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Abstract

This project investigates the influence of offensive and defensive penalties on score dif-
ferentials and drive outcomes in the NFL, incorporating various factors that could affect
game dynamics. Employing linear regression, we initially look into the specific impacts of
penalties on score differentials. Building upon this analysis, a linear regression model with
random intercepts for teams and seasons was employed to further refine our understanding
of these interactions. The study then delves into drive outcomes, utilizing logistic regres-
sion to examine the distinct effects of penalties and predict drive success. Additionally, a
Random Forest Algorithm is implemented for the same purpose, allowing for a compara-
tive assessment of the predictive capabilities of logistic regression and the Random Forest
method. Through this comprehensive approach, the project indentifies effective methods
for predicting drive outcomes, shedding light on the intricate dynamics of penalties in NFL

games and providing insights for both fans and analysts.

Keywords: Linear Regression; Logistic Regression; Random Forests; Sports Analytics; Of-

fensive/Defensive Penalties; Prediction
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Chapter 1

Introduction

Sports analytics have become a cornerstone not only in the realm of athletic performance but
also in the broader business and operational aspects of sports organizations. The strategic
application of data analytics extends to ticket sales, an area that has historically relied
on less sophisticated methods. In the era of digital ticketing, analytics offers a wealth of
opportunities to enhance the customer experience. The transition from paper tickets to
digital platforms has revolutionized the way organizations identify and understand their
customers, allowing for a more personalized approach to marketing and sales [14]. The
growth of the sports market has not been uniform across all revenue streams, with ticket
revenues lagging behind in some instances. However, with the adoption of analytics, sports
entities now have the capacity to glean insights from data, leading to an optimization of
pricing strategies, improved fan engagement, and ultimately, an increase in overall revenue
streams [22]. A study published in the "International Journal of Sports Marketing and
Sponsorship" explored the factors influencing spectators’ adoption of digital ticketing [12].

Beyond sales, analytics profoundly impacts the scouting and hiring processes. It provides
a data-driven approach to evaluate player performance potential, identify undervalued ath-
letes, and optimize recruitment strategies. Similarly, when hiring coaching staff, analytics
can be used to analyze historical performance data, thereby informing decisions that align
with the team’s strategic objectives. This analytical approach ensures that investments in
talent are made with a higher degree of confidence, grounded in empirical evidence rather
than intuition alone.

These transformative effects of sports analytics underscore the shift towards a more data-
centric approach in sports management. Teams and organizations equipped with robust
analytics capabilities are better positioned to make informed decisions, whether in the
context of enhancing team performance, engaging with fans, or driving business outcomes.
The integration of analytics in sports is not just a trend but a fundamental change in how

sports entities operate and compete in a data-driven era.



1.1 The Evolution of Data-Driven Decision-Making in Sports

In recent years, the field of sports analytics has seen remarkable growth, profoundly changing
the way teams and individuals approach the game. This rise in data-driven decision-making
has been fueled by the belief that statistical analysis can significantly enhance the chances
of victory, a notion supported by the work of leading institutions such as MIT Sloan and
prominent platforms like Forbes and the National Football League (NFL).

Venture capital has also taken notice, pouring investments into the sports tech market,
indicative of the field’s growing importance and potential for impact. Since 2014, thousands
of global deals and funding rounds have been initiated, signaling a strong belief in the
transformative power of analytics in sports [8].

Artificial Intelligence (AI) and Machine Learning (ML) have been at the forefront of
this transformation. Over the last two decades, these technologies have not just altered
but fundamentally reinvented the ways in which sports are both consumed and analyzed.
The deployment of AI and ML in sports has paved the way for enhanced decision-making
and forecasting, drawing significant attention from academics, industry professionals, and
policymakers alike [4].

An example of the practical application of sports analytics can be seen in cycling. Data
analytics has been leveraged to optimize training by analyzing physiological metrics, en-
vironmental conditions, and race histories. This has led to the creation of highly tailored
training routines and nutrition plans, which are pushing the limits of human performance
and endurance [17].

The integration of analytics into sports has, therefore, not only changed the way athletes
and managers view their sports but has also opened up new horizons for performance,
strategy, and player development. As these technologies continue to evolve, their impact
on sports is expected to deepen, expanding the boundaries of what athletes can achieve
and offering teams a competitive edge that is grounded in empirical evidence and strategic
foresight.

Moreover, the utilization of analytics has transcended beyond mere performance en-
hancement to influence the economic and managerial aspects of sports. Sports franchises
and athletic organizations are now employing sophisticated models to assess player value,
optimize ticket pricing, and enhance fan engagement. These analytical models have also
played a pivotal role in injury prevention and career longevity, by enabling teams to make
informed decisions regarding player health and game strategies. The infusion of analytics
into sports has undeniably established a new paradigm, one where data is as valuable as
physical prowess on the field.

The impact of sports analytics on performance extends across various sporting disci-
plines, transforming how players, teams, and coaches strategize and execute their play.

Taking a decision-making lens, analytics have become crucial in the decisions made by gen-



eral managers and coaches in major team sports. This evolution in strategy is underpinned
by the rigorous analysis of both quantitative and qualitative data, promoting more informed
decisions and challenging conventional wisdom in sports [6]. The seminal work "Moneyball"
highlighted the potential value of data analytics in sports, particularly in baseball, where
Sabermetrics provided a framework for team assembly and in-game strategy based on rigor-
ous data analysis. This approach has since influenced numerous sports, leading to a broader
adoption of data analytics for decision-making in areas such as player evaluation, game
strategy, health, and fitness. Moreover, the disciplined application of analytics in player
evaluation and team building has shown that teams with lower payrolls can achieve sus-
tained success, challenging the traditional correlation between high payrolls and winning
performance as seen in examples like the Oakland Athletics and Tampa Bay Rays in Major
League Baseball [6].

In hockey, the application of analytics has significantly influenced the game, an example
is understanding how external factors like crowd presence affect penalties. A study con-
ducted during the COVID-19 pandemic, when National Hockey League games were played
without spectators, provided a unique opportunity to analyze referee decision-making. The
research revealed that referees tended to award more penalties to the away team compared
to the home team when crowds were present. However, in the absence of spectators, the
disparity in penalties between home and away teams diminished. This finding suggests that
social pressure from fans impacts referees’ decisions, contributing to the home advantage
phenomenon in professional hockey [7]. A similar study was conducted for penalties in the
NFL [5].

Soccer, too, has seen a significant impact from the integration of analytics. The sport has
shifted from intuition-based decision-making to an evidence-based approach underpinned by
statistical analysis. Data analytics in soccer has grown from simple goal counts to advanced
predictive models that inform strategic decisions and player evaluations. The introduction
of GPS tracking, video analysis, and wearable tech has been instrumental in collecting
complex data, which, in turn, is used to simulate games and predict future performance,
providing a competitive edge to teams. Today, data analytics is not just a tool but a critical
component in soccer, used by clubs worldwide to improve player performance and develop
strategies, with artificial intelligence and machine learning poised to push the boundaries
even further [20].

These examples are illustrative of the broader trend across sports where analytics is
becoming increasingly central to the decision-making process, affecting not just player and
team performance but also aspects like fan engagement and media coverage. The future of
sports is one where every decision, on and off the field, is informed by a wealth of data,
with the potential to revolutionize how games are played, teams are managed, and talent is

developed.



1.2 Penalties and Analytics in NFL

Penalties in the NFL are infractions of the rules, punishable by yardage losses, automatic
first downs, or even reversal of plays, which can alter the course of a game. Their purpose
is to ensure fair play, safety, and sportsmanship among competitors. However, penalties
carry a dual nature; while primarily seen as setbacks, they can also be wielded as strategic
instruments. For instance, a defense may take a deliberate offside penalty to stop the clock
or a savvy offense might induce a penalty to gain advantageous positioning. The strategic
employment of penalties can thus be as critical as any play call, with teams often training to
both avoid unnecessary penalties and to leverage them to their benefit when the opportunity
arises. This dual nature turns penalties into a chess match within the broader contest, where
understanding and manipulating the rules can be as impactful as executing a game-winning
touchdown.

The strategic nature of penalties in the NFL is exemplified by the decision-making
process surrounding whether to accept or decline a penalty. For instance, during a game, if
Team A executes a successful play but Team B commits a penalty, Team A has the option
to decline the penalty to preserve the advantageous result of the play, such as retaining a
touchdown or a significant yardage gain[3]. This decision-making can significantly influence
the scoring opportunities and overall strategy, as effectively managing penalties allows a
team to maximize their chances of scoring while limiting their opponent’s opportunities.
The wisdom in such choices is underpinned by a keen understanding of the game’s situation
and the potential consequences of each penalty, demonstrating the strategic depth and the
dual nature of penalties in the game of football.

