean Field Control with Envelop
Q-learning (MFC-EQ), a scalable and adaptable learning framework for balancing two spe-
cific objectives among decentralized agents. We provide theoretical analysis to show the
effectiveness of our methods and empirical evaluation to demonstrate that our methods can
outperform baselines for numerous instances in various environments.

Keywords: Reinforcement Learning; Multi-Agent Systems; Path Planning
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Chapter 1

Introduction

Recent studies have demonstrated great success of Multi-Agent Path Finding (MAPF) [38]
in various applications, such as warehouse and office robots [52, 47], autonomous aircraft-
towing vehicles [29], and other multi-robot systems [10]. The canonical MAPF is an NP-
hard combinatorial search problem [55, 2] that aims to plan collision-free paths for a set of
agents from their start positions to their goal positions in a shared environment. The AI
community has been developing many optimal and bounded-suboptimal MAPF planners,
where a centralized planner is required to gather the complete environment information to
plan joint paths for agents before execution. Nevertheless, these planners do not apply to
decentralized agents with limited sensing capabilities and do not scale well to instances with
large numbers of agents. Besides, generalizing these methods to solving multiple instances
for optimizing more than one objective can be more challenging, though these scenarios are
common in real-world applications.

In this thesis, we adopt learning-based approaches that are designed to learn cooperation
for decentralized agents. We propose the learning frameworks based on the Multi-Agent
Reinforcement Learning (MARL) paradigm. Although our works are framed in the context
of MAPF, we believe the underlying insights could generalize to other partially observable
tasks in homogeneous multi-agent systems.

1.1 Motivation

In many real-world applications of multi-agent systems, groups of agents are required to
plan their collision-free paths from their start locations to their goal locations. The tradi-
tional search-based MAPF algorithms study this task as a combinatorial search problem,
where all environment information is considered accessible, and they plan agents’ entire
paths before execution. Applying these algorithms to real-world instances raises several
challenges. It is not necessarily the case that all environment information can be acquired
and gathered to a centralized server, and even though that happens, solving this NP-hard
search problem is computationally expensive. Also, once there occur small changes in the
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environment during execution, the system must halt and replan all agents’ paths. It is
more often the case that agents have mere capabilities of partial observation and limited
communication and need to choose their sequential actions during execution. The partially
observable environments limit agents’ observation range to their surroundings, while the
multi-agent communication can help reach the information outside one’s observation but
under limited capacity. Furthermore, it is sometimes required to optimize the cooperative
paths over multiple objectives, and solving this type of task with search-based methods
under the centralized paradigm is even more computationally intensive.

1.2 Contributions and Outlines

In this thesis, we consider a more practical setting, the partially observable MAPF, where
decentralized agents can only observe their surrounding part of the environment and have
to choose their actions based on their observation on the fly. Under this decentralized
setting, we explore the use of the MARL algorithms to design learning frameworks for two
specific tasks. The first task aims at one single objective of minimizing the sum of their
path length. The second task is a bi-objective optimization problem where all agents are
asked to reach their goals as quickly as possible while maintaining a particular formation
as close as possible. We formulate these two tasks in Chapter 2.

While efforts have been devoted to designing learning-based methods for MAPF, the
learned capability of multi-agent cooperation can be limited and hard to generalize among
various environments. In Chapter 3, we propose a novel multi-agent actor-critic framework
that incorporates the heuristic-based attention mechanisms for solving the partially observ-
able MAPF. Our method encourages agents to take into account the surrounding agents’
possible paths and select critical relevant information from them. Our learning framework
also relies on an agent-centered critic network to judge each decentralized agent’s action
based only on local information, therefore the learned agent policy can be potentially gener-
alized among different MAPF instances. Our results show that our method can outperform
search-based algorithms within certain runtime limits and other learning-based methods.

To take the first step towards learning multi-objective cooperation for MAPF, in Chap-
ter 4, we consider a bi-objective task, Moving Agents in Formation (MAiF), that integrates
path planning with formation control. We combine the use of the mean field RL and the
multi-objective RL to propose a scalable and adaptable learning framework. The mean field
approximation is applied to tackle the complexity of multi-agent formation control, and the
multi-objective RL enables decentralized agents to trade off two considered objectives under
any linear preference. We empirically show that our method leads to better results than
centralized baselines in most cases and can handle more challenging tasks with dynamic
formations.
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In this thesis, we propose two MARL frameworks to learn single-objective and bi-
objective cooperation for large-scale instances within partially observable environments.
The single-objective cooperation is devoted to generalization among various environments,
while bi-objective cooperation focuses on adaptability toward different linear preferences
of two considered objectives. There are more complicated forms of multi-objective coop-
eration, which will be left for future work. Our frameworks have been proven to provide
great performance in MAPF but can be also of interest to other domains in homogeneous
multi-agent systems.
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Chapter 2

Background

In this chapter, we first formulate the standard Multi-Agent Path Finding (MAPF) and
Moving Agents in Formation (MAiF) as combinatorial search problems. We then define the
settings in which we study both problems.

2.1 Problem Definitions

We first define the standard MAPF problem as a single-objective search problem. Then we
formulate MAiF, a bi-objective search problem proposed in [17]. Based on that, we introduce
the partially observable environment and the homogeneous multi-agent systems in which
we study these two problems.

2.1.1 Standard Multi-Agent Path Finding

In the standard formulation of MAPF, we are given a connected and undirected graph
G = (V,E) and a set of M agents, indexed by i ∈ {1, 2, · · · ,M}. Each agent has a unique
start vertex si ∈ V and a unique goal vertex gi ∈ V . Time is discretized into time steps,
t = 0, 1, · · · ,∞. Between two consecutive time steps, each agent can either move to one of
its adjacent vertices or wait at its current vertex. A path for agent i contains a sequence
of vertices that lead agent i from si to gi, where each vertex indicates the position of the
agent for every time step. The completion time Ti of agent i is defined as the length of its
path, and it is the earliest time when agent i has reached and terminally stayed at its goal
vertex. Collisions between agents are not allowed. A vertex collision occurs when two agents
occupy the same vertex v at the same time t. An edge collision occurs when two agents
traverse the same edge (u, v) in opposite directions from t to t + 1. A MAPF solution is a
set of collision-free paths for all agents. A commonly used objective function is the average
(equivalently, sum) of the completion times of all agents.
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2.1.2 Standard Moving Agents in Formation

In the standard formulation, an MAiF instance is defined on an undirected graph G = (V,E)
in a d-dimensional Cartesian system. Each location in V can be recognized by its coordinates
v = (v1, . . . , vd) ∈ Rd. In this thesis, the subscripts represent agents’ index numbers and the
boldface font denotes multi-dimensional vectors. We also define [M ] = {1, . . . ,M}. We have
a set of M agents I = {ai|i ∈ [M ]}. Each agent has a unique start location si ∈ V and goal
location gi ∈ V . The time is discretized, and between two consecutive time steps, each agent
can choose to wait at the current location or move from v to v′ provided that (v,v′) ∈ E.
We also consider two types of collision between agents: a vertex collision ⟨ai, aj ,v, t⟩ means
agent ai and aj occupy the same location at the same time step t, and an edge collision
⟨ai, aj ,u,v, t⟩ happens when ai travels from u to v while aj travels backward.

The MAiF problem aims to find a set of M collision-free paths Π = {Πi|i ∈ [M ]}
as a solution, where Πi = (pi0, . . . , piT i) represents agent i’s trajectory. Every solution will
be evaluated by two objectives, makespan and formation deviation. The makespan can be
defined as T = max1≤i≤M T i, that is, the longest length among all paths. The formation at
time t can be represented as an M -tuple, ℓ(t) = ⟨p1(t), . . . ,pM (t)⟩. The desired formation
is the combination of all agents’ goal locations, ℓg = ⟨g1, . . . , gM ⟩. Following the definition
in [17], the formation distance between any two formation ℓ = ⟨u1, . . . ,uM ⟩ and ℓ′ =
⟨v1, . . . ,vM ⟩ indicates the least effort required to transform from ℓ to ℓ′, defined as:

F (ℓ, ℓ′) := min
∆

M∑
i=1
∥ui − (vi + ∆)∥1

=
M∑
i=1

d∑
j=1
|(uij − vij)−∆j |︸ ︷︷ ︸

def= F i(ℓ,ℓ′)

, (2.1)

where j indexes the dimension for each vector and ∆j = median(
{

uij − vij

}
i∈[M ]

) is the
median for the j-th dimension. The F i(ℓ, ℓ′) denotes the subpart only dedicated to the
agent ai. We consider the average formation deviation per agent across all time steps,
unlike the total formation deviation in [17], and it can be defined as Favg = 1

M

∑T
t=0 F (t),

where F (t) = F (ℓ(t), ℓg). We also consider a mix of these two objectives:

MIX(λ) = λT + (1− λ)Favg,

which is the linear combination of these two objectives. There could be non-linear combina-
tions of different rewards, but, in this work, we only consider the linear cases, as it has been
considered by many related works in multi-objective reinforcement learning and others in
multi-task reinforcement learning (e.g., [3]).
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Figure 2.1: Example of moving agents in formation.

Example A simple MAiF example is demonstrated in Fig. 2.1. The start formation is
⟨a3, a2, a1⟩ and the goal/desired formation is ⟨g3, g2, g1⟩. The group of agents cannot go
through the d column while keeping the formation intact, so they have to change the for-
mation. At the current time step t, the median position is d2 and the formation deviation
is F (t) = F i(t) + F j(t) + F k(t) = 2 + 0 + 2 = 4.

