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Abstract

Recognition of human actions is crucial in several fields, including medical usage, human
interaction applications, and video surveillance systems. In this thesis, we aim to develop a
joint edge-cloud system for recognizing human actions that incorporate embedded devices,
a cloud server, and a mobile app. A significant requirement for the application is privacy
protection, which prohibits the direct transmission of video from the devices. However, the
computational resources of embedded devices are limited and inflexible due to constraints
in CPU/GPU, memory, and power supply. As a result, the embedded devices cannot ex-
ecute overly complex algorithms. In this thesis, a joint edge-cloud computing approach is
developed, where the embedded device runs the relatively simple human pose estimation al-
gorithm to convert the original human action into skeleton animation, which is transmitted
to the cloud. This not only protects the user’s privacy, but also reduces the transmission
cost. In addition, the cloud can then utilize the more powerful computational resource to
run more advanced algorithms, so that more complicated human activities can be detected
from the input skeleton animation.

We examine various options for implementing the system using Amazon Web Services
(AWS) as the cloud, analyze their feasibility and costs, and choose the best solution. Ad-
ditionally, we conduct various experiments. The results of this thesis can help developers
and researchers decide whether to deploy their algorithms on the edge, or the cloud. The
findings may also be beneficial for other areas of artificial intelligence applications.

Keywords: joint edge-cloud computing; artificial intelligence; cross-platform; human action
detection; industrial integration; privacy preserved monitoring
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Chapter 1

Introduction

1.1 Introduction

Recognizing human actions is a critical task in various areas, such as medical monitor-
ing, video surveillance, and human-robot interaction. Traditional surveillance methods rely
on human monitoring, which is limited by a person’s ability to monitor multiple cameras
simultaneously and over long. To address this issue and enhance the efficiency and accu-
racy of surveillance systems, researchers have turned their attention to the development of
automatic human activity recognition (HAR) methods. They aim to automate the process
of identifying and categorizing human actions computationally and eliminating the need
for constant human intervention. By leveraging techniques such as machine learning and
computer vision, computers can analyze video data, detect specific actions, and provide
valuable insights to improve monitoring, decision-making, and response mechanisms in var-
ious domains. These automation methods have the potential to revolutionize the way we
monitor and understand human behavior in dynamic environments, enabling more effective
medical monitoring, enhanced video surveillance, and seamless human-robot interaction.

HAR has long been a challenging task in the field of computer vision, particularly prior to
the 21st century. It was in 1950 that researchers first began exploring the concept of artificial
intelligence computationally. [59] Over the years, advancements in artificial intelligence have
significantly improved the accuracy of HAR systems. By enabling computers to understand
and interpret human actions, these systems have the potential to autonomously respond
to specific events without the need for human reviewers. Moreover, they can analyze an
individual’s behavior and health patterns, providing valuable insights and aiding in decision-
making processes. In recent years, deep learning methods found their primary success and
were predominantly utilized in computer vision applications.

The task of HAR poses challenges to computer vision due to the complex graphical
and temporal nature of the computations involved. Fortunately, recent advancements in
deep learning have contributed to overcoming these challenges. Deep learning methods have
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demonstrated higher accuracy and faster processing speeds compared to early approaches.
State-of-the-art models have also shown robustness for commercial use and adaptability to
embedded devices, making them practical for real-world applications.

In this thesis, we are interested in applications in senior care, including aging at home,
independent living, assisted living, and long-term care facilities. By leveraging HAR technol-
ogy, the workload of facility staff, such as nurses, security guards, and family caretakers, can
be reduced significantly. Additionally, HAR systems can provide timely alerts for emergency
events, enabling proactive responses.

As more HAR methods are developed and deployed, concerns regarding privacy have
garnered increased attentions from the users and the research community. To protect the
privacy of the people being monitored, it is desired to process the data locally using some
embedded devices, and do not send the original images or videos out of the devices. However,
running HAR algorithms on embedded devices faces limitations imposed by the hardware.
These limitations restrict the flexibility in selecting and deploying sophisticated HAR mod-
els. Even when more complex and advanced models are available, their utilization may be
hindered by the computational power required. Consequently, relying solely on embedded
devices is not a sustainable long-term solution. In the realm of deep learning products,
customers place significant emphasis on the accuracy and effectiveness of the results gener-
ated. If the performance is below expectation, it can lead to customer dissatisfaction and
ultimately tarnish the company’s reputation in the long run.

Our goal is to research novel algorithms and methods that can recognize more activities
of daily living (ADL) with clinical relevance, such as eating, drinking, taking medication,
cooking, and dressing. This allows us to better evaluate seniors’ physical and cognitive
status, determine their level of health, and recommend activities that may prevent, mitigate,
or reverse some health issues. In the long term, we also plan to develop algorithms to detect
some behavioral diseases earlier, such as Parkinson’s disease, dementia, and depression.
However, it is difficult to perform these tasks in the embedded devices.

One promising approach to address the limitations of embedded devices is to harness
the power of cloud computing. By utilizing cloud resources, a long-term advanced solutions
can be achieved, enhancing the performance of human action recognition. One of the major
concept is how to develop a high-performance joint edge-cloud computing while respecting
the privacy of the users and data safety. And, this is achieved by employing the skeleton-
based HAR [22][64][51].

With the skeleton-based approach, the sensor will first apply pose estimation algorithms
to accurately determine the locations of keypoints on each person, thus forming the basic
skeleton of the individual. This skeletal data is then used as input to the skeleton-based
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HAR model for further prediction. By implementing this method, the processing burden
on embedded devices is significantly reduced, as they only need to transmit the extracted
keypoint data to the cloud for analysis and recognition, rather than transmitting entire
video streams.

This joint edge-cloud computing approach offers several advantages. Firstly, it enables
real-time processing and inference on the edge, enhancing response times for critical appli-
cations. Additionally, it ensures data privacy by reducing the need to transmit raw video
feeds, as only the keypoint data, which contains essential information for recognition, is
transmitted. This way, the users’ privacy is respected, and the risk of sensitive information
exposure is minimized.

Moreover, the cloud aspect of this solution allows for the utilization of more powerful
hardware and extensive computing resources. This, in turn, facilitates the implementation of
complex and advanced machine learning algorithms for human action recognition. As cloud
computing resources are scalable, the system can easily accommodate increasing demands
as the number of connected embedded devices and users grows.

By striking a balance between edge and cloud computing, this high-performance joint
approach paves the way for a more efficient and privacy-conscious human action recognition
system, catering to the needs of diverse applications across various domains. As the technol-
ogy continues to evolve, it holds great potential in overcoming the limitations of embedded
devices and unlocking new possibilities for the future of human-centric smart systems.

1.2 Contribution

This thesis presents a high-performance privacy-reserved action recognition system,
leveraging cloud computing assistance. The study comprehensively outlines the system’s
pipeline, optimizing human action recognition’s performance and continuous ability for low-
cost embedded video capture devices. By successfully overcoming several limitations, such
as secured data transfer, data storage, and deep learning algorithm computation constraints,
the proposed system yields promising results.

Moreover, the system’s modular architecture enhances flexibility, allowing users to ef-
fortlessly select the most suitable and advanced deep learning model tailored to their specific
requirements. In conjunction with the privacy-reserved action recognition system, the ar-
chitecture efficiently combines low-end embedded devices and cloud computing, and ensures
security, cost-effectiveness, and scalability, facilitating seamless integration.

Additionally, the thesis introduces three key components to complement the system.
Firstly, the Data Recording Component (DRC) optimizes data usage, ensuring secure data
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storage and transfer through the use of a skeleton recording sensor and a minimized data
format for HAR. Furthermore, various data compression methods are explored, effectively
reducing HAR data transfer by 2.5 times.

Secondly, the Action Recognition Component (ARC) is defined for cloud processing. It
examines various HAR modalities, including signal-based and vision-based methods. Fo-
cusing on computer vision, RGB image-based and 2D skeleton-based methods are studied,
with the latter offering greater privacy protection. The thesis successfully demonstrates the
possibility and feasibility of conducting HAR in the cloud using the skeleton data provided
by the DRC.

Thirdly, the thesis introduces the Application Programming Interface (API) of the sys-
tem, enabling third parties to query analysis results from the ARC. The integration of
Amazon’s Alexa Together emergency service in the cloud pipeline showcases the system’s
flexibility for third-party integration, particularly in real-world commercial use cases such
as fall detection. A part of the work in this thesis is published in [18].

1.3 Thesis Organization

The thesis is structured into 7 chapters.

In Chapter 1, the problems that this thesis aims to solve are introduced, followed by a
brief summary of the contributions made in this work.

In Chapter 2 reviews machine learning in artificial intelligence, with a focus on under-
standing the required components for the high-level architecture.

In Chapter 3 reviews different cloud computing service models, highlighting the benefits
of using cloud computing and designing the architecture based on the six important pillars
of cloud computing.

In Chapter 4 defines the DRC of the system, powered by pose estimation methods.

In Chapter 5, the ARC of the system is defined, powered by skeleton-based action
recognition, with a summary of the problems encountered during the experiments and the
possible solutions.

In Chapter 6 presents an actual use case of the whole system that can be applied in
commercial settings.

Finally, in Chapter 7, a summary of all the work conducted in this study is presented,
with a discussion on the future improvements of the design.
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Chapter 2

Study of Human Action
Recognition

2.1 Introduction of Artificial Intelligence

Artificial Intelligence (AI) refers to the field of study and development of machines, com-
puters, and robots that possess human-like abilities to reason and solve problems. Within
the realm of AI, machines are capable of performing tasks that typically require human intel-
ligence, including visual perception, natural language processing, decision-making, question
answering, and more.

Machine Learning, a subfield of artificial intelligence in computer science, aims to repli-
cate how humans learn from experience and information. It involves using algorithms and
training data to enable computers to learn and make predictions. There are three fun-
damental paradigms of machine learning: supervised learning, unsupervised learning, and
reinforcement learning. [21]

1. Supervised Learning: In this type, the training data is labeled, meaning it contains the
desired categories or answers that the model needs to estimate. The labels can be discrete
(categories) or continuous (values), and the model learns to classify or regress based on this
labeled data.

2. Unsupervised Learning: In this type, the model is trained using unlabeled data, where
the categories or groups are unknown during the training process. One example is clustering,
where the model is given a set of unlabeled data and needs to identify patterns or groupings
based on its own analysis of the data.

3. Reinforcement Learning: This type involves decision-making processes, often seen in
AI playing games. The model learns through interactions with an environment, receiving
feedback in the form of rewards or penalties based on its actions. It seeks to optimize its
decision-making strategy to maximize the cumulative reward.
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These three types of machine learning provide different approaches to solving problems
and learning from data, allowing computers to perform tasks and make predictions based
on patterns and information. In this thesis, we are more focus on the supervised Learning
model, as that model is sufficient enough for the current system on the classification of
action recognition. And, number of action recognition datasets are available, like NTU
RGB+D[42], UCF101[52], ETRI-Activity3D[34] and HMDB51[40].

2.2 Introduction of Deep Learning for Classification

Deep learning, a subfield of machine learning, has become especially powerful in classi-
fication tasks due to the use of neural networks, particularly deep neural networks or deep
learning models. Deep neural networks consist of multiple layers of interconnected artificial
neurons, allowing them to automatically extract complex and hierarchical features from the
input data, making them well-suited for a wide range of classification problems, like im-
age and speech recognition, as well as natural language processing. The process of training
deep neural networks involves fine-tuning their internal parameters—weights and biases—to
minimize the difference between their predictions and actual data. [27]

To train a model, it typically involves three essential stages: training, validation, and
testing. During the training phase, the model learns from the provided data, adjusting
its internal parameters to minimize errors. Validation is a crucial step aimed at assessing
the model’s ability to generalize to unseen data and to prevent overfitting, which occurs
when the model becomes too specialized to the training data. Finally, testing evaluates the
model’s accuracy and performance using entirely new and unseen data, providing a clear
measure of its predictive capabilities in real-world scenarios. The accuracy serves as a key
metric, measuring the proportion of correctly classified instances. [27]

For the training, backpropagation is an algorithm commonly used. It enables the iter-
ative adjustment of a network’s parameters by propagating errors backward through the
layers, updating weights and biases to minimize the difference between predicted and actual
outputs. Through this process, neural networks learn to make better predictions and are
widely applied in various machine learning and deep learning tasks, playing a central role
in the advancement of artificial intelligence.