In the realm of NFL game outcomes, penalties have emerged as a significant factor
with a measurable impact on the probability of winning. Analytical models, such as the
one developed by Pelechrinis and Papalexakis[15], which boasts an 84% cross-validation
accuracy using box score statistics, underscore the strategic implications of penalties. The
model’s strength was its simplicity and transparency, enabling it to perform comparably
with sophisticated systems like ESPN’s FPI and Microsoft’s Cortana[15]. A comprehensive
examination of over 64,000 penalties called between 1999 and 2020 reveals that while penal-
ties like False Starts and Defensive Offsides can be stable and reflective of team discipline,
penalties overall present as an unstable metric for predicting team performance. This insta-
bility is echoed in the fluctuating nature of Expected Points Added (EPA) when accounting
for nullified plays due to penalties [9]. Statistically, teams with fewer than 40 yards of penal-
ties tend to have a higher win percentage, underscoring the importance of disciplined play
and control over game flow. These findings highlight the multifaceted impact of penalties,
not just on the scoreboard, but as a strategic element that shapes the ebb and flow of NFL

games.



Complementing this, a more recent endeavor published by Dartmouth Sports Analytics
developed a predictive model incorporating four key variables: yards gained, yards allowed,
turnovers lost, and turnovers recovered. This model, featuring a pseudo R? value of 0.4150,
takes into account turnover differentials, a crucial aspect of football analytics. It was rig-
orously tested against the 2021 NFL season’s games, accurately predicting outcomes with
impressive precision, correctly forecasting 132 out of 150 games[13].

These studies underline the intricate nature of modeling in sports analytics, where even
the most seemingly straightforward statistics can yield profound insights into game out-
comes. The predictive power of such models is not only a testament to the quantitative
rigor but also to the nuanced understanding of the game’s strategic elements. The conver-
gence of statistical analysis and football acumen has indeed enhanced the ability to forecast
game results with a high degree of confidence, underscoring the evolving synergy between
data science and sports.

The objective of this project is to investigate the extent to which offensive and defensive
penalties influence the score differential in NFL games. This inquiry is rooted in the per-
sistent debate among football enthusiasts and analysts regarding the comparative impact
of these penalties on the game’s outcome. The purpose of studying the impact of offen-
sive and defensive penalties on score differentials using regression models with fixed effects
and random intercepts in our project is to quantitatively understand how various types
of penalties influence the outcome of NFL games. By employing these statistical methods,
you can isolate the effects of specific penalties, on the score differential. Regression models
enable the examination of relationships between variables, while models witj random inter-
cepts account for the nested structure of the data (e.g. games within seasons, teams within
games). This approach allows for a more nuanced analysis, considering both fixed effects
(like the type of penalty) and random effects (such as variability across games or seasons).
This study aims to provide insights into the impact of penalties in football, offering poten-
tially valuable information for teams, coaches, and analysts regarding game strategy and

rule enforcement’s impact on game outcomes.

1.3 Organization of the Project

This project systematically investigates the influence of penalties on score differentials using
aggregated game-level data. Chapter 2 presents the data alongside a descriptive analysis,
setting the foundation for the study. Chapter 3 delves into the models employed, with a
particular focus on interpreting key coefficients. Chapter 4 extends the discussion to a more
detailed drive-level data analysis, enhancing the granularity of our statistical approach. In
Chapter 5, we synthesize our findings and discuss the model’s limitations. The ultimate goal
of this research is to discern the extent to which penalties can affect score differentials and

drive outcomes. Despite the complexities inherent in modeling score differentials without



highly detailed tracking data, this project aims to shed some light on the implications of

penalties from various analytical perspectives.



Chapter 2

Overview of the Data

2.1 nflifastR Package

We used a well known R package nflfastR [1] to access the data required for this project.
The nfifastR package was officially introduced to the public through a tweet by Ben Baldwin
on April 27, 2020. This package, designed to scrape NFL play-by-play data, was created
to allow end-users to access this information more swiftly than previous methods. Ben
Baldwin, along with contributors such as Tan Ho, Sebastian Carl, and others within the
nflverse community, played a pivotal role in developing the nflfastR package. It is part of the
broader nflverse, a collection of data and R-based packages enabling in-depth access to NFL
data dating back to 1999. The nfifastR project has its roots in the nflscrapR project, initiated
by Maksim Horowitz and Sam Ventura of Carnegie Mellon University, and continued by
Ron Yurko. The transition from nflscrapR to nflfastR was marked by a tweet from Yurko
on September 14, 2020, signifying the beginning of a new era in NFL data analytics. The
nflifast R package led to peer-revied work by Yurko et al titled “nflWAR: A Reproducible
Method for Offensive Player Evaluation in Football“[21].

The nflfastR dataset serves as a comprehensive repository for NFL play-by-play data,
providing an extensive array of variables pertinent to games, players, and plays. Originating
from the nflifastR project, which aims to facilitate the analysis of NFL data, this dataset
encompasses a wide demographic of professional American football teams and players span-
ning multiple seasons. The dataset’s inclusivity of various teams and players across the
league ensures a representative sample for robust statistical analysis. The nflfastR project
is renowned for its meticulous data compilation and has been extensively utilized within
sports analytics research, thereby offering a reliable foundation for rigorous academic inves-
tigation. We will using data from 2011-2022 season for our analysis.

The nfifastR dataset encompasses a broad spectrum of variables ranging from basic game
information to intricate play-level details. This includes but is not limited to, play outcomes,
player statistics, game contexts (e.g., down and distance), rush and pass statistics and

advanced metrics such as expected points added (EPA) and win probability. The dataset’s



granularity enables the construction of multifaceted statistical models capable of evaluating
the impact of penalties on game outcomes. The ability to parse data from 2011 to 2022
allows for a longitudinal analysis, affording insights into trends and changes over time, if
any. The depth and breadth of the dataset ensure that any statistical analysis conducted
can account for a multitude of factors that might influence game dynamics.

The utilization of the nflfastR dataset is driven by the need to understand the statistical
impact of penalties on the score differentials within NFL games. Penalties can serve as
pivotal moments in football, with the potential to significantly alter the course of a game.
By analyzing penalty data in conjunction with score differentials, the study aims to quantify
the extent to which penalties contribute to game outcomes, providing valuable insights for
teams, coaches and the viewers. nflffastR is an open-source package and and can be accessed
directly in R[1].

2.2 Descriptive Analysis
2.2.1 Aggregated Game Level Data

This dataset encompasses a comprehensive collection of football game statistics from the
2011 to 2022 seasons, totaling 3,241 games. Within this collection, 138 games represent
postseason play, while the remainder constitutes regular season matchups. A significant
volume of penalty data is included, with 40,792 penalties recorded in total. Analysis of
these penalties reveals a nearly balanced distribution between defensive penalties, which
account for 19,097 instances (47%), and offensive penalties, totaling 21,695 (53%). Offenive
penalties are defined as the penalties made by the team in possession of the ball and defenisve
penalties are defined as the penalties made by the team not in possession of the ball.

A notable transition occurred in the 2021 season when the league amended its regular
season structure, increasing the number of games from 16 to 17 per team. This modifica-
tion is mentioned for its potential relevance, although its impact on the overall analysis is
mitigated by the fact that only two seasons within the dataset, specifically 2021 and 2022,
operate under this new regime.

Additionally, the dataset includes 197 games (6% of the total) that extended into over-
time. While the dynamics of a game may shift in overtime play, for the purposes of this
analysis, such games are treated equivalently to non-overtime games, with the final score
differential and total penalty count at the conclusion of the game being the primary metrics
of study.

The following table presents a yearly breakdown of the penalties assessed



Season | Total Penalties | Offensive Penalties | Defensive Penalties
2011 3375 1867 1508
2012 3318 1750 1568
2013 3241 1669 1572
2014 3522 1843 1679
2015 3663 1927 1736
2016 3545 1905 1640
2017 3520 1767 1753
2018 3565 1891 1674
2019 3568 1921 1647
2020 2986 1486 1500
2021 3336 1873 1463
2022 3153 1796 1357

Table 2.1: Number of Penalties observed in each season over 2011-2022

An intriguing anomaly presented in the dataset is the discernible decline in penalty
frequency during the year 2020. This trend may be attributable to the unique circumstances
of the 2020 season, wherein contests were conducted with either greatly reduced or entirely
absent stadium audiences—a measure necessitated by the global health crisis. It posits the
hypothesis that crowd dynamics potentially exert a tangible influence on the adjudication
of penalties, a factor that was significantly mitigated during this period. The impact of
crowds on NFL penalties has been a subject of research, particularly in the context of
the COVID-19 pandemic when many games were played without the usual fan presence.
According to the paper “False Start? An Analysis of NFL Penalties With and Without
Crowds,“[5] researchers capitalized on the unique circumstances to examine the effect of
crowd absence on the home advantage and game outcomes. Drawing on play-by-play data
from NFL games, the paper investigates whether quarterbacks could better manipulate
opposition defenses in the absence of crowds. The findings suggest that the lack of crowd
noise may indeed give quarterbacks an advantage in orchestrating the game, potentially due
to clearer communication and less pressure from the external environment. Also, each year
there are consistently more offensive penalties than defensive ones.

