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Abstract

Divergent series enjoyed a period of free and easy use in the eighteenth century. This was
somewhat curtailed in the early nineteenth century even though interesting applied prob-
lems were solved using asymptotic expansions of divergent series during that time. In the
second half of the nineteenth century asymptotic expansions were placed on a firm and
rigorous foundation such that their use become standard practice by early in the twentieth
century. I elucidate how and why that happened by examining the work on asymptotic
expansions of George Gabriel Stokes, Jules Henri Poincaré and Thomas Jan Stieltjes.
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“Abel wrote in 1828: ‘Divergent series are the invention of the devil, and it is shameful to
base on them any demonstration whatsoever.’ In the ensuing period of critical revision

they were simply rejected. Then came a time when it was found that something after all
could be done about them. This is now a matter of course, but in the early years of the

century the subject, while in no way mystical or unrigorous, was regarded as sensational,
and about the present title [Divergent Series], now colourless, there hung an aroma of

paradox and audacity”

— J.E. Littlewood, Divergent Series, 1948
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Chapter 1

Introduction

Consider a function, represented in its infinite series Taylor expansion. For example:

ex = 1 + x+ x2

2! +
x3

3! + ... =
∞!

n=0

xn

n!

It is possible to approximate the value of ex for any value of x by using the first n terms of
the series and then truncating and ignoring the rest of the terms. This procedure produces
an approximation that has an error associated with it.

In the case of this example, the infinite series for ex converges for all values of x, resulting
in an approximation with increasingly less error as n increases. However, depending on the
function and the representative infinite series, the series may converge for only limited values
of the argument, x, or it may only converge for x equal to zero. Convergent series are well
understood, with well defined methods of bounding the error of the approximations made
using truncated infinite series.

Divergent series, on the other hand, are more difficult and more interesting. A canonical
example of a function and its associated divergent infinite series representation is the Stirling
series for the factorial function,

n! ∼
√
2πn

"
n

e

#n "
1 + 1

12n + 1
288n2 − 139

51840n3 − 571
2488320n4 + · · ·

#
.

The infinite series on the right diverges for all values of n. However, a good approxima-
tion for n! can be obtained by using a carefully selected number of terms of the divergent
series. Furthermore it is possible to bound, but not to make arbitrarily small, the error in
the approximation even though the series is divergent.

The Stirling series representation for n! was formulated by Abraham De Moivre (1667-
1754) and improved upon by James Stirling (1672-1770). The series was shown to be
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divergent by Thomas Bayes (c. 1702-1761) in a letter published in 1763. For a brief
history of the Stirling series see (Roy 2011, p.476-486). This type of series when truncated
after a given number of terms is now called an asymptotic expansion of the function, or
an asymptotic approximation to the function. I think it is fair to claim that nearly all
mathematicians by 1800 were familiar with this example and that it caused confusion and
consternation along with its obvious utility.

Over time there have been several different terms used for what is now called an
asymptotic expansion. Among the terms that have been used are: descending series, half-
convergent series, and semi-convergent series. Further, and particularly for the term semi-
convergent, these terms have been used ambiguously and inconsistently. As the terminology
does not bear on the subject of this thesis for the most part, I have noted, but not examined
in detail, the different terms used by the various authors of the work analyzed in this thesis.

The utility of asymptotic approximations during the eighteenth and early nineteenth
centuries — efficient computation, in particular — could not be ignored, particularly in an
era when computations were done by hand. It was, however, not clear at this time why these
approximations worked so well, or what the ultimate divergence of the series meant for the
approximation. By roughly 1920 the mathematics of divergent series had been extensively
studied and the theory of asymptotic expansions had been placed on a rigorous footing.
John Edensor Littlewood (1885-1977) nicely summarized this change in the preface of a
1949 textbook on divergent series when he said:

“This [the use of divergent series for approximation] is now a matter of course,
but in the early years of the century the subject, while in no way mystical or
unrigorous, was regarded as sensational, and about the present title [Divergent
Series], now colourless, there hung an aroma of paradox and audacity.” (Hardy
1949, p.viii)

In this thesis I examine the use of asymptotic expansions of divergent infinite series
during the second half of the nineteenth century with a focus on the mathematical work
of three people: George Gabriel Stokes (1819-1903), Jules Henri Poincaré (1854-1912) and
Thomas Jan Stieltjes (1856-1894). I claim that it is primarily the work of these three
individuals that propelled the transformation of divergent series from what they were in
1763 to what they became in 1920.

I claim that, during the mid-nineteenth century, divergent series were successfully used
by George Gabriel Stokes for two purposes: to verify new physical theory and to generate
numbers from existing theory. Further, I claim an important change in attitude toward

2



divergent series, which had up to that point been used both knowingly and unknowingly
and with contested authority, underlies the work of Stokes.

The success of Stokes’ use of divergent series did not immediately translate into the
widespread use of divergent series in Britain or elsewhere following the publication of his
work in 1856. I claim that the next important work on this topic was that of Stieltjes and
Poincaré, both of whom published on this topic in 1886.

The work of these three individuals, and particularly the work of Poincaré, set the stage
for the pure mathematical work in divergent series that followed — both that of asymptotic
analysis and that of summability theory. The work analyzed in this thesis was the genesis
of a complete, rigorous, mathematical understanding of divergent series — work which
achieved maturity in the work of Borel in the 1920s. The scope of this thesis is confined to
asymptotic expansions of divergent series and does not analyze the genesis of summability
theory.

As we shall see, the use of divergent series to provide asymptotic expansions for com-
putational purposes as well as for the purpose of understanding of physical phenomena
changed significantly between 1850 and 1890, such that the use of this tool was better
understood, brought into line with the current standards of rigour and was employed in
different contexts by several practitioners. This set the stage for the widespread use of
asymptotic expansions in the twentieth century.

Many authors have written about divergent series and related topics and I rely on both
primary and secondary sources to provide both a condensed summary of the history of the
use of divergent series up to 1850 and to deepen my understanding of the change in the
use and understanding of divergent series that occurred in the second half of the nineteenth
century. Further I have used several sources to add cultural context and to understand the
motivation behind these changes.

To set the stage for the changes that came in the second half of the nineteenth century,
I provide a summary, in this introduction, of what came before 1850. This summary relies
heavily on the work of Morris Kline (Kline 1990), Heinrich Burkhardt (Burkhardt 1911)
and Augustus De Morgan (1806-1871) (De Morgan 1849). These works speak directly to the
understanding of divergent series at the middle of the nineteenth century. The 1844 paper
of De Morgan is particularly good at capturing the British context at the time immediately
prior to when Stokes worked on divergent series.

After establishing how divergent series were sporadically used in mathematical practice
during the first half of the nineteenth century, I examine, in Chapter 2, an important cultural
priority — that of precision — which surrounded the natural philosophical work being done
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in the first half of the nineteenth century in Britain. Until the nineteenth century, natural
philosophy was the common term for the study of nature and this included what we now
call physics.

A strong desire to quantify, measure and order was seen as important for science, for
commerce, for industry, and for society. Important secondary literature I use to establish
the importance of precision are the collective volume The Values of Precision edited by
M. Norton Wise (Wise 1995) as well as the paper The Calculating Eye: Baily, Herschel,
Babbage and the business of astronomy by William Ashworth (Ashworth 1994). I also
quote several natural philosophers to show that they personally and professionally valued
exactitude.

For two reasons, and partly in the context of precision, I analyze in detail the science
of the pendulum and its use in understanding physical phenomena. The first reason is that
the pendulum is an excellent example where precise measurements were required and those
measurements were important, particularly in the British context. The second reason is
that precise pendulum measurements led to the understanding of a previously unknown
physical phenomenon. It is the precision measurements taken with the pendulum that
allowed Stokes to discover the index of friction which is now known as an epiphenomenon
of viscosity. Precise pendulum measurements also allowed Stokes to justify his asymptotic
approximations of divergent series. A key source of information on the role and importance
of the pendulum during the nineteenth century is the lengthy article, The Development of
Gravity Pendulums in the 19th Century, by Victor Fritz Lenzen and Robert P. Multhauf
(Lenzen & Multhauf 1966).

Further along in Chapter 2, I show why, how, and with what results Stokes used pen-
dulum data to develop and refine hydrodynamical theory and to generate numbers from
this theory. As we shall see, the attempt to match physical theory to the precise pendulum
measurements of William Hallowes Miller (1801-1880) led to the physical discovery of the
effect of viscosity and thus the boundary layer. It would not have been possible to gener-
ate the numbers from theory that resulted in this discovery without the use of asymptotic
expansions — the computational complexity was simply too great using other methods.

In Chapter 3, I analyze the mathematics of divergent series that Stokes used and discuss
the underlying, and sometimes unstated, assumptions in his work. As we shall see, the ap-
proach of Stokes may be best described as pragmatic. Stokes started with known convergent
definite integrals whose values predicted physically measurable quantities. Without thor-
ough mathematical justification, Stokes took those integrals, converted them into divergent
series and then used the first few terms of those series to approximate the original integrals.
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The mathematical justification for his method was based on qualitative statements about
the differential equations from which the integrals arose. More important though, as we
shall see, for the justification of his mathematics, was that the numbers that he obtained
from theory accurately matched with experimental values produced in a laboratory.