2.2.1 Convolutional Neural Network

In the last decade, developments in deep learning have revolutionized many research
fields and industries. In computer vision, a series of convolutional neural network (CNN)-
based deep learning algorithms have been developed, which outperformed human in just a
few years. Convolutional neural network is one type of neural network that is usually applied
for image classification. For example, AlexNet, an architecture in the realm of Convolutional
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Figure 2.1: Convolutional Neural Network [30]

Neural Networks (CNNs), is renowned for its influential role in computer vision tasks. In
the ImageNet Large Scale Visual Recognition Challenge in 2012, the model established a
new benchmark for image classification tasks. It comprises the fundamental eight layers
commonly utilized in CNNs: the Convolution layer, which applies filters to detect features;
local response normalization for feature scaling; max pooling and fully connected layers
with ReLU activation for feature extraction; fully connected layers without activation for
classification; and the dropout layer to mitigate overfitting. In particular, max pooling
and average pooling layers are instrumental in down-sampling the data, reducing spatial
dimensions and capturing salient features, thereby making AlexNet a pivotal model in image
classification and object recognition tasks. Commonly, CNN network contains the layers as
shown in Figure 2.1.

Batch normalization or normalization layers are often used in CNN to normalize the
inputs to a layer that has a mean close to zero and a standard deviation close to one.
stabilizing training, faster and better when centered around zero and have similar variances,
and faster convergence during training.

Next, we briefly introduce some representative image classification models using 2D
CNN, including Inception[55], MobileNet[31], ShuffleNet[66], EfficientNet[57] and ResNet[29].

Inception

Inception network contains "inception modules," which employ multiple convolutional
filters of varying sizes within the same layer to capture features at different scales. This
approach enhances the model’s ability to recognize complex patterns in images, making it
highly effective for tasks like image classification and object detection. Inception has been
influential in the development of modern convolutional neural networks.

ResNet

Residual Network (ResNet) [29] contains skip connections to bypass one or more layers
in the networks and allows the network to learn residual information. These residual con-
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Figure 2.2: (a) Two Stacked Group Convolutions (b) Shuffle the channels, (c) Channel
Shuffle Operation of (b) [66]

nections enhance training efficiency and permit the construction of deeper networks with
minimal performance degradation compared to conventional CNN architectures. ResNet
find widespread use in tasks such as image classification, object detection, and computer
vision applications. In reference to [10], there is an adaptation of 2D ResNet into a 3D CNN
for the purpose of HAR. This adaptation has resulted in a significant boost in accuracy,
surpassing 90%, when evaluated on the Kinetics 400 dataset.

MobileNet

MobileNet [31] is designed for efficient and lightweight deep learning on mobile devices
and embedded systems. It achieves this efficiency through depthwise separable convolutions,
making it ideal for applications with limited computational resources. MobileNet is widely
used for tasks like image classification, object detection, and semantic segmentation in
mobile apps, robotics, and IoT devices.

ShuffleNet

ShuffleNet uses channel shuffle operations, as shown in Figure 2.2, to reduce computa-
tion, making it suitable for resource-constrained devices. ShuffleNet excels in applications
like image classification and object detection, offering a balance between performance and
computational efficiency.

EfficientNet

EfficientNet achieves a harmonious blend of model performance and computational ef-
ficiency by employing a compound scaling technique that uniformly adjusts the network’s
depth, width, and image resolution. This balanced scaling approach makes it particularly
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Figure 2.3: Graph Convolutional Network[16]

suitable for running efficiently on devices with limited resources, such as mobile phones and
IoT devices.

2.2.2 Graph Convolutional Network

The graph convolutional network (GCN) was first introduced by Thomas Kipf and Max
Welling in 2017 [38]. it is a type of neural network architecture designed for analyzing and
processing data that can be represented as a graph or a network. Graphs are mathemat-
ical structures that consist of nodes and edges, where nodes represent entities and edges
represent relationships or connections between these entities.

"For a specific graph-based neural network model f(X, A), the formal expression of the
GCNs layer is H(l+1) = σ

(
D̃− 1

2 ÃD̃− 1
2 H(l)W (l)

)
, where Ã = A + IN is the adjacency

matrix of the undirected graph G with added self-connections. IN is the identity matrix,
D̃ii =

∑
j Ãij and W (l)is a layer-specific trainable weight matrix. σ(·) denotes an activation

function. H(l) ∈ RN×D is the matrix of activations in the lth layer; H(0) = X." [38]

GCNs have found application in numerous domains, from the analysis of social networks,
where individuals and their connections form the nodes and edges of a graph, to the field of
biology, where they have been used for predicting protein-protein interactions based on com-
plex molecular networks. In natural language processing, GCNs are instrumental in tasks
such as semantic parsing and knowledge graph reasoning, allowing the modeling of intricate
relationships between words, entities, or concepts. Their adaptability and effectiveness in
diverse areas make GCNs an invaluable tool in the realm of artificial intelligence.

Furthermore, in the realm of computer vision and human action recognition, GCNs have
gained prominence. GCNs, when applied to the analysis of human skeleton key points and
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their corresponding edges, offer a compelling solution for recognizing complex human ac-
tions. By considering the spatial relationships and interactions between key points, GCNs
can enhance the accuracy and robustness of human action recognition systems. We’ll delve
deeper into the application of GCNs in this context, highlighting the potential for more
precise and effective recognition of human activities. This chapter thus provides an intro-
duction to the power and versatility of GCNs in modeling and learning from data with
intricate connectivity patterns while emphasizing their significance in human action recog-
nition.

2.3 Introduction of Human Action Recognition

Human action recognition is a field of artificial intelligence that focuses on understanding
and interpreting human movements and gestures. It involves the development of algorithms
and systems capable of automatically identifying and categorizing actions performed by
individuals from different data modalities, The goal is to enable machines to comprehend and
interpret human behavior. It is usually categorized as supervised learning in classification,
as it involves training models to classify and recognize various human actions based on the
provided labeled datasets.

2.3.1 Data Modalities

With the aid of computer resources, we are not limited to using only vision, but can also
use other data modalities, such as ECG data [45], depth [9], infrared sequence [44], audio
[67], radio signal [41], etc, to predict an action. Multiple modalities can be used for human
action recognition, such as RGB, skeleton, depth, infrared, point cloud, event stream, audio,
acceleration, radar, and WiFi signal. [54] And, skeleton data is the better modality that
can also protect the user’s privacy by detecting and capturing only the skeleton data and
streaming to the server, as opposite to the RGB method which would need to stream the
video for cloud-based deep learning processing. Also, unlike other modalities, it does not
expose the person or background image, environment information or audio sound. At the
same time, it also allows the mobile application to visualize the playback of the skeleton
action by using only the skeleton data and frame timestamps for the users reviewing the
event. Comparing with the traditional video record data, it only needs to store the action
prediction data, the person prediction data, the event prediction data, and skeleton data
instead of the actual video itself. It saved the cost of the network bandwidth, storage, and
processing speed. Also, it keeps our client data secured and private as there is no actual
video being sent to or stored in the server. For example, 95 seconds of the recorded stick
figure data, only has around 38.2 KB of data. That means it will take less than 2-megabyte
data for a 1-hour record data. It is significantly less than a recorded actual video, which
could take more than 700 megabytes of data.
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Figure 2.4: a fall action detector utilizing accelerometer and gyroscope signals

Physical Signal-Based Methods

In addition to skeleton-based recognition, another approach that can be incorporated
into the system to respect user privacy is the physical signal-based method. Commercial
products in this domain mainly revolve around wearable devices or radio signal recognition
devices [63]. For instance, we have successfully developed a fall detector during undergradu-
ate study, as depicted in Figure 2.4, by utilizing accelerometers and gyroscopes to calculate
the angle and g-force associated with a person’s fall. Furthermore, recent research [26] has
introduced a reliable deep neural network model for recognizing typical patient behaviors
encompassing six distinct human actions. It is worth noting that a limitation of using ac-
celerometers and gyroscopes for human action detection is the requirement for users to
wear the devices. Based on feedback from healthcare facilities, some patients may be hesi-
tant to wear additional devices, which can pose challenges in certain scenarios. Nevertheless,
a study has indicated that relying solely on data from low-dimensional sensors lacks the
necessary depth for effective action recognition. It is recommended to incorporate cameras
or a combination of cameras and low-dimensional sensors. [58]

The use of wearable devices, although effective in capturing physical signals for action
recognition, may not be universally applicable due to user preferences and acceptance. It
becomes crucial to strike a balance between privacy preservation and user comfort. Finding
alternative methods that do not rely on wearables but still capture the necessary physical
signals is an area of ongoing research. By exploring such solutions, the system can cater to
a broader range of individuals while ensuring their privacy is respected.

Vision-Based Based Methods

Another commonly used approach for human action recognition is the vision-based
method, which utilizes deep learning techniques. This method leverages visual data, typi-
cally obtained from cameras or video sources, to analyze and interpret human actions. [12]
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[11] [18] However, when comparing vision-based devices for human monitoring, there are
important considerations regarding mobility and monitoring coverage. Once the user leaves
the area covered by the stationary device, their actions cannot be monitored.

To address the limitations of stationary devices, physical signal based are sometime
considered as it can capture physical signals without being restricted to a fixed position.
These devices offer mobility and can track the user’s actions regardless of their location.

2.4 Deep Learning Models in Computer Vision

The advent of deep learning has revolutionized the field of action recognition, enabling
researchers to achieve impressive accuracy levels. This section provides a comprehensive
overview of the modalities used in action recognition, focusing specifically on RGB images
and skeleton key points input.

RGB-based deep learning models have demonstrated exceptional performance in action
recognition tasks. Convolutional Neural Networks (CNNs), including 3D CNNs, 2D CNNs,
and spatiotemporal networks such as C3D and I3D, are commonly employed in this context.
These models learn to extract relevant features from video frames and capture temporal
patterns to identify actions. However, using RGB images has certain limitations. These
images may contain extraneous or repetitive information, and their recognition performance
can be influenced by factors like lighting conditions and occlusion.

In contrast, skeleton-based methods rely solely on the key points of a human skeleton for
action recognition. By focusing on skeletal information, these methods are less susceptible to
irrelevant or redundant data and can effectively capture the temporal dynamics of actions.
Prominent skeleton-based approaches include Graph Convolutional Networks (GCNs), Re-
current Neural Networks (RNNs), and Graph Attention Networks (GATs). Recent studies
have demonstrated that skeleton-based methods can achieve comparable or even superior
performance to RGB-based methods, particularly in scenarios involving occlusion or low-
quality RGB images. Moreover, skeleton-based methods offer the potential for enhanced
privacy preservation, as they eliminate the need to transmit actual video data. However,
a critical challenge in employing skeleton-based methods lies in the reliable and accurate
extraction of skeletons from RGB images, which can be demanding in certain situations.

Deep learning has significantly advanced the accuracy of action recognition, with both
RGB-based and skeleton-based modalities demonstrating their unique strengths and con-
siderations. While RGB-based methods excel in capturing visual details, skeleton-based
approaches offer improved resistance to irrelevant information and potential privacy ad-
vantages. As the field continues to evolve, further research and development are needed to
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refine the extraction of skeletons from RGB images and enhance the overall performance
and applicability of action recognition systems.

2.4.1 RGB Image-Based Models

After the completion of AlexNet in the ImageNet Large Scale Visual Recognition Chal-
lenge in 2012, convolutional neural networks (CNNs) gained widespread recognition as a
highly effective technique for image classification. With a top-5 error rate of 15.3%, sig-
nificantly lower than the second-place error rate of 26.2%, CNNs became well-known for
their performance. [39] According to [15], the advantages of image classification can also be
applied to video classification by transforming the network from a 2DConvNet to a 3DCon-
vNet. However, while a very deep 2D CNN may achieve high accuracy in classification, it
may not be suitable for embedded systems. This is due to the large model size and memory
usage requirements. Therefore, in the context of embedded systems, it is preferable to have
a model with fewer parameters that still maintains high accuracy. This approach reduces
memory requirements, power consumption, and training time.

Given the memory constraint, it is more appropriate to use a model with fewer pa-
rameters in an embedded device. Table 1 illustrates several models, namely ShuffleNet-v2,
MobileNetv2, Inception-v2, and EfficientNet-B1, which offer high accuracy while having a
lower number of parameters. Additionally, EfficientNet-B7 stands out as a high-performance
network when compared to other models with a similar number of parameters. Consequently,
my focus will primarily be on reviewing these four model types and summarizing their main
concepts.