The evaluation of penalties within a game can be quantified through three primary
metrics. The initial measure is the straightforward enumeration of penalties incurred. The
second metric, penalty yardage, is deemed more informative for several reasons. It not only
reflects the severity of an infraction—highlighting the disparity between penalties of 5 and
15 yards—but also incorporates instances where penalties may be declined, an element
not directly captured by a mere count. However, penalty yardage alone does not consider

the contextual gravity of the penalty. For example, a 5-yard infraction against the defense



assumes greater significance if the offense is at the 15-yard line compared to the 50-yard
line. Thus, the third metric employed is Expected Points Added (EPA), which integrates
situational variables such as down, distance to first down, and field position, estimating
the expected point impact of a specific play. EPA is a statistical metric widely used in the
analysis of football, including the NFL. EPA quantifies the impact of each play by mea-
suring the change in expected point outcome before and after a specific play occurs. The
concept revolves around the idea that the value of a down-and-distance situation on the
field can be expressed in terms of expected points, representing the likely point outcome
for the possessing team. For instance, if a team gains significant yardage on a play, their
expected points for that drive increase. Conversely, if they lose yards or face an unsuccessful
play, the expected points decrease. EPA provides a nuanced evaluation of player and team
performance, allowing analysts and coaches to assess the effectiveness of plays in terms of
their impact on scoring potential. Positive EPA values indicate plays that contribute fa-
vorably to a team’s scoring chances, while negative values signify plays that hinder those
chances. This metric has become a valuable tool for understanding the strategic and sta-
tistical dynamics of football games, helping teams optimize their decision-making processes
for enhanced on-field performance.

Typically, the EPA for defensive penalties is positive, suggesting an advancement and
tactical benefit. Conversely, the EPA for offensive penalties is generally negative, reflecting
lost yardage or a retreat down the field. Although penalties are not a direct indicator of game
outcomes, the subsequent analysis will present a scatter plot correlating the differentials of
these three metrics with the score differential, specifically home minus away scores, while

distinguishing between offensive and defensive penalties.

Score Differential vs. Offensive Penalty Difference Score Differential vs. Defensive Penalty Difference

Offensive Penalty Difference Defensive Penalty Difference
Dt source: otasiy Data source: nffstR]

Figure 2.1: Left: Scatter plot of offensive penalty count and score differentials. Right: Scatter
plot of defensive penalty count and score differentials.
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Score Differential vs. Offensive Penalty Yards Score Differential vs. Defensive Penalty Yards

Score Differential Post

% % 1 %
Defensive Penalty Yards Difference
Data source:[ffast] Data source: nffastR]

Offensive Penalty Yards Difference

Figure 2.2: Left: Scatter plot of offensive penalty yards and score differentials. Right: Scatter
plot of defensive penalty yards and score differentials.

Score Differential vs. Offensive Penalty EPA Score Differential vs. Defensive Penalty EPA

Score Differential Post

5 1 T ) 3 i 5 ] 3
Offensive Penalty EPA Difference Defensive Penalty EPA Difference
Data source:[ffast] Data source: offastR]

Figure 2.3: Left: Scatter plot of offensive penalty EPA and score differentials. Right: Scatter
plot of defensive penalty EPA and score differentials.

The lines in the figures above represent the regression fit for each penalty metric. This
helps in observing any patterns in a more succint manner. The graphical representation
in Figure 2.3 elucidate that Expected Points Added (EPA) exhibits a more pronounced
correlation with score differential in comparison to the other two metrics in Figure 2.1
and 2.2. This observation is congruent with anticipations, given that EPA incorporates
situational factors—a dimension of the game that is essential for a comprehensive analysis.
The importance of these situational factors is further substantiated by Figure 2.4. It reveals
a higher incidence of penalties during the third and fourth downs. This pattern may be
indicative of an escalated level of aggression in play during these critical junctures, where
offensive teams are striving for either a score or a renewal of downs, and defensive teams

are equally determined to thwart their advances.
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Proportion of Plays Ending in Penalties by Down
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Figure 2.4: Proportion of plays ending up in penalty for each down

Figure 2.5 elucidates the proportion of plays culminating in penalties within each quar-
ter. To provide a more detailed analysis, this is disaggregated into two distinct visual rep-
resentations. Figure 2.6 specifically delineates the proportions of penalties categorized as
either offensive or defensive across each quarter. We observe in Figure 2.5 that more plays
end up in penalties during the second quarter compared to the first one. A proposed hy-
pothesis for this observation might be because the teams try to play it safe and trying to
understand each others strategies. On the other hand during the second quarter the first
half is about to end the possession of the ball changes in the second half. This often calls

for a change in strategies of both teams during the second quarter.

Proportion of Plays Ending in Penalties by Quarter
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“®- Fourth

Proportion of Plays Ending in Penalties
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Figure 2.5: Proportion of plays ending up in penalty for each Quarter
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Proportion of Offensive Penalties Proportion of Defensive Penalties
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Figure 2.6: Left: Proportion of Penalties that are Offensive. Right: Proportion of Penalties
that are Defensive.

Now, we present a meticulously constructed correlation matrix, which encapsulates the
interrelationships among key variables critical to our analysis. This matrix serves as a
foundational tool for unraveling the intricate dynamics that underpin the game’s strategic
and operational aspects. By scrutinizing the interdependencies among these variables, we

gain valuable insights that help us avoid multi-collinearty issues.

Correlation Matrix of Variables that were considered
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Figure 2.7: Correlation matrix for variables considered

The correlation matrix above is based on the observed data from games. In Figure 2.7,
we notice that penalty-related variables exhibit a high degree of correlation, a finding that
aligns with intuitive expectations. For instance, an increase in defensive penalties is logically
associated with a corresponding rise in penalty yards conceded. This pattern of interrelation
among penalty-related metrics is a predictable aspect of the data.

Conversely, certain variables, while only moderately correlated, hold significant relevance

for the analysis. A notable example is the negative correlation observed between rush yards

13



and interceptions. This relationship suggests that an increase in rushing plays tends to
coincide with a decrease in interceptions. This inverse relationship is evident in the data
and is consistent with the understanding that rushing plays reduce the opportunities for
passing plays, which are typically more prone to interceptions. However, this correlation
is not as apparent at the individual game level, indicating that it emerges more clearly
through the aggregation of data across multiple games.

In future model development, these slightly correlated variables will be included, and
their impact will be carefully evaluated. To ensure the robustness of the model and to
address potential concerns of multicollinearity, the Variance Inflation Factor (VIF) will be
calculated. This step is crucial to ascertain that the model’s variance is not unduly inflated
due to the presence of multicollinearity, thereby preserving the integrity and reliability of
the model’s findings.

Now, we will present the plot that will inform about the distribution of offensive and

defensive penalty EPA.

Comparison of Offense and Defense Penalties EPA

EPA
o

-20

Offensive Penalty EPA Defensive Penalty EPA
Penalty Type

Figure 2.8: Violin plot for offensive and defensive penalty EPA

The analysis of the plot in Figure 2.8 reveals that the Expected Points Added (EPA)
for offensive penalties is predominantly negative, a logical outcome considering that penal-
ties against the offense typically result in a loss of expected points due to the incurred
disadvantage. In contrast, defensive penalties generally yield a positive EPA, reflecting the
advantage conferred to the opposing team.

Notably, there are exceptional instances where an offensive penalty may result in a
positive EPA, and conversely, a defensive penalty may lead to a negative EPA. These outlier

occurrences, though rare, are integral to the analysis. The inclusion of these data points is
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essential for a comprehensive understanding, as the analysis is based on aggregated game-
level data, which offers a holistic view of the impact of penalties.

Further examination of the data indicates that the distribution tail for defensive penalty
EPA is more pronounced. This observation suggests that, on an individual basis, defensive
penalties can have a more detrimental impact on defensive teams compared to the effect
of offensive penalties on offensive teams. This insight underscores the varying implications
of penalties depending on whether they are incurred by the offense or the defense, and it
highlights the importance of considering the context and consequences of each penalty type
in the analysis.

We will now examine the histogram of the score differential to gain insight into its
distribution. This visual analysis will allow us to observe the range and frequency of score
differentials, providing a clearer understanding of their variance within the dataset. The
distribution of scores in sporting events has been extensively studied, with various statistical
models applied to predict outcomes and analyze the dynamics of different games. In soccer,
the double Poisson model is one of the most established methods [11]. Initially developed
in 1982, it remains a popular choice for predicting football scores despite the advent of
numerous other techniques. This model assumes that goals scored by each team are Poisson
distributed with means depending on their respective attacking and defensive strengths.
The double Poisson model’s predictions were highly accurate for the Euro 2020 football
tournament, as they won the Royal Statistical Society’s prediction competition[16]. NFL
scoring does not follow a Poisson process as closely as in those sports since there are various

ways to score like touchdowns, field goals and safety.
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Figure 2.9: Histogram of score differentials
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Based on the histogram provided, which displays the frequency of score differentials
(home score minus away score) for NFL games, the distribution appears to be roughly
symmetric around zero and has a single peak, suggesting that the differentials are almost
normally distributed. This is characterized by the “bell curve* shape of the histogram. In
the context of NFL score differentials, where the values can range on both sides of zero
(indicating home team wins when positive and away team wins when negative), we can use
normal distribution. We must acknowledge that there is room for exploration here since the
score differential is not truly a continuous variable.