2.1.3 Partially Observable Environments

We consider a more practical problem setting where, instead of assuming the full knowl-
edge of the environment, each agent can only have a partial observation of its surround-
ings. We formulate decentralized MAiF as a decentralized partially observable Markov
Decision Process (Dec-POMDP) [20]. A Dec-POMDP can be represented as a 7-tuple
⟨S,A, PS ,O, PO, R, γ⟩, where S is the global state space. A = ∏M

i=1A
i and O = ∏M

i=1 S
i,

where Ai and Si are agent i’s action and observation space. PS : A× S → S describes the
state-transition function, and PO : A× S → O is the observation-transition function. R is
the reward function with the discount factor γ (0 ≤ γ < 1).

In partially observable environments, to get close to the traditional setups of path plan-
ning problems, we assume that the observation-transition and the state-transition functions
are deterministic. Following the settings in existing learning-based MAPF methods, we for-
malize this problem on 2-dimensional 4-neighbor grids, even though our method can also
easily generalize to other environments.

2.1.4 Homogeneous Multi-Agent Systems

In this thesis, we focus on designing learning algorithms for homogeneous multi-agent sys-
tems, meaning that agents share the same policy network and only act differently due to
their different local observations. Since all decentralized agents are equal and cooperative
towards the same objectives, learning a set of different agent policies can be approximated
by learning one singular homogeneous policy, given that we train the policy over sufficient
instances in a great variety of environments. The assumption enables our learned policy to
generalize among various instances in different environments.
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2.2 Cooperative Multi-Agent Reinforcement Learning

Our problems are structured in the paradigm of multi-agent reinforcement learning. Let
π = [π1, . . . , πM ] denote the joint policy for all agents, where πi : Si×Ai → R is the policy
for agent i. At each control step t, each agent i takes one action ai from πi on the joint state
st. The environment will respond with the next state st+1 and a set of individual rewards
[r1
t (s1, a1), . . . , rMt (sM , aM )].

The cooperative MARL aims to maximize the global reward, which is the sum of all
individual rewards, rt(s,a) = ∑M

i=1 r
i
t(si, ai). The long-term cumulative reward can be

denoted as the discounted sum of all global rewards:

J(π) = E{st,at}∼π

[ ∞∑
t=0

γtrt(st,at)
]
.

We also consider the value function and the state-action value function. The joint value
function V π(s) represents the estimated cumulative reward by following a policy π starting
at a given global state s:

V π(s) = E{st,at}∼π

[ T∑
t=0

γtrt(st,at)|s0 = s
]
.

The state-action value function, referred as Q-function, represents the estimated cumulative
reward by following a policy π starting at a given state s with a particular action a:

Qπ(s,a) = E{st,at}∼π

[ T∑
t=0

γtrt(st,at)|s0 = s,a0 = a
]
.

The relationship of these two functions can be stated as:

V π(s) = Ea∼π(s,·)
[
Qπ(s,a)

]
.

We also define the advantage function as:

Aπ(s,a) = Qπ(s,a)− V π(s).

These functions can also be decomposed to every individual agent and learned locally
through various approaches.

7



Chapter 3

Single-Objective Cooperation

3.1 Introduction

Although MAPF is NP-hard to solve optimally [55, 2], the AI community has developed
many optimal and bounded-suboptimal MAPF planners for fully observable environments,
where a centralized planner has complete information of the environment to plan joint
paths for agents. These planners do not apply to agents with limited sensing capabilities
and do not scale well to large numbers of agents, as the complexity of coordinating the joint
paths of agents grows exponentially with the number of agents in the systems. Learning-
based methods with centralized training and decentralized execution have been proposed to
develop scalable and generalizable learning-based MAPF methods for the partially observ-
able setting. In this setting, each agent receives a partial observation of its surroundings.
Learning-based MAPF methods aim to train a decentralized homogeneous policy that each
agent will follow based on its local observation during execution. This policy can be dis-
tributed to any number of agents in any environment, as the dimension of the single-agent
observation space depends only on the FOV size in the partially observable setting. How-
ever, the non-stationarity of environments from the perspective of any single agent poses a
significant challenge for learning-based MAPF methods. The transitions of the global state
are affected by the individual actions of other agents towards their local interests. Moreover,
goal-oriented reinforcement learning with single-agent rewards makes the training process
unstable and time-consuming, further incentivizing each agent to be selfish and prioritize its
goal over collaborating with others. This could hinder coordination and teamwork among
agents, negatively affecting overall performance.

To address the challenges posed by solving MAPF in the partially observable setting,
we propose Soft Actor-Critic with Heuristic-Based Attention (SACHA), a novel
approach for partially observable MAPF that leverages heuristic guidance through atten-
tion mechanisms to learn cooperation. SACHA builds upon the multi-agent actor-critic
framework and, along with its communication-based alternative, SACHA(C), aims to learn
a decentralized homogeneous policy that can be generalized to any number of agents in any

8



Table 3.1: Comparison of learning-based methods for partially observable MAPF

Method Learning
Framework

Communication
Moudule

Single-Agent
Guidance

Cooperative
Guidance

PRIMAL [34] A3C (RL) and
Behavior Cloning (IL) Inapplicable Goal Direction Goal Directions of

Neighbouring Agents
DHC [25] IQL Required Shortest Path Distance −
DCC [26] IQL Required Shortest Path Distance −

SACHA (Ours) Mutli-Agent
Soft Actor-Critic Optional Shortest Path Distance Shortest Path Distances of

Neighbouring Agents

arbitrary partially observable MAPF environment. To achieve this, we first allow each agent
to access the goal-oriented heuristic guidance of multiple agents in the form of the shortest
path distances to each of the goals, which can be computed efficiently before execution. We
then employ a self-attention module in the policy network for each agent to locally select
relevant information from the guidance and take actions towards better cooperation among
agents.

We expect SACHA to make a significant algorithmic impact not only on MAPF solv-
ing but also on other similar multi-agent tasks in partially observable settings because
its learning process of the homogeneous policy is also guided by a homogeneous critic for
more stable learning and faster convergence. Unlike existing multi-agent actor-critic meth-
ods with one fully centralized critic or multiple decentralized critics, SACHA introduces a
novel agent-centered critic network that uses an attention mechanism to approximate each
agent’s Q-function and performs credit assignment only based on the information within
each partial observation. The input dimension of this critic is determined by the number
of agents that each agent’s Q-function should be based on, which is implicitly limited by
the partial observation range (e.g., FOV size in MAPF). This partially centralized critic
ensures that the Q-function is not biased towards any specific problem instance, resulting
in a well-trained policy network that can generalize well to different numbers of agents and
environments.

We experimentally compare SACHA and SACHA(C) with state-of-the-art learning-
based and search-based MAPF methods over several MAPF benchmarks. Our results show
that both versions of SACHA result in higher success rates and better solution quality
than other methods in almost all test cases. The results thus indicate that our methods
allow for better cooperation among agents than the other methods with and even without
communication.

3.2 Related Work

We now survey the related work on learning-based MAPF methods and multi-agent rein-
forcement learning methods.
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3.2.1 Learning-Based MAPF Solvers

Recent learning-based MAPF methods [34, 21, 25, 26] have been proposed to solve MAPF
in a partially observable setting. These methods aim to learn a decentralized policy that
can be generalized to different MAPF instances. While centralized MAPF planners require
full observation of the environment and must plan paths from scratch for each instance,
the well-trained model can be applied to MAPF instances with any number of agents and
environment size, without increasing the time complexity.

The most straightforward approach for tackling partial observability is to treat other
agents as part of the environment and let each agent learn its policy independently, as
in Independent Q-Learning (IQL) [44]. However, this approach results in non-cooperative
behavior among the agents, and its training is not guaranteed to converge due to inter-
ference between the policies of different agents. State-of-the-art MAPF methods [25, 26]
enhance IQL with a communication mechanism to promote cooperation between agents.
Other MAPF methods [34, 21] use the actor-critic framework, with guidance from an ex-
pert demonstration. PRIMAL [34] combines on-policy asynchronous advantage actor-critic
(A3C) [28] with behavior cloning from an expert demonstration generated by a centralized
MAPF planner [48]. However, the centralized MAPF planner requires solving numerous
MAPF instances, which slows down the training process. DHC [25] and DCC [26] have
shown that using single-agent shortest path distances as heuristic guidance for goal-oriented
learning of each agent is more effective than following a specific reference path in a multi-
agent cooperative setting.

In Section 3.6, we compare SACHA against PRIMAL, DHC, and DCC experimentally.
Table 3.1 summarizes the comparison of properties of these methods, showing that SACHA
improves over them by adopting a more stable training scheme, utilizing better heuris-
tic guidance through more complex model design, and allowing for applicability to both
communicating and non-communicating scenarios.

3.2.2 Cooperative Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL) is a well-established framework for coordi-
nating multiple agents in a shared environment. A rich literature [43, 11, 31] on cooperative
MARL has been dedicated to coordinating agents that work towards a common objec-
tive and take actions that benefit all agents as a whole. To deal with the nonstationarity
of the environment, most existing actor-critic methods use one or more fully centralized
critics that observe the entire environment. For example, Multi-Agent Deep Determinis-
tic Policy Gradient [22] trains each actor with only its local observation using the DDPG
algorithm [19], while its corresponding fully centralized critic can access the observations
and actions of all agents. Instead of using multiple fully centralized critics, Counterfactual
Multi-Agent Policy Gradient [8] uses only one fully centralized critic that learns to assign
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credit to agents and estimate Q-functions for all agents based on a counterfactual baseline
that marginalizes out the action of each agent. However, it becomes increasingly difficult to
perform such credit assignments for cases with large numbers of agents. Therefore, Multiple
Actor Attention-Critic[15] deploys an attention mechanism for the fully centralized critic
to selectively pay attention to relevant information from all agents. SACHA also uses a
similar attention mechanism but differs from existing actor-critic methods by using a novel
homogeneous agent-centered critic that only takes the local information from each agent as
input for generalizability to different MAPF instances instead of a fully centralized critic
specific to only one MAPF instance.