After AlexNet completed on ImageNet Large Scale Visual Recognition Challenge in
2012, the convolutional neural network (CNN) becomes more famous and known as a high-
performance technique for image classification. In imaged based method, 2DConvNet and
3DConvNet. classification can also apply to video classification after converting the network
from 2DConvNet to 3DConvNet. In the research, some higher accuracy models trend to
have deeper 2D CNN model, which means a larger model in terms of file size and memory
usage. Hence, they are not ideal for a low constraint embedded system. ShuffleNet-v2 [66],
MobileNetv2 [49], Inception-v2 [56], and EfficientNet-B1 [57] come with high accuracy in
image classification and a lower number of parameters.

Video classification applications are commonly utilized in security, home automation,
and robot interaction, primarily operating on small, low-power embedded devices with lim-
ited computing capabilities. Therefore, there is a strong demand for optimized, accurate,
and diverse algorithms. Over the past decade, deep learning methods, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), have achieved significant
success in human action recognition. Several architectures have been developed, including
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Figure 2.5: The spatial-temporal graph of a skeleton sequence.Blue dots denote the body
joints The inter-frame edges connect the same joints between consecutive frames. [64]

2DConvNet + LSTM, 3DConvNet, Two Stream, 3D-Fused Two-Stream, and Two-Stream
3D-ConvNet, as depicted in Figure 8 [1]. Deep learning has demonstrated notable success in
image classification, achieving over 75% accuracy on UCF101 with small models. However,
video classification poses additional challenges due to the temporal domain, which increases
the complexity of training and results analysis. Simply examining a single frame or image is
insufficient to predict the entire action. For instance, a photograph showing a person holding
a door allows one to infer that the person is moving the door. However, more information is
required to determine if the person intends to open or close the door, as future knowledge
of the action is necessary.

One approach to reducing the computational burden on low-constraint devices is to
offload the action recognition process to a more powerful device or cloud services. For in-
stance, a centralized machine learning device with enhanced processing capabilities could
be employed to handle action recognition tasks by connecting to all other sensors. How-
ever, this solution would necessitate additional physical space and incur extra expenses for
the user. Furthermore, it introduces maintenance challenges, as it adds another hardware
component to be managed by the company.

In contrast, using cloud services for processing, especially with image-based methods,
raises privacy concerns because it requires transmitting the actual images or videos from
the edge devices to the cloud. This makes it an unsuitable choice for a commercial prod-
uct. Consequently, the skeleton key points-based method emerges as a more viable and
acceptable solution for this research.

2.4.2 2D Skeleton key points Based Reconigtion Models

Skeleton-based recognition is a privacy-preserving approach that ensures the confiden-
tiality of data when consumed by third parties. In order to maintain user privacy, the
system refrains from sending or displaying actual videos to data consumers. Instead, only
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Figure 2.6: Process flow of ST-GCN [64]

skeleton data, which represents the essential information about human body movements, is
transmitted to the cloud.

In this thesis, we conducted a comparative analysis of two deep-learning skeleton-based
HAR approaches: ST-GCN[64] and PoseC3D[22]. ST-GCN is renowned as the pioneering
graph convolution network model specifically designed for skeleton-based action recognition.
Over time, the concept of graph convolution networks has been further developed, leading
to the emergence of other notable GCN-based methods such as HD-GCN[65] and 2s-AGCN
[51]. In contrast, the PoseC3D model, which gained prominence in 2021, is based on a ResNet
architecture instead of GCN. It has been recognized as a state-of-the-art model for the NTU
RGB+D dataset, demonstrating its effectiveness in skeleton-based action recognition tasks.
However, in this research, our primary focus was on examining the fundamental GCN model
and the ResNet model to present a comprehensive architectural analysis, as described in
Section 3.3. By comparing these two approaches, valuable insights can be gained into the
strengths and weaknesses of each model in the context of skeleton-based HAR.

ST-GCN [64]

Spatio-Temporal Graph Convolutional Network (ST-GCN), is a specialized deep learn-
ing architecture designed for processing spatio-temporal data, with a particular focus on
human action recognition in videos. It is a powerful tool for extracting meaningful features
from video sequences, making it valuable in applications such as video surveillance, gesture
recognition, and sports analysis. ST-GCN builds upon the concept of GCNs and extends it
to accommodate the temporal dimension. As illustrated in 2.5, the blue edge connections
between nodes symbolize the interconnections between nodes across successive frames of
skeleton data.

The input format for ST-GCN is represented as (1, 3, 300, 18, 2), where each dimension
corresponds to (batch, channel, frame, joint, person). In this context, channel=0 represents
the x-coordinate of the joint, which is normalized within the range [-0.5, 0.5]. Channel=1
corresponds to the y-coordinate, and channel=2 represents the confidence value. The "joint"
refers to the index of the joint in the skeleton, and "person" indicates the person’s index.
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The output format is the confidence value for (batch, class, output_frame, joint, person).
To detect an action, you add up the confidence values for each class and select the class
with the highest value. The "output_frame" is determined by dividing the number of input
frames by 4. The "voting_label" is computed by summing the values along multiple axes
(axis=3, axis=2, axis=1), and then finding the index of the maximum value along axis=0.

As shown in Fig. 2.6, the input video would be first processed by the pose estimation
module turned into skeleton node sequences and from a spatial-temporal graph, then the
multiple layers of ST-GCNs will be applied and generate feature maps on the graph. Then,
it would be classified by Softmax classifier to different action classes.

PoseC3D [22]

Although GCN approaches represent a significant advancement in the field of skeleton-
based action recognition, they are having challenges related to robustness, interoperability,
and scalability. In response to these challenges, the PoseC3D [22] approach was developed.
PoseC3D offers a fresh perspective by employing a 3D heatmap volume as the fundamental
representation of human skeletons, in contrast to the graph sequences used by GCN-based
methods. This shift in representation yields several notable advantages. In the original
paper, the accuracy of PoseC3D shows a promising result, as it achieved 87% accuracy on
the UCF101 dataset and 69.3% on HMDB51 dataset.

First, PoseC3D excels in learning spatio-temporal features, making it highly effective in
capturing the nuances of human actions. It also demonstrates increased robustness against
pose estimation errors, a common challenge in skeleton-based action recognition. Moreover,
PoseC3D exhibits strong generalization capabilities, particularly in cross-dataset settings,
which is crucial for real-world applicability.

Secondly, PoseC3D is able to handle multiple-person scenarios without incurring addi-
tional computational costs, a limitation of some other methods. Additionally, the hierarchi-
cal features extracted by PoseC3D can be seamlessly integrated with other modalities at
early fusion stages, offering a versatile and customizable approach to boosting performance.

2.5 Deep learning approach in recording device

2.5.1 Pose Estimation

The field of pose estimation plays a crucial role in utilizing the pose and orientation of
individuals. It involves the integration of sensors, radio technologies, and computer vision
techniques. In this work, the focus is on the computer vision method, particularly in the
context of a camera device and its application in skeleton-based action recognition, as
discussed in section 5.3.2. The pose estimation method employed here aims to estimate the
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Figure 2.7: Human pose to skeleton stick Mapping in this study [7]

skeleton key points of various body parts, including the eyes, ears, nose, elbows, hands, hips,
knees, and ankles, as illustrated in Figure 2.7. Once the pose estimation is accomplished,
the application only requires connecting these skeleton key points to generate the visual
representation of a skeleton stick figure.

Pose estimation using images typically adopts either a top-down approach, a bottom-up
approach, or a combination of both strategies. The top-down approach involves initially
detecting individuals in the input image using a person detector and then performing pose
estimation within the bounding box of each detected person. However, when multiple people
are present in the image, the number of person detectors needed to track each person’s pose
increases, leading to potential runtime complexity and performance challenges.

On the other hand, the bottom-up approach directly predicts all the keypoints of all in-
dividuals in the image and subsequently combines these related keypoints to form complete
body poses. This approach offers the potential to reduce runtime complexity when dealing
with an increasing number of people in the image. It is worth noting that single-person pose
estimation serves as the foundation for multi-person pose estimation. Various methods and
frameworks are employed for multi-person pose estimation using a top-down strategy. No-
table approaches include OpenPose[14], MoveNet[13], and PoseNet[37]. Each offers distinct
features and advantages within the domain of multi-person pose estimation.

When comparing the three methods, OpenPose stands out for its flexibility in detect-
ing multiple persons, although its accuracy is comparatively lower. On the other hand,
MoveNet excels in providing higher accuracy for estimating a person’s skeleton. PoseNet,
while suitable for single-person pose prediction, exhibits slightly lower accuracy but requires
less computational power. [36]
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In [14], it stated the challenges when dealing with pose estimation. First, each image may
contain unknown number of people at any position and scale. Second, interactions between
people induces a complex spatial interface Third, runtime complexity tends to grow with
the number of people in the image, making real-time performance a challenge.

2.5.2 Object Detection

Object detection is a fundamental computer vision task that involves identifying and
locating objects within an image or a video. It is a crucial step in HAR. The goal of
object detection is to not only recognize the presence of objects but also provide their
precise spatial coordinates in the image. This capability enables machines to understand
the environments of the scene. Object detection has been achieved by deep learning with
remarkable accuracy and efficiency in identifying across diverse scenarios. As the field of
computer vision continues to progress, object detection plays a pivotal role in empowering
machines to perceive and comprehend the world around us.

The recording component of the system utilizes the top-down approach, which requires
the deployment of an object detector to identify humans in the scene. In this particular
system, a Faster R-CNN model has been employed for object detection [46], in combination
with the HRNet pose estimation for HAR [62]. The Faster R-CNN model is known for its
ability to perform real-time object detection by utilizing region proposal networks.
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Chapter 3

Cloud Architecture

3.1 Introduction of Cloud and Services

The concept of cloud computing involves a network of servers that work together to run
software, process data, and store files remotely over the internet instead of on local devices.
This centralized approach allows for real-time collaboration and communication between
multiple users. A basic cloud network typically includes a software application server, a
database, a load balancer, and network-attached storage, though other types of service
servers may also be incorporated. There are five fundamental properties that define cloud
computing: broad network access, on-demand self-service, resource pooling or shared ser-
vices, rapid elasticity, and measured services. [48] As the number of servers in a cloud grows,
it can become challenging to manage software and hardware, physical space, and installa-
tions. To reduce these costs, developers often prefer to operate their cloud infrastructure
using third-party cloud service providers. Cloud service providers manage configuration,
maintainability, and server hosting for the users, and allow users to activate additional ser-
vices almost instantly. Several well-known cloud service providers are available, including
Amazon AWS, Microsoft Azure, and Google Cloud. Amazon AWS has the largest market
share, followed by Microsoft Azure. Among these providers, Microsoft Azure has the highest
number of service regions, with 60 regions, while Google Cloud and AWS have 34 and 26
regions, respectively.

Several cloud service models have been introduced, including SaaS, PaaS, IaaS, FaaS,
and MLaaS, all of which are utilized in this study. These service models can also be combined
with other services.

Infrastructure as a Service (IaaS) allows users to specify the hardware specifications and
software to be used on the system. [48] In Platform as a Service (PaaS), users can specify
the software they want to use without having to configure the hardware specifications as
the cloud provider takes care of it. [48]
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Software as a Service (SaaS) allows users to only provide the data input and desired
outcome for the service as the cloud provider takes care of the software and hardware
processing. [48] Function as a Service (FaaS) enables users to implement their software logic
without dealing with the infrastructure, hosting servers, or maintaining version frameworks,
as it is done by the cloud provider. The service scales based on demand and is suitable for
short-running, stateless computation, and event-driven applications. Aside from the public
cloud provider service, if someone desires to own their FaaS service, they can investigate
an open project, called Fn Project. [2] Machine Learning as a Service (MLaaS) is similar
to PaaS but provides a flexible and scalable machine learning platform that processes data,
trains models, validates and makes inferences, and can deploy the serverless service like
FaaS [47] Both FaaS and MLaaS do not require users to maintain servers, allowing for fast
on-demand deployment that reduces development time and saves the company the cost of
unnecessary hardware resources.

3.2 Cloud Services

Based on the large development community and support discussed in 3.1, this work
is mainly designed using AWS. Besides that, AWS also provided service credits for the
research. This section concludes with a summary and noteworthy part of each service which
are used for the overview of the private cloud and the design of the skeleton-based HAR
system architecture in the next section. For more detail of AWS Web Service can be found
in [32]. There are alternative services from other service providers, Azure, Google, and
Alibaba. Or other GPU cloud-based providers like CoreWeave, Lambda, Vultr, etc.