The normal distribution is a good choice here because we assume that the score differ-
entials are influenced by many small, independent effects, which is a reasonable assumption
for NFL games. It is also practically useful because it is well-understood and has many
statistical properties that faciliate analysis. However, if you observe that the tails of the
distribution are heavier than would be expected in a normal distribution (indicating more
extreme outcomes than the normal distribution would predict), you might consider a dis-
tribution that can handle such “fat tails“, like a t-distribution too. The tails on both ends
suggest that there are fewer instances of very large or very small score differentials, which
aligns with the properties of a normal distribution where extreme values are possible but
less likely.

In Figure 2.10 we also present the boxplot for score differential by season. We observe
that there are no major differences in the distribution of score differential during each season.
In Chapter 3 we will still add a random intercept for season in our model, to quantify the

dependence(if any) of games within a season.

Box Plot for Score Differenetial in each saeason
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Figure 2.10: BoxPlot for Score Differentials in each season
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In our dataset, we identified 64 distinct types of penalties. A detailed distribution of
these penalties is provided in Appendix B. Notably, the two most common penalties are
of an offensive nature. This suggests that, despite the relatively lower expected point loss
associated with offensive penalties, their higher frequency of occurrence contrasts with the
less frequent but more impactful defensive penalties in terms of Expected Points Added
(EPA).

2.2.2 Drive Level Data

In our dataset, a total of 72,945 unique drives have been identified, following the exclusion of
overtime drives. Overtime drives are omitted from this analysis due to potential variations in
strategies that are typically employed during overtime periods. Furthermore, we incorporate
‘quarter‘ as one of our covariates. However, it would be prudent to address quarters 5 and
6 separately in future analyses for a more nuanced understanding.

Of these drives, 27,929 (representing 38.2%) involved at least one penalty. This statistic
underscores the prevalence of penalties in regular gameplay and their potential impact on
game outcomes.

Additionally, 25,907 drives (amounting to 35.5%) concluded with either a field goal
or a touchdown. The remaining drives culminated in safeties, turnovers, or opposing team
touchdowns. In Figure 2.11, we delve into the distribution of offensive and defensive penalty
Expected Points Added (EPA) for drives culminating in touchdowns and field goals, com-
pared to those that did not. This comparison aims to elucidate the influence of penalties

on the efficacy of scoring drives.

Violin Plot of Penalty EPA for drives ending in Success Violin Plot of Penalty EPA for drives ending in Failure
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Figure 2.11: Left: Penalty EPA for successful drives. Right: Penalty EPA for unsuccessful
drives.

Figure 2.12 presents the drives observed across each of the four quarters. This includes
not only the total number of drives per quarter but also a comparative breakdown of their
outcomes. Specifically, it distinguishes between drives culminating in touchdowns or field

goals versus those resulting in other outcomes. This delineation allows for a detailed exam-
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ination of drive success rates and patterns within each quarter, contributing to a deeper

understanding of game across different stages of the match.

Number of Drives in each Quarter Percentage of Drives Ending in Score/No Score by Quarter
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Figure 2.12: Left: Number of Drives in each Quarter. Right: Success rate of Drives.

Observations from the data reveal a notable disparity in the number of drives between
different quarters, with the second and fourth quarters exhibiting a higher frequency of
drives compared to the first and third. This variation could be attributed to a quicker pace
of play during the second and fourth quarters or it might be a consequence of 2-minute
warning and an attempt to score last in the two halves. Furthermore, a distinct decrease
in the proportion of drives resulting in touchdowns and field goals is evident in the fourth
quarter. This trend suggests an increased difficulty in scoring towards the end of the game.
Potential explanations for this phenomenon might include a more robust defensive strategy

in the latter stages or the impact of fatigue on offensive performance.

2.3 Covariates of Interest

To initiate our analysis, it is imperative to delineate and scrutinize the variables that are
pivotal to our study. The focus will be primarily on the differential factors, characterized
as the distinctions between home and away conditions. These variables in Table 2.2 are
imperative to the aggregated game-level analysis. The Table 2.3 has covariates that are

imperative to drive level analysis. All the differentials in Table 2.2 are home minus away.
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Table 2.2: Description of variables for aggregated game-level data

Covariate(Differentials)

Description

Season

Offensive Penalty

Defensive Penalty

Offensive Penalty Yards

Defensive Penalty Yards

Offensive Penalty EPA

Defensive Penalty EPA

Spread Line

Fumbles
Interceptions

Passing Yards

Rushing Yards
Sacks
Possession Time

Score Differential

Season of the game

Difference in count of offensive penalties between the teams
in a game.

Difference in count of defensive penalties between the teams
in a game.

Difference in penalty yards lost due to offensive penalties
between the teams in a game.

Difference in penalty yards given up due to defensive penal-
ties between the teams in a game.

Difference in expected points added (EPA) due to offensive
penalties between the teams in a game.

Difference in EPA due to defensive penalties between the
teams in a game.

The closing spread line for the game. A positive number
means the home team was favored by that many points, a
negative number means the away team was favored by that
many points. (Source: Pro-Football-Reference [2])
Differential count of fumbles between the teams.
Differential count of interceptions between the teams.
Difference in passing yards between the teams, standardized
(scaled) for the analysis.

Difference in rushing yards between the teams.

Differential count of sacks between the teams.

Differential of possession time between the teams.

Final score differential.
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Table 2.3: Description of the Variables for the drive-level data

Covariate

Description

Yardline 100

Offensive Penalty EPA

Defensive Penalty EPA

Score Differential

Drive Inside20

ha drive

Posteam Timeouts Remaining
Drive Time of Possession
Fumble

Qtr

Interaction 1

Interaction 2

The distance in yards from the opponent’s end zone. A
higher value indicates the offensive team is farther from scor-
ing.

Expected Points Added (EPA) by the offensive penalties. It
measures the impact of offensive penalties on scoring poten-
tial.

Expected Points Added (EPA) by the defensive penalties. It
measures the impact of the defensive penalties on the scoring
potential.

The point difference between the teams at the beginning of
the drive. A positive value indicates the offensive team is
leading.

Indicator of whether the drive reached within 20 yards of
the opponent’s end zone (red zone).

Home or Away indicator for the offensive team during the
drive.

The number of timeouts remaining for the offensive team
during the drive.

The duration of the drive in terms of possession time.
Indicator of whether a fumble occurred during the drive.
The quarter of the game during which the drive took place.
The interaction between offensive penalty epa and possesion
time.

The interaction between defensive penalty epa and possesion
time.
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Chapter 3

Score Differentials: Regression
Analysis and Results

In this chapter, we will explore linear regression models, including both fixed effects and
models with random intercepts, with a focus on score differential as the dependent variable.
The dataset for this analysis has been aggregated at the game level, utilizing home-away
differentials as predictive factors. For instance, a predictor might be the net yards gained,
calculated as the total yards gained by the home team minus those gained by the away
team. Given that the data is aggregated on a game-by-game basis, this approach provides
a less granular perspective. However, it remains valuable in discerning whether offensive
and defensive penalties exert significantly different impacts on the score differential. This
method aims to yield insights into the broader patterns and effects in the realm of game
strategy and outcomes. It is important to note that we have opted not to explore a model
that includes only teams as a random effect. The rationale behind this decision stems from
the dynamic nature of teams in professional sports; teams undergo significant changes each
season, including alterations in player rosters and coaching staff. As such, treating games
played by a single team across multiple seasons as a homogeneous group may not accurately

capture the evolving nature of these teams.

3.1 Linear Regression with Fixed Effects

In this study, we approach the analysis of NFL games through a linear regression model,
initially incorporating three predictor variables: offensive penalty count, defensive penalty
count, and spreadline. The spreadline, a significant factor in this model, is designed to
reflect overall team quality. This metric is typically derived by betting companies using
proprietary algorithms, taking into account a myriad of factors including player injuries,
the performance capability of quarterbacks, and other relevant variables like home team

advantage.
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The inclusion of the spreadline variable is crucial. It essentially acts as a comprehensive
indicator of pre-game conditions and team dynamics. Given that spreadlines are established
before the games and incorporate extensive pre-game information, the standard intercept
in the regression model becomes less meaningful. In typical regression models, the intercept
represents the average score differential when no information about the game is available.
However, with the constant availability of spreadline data prior to games, this intercept
loses its significance in our model.

Furthermore, to enhance our model’s robustness, we will also explore the integration of
two additional penalty-related metrics: penalty EPA (Expected Points Added) and penalty
yards. These variables offer a deeper insight into the impact of penalties on game outcomes
and may provide valuable predictive power in conjunction with the previously mentioned
variables.

Our objective is to construct a model that not only captures the immediate effects
of observable variables but also incorporates the nuanced aspects of game dynamics as
represented by the spreadline. This approach allows for a more comprehensive understanding

of the factors influencing the outcomes of football games.