3.3 Environment and Model Design

In MAPF, the observation and state-transition functions are deterministic, where each agent
has full control of its next position and observation by taking one of the move actions or the
wait action. To facilitate proper comparison with existing learning-based MAPF methods,
we formalize the MAPF problem on two-dimensional grid maps with four neighbors, even
though our method can also be generalized to other MAPF problems. The partial observ-
ability limits each agent’s perception to its FOV, defined as a L×L square area centered on
the agent. Agents take their actions based on their local observation and the history from
the beginning to the current time step.

One of the key challenges for decentralized planners with limited access to global in-
formation is the occurrence of deadlocks and livelocks. Similar to time-windowed MAPF
planners [18], these issues arise due to the limited planning horizon of agents, either in time
or space, that prevents them from reaching their goals. For instance, consider Fig. 3.1, where
the red agent in a5 and the green agent in a6 are heading towards their respective goals a6
and a5. An optimal solution may require the red agent to move north and terminally stay
at its goal while the green agent moves north and takes a detour since its direct path is
blocked by the red agent. However, after a few moves, the green agent will no longer observe
the blocking red agent and end up wiggling between a9 and a10 indefinitely. Symmetrically,
if the green agent moves south and terminally stays at its goal, the red agent will eventually
wiggle between a1 and a2.

Existing learning-based MAPF methods rely on two extra assumptions to alleviate the
above issues: First, each agent has full visibility of the map (which is consistent with both
standard MAPF and time-windowed MAPF), even though it does not know the global state.
Second, two agents are allowed to communicate when they are within each other’s FOV.
In this work, SACHA and SACHA(C) utilize the same assumptions. Both methods give
each agent access to the shortest path distances to its goal. SACHA(C) enables inter-agent
communication, while SACHA only requires each agent to identify other agents in its FOV.
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Obstacle

Free Sapce

Agent Location

Goal Location

Agent's FOV

Figure 3.1: Illustration of a partially observable MAPF instance and the multi-agent heuris-
tic maps for the orange agent. Each agent’s current (circle) and goal (square) positions have
the same color. The orange agent’s 5×5 FOV contains 3 agents, including itself. Therefore,
the policy network of the orange agent will utilize 3 corresponding heuristic maps within
the same 5× 5 area. A darker shade of color represents a greater distance to the goal.

3.3.1 Multi-Agent Shortest Path Distance Heuristic Maps

Empirical studies [26] have shown that shortest path distances from all vertices to each
agent’s goal vertex can greatly benefit goal-oriented learning for the agent in partially
observable environments. SACHA utilizes multi-agent shortest path distances to guide not
only the achievement of single-agent goals but also better cooperation between agents.
Specifically, a backward uniform-cost search is run from each agent’s goal vertex to all
vertices in the given graph to generate the shortest path heuristic maps for the agent.
The heuristic maps for all agents can be calculated offline once the graph and all goal
vertices are given. They remain unchanged for the same MAPF instance during training
and can be efficiently generated in advance for a new MAPF instance during execution.
The time complexity for calculating the distances for M agents on graph G = (V,E)
is O(M |E| log |V |). Many search-based and some recent learning-based MAPF methods
[35, 25, 26] also use heuristic maps of shortest path distance, but only as single-agent
guidance. SACHA gives each agent access to not only its heuristic map but also the heuristic
maps of other agents within its FOV, which enables better cooperation. Fig. 3.1 visualizes
the heuristic maps that the orange agent has access to at the current time step. Since there
are three agents within its FOV, three corresponding heuristic maps are input to the agent’s
policy network which we will describe later.
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3.3.2 Reward Design with Heuristic Maps

We design the reward function for each agent based on its heuristic map. We start with the
individual reward function of DHC [25]:

ri(s, a) =



−0.075 move (up / down / left / right) and wait (away goal)

0 wait (on goal)

−0.5 collision (with obstacles or agents)

3 reach goal

.

It follows the intuition that an agent is punished slightly for each time step before
arriving at the goal, thereby encouraging it to reach its goal as quickly as possible. To
improve the success rate of solving the global MAPF task, each agent is punished to a
greater extent each time it collides with another agent or an obstacle. The agent receives a
positive reward only when it arrives at its goal. Most existing learning-based MAPF methods
follow the same design idea for their reward functions. However, the goal-conditioned reward
in this reward design makes the training unstable and difficult to converge, especially for
long-horizon tasks such as MAPF. Also, since an agent that stays further away from its goal
generally has a larger potential to collide with other agents, the move actions for it should
not be rewarded the same as for ones that are closer to their goals. Therefore, motivated by
Heuristic-Guided Reinforcement Learning (HuRL) [7], we reshape the reward function for
each agent with an additional heuristic term. Assume we have a transition tuple, (s, a, r, s′),
we reshape the reward as:

r̃i(s, a) = ri(s, a) + (1− λ)γhi(s′), (3.1)

where hi(s′) is the negated normalized shortest path distance of the global state s′ from the
heuristic map of agent i. This heuristic term represents a priori guess of the desired long-term
return of an agent from state s′ and thus serves as a horizon-based regularization. HuRL
has been proved both theoretically and empirically to be able to accelerate the learning
process significantly by intrinsically reshaping the reward of every position for each agent.
We set λ to 0.1 in the experiments.

3.3.3 Model Design with Attention Mechanisms

We propose a novel model architecture based on the multi-agent actor-critic framework.
Our model aims to achieve generalization across different instances by restricting the actor
and the critic to operate only within the observation of each agent. At each time step t,
we define an undirected observation graph Gt = (V,Et), where V is the set of all agents
and each edge in Et indicates that the corresponding agents can observe each other. The
time-varying graph Gt captures the dynamic correlation of agents in partially observable
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Figure 3.2: Model design of SACHA and SACHA(C). The framework consists of the actors
(red) and the critics (blue). The bottom part demonstrates agent i’s policy network. Within
its 5× 5 FOV, there are three agents inside and hence three heuristic maps are fed into its
network. After going through a set of encoders, three output features will then be processed
by the attention block, picking out the relevant information required for agent i to take
its action. The upper part shows how the critic assigns the credit for agent i based on the
local observations and the corresponding actions from agents in its subgroup via a similar
attention mechanism.

environments. We denote the subgroup centered on agent i as {i ∪ Nt(i)}, where Nt(i) is
the set of the nearest K − 1 neighbors of node i inside its FOV. The observation of each
agent i consists of a set of K feature maps Fi = {F ji }j∈i∪Nt(i) where F ji ∈ RL×L×3. Each
feature map in the set corresponds to an agent in the subgroup of agent i and contains
three channels: (1) a binary matrix that identifies the obstacles and the free space, (2) a
binary matrix that marks the positions of agents, and (3) a heuristic channel that shows the
normalized shortest path distances for each empty cell. K is set to 3 in our experiments.

We present the learning framework of SACHA in Figure 3.2. Given the observation
features, the policy network starts with the observation encoders with shared parameters.
The encoders consist of several convolutional layers followed by a GRU [7] memory unit. The
output set of K encoding is input into the Multi-Head Attention (MHA) [46] module that
learns the interaction between agent i and its subgroup members by selectively attending
to relevant information. The MHA module outputs a set of features the sum of which is
used for the observation representation, denoted as oi. It then will be passed to decoders
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to generate the corresponding action vector ai ∈ R5. Each element in ai represents the
probability of choosing one of the five discrete actions {up, down, left, right, stay}.

We propose a novel agent-centered critic, that evaluates each agent’s action individually
based on its local observation and information about its subgroup members. Unlike previ-
ous methods that use a centralized critic with global information, our critic leverages the
attention mechanism to dynamically assign credit to each agent. We first pass the policy
network’s output through a linear function and then apply a multi-head attention module.
The sum of the concatenated output vectors is then forwarded through the decoders to ob-
tain the final Q-value, which is used to update the policy networks via the policy gradient
method. Since our agent-centered critic only requires the local information of the central
agent, it is not dependent on any specific environment information, and the learned policy
network can thus generalize better.

3.3.4 Optional Communication Module

Furthermore, we propose a communication-based variant of our method, named SACHA(C).
To encourage better cooperation, our method should be able to take advantage of communi-
cation when it is allowed. We add an optional communication module after the multi-head
attention block, as shown in Fig. 3.2. We first gather all observation representation {oi}Mi=1 as
the initialization ,H(0), and then feed it into a multi-layer Graph Convolution Network [16]
(GCN). Recall that M is the number of agents. Let At be the adjacency matrix of Gt and
Ãt = At + IM . Define D̃t as a diagonal matrix where D̃ii = ∑

j Ãij . The output of the
(l + 1)-th layer would be:

H(l+1) = σ(D̃− 1
2

t ÃtD̃
− 1

2
t H(l)W (l)), (3.2)

where σ(·) is the sigmoid function and W is a layer-specific trainable weight matrix. After
l layers of GCN, we can decompose H(l+1) to M corresponding vectors, {ôi}Mi=1, which will
eventually be decoded by each network to their corresponding action vectors as usual. We
choose a two-layer GCN in the SACHA(C). The communication module is optional, but it
can make agents reach information outside their local observation and hence achieve better
cooperation.