With assist of cloud computing, we would need to handle the sensitive data like the
recording file over the internet. Therefore, the proper cloud service, configuration and se-
curity measures are required to review on the implementation. Especially, some countries
have strict regulations when dealing with privacy and health related data, such as Health
Insurance Portability and Accountability Act (HIPAA) in United States. HIPPA is a federal
law that requires the creation of a national standards to protect sensitive patient health
information from being disclosed without the patient’s consent or knowledge. Therefore, a
privacy HAR architecture should ensure the data is safely transferred and stored in the
cloud with correct access control right.

In this study, various cloud services were explored and evaluated for their suitability in
the proposed system architecture. The following sections provide a summary of the different
cloud services considered and the alternatives available:
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3.2.1 Cloud IoT Core

To ensure secure communication between sensors and the cloud, AWS IoT Core was
chosen as the primary service. It offers the AWS IoT Credential Provider, which generates
X.509 client certificates for each sensor. These certificates, managed through AWS Identity
and Access Management (IAM), enable encryption and decryption of message data, ensuring
mutual authentication. Alternative services like Azure IoT Hub, Google IoT Core, and
Alibaba IoT Platform also offer similar functionalities.

3.2.2 Cloud Identity and Access Management

AWS IAM was utilized to manage identities and access control for users and devices. It
enables authorization for the use of AWS Video Stream and AWS S3 services by the sen-
sors. Alternative services include Azure Active Directory, Google Cloud IAM, and Alibaba
Resource Access Management.

3.2.3 Cloud Storage

In our implementation, we have opted for AWS S3 as the cloud storage solution for
our data. AWS S3 offers several advantages, including fast and reliable access to data, high
durability, and availability. Moreover, S3 excels in ensuring the security, confidentiality, and
integrity of stored data, making it a suitable choice for our needs.

SSE-S3 SSE-KMS DSSE-KMS SSE-C
Manage Key Polices N/A N/A N/A Available
AWS CloudTrail logs N/A Available Available Available
Key Rotation By S3 By S3 By S3 By Customer
Data Shareability Available N/A N/A Available

Table 3.1: Comparsion between 4 server-side encryption choices on S3 [4]

In Amazon S3, we have four optional choices for data encryption: server-side encryption
with Amazon S3 managed keys (SSE-S3), server-side encryption with AWS Key Manage-
ment Service (SSE-KMS), dual-layer server-side encryption with AWS KMS keys (DSSE-
KMS), and server-side encryption with customer-provided keys (SSE-C). By default, SSE-S3
is enabled for encryption. In Table 3.1, you can see that managed key policies, AWS Cloud-
Trail logs, key rotation, and data shareability are the primary differences among these four
options.
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Figure 3.1: Five-step encryption process when using SSE-KMS[50]

The key distinction between SSE-KMS and DSSE-KMS is that DSSE-KMS offers an
additional layer of encryption, enhancing security to meet compliance requirements. In our
system, we have chosen to use SSE-KMS because we require AWS CloudTrail logs to monitor
encryption access. Additionally, our data contains only skeletal information which is less
sensitive data, so we do not need the extra encryption layer or managed key policies.

We also enable the bucket key as part of the encryption process to enhance its effi-
ciency. The bucket key, generated by the AWS KMS Key and having a short lifespan, is
stored within the S3 bucket. This approach ensures quicker key access, thereby expediting
encryption requests and reducing the need for frequent key requests from AWS KMS. By
doing so, it minimizes AWS KMS service usage by up to 99% [17]. The bucket key is then
employed to generate the plaintext data key, as shown in Step 5 in Figure 3.1, for the
transformation of plaintext objects into ciphertext objects. Once the encryption process is
complete, the plaintext data key is promptly disposed of, and the bucket key is added as
metadata to the ciphertext object.

In order to ensure that the bucket complies with regulatory requirements such as HIPAA,
EU Data Protection, and FERAMP, AWS S3 offers a crucial feature known as AWS Macie.
This tool enables periodic scanning of objects within the bucket to identify the presence
of sensitive data, unencrypted information, or publicly accessible data. When any of these
data types are detected, AWS Macie promptly notifies us, helping to maintain regulatory
compliance and data security.

Integrity plays a crucial role in the realm of data storage. It is essential to guarantee
that our data remains intact and uncorrupted during both storage and retrieval processes.
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Amazon S3 offers support for a checksum feature, which allows applications to verify the
data’s integrity. This checksum is a unique string generated by a checksum algorithm, func-
tioning much like a fingerprint for the file. Applications can use this checksum to compare
objects that have been downloaded or uploaded, ensuring their identity and integrity by
matching the checksum at both ends of the process.

In addition to the default MD5 checksum, Amazon S3 offers compatibility with four
additional checksum algorithms: SHA-256, SHA-1, CRC32, and CRC32C. These algorithms
vary in terms of speed and security. Speed generally increases from left to right in the list,
with CRC32C being the fastest, but also less secure compared to the others. Depending
on the specific requirements of the application, our system will opt for CRC32C when fast
processing is the priority. However, if a higher level of security is mandated, SHA-256 will
be the chosen checksum algorithm.

It’s worth noting that alternative cloud storage services like Azure Blob Storage, Google
Cloud Storage, and Alibaba Cloud Object Storage Service can also be considered for similar
requirements. These services offer comparable features and can be evaluated based on factors
such as performance, pricing, and specific integration needs.

By leveraging AWS S3’s secure storage capabilities, including encryption and compliance
configurations, we can confidently store and protect sensitive data in our privacy-reserved
system.

3.2.4 Cloud Function

In the traditional method, the functions or applications are typically hosted on a server.
However, this approach often imposes a significant workload for server maintenance and
development. Ensuring the stability and scalability of the server to support the increasing
number of requests can become a major challenge, especially for smaller teams with limited
resources.

To address this issue, the concept of function-as-a-service (FaaS) was introduced. FaaS
provides a serverless computing model where developers can focus solely on writing and
deploying individual functions or microservices without the need to manage the underlying
infrastructure. With FaaS, developers no longer have to worry about server maintenance,
provisioning, or scalability. The cloud provider takes care of automatically scaling the in-
frastructure based on demand, relieving the burden from the development team.

By adopting a FaaS approach, teams can streamline their development processes, reduce
operational overhead, and enhance scalability. This allows them to allocate more time and
resources to developing the core functionality of their applications rather than managing
infrastructure, ultimately improving efficiency and productivity.
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In our implementation, we opted to use AWS Lambda as our preferred FaaS solution.
We found that AWS Lambda offered a reliable and powerful backend service that fulfilled
our requirements for stability, scalability, and high availability. Additionally, the educational
resources and support provided by AWS were factors that influenced our decision.

For instance, Azure Functions from Microsoft Azure, Google Cloud Functions from
Google Cloud, and Alibaba Function Compute from Alibaba Cloud are other viable options
that can be considered. These services offer similar functionality to AWS Lambda, allowing
developers to deploy and run individual functions or microservices without the need to
manage the underlying infrastructure.

3.2.5 Cloud Machine Learning

Sagemaker, a Machine Learning-as-a-Service (MLaaS) solution, was used for hosting
real-time and asynchronous inference for deep learning and machine learning models. It pro-
vides serverless inference capabilities. [47] Azure Machine Learning Studio, Google Datalab,
and Alibaba Machine Learning Platform for AI are alternative services to consider.

3.2.6 Cloud API Gateway

In our research, we utilized AWS API Gateway, a powerful tool that enables us to host
RESTful APIs for seamless two-way communication between various applications. This
gateway acts as a primary entry point through which applications can interact with cloud-
based data and features. It’s a fully managed service offered by AWS, designed to streamline
the development process and facilitate the scaling of APIs.

Some of the key features of the API Gateway include traffic management, Cross-Origin
Resource Sharing (CORS) support, access control, authorization mechanisms, throttling,
comprehensive monitoring, and version management. Similar services in other cloud plat-
forms include Azure API Management, Google Cloud Endpoints, and Alibaba Cloud API
Gateway.

By considering these various cloud services and their alternatives, the architecture of
the proposed system was designed to leverage the strengths and features of each service,
ensuring a robust and scalable infrastructure for the intended application.

3.3 Cloud and System Architecture

A well-architected system is composed of six pillars that define its design: reliability, op-
erational excellence, security, performance efficiency, cost optimization, and sustainability.
[23] Each of these pillars serves a specific purpose in ensuring the success and effective-
ness of the architecture. A system operation on cloud computing should also encompass
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fundamental scalability, availability, and maintainability. These achievements collectively
contribute to the overall success and effectiveness of cloud computing. They enable systems
to operate reliably, scale seamlessly, remain available to users, and be easily maintained to
ensure optimal performance.

Reliability focuses on ensuring that the system operates continuously without unex-
pected behavior, even under varying workloads. It aims to provide a reliable and dependable
system that users can rely on for consistent performance.

Operational excellence aims to achieve continuous improvement by aligning the system’s
operations with the overall business goals. By understanding the operations and optimizing
workflows, operational excellence ensures that the system operates efficiently and effectively.

Security is crucial in protecting online assets, data, and systems. It involves implement-
ing appropriate security measures to safeguard the system against unauthorized access, data
breaches, and other potential threats.

Performance efficiency aims to provide the necessary flexibility in computing resources
to support changes efficiently. It ensures that the system can adapt and scale according to
technological advancements and evolving requirements, enabling optimal performance.

Cost optimization focuses on optimizing the cost of system operations to achieve the
most cost-effective solution. It involves identifying cost-saving opportunities, optimizing
resource allocation, and making informed decisions to minimize expenses without compro-
mising performance.

Sustainability aims to achieve maximum outcomes by provisioning the minimum nec-
essary resources. It emphasizes the efficient utilization of resources, reducing waste, and
promoting environmentally conscious practices.

Scalability is the ability of the system to handle increased demand by expanding its
resources, such as servers or storage, to accommodate the growing workload. This ensures
that the system can effectively scale up or down based on the needs of the users or applica-
tions. Moreover, with an increasing number of sensors deployed in the field, the system must
be capable of managing substantial data volumes and processing all the data seamlessly,
without encountering any limitations.

Availability measures the amount of time the system remains operational and acces-
sible to its users. It indicates the system’s ability to provide uninterrupted service and
minimize downtime. However, the geographical distance between the servers and the users
can introduce network latency, which refers to the delay in data transfer due to the longer
travel distance. This latency can impact the availability and responsiveness of the system,
especially when users are located far away from the servers.
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Figure 3.2: Overview of the proposed skeleton-based action recognition pipeline with cloud
computing

Maintainability focuses on the ease of managing and repairing the system. It involves
promptly identifying and addressing failed components, ensuring quick recovery and min-
imizing service disruptions. By implementing effective maintenance practices and having
mechanisms in place to detect and resolve issues, the system can maintain its performance
and reliability over time.

3.4 High Level of the Proposed Architecture

Our system’s end-to-end architecture is depicted in Fig. 3.2 showcasing the various
components that make up the entire pipeline. The majority of these components operate
as event-driven applications, facilitating seamless and efficient data flow throughout the
system. It’s important to note that this architecture is not limited to the exclusive use of
AWS. Instead, alternative services highlighted in each sub-section 3.2.1 to 3.2.6 or similar
offerings from different providers can be employed as suitable replacements. The recording
component serves as the initial and crucial element within the system. Its primary function
is to manage the intake of data, which is gathered from sensors or cameras. To ensure
secure transmission, the collected data is sent to the cloud through the utilization of an
AWS Kinesis Data Firehose. Each device involved in the system is granted authorization
through a client credential grant by the AWS IoT credentials provider, while the AWS Access
Management (IAM) role effectively governs the resource usage scope. These measures ensure
proper authentication and access control, safeguarding the system’s integrity and protecting
sensitive information.
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The system can be divided into three distinct components, each playing a crucial role
in its overall functionality: the deep learning component, the API component, and the data
recording component.

The data recording component assumes the responsibility of securely consuming data
from the camera source and storing it in an encrypted format. This ensures the confiden-
tiality and integrity of the recorded data. By employing robust encryption techniques, the
system safeguards against unauthorized access and potential data breaches.

The deep learning component takes on the task of performing Human Activity Recog-
nition (HAR) using advanced deep learning algorithms. It leverages the recorded data to
analyze and predict human activities accurately. Once the HAR process is complete, the
deep learning component communicates with the data recording component, providing it
with the predicted results. These results are then securely stored in the database, accom-
panied by a reference index that links them to the corresponding recorded data.

The API component plays a crucial role in the system by handling authentication and
authorization processes for applications that consume the recording data. It ensures that
only authorized and authenticated applications can access and retrieve the recorded data.
By enforcing strict access control measures, the API component maintains the privacy and
security of the recording data, allowing only authorized parties to interact with it. Together,
these three components work in harmony to create a robust and efficient system that securely
records, analyzes, and provides access to human activity data for various applications and
purposes.