Table 3.1: Regression Analysis Results for Analyzing Score Differential

Model 1 Model 2 Model 3
Variables
Intercept —0.091(0.244) ~0.049(0.243) ~0.117(0.238)
Offensive Penalty Count(D) —0.377**(0.086)
Offensive Penalty Yards(D) —0.052***(0.010)
Offensive Penalty EPA(D) 0.697*(0.079)
Defensive Penalty Count(D) —0.378**(0.091)
Defensive Penalty Yards(D) —0.024**(0.008)
Defensive Penalty EPA(D) —0.557***(0.061)
Spread Line 1.025"*(0.038) 1.028"*(0.038) 1.011%(0.037)
Model Statistics
Adjusted R? 0.208 0.211 0.238
Residual Std. Error 12.986 (df = 3226) 12.981 (df = 3226) 12.756 (df = 3226)
F Statistic 284.212%* (df = 3) 287.993* (df = 3) 336.389* (df = 3)

Note: *p<0.1; **p<0.05; ***p<0.01

The parenthesis besides estimates contain the standard errors.

(D) = The difference of that predictor(Home - Away)

p-values are associated with the null hypothesis that the corresponding coefficients are equal to zero.

In our analysis encompassing three distinct models, we consistently observe that penalty
variables emerge as significant predictors for the score differential, with the spreadline vari-
able also demonstrating notable significance. Each model in Table 3.1 uses a different penalty
metric, for example Model 1 uses penalty counts, Model 2 uses penalty yards and Model
3 uses penalty EPA. Intriguingly, the spreadline variable consistently exhibits a positive

association, which confirms the fact that the spreadline is the prediction of the game out-
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come from home team viewpoint. If spreadline increases by one unit, the score differential
increases by Bspreadiine Which is positive. The null hypothesis for all the coefficients is 8; = 0.

Having established the penalties as significant factors influencing game outcomes, it
becomes imperative to account for additional variables that could potentially affect the dy-
namics of the game. This includes, but is not limited to, defensive metrics such as sacks and
interceptions, and offensive metrics like fumbles. These variables represent critical aspects
of team performance and strategy, and their inclusion in the model is essential to provide a
more comprehensive and accurate understanding of the factors that drive score differentials
in football games.

The objective is to refine our model to encompass a wider array of variables, thereby
capturing a more nuanced view of the game. By integrating these additional elements, our
analysis can more effectively isolate the specific impacts of penalties and other variables
on game outcomes, leading to more nuanced and insightful conclusions about the nature of
competitive football.

In the initial phase of our project, in Chapter 3 Figure 2.7, we observed a high degree
of correlation among the various penalty variables. Based on this finding, our subsequent
analysis will primarily utilize the penalty EPA (Expected Points Added) metric. This deci-
sion stems from the EPA’s inherent ability to account for situational factors and its direct
correlation with score differentials, making it a particularly insightful variable for our study.

While the penalty EPA will be our primary focus, we will not entirely disregard penalty
yards, which will still be examined and discussed. For those interested in more details
of penalty yards, we will include the estimates in the appendix section of our report. This
approach ensures that while our primary analysis is streamlined and focused, comprehensive
data is still available for those seeking more insights.

In the next iteration of our model, we aim to expand our analytical scope by incorpo-
rating additional predictors that influence game outcomes. Specifically, we will include the
differentials in interceptions and sacks, which are indicative of defensive strength. Addi-
tionally, we will consider the differentials in rushing and passing yards, as well as fumbles,
to serve as proxies for the offensive strength of the teams. These additional variables are
selected to provide a more rounded and nuanced understanding of the dynamics influencing
game outcomes.

The forthcoming Table 3.2 will present the estimates derived from this enhanced model,
showcasing the impact of these diverse predictors alongside the spreadline and penalty

metrics.
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Table 3.2: Regression Analysis Result for Analyzing Score Differential

Variables Estimates(Standard Error)
Intercept 0.247(0.148)
Spread Line 0.393***(0.025)
Offensive Penalty EPA(D) 0.649***(0.050)
Defensive Penalty EPA(D) —0.452**%(0.038)
Fumbled(D) —1.409%**(0.089)
Intercepted(D) —3.765**(0.103)
Sacked(D) —1.295***(0.059)
Rushing Yards(D) 0.071***(0.002)
Passing Yards(D) 0.042***(0.002)
R? 0.706

Adjusted R? 0.706

Residual Std. Error 7.925 (df = 3221)

F Statistic 938.885"* (df = 8; 3221)

Note: *p<0.1; **p<0.05; ***p<0.01
(D) = The difference of that predictor(Home - Away)
p-values are associated with the null hypothesis that the corresponding coefficients are equal to zero.

In our analysis presented in Table 3.2, we observe that all coefficients in the model
are highly significant. Notably, the adjusted R-squared value of this model is substantially
higher than those of the previous models, which only included penalty and spreadline pre-
dictors. This enhancement in the model’s explanatory power underscores the importance
of incorporating a broader range of variables to capture the complexity of football game
dynamics.

A key observation is the particularly large coefficient associated with interceptions. This
aligns well with our understanding of the game, as interceptions often lead to a loss of
possession or, in more detrimental cases, result in a defensive touchdown for the opposing
team. In comparison, the coefficients for sacks and fumbles are also significant but to a
lesser extent. The relatively smaller impact of sacks and fumbles can be rationalized by the
fact that, while sacks result in a loss of yards, the team maintains possession of the ball.
Similarly, fumbles offer a chance for the team to recover possession, unlike interceptions
where possession is definitively lost.

Our primary focus, however, lies in the coefficients for offensive and defensive penalty
EPA. We rigorously compared the coefficients for offensive penalty EPA and defensive
penalty EPA by conducting an F-test. The null hypothesis for this test was that the sum

of these two coeflicients is zero. The resulting p-value from this test was less than 0.05, in-
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dicating that the difference between the offensive and defensive penalty EPA coefficients is
statistically significant. This finding emphasizes the distinct impacts of offensive and defen-
sive penalties on the game’s score differential, providing valuable insights into the nuanced
effects of penalties within the context of American football.

Interpreting these coefficients, we find that for each unit increase in the EPA differential
due to an offensive penalty, the average score differential increases by approximately 0.65,
assuming all other variables remain constant. However, it is important to contextualize this
finding. Our analysis, informed by Figure 2.8, implies that losing one expected point due
to an offensive penalty is generally more challenging than gaining an expected point from
defensive penalties. This is because defensive penalties tend to impose more severe penalties
on the defense. Consequently, even though the absolute coefficient of the offensive penalty
EPA is larger than that of the defensive penalty EPA, this does not necessarily imply that
offensive penalties are more detrimental than defensive penalties. This poses a question for
the future work on this project about how many penalties on average does it take to lose
an expected point by offensive penalties.

Our primary objective remains to discern whether offensive and defensive penalties have
equivalent impacts or if a significant difference exists. To further investigate this, we plan to
fit one more model, incorporating all covariates but focusing on penalty yards. The estimates
from this model will be detailed in Appendix A for thorough examination.

We also conducted similar F-test for the coefficient estimates of offensive and defensive
penalty yards. In this test, the null hypothesis was that the difference between the offensive
and defensive penalty yards coefficients is zero. We found a significant difference, with the
coefficient for offensive penalty yards being larger than that for defensive penalty yards. This
suggests that losing a yard due to an offensive penalty is more detrimental than gaining a
yard due to a defensive penalty, although the difference is not substantial. This finding is
somewhat surprising, given the prevalent belief in the football community that defensive
penalties are more harmful than offensive ones. Our results indicate that this belief may
not hold true at an aggregated game level, inviting further exploration into the nuanced

dynamics of penalties in football.

3.2 Linear Regression with Random Intercepts

In light of the insights gleaned from our linear regression analysis, particularly regarding
the significance of penalties, it is pertinent to explore additional dimensions of the data.
Specifically, the potential correlation of games within the same season and the correlation
of games played by the same teams merit investigation. To address these aspects and ex-
amine the variability both seasonally and across teams, we will employ linear models with
random intercepts. This approach will enable us to assess the significance of random effects

attributable to seasons and teams, as well as the variability inherent in these factors.
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3.2.1 Season Varying Intercept Model

The model in this section incorporates only the season as a random effect, thereby account-

ing for intra-seasonal correlations. The model is defined as follows.
Yij = Bo + B1w1ij + Bawoij + - + Brkis + uj + €5 (3.1)
where u; ~ N(0,02),€;; ~ N(0,02)

e y;;: The score differential for the i-th game in the j-th season.

e fBo: The intercept of the model, representing the baseline score differential when all

covariates are at their reference levels.

e (1,P2,...,0;: The fixed effect coefficients for each of the covariates. These coefficients
measure the average change in the score differential for a one-unit change in the

respective covariate, holding all other covariates constant.

e I1j,T2j,--.,T8,;: The covariates for the i-th game in the j-th season. These corre-
spond to spread line, fumbles differential, interceptions differential, sacks differential,
passing yards differential, rushing yards differential, offensive penalties EPA differen-

tial, and defensive penalties EPA differential.

e u;: The random effect for the j-th season. This term captures any season-specific

effects on the score differential that are not explained by the fixed effects.

e ¢;;: The residual error term for the i-th game in the j-th season. This term captures
the variability in the score differential that is not explained by the fixed or random

effects.