I have not been able to identify anyone who expanded on the mathematics of divergent
series that Stokes developed. I have not even been able to find much use of his method
to solve contemporary problems — either with theory or with computational difficulties.
As we shall see in the conclusion, there are a couple of textbooks that referenced Stokes’
papers; one from 1899 and the other from 1908. The 1908 textbook also had a short section
devoted to finding asymptotic expansions using the method of Stokes.

That the most significant work on asymptotic expansions was done about thirty years
later is corroborated by Godfrey Harold Hardy (1877-1947) who said:

“Divergent asymptotic series occur in the works of most of the older analysts,
but the first mathematicians to make a systematic study of them were Poincaré
and Stieltjes, and the first general theory is contained in a famous memoir of
Poincaré on differential equations.” (Hardy 1949, p.28)

I therefore move forward in time to look at the work of Poincaré and Stieltjes.
Chapters 4 and 5 are concerned with the work of Poincaré. We first see, in Chapter

4, that like Stokes, Poincaré’s work was situated in mathematical physics. In the case of
Poincaré, it was in the analysis and understanding of the differential equations of celestial
mechanics that asymptotic expansions of divergent series arose. In Chapter 5, as was done
in Chapter 3 with the mathematical work of Stokes, I examine in detail how Poincaré
mathematically handled asymptotic expansions.

The work of Stieltjes is discussed in Chapter 6 where I show that his work is of a different
character than the work of Stokes or Poincaré. Stieltjes had a different type of problem to
solve — he was simply looking at how to find the values of infinite series. There was no
obvious physical motivation for this. This episode is included partially because it happened
in the same year as the work of Poincaré and also because there are some interesting parallels
between the work of Stieltjes and Poincaré. It is primarily Stieltjes’ and Poincaré’s work
that informed what followed.

Computation and tabulation of the orbits of the objects of the solar system was a major
topic of mathematical physics during the entire nineteenth century. In the period between
1798 and 1825, Pierre Simon Laplace (1749-1827) published an important multi-volume
work, Traité de mécanique céleste (Laplace 1798-1825), on celestial mechanics and through-
out the remainder of the century, there were many papers published about astronomical
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orbits. The work by Philippe Nabonnand (Nabonnand 2012) titled Les premières contri-
butions de Poincaré en mécanique céleste vues à partir de sa correspondance avec Anders
Lindstedt (1883-1884) provides a history of developments of celestial mechanics in the nine-
teenth century with a focus on the work of Poincaré.

A summary article by George William Hill (1838-1914), Remarks on the Progress of
Celestial Mechanics since the Middle of the Century (Hill 1896b) is the text of Hill’s pres-
idential address to the American Mathematical Society in 1895. This paper provides a
summary of the mathematical progress in astronomy during the second half of the nine-
teenth century, again with an emphasis on the results of Poincaré near the end of the
century. Hill also provided an opinionated list of the available (in 1896) histories of celestial
mechanics and he claimed that “A thoroughly satisfactory history of our subject is yet to
be written” (Hill 1896b, p.334).

By the early 1880s, Poincaré had turned his attention to solving the equations of celestial
mechanics where there were two overarching questions: first, were the gravitational laws
of Isaac Newton (1642-1726/27) sufficient to explain the motions of the heavenly bodies
and second, was our solar system stable? The stability question became particularly acute
following the recognition that the infinite series solutions of the differential equations of
celestial mechanics were divergent. A partial answer to both these questions lay in the un-
derstanding of the three-body problem which is simpler, special case of the n-body problem
that is used to model a solar system with n masses.

Poincaré first analyzed the three body problem in a paper published in 1886 (in his
entry to the famed prize competition of 1889, to mark the sixtieth birthday of Oscar II,
King of Sweden and Norway) and later in his large and enormously influential three volume
work Les méthodes nouvelles de la mécanique céleste published between 1892 and 1899.
June Barrow-Green’s book, Poincaré and the Three Body Problem (Barrow-Green 1996)
explains the history, importance and mathematics of this work. In Chapter 5, I analyze the
mathematics of divergent series that Poincaré developed and compare and contrast that
with Stokes’ work.

Finally, in Chapter 6, I analyze the 1886 doctoral dissertation of Stieltjes, the topic of
which is asymptotic expansions of infinite series. His thesis is an analysis of five infinite
series, not directly motivated by mathematical physics, and their asymptotic expansions
such that values can be assigned to the infinite series and that the error in the resulting
approximations can be bounded. Some of these infinite series are important in number
theory (for example the logarithmic integral) while others foreshadow Stieltjes’ interest in
the analysis of continued fractions.
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1.1 Selected Topics in the History of Divergent Series to 1850

Before I look at the three important episodes in the development of the mathematics of
divergent series I have based this thesis on, I provide here a short introduction to the use,
to the misuse, to the justification for, and to objections to the use of divergent series in the
period of time between Euler and 1850.

1.1.1 Euler and Earlier

Infinite series were used well before Euler’s time, in India at the turn of the fourteenth cen-
tury (see for example Ranjan Roy (Roy 2011, p1-10)) and then, in the European context, by
John Wallis (1616/8-1703), Newton, Gottfried Wilhelm Leibniz (1646-1716), James Gregory
(1638-1675), and Colin Maclaurin (1698-1746) among others. Roy, perhaps anachronisti-
cally, identified the beginning of the development of infinite series and products (convergent
or divergent) with a new era in mathematics which started in the mid-seventeenth century.
In his opinion,

“The development of infinite series and products marked the beginning of the
modern mathematical era. In his Arithmetica Infinitorum of 1656, Wallis made
groundbreaking discoveries in the use of such products and continued fractions.
This work had a tremendous catalytic effect on the young Newton, leading him
to the discovery of the binomial theorem for non-integer exponents. Newton
explained in his De Methodis that the central pillar of his work in algebra and
calculus was the powerful new method of infinite series.” (Roy 2011, p.xvii)

Hardy devoted the first 41 pages of his 1949 text on divergent series (Hardy 1949) to an
introduction to and historical remarks about divergent series. Hardy claimed (Hardy 1949,
p.5) that Newton and Leibniz were first to make systematic use of infinite series and, in the
main, they kept to convergent series — a severely orthodox treatment according to Hardy.
Further, in Hardy’s opinion, Newton was the first to master this really powerful technique
and as such there was much for him to do and the rewards of orthodoxy were sufficient.

There is an interesting exception to the above statement provided by Leibniz. Leibniz
and Johann Bernoulli (1667-1748) engaged in a sixteen month correspondence, which began
in 1702, about the value of log(−1). Bernoulli argued that the value was real and, in
particular, zero, whereas Leibniz argued that the value was imaginary. Bernoulli’s argument
can be summarized as follows:

dx

x
= d(−x)

−x =⇒
$

dx

x
=

$
d(−x)

−x =⇒ log(x) = log(−x)

7



Thus, log(−1) = log(1) and the value is real and zero.
To this, Leibniz responded with three different arguments. The relevant one here is that

Leibniz put x = −2 into the series expansion

log(1 + x) = x− x2

2 + x3

3 − · · ·

and then claimed that because the series on the right diverges, the value on the left cannot
be real and therefore is imaginary (Kleiner & Movshovitz-Hadar 1994, p.966).

The idea of using series divergence, without finding an expansion or a sum, to make a
decision about something as Leibniz did regarding log (−1) is uncommon. As we shall see
in Chapter 6 though, Stieltjes also used series divergence in this manner to make a decision
— in his case it was to determine that a related continued fraction converged.

Even though De Moivre published Stirling’s formula in 1730 in Miscellanea Analytica, it
is with Euler that the use of divergent series became a broadly useful tool. In 1745, shortly
after his program to separate analysis from geometry, Euler investigated infinite series and,
in particular, series that did not converge. Fraser and Schroter (Fraser & Schroter 2021) have
identified Euler’s paper submitted to the Berlin Academy in 1746 as his most productive
effort on divergent series. And, for example, Hardy (Hardy 1949, p.23) took, as his first
historical example, Euler’s demonstration (in 1749) of the functional equation

(2s−1 − 1)η(1 − s) = −(2s − 1)π−s cos(12sπ)Γ(s)η(s)

via use of the equality

1 − 2s−1 + 3s−1 − ...

1 − 2−s + 3−s − ...
= −(s− 1)!(2s − 1)

(2s−1 − 1)πs cos(12sπ)

where η(s) is the Dirichlet eta function, also known as the alternating zeta function.
The series above are only convergent for s = 1

2 . Euler was aware of this and used the
series when s ∕= 1

2 in the sense the sum was taken to be the limiting value of the series as
the variable approached 1

2 .
Fraser and Schroter noted that this was part of a shift in the calculus from its geometric

form to a form of algebraic analysis and this shift made possible this use of infinite series.
They expressed it thus:

“Under this philosophy, the general applicability of any method derived from
the generality of its object. Since formulas were objectively given as part of
algebra, their generality of usage was assured, even if this gave rise to divergent
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Figure 1.1: A geometric representation of an infinite series (Stewart 2015, p.718)

series. Formalism thus became untethered from geometry while remaining subtly
connected with intuitive notions of quantity. As the most prolific practitioner
of this new analysis, Euler’s willingness to pursue formalism’s implications for
infinite series brought this tension to the foreground.” (Fraser & Schroter 2021,
p.14)

This marked not only a shift to the use of formal power series without consideration
of their convergence properties, but also a shift in the thinking about what formulae were
capable of saying. Ferraro argued in the 2008 book, The Rise and Development of the
Theory of Series up to the Early 1820s (Ferraro 2008), that the mathematicians who first
used series had an intuitive idea of convergence and they were interested in using series to
represent geometrical quantities.