3.4 Learning Framework

SACHA updates the agent’s policy network π parameterized by θ and the critic network
parameterized by ψ simultaneously through the soft actor-critic framework. We let θ̄ and
ψ̄ denote the moving average of θ and ψ (target parameters of the actor and the critic
network), respectively. We first define the action-value temporal difference (TD) error for
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any experience, e = (s, a, r̃, s′), from the replay buffer D:

δi = Qψi (oi, ai)− r̃i − γEa′
i∼πθ̄(o′

i)[Q
ψ̄
i (o′

i, a
′
i)− α log(πθ̄(a

′
i|o′

i)))] (3.3)

where α is the temperature parameter that decides the weight of the entropy term in the soft
actor-critic framework [12]. SACHA runs the critic network through every agent-centered
subgroup and updates it by minimizing the mean square error loss function:

LQ(ψ) = Ee∼D
M(e)∑
i=1

δ2
i

M(e) , (3.4)

where M(e) is the number of agents in e. On the other hand, the actors update their
underlying policy networks by the policy gradient via the Q-values from the critic network:

∇θi
J(θ) = Eoi∼D,ai∼πθi

(oi)[∇θi
log(πθi

(ai|oi))(Qψi (oi, ai)− b(oi, a\i)− α log(πθi
(ai|oi)))],

(3.5)

where ∇θ log(πθ(ai|oi)) is the score function and Qψi (oi, ai) − b(oi, a\i) is the multi-agent
advantage function. Inspired by COMA [8], SACHA adopts the counterfactual baseline in
a discrete action space as follows, which marginalizes out the specific action of agent i:

b(o, a\i) =
∑
a′

i∈Ai

π(a′
i|oi)Q

ψ
i (oi, (a′

i, a\i)), (3.6)

where a\i ∈ A\i = ∏
j ̸=iAj is the combination of actions from all agents except for i

and Ai is each agent’s action space. This baseline specifically compares an action to other
actions of agent i by fixing the actions of all other agents and invoking the critic network
for |Ai| times. In each instance, we collect these M updated policies and aggregate them
into the new policy by averaging all the locally updated policies: θ(t+1) = ∑M

i=1
θ

(t)
i
M , where

θ
(t)
i = θ(t) −∇θi

J(θ(t)). The policy and the critic network are updated together iteratively
to reach fast and stable convergence.

3.5 Analysis

In this section, we analyze the effectiveness of the policy gradient in our multi-agent actor-
critic framework. Most of the existing learning-based MAPF methods use IQL, in which
each agent treats others as part of the environment and updates the global policy θ as
follows:

∇θJ(θ) = Es∼D,a∼πθ
[∇θ log(πθ(a|s))Q(s, a)], (3.7)
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where s and a denote the joint state and joint action, respectively. Now we show that this
gradient is equivalent to Eq. (3.5). We omit the entropy term here, but the proof can be
easily extended to include it.

Since each agent acts on its policy independently, we have πθ(a|s) = ∏
i πθi

(ai|s). We
represent the stationary distribution induced by πθ as dθ(s), meaning the probability of
being in the state s by following πθ. Following the proof in [42], we get:

∇θi
J(θ) =

∑
s∈D

dθ(s)
∑
a∈A

πθ(a|s)∇θi

[ M∑
j=1

log(πθj
(aj |s))

]
Q(s, a)

=
∑
s∈D

dθ(s)
∑
a∈A

πθ(a|s)∇θi
log(πθi

(ai|s))Q(s, a)

=
∑
s∈D

dθ(s)
∑
a∈A

[∏
j ̸=i

πθj
(aj |s)

]
∇θi

πθi
(ai|s)Q(s, a).

To further the proof, we consider the following equation:

∑
a∈A

[∏
j ̸=i

πθj
(aj |s)

]
∇θi

πθi
(ai|s)F (s, a\i)

=
∑

a\i∈A\i

[∏
j ̸=i

πθj
(aj |s)

]
F (s, a\i)

[
∇θi

∑
ai∈Ai

πθi
(ai|s)︸ ︷︷ ︸

=1

]

= 0.

This will stay true as long as F (s, a\i) is a function independent of ai. Let F (s, a\i) =
−Q(s, a\i)− b(s, a\i) and combine it with the equation above:

∇θi
J(θ) =

∑
s∈D

dθ(s)
∑
a∈A

[∏
j ̸=i

πθj
(aj |s)

]
∇θi

πθi
(ai|s) · [Q(s, a)−Q(s, a\i)− b(s, a\i)]

=
∑
s∈D

dθ(s)
∑
a∈A

[∏
j ̸=i

πθj
(aj |s)

]
∇θi

πθi
(ai|s) · [Qi(s, ai)− b(s, a\i)]

=
∑
s∈D

dθ(s)
∑
a∈A

πθ(a|s)∇θi
log(πθi

(ai|s)) · [Qi(s, ai)− b(s, a\i)]

Here, we prove that the policy gradient with respect to each θi can be obtained locally
using the corresponding score function, ∇θi

log(πθi
(ai|s)). By averaging θ(t)

i from all agents
updated by Qi(oi, ai)−b(oi, a\i), we obtain the same effect as updating the global θ based on
Q(s, a). Therefore, our method is as effective as IQL, but with a faster convergence rate due
to parallel updates among all agents. Moreover, our framework for learning a homogeneous
policy from local observation in the multi-agent learning framework is not restricted to
MAPF and can potentially be applied to other MARL tasks, especially ones in partially
observable settings.
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3.6 Empirical Evaluation

In this section, we implement MFC-EQ and experimentally evaluate it with other methods
on a server equipped with Intel 2.3GHz 16-Core CPUs and NVIDIA A40 GPUs.

3.6.1 Environment Setups

Training Environments: As mentioned above, our model is trained using the multi-agent
actor-critic learning framework. Not only does each agent’s policy network share parameters
but also the critic networks applied to each subgroup of agents are homogeneous. We train
our model over random grid maps of different sizes with randomly generated obstacles. The
obstacle density is sampled from a triangular distribution between 0 and 0.5 with its peak
value at 0.33. To fairly compare with other decentralized MAPF planners, our agent’s policy
network exclusively has 9×9 square-shaped FOV, the same as DHC and DCC, regardless of
the environment size. Inspired by the curriculum learning [4], we design a training pipeline
that starts with only 2 agents on 10 × 10 grid maps and gradually increases the number
of agents and the size of the map once the success rate reaches a certain threshold. More
and more complicated tasks are constantly added to the training pool until the map size
exceeds 100× 100 or the number of agents exceeds 72.

Testing Environments: We test our methods over a variety of maps all from the
standard benchmark [38]. We first select two random maps (32 × 32 and 64 × 64) with
uniformly distributed obstacles. Besides, we also use two game maps, den312d (65×81) and
warehouse (161×63). The start-goal pairs of agent locations are randomly generated with
the guaranteed existence of solutions. The number of agents is chosen from {4, 8, 16, 32, 64}
respectively. The maximum time step is 256 for random32, random64, and den312d, and
512 for warehouse. For cases that cannot be solved successfully within the time horizon
or the runtime limit, we count each agent’s step as the maximum time step.

3.6.2 Baselines

Learning-Based Methods: We compare our methods with several state-of-the-art de-
centralized learning-based MAPF methods summarized in Table 3.1. PRIMAL uses expert
demonstration from centralized MAPF planners to train its model. The expert demonstra-
tion has a positive effect on speeding up the training process but is very time-consuming and
requires global information about the specific environment, which limits its generalization to
unseen instances. DHC adopts IQL along with single-agent heuristic guidance and broadcast
communication mechanism. The resulting model performed better than PRIMAL without
any experts. DCC improves on DHC by learning selective communication with a decision
causal unit, which can filter out redundant messages and focus on relevant information.
This also reduces the communication frequency significantly.
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Figure 3.3: Success rates for different learning-based MAPF methods.

Search-Based Methods: Furthermore, we also compare our method with the central-
ized planners. We use two optimal but computationally expensive search-based methods for
comparison: Conflict-Based Search (CBS) [35] and ODrM∗ [49]. CBS performs a best-first
search that expands the constraint tree node by adding constraints to each agent involved
in every conflict, while ODrM∗ is a suboptimal planner based on M∗ that applies Operator
Decomposition (OD) to split agents into independent conflict sets and thus reduce the com-
plexity of joint planning. We also use Priority-Based Search (PBS) [23] that searches for
certain agent orders that can be used in the prioritized planning, which makes this solver
incomplete but efficient. To simulate centralized planning in the same partially observable
setting, we use windowed PBS (wPBS) [18], which only avoids conflicts within a bounded
time horizon. We set the time window length of wPBS to be equal to the caliber of the
FOV to simulate the partially observable environments. We set the runtime limit of CBS
and wPBS to 120 seconds and ODrM∗ to 20 seconds.
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3.6.3 Main Results

We evaluate the performance of the MAPF methods based on two widely-used metrics,
success rate and average step per agent. Success rate measures the ability to solve the given
instances within the runtime limit, whereas the average step per agent measures the quality
of the solutions over a given set of instances. We test our approach along with multiple
baselines in around 300 MAPF instances for each map with different numbers of agents.