Table 3.3 below give the estimates from the model with only season as a random inter-

cept.

Table 3.3: Estimates for Linear Regression with Random Intercept (Model 3.1)

Variables Estimate Std. Error t value
Intercept 0.250 0.182875 1.368
Spread Line 0.391163 0.025343  15.435
Fumbled(D) -1.413770 0.089329 -15.827
Intercepted(D) -3.765639  0.102643 -36.687
Sacked (D) -1.294291 0.058561 -22.102
Passing Yards(D) 0.041920 0.001570  26.703
Rushing Yards(D) 0.071210 0.001894  37.592

Continued on next page
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Table 3.3 — Continued from previous page

Variables Estimate Std. Error t value
Offensive Penalty EPA(D)  0.650350 0.050055  12.993
Defensive Penalty EPA(D) -0.452989 0.037842 -11.971
Random Intercept

Season (02) 0.1387 0.372

In Table 3.3, we observe that while all fixed effects maintain their significance, the
impact of the random effects estimates appears to be minimal. To further investigate this,
Table 3.4 presents the results of a Likelihood Ratio Test (LRT). This test examines the
null hypothesis, which posits that models with and without random effects do not exhibit
significant differences.

Our findings indicate that the p-value exceeds the 0.05 threshold, leading us to fail
to reject the null hypothesis. This suggests that the variation in score differentials across
seasons is not statistically significant. It is noteworthy that the estimates related to penalty
variables are nearly identical to those in the model without random effects. This result
agrees with our exploratory analysis in Figure 2.10 that didn’t show any major variation in
score differentials across the seasons.

Another explanation for the insignificance of seasonal variation could be the inclusion
of the spread line variable in our model. It is conceivable that the primary sources of
variation across seasons are changes in rules, strategies, and team dynamics. The spread line
effectively encapsulates these effects, thereby diminishing the apparent variability among
seasons. This highlights the comprehensive nature of the spread line in accounting for a

wide array of influencing factors in the model.

Model npar  AIC  BIC logLik deviance Chisq Df Pr(>x?)
Fixed Effects 9 22542 22597 -11262 22524
Random Effects 10 22542 22603 -11261 22522 1.9661 1 0.1609

Table 3.4: Model Comparison Statistics

Future research endeavors could beneficially incorporate a predictor that effectively
quantifies the quality of the team besides the spreadline. We acknowledge that the spread-
line is one of the best variables to account for team quality since gambling markets are
efficient. Other variables might give some different insights. Such an addition would offer a
more comprehensive understanding of the team’s influence on game outcomes, particularly
in light of the substantial transformations teams undergo from season to season. This con-
sideration would undoubtedly enrich the model and provide more nuanced insights into the

dynamics of team sports.
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3.2.2 Season and Team Varying Intercept Model

This model is more complex, integrating both team and season as random effects, with
an additional consideration of the nested structure of team within season. This layered
approach allows us to disentangle the individual and combined influences of season and

team on the outcomes.

Yijk = Bo + P11,k + Baxoijk + -+ + BuTnijk + Wik + €k (3.2)
where wji ~ N(0,02), €55 ~ N(0,0?%)

 Yyijk: The score differential for the i-th game in the j-th season and for the £-th penalty

team.

* T1ijks T2k, -+ Tnijk: Lhe covariates for the i-th game in the j-th season and for
the k-th team. These correspond to spread line, fumbles differential, interceptions
differential, sacks differential, passing yards differential, rushing yards differential,

offensive penalties EPA differential, and defensive penalties EPA differential.

e wji: The random effect for the k-th home team nested within the j-th season. This

accounts for team-specific variations within each season.

e ¢;;i: The residual error term for the i-th game in the j-th season and for the £-th home
team. This term captures the variability in the score differential that is not explained

by the fixed or random effects.

Table 3.5 below give the estimates from the model with a random effect for team and a

nested random effect for teams within seasons.

Table 3.5: Esimates for Linear Regression with Random Intercept (Model 3.2)

Variables Estimate Std. Error t value
Intercept 0.27 0.18 1.49
Spread Line 0.38 0.03 14.61
Fumbled(D) -1.41 0.09 -15.78
Intercepted(D) -3.75 0.10 -36.57
Sacked(D) -1.30 0.06 -22.18
Passing Yards(D) 0.04 0.002  26.63
Rushing Yards(D) 0.07 0.002  37.51
Offensive Penalty EPA (D) 0.65 0.05  12.92
Defensive Penalty EPA(D) -0.45 0.04 -11.95
Random Intercept

Home Team 0.3232 0.5685

Home Team:Season 0.2848 0.5337
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In Table 3.6, we present the results of a Likelihood Ratio Test (LRT) conducted to
assess the impact of random effects in our model. The test is structured around the null
hypothesis, which asserts that there is no significant difference between models with and
without random effects.

Our analysis reveals that the p-value does not fall below the 0.05 threshold. Conse-
quently, we fail to reject the null hypothesis, suggesting that there is no significant variation
among teams or across different seasons in our data set.

This consistency in results may be attributed to the inclusion of the spread line vari-
able in our predictors. The spread line, by its nature, is likely to incorporate a range of
factors that influence team performance and seasonal changes. Therefore, its presence in
the model could be masking potential variations among teams and seasons, underlining its

comprehensive scope in capturing diverse elements that affect the outcomes in our study.

Model npar  AIC  BIC logLik deviance Chisq Df Pr(>x?)
Fixed Effects 9 22542 22597 -11262 22524

Nested Random

Effects 11 22543 22616 -11259 22519 3.1 2 0.2122

Table 3.6: Model Comparison Statistics

The preceding analysis elucidates that the variations in score differentials between sea-
sons or teams are not substantial. This finding implies that our linear regression models
sufficiently capture the variations in score differentials within the available data set.

A key aspect of our attention remains focused on the coefficients for offensive and de-
fensive penalty Expected Points Added (EPA). It is noteworthy that these coefficients are
remarkably consistent with those derived from the linear regression model. This consistency
aligns with our observation that random effects do not contribute significantly to explain-
ing the variations in score differentials, either among teams or across different seasons. This
reinforces the robustness of the linear regression model in our analysis, especially in the

context of the variables under consideration.

3.3 Discussion

In the study presented, we examined the impact of offensive and defensive Expected Points
Added (EPA) on the score differentials in football games. Our analysis revealed that both
offensive and defensive penalties have a significant effect on these differentials. However,
when considering aggregated game-level data, no notable difference was observed in the
impact of offensive versus defensive penalties on score differential.

Further investigation identified additional variables that significantly influence score

differentials. The estimated values of these variables align with conventional understanding
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of the game’s dynamics, lending credibility to our findings. It is important to note, however,
that our model exhibits certain limitations, particularly in its level of detail.

Even though our model is unable to predict score differentials in real-time since that is
not the primary purpose of the model. Nevertheless, the model holds potential for predicting
score differentials in hypothetical scenarios. This predictive capability could be enhanced by
incorporating additional predictor variables, such as Redzone conversion rates. This refers
to the frequency with which a team scores when positioned within 20 yards of the opposing
team’s end zone.

Our analysis also highlights a notable trend: the magnitude of the residuals increases
with the size of the score differentials. This observation underscores the inherent unpre-
dictability of game outcomes, especially in instances of exceptionally large score differen-
tials. This finding contributes to the broader discourse on the unpredictable nature of sports
outcomes and the factors influencing them.

Overall, while the model demonstrates a significant capacity to explain the variability
in score differentials using selected variables, its accuracy and predictive power could be

further improved with the inclusion of additional, more granular data points.
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Chapter 4

Drive Outcomes: Logistic
Regression vs. Random Forest

The dynamics of American football, especially within the NFL, often hinge on split-second
decisions and strategic plays. Among these, penalties occupy a particularly debated space.
While seemingly straightforward, the question of whether offensive or defensive penalties
exert a more substantial negative impact on a team’s performance remains contentious.
Common football discourse suggests that defensive penalties, particularly those leading to
significant offensive gains or automatic first-down conversions, may be more detrimental.
However, our analysis seeks to explore this narrative more comprehensively.

In our study, we employed linear regression models with fixed effects and random inter-
cepts to assess the implications of both offensive and defensive penalties on game outcomes,
which we delineated as score differentials. To holistically appraise the impact of penalties,
we approached them from three distinct perspectives: the total count of penalties, the accu-
mulated yardage resulting from these penalties, and their effect on expected points added
(EPA).

To delve deeper and provide a more nuanced understanding of this phenomenon, we
transitioned our focus to drive-level data. Here, we sought to model the outcome of individ-
ual drives, categorizing them into two principal outcomes: ’Score’ and 'No Score’. A ’Score’
was defined as any drive culminating in either a touchdown or a field goal. In contrast, 'No
Score’ encompassed all other possible outcomes, with one notable exception: drives ending
in safety were deliberately excluded from our analysis to maintain stability and mitigate
potential outliers.