3.5 Comparing to Edge Computing

When relying solely on edge computing, the computational power of a device is con-
strained by its specifications at the time of production. There are two main challenges
associated with this approach. Firstly, incorporating more advanced hardware during the
initial development stage would increase the cost of the devices. Additionally, as newer
and more capable hardware is released, older-generation devices may not have sufficient
capabilities to run improved models designed for the new hardware. This would necessitate
firmware updates to be pushed to the devices upon the release of new models, introducing
complexities such as increased time and potential errors during the update process. Cus-
tomers may find it burdensome to handle numerous firmware deployments, especially for
devices installed in fixed positions that are difficult to reach. In case any issues arise during
the update, it could result in time-consuming support for both the customers and the ser-
vice providers. Thus, reducing the frequency of firmware deployments is generally preferred
as it minimizes the need for extensive testing and customer support. However, this is not a
sustainable long-term solution.
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In contrast, cloud processing can address the aforementioned challenges. Firstly, it elim-
inates the need for high-end hardware configuration in the devices themselves. Instead, the
devices can focus on performing simple tasks, such as pose estimation and small-scale fall
detection models. This approach significantly reduces hardware costs and enhances adapt-
ability for customers. By leveraging the power of the cloud, more advanced and large-scale
models can be employed to process the results from the cameras, further reducing false
alerts and improving overall accuracy.

However, using cloud processing requires ensuring secure communication between the
devices and the cloud, which will be discussed in Chapter 4.
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Chapter 4

Data Recording Component

In this chapter, we explore the Data Recording component in the cloud, which plays a
crucial role in capturing, processing, and storing data from the sensor. The component can
be divided into three essential parts: Data Capture, Data Transit, and Data Storage.

4.1 Data Capture

4.1.1 Data Format

Data transfer costs can become a considerable issue when utilizing cloud services, as
larger data sizes lead to longer transfer times and higher expenses. To mitigate this concern,
it is essential for the embedded devices to transmit only the essential data in a minimized
data format. As a result, the devices exclusively send the keypoints data obtained in bi-
nary after applying the pose estimation algorithm discussed in Chapter 2, along with the
time duration for each frame. This selective data transmission approach helps optimize the
transfer process and reduces the overall data volume sent to the cloud.

To ensure flexibility and accommodate potential changes in the input data requirements
for the HAR components, we also added a versioning header to the binary data. This
approach allows for a versatile data structure without compromising backward compatibility
when format changes are introduced.

Compared to conventional video recording data, our system efficiently transmits only the
estimated skeleton keypoints data, omitting the need to send the actual video. This decision
results in substantial savings in terms of network bandwidth, storage, and processing speed.
Importantly, it also enhances user privacy, as no actual video content is sent to the server,
ensuring confidentiality.
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4.1.2 Data Compression

In cloud services, the efficient transfer of data is a significant concern due to the potential
impact of larger data sizes on various aspects, such as transfer time, server storage costs,
and overall expenses. To further address these challenges, we implement data compression
techniques on the chosen data format before transmitting it to the server. In a compre-
hensive study conducted in 2017,[28] researchers extensively evaluated seven compression
algorithms and provided insightful recommendations. They suggested that the appropri-
ate algorithm choice should be based on specific requirements, including compression ratio,
compression speed, and decompression speed. Among the recommended algorithms were
Deflate[60], Bzip2 [5], LZMA [1], and PPMd[3]. Furthermore, another noteworthy lossless
data compression algorithm called zstd[6] emerged in 2016 through the collaborative ef-
forts of Yann Collet and Chip Turner at Facebook. This algorithm has gained considerable
attention and is being actively tested and explored for its potential in optimizing data
compression and transfer in various applications.

In our experiment, we conducted tests using four Python libraries specifically designed
for compression: zlib, bz2, lzma, and zstd. The zlib library is a standard built-in library
in Python that supports compression levels ranging from 1 to 9. Higher compression levels
provide a slower but more efficient compression ratio [15]. Similarly, the bz2 library, also a
standard Python built-in library, allows for compression levels from 1 to 9, with higher levels
offering improved compression ratios at the cost of slower processing ratio [16]. The lzma
library is another built-in library in Python specifically designed for compression purposes
[17]. In addition to these built-in libraries, we utilized the zstd library, developed by Yann
Collet and Chip Turner at Facebook, which exhibits a balance between compression ratio
and speed. It offers multiple compression levels ranging from -100 to 22, with higher levels
yielding higher compression ratios but slower processing. Our experiments were conducted
using Python version 3.9.13 and a Ryzen Threadripper 2920x CPU. The results varied de-
pending on the specific library employed. We measured the compression and decompression
times before saving the file to disk, allowing us to compare the performance of the different
libraries in our tests. By comparing the original data, it becomes evident that utilizing effi-
cient data compression techniques can yield substantial savings in data transfer and storage
costs, particularly in heavy usage systems.

We gathered recording data to assess various compression algorithms, showcasing the
file sizes in Table 4.1. After evaluating the outcomes showing Table 4.2, we selected the
LZMA algorithm for our compression needs. Since the skeleton record data is written into
the system only once, the extended write time has minimal impact on the overall system.
Moreover, as the data needs to be stored for over a year, we prioritize a higher compression
ratio to optimize storage efficiency. In addition, we recognize that the user interface response
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is crucial for a positive user experience. Therefore, a faster decompression time is essential,
as it enables quicker responses to user requests, contributing to seamless and satisfactory
user interaction.

Sample Name Number of Files Average Size (KB) Total Size (GB)
Single Recording 1 36.372 0.0000364
Multiple Recording 112832 48.068 5.424

Table 4.1: Recording File Size

Compression Al-
gorithm

Compressed
Size (GB)

Compress Ra-
tio

Average Com-
pression Time
(ms)

Average De-
compression
Time (ms)

LZMA 1.955 2.774 12934.519 987.723
PPMd 2.028 2.675 6096.790 1002.160
Bzip2 (level 9) 2.103 2.579 3092.195 1255.949
Deflate (level 9) 2.586 2.097 2713.763 165.302

Table 4.2: Compressed Recording File Size, Ratio, and Compression and Decompression
Time

4.2 Data Transit

4.2.1 Data Streaming

In order to handle real-time, streaming data processing, we have opted to utilize AWS
Kinesis Data Firehose, which is a cost-effective and fully managed service to process and
analyze real-time streaming data at any scale. The data can be video, audio, application logs,
website clickstreams, and IoT telemetry data, which is very suitable for our applications.

As shown in Figure 4.1, upon the arrival of recorded data at the Kinesis service, it
undergoes processing through a lambda transformation function. This function’s role is to
convert the binary data from the sensor into a usable format before storing it in the database.
Importantly, this process skips the initial database storage step, allowing the streaming
data to accumulate within the Firehose buffer. Subsequently, the data stored in the buffer
is processed at a designated interval, eliminating the requirement for immediate HTTP
responses. This approach not only promotes scalability but also enhances data efficiency,
enabling the function to efficiently consume data from the sensor.

31



Figure 4.1: Data streaming process flow with Firehose [43]

AWS lambda is a powerful serverless, event-driven compute service that lets users run
code for virtually any type of application or backend service without provisioning or man-
aging servers. It has many advantages. For example, it uses the pay-only-for-what-is-used
model, which charges zero base costs to host users’ code, and only bills users based on when
that code is executed, thereby minimizing the operating cost. Another important feature is
that it scales automatically to accommodate sudden spike in usage, and users do not need
to do anything.

4.2.2 Data Security in Transit

Ensuring data security is vital to safeguard against data breaches and malware infections
during the transfer and storage of data from edge devices to the cloud. As highlighted in a
cloud security report [33], critical security threats include insecure interfaces or APIs, unau-
thorized access, exfiltration of sensitive data, hijacking of accounts, cyberattacks, service
traffic interception, and external sharing of data. To preserve user data privacy, it is im-
perative to establish appropriate configurations for data storage and transfer. This section
will delve into the various data protection methods that have been deployed to minimize
the risks and potential harm associated with data leakage.

Data breaches commonly occur due to information leaks during the transfer of data. Fail-
ing to encrypt data during transmission significantly increases the vulnerability to hacking
and unauthorized access. To mitigate this risk, it is crucial to employ secure protocols such
as Hypertext Transfer Protocol Secure (HTTPS) instead of the standard Hypertext Transfer
Protocol (HTTP). HTTPS utilizes Transport Layer Security (TLS) to encrypt data while
it is being transmitted over the internet. This encryption ensures that intercepted data re-
mains unreadable to potential attackers. Figure 4.2 provides a visual comparison between
the responses of HTTP and HTTPS. In addition to encryption, HTTPS also offers protec-
tion against various attacks, including on-path attacks, DNS hijacking, BGP hijacking, and
domain spoofing [19]. Moreover, HTTPS enables the server to authenticate its identity to
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a) b)

Figure 4.2: HTTP Request and Response: a) encrypted b) not encrypted

the client, establishing trust between the parties involved. By utilizing the secure HTTPS
protocol, both parties can communicate securely and ensure that the transmitted data re-
mains confidential and accessible only to authorized entities. In our solution, we chose to
use TLS 1.3.

4.3 Data Storage

4.3.1 Data Index

We have implemented a comprehensive component to effectively manage and process
the recording data in our system. To ensure efficient referencing and search capabilities, we
have indexed the recording files based on timestamps, enabling easy retrieval and search
within our system. However, our needs go beyond merely storing the recording data itself.
To provide a more structured approach, we have separated the prediction data from the
recording metadata and stored it in a database, associating it with the appropriate index.
This approach allows for better organization and retrieval of data, facilitating future research
and analysis.

In order to handle real-time, streaming data processing, we have opted to utilize AWS
Kinesis Data Firehose, which is a cost-effective and fully managed service to process and
analyze real-time streaming data at any scale. The data can be video, audio, application logs,
website clickstreams, and IoT telemetry data, which is very suitable for our applications.

When the recording data arrives at the Kinesis service, it undergoes processing by a
lambda transfer function, which decompresses and deserializes the binary data format, and
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indexes the data into the database then stores the data. AWS lambda is a powerful serverless,
event-driven compute service that lets users run code for virtually any type of application
or backend service without provisioning or managing servers. It has many advantages. For
example, it uses the pay-only-for-what-is-used model, which charges zero base costs to host
users’ code, and only bills users based on when that code is executed, thereby minimizing the
operating cost. Another important feature is that it scales automatically to accommodate
sudden spike in usage, and users do not need to do anything.

Subsequently, the original binary data is stored in AWS S3 (Simple Storage Service)
storage, which can be accessed and consumed by the other components later on. This setup
ensures stable and parallel processing of the recordings, enhancing the overall efficiency of
our system, because AWS S3 is the most fundamental and global Infrastructure as a Service
(IaaS) solution provided by AWS, which facilitates highly-scalable, secured and low-latency
data storage from the cloud.

Given the escalating volume of recorded metadata over time, it was imperative for us to
select a database engine capable of handling substantial data quantities and enabling rapid
data analysis, fitting into the realm of "Big Data" sciences. To serve this purpose, we have
opted for Elasticsearch as our database engine. Elasticsearch is a full-text search engine
based NoSQL database. It provides a scalable search solution, supports multi-tenancy, and
offers real-time searching capabilities. It gathers unstructured data from various sources,
organizes it into searchable indexes, and stores it using user-specified mapping, which can
also be automatically derived from the data. Thanks to its distributed architecture, we can
efficiently and swiftly search, analyze, and visualize vast amounts of data, as it employs
a distributed search and analytics engine. This choice equips us to process and analyze
extensive data more efficiently and rapidly compared to traditional options like MySQL or
MongoDB.

4.3.2 Data Security in Storage

Ensuring the security of the stored data is of utmost importance. In this regard, we have
adopted a multi-faceted approach. Firstly, we have implemented minimum access controls
for the resources, dictating who or which service components can access the stored files
and the level of security applied. Additionally, we have employed encryption techniques to
safeguard user privacy. By encrypting the data, unauthorized access to the storage files
is rendered ineffective without proper decryption. To accomplish this, we have leveraged
AWS Identity and Access Management (IAM) to establish minimum access rights for AWS
S3 storage. As mentioned in Section 3.2.3, we have enabled SSE-KMS. SSE-KMS utilizes
industry-standard AES-256 encryption, which has been recognized for its robust security
compared to other algorithms such as DES or 3DES. AES is not only highly secure but
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also efficient, with widespread support in both hardware and software environments, as
highlighted in recent research [61] [53].