Fig. 3.3 shows the success rate of our methods compared with all other baselines over
four different MAPF maps. Within the time limit, all decentralized planners have a remark-
able advantage in success rate. Even by including the precomputing time of shortest path
heuristics, decentralized planners find solutions much faster than centralized ones. Among
decentralized planners, PRIMAL tends to result in solutions with the worst quality, espe-
cially in those two game maps, which indicates that learning from the expert data cannot be
easily generalized to instances with different numbers of agents and on maps with different
structures. DHC and DCC have their advantages over PRIMAL by allowing the shortest
path heuristics and the communication mechanism, although our methods can both outper-
form them in most cases. The advantages are more obvious over maps with higher obstacle
density and more agents where more cooperation is demanded.

Table 3.2 reports the average step required to finish goals from each agent in multiple
different instances. If planners exceed the runtime limit in some cases, we consider them
failures and count them as spending the maximum time horizon. The stroke-out data with
maximum time steps indicates zero success. When compared to search-based planners with
relatively small numbers of agents, as expected, all learning-based methods cannot provide
comparable results. However, as the number of agents grows, the search-based methods
are significantly more time-consuming than learning-based methods and the success rate
would drop rapidly due to the runtime limit. The two communication-based methods DHC
and DCC have greater solution quality over PRIMAL in all cases. However, SACHA and
SACHA(C) outperform them by a decent margin in most instances, with and without
the communication block, which demonstrates their advantages over other learning-based
methods. It is worth mentioning that, generally, SACHA(C) has better performance than
SACHA in instances with larger numbers of agents where communication can be rather
helpful.

As reported in [25], DHC always has better performance than its alternative without
the communication unit. Hence, it shows that our method can serve the non-communicating
scenarios when SACHA can outperform DHC and thus DHC without communication. Be-
sides, DHC can essentially be viewed as training our communication-based model without
the attention block via the independent Q-learning. Therefore, the fact that SACHA(C) has
greater performance than DHC demonstrates the strength of the heuristic-based attention
mechanism and the multi-agent learning framework. Overall, our methods have a better
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Table 3.2: Solution quality for different MAPF methods.

Map Agents Average Step Per Agent
CBS

(120s)
ODrM*
(20s)

wPBS
(120s)

PRI
MAL DHC DCC SAC

HA
SAC

HA(C)

ra
nd

om
32

4 21.82 21.82 22.90 32.96 35.70 32.83 29.93 31.03
8 21.38 21.37 46.06 38.62 42.64 39.56 36.34 38.30
16 31.16 31.26 172.12 45.12 48.67 43.56 41.71 41.30
32 133.86 199.47 246.61 50.34 52.17 56.11 50.26 47.72
64 251.30 256.00 256.00 69.40 66.05 88.79 76.47 74.48

ra
nd

om
64

4 42.94 42.95 48.14 67.82 71.04 70.80 65.47 67.10
8 42.74 42.80 84.52 74.68 82.43 88.94 70.49 72.38
16 51.51 51.52 154.47 89.22 94.22 102.27 83.74 82.17
32 94.36 136.67 222.08 98.02 103.05 126.71 95.67 93.08
64 234.66 251.65 256.00 105.12 120.68 154.72 99.02 96.42

de
n3

12
d

4 51.74 51.76 69.32 196.54 86.56 82.99 78.33 81.43
8 55.50 78.74 116.32 245.02 100.70 97.95 84.24 89.73
16 118.97 186.44 208.28 256.00 109.24 108.29 97.86 96.74
32 251.86 256.00 248.06 256.00 124.38 119.15 111.28 104.30
64 256.00 256.00 256.00 256.00 153.17 145.21 140.79 142.97

w
ar

eh
ou

se

4 77.79 77.79 104.41 355.80 146.12 135.89 131.43 134.59
8 83.48 100.37 170.46 451.82 198.82 169.50 164.83 166.72
16 81.64 133.59 340.18 492.04 281.37 208.72 192.30 198.72
32 262.15 417.22 512.00 505.58 432.28 335.81 370.65 354.33
64 494.93 512.00 512.00 512.00 512.00 473.92 449.83 437.29

chance of solving given MAPF instances, with and without communication, and among
those solved instances, they result in solutions with better quality.

3.7 Summary

In this chapter, we introduced SACHA, a novel approach for learning cooperative policies for
MAPF and potentially other MARL problems in partially observable environments. SACHA
combines the multi-agent soft actor-critic that maximizes both expected reward and entropy
with heuristic-based attention mechanisms that enhance the network architectures of both
the actor and the critic. Specifically, we proposed to augment each agent’s local observation
with heuristic guidance from other agents and to use an attention module that learns to
focus on the most relevant information for each agent to avoid collisions and achieve the
goal. To the best of our knowledge, we are the first to apply the soft actor-critic with a
novel agent-centered critic to homogeneous MARL settings with partial observability and to
incorporate heuristic guidance and attention in the agent’s policy network. We evaluated our
method on various MAPF benchmarks and showed that it outperforms existing baselines
for almost all the cases in terms of success rate and solution quality.
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Chapter 4

Bi-Objective Cooperation

4.1 Introduction

Multi-Agent Path Finding (MAPF) [38] is a widely used technique in various multi-agent
systems to find collision-free paths for agents in a shared environment. Applications include
warehouse management [52], airport surface operations [29], video games [24], and other
multi-agent systems [10]. Additionally, many of these applications require agents to adhere
closely to a designated formation to accomplish collaborative tasks or maintain an efficient
communication network. For example, in warehouse logistics, multiple robots/vehicles are
required to collaborate in transporting large objects. Maintaining a specific formation is
critical to optimizing transport efficiency or ensuring reliable communication. Moreover, in
video gaming or military strategy simulations, game characters or army personnel must
move in formations to safeguard vulnerable members.

To tackle this challenge, [17] has formalized the bi-objective problem of Moving Agents in
Formation (MAiF) that combines these two tasks and proposed a centralized MAiF planner
based on the leader-follower scheme and a search-based MAPF algorithm. However, existing
MAiF planners work only in a centralized setting and do not apply to practical scenarios
where agents do not fully observe the environment. Furthermore, centralized MAiF planners
suffer from a huge computational burden as the number of agents increases and are thus not
suitable for planning in real time. Additionally, the only scalable MAiF planner, SWARM-
MAPF [17], does not have the flexibility to adjust to the particular preferences between
two objectives since it balances the two objectives only by setting the makespan allowance
between two sets of heuristically determined waypoints, thus not guaranteed to optimize
targeted preference. We propose a novel approach to learning a general MAiF solver for
decentralized settings that can directly adapt to various preferences of the two objectives.

In the MAPF literature, reinforcement learning and imitation learning [41] have been
introduced to solve MAPF in decentralized settings [34, 21, 25]. However, most learning-
based MAPF solvers learn one homogeneous policy for any set of agents that treats nearby
agents as part of the environment. This learning scheme does not translate seamlessly to
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decentralized MAiF. Unlike MAPF where the joint action cost can be directly decomposed
to action costs of individual agents, the formation in MAiF is determined by the joint state
of all agents at any given time. Each agent is thus required to not only avoid colliding with
other agents but coordinate with them to maintain proximity to the desired formation. The
dimension of the joint state space grows exponentially with the number of agents, incapac-
itating the scalability. Besides, trading off two objectives merely under partial observation
and limited communication make this task even more difficult.

In this work, we formalize the decentralized MAiF as a bi-objective multi-agent rein-
forcement learning task. The major contributions of this work are as follows. We design
a practical learning formalization for MAiF, including specifications for observations, ac-
tions, rewards, and inter-agent communication. To address the aforementioned challenges
of MAiF, we propose a novel approach called Mean Field Control with Envelop
Q-learning (MFC-EQ), a multi-agent reinforcement learning technique that optimizes
towards any linear combination of two objectives for any number of agents, ensuring a sta-
ble and efficient learning process. MFC-EQ leverages mean field control to approximate the
collective dynamics of the agents, treating the interaction of each agent within the forma-
tion as influenced by the collective effect of others. This design choice facilitates seamless
scalability to large-scale instances. Furthermore, MFC-EQ extends envelope Q-learning to
a multi-agent setting, enabling the learning of a universal preference-agnostic model adapt-
able to any linear combinations of the two objectives. To evaluate our method empirically,
we extensively test MFC-EQ across various MAiF instances. Our results substantiate that
MFC-EQ consistently produces solutions that dominate those generated by several central-
ized MAiF planners and scales up well to large numbers of agents without long planning
time. Additionally, the learned policy of MFC-EQ can directly adapt to more challenging
tasks, including dynamically changing desired formations, which proves to be difficult for
centralized MAiF planners.

4.2 Bi-Objective Optimization

We then formulate the goal of this bi-objective optimization problem. Each MAiF solution
is evaluated as (v, w), where v denotes its makespan and w denotes its average formation
deviation per agent. We first define dominance. We say r = (v, w) dominates r′ = (v′, w′),
denoted as r ⪯ r′, iff v ≤ v′ and w ≤ w′. A solution is Pareto-optimal if and only if there
does not exist any solution that can dominate it. The Pareto-optimal frontier is a set of
all Pareto-optimal solutions. In the MAiF setting, we are also interested in evaluating each
solution r by a scalar function fω(r) = ω⊤r, where ω ∈ Ω is the linear preference and Ω is
the set of all possible preferences. we let ω = (λ, 1 − λ)⊤ where 0 ≤ λ < 1. Our goal is to
find the convex convergence set (CSS). The CSS is a subset of the Pareto-optimal frontier,
where for each solution in CSS, there exists a preference ω such that it minimizes fω among
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Figure 4.1: Illustration of bi-objective optimums.

all possible solutions. Intuitively, as shown in Fig. 4.1, we can regard the scalar function as
a projection to the preference ω. For example, the solution C belongs to CSS since it has
the smallest projection into ω compared to others.