This approach serves a twofold purpose. Firstly, it allows us to glean insights into the
roles of offensive and defensive penalties via the coefficients derived from logistic regression.
Secondly, it offers an alternative means of evaluating the overall performance of the model,
enriching our understanding of its predictive accuracy and robustness. We will account a
bunch of other covariates and interaction that might have an impact on the outcome of the

drive. This will allow us to isolate the impact of penalties.
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4.1 Logistic Regression

In the preliminary phase of our analysis, a rigorous selection method was employed to select
the covariates deemed pertinent for the logistic regression model. The Table 2.3 presents the
covariates we used to fit this model. These covariates were chosen after careful consideration
for the dynamics of the game, preventing any data leakage and multi-collinearity issues.
Some higher order terms were also considered and the interaction between quarter and
penalty metrics but after a stepwise variable selection method, these were the variable that
we decided to keep in the model. The data from season 2011-2021 was used to fit the model
and the year 2022 was held out to do predictions and determine predictive accuracy. The
function ‘glm‘ from the package ‘stats’ in R was used to fit the model.

Given the dataset, our response variable, y, indicates whether a drive ended with a
score (represented as 1) or not (represented as 0). The logistic regression model relates
the probability of a drive ending in a score to various predictor variables. Formally, the

probability, P(y = 1), is given by:

eﬁo +B1x1+Poxo+ 4 Bnan

Ply=1)= 1 4+ ePotBrzi+Bazat - +Bnan

(4.1)

Where:
e [y is the intercept.
e [(1,09,..., 0B, are the coefficients of the predictor variables.

e I1,%o,...,T, are the predictor variables.
4.1.1 Results

Table 4.1: Logistic Regression Model Results for Analyzing Drive Outcomes

Dependent variable: Drive Outcome

(Intercept) 0.3704***(0.009)
Yardline 100 —0.004***(0.000)
Offensive Penalty EPA 0.056™*(0.004)
Defensive Penalty EPA 0.059***(0.003)
Score Differential 0.000(0.0001)
Drive Inside20 0.554**(0.004)
ha drive 0.008"*(0.003)
Posteam Timeouts Remaining —0.00003(0.001)
Fumble —0.136"**(0.004)
qtr2 0.034***(0.004)

Continued on next page
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Dependent variable: Drive Outcome

qtr3 0.009*(0.004)

qtrd —0.027*(0.004)
Drive Time of Possession 0.0009***(0.00001)
Offensive penalty EPA:Drive Time of Possession 0.000(0.00001)
Defensive Penalty EPA:Drive Time of Possession —0.0001***(0.00001)
Observations 66835

Note: *p<0.1; **p<0.05; ***p<0.01
p-values are associated with the null hypothesis that the corresponding coefficients are equal to zero.

Table 4.1 offers valuable insights into various factors influencing the scoring probabilities in
a game. It is essential first to validate these results against our understanding of the game’s
dynamics.

Starting with the yardline 100 coefficient, its negative value aligns with conventional
wisdom: being further from the opponent’s zone typically reduces scoring likelihood. Simi-
larly, the positive coefficients for both offensive and defensive penalties are logical, as each
incremental point gained via these penalties increases the probability of scoring.

A Wald test was conducted on the coefficients of offensive penalty Expected Points
Added (EPA) and defensive penalty EPA. The null hypothesis posited that these coefficients
are equal. Given that the p-value exceeded 0.05, there wasn’t sufficient evidence to reject
this hypothesis, suggesting that offensive and defensive penalties do not significantly differ
in their impact on a drive’s outcome.

The coeflicient for score differential is not significant. The significant positive impact of
a drive within the 20-yard line is intuitive, as proximity to the goal line typically correlates
with higher scoring chances. Home advantage is also reflected in the positive coefficient of the
‘home advantage drive‘ variable, highlighting the benefits of playing in familiar conditions.

The coefficient estimate for remaining timeouts is not significant. In contrast, the neg-
ative coefficient for fumbles reflects the potential for turnovers or momentum disruption.

The negative coeflicients for 4 might indicate heightened defensive efforts or the higher
offensive team fatigue during this critical phase of the game - the final quarter (excluding
rare overtime situations).

The drive time possession coefficient estimate is positive, suggesting that longer drives
might associate with a positive outcome. Finally, the interaction coefficients for offensive and
defensive penalties merit further investigation. The zero interaction coeflicient for offensive
penalties and the negative one for defensive penalties suggest there might be underlying
dynamics that require additional research for comprehensive understanding.

In our analysis, we applied the developed model to predict the outcomes of drives from

the 2022 season. The model demonstrated an accuracy rate of 84%, a notable achievement
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considering the inherent challenges in predicting touchdowns. It’s important to recognize
that the majority of drives do not result in touchdowns, making accurate predictions in this
context particularly difficult.

The primary objective of this exercise was not merely to predict touchdowns or field goal
but to assess the relative impact of offensive and defensive penalties on drive outcomes. Our
findings indicate that the differences in impact between offensive and defensive penalties
are not statistically significant. This conclusion is reinforced by the p-value, which suggests
that our predictions are significantly more accurate than random guesses.

This result is important as it provides a robust validation of our model, highlighting its
effectiveness in isolating and evaluating the specific effects of penalties on the progression
and outcome of a drive. The model’s high accuracy in predicting drive outcomes, despite the
complexities involved in such predictions, is a testament to its robustness and the validity

of its underlying assumptions and calculations.

Table 4.2: Confusion Matrix

Predicted
Score No Score
Score 1535 705
No Score | 234 3636

Actual

Accuracy: [0.8463]

95% CI : [(0.837, 0.855)]

NIR: [0.63]

P-Value [Acc > NIR] : [< 2.2e — 16]

4.2 Random Forest

Random Forest, a sophisticated ensemble learning technique, has gained prominence in
various fields, including NFL analytics, for its ability to handle complex classification and
regression tasks. This method, which operates by constructing multiple decision trees during
training and outputting the mode of the classes (for classification) or mean prediction (for
regression) of the individual trees, is particularly effective in handling large datasets with
numerous input variables, making it an ideal tool for analyzing the multifaceted nature of
football data.

In the realm of NFL analytics, Random Forest has been employed in several innovative
ways. One notable application is in predictive analysis models for NFL play-by-play data,

where a Random Forest classifier was used to input various play situations—such as time,
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down, yards to go, and score—and output a prediction of the play type. This approach
allows for nuanced understanding of game dynamics and strategies [19].

Another significant application of Random Forest in NFL analytics is in classifying the
winner of the Super Bowl. Using data collected during the regular season, Random Forest
algorithms, along with other methods, were compared for their efficacy in predicting the
championship game’s outcome. This not only highlights the algorithm’s predictive power
but also its utility in high-stakes scenarios where accurate predictions are invaluable [18].

Moreover, Random Forest methods have been utilized to estimate the Win Probability
(WP) before each play of an NFL game. By combining pre-play variables, these models
provide WP estimates that closely resemble true win probabilities and accurately predict
game outcomes, particularly in the later stages of games. This application underscores
the algorithm’s ability to integrate and analyze real-time data, offering insights that can
influence game strategies and decision-making [10].

As we delve deeper into the application of Random Forest in NFL analytics, it is essential
to appreciate the versatility and robustness of this method. Its ability to process complex
datasets and yield reliable predictions makes it a powerful tool in sports analytics, offering

insights that can shape team strategies and enhance understanding of the game.

4.2.1 Results

The process of implementing the Random Forest algorithm in our study commenced with
the initiation of parallel processing capabilities. This was achieved through the makeClus-
ter(detectCores()) function, which facilitates the creation of a computing cluster using the
maximum number of available CPU cores. Subsequently, registerDoParallel(cl) was invoked
to enable the use of this cluster for parallel computations, thereby optimizing computational
efficiency.

To ensure the robustness and generalizability of Random Forest, a cross-validation ap-
proach was adopted. This was configured using the trainControl method, specifying the
cross-validation (cv) technique with five folds (number = 5). This method allows for a
comprehensive assessment of the model’s performance across different subsets of the data.

A crucial step in optimizing the performance of Random Forest involved tuning the
mtry parameter, which represents the number of variables randomly sampled as candidates
at each split. A grid of possible mtry values ranging from 1 to 12, incremented by 2, was
created. This grid facilitated the exploration of different model configurations to identify
the optimal mtry value.

The Random Forest, was then trained on the training dataset using the train function
from the ‘caret‘ package. The response variable was regressed on various predictor variables,
including yardline_ 100, offensive EPA, defensive EPA, and others. The model was config-

ured with 500 trees (ntree = 500) and the previously established cross-validation settings.

35



Upon completion of the training process, the optimal mtry value was identified based

on model performance metrics. The best mtry value for accuracy and Cohen’s Kappa were

extracted from the model results. These values represent the configurations that yielded the

highest accuracy and Kappa statistic, respectively, providing insights into the most effective

model settings for our predictions. The predictors used in random forest were same as the

logistic regression model.