Encryption involves the transformation of information or data to safeguard it from unau-
thorized access. In today’s digital age, it is crucial to protect the information stored in our
computers or transmitted over the internet from potential attacks. Various cryptographic
techniques can be employed for this purpose. The choice of cryptographic method typically
depends on factors like response time, bandwidth, confidentiality, and integrity required by
a specific application.
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Chapter 5

Deep Learning Component

5.1 Implementation

In Chapter 2 of our research, we thoroughly explored various models for human action
recognition and carefully evaluated their respective strengths and weaknesses. After a com-
prehensive analysis, we made the decision to implement our system using the PoseC3D and
ST-GCN models. The primary objective behind this selection was to examine the differences
between a ResNet-based model and a GCN-based model.

By implementing both models in our system, we aimed to gain valuable insights into their
performance, accuracy, and computational efficiency. Additionally, this approach allowed us
to compare how the ResNet-based and GCN-based architectures influence the overall action
recognition results. The comprehensive evaluation of these models helped us understand
their respective advantages and limitations, enabling us to make well-informed decisions
based on their suitability for different use cases and system requirements.

Choosing PoseC3D and ST-GCN for our implementation ensured that our research is
aligned with established benchmarks in the field of human action recognition. This allowed
us to build upon existing knowledge and contribute valuable findings to the research com-
munity while also enabling us to address the specific objectives and goals of our study.

5.2 Experiments

In our experiment, we utilized data from both the NTU RGB+D and ETRI-Activity3D
Datasets. A snapshot of the samples are as shown in Figure 5.3 and further details are out-
lined in Table 5.1. The NTU RGB+D dataset comprises 60 distinct action classes, whereas
the ETRI-Activity3D Dataset encompasses 55 action classes. Notably, these datasets exhibit
a higher correlation among their action classes and were recorded in varied environments—lab-
based and home-based. Hence, these datasets have the potential to offer a more compre-
hensive evaluation.
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In the experiment, we use a pre-trained model on PoseC3D with a backbone SlowOnly-
ResNet50 network architecture. Both pre-trained models of PoseC3D and ST-GCN are
trained with NTU RGB+D dataset and used frame sample strategy with uniform sampling
to sampling frames. PoseC3D pre-trained model is sampling with 48 frames while the ST-
GCN pre-trained model is sampling with 100 frames.

We conduct experiments on the inference speed and time within cloud side using samples
data from the dataset. And, we also used AltumView Sentinare V2 sensors to conduct
the pose estimation for the skeletal data as the input source of the system to perform
the prediction on a real scenario environment and observe the problems described in this
Chapter. Sentinare V2 sensor uses the Rockchip V1126 platform which is based on a quad-
core ARM Cortex A7 32-bit core processor with 1200MHz base clock speed and 2.0 trillion
operations per second (TOPS) neural processing unit(NPU).

5.2.1 Inference Speed

The inference time plays a crucial role in the overall cost and computational efficiency
of the HAR system. Especially when the HAR system is deployed across thousands, tens of
thousands, or even hundreds of thousands of sensors, the inference time becomes a significant
factor in determining the system’s monetary and computational costs.

When the HAR system is utilized by a large number of sensors, the inference time will
directly multiply with the sheer volume of recording data received by the system. As a
result, a longer inference time can lead to substantially higher computational costs and
fee, as more computing resources are required to process the incoming data. Moreover, the
inference time also greatly influences the user experience. A lengthier inference time means
that the action prediction will take more time to be available to the end-users, resulting in
a delay in receiving the desired information or response. This delay can negatively impact
the user experience, as users might expect quick and real-time action recognition results.

To compare the inference speed of different GPUs and CPUs, we selected three videos
from the NTU-RGB+D and ETRI-Activity 3D datasets, shown in Table 5.3. These videos
were processed with three models, all yielding the same correct prediction results on both
PoseC3D and ST-GCN model.

In serverless computing, a "cold start" refers to the initial invocation of a serverless
function that hasn’t been used for a certain time. When a serverless function is invoked
for the first time or after a period of inactivity, the serverless platform needs to prepare
the runtime environment for that function. This includes allocating memory, initializing
dependencies, and booting up the runtime environment in which the function will execute.
To ensure accurate measurement of inference time during our experiment, we took steps to
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mitigate the impact of cold starts. Specifically, we removed the first inference result from
each instance type, as the initial invocation could be affected by the cold start process,
leading to increased latency for the first inference.

First, we conducted 101 inferences on three different samples using different setups: AWS
Lambda endpoint with CPU, a local machine with and without GPU, and an AWS Sage-
maker GPU endpoint. By comparing the inference times across different GPUs and CPUs,
we obtained clear insights into the variations in computational performance. Removing this
first result, which could be affected by cold start delays,we calculated the average inference
time based on the remaining 100 results for each setup. After removing the first result,
the inference time which used with CPU options, AWS lambda serverless and AMD Ryzen
2920x, and GPU options, RTX3080ti and Nvidia T4, are presented in Figure 5.1.

From the result, it is evident that the PoseC3D model incurs significantly higher com-
putational time compared to the ST-GCN model. This observation is reasonable since the
PoseC3D model is ResNet-based, which involves more parameters and computations com-
pared to the ST-GCN model as discussed in Chapter 2. The substantial difference in in-
ference time between the two models becomes a critical consideration when selecting the
PoseC3D model for a system with time constraints. While the PoseC3D model may offer
higher accuracy or other advantages, its longer inference time can be a limiting factor in
certain real-time applications or systems where latency is a concern.

When deciding which model to use, it’s essential to carefully weigh the trade-offs between
computational cost, inference time, and desired system performance. The results provided
valuable insights into the computational efficiency of each model, enabling informed deci-
sions on model selection based on specific project requirements and constraints.

Secondly, we conducted experiments using different GPUs, RTX3080 Ti, Nvidia A10G
and Nvidia T4, with the PoseC3D method to assess the potential for achieving faster in-
ference times using serverless options on AWS Sagemaker. We also conducted the inference
test on other CPUs options, AMD Ryzen 2920x, AWS lambda serverless, Intel Xeon 2nd
gen and Intel Xeon 1st gen option. The Intel Xeon 2nd generation comes with the base
clock speed of 3.1GHz processors, Intel Xeon 1st generation comes with a base clock speed
of 3.4GHz processors, and AMD Ryzen 2920x comes with the base clock speed of 3.5GHz
processors, while the base clock speed of serverless options us unclear since it is using the
available power of virtual CPUs across the serverless services. The results are presented in
Figure 5.2.

From the result, we can see that the RTX3080 Ti and Nvidia A10G have a similar
inference time, while Nivida would take approximately double the time. And the best CPU
option in the test, AMD Ryzen 2920x, took about 7 times of the RTX3080 ti. And, the
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serverless options and Xeon processor takes more than 11 times for the inferences. Therefore,
we can see the GPU options are better choices if there is an inference speed requirement of
the system.

The experiment demonstrated that the inference speed could be enhanced as cloud
hardware improves over time. With the continual advancements in cloud infrastructure, in-
cluding more powerful and efficient GPUs, the PoseC3D model has the potential to become
a more cost-effective and viable option for time-constrained systems. Faster and more effi-
cient hardware on the cloud platform would lead to significant improvements in the overall
inference time, making the PoseC3D model a more desirable choice for real-time applications
and systems with stringent latency requirements.

By staying abreast of hardware advancements on the cloud and adapting accordingly, we
can leverage the most optimal computational options available. This adaptability ensures
that the PoseC3D model can keep up with the demands of time-sensitive systems, providing
superior performance and responsiveness for users. As cloud hardware continues to evolve,
the potential for PoseC3D to become an affordable and efficient choice for time-constrained
systems becomes increasingly promising.

These two experiments shed light on the performance differences of the various models
on different hardware configurations. The inference speed is a crucial factor to consider,
especially in large-scale deployments, as it directly impacts the computational cost and user
experience. By understanding the inference times for different models on distinct GPUs and
CPUs, we can optimize the system’s performance and choose the most suitable hardware
configurations to achieve the desired speed and efficiency.

Considering both the computational cost and user experience, a shortened inference time
is preferred when cost efficiency and system responsiveness are significant concerns. Reduc-
ing the inference time not only helps in managing computational resources more efficiently
but also enhances the overall user experience by providing faster and more real-time action
predictions. By optimizing the inference time, the HAR system can achieve better perfor-
mance, scalability, and cost-effectiveness, making it a more reliable and practical solution
for large-scale deployments.

5.2.2 Sampling Methods of Recording Data

During our experiment, the length of the recording data proved to be dynamic due to
the sensors’ nature of capturing data only when a person is detected in the scene. As a
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Figure 5.1: Chart of Inference Time of the Samples

Figure 5.2: Chart of Inference Time of the Samples

a) b) c)

Figure 5.3: Sample: 1) Drink water [42] 2) Give something to another person [42] 3) Eat
meal [34]
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Action Type Sample
Time (s)

# of Keypoints
per Person

Number Of Person

Drink Water [42] 4 103 1
Give sth. to another [42] 4 115 2
Eat meal [34] 8 161 1

Table 5.1: Detail of the Samples for the Inference Test

result, the duration of a person’s presence in the scene can vary significantly, leading to
recording data with varying lengths, either short or long. Additionally, since the sensors
are positioned differently, they capture the scene from distinct angles. To account for these
variations and capture a more comprehensive view of the actions, we set up three cameras
at different angles to obtain samples from multiple perspectives.

In contrast, the training dataset, NTU-RGB dataset, contains actions performed by
individuals in predefined positions within the scene. To ensure compatibility with existing
deep learning networks and pre-trained models, we needed to preprocess the recording data
before inputting it into our HAR system. And, we chose to use the average time of the
action duration in the dataset, 3 seconds, for the sampling reference. To achieve this, we
conducted three different sampling methods to preprocess the recording data:

Random Sampling: This method involves selecting samples randomly within a specified
range of time. However, this approach may not accurately represent the true action duration
in the recording data.

Recursive Sampling: In this method, we sample the skeleton data at fixed intervals, such
as every 3 seconds after each second passes. This approach provides consistent sampling in-
tervals but may not fully capture the variability in action durations present in the recording
data.

Static Sampling: Static sampling entails taking samples at fixed periods and then taking
another sample after a specified time interval has elapsed. For instance, the skeleton data
is sampled every 3 seconds, and the next sample is taken 3 seconds after the first sample.
This method provides a more structured approach to sampling, aligning with the typical
action duration in the NTU-RGB dataset.

By applying these sampling methods, we aimed to preprocess the recording data effec-
tively, making it compatible with existing deep learning networks and pre-trained models
used in the HAR system. This preprocessing step is crucial in ensuring accurate and mean-
ingful action recognition results from the varied and dynamic recording data captured by
the multiple sensors.
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Sensor 1 Sensor 2 Sensor 3

Figure 5.4: 3 Cameras positions: Sensor 1) Left, Sensor 2) Middle, Sensor 3) Right

5.2.3 Experiment Setup

During the experiment, we strategically positioned three Sentinare 2 sensors at three
different angles, as depicted in Figure 5.4. The objective was to create a setup that closely
resembled real-life settings rather than a controlled laboratory environment. By doing so,
we aimed to gain a more comprehensive understanding of the actual scenarios and evaluate
the accuracy of our action prediction system in real-world conditions.

The environment where the experiment took place was designed to replicate everyday
living spaces. It included a sofa, a table with various objects, and open windows, which
allowed natural sunlight to illuminate the area. This setup was chosen to introduce real-life
elements and challenges that individuals might encounter in their daily routines.

By conducting the experiment in such a setting, we could better assess the performance
of the action recognition system in handling various factors like object interactions, diverse
lighting conditions, and potential occlusions caused by furniture or other objects. This
approach enabled us to obtain valuable insights into the system’s capabilities and its ability
to accurately predict actions in more authentic scenarios, ultimately enhancing the system’s
practicality and reliability for real-world use.

5.2.4 Experiment Result

In the initial experiment, several challenges were identified that affected the accuracy of
Pose Estimation and led to incorrect predictions.

Problem 1: Brightness Condition

The impact of varying brightness conditions emerged as a significant challenge affecting
the accuracy of Pose Estimation and subsequently influencing the prediction results of the
video recognition system. In real-world scenarios, video recordings often encounter diverse
lighting conditions, ranging from well-lit environments to dimly lit or poorly illuminated
settings. These fluctuations in brightness can lead to substantial variations in the appearance
of human subjects and the surrounding background, posing a considerable obstacle for
accurate pose estimation.
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Under brightly lit conditions, the high contrast between light and shadow might cause
certain body parts to be overexposed or underexposed, resulting in misinterpretations dur-
ing the Pose Estimation process. Similarly, in low-light situations, the lack of sufficient
illumination may obscure critical details of the human body, making it challenging for the
Pose Estimation algorithms to precisely capture the key points and skeletal structure.