4.3 Related Work

We now discuss related work on mean field reinforcement learning and multi-objective re-
inforcement learning.

4.3.1 Mean Field Reinforcement Learning

Inspired by the mean field theory [37] from the physics world, the mean field reinforcement
learning has been proposed in [54] which estimates the dynamic within the entire group of
agents as the interaction between each agent and the mean effect of all other agents as a
whole. As the dimension of the mean effect is independent of the number of agents, this
method does not suffer from the curse of dimensionality, providing a general framework for
large-scale multi-agent tasks. This method has been extended to the partially observable
stochastic settings [40], which utilizes certain distributions to sample agents’ actions without
the necessity of observing them. The sampling process only serves stochastic games, which
does not apply to our task. This mean field framework has also been used to solve multi-type
multi-agent tasks [39], where agents are categorized into different types, and a set of mean
effects is considered to reflect various types of agents.

4.3.2 Multi-Objective Reinforcement Learning

There exist three major categories of multi-objective reinforcement learning methods. Single-
policy methods [9, 27] convert the multi-objective problem into a single-objective optimiza-
tion by using linear or non-linear functions, but these methods cannot manage unknown
preferences. Multi-policy methods [30, 32, 45] update on a set of policies to approximate
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the real Pareto-optimal frontiers, which requires immense computational resources. These
methods are only applicable to problems with limited state and action space. The policy-
adaptation methods either train a meta-policy that adapts to different preferences on the
fly [6] or learn a policy that conditions on different preference weights [5, 1, 53]. The En-
velop Q-learning [53] has been proposed to increase sample efficiency by introducing a novel
envelop operator for updating the multi-objective Q-function, which has become a standard
way to tackle multi-objective problems with linear preferences.

4.4 Environment and Model Design

In this section, we show how we design the learning framework for decentralized MAiF. We
first design the learning environment with agents’ observation, communication, action, and
reward functions. Then, we elaborate on the bi-objective multi-agent learning process based
on the mean field theory and the envelope Q-learning.

Observation

As most research in the MAPF community [38], we study our problem in the 2-dimensional
4-neighbor grids. To mimic many real-world robotics applications where robots have limited
visibility and sense range, each agent, in our grid world, can only observe its field of view
(FOV), represented by its surrounding L×L area. Each agent’s observation is represented
by 3-channel feature maps F ∈ RL×L×3. The first two channels indicate obstacles and other
neighboring agents’ positions. Inspired by some decentralized MAPF solvers [21, 25], the
third channel encompasses the heuristic information where each grid in the FOV is assigned
a value proportional to the short-path distance from that to the agent’s goal.

Action

In 4-neighbor grids, agents can only travel to their cardinally adjacent grids for each step.
The action taken by agent i at time t, denoted by ait ∈ R5, is a 5-dimensional one-hot
vector with each dimension representing one action from {up, down, left.right, wait}. The
first four actions take agents to another location and their observation will shift accordingly.
The last action is to have the agent wait at its current location, and it is especially crucial
for formation control as one may have the choice for other agents to catch up for lower
formation deviation.

Multi-Agent Communication

To keep the desired formation, agents not only need to communicate with nearby agents
inside FOVs but also have to reach agents outside them. We specifically design the commu-
nication message so that it can pass along critical information under low communication
bandwidth.
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As in many real-world robot applications, each agent can only access the pairwise relative
positions between other agents and itself. Assume that the current formation at time step
t is ℓp = ⟨p1, . . . ,pM ⟩ and the desired formation is ℓg = ⟨g1, . . . , gM ⟩. We define the
relative position between agent i and j as pi,j = pj − pi (resp., gi,j). Agent i receives
{pi,j}j∈[M ] in real time, and it holds the information of the relative positions in the goal
formation, {gi,j}j∈[M ], which can be calculated before execution. We show that, only with
this information, even without knowing the agent’s whereabouts, it can still calculate the
formation deviation. As defined in Eq. (2.1), F (ℓp, ℓg) = min∆

∑M
m=1∥pm − (gm + ∆)∥1 =∑M

m=1
∑d
n=1|(pmn − gmn ) −∆n| where ∆n is the median of {pmn − gmn }m∈[M ]. Recall that d

is the dimension of agents’ coordinates. It is easy to verify that F (ℓp, ℓg) is also equal to∑M
m=1

∑d
n=1|(pmn − gmn −Cn)−∆′

n| where C is any constant d-dimensional vector and ∆′
n

is the median of {pmn − gmn −Cn}m∈[M ], as all the values and the median are shifted by the
same margin. Let C = pi−gi. We can rewrite the definition of the formation deviation only
using the relative position. ∑M

m=1
∑d
n=1|(pmn −gmn )−∆n| =

∑M
m=1

∑d
n=1|[(pmn −pin)−(gmn −

gin)] −∆∗
n| = ∑M

m=1
∑d
n=1|(pi,mn − gi,mn −∆∗

n| where i is the index of the observing agent
and ∆∗

n is the median of {pi,mn −gi,mn }m∈[M ]. Therefore, agent i can calculate the formation
deviation merely based on the relative positions, which happens at each decentralized agent
during execution with the time complexity of only O(d ·M).

We also mentioned that we can infer the mean action based on the relative positions.
Given pi,j(t) and pi,j(t + 1), we can get that pi,j(t + 1) − pi,j(t) = (pj(t + 1) − pj(t)) −
(pi(t+ 1)− pi(t)) = aj(t)− ai(t). Hence, agent i can calculate agent j’s action by aj(t) =
pi,j(t + 1) − pi,j(t) + ai(t). Therefore, we pass this to a linear layer to get the relative
position encoding. Besides, each agent can infer other agents’ actions by simply comparing
relative positions in two consecutive time steps, which will later be used to compute the
mean action.

Reward

The reward function for agent i after taking action a at time step t, rit(sit, ait) ∈ R2, is
represented by a 2-tuple. The first element is designated for the makespan. We modify the
individual cost function for makespan from DHC [25] which, instead, intends to minimize
the sum of all path lengths (a.k.a., flowtime). The moving cost of agent i at time step t

with action ai is:

cit(si, ai) =


−0.075 collision-free ai

−0.5 collision (with obstacles or agents)

3 reach goal (first time)

.

Each collision-free action, including move (up, down, left, or right) and wait (on goal
or away goal), is slightly penalized so that agents are incentivized to approach their goals
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Figure 4.2: Illustration of the model architecture of MFC-EQ. The bottom demonstrates
the state/observation transition in the partially observable environment. The agent’s Q-
network gathers information from the environment through partial observation and limited
communication and chooses the next action accordingly.

as quickly as they can. The second element is for the formation deviation. As defined
in Eq. (2.1), we add the individual portion of the collective formation deviation that is
dedicated to agent j, namely F j

t (ℓt, ℓg). We negate the formation deviation so that it will
be minimized through maximizing rewards. Hence, the reward function can be represented
as:

rjt (s
j
t , a

j
t ) = (cjt ,−F j

t (ℓt, ℓg))⊤. (4.1)

Model Architecture

Given the partially observable multi-agent environment, we further design the Q-network,
whose learning algorithm will be introduced later. As in Fig. 4.2, we aim to project each
agent’s observations and communication messages into a corresponding action. Firstly, we
feed the local observation and relative positions into two separate encoders. The observation
encoder consists of several stacked convolution layers followed by linear layers. The relative
position encoder includes two simple linear layers. Then, we concatenate these two encodings
and forward them to another linear layer to obtain the final state representation, sit, for
agent i’s perception at time t. We then collect other agents’ actions from the previous
time step to calculate the mean action. Lastly, we use stacked linear layers to project them
to the Q-values which condition on the state, the action, the mean action, and the given
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preference. The agent will decide its next action that maximizes the Q-function produced
by the Q-network.

4.5 Learning Framework

4.5.1 Mean Field and Envelop Optimality

In the rest of this section, we will discuss the details of the learning algorithm. Learning
multiple policy networks, π = [π1, . . . , πM ], for this bi-objective multi-agent task can be
extremely challenging. Therefore we simplify it by making some common assumptions.

Mean Field Approximation

The goal of MAiF is to minimize the makespan and the formation deviation. With the
specifically designed reward function, the return, the discounted sum of all rewards from
the initial joint state to the goal joint state, ∑

t

∑
j γ

trjt (st,at), can reflect the actual values
for the two objectives. Therefore, the goal of the learning is to find a set of policies to
maximize the general sum of Q-values arg maxπ1,...,πM

∑M
j=1 ω⊤Qπj (sj ,a) with the given

linear preference ω. However, the dimension of s and a grows exponentially w.r.t. the
number of agents, rendering it infeasible to learn efficiently.

To tackle this problem, we introduce mean field reinforcement learning. We first lay out
two common assumptions of homogeneity and locality that are made in [54] and many other
multi-agent reinforcement learning works. The homogeneity assumes each agent shares the
same policy, meaning that πi = πj for all i ̸= j. The locality assumption comes from partial
observability, which suggests that agents’ decision-making can only depend on their visible
surroundings.

Then, assuming the actions are represented by one-hot vectors, we define the mean
action:

ājt = 1
|N i|

∑
j∈N i

ajt , a
j
t ∼ πj(·|sj , ā

j
t−1), (4.2)

where N i denotes agent j’s neighboring agents and πj represents its policy. With the as-
sumptions of homogeneity and locality, under certain preference ω, the local pairwise inter-
actions can be approximated by the interplay of each agent with the mean effect from its
neighbors:

ω⊤Q(sjt ,at) = 1
|N j |

∑
k ̸=j

ω⊤Q(sjt , a
j
t , a

k
t ) = ω⊤Q(sjt , a

j
t , ā

j
t ),

where at is the joint action, at is the single-agent action, and āt is the mean action. Given
this approximated Q-function, we can derive the agent’s policy function with the softmax
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parameterization:

πj(ajt |s
j
t , ā

j
t−1) =

exp(βω⊤Q(sjt , a
j
t , ā

j
t−1,ω))∑

a∈Aj exp(βω⊤Q(sjt , a, ā
j
t−1,ω))

, (4.3)

where β is the Boltzmann parameter.