This meant that the what the series represented could be drawn and was therefore a
finite quantity — typically a length or an area. For example, consider computing the line
length

|CD|+ |DE|+ |EF |+ ...

as shown in Figure 1.1. The infinite series that represents this sum can be assumed to be
convergent because the drawing appears to clearly indicate that the line length represented
is finite.

With little distinction between finite and infinite series, similar methods were applied
to both. However, because the infinite series used were almost always convergent these
formal methods admitted little controversy. This balance between the quantitative and the
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formal was altered by 1720 in a way that emphasized formal manipulation without regard
to the underlying object — that is whether it was finite, infinite and convergent or indeed
infinite and divergent. This more formal use of infinite series allowed for the use of algebra
to manipulate and generate results using divergent infinite series (Ferraro 2008, p.viii).

1.1.2 Between Euler and 1850

Hardy opined that Siméon Denis Poisson (1781-1840) and Jean-Baptiste Joseph Fourier
(1768-1830) appeared to have been the mathematicians to make the most use of divergent
series following Euler (Hardy 1949, p.17) and, whether this is true or not, they both certainly
contributed extensively in this domain. In a paper written by De Morgan, which is carefully
analyzed in what follows, we shall see the role Poisson played in more detail. By the early
nineteenth century, the standard history (see for example (Kline 1990, p.1096)) is that there
was a ban on the use of divergent series. This is often considered to have happened under
the influence of Augustin-Louis Cauchy (1789-1857) and Niels Henrik Abel (1802-1829).
Cauchy rigorously proved the theorems of the calculus in the early nineteenth century and
this involved rejecting the heuristic principle of the generality of algebra. Abel’s objection
to the use of divergent series is clear in the following quote from 1826 taken from a letter
that Abel wrote to his teacher Bernt Michael Holmboe (1795-1850). Abel said:

“Les séries divergentes sont en général quelque chose de bien fatal et c’est une
honte qu’on ose y fonder aucune démonstration. On peut démontrer tout ce
qu’on veut en les employant, et ce sont elles qui ont fait tant de malheurs
et qui ont enfanté tant de paradoxes...Enfin mes yeux se sont dessillés d’une
manière frappante, car à l’exception des cas les plus simples, par exemple les
séries géométriques, il ne se trouve dans les mathématiques presque aucune série
infinie dont la somme soit déterminée d’une manière rigoureuse, c’est-à-dire que
la partie la plus essentielle des mathématiques est sans fondement. Pour la plus
grande partie les résultats sont justes il est vrai, mais c’est là une chose bien
étrange. Je m’occupe à en chercher la raison, problème très interessant.”1 (Abel,
Sylow & Lie 1881a)

1Divergent series are the invention of the devil, and it is a shame to base on them any demonstration
whatsoever. By using them, one may draw any conclusion he pleases and that is why these series have
produced so many fallacies and so many paradoxes ... I have become prodigiously attentive to all this, for
with the exception of the geometrical series, there does not exist in all of mathematics a single infinite series
the sum of which has been determined rigorously. In other words, the things which are most important in
mathematics are also those which have the least foundation (Kline 1990).
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Further, Ferraro identified an end point to the formal approach to series theory, as he saw
it, with two early 1820s publications by Cauchy. Ferraro ended his book at the time when
the eighteenth century formal approach to infinite series was perhaps no longer considered
safe or at least had to be supplemented with convergence considerations. Ferraro said:

“The point of arrival [i.e. the end of his book] is the early 1820’s when Cauchy
published Cours d’analyse and Résumé des leçons données à l’École Royale Poly-
technique sur le calcul infinitésimal , which can be considered to mark the defini-
tive abandonment of the eighteenth century formal approach to series theory.”
(Ferraro 2008, p.vii)

The reasons for the objections to the use of divergent series, typified by the remarks
of Abel and Cauchy, were several. One substantial objection to the use of divergent series
arose with the need to treat infinite series other than power series. In particular, the use,
by Fourier and others, of trigonometric series raised the real possibility of introducing error
through formal manipulation.

According to Ferraro (Ferraro 2007a), in the period 1770 to 1820, new objects such as the
gamma function were being studied and successful results were often obtained by relying on
geometrical or physical considerations which was in opposition to the Eulerian program in
which analysis was independent of geometry. Ferraro claimed that this was the result of the
exhaustion of the formal approach for finding new results (Ferraro 2007a, p.80-81). It was
in this context that Fourier’s 1822 treatise, Théorie analytique de la chaleur (Fourier 2009),
and Carl Friedrich Gauss’ (1777-1855) 1812 paper on the hypergeometric series were written
(Gauss 1812). Both Fourier and Gauss highlighted the quantitative meaning of their results
and rejected formal manipulations. Thus, the equality between a function and its infinite
series had to be valid everywhere.

In spite of his stated objections to the use of divergent series, Cauchy continued to use
them and he published a paper in 1843 titled Sur un emploi légitime des séries divergente
(Cauchy 1843) in which he discussed an asymptotic approximation to the Stirling series
which he used to compute log(Γ(x)). In this paper, Cauchy confessed that he did not
understand why the approximation was so good.

There are other examples of the incipient use of asymptotic expansions early in the
nineteenth century. For example Laplace used asymptotic expansions just before and after
the turn of the nineteenth century. Kline noted that Laplace, in 1812, used an asymptotic
expansion to find values of the error function for large values of T (Kline 1990, p.1098).
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The error function is defined by the integral
$ ∞

T
e−t2 dt

and repeated integration by parts gives a divergent series for which the first few terms
can be used to provide an approximation for large values of T . Even earlier and in the
context of celestial mechanics, in 1790, Laplace provided an asymptotic expansion for the
Legendre polynomials (named for Adrien-Marie Legendre (1752-1833) ) later referred to by
some as Laplace’s coefficients. This expansion was, as we shall see in Chapter 6, analyzed
nearly a century later by both Jean-Gaston Darboux (1842-1917) and Stieltjes (Szegö 1939,
p.195-196).

Another example of the early use of what was later recognized as an asymptotic ex-
pansion was Legendre’s approximation to the prime counting function. In 1798 Legendre
approximated π(a) by a

A log(a) +B
, where A and B were unspecified constants. Later in

1808, in the second edition of Essai de la théorie des nombres, Legendre provided values
for A and B of 1 and −1.08366 respectively (Legendre 2009). As we shall see in Chapter 6,
Stieltjes adopted Legendre’s terminology for asymptotic expansions.

An important use of infinite series is the evaluation of definite integrals. Often a con-
vergent definite integral can be evaluated using a convergent infinite series but, also often,
the series converges too slowly for useful approximation. Evaluating convergent definite
integrals using a divergent series instead, where the first few terms give an accurate approx-
imation, is then highly desirable.

In the same manner that Fraser and Schroter identified Euler’s use of divergent series
as a marker for an underlying change in the perception of what the mathematics meant,
Kline has argued that the difference in how divergent series were handled at the beginning
and at the end of the nineteenth century is indicative of another shift in the thinking about
what mathematics is. Kline stated:

“Whereas in the first part of the nineteenth century they [mathematicians] ac-
cepted the ban on divergent series on the ground that mathematics was restricted
by some inner requirements or the dictates of nature to a fixed class of correct
concepts, by the end of the century they recognized their freedom to entertain
any ideas that seemed to offer any utility.” (Kline 1990, p.1096)

The Cambridge symbolists, whose most important member was George Peacock (1791-
1858) (Pycior 1981), represented another school of thought during the first half of the
nineteenth century. Their philosophy was that analysis consisted in working with a set
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of symbols on which operations were performed in accordance with certain laws. The
operations on the symbols were divorced from any meaning the symbols might have and
were therefore valid for all values of the symbols. Peacock defended the use of divergent
series in this manner using what he termed the principle of permanence of forms. This was
a philosophical statement about the generality of objects that are algebraically equal, which
Peacock, as quoted by Pycior, stated as:

“Whatever form is Algebraically equivalent to another, when expressed in gen-
eral symbols, must be true, whatever those symbols denote. Conversely, if we
discover an equivalent form in Arithmetical Algebra or any other subordinate
science, when the symbols are general in form though specific in their nature,
the same must be an equivalent form, when the symbols are general in their
nature as well as in their form.” (Pycior 1981, p.38)

Both Kline (Kline 1990, p.974) and Hardy (Hardy 1949, p.18) have stated that differ-
ences in national context affected the level of rigour that was required when handling series.
The French were more likely to follow Cauchy and not admit calculation with divergent
series whereas the British (partially under the influence of Peacock) and the Germans were
freer with their use of divergent series.