Moreover, rapid changes in lighting conditions, such as sudden flashes or flickering lights,
can further degrade the quality of the video frames. This can cause temporary inconsisten-
cies in the appearance of the subjects, leading to inaccurate estimations of their poses.
Consequently, when the Pose Estimation process generates imprecise skeletal representa-
tions, the subsequent action recognition models may yield incorrect predictions, impacting
the overall performance and reliability of the system.

Addressing the challenges posed by varying brightness conditions requires robust pre-
processing techniques and adaptive algorithms capable of dynamically adjusting to different
lighting environments. Advanced image enhancement methods, such as contrast adjustment
and histogram equalization, can be employed to standardize brightness levels and improve
the overall visibility of key body points. Additionally, incorporating machine learning mod-
els that can learn from different lighting scenarios and adapt their internal representations
accordingly could lead to enhanced pose estimation accuracy and more reliable action recog-
nition results.

To mitigate the adverse effects of brightness conditions, continuous research and devel-
opment in the field of computer vision and deep learning are essential. By refining existing
algorithms and developing innovative approaches, it becomes possible to build a video recog-
nition system that demonstrates remarkable resilience to varying lighting conditions and
consistently delivers accurate and dependable action recognition outcomes across diverse
real-world settings.

To address the issue of the brightness condition affecting pose estimation results, it
may be necessary to make hardware changes to the sensor. One approach is to apply a
polarizing filter or replace the lens with an auto-iris lens. By using a polarizing filter, the
amount of light reaching the camera sensor can be controlled, albeit without automatic
adjustment. On the other hand, an auto-iris lens provides more advanced functionality but
comes at a higher cost. Consideration should be given to the specific requirements and
budget constraints when deciding between these two option

Problem 2: Object Blocking

The challenge of object blocking emerged as a critical factor affecting the accuracy of
Pose Estimation and, consequently, influencing the prediction results of the video recogni-
tion system. The occurrence of object blocking was evident in various scenarios. During the
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indoor experiment, objects such as furniture, walls, or other obstacles could obstruct specific
body parts, resulting in overlapping body segments within the camera’s view. These occlu-
sions posed challenges for the accurate detection and tracking of key points and skeletal
structure by Pose Estimation algorithms.

It is important to note that the experiment also highlighted the potential for occlusions
in outdoor environments. In such cases, natural elements like foliage or structures might
partially obscure individuals, further complicating the accurate estimation of key body
points by the Pose Estimation algorithms.

Overall, these occlusions significantly affected the quality of the pose estimation process,
ultimately impacting the accuracy and reliability of the action recognition results. Address-
ing these challenges is crucial to enhance the performance and effectiveness of the entire
video recognition system.

Problem 3: Random Low Frame Rate

Furthermore, the inital results from the PoseC3D and ST-GCN models did not meet
the expected accuracy, and incorrect action labels were assigned. For instance, in one ex-
ample, the falling action was misclassified as "cross toe touch" by the PoseC3D model and
as "touchback" and "cheer up" by the ST-GCN model. The main reason is that the sensor
produces an uneven distribution of frame over the time of action due to limited compu-
tational power on the device, between 3 to 7 frames per seconds (FPS). The failure to
correctly detect the falling action was attributed to the random and low frame rate of the
recorded file, as shown in Figure 5.5. And, it leads to not enough temporal information of
the data to predict a correct action. To validate this hypothesis, an additional test using
the ETRI-Activity dataset was conducted to examine whether the models could accurately
predict actions under such conditions. The results of this test led to proposed improvement
solutions, which will be discussed in later this section.

To tackle this challenge, there are three possible methods can be taken. First, increasing
the number of frames extracted from the sensors, however, this method is not suitable for
us as the hardware of the devices is fixed and nonupgradable. Secondly, we can retrain the
model by reducing the number of sampling frames from the training dataset, however, it
would take more time to retrain the model. It would require more time for the research and
it may need to redesign the network architecture of the model to work with low frame rate
videos, which is beyond the scope of this work and can be a future research topic. Therefore,
we took the third method, frame interpolation method. We conducted experiments with a
frame interpolation method, aiming to increase the frame rate and enhance the accuracy of
detection, especially in light of the problem of random low frame rates. Increasing the num-

44



Figure 5.5: Prediction Result on PoseC3D and ST-GCN without implementing the frame
interpolation method

Figure 5.6: Prediction Result on PoseC3D and ST-GCN with implementing the frame in-
terpolation method #2

ber of frames proves to be crucial for achieving improved detection performance. However,
accomplishing this without requiring hardware changes becomes equally important.

Frame Interpolation Method #1: In this approach, we simply duplicated the same
frame over the delta time of the skeleton frame. For instance, if frame 0 has a delta time of
50 milliseconds, we would duplicate frame 0 at intervals of every 1 millisecond. To execute
this method successfully, we need to be aware of the delta time in milliseconds between
the previous frame and the current frame, along with the desired frame per second for
the in-filling result. With this information, we can calculate the number of in-filling frames
required between frames.

N = ∆Tij

1/FPS ∗ 1000 ms

K = 0, 1, 2, . . . , N

(x, y)k = (x, y)i ————————————————— Frame Interpolation Method #1

(x, y)k = (x, y)j − (x, y)i

N
∗ K + (x, y)i ——————— Frame Interpolation Method #2
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Frame Interpolation Method #2: In this method involves increasing the frame rate
by referencing the x, y location of the previous frame. Similar to Method 1, we require
knowledge of the delta time in milliseconds between the previous frame and the current
frame, as well as the desired frame per second for the in-filling result. With this information,
we can calculate the number of in-filling frames needed between the frames. The formula
is then used to determine the estimated x, y location of the in-filling frame index between
the frames.

To better visualize the effectiveness of these methods, Figure 5.6 provides a visual repre-
sentation of the expanded films, comparing them with the original clip displayed in Figure
5.5. As depicted in Figure 5.5 and Figure 5.6, the overall frames become smoother, and
we can observe a remarkable improvement in the accuracy of the PoseC3D and ST-GCN
results. The predictions have become more correct and reasonable after implementing these
frame interpolation methods. These advancements are essential for enhancing the perfor-
mance of the video recognition system and further consolidating the accuracy of action
recognition results.

Problem 4: Ambiguous Skeleton Pattern

During the examination of the experiment results, a notable issue arose concerning
certain action scenarios that exhibited similar skeleton motion patterns, even presenting
challenges for human observers. Figure 5.7 visually illustrates some of these misclassified
actions, including "Pick Up," "Use Phone," "Phone Call," and "Sit Down." In the case of ST-
GCN, "Pick Up" is mispredicted as "Staggering," "Use Phone" as "Touch Back," "Phone Call"
as "Reading," and "Sit Down" as "Touch Back." On the other hand, PoseC3D misclassifies
"Pick Up" as "Vomiting," "Use Phone" as "Check Time," "Phone Call" as "Drink Water,"
and "Sit Down" as "Squat Down."

These mis-classifications indicate the challenge posed by similar skeleton patterns, em-
phasizing the need for improved action recognition methods to overcome these ambiguities
and achieve more accurate and reliable results. Addressing these issues is crucial to enhance
the performance and practicality of the video recognition system in various real-world ap-
plications.

To address the challenge of ambiguous skeleton patterns and improve action recognition
accuracy, object detection can play a crucial role. By considering the interaction between
objects and skeleton keypoints, actions with similar patterns can be differentiated based on
the objects involved. For instance, holding a phone or a book at the hand keypoint would
indicate different actions. While recent research has introduced a skeleton-based method
that combines object localization and human action recognition to tackle this issue, such
an approach may not be suitable for low computational power embedded devices.
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In Figure 6.2, we visually illustrate the significance of object detection keypoints com-
bined with the skeleton keypoints. This integration can potentially alter the estimated action
result based on the objects held by the observed individuals. This valuable context aids in
improving the precision of action recognition, making it more contextually aware and adapt-
able to various scenarios. Implementing object detection in conjunction with skeleton-based
action recognition is an advanced approach that can significantly contribute to the system’s
accuracy and reliability, especially in real-world settings where actions are often associated
with specific objects or interactions.

For example, when the skeleton is holding a phone, it becomes considerably easier to
identify the action as "Use Phone." Similarly, recognizing an individual as "Reading" is facil-
itated when they are holding a book, and the action of "Watch Time" can be inferred when
the person is wearing a watch. This contextual awareness allows the system to make more
informed and precise action predictions, resulting in a more sophisticated and insightful
understanding of human activities in different contexts.

It is also crucial to take into account the removal of undesired labels that have a low
chance of occurring in the specific use case. For instance, when focusing on everyday activ-
ities of home users, a more practical approach is to generalize frequently occurring actions
rather than relying on complex object detection. By generalizing actions with similar pat-
terns and excluding undesired action types from the action labels, we can greatly enhance
the accuracy of labeling desired daily activities.

This approach streamlines the recognition process and reduces the risk of misclassifica-
tion for actions that are less relevant or infrequently performed in the given context. By
emphasizing the accurate identification and classification of commonly performed actions,
the video recognition system becomes more reliable and effective for everyday users.

By striking a balance between specificity and generalization in action labeling, we can
create a user-friendly and efficient system that seamlessly integrates into daily life. This
enhancement significantly improves the practicality and usability of the video recognition
system, making it a valuable tool for real-world applications in home environments.
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a) b) c) d)

Figure 5.7: Misclassified Actions: a) Pick Up b) Use Phone c) Phone Call d) Sit Down

Figure 5.8: Modified Image for Illustration of Object Interacted HAR Method
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Chapter 6

Interface Component

To ensure the user data privacy, we would also integrate the secured application pro-
gramming interface (API) to allow the 1st and 3rd party application for accessing the data
from the system. The API allows the developers to retrieve the data from the cloud network.
And we used the industry open standard to implement the API and ensure the data access
is secured, organized, and identifiable. By using the open standard, third-party developers
can integrate their application quickly and avoid any inconsistent structure across different
applications.

6.1 RESTful API

Representational state transfer (RESTful) APIs enable interoperability between differ-
ent software systems and platforms. They provide a common language and set of protocols,
allowing applications developed by different vendors to work together effectively. This pro-
motes compatibility and facilitates integration, making it easier to connect diverse systems
and components.

By using RESTful APIs, we can leverage existing functionality and services without
having to reinvent the wheel. APIs provide pre-defined methods and functions that abstract
complex operations, making it easier and faster to implement specific features or access
certain resources. This accelerates development time and improves overall efficiency. It also
presents a simplified and consistent interface that is easier to understand and work with.
This reduces the learning curve, simplifies development efforts, and enhances developer
productivity.

6.2 OAuth 2.0 Integration

To allow 3rd party applications to have the access right for our RESTful API, we
used open authorization 2.0 (OAuth 2.0), which is an open standard that is commonly
used to allow data access permission by the service users. The standard specification is
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Figure 6.1: OAuth 2.0 Authorization Code Flow [20]

organized by Internet Engineering Task Force (IETF), which is a standards organization
for the internet and organizes the technical standards for the internet protocol [24] [25].
As a high privacy system, it should avoid the data being accessed by any 3rd party client
without the user’s consent. In OAuth 2.0, there are 7 possible grant types, authorization
code, client credentials, refresh token, proof key for code exchange, device token, implicit
flow, and password grant. The implicit flow and password grants are legacy grant types,
which are considered as insecure. In the studies, only the first three types are implemented
in the current system. And, it has been successfully used by mobile, smart assistant, and
third-party integration.

Authorization Code Flow

The Authorization Code Flow is utilized when 3rd party applications need access to
user data within our system. The application first submits an authorization code request
for the user scope to our server and proceeds with a user consent flow. In the user consent
flow, our server redirects the application’s UI to our login system, where users can view
the data areas the application requests access to through our API interface. Once the user
consents to the application’s request, the application is issued an authorization code. This
code can then be exchanged for a pair of access and refresh tokens, each with an expiration
time. The access token allows the application to access our API interface on behalf of the
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Figure 6.2: OAuth 2.0 Client Credentials Flow [20]

user, while the refresh token is used to obtain a new access token without requiring the user
consent flow again. The complete flow is illustrated in Figure 6.1

Client Credentials

The Client Credentials grant type in OAuth 2.0 allows 3rd party applications to access
resources in our system without user involvement. When the application wants to access
our API, it sends its client credentials, which includes client ID and client secret, to the
authorization server, which issues an access token granting access to specified resources.
Unlike other grant types tied to user-specific scopes, Client Credentials provides access
to resources not linked to any particular user. This flow is useful for backend services or
machine-to-machine communication, where user authentication is unnecessary. However, it
should be restricted to trusted applications to ensure secure and authorized resource access.