NIR: [0.63]

Table 4.3: Confusion Matrix

Predicted
Score No Score
1737 503
Actual
No Score | 351 3519

Accuracy: [0.8602]

95% CI : [(0.8513, 0.8688)]

P-Value [Acc > NIR] : [< 2.2e — 16]

4.3 Model with Game ID as a Random Intercept

The model in this section incorporates game id as a random effect, thereby accounting for

intra-game correlations. we presents the results of the model below in Table 4.4.

Table 4.4: Coefficient estimates for Logistic Rgeression with Random Intercept

Dependent variable:Drive Qutcome

Estimates (Standard Error)

Intercept
scale(Yardline 100)
Drive Inside20

ha drive
binary_fumble
qtr2

qtr3

qtrd

—1.482*** (0.035)
—0.574*** (0.013)
2.785*** (0.028)
0.066*** (0.023)
—1.489*** (0.048)
0.297*** (0.033)
0.077** (0.033)
—0.262*** (0.034)

Continued on next page
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Table 4.4 — Continued from previous page

Dependent variable: Drive Outcome

Estimates (Standard Error)

scale(Offensive EPA) 0.331*** (0.015)
scale(Drive Time of Possession) 0.784*** (0.015)
scale(Defensive EPA) 0.301*** (0.014)
scale(Offensive EPA):scale(Drive Time of Possession) —0.049*** (0.013)
scale(Drive Time of Possession):scale(Defensive EPA) —0.129*** (0.012)
Random Intercept

Game ID 0.018(0.134)
Observations 66,835

Log Likelihood —25,002.550
Akaike Inf. Crit. 50,033.110
Bayesian Inf. Crit. 50,160.650
Note: *p<0.1; **p<0.05; ***p<0.01

Based on the results it seems like the variation of drive success between different games
is not significant. The coeffecient estimates for rest of the variabels act in a similar manner
like the Fixed Effects Logistic Regression Model.

4.4 Comparing the Results and Discussion

The results obtained from our logistic regression analysis indicate that both offensive and de-
fensive penalty Expected Points Added (EPA) significantly influence the outcome of football
drives. Notably, the analysis does not reveal a substantial difference between the impacts of
offensive and defensive penalties, suggesting that neither type of penalty is inherently more
detrimental to the drive outcome than the other. Our study also identified several other co-
variates that play a significant role in predicting drive outcomes. The estimated coefficients
for these variables align with conventional football strategies and outcomes, validating the
model’s relevance to real-world scenarios. However, it’s crucial to acknowledge that our
model is not suited for real-time predictions, as the covariates are assessed post-drive.
The model demonstrated a high level of accuracy in predicting drive outcomes for the
2021 football season, indicating its efficacy with the chosen covariates. Yet, there remains
room for improvement. The inclusion of more detailed covariates could enhance the model’s
precision and granularity. A key insight from this study is that despite the inherent com-

plexity of football, a significant portion of the variance in drive outcomes can be explained
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by a relatively small set of variables. This finding underscores the potential for predictive
modeling in sports analytics.

Looking forward, the model could benefit from distinguishing between field goals and
touchdowns as separate outcomes. This distinction is particularly relevant in assessing the
impact of penalties, as the outcome of a drive resulting in a field goal can sometimes
be suboptimal, especially when a touchdown was a feasible alternative. For instance, a
team settling for a field goal despite being in the red zone (20 yard line) could indicate a
missed opportunity for a more favorable outcome. To address this nuanced aspect of drive
outcomes, future iterations of the model might employ a multinomial logistic regression
approach, which would offer a more refined analysis of the different types of drive outcomes
and their contributing factors. The drives in the same game might also not be independent
and adding a random intercept for the game ID is something we could look into in the
future.

In the comparision of model performances, the Random Forest marginally outperformed
the logistic regression model, achieving an accuracy of 86% as opposed to 84% by the
logistic regression model. Despite this slight edge in predictive accuracy, we advocate for
the use of logistic regression over Random Forest in contexts where model interpretability is
paramount. The inherent transparency and simplicity of logistic regression make it a more
suitable choice in scenarios where understanding the influence and relationship of individual
predictors is crucial.

However, it is important to acknowledge the potential of the Random Forest algorithm,
especially in handling more complex and nuanced datasets. Random Forest’s robustness
against multicollinearity and its proficiency in capturing complex, non-linear relationships
suggest that its predictive accuracy could be significantly enhanced with the inclusion of
more sophisticated predictor variables. Random Forest is a valuable tool in scenarios where
model interpretability is less critical than predictive accuracy and handling of complex data

structures.
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Chapter 5

Discussion

In our study, we employed linear regression models with fixed effects and random intercepts
to examine the influence of penalties on game outcomes, focusing on score differentials as a
key measure. Contrary to the widespread belief that defensive penalties have a more detri-
mental effect than offensive ones, our analysis did not yield definitive evidence supporting
this notion.

The random interept models revealed that the score differential does not exhibit sig-
nificant variation across seasons or among teams penalized within a season. This model
echoed the findings of the linear regression analysis, indicating no substantial difference in
the impact of offensive versus defensive penalties.

Subsequently, our project shifted to a drive-level analysis, employing a logistic regression
framework to model the outcomes of drives. Consistent with our previous findings, this
model also indicated no significant disparity in the effects of offensive and defensive penalties
on drive outcomes.

It is important to acknowledge the limitations of our model. One key constraint is
its inability to predict outcomes before a drive begins, as it requires in-drive covariates.
However, the model remains valuable for analyzing hypothetical scenarios aposteriori.

Looking forward, there are several potential avenues for further research. One such
direction includes separately modeling the effects of offensive and defensive penalties, which
could yield more nuanced insights into their respective impacts on game dynamics. This
approach may help in uncovering subtler patterns and effects not apparent in the current
analysis. Also, our analysis was limited to aggregate game-level and drive-level data. The
next step would be to look into play by play data and see if one of the offensive or defensive
penalties have a more detrimental impact on the value of the play. We also plan to look
into how a single player can have an impact based on penalties. In the future we plan to

explore this more with Bayesian Hierarchical Models.
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Appendix A

Regression Results

Table A.1: Regression Models for Analyzing Score Differential(Yards)

Differentials Dependent variable: Score Differential
Spread Line 0.405**(0.024)
Offensive Penalty Yards —0.078"*(0.006)
Defensive Penalty Yards —0.054***(0.005)
Fumble —1.462***(0.090)
Interception —3.948***(0.103)
Sacks —1.297%(0.059)
Rushing Yards 0.073***(0.002)
Passing Yards 0.042***(0.002)
R? 0.702

Adjusted R? 0.702

Residual Std. Error 7.96 (df = 3233)

F Statistic 955.5* (df = 8; 3233)

Note: *p<0.1; **p<0.05; ***p<0.01
p-values are associated with the null hypothesis that the corresponding coefficients are equal to zero.
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Appendix B

List of Different Penalties

Table B.1: Penalty Types and Counts

Penalty Type Count
Offensive Holding 7843
False Start 7035
Defensive Pass Interference 3121
Unnecessary Roughness 2460
Defensive Holding 2438
Defensive Offside 1924
Delay of Game 1703
Neutral Zone Infraction 1602
Tllegal Block Above the Waist 1450
Roughing the Passer 1317
Illegal Use of Hands 1084
Face Mask 1050
Offensive Pass Interference 1026
Illegal Formation 672
Illegal Contact 653
Unsportsmanlike Conduct 592
Encroachment 583
Intentional Grounding 423
Illegal Shift 341
Ineligible Downfield Pass 314
Defensive 12 On-field 284
Taunting 266
Horse Collar Tackle 242
Offside on Free Kick 206
Defensive Too Many Men on Field 191
Illegal Blindside Block 129
Illegal Motion 122
Chop Block 108
Illegal Substitution 97
Running Into the Kicker 93
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Table B.1: Penalty Types and Counts

Penalty Type Count
Lowering the Head to Initiate Contact 92
Personal Foul 90
Tripping 89
Disqualification 83
Illegal Forward Pass 82
Player Out of Bounds on Punt 80
Ineligible Downfield Kick 79
Roughing the Kicker 78
Illegal Touch Kick 74
Low Block 70
Fair Catch Interference 69
Illegal Touch Pass 64
Clipping 56
Offensive Too Many Men on Field 56
Offensive 12 On-field 53
Leverage 41
Player Out of Bounds on Kick 41
Illegal Double-Team Block 40
Tllegal Crackback 35
Defensive Delay of Game 29
Interference with Opportunity to Catch 28
Offensive Offside 20
Invalid Fair Catch Signal 15
Kick Catch Interference 14
Leaping 10
Illegal Bat 9
Illegal Peelback 9
Delay of Kickoff 6
ITllegal Wedge 5
Tllegal Kick 1
Ilegal Kick/Kicking Loose Ball 1
Illegally Kicking Ball 1
Kickoff Out of Bounds 1
Short Free Kick 1
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