The symbolical thought process espoused by Peacock came under criticism later. The
arithmetization of analysis, which separated analysis from geometry, concerningly also sep-
arated analysis from intuition and physical thinking. Did this make analysis, in the words
of German mathematician Paul David Gustav du Bois-Reymond (1831-1889):

“A simple game of symbols where the written signs take on an arbitrary signif-
icance of the pieces in a chess or card game”? (Kline 1990, p.973)

1.1.3 The Status of Divergent Series in Britain at 1850

I am interested, in this thesis, in using the work of Stokes, Poincaré and Stieltjes to demon-
strate that these three individuals were key to taking a topic that was disputed and trans-
forming it into something that was generally applicable and mathematically acceptable.
Applicability to mathematical physics (Stokes and Poincaré) and increased mathematical
rigor (Poincaré and Stieltjes) are the two main themes and I conclude this introduction
with a lengthy look at two papers which carefully analyze the state of divergent series in
Britain in the time between 1840 and 1850 because it is in the mid-nineteenth century that
this transformation began in earnest.
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To discuss the British view of convergence and the use of divergent series during the
mid-1840s, I analyze two papers in detail. Those two papers are:

1) De Morgan’s paper On Divergent Series, and various Points of Analysis connected
with them which was read on March 4, 1844 and published in Volume 8 of the Transactions
of the Cambridge Philosophical Society in 1849.

2) Heinrich Burkhardt’s (1861-1914) paper, Über den Gebrauch divergenter Reihen in
der Zeit von 1750–1860 which was written in 1911 and in which he carefully analyzed the
British work on divergent series between 1840 and 1850.

The very first sentence of the De Morgan paper captures the unease and perplexity
associated with the use of divergent series in the mid-nineteenth century. De Morgan said:

“I believe that it will be generally admitted that the heading of this paper
describes the only subject yet remaining, of an elementary character, on which
a serious schism exists among mathematicians as to absolute correctness or
incorrectness of results.” (De Morgan 1849, p.183)

In his paper, De Morgan first differentiated between convergent and divergent series.
He preferred to call divergent series non-convergent series, so as to distinguish between two
types of non-convergent series — the first type which becomes infinite and the second type
which stays finite but has partial sums that do not approach a limit.

According to De Morgan, only convergent series can be the objects of arithmetic calcu-
lation. Thus he had no argument with those who reject all non-convergent series. He was,
however, particularly scathing of analysts who allowed the finitely non-converging series but
disallowed the infinite non-converging series. De Morgan claimed that this was a common
practice among analysts who objected to divergent series, both at home and abroad.

This was in contrast to what De Morgan understood of Euler, who freely used infinitely
diverging series but considered finitely diverging series as indeterminate. De Morgan stated
it thus:

“The moderns seem to me to have made a similar confusion in regard to their
rejection of divergent series: meaning sometimes that they cannot be safely used
under existing ideas as to their meaning and origin, sometimes that the mere
idea of any one applying them at all, under any circumstances, is an absurdity.
We must admit that many series are such as we cannot at present safely use,
except as means of discovery, the results of which are to be subsequently verified:
and the most determined rejector of all divergent series doubtless makes this use
of them in his closet. But to say that what we cannot use no others ever can, to
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refuse that faith in the future prospects of algebra which has already realised so
brilliant a harvest, and to train the future promoter of analysis in a notion which
will necessarily prevent him from turning his steps to quarters from whence his
predecessors have never returned empty-handed, seems to me a departure from
all rules of prudence. The motto which I should adopt against a course which
seems to me calculated to stop the progress of discovery would be contained in
a work and a symbol — remember the

√
−1.” (De Morgan 1849, p.182)

Thus De Morgan expressed the tension between the belief that arithmetic can only apply
to convergent series and the reality that doing arithmetic with non-convergent series, even
when one does not fully understand them, had provided the possibility of creating new
knowledge. De Morgan asked if analysis would have developed as it did if Euler and others
had refused to use

√
−1.

Following the introductory remarks from which the above quotes were taken, De Mor-
gan’s stated purpose, as expressed in his Section I title, was to show that all divergent series,
either finitely or infinitely diverging, must be treated in the same manner. De Morgan said:

“All Divergent Series, whether their divergence be finite or infinite, stand upon
the same basis, and ought to be accepted or rejected together, as far as any
grounds of confidence are concerned which are not derived directly from expe-
rience.” (De Morgan 1849, p.183)

A mathematical example from the De Morgan paper is summarized here because it
illustrates De Morgan’s point above that the value of a divergent series was dependent upon
the context in which it arose. This particular example contrasted the different value assigned
to the same divergent series depending on whether it arose in the context of integration or
when it arose algebraically. In modern terminology arising algebraically meant arising in
the context of analytic continuation. There are similar examples in the Burkhardt paper
from the early nineteenth century (Burkhardt 1911, p.1-3).

Consider the integral
I =

$ ∞

0
2x dx

as a quadrature. The integral is infinite (the area under the curve is unbounded) and equal
to the the following sum of integrals:

I =
$ 1

0
2x dx+

$ 2

1
2x dx+

$ 3

2
2x dx+ · · ·

15



which when integrated is
1 + 2 + 4 + 8 + · · ·

log(2)

with the conclusion that
1 + 2 + 4 + 8 + · · ·

is infinite by comparison with the value of the improper integral I.
On the other hand, De Morgan noted, it is often concluded that

1 + 2 + 4 + 8 + · · · = −1

by using the formula for the sum of a geometric series, 1
1 − x

=
∞!

n=0
xn, outside of its interval

of convergence of (−1, 1), with the value of x equal to two.
In this case De Morgan examined the same series, 1 + 2 + 4 + 8 + · · · , in two different

ways. The series is divergent but depending on the method of examination, he came up with
two different possibilities for the sum: −1 or ∞. The value of this divergent series depended
on how it was developed. When it was developed through integration, or arithmetically,
the value was infinite but if it was developed algebraically the value was −1.

That only these two results were possible was important to how De Morgan thought of
divergent series as a whole. De Morgan said that, should the result of the above example
come out to anything other than −1 or ∞, then divergent series should be abandoned or
at least their use severely curtailed (De Morgan 1849, p.187). It is, however, possible to
develop the series 1 + 2 + 4 + · · · via a method that does not yield either −1 or ∞. One
method is to use an infinite series that is not a power series.

Consider, for example, the following three developments (Hardy 1949, p.15-16) which
result in 1 + 2 + 4 + 8 + · · · :

1. (1− 2x)−1 = 1+ 2x+ 4x2 + 8x3 + · · · , an algebraic development which gives 1 + 2 +
4 + · · · = −1 by evaluating at x = 1.

2. 2
e2y − 1 = 2

e2y + 1 + 4
e4y + 1 + 8

e8y + 1 + · · · , another algebraic development which

gives 1 + 2 + 4 + · · · = ∞ by evaluating at y = 0.

3. 0 = x + (3x2 − x) + (7x4 − 3x2) + (15x8 − 7x4) + · · · , which converges to zero for
0 ≤ x < 1, and is a third algebraic development which gives 1 + 2 + 4 + · · · = 0 by
evaluating at x = 1.

16



Here we have three different algebraic developments from which three different values are
obtained.

It appears that the idea of using an infinite series that was not a power series to al-
gebraically develop 1 + 2x + 4x2 + 8x3 + · · · and get a value of something other than
−1 or ∞ did not occur to De Morgan, even though he, in the same paper, noted that
1− 1 + 1− 1 + · · · was “a remarkable, specific case of both algebraical and trigonometrical
series” (De Morgan 1849, p.184). He stated his position as follows:

“Let 1 + 2 + 4 + · · · be shown to be any thing but a root of either 1 + 2z = z,
or of another equation which has degenerated into 1 + 2z = z; that is, let it
come out any thing but −1 or ∞, and as a result of any process which does
not involve integration performed on a divergent series — and I shall then be
obliged to confess that divergent series must be abandoned, or rather, that
the generalizations frequently made on the subject must be much curtailed.
But nevertheless, there is nothing to lead us to doubt that divergent series
of all classes, whether of finite or infinite divergence, must be treated alike.”
(De Morgan 1849, p.187)

This emphasis on integration as the only arithmetic process is something that, on reflection
during the mid-twentieth century, struck Hardy as unusual. Hardy said:

“The emphasis on integration is odd, but de Morgan seems to have regarded in-
tegration as an ‘essentially arithmetic’ process liable to destroy any more ‘sym-
bolic’ reasoning.” (Hardy 1949, p.19)

De Morgan quoted, in the original French, from a 1823 paper of Poisson (Poisson 1823)
to show that Poisson firmly rejected the use of divergent series. Poisson said:

“On enseigne dans les élémens, qu’une série divergente ne peut servir à calculer
la valeur approchée de la fonction dont elle résulte par le développement: mais
quelquefois on a paru croire qu’une telle série peut être employée dans les calculs
analytiques à la place de la fonction; et quoique cette erreur soit loin d’être
générale parmi les géomètres, il n’est cependant pas inutile de la signaler, car
les résultats auxquels on parvient par l’intermédiaire des séries divergentes, sont
toujours incertains et le plus souvent inexacts.”2 (De Morgan 1849, p.183)

2‘We teach in the elements, that a divergent series cannot be used to compute the approximate value of
the function from which it results by expansion: but sometimes it has been considered that such a series can
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where the emphasis was added by De Morgan. Note the eighteenth century idea, used by
Poisson, that an infinite series was the result of a function expansion. As we shall see,
this contrasts with Stokes, who sometimes saw infinite series as arising naturally from the
analysis of physical phenomena.