Bellman Optimality Operator

To extend this framework to multi-objective reinforcement learning, we modify the envelop
Q-learning [53] by combining the mean field operator with the envelop optimality operator.
We first condition all the Q-values on the linear preference ω, as in Q(s,a,ω). As the
standard Q-learning [50], we define the bi-objective multi-agent Bellman optimality operator
T as:

(TQ)(st,at,ω) :=
M∑
j=1

rj(sjt , a
j
t ) + γEst+1

M∑
j=1

argQj

{
max
ω′∈Ω

max
aj∈Aj

ω⊤Qj(sjt+1, a
j , ājt+1,ω

′)
}
,

(4.4)

where argQj takes out Qj that maximizes ω⊤Qj . This operator resembles the Bellman op-
timality operator in the standard Q-learning for single-agent RL and provides the temporal
difference (TD) target. The difference is that it also optimizes over the parameter of pref-
erence ω. By maximizing ω′ over the next state and its onward trajectory, this approach
provides an optimistic perspective for its future rewards. Iteratively applying this operator
to the Q-function, we will be able to reach the convergence of the near-optimal Q-function,
which has been proven in [53].

4.5.2 Double Q-learning

We design our learning algorithm based on the double Q-learning [14] with two different
loss functions and the target network. Algorithm 1 presents the detailed learning frame-
work. During the rollout phase (Line 5-10), we sample the transitions in the multi-agent
environment with the homogeneous policy. After we obtain enough transitions in the replay
buffer, we enter the learning phase (Line 11-14). Given a mini-batch of N transitions and
Nω preferences, we can estimate the TD target y = (TQ)(s,a,ω) via Eq. (4.4). The first
loss function can be computed as the L2-norm of the multi-objective TD:

LA(θ) = Es,a,ω

[
∥y −

M∑
j=1

Qθ(sj , aj , āj ,ω)∥22
]
.

Although this loss function is close to the true expected return, the non-smooth sur-
face makes the learning process difficult in the early steps. We combine this with another
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Algorithm 1: Mean Field Control with Envelop Q-learning
1 Initialize the Q-network Qθ and the target Q-network Qθ̄
2 Initialize the replay buffer D and set ζ = 0
3 for episode = 1, . . . , E do
4 Initialize āj0 for all j ∈ [M ]
5 for t = 1, . . . , Tmax do
6 Sample ajt ϵ-greedily from Qθ by Eq. (4.3) for all j ∈ [M ]
7 Compute new mean actions ājt by Eq. (4.2) for all j ∈ [M ]
8 Take the joint action at = [a1

t , . . . , a
M
t ] from the state s to the next state st+1

9 Compute the reward rt = [r1, . . . , rM ] by Eq. (4.1)
10 Store the transition, ⟨st,at, rt, st+1, ā⟩, into D, where āt = [ā1

t , . . . , ā
M
t ] is

the collection of mean actions
11 if update then
12 Sample N transitions from D and Nω preferences from Ω
13 Compute the TD target using the operator in Eq. (4.4)
14 Update Qθ by minimizing the loss from Eq. (4.5)
15 Update Qθ̄ with the learning rate α: θ̄ ← αθ + (1− α)θ̄
16 Increase ζ along the predefined homotopy path

additional loss function with the projected temporal difference:

LB(θ) = Es,a,ω

[
|ω⊤(y −

M∑
j=1

Qθ(sj , aj , āj ,ω))|
]
.

LA(θ) provides a closer estimation of the true Q-function since it evaluates the Q-
function w.r.t. the optimal frontier which could contain a large number of solutions and
result in difficulties for optimization. LB(θ), on the other hand, makes the landscape of
optimization smooth and easy to optimize. We train the Q-network via the homotopy op-
timization [51] based on the combination of these two loss functions:

L(θ) = (1− ζ)LA(θ) + ζLB(θ), (4.5)

where we gradually increases ζ from 0 to 1 exponentially as the learning proceeds.

4.6 Empirical Evaluation

In this section, we implement MFC-EQ and experimentally evaluate it with other methods
on a server equipped with Intel 2.3GHz 16-Core CPUs and NVIDIA A40 GPUs.

4.6.1 Experimental Setups

We use 4-neighbor grids with 2 obstacle-free corners in the top-left and the bottom-right.
The default obstacle density for grids outside these two corners is set to be 10%. The agents
start at the top-left corner and travel toward the bottom-right corner. The formation in the
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Figure 4.3: Demonstration of experiment environments.

goal position represents the desired formation. We refer to the size of grids as map size and
the size of corners as formation size. For each data point, we averaged over 100 samples by
crossing 10 random maps and 10 random formations.

As shown in Fig. 4.3, we conduct our experiment in random grids with various map
sizes and formation box sizes. We place two obstacle-free corners. The top-left corner is
the start locations, and the bottom-right corner is the goal locations which makes the
desired formation. Other grids are blocked with 10% probability uniformly at random. In
our method, all the decentralized agents have 9 × 9 FOV. We vary the number of agents,
the map size, and the formation size to extensively test the performance of these methods
in different environments.

4.6.2 Centralized Methods

We compare our method with several methods which have to plan all paths on centralized
servers before execution.

Scalarized Prioritized Planning (SPP)

Since it is NP-hard to solve this problem optimally, we come up with an efficient yet sub-
optimal baseline based on the prioritized planning algorithm [36]. We first give each agent
a unique priority, and in that priority order, a low-level A* search will be invoked to plan
the path from the start location to the goal location while respecting the already planned
paths of all agents with higher priorities. The low-level A* search uses a scalarized f -value
for each state, which is a mix of the makespan f -value, fMS, and the formation deviation
f -value, fFD:

f(n) = λ
[
cost(vi) + dist(vi, gi)

]
︸ ︷︷ ︸

fMS(n)

+(1− λ)
cost(vi)∑
t=1

F i
P (tn)︸ ︷︷ ︸

fFD(n)

,
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where F i
P (tn) is the partial formation deviation among agent i and all other agents with

higher priorities. This baseline is not complete but, in most cases, can find a possible solution
much more quickly, albeit the solutions usually have poor quality, especially in congested
environments with large numbers of agents. Moreover, this planner, unlike SWARM-MAPF,
can target any given linear preference. In experiments, we use the above scalarized f -value,
and the weights for makespan and formation deviation are set to λ and 1−λ, respectively. We
vary λ from {0.1, 0.3, 0.5, 0.7, 0.9} to test its performance under different linear preferences.

SWARM-MAPF (SWARM)

The most effective centralized method, SWARM-MAPF, has been proposed in [17], which
combines the swarm-based formation control with the conflict-based MAPF algorithms.
The SWARM-MAPF is a two-phase algorithm. In Phase 1, it first calculates the lower
bound of the makespan B = max1≤i≤M dist(si, gi). Given a user-provided parameter w ≥ 1,
SWARM-MAPF selects a leader from the group of agents such that its path, whose length
is bounded by wB, can be sufficiently far away from the obstacles and thus others agents
can preserve their formation as much as they can. In Phase 2, it will invoke the modified
conflict-based search [35] (CBS-M) to minimize the makespan and replanning some critical
segments. This planner is complete and suboptimal, but it cannot specifically target any
given preference, since we cannot control the trade-off between two objectives based on the
parameter w.

Joint State A* (JSA*)

The joint state A* [33] directly applies the ϵ-constraint search algorithm [13] in the joint
state space. The joint state assigns all agents a set of different locations. The operator
assigns each agent a set of non-colliding move or wait actions. The OPEN list sorts nodes
based on makespan, while the FOCAL list breaks ties based on the formation deviation.
Since the joint state space grows exponentially w.r.t the number of agents, this method can
only be applied to instances with relatively small agents (less than 5 agents in our setups).
By varying the ϵ in the focal search, this method is guaranteed to find the Pareto-optimal
frontier, albeit significantly slower.

4.6.3 Main Results

Linear Preferences

We first evaluate the ability of our learned Q-Network to adapt to different preferences. We
use the environment that has 16 agents with 48× 48 map size and 9× 9 formation size. We
test different preferences ω = (λ, 1−λ)⊺ by varying λ from 0.1 to 0.9. We also evaluate each
result under different MIX(λ) objectives by varying λ from the same set of values. Table 4.1
provides 5 different solutions, and every MIX column marks the solution that minimizes
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Table 4.1: Results for MFC-EQ with different preferences evaluated by different objectives.

ω(λ) Make-
span

Form.
Dev. MIX(0.1) MIX(0.3) MIX(0.5) MIX(0.7) MIX(0.9)

0.1 106.33 14.67 23.84 42.17 60.50 78.83 97.16
0.3 101.14 15.37 23.95 41.10 58.26 75.41 92.56
0.5 98.64 16.84 25.02 41.38 57.74 74.10 90.46
0.7 96.74 19.16 26.92 42.43 57.95 73.47 88.98
0.9 96.42 21.75 29.22 44.15 59.09 74.02 88.95

the projection onto that particular preference. As we can observe, all MIX(λ) objectives are
minimized by feeding the corresponding preference ω(λ) into the Q-network. This suggests
that the learned Q-network using MFC-EQ can adapt to different preferences and produce
multiple solutions that fit the given preferences.