Refresh Token Flow

Refresh Token – As both the access token and refresh token have expiration time periods,
the application can use the refresh token to obtain a new pair of access and refresh tokens
from the authorization server. This allows the application to continue accessing the protected
resource without requiring the user consent flow again.

By implementing OAuth 2.0, our system ensures secure and controlled access for 3rd
party applications, enhancing user privacy and data protection while enabling seamless
integration with various platforms.
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6.3 Notification Components

The notification component plays a vital role in the system by handling system no-
tifications and emails, particularly in providing analyzed results from the deep learning
components. The analyzed results obtained from human action recognition are valuable in-
formation for medical monitoring purposes. Initially, we had implemented our notification
system on an EC2 instance. However, this approach proved insufficient when a large num-
ber of alerts started flooding into the system. The EC2 instance became significantly slower
due to the overwhelming influx of alerts. To ensure stable system operation, we made the
decision to implement the notification component using AWS Lambda. By utilizing AWS
Lambda, the system benefits from automatic scaling, allowing it to handle a high volume
of requests without performance degradation.

6.4 Integration with Alexa Together

In addition to the user interface applications, the system boasts the capability of seamless
integration with smart assistant technologies. The US market offers various popular smart
assistants, such as Google Assistant, Amazon Alexa, and Apple Siri, among others. As a
proof of concept, the system has successfully integrated with fall action detection, enabling
it to monitor falls among seniors using the Amazon Alexa Together service [35]. Through
this integration, the system provides 24/7 urgent response, allowing seniors to connect
with emergency services swiftly when needed. This comprehensive approach ensures prompt
assistance in case of an accident, significantly enhancing the safety and support for seniors.

To achieve integration with Alexa Together, the first step was to utilize the Alexa Smart
Home skill in the Alexa Skills Kit (ASK) with account linking. Two options were available
for the account linking process: the Alexa-app only flow and the app-to-app flow. The
Alexa-app only flow served as a simple solution, particularly for those starting out, as it
eliminated the need to develop a separate mobile application. Users could enable the Alexa
Skill in the Alexa app and link their Alexa account through the authorization website of
the system. This process utilized the Authorization code flow, as described in Section 6.2,
to establish a connection with our system. Users then logged in to our system and provided
consent for any necessary permissions for the Alexa app.

However, for systems with an existing dedicated mobile application, the Alexa-app only
flow might not deliver the desired seamless user experience since it involved users linking
with an authorization website. In such cases, the app-to-app flow proved to be a more suit-
able option. This approach allowed users to directly link their Alexa account and smoothly
transition to the designated mobile application without any redirection to an authorization
website. Implementing this flow also required support for the deep linking feature within
the mobile application, which ensured a seamless transition for users.
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Upon successful account linking integration, the system gained access to users’ Alexa
accounts, enabling it to send push notifications to Alexa Together. Specifically, when the
system detected a fall action, it forwarded the corresponding notification to Alexa To-
gether. Subsequently, Alexa devices initiated automatic communication with the users to
assess if any assistance was needed. If the user required help or failed to respond, Alexa
Together escalated the event for verification by human personnel. This streamlined process
minimized the occurrence of false alerts while reducing the duration of human monitoring.
Consequently, it significantly improved the accuracy of alerts and optimized the overall
monitoring system’s efficiency.

By integrating with the Amazon Alexa Together service, the system offered an essen-
tial safety and support feature for seniors, easing the workloads for both users and their
caregivers.

Based on the proof of concept implementation, it is evident that the system can further
expand the use case of the HAR and provide more interactive features for users. This ongoing
enhancement will enable the system to adapt to diverse scenarios and user needs, making
it an even more versatile and user-friendly solution for various applications.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In the quest for developing advanced systems for Human Action Recognition (HAR),
this thesis embarked on a journey to create a robust, privacy-aware, and seamlessly inte-
grated solution. Through the course of this research, we have explored various aspects of
HAR systems, addressing core components ranging from data collection through to secure
interfaces and integration with smart assistant technologies. This journey has been driven
by a commitment to enhance the state-of-the-art in HAR and make meaningful contribu-
tions to the field. As we draw this thesis to a close, we reflect on key findings, challenges,
and contributions, encapsulating the essence of this research endeavor.

In Chapter 2 of the introduction of human action recognition, the use of Graph Con-
volutional Networks (GCNs) is discussed, highlighting their ability to improve accuracy
and robustness by considering spatial relationships between skeleton key points. Privacy-
preserving approaches, including skeleton data transmission, are emphasized, and various
data modalities for recognition are explored. The text also addresses the trade-offs between
privacy, efficiency, and accuracy in the context of deep learning models for computer vision,
including RGB-based and skeleton-based approaches, as well as the use of object detection
and pose estimation in recording devices. The need to balance user preferences, privacy,
and effective processing in various scenarios is a central theme throughout.

In Chapter 3 of the thesis, the proposed system architecture leverages cloud computing
services to create a secure, efficient, and scalable infrastructure for human activity recog-
nition. It incorporates components for data recording, deep learning-based activity recog-
nition, and API access control. Cloud services like AWS Kinesis Data Firehose, AWS IoT
Core, AWS IAM, and AWS S3 are utilized to ensure data security, authentication, and access
control. The architecture aligns with principles of reliability, operational excellence, security,
performance efficiency, cost optimization, and sustainability. By adopting cloud-based solu-
tions, the system enhances scalability, availability, and maintainability while reducing the
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burden of server maintenance and offering cost-effective, real-time data processing. Com-
paratively, this cloud-based approach provides more flexibility and adaptability than relying
solely on edge computing.

In chapter 4, the Data Recording component in the cloud is explored, which serves a
pivotal role in capturing, processing, and storing data from sensors. This component encom-
passes three integral parts: Data Capture, Data Transit, and Data Storage. Data Capture
focuses on efficient data transfer to minimize transfer costs and enhance data security. This
is achieved by transmitting only essential data in a compact format, including keypoints
data and frame duration. The data is also versioned to maintain flexibility without com-
promising backward compatibility. Data Compression techniques are employed to further
optimize data transfer by implementing the LZMA algorithm, balancing compression ratio
and speed. In the Data Transit section, AWS Kinesis Data Firehose is employed for real-
time data processing, while data security in transit is ensured through secure protocols like
HTTPS with TLS 1.3. The Data Storage component indexes recording data for efficient
retrieval and employs AWS S3 for stable and parallel processing. Elasticsearch is chosen as
the database engine, capable of handling large data volumes, providing scalability, multi-
tenancy support, and real-time searching. Data security in storage is maintained through
minimum access controls, encryption, and server-side encryption using AWS Key Manage-
ment Service (SSE-KMS) for AES-256 encryption, ensuring data confidentiality, integrity,
and availability.

Chapter 5 demonstrated the experimental setup and results for a human action recogni-
tion (HAR) system involving three sensors positioned at different angles, aiming to replicate
real-life settings rather than controlled laboratory environments. They examine several chal-
lenges that impact the accuracy of the pose estimation and subsequent action predictions.
The first challenge arises from varying brightness conditions, where diverse lighting affects
pose estimation, leading to incorrect predictions. To address this, the authors suggest image
enhancement and machine learning approaches to adapt to different lighting scenarios. The
second challenge involves object blocking, where furniture and obstacles obstruct body parts
and pose difficulties for keypoint detection. To mitigate this, the authors recommend sophis-
ticated pre-processing techniques and adaptive algorithms. A third challenge is posed by
random low frame rates in the recorded files, leading to incorrect action labels. The authors
propose frame interpolation methods to increase the frame rate and improve detection ac-
curacy. The final challenge relates to ambiguous skeleton patterns, as some actions exhibit
similar motion patterns. The authors advocate combining object detection with skeleton
data to provide context for improved action recognition, making the system more adapt-
able and accurate in real-world scenarios. They also recommend generalizing frequently
occurring actions while excluding less relevant or infrequent ones to enhance system relia-
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bility. These insights aim to enhance the practicality and reliability of the video recognition
system for various real-world applications.

Chapter 6 shows that the system incorporates a comprehensive interface component
that focuses on user data privacy and accessibility. This component integrates a secured
application programming interface (API) to facilitate data access for both 1st and 3rd
party applications while ensuring data security. It employs RESTful APIs to enable inter-
operability between different software systems and platforms, promoting compatibility and
efficiency. OAuth 2.0 integration is used to grant access rights to 3rd party applications
securely. The notification component handles system notifications and emails, enhancing
scalability through AWS Lambda. The system also showcases successful integration with
Amazon Alexa, offering fall action detection and urgent response capabilities to enhance the
safety and support for seniors. The integration options provide a seamless user experience,
allowing users to enable Alexa skills and establish connections with the system, ultimately
improving the efficiency of the monitoring system. This comprehensive approach emphasizes
user privacy, integration, and safety, making it a versatile and user-friendly solution with
potential for further expansion and adaptation to diverse scenarios and user needs.

The research conducted in this thesis encompassed several fundamental components,
each of which has yielded valuable insights and contributions:

Data Collection and Processing: The thesis commenced with the critical process of data
collection. It leveraged multiple sensors strategically positioned in real-life environments,
replicating everyday living spaces. This approach enabled a comprehensive understanding
of real-world scenarios and provided insights into the system’s performance in such settings.

Privacy-Aware Interface: The development of a privacy-aware interface component was
crucial in safeguarding user data. This component integrated a secured API using industry
open standards, ensuring organized and identifiable data access. The adoption of Repre-
sentational State Transfer (RESTful) APIs promoted interoperability, compatibility, and
efficient integration, reducing the learning curve for developers and enhancing their produc-
tivity.

OAuth 2.0 Integration: Security and controlled access were at the forefront of our con-
cerns. The adoption of OAuth 2.0 standard specification allowed for secure data access
permission while ensuring that 3rd party applications could not access user data without
their consent. The integration of various grant types, such as authorization code, client
credentials, and refresh token, bolstered data security and user privacy.

Processing Components: The processing component was identified as a critical element
for system performance. The transition from EC2 to AWS Lambda provided automatic
scaling, ensuring stability and performance even in the face of a high volume of alerts.
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Integration with Smart Assistants: The thesis successfully showcased integration with
Amazon Alexa, expanding the system’s use case. This integration provided an essential
safety and support feature for seniors, enhancing the accuracy of alerts and the overall
efficiency of the monitoring system.

7.2 Future Work

In our forthcoming research endeavors, we will focus on several pivotal areas to fur-
ther refine and advance our Human Action Recognition (HAR) system. Firstly, we plan to
implement quantization techniques on the models, a strategy known to have the potential
to significantly optimize their performance. By reducing the precision of numerical values
within the models, we can attain improved efficiency without compromising the accuracy,
ensuring a more resource-efficient system.

Secondly, our attention will be directed towards the exploration and integration of more
advanced GCN-based HAR models into our system. Our experimentation has revealed that
GCN-based models offer notable advantages in terms of speed and cost efficiency compared
to the ResNet-based models. Therefore, by embracing and enhancing these GCN-based
approaches, we can further elevate the accuracy and overall performance of our HAR system.

Furthermore, we remain dedicated to addressing problems discussed in Sec. 5.2.4, a
challenge that has surfaced in our current system. We recognize the significance of finding
an effective solution to this problem, and we are committed to researching and implementing
approaches that can mitigate its impact. By proactively addressing this issue, we aim to
fortify the overall robustness and reliability of our HAR system.

Our future work revolves around three key pillars: optimizing the models through quan-
tization, exploring advanced GCN-based HAR models, and finding effective solutions to the
challenges. These research endeavors are poised to continually enhance and advance our
HAR system, ensuring its effectiveness and applicability in real-world scenarios.

To further enhance action detection, we will investigate the potential benefits of in-
corporating object detection assistance, as recently explored in related research [8]. This
integration may offer valuable context and improve action recognition results in scenarios
where objects are involved. Also, it is possible to explore the area in use of the multiple
cameras-based HAR, like the research in [35], by using more spatial information to improve
the prediction result.

Additionally, we will explore the application of depth sensor technology for data col-
lection and model training, aligning with the latest advancements in data acquisition and
enhancing the overall capabilities of our HAR system.
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After we finalize the HAR model that fits our need, we can also optimize job allocation
on the cloud to minimize costs for both service providers and customers.
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