De Morgan claimed that Poisson was working on questions of mathematical physics
where he substituted definite integrals for series in his work. In this context of integration,
De Morgan felt Poisson was fully justified in wanting to reject the use of infinite divergent
series because the value for the divergent series was not being obtained as the limit of a
convergent series. Poisson was, on the other hand, accepting of finite diverging series, that
is series whose partial sums to not approach a limit but remain bounded, which can be
seen as a limiting form of convergence. This, in effect, appears to mean that it is possible
to use an algebraically equivalent expression to evaluate a series for all of the values of the
variable for which the series is convergent and also for the first value at which it is not, but
not for any values beyond that. This is equivalent to using a series that converges on an
open interval at the endpoint of the interval — this is Abel’s theorem. In modern terms,
Abel’s theorem can be stated as follows. Let

F (x) =
∞!

k=0
akx

k

be a power series with real coefficients and radius of convergence of one and suppose that
∞!

k=0
ak converges. Then

lim
x→1−

F (x) =
∞!

k=0
ak

meaning that F (x) is continuous from the left at x = 1.
So, for example, 1−1+1−1+· · · can be thought of as 1−g+g2−g3+· · · where g = 1−#

and # is infinitely small and positive, such that gn becomes infinitely close to one when n is
large. This justifies the value of 1

2 for 1− 1+ 1− 1+ · · · because “the departure from finite
divergence, and commencement of real convergence, is infinitely distant” (De Morgan 1849,
p.184).

Poisson was willing to “walk on the line which separates convergency from divergency,
but not cross that line, even by an infinitely small quantity” (De Morgan 1849, p.184). De

be used in analytical calculations instead of the function; and although this error is far from being general
among geometers, it is nevertheless not useless to point it out, because the results which one arrives by the
intermediary of the divergent series, are always uncertain and most often inaccurate.”.
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Morgan claimed that this was equivalent to adopting the rule that “whatever is true up to
the limit is true at the limit” (De Morgan 1849, p.185) but not beyond.

De Morgan felt that not just Poisson but also Fourier and Cauchy signified that 1 −
1 + 1 − 1 + · · · = 1

2 . This was not a trivially picked example used in order to discuss the
difference between arithmetically equal and algebraically equal — this type of issue was
embedded in the fabric of periodic series and integrals and, claimed De Morgan, the theory
of periodic series would fail if it were possible that 1− 1+1− 1+ · · · had a particular value
when considered as a limiting value of one convergent series and had a different value when
considered as the limiting value of a different convergent series.

It is, however, possible to find a function that does not evaluate to 1
2 but which, when

expanded in a series, produces 1 − 1 + 1 − 1 + · · · . For example, for any m < n, consider

1 + x+ · · ·+ xm−1

1 + x+ · · ·+ xn−1 = 1 − xm

1 − xn
= 1 − xm + xn − xn+m + x2n − · · ·

which gives the sum m/n for 1− 1+1− 1+ · · · (Hardy 1949, p.14). There was good reason
for De Morgan to emphasize the context in which divergent series arose and he was correct
in emphasizing the difficulty with integration.

De Morgan thus came to the conclusion that infinite series should not be used without
consideration of the particular function that generated them. To make this distinction,
De Morgan introduced the word invelopment, by which he meant the function from which
you can algebraically generate the infinite series, even though you may not be able to
arithmetically use the invelopment to evaluate the function for all values of x. The meaning
and use of this term was explained by John Radford Young (1799-1885) in A course of
Elementary Mathematics (Young 1862), where Young claimed that this word was introduced
by De Morgan. Young said:

“By invelopment (a term very judiciously introduced by De Morgan) we mean
the fraction which generates the series, and whatever besides may be included
in the "&c.". In all interminable algebraic series, the "&c." stands for the invel-
opment, minus the series itself: when the invelopment is, as above, an algebraic
fraction, the "&c." represents the remainder with the divisor underneath. We
have not, therefore, as is customary, called this invelopment the sum of the series
to infinity, inasmuch as it is this and something more.” (Young 1862, p.166)

Using his term invelopment, De Morgan said:
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“I do not dispute that the arithmetical value of a specific case of a series may,
when the particular case is convergent, be calculated: but, speaking of general
series, it seems to me that it is dangerous to reason upon them until as general
an invelopment is found; after which, I incline to think that all conclusions
upon the series should be upon them considered as the developments of those
particular functions which produced them.” (De Morgan 1849, p.186)

There were several specific reasons why De Morgan wanted to limit the use of divergent
series to series whose underlying functions were known and they were:

1. Points of discontinuity of a function cannot be found from the series if you don’t
have the function from which the series was developed. This is not true and Stokes
addressed this in 1847.

2. Cases of actual infinity are not distinguishable from cases of infinity resulting from
developed forms of a finite quantity.

3. Infinitely divergent series may appear as very different things in different cases.

De Morgan stated this conclusion in the following way:

“My conclusion is, that a divergent series may have for its proper value either
that which is usually so considered, or infinity, according to the nature of the
function from which it is expanded.” (De Morgan 1849, p.187)

For De Morgan this implied that an infinite divergent series, which had a value determined
from its underlying algebra to be −1, could have only two possible values: −1 or ∞. De
Morgan stated that divergent series were to be abandoned if any cases were found that
violated this rule that were not the result of integration of a divergent series.

By way of example, consider again the series

1 + 2 + 4 + 8 + · · ·

and then note that
1 + 2 + 4 + · · · = 1 + 2(1 + 2 + 4 + · · · )

such that
z = 1 + 2 + 4 + · · ·

is a solution of
z = 1 + 2z
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The other solution of this equation is −1. Since 1+2+4+ · · · is infinite, z = 1+2z has two
solutions, −1 and ∞, and the sum 1 + 2 + 4 + · · · has two possible values: −1, ∞ and no
others. There are no other solutions because 1 + 2 + 4 + · · · is being considered in relation
to the algebraic expression z = 1 + 2z.

After analyzing infinitely divergent series as distinct from finitely divergent series, De
Morgan considered dividing divergent series into two separate types in a different way —
the ones that have all positive terms and the ones that do not; either because they alternate
or because they have parcels of terms that are alternately positive and negative.

By defining a definite integral of a continuous function as a limit of a sum, De Morgan
considered integration to be an arithmetic operation and thus the integral of the function
was guaranteed to exist even if it was not possible to find an anti-derivative except in terms
of an infinite series. This definition was arithmetical, not algebraic.

De Morgan continued this section of the paper with a series of examples to show that
integration of a divergent series required caution — integration must not be employed
unreservedly. Further, definite integrals, evaluated at different values of a parameter, can
and do experience discontinuities in output for some values of the parameter. And, according
to De Morgan, the integral and the series should produce the mean of those two values at
that point.

The De Morgan paper continued with the claim that alternating divergent series stood
on safer basis than those whose terms are all of the same sign, noting that the error in a
convergent alternating series is bounded by the first neglected term and further that this
had been observed (emphasis is in the original) to be the case for divergent series as well.
It was this fact that made an alternating divergent series as useful as a convergent series,
in practice.

Another point in this paper worth remarking on is that De Morgan noted that trigono-
metrical series of the “most continuous form have been shown to represent functions of
the most capricious discontinuity” (De Morgan 1849, p.198). This again implied, for De
Morgan, that caution was required when performing an inverse operation (e.g. that of inte-
gration). An example of a function, discontinuous at x = (2n+ 1)π, n ∈ Z, is the sawtooth
function 





s(x) = x

π
−π < x < π

s(x+ 2πk) = s(x) −π < x < π and k ∈ Z
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which has a Fourier series of

s(x) = 2
π

∞!

n=1

(−1)n+1

n
sin(nx).

which converges to 0 for values of x which are odd multiples of π. For De Morgan, Fourier
series like this example appeared to be continuous for all x and the points of discontinuity
of the underlying function were not determinable from the Fourier series representation.
Further, the convergence to the mean of the function at the left and right endpoint of the
function discontinuity, which is what De Morgan felt should happen, was not assured. The
tools to properly analyze these types of issues were not available in 1844 and De Morgan’s
statements reflect the confusion and concern about that and lent authority to his statement
that caution was required when using integration.

De Morgan published this account in 1844 and, in the main, he reflected on the work of
Poisson, some of which he agreed with and some of which he tried to overturn. Stokes would
certainly have read De Morgan’s paper, likely before writing his paper of 1847 which will be
analyzed in Chapter 3 of this thesis. I did not find any correspondence between Stokes and
De Morgan in the collected correspondence of Stokes but given that the De Morgan’s work
was published in the Transactions of the Cambridge Philosophical Society, it is reasonable
to conclude that Stokes read the 1844 paper of De Morgan.

There are two further examples of the use of divergent series prior to 1847 during the
time when their use was contested and not well understood that I examine because they
demonstrate themes that will echo later in the thesis. And finally, I examine an additional
example of the use of divergent series from 1868 which demonstrates some of the issues
raised by De Morgan.

1.1.4 Liouville, Green, and Asymptotic Expansions in 1837

As stated earlier in this introduction, I argue that it was the work of Stokes, Poincaré and
Stieltjes that was instrumental in the development of asymptotic expansions. And, as we
have just seen, the state of the mathematics of divergent series at mid-nineteenth century
was well-documented at that time. There are however a few episodes where asymptotic
series solutions were obtained prior to 1850 that bear mentioning.

For example, both Joseph Liouville (1809-1882) and George Green (1793-1841), in 1837,
used a method identified by Kline (Kline 1990, p.1101) to find an asymptotic solution. These
deserve special mention since, in both cases, the first term of an asymptotic series solution to
a differential equation was found. Independently of one another, both Liouville and Green
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found an approximate solution to different differential equations, an approximation which,
unknown to them, was asymptotic. Green’s work resulted in a solution to a particular
physical problem whereas the work of Liouville was of a strictly mathematical nature.

Green published his approximation in a paper titled On the Motion of Waves in a Vari-
able Canal of Small Depth and Width (Green 1838, p.457-62) where he used a method of
Lagrange to develop a differential equation to model the motion of fluid in a canal with
restricted dimension. Green was able to give an approximate solution to this differential
equation. He used a substitution into the differential equation which transformed the dif-
ferential equation into an integral equation. This resulting integral equation was solved by
a method similar to that of solution by successive approximation.

Liouville published his work in a paper titled Second Mémoire sur le développement des
fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à
une même équation différentielle du second ordre, contenant un paramètre variable (Liouville
1837). In this paper Liouville, using the same method as Green, found approximate solutions
to the differential equation

d

dx

"
p
dy

dx

#
+

)
λ2q0 + q1

*
y = 0

where p, q0, and q1 are positive functions of x and λ is a parameter. The solution Li-
ouvelle found was valid for large values of λ. Neither Green nor Liouville discussed the
conditions under which the solution was valid. No error term or bound on the error of the
approximation found was given either.

Prefiguring what we will see in this thesis to be the different character between the
work of the French and English researchers developing asymptotic expansions during the
second half of the nineteenth century, the British work of Green was firmly embedded in
the solution of a specific physical problem, and the French work of Liouville was of a more
general, purely mathematical, nature.

In Jesper Lützen’s scientific biography of Liouville (Lützen 1990), in the chapter titled
Liouville’s Mature Papers on Second-Order Differential Equations, Lützen showed how Li-
ouville rigorously established the asymptotic behaviour of the eigenvalues he found. Lützen
further footnoted that both Kline (Kline 1990) and Schlissel (Schlissel 1977) counted this
as one of the earliest uses of asymptotic series.

Schlissel, in his paper The Development of Asymptotic Solutions of Linear Ordinary Dif-
ferential Equations, 1817-1920 (Schlissel 1977), highlighted several appearances of asymp-
totic expansions during the early nineteenth century beyond those identified by Kline.
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Schlissel claimed that the earliest appearance of an approximate solution in decreasing
powers of the variable was in the 1817 work of Francesco Carlini (1783-1849) whose work
involved investigating the elliptic motion of a planet about the sun. Even though Car-
lini’s result was replicated in the late nineteenth century by more rigorous means, I do not
think that this result should be considered an asymptotic expansion since Carlini did not
recognize it as such. As Schlissel stated:

“Carlini gave no indication of the sense in which the term
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and his method does not lend itself to any error estimate.” (Schlissel 1977, p.310)

There appears to be no influence from the work of Carlini, Green or Liouville on Stokes,
Poincaré or Stieltjes, and neither Carlini, Green nor Liouville were aware that they had
provided a very specific type of approximate solution. Further, the approximations these
mathematicians provided were only one or two terms rather than a complete formal series
solution. These early examples of asymptotic analysis will not be further discussed in this
thesis.

Schlissel summarized this early episode in the following way:

“Each investigator in this preliminary stage obtained an expression which he
claimed was an approximation to the actual solution, but none attempted to
estimate the error. These three papers, though their results were modest and
their methods questionable, contained the seeds of many of the methods used
by later investigators.” (Schlissel 1977, p.314)

A few basic results were obtained in this early research but the use of rigorous asymptotic
expansions with error bounds was still to come.

1.1.5 Hankel in 1868

Some of the issues raised by De Morgan surfaced elsewhere. An example is afforded by
Hankel’s idea of semi-convergent series. Hermann Hankel (1839-1873) in 1868 paper, titled
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Die Cylinderfunctionen erster und zweiter Art (Hankel 1869), examined approximations to
the Bessel functions.

Again, this work does not appear to have had any influence on Stieltjes or Poincaré, and
it was published after Stokes’ work. Here I simply note, following Schlissel, that Hankel
obtained series approximations for what are now called the Hankel functions. These are
H(1)

α = Jα + iYα and H(2)
α = Jα − iYα where Jα and Yα are the Bessel functions of the first

and second kind of order α.
Hankel called the approximations he found semi-convergent — a term that Stieltjes

will later use to mean something different. Hankel defined semi-convergent to mean the
following:

“The series S(x) =
∞!

j=0
aj(x) is said to be semi-convergent to a function f(x) for

some x interval, if for any integer N ,

000000
f(x) −

N!

j=0
aj(x)

000000
< |aN+1(x)|.” (Schlissel

1977, p.319)

Given that this definition means that a series is semi-convergent precisely when the differ-
ence between the function and the sum of the first n terms of the series is less in absolute
value than the (n + 1)th term, the error in using the series S(x) was bounded by the first
term omitted and as such this definition only applies to alternating series. Further, Han-
kel’s analysis used the property that this semi-convergent property was preserved under
integration. He also noted what came to be called the Stokes phenomenon, as we discuss
later, that appeared when the argument of the variable crossed the negative y-axis.
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Chapter 2

Precision, the Pendulum and
Stokes

2.1 The Desire for Precision

In order to help understand the milieu in which the use of asymptotic approximations to
divergent series arose in Britain, I now consider the topic of precision. The role of careful,
accurate measurement in the advancement of science began during the late eighteenth cen-
tury and became increasingly important in the first half of the nineteenth century. Indeed,
in the subsequent chapters, I will show that Stokes’ use of divergent series was motivated
by a desire for precision in optical and astronomical computations.

Instruments, Travel and Science: Itineraries of Precision form [sic] the Seventeenth
to the Twentieth Century, edited by Marie-Noëlle Bourguet, Christian Licoppe, and H.
Otto Sibum, is a collection of articles which “investigates the historical development of the
underlying relationship between instruments, travel and natural knowledge which gave rise
to modern science” (Bourguet, Licoppe & Sibum 2002, p.ii). The authors collectively claim
that from the mid-seventeenth century onwards, natural knowledge came about increasingly
from measurement rather than from the mind of a philosopher with the result that, by 1799,
“data were then about to become the stuff of the sciences and instrumental procedures the
path towards scientific achievement” (Bourguet et al. 2002, p.3).

The gathering of data, via instruments, allowed for a description of nature that was
uniform and regular. It made possible the movement of data and comparison of the under-
standing of the natural world between locations. As Bourguet said:

“instruments of precision have become a privileged means of bridging the gap
between heterogeneous places.” (Bourguet et al. 2002, p.8)

26



The use of instruments of precision, in Britain, was part of the imperial project with
data being collected for far more than natural philosophical reasons. It was perhaps key, as
Schaffer stated (Schaffer 1995, p.136), to imperial power. A clear example of the relationship
between imperialism and precision is afforded by the Great Trigonometrical Survey of India.
This survey was an immense undertaking which ran from 1802 to 1871 with the goal of
surveying the entire Indian subcontinent with scientific precision. The outcomes of the
survey were both political and scientific — complete geographical information for taxation,
administrative and military purposes and the first accurate measurement of a section of an
arc or longitude, for example. There is voluminous literature on the history and impact of
Great Trigonometrical Survey providing analysis from how the Survey informed Britain’s
dominion over India to the type of scientific advances that were made in order to perform
the survey. See for example (Edney 1997) or (Keay 2000).

Thus the motivations for precise quantification, including those arising from the quan-
tified description of natural phenomena, were partly a desire to mathematize nature, but
there was also, perhaps more importantly, a desire to use precision in the regulation and
control of the activities of society.

The Values of Precision is a collection of essays edited by M. Norton Wise (Wise 1995)
in which the case is made by various authors that precision came to occupy an increasingly
important place in science as well as in society in general by the latter half of the nineteenth
century. In Wise’s introduction to this volume, he stated that the “unproblematic” core
(Wise 1995, p.4) of several of the best known theses on the increasing importance of pre-
cision is that, as the nineteenth century progressed, the desire for precision extended from
optics and astronomy to a broader spectrum of activities including chemistry, electricity,
magnetism, and even air quality.

The increasing importance of precision as a societal value has been written about by
several authors, with differing understandings of how this came about. For example, Wise
claimed that it was the practical concerns of the business world that drove the interest in
quantification. Quantification, Wise stated:

“derived from the need of administrators for reliable information about particu-
lar aspects of the world in order to be able to make reasonable plans: availability
of human and material resources, cost estimates, tax revenues, life and annuity
tables, maps, location of ships, etc.” (Wise 1995, p.5)

Wise is claiming that the needs of operating the economy drove the quantification in
that realm. It is reasonable to ask if this interest was independent of the quantification that
the sciences were contemporaneously undergoing or if one may have lead to the other.
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Ted Porter, in his book Trust in Numbers: The Pursuit of Objectivity in Science and
Public Life (Porter 2020) argued that it is, at least, not obvious that earlier success with
quantification in science led to more precision in the management of the affairs of society.
He considered that, even though it may be typically assumed that the value of precision
moved from science to industry and business, the interaction may have gone in the other
direction or perhaps back and forth. Regardless of where precision was first shown to have
great utility, Porter argued that by carefully examining the quantification of business we
can learn something about the quantification of science. Porter said:

“How are we to account for the prestige and power of quantitative methods in the
modern world? The usual answer, given by apologists and critics alike, is that
quantification became a desideratum of social and economic investigation as a
result of its successes in the study of nature. I am not content with this answer.
It is not quite empty, but it begs some crucial questions. Why should the kind
of success achieved in the study of stars, molecules, or cells have come to seem
an attractive model for research on human societies? And, indeed, how should
we understand the near ubiquity of quantification in the sciences of nature? I
intend this book to display the advantages of pointing the arrow of explanation
in the opposite direction. When we begin to comprehend the overwhelming
appeal of quantification in business, government, and social research, we will also
have learned something new about its role in physical chemistry and ecology.”
(Porter 2020, p.xx)

Other authors have described the movement to precision in variety of different ways.
Thomas Kuhn called it a “second scientific revolution” (Kuhn 1961, p.188) in his 1961
article The Function of Measurement in Modern Physical Science. John Heilbron (see for
example his essay titled A Mathematicians’ Mutiny, with Morals in (Horwich 1993)) has
written on the increased importance of mathematics in the physical sciences and Ian Hacking
has written about the “avalanche of numbers” (Cisney & Morar (eds.) 2016, p.65) produced
during the early nineteenth century as evidence for his thesis that truth is discovered through
empirical observation and induction.

The move to quantify nature was not adopted without criticism or concern. Both Goethe
and Humboldt, early in the nineteenth century, had concerns that something may be lost
in the rationalizing of nature. As Bourget said:

“Investigators, particularly Goethe, then expressed their fear of a loss of authen-
ticity in the aesthetic and emotional experience of Nature, if instruments were
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to be used in a systematic approach towards the world. However passionate
about measurements and calculations, Humboldt himself sometimes feared that
a quantified science would drive humanity away from a holistic experience of Na-
ture and cause an impoverishment in one’s sense of self.” (Bourguet et al. 2002,
p.12)

The following quote from Goethe clarifies and reinforces the sentiment captured above
that the move to quantification was not seen as entirely positive. Goethe, as quoted by
Wood, said:

“In broad daylight inscrutable, Nature does not suffer her veil to be taken from
her, and what she does not reveal to the spirit, thou wilt not wrest from her by
levers and screws.” (Wood 1893, p.119)

This type of concern about the use of empirical observation and precise measurement in
the scientific process mostly disappeared over the course of the nineteenth century. A quote
by British mathematical physicist William Thomson, 1st Baron Kelvin (1824-1907) from
1883 emphatically stated that, by this time, science was about numbers and measurement.
Kelvin said, as quoted in Bourget:

“I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your knowledge is of a
meagre and unsatisfactory kind: it may be the beginning of knowledge, but you
have scarcely advanced to the stage of science, whatever the matter may be.”
(Bourguet et al. 2002, p.16)

Kelvin was a very close colleague of Stokes’ and the above quote is taken from a popu-
lar lecture on electrical units of measurement which Kelvin gave to the Institute of Civil
Engineers. It is again a reflection of the importance of precise standards.

As we shall see shortly, Sir George Biddell Airy (1801-1892), a mathematical physicist,
communicated precise optical observations to Stokes — observations which Stokes then used
to verify calculations. Airy is a good example of a nineteenth century scientist whose drive
for precision went well beyond science, and he is illustrative of the value placed on precision
in science as well as in society.

For Airy, precision and quantification began early in his life with the record keeping of
his personal finances and then it extended into his scientific career. Airy’s autobiography
begins with an introduction written by his son in which the son claimed that for Airy, order,
record keeping, and precision were vitally important. Airy’s son stated that:
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“The ruling feature of his [Airy’s] character was undoubtedly Order. From the
time that he went up to Cambridge to the end of his life his system of order
was strictly maintained. [...] His accounts were perfectly kept by double entry
throughout his life, and he valued extremely the order of book-keeping: this
facility of keeping accounts was very useful to him. [...] To a high appreciation
of order he attributed in a great degree his command of mathematics, and
sometimes spoke of mathematics as nothing more than a system of order carried
to a considerable extent. In everything he was methodical and orderly, and
he had the greatest dread of disorder creeping into the routine work of the
Observatory, even in the smallest matters.” (Airy & Airy 1896, p.2)

This observation about the life and habits of a major figure (Airy was knighted on June
18, 1872) of nineteenth century British mathematical physics speaks to precision both in
science and in society and is an example of what Porter claimed — that it is instructive to
observe that quantification in one area led to it in another.

Stokes’ work in the decade preceding 1850 was mathematical and the motivation for
developing mathematical laws of nature was for “rationalizing design of instruments, estab-
lishing theoretical expectations for response, and revealing sources of error” (Wise 1995,
p.5). The precision measurements or computations he used often came from people who, by
way of their occupation or interests, were interested in precision for reasons of commerce,
industry or social organization. For example, as mentioned previously, Stokes used the
precise pendulum measurements of Miller in his discovery of the index of friction. Miller,
however, produced those measurements as part of project to use the pendulum as a method
to recapture the exact length of a yard should that standard ever be lost as indeed it was,
during a fire in 1834. The measurements were made for one reason and then a mathematical
physicist used the measurements for an entirely different reason.

In the two or three decades following 1850, computed and measured numbers were
being used to determine or to suggest underlying physical structure. As is detailed later
in this chapter, physical discovery came about, in the work of Stokes, as the result of
the comparison of precise laboratory measurements with those predicted (using asymptotic
expansions among other methods) from theoretical understanding. It is also the case that
comparing precision measurements with what was expected from competing underlying
physical theories sometimes permitted a decision to be made between those theories. It
was, of course, not always the case that the measurement allowed this determination to
be made — for example, it was possible that competing theories could produce the same
predicted outcome.
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A very clear example of measurement helping to select between competing physical
theories occurred during the resolution to the question of what light is. By 1850, the
conceptualization of light had changed from it being a particle to it being a type of wave.
What the wave consisted of or how it propagated was at that point unclear.

James Clerk Maxwell (1831-1879) had a model of a mechanical ether (at the time the
substance that was widely thought to fill space) that allowed him to predict the velocity
of the propagation of electromagnetic waves in an ether-filled space. The velocity of those
waves was dependent on the elasticity and density of the ether. In a vacuum, by contrast,
the electromagnetic wave velocity could be calculated from the ratio between two units of
charge, the electrostatic and the electromagnetic. Maxwell’s model predicted that the the
ratio between the electrostatic and the electromagnetic units, a number denoted by ν, would
be equal to the speed of light, denoted c. The ratio, ν, was measured in Göttingen in the
late 1850s. The speed of light was measured independently in Paris in the 1840s.

These two numbers were found, by Wilhelm Eduard Weber (1804-1891) and Rudolf
Kohlrausch (1809-1858) in 1855 (Kirchner 1957), to be within 1% of each other, but, given
potential measurement errors of c as well as simplifications in the model of the ether which
affected the calculation of ν, it remained controversial as to whether c = ν or not. The
fundamental understanding of what light was rested on this decision of whether c = ν. Was
light a transverse electromagnetic wave or a longitudinal mechanical motion through a rigid
elastic ether? Maxwell concluded from the close agreement between c and ν that light was
transverse waves in an electromagnetic ether (Schaffer 1995, p.137).

It took three decades for it to be agreed upon that the value of ν was in fact equal
to the value of the speed of light. This example illustrates how precise measurement was
used to answer the question: Is light the same thing as electromagnetic transmission of
telegraph signals? Showing that the speed of the these two things were the same with
an extraordinarily low amount of error was a proxy for showing that they were the same
phenomenon. Thus it was extraordinarily important that those measurements were as
accurate as possible.

In the essay, Accurate Measurement is an English Science (Schaffer 1995, p.135), Schaffer
argued that, during the mid-nineteenth century, the focus on precision was a particularly
British preoccupation, and that precise metrology was vital for commercial and military
superiority, partially because one key to imperial power was that what is done and works
well in one location can then be made to do so in another location. Schaffer uses a variety
of examples throughout his essay to advance his argument.
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One of Schaffer’s examples was the 1870s visit to Europe of American Henry Rowland,
a founding faculty member at John Hopkins University. He arrived with a sizeable budget
to purchase precision laboratory instruments and he visited England (including Maxwell’s
country estate at Glenlair in Scotland), Germany, and Austria to observe the instrumenta-
tion used in many laboratories. Rowland admired the British for their use of instrumenta-
tion, both for making physical phenomena less vague and also for precision measurement.
The two quotes below capture Rowland’s observations of national differences in the use of
apparatus in the second half of the nineteenth century — in this case regarding apparatus
used in the determination of the unit of electrical resistance. Rowland said:

“While in Göttingen, I had the pleasure of seeing the apparatus used by Gauss
and Weber and also that more recently used by Kohlrausch in the determination
of the absolute value of Siemens’ unit... So far it seems to me that the accurate
measurement of resistance either absolutely or relatively is an English science
almost unknown in Germany.” (Schaffer 1995, p.139)

“In America we have apparatus for illustration, in England and France they
have apparatus for illustration and experiment but in Germany they have only
apparatus for experimental investigation.” (Schaffer 1995, p.143)

According to Schaffer, Rowland’s thoughts on the requirement of quality instruments
for proper experimentation and for illustration were influenced by Maxwell, which Schaffer
supported by using several quotes taken from the reports that Rowland wrote about his
European journey. Maxwell’s view was that a period of increasingly accurate measurements
predates advances in the theoretical understanding of the world. In his 1871 inaugural
lecture at Cambridge, Maxwell said:

“The history of science shows that even during that phase of her progress in
which she devotes herself to improving the accuracy of numerical measurement of
quantities with which she has long been familiar, she is preparing the material for
the subjugation of new regions, which would have remained unknown if she had
been contented with the rough methods of her early pioneers.” (Schaffer 1995,
p.144)

This is a clear statement that the time spent in the making and using of precision mea-
surement instruments was a vital component of scientific progress. Illustration instruments
were, on the one hand, pedagogical. On the other hand, they were scientific proofs of con-
cept in a kind of engineering sense, at least for Maxwell and Kelvin. For example, Maxwell
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made a device that was intended to mimic the motion of particles in the rings of Saturn,
and Kelvin had a tidal simulator.

H. Otto Sibum’s essay titled Exploring the Margins of Precision in (Bourguet et al.
2002), analysed Rowland’s visit and his observations of European science and concluded
that Rowland was impressed by this emerging empirical culture. Sibum himself concluded
that:

“Absolute measures were true representations of nature. Accuracy thereby be-
came the basic virtue of a new, evermore fully established exact science, which
also accorded well with the values of Victorian England.” (Bourguet et al. 2002,
p.219)

Again the conclusion is that precision was a dominating characteristic of this time. It is seen
contemporaneously as being important in science, in business, in the imperial ambitions of
Britain and as an important moral characteristic of Victorian England.

During this same time period (the 1850s) there are other celebrated examples of precision
measurements being used in a large variety of ways. The accurate determination of the speed
of light is one important example. The measurement of the position of the dark bands in
the envelope of light (called a caustic) that results when light is refracted or reflected by a
curved surface of an object is another example. Moreover, precise pendulum computations
and measurements enabled accurate determination of the gravitational constant which, in
turn, allowed a determination of the shape of the earth.

The example of the precise determination of the speed of light illustrates what Warwick
(Warwick 1995, p.312) claimed was the interest of most British mathematical physicists of
the nineteenth century — they were more concerned with predicting what they experimen-
tally observed than they were concerned about developing theory as a tool for understanding
the universe. Warwick said it thus:

“[they were] not concerned primarily with the invention of grand new theories,
but with the much more workaday problems of adapting extant theoretical tools
to new applications. It is, moreover, the general invisibility of this important
work that gives rise to the sense that fundamental theories make precise and
unequivocal predictions across a wide range of physical phenomena. ... In
practice the range of skills and artifices required to develop useful mathematical
models of physical phenomena are as important to the physicist as are the
fundamental laws themselves.” (Warwick 1995, p.312)
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As we shall see in Chapter 3, Stokes used precision measurement to validate physical
theory as well as to demonstrate the correctness of his mathematical methods. He was thus
part of a greater movement of his time and he was informed about the recent elucidations
of physical theory via the use of measurement. French physicist Léon Foucault (1818-1868)
communicated with Stokes in May of 1857 about the determination of the speed of light and
in 1854 Thomson told Stokes about the speed of transmission of telegraph signals which
also determined ν (Thomson 1854).

Warwick’s analysis is confirmed by what we will see in the behaviour of Stokes. Stokes
used divergent series to get results from theory and then verify them against experimental
results. Not only is this an example of a computational procedure, it is an example of a
computational procedure that had a history in the period leading up to Stokes’ use of it
as something that was of unknown validity and, in fact, thought by some to be something
which should be mostly banned from mathematics as was detailed in the introduction.

However, whether numerical agreement between experiment and theory verifies theory
is itself subject to differing positions. For example, Thomson was not convinced that, given
the one percent difference between the values of ν and c, that light and telegraph signals
were the same phenomenon (Schaffer 1995, p.137-138).

Warwick introduced the philosophy of Nancy Cartwright (1944-) into his discussion
because she discusses how and when experimental results can be used to make decisions —
exactly the source of Thomson’s unease. Cartwright is an American philosopher of science
whose pragmatic philosophy concerns itself with how science achieves success. Her claim
was that the correspondence between an experimentally determined value and its equivalent
theoretically generated numerical value cannot be used to validate theory. Cartwright
claimed that:

“these correspondences cannot be said to provide direct evidence for the the
truth of the fundamental laws themselves because the process of prediction re-
quires the adoption of approximations that are not dictated by laws.” (Warwick
1995, p.312).

Warwick used this type of argument to further his thesis that computational procedures
form a crucial interface between mathematical theory and experiment. Therefore they must
be included in any discussion of the role of precision in the historical development of the
exact sciences (Warwick 1995, p. 313).

In contrast, we shall see that Stokes simply does not express himself on the kind of issues
brought up by Cartwright and Warwick. Stokes does not convey any concern about how he
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got his numerical results from his theory and he was completely satisfied as to their utility
after he obtained agreement with experimental values either from Francis Baily’s (1774-
1844) pendulum measurements or, as I discuss below, from Airy’s optical measurements.
Further, Stokes used, when possible, the numerical agreement of his results with results
obtained by other computational procedures to justify the validity of his computational
procedures.

During the 1840s and 1850s, a period of time in which there was much consternation
and discussion about the use of divergent series, Stokes simply chose to use them and got
experimentally verifiable numbers. Did this pragmatic use of divergent series by Stokes, a
major figure in mathematical physics in Britain, hasten or make acceptable these methods
and cause research into divergent series to be accelerated?

Warwick pointed to the importance of paying attention to how calculations are done,
because computation is a human activity whose reliability is dependent on the method and
technology used. Computational methods can be simple, complex, laborious, sophisticated,
uncommon, widespread or require specialized equipment. Stokes’ numerical calculations
replaced simple but laborious calculations with efficient calculations, but those calculations
required substantial expertise and had uncertain validity. Warwick said:

“When the methods and uses of calculation change, we should look for an his-
torical explanation of why that change is taking place and what resources are
enabling it to occur.” (Warwick 2003, p.317)

Stokes used precise pendulum measurements to verify new theory and those measurements
were available to him because precision was seen as important to society. I illustrate this
in the next section in the context of the pendulum measurements made by Baily.

2.2 The Importance of the Pendulum
2.2.1 Francis Baily and the Empirical Pendulum

Baily started his very successful career in business working at the stock exchange. He wrote
about and produced tables for the pricing of leases and annuities which provided efficiency,
accuracy and precision in making life-contingency decisions. By 1825 he was independently
wealthy, after which he retired and spent the remainder of his time on investigations pri-
marily related to astronomy.

Baily had many interests as can be seen in the diversity of the topics of the ninety
papers that he published. The topics include leasing, interest and annuities, life insurance,
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history, astronomy (solar eclipses, shape of the earth), navigation and pendulums. While
these topics may appear to be somewhat disparate, for Baily they were tied together by a
desire to present clear, accurate information on which good decisions could be made.

Baily believed that tables of accurate computations were important. He asserted in an
1824 paper titled On Mr. Babbage’s New Machine for Calculating and Printing Mathemat-
ical and Astronomical Tables (Babbage 1889, p.225) that:

“The great object of all tables is to save time and labour, and to prevent the
occurrence of error in various computations.” (Babbage 1889, p.226)

and further that accurate tables of calculations were in service of the promotion of science.
Baily said:

“The substitution, however, of the unvarying action of machinery [this is the use
of Babbage’s mechanical calculator] for this laborious yet uncertain operation
of the mind, confers an extent of practical power and utility on the method of
differences, unrivalled by anything which it has hitherto produced: and which
will in various ways tend to the promotion of science.” (Babbage 1889, p.226)

This sentiment was true not just for tables of interest and annuities but also for astronomy.
The extensive pendulum measurements that Baily made built upon the work of the British
naval officer Henry Foster (1797-1831) and were partly in service to astronomy.

Pendulum measurements were vital in the preparation of tables for navigation. In
response to a lack in existing nautical tables, Baily, John Herschel (1792-1871) and Charles
Babbage (1791-1871) successfully founded, during the early 1820s, the Astronomical Society
of London in order to support astronomical research. At the time of founding, most members
of the society were ‘gentleman astronomers’ rather than professionals. Baily, in fact, was not
exceptional in his interests outside of astronomy—many early members of the Astronomical
Society were actuaries or businessmen (Ashworth 1994, p.410).

The Astronomical Society of London became the Royal Astronomical Society in 1831
upon receiving a Royal Charter from William IV. The society sought to clearly define the
boundaries of the science of astronomy and “to remove astronomical speculation and place
it on a solid calculating base” (Ashworth 1994, p.412).

Baily was concerned that British science was falling behind; that, for example, the Nau-
tical Almanac prepared by the Board of Longitude, seen as vital for British naval superiority,
was not being updated or corrected as advances were being made in astronomy. This concern
for British science also motivated other scientific initiatives of the early nineteenth century.
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For example, John Herschel, Charles Babbage, and George Peacock had earlier formed the
Cambridge Analytical Society, which sought to introduce Leibnizian notation for differential
calculus into Cambridge mathematical instruction. This was a measure aimed at correcting
a lack of ability to make calculations efficiently using the more cumbersome Newtonian
fluxion notation and to bring advances in analysis from the continent to Britain. Babbage,
in the preface to the Memoirs of the Analytical Society (Babbage & Herschel 1813), stated
it thus:

“Discovered by Fermat, concinnated and rendered analytical by Newton, and en-
riched by