Number of Agents

We evaluate our methods under different numbers of agents in different map sizes and
compare the results with centralized baselines. The λ is set to 0.5 for SPP and MFC-EQ.
The w is set to 1.0 for SWARM. The runtime limit is only 30 seconds for MFC-EQ and 5
minutes for SWARM and SPP. Due to the partially observable environment, our method
naturally does not have perfect success rates, but they are relatively high and acceptable.
As we can observe from Table 4.2, SWARM has greater performance in almost all the
test cases. We also can see when projected to the demanded preference, our method can
outperform SWARM in most instances. This experiment shows that our method can scale
up well to instances with large numbers of agents in different sizes of maps.

Formation Size

We repeat the experiment above with various formation sizes. We choose different sizes of
obstacle-free corners in which the formation is randomly generated. The larger the corner
is, the more spread out the formation will be. The number of agents is fixed at 16. As shown
in Table 4.3, we see that smaller formations are usually more difficult to solve, resulting
in larger makespan and formation deviation. Compared to SWARM, SPP generally has
a better makespan but much worse formation deviation and MIX. MFC-EQ solves most
instances with greater solution quality in both objectives when compared to the baselines.

Dynamic Formation

We also put these methods into more challenging tests where the agents will be asked to
adjust to different formations on the fly. We evaluate agents’ formations with one desired
formation before Tth = 30 and another different formation after that, as shown in the right-
bottom of Fig. 4.3. The centralized scheme cannot handle such tasks as agents’ paths will
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Table 4.2: Results for MFC-EQ and centralized baselines with different numbers of agents
in various sizes of grids.

Success Rate Makespan Form. Dev. MIX(0.5)
Map
Size M SP

P
SW

A
-

RM M
FC

-
EQ SP

P

SW
A

-
RM M
FC

-
EQ SP

P

SW
A

-
RM M
FC

-
EQ SP

P

SW
A

-
RM M
FC

-
EQ

32
×
32

10 1.00 1.00 1.00 48.30 59.32 60.24 29.79 6.07 4.35 39.05 32.70 32.30
20 1.00 0.99 0.99 49.03 63.17 60.38 32.42 12.38 10.04 40.73 37.78 35.21
30 0.79 0.96 0.90 51.54 59.09 54.59 42.25 20.64 20.32 46.90 39.87 37.46

48
×
48

10 1.00 0.99 0.99 80.44 98.10 88.07 53.91 8.18 11.05 67.18 53.14 49.56
20 0.95 0.99 0.96 82.07 108.84 104.28 70.44 23.70 21.49 76.26 66.27 62.89
30 0.74 0.94 0.88 84.92 101.52 107.42 96.04 36.30 37.18 90.48 68.91 72.30

64
×
64

10 1.00 0.99 0.99 113.38 144.54 137.14 97.92 15.00 16.43 105.65 79.77 76.79
20 1.00 0.97 0.93 114.56 156.03 141.26 113.52 33.24 28.34 114.04 94.64 84.80
30 0.22 0.98 0.90 115.59 142.65 145.51 107.64 57.31 61.43 111.62 99.98 103.47

Table 4.3: Results for MFC-EQ and centralized baselines under different formation sizes in
various sizes of grids.

Success Rate Makespan Form. Dev. MIX(0.5)
Map
Size

Form
Size SP

P
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FC

-
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FC

-
EQ SP

P

SW
A

-
RM M
FC

-
EQ SP

P

SW
A

-
RM M
FC

-
EQ

32
×
32

7× 7 0.94 1.00 0.97 53.81 66.40 68.30 44.66 12.37 9.06 49.24 39.39 38.68
9× 9 1.00 1.00 1.00 48.56 63.20 67.33 29.34 9.10 8.72 38.95 36.15 38.03

11× 11 1.00 1.00 1.00 44.18 57.75 55.12 20.80 7.03 8.32 32.49 32.39 31.72
48
×
48

7× 7 0.98 1.00 0.87 86.26 110.94 107.37 82.85 19.84 22.40 84.56 65.39 64.89
9× 9 0.93 0.96 0.93 81.49 109.67 98.64 65.74 21.03 16.84 73.62 65.35 57.74

11× 11 1.00 1.00 1.00 77.06 105.06 97.26 60.65 15.12 14.08 68.86 60.09 55.67
64
×
64

7× 7 0.87 0.99 0.96 118.64 155.36 138.84 115.38 31.07 55.42 117.01 93.22 97.13
9× 9 1.00 1.00 0.96 113.87 153.33 133.92 108.57 25.95 33.20 111.22 89.64 83.56

11× 11 1.00 0.95 1.00 109.43 149.61 131.08 97.68 23.02 27.75 103.56 86.32 79.42

have to be planned before execution. In our method, we can simply notify each decentralized
agent of the new goal formation which will result in different ways of calculating relative
positions, and therefore the agents can adjust to the new formation seamlessly. The results
are shown in Table 4.4, suggesting that our method has the flexibility to tackle changeable
formations, while others result in much larger deviation.

Makespan and Formation Trade-off

We further compare our method with others under different preferences. Due to the limited
scalability of FOCAL, we first use the environment with 20× 20 map size, 3× 3 formation
size, 15% obstacle density, and 3 agents. We vary ϵ of FOCAL from 1.0 to 1.8 and w

of SWARM from 1.0 to 1.6. The value of λ for ω in MFC-EQ is varied from 0.1 to 0.9.
FOCAL can provide the Pareto-optimal frontier only for small-scale instances. We then
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Table 4.4: Results for MFC-EQ and centralized baselines with dynamic formation.

Success Rate Makespan Form. Dev. MIX(0.5)
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-
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FC

-
EQ SP

P

SW
A

-
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-
EQ SP

P

SW
A

-
RM M
FC

-
EQ

10 1.00 0.98 0.96 48.19 59.00 56.33 127.90 172.40 104.61 88.05 115.70 80.47
15 1.00 1.00 1.00 48.29 63.85 57.56 132.71 210.82 114.33 90.50 137.34 85.95
20 0.97 1.00 1.00 49.64 63.60 59.07 141.18 208.28 118.42 95.41 135.94 88.75
25 0.72 1.00 1.00 50.56 62.58 61.29 149.61 204.33 123.20 100.09 133.46 92.25
30 0.90 0.98 0.93 50.00 59.31 62.50 146.82 187.08 129.74 98.41 123.20 96.12
35 0.48 0.94 0.87 51.75 57.87 64.71 163.40 189.64 133.07 107.58 123.76 98.89
40 0.25 0.81 0.74 52.68 54.12 65.29 168.64 165.05 137.33 110.66 109.59 101.31
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Figure 4.4: Trade-off of makespan and formation deviation.

repeat this experiment in larger instances with 32×32 map size, 9×9 formation size, and 20
agents. Fig. 4.4 shows the results. Although SPP is also tested, it only gives solutions that
have near-optimal makespan but significantly larger formation deviation than the shown
results. In large-scale cases, SWARM tends to fluctuate, meaning that, even given more
makespan allowance, it may result in solutions with worse formation deviation. The envelope
generated by our method is near-convex and can cover all solutions from SWARM, albeit
still suboptimal. It also has a wider range of makespan with greater solution variety.

4.7 Summary

We proposed MFC-EQ, a general Q-learning framework for solving decentralized MAiF with
partial observation and limited communication effectively. MFC-EQ utilizes the mean field
approximation to simplify the complex multi-agent interaction and employs the envelop
Q-learning to enable the adaptability to various linear preferences for this bi-objective task.
Empirical results demonstrate that MFC-EQ outperforms existing centralized baselines in
most cases and is more versatile in handling dynamically changing desired formations.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In many real-world applications in multi-agent systems, groups of agents are required to
find their collision-free paths from start locations to goal locations. While search-based
MAPF algorithms have been developed in the AI community, they do not apply to agents
with limited sensing and communication capabilities and do not scale well to large numbers
of agents. We consider a more practical setting where decentralized agents can only decide
their sequential actions based on their partial observation of the environment. In this setting,
we investigate two specific tasks, one is single-objective cooperation in partially observable
MAPF and the other is bi-objective cooperation in partially observable MAiF. For the first
task, we propose SACHA, a novel multi-agent soft actor-critic framework with attention
mechanisms. Using this framework, we can learn a policy for agents that can generalize
among various environments (Chapter 3). As for the second task, we propose MFC-EQ, a
combination of mean field RL and multi-objective RL for tackling this bi-objective multi-
agent task under any linear preference (Chapter 4). We provide theoretical analysis to show
the effectiveness of our methods. Empirical evaluation suggests that our methods outperform
centralized and decentralized baselines in most given instances over various environments.
Moreover, the proposed methods are not limited to path planning and have the potential
to extend to other tasks in multi-agent systems.

5.2 Future Work

We believe that our methods can be extended to other domains in multi-agent systems. We
list a few promising directions below.

• In single-objective cooperation, it could be interesting to consider more universal
schemes that can improve generalizability among different environments. For example,
we could apply meta-learning, which obtains a pre-trained model at first and fine-tunes
it when given the specific environment.
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• In bi-objective cooperation, we could apply other multi-objective RL algorithms that
do not depend on the linear combinations of rewards. Instead, we could optimize over
the multi-objective rewards and directly approach the Pareto frontier.

• For path planning in multi-agent cooperation, we could consider more sophisticated
types of cooperation, such as task assignment and multi-type agents.

We will leave these directions for future work.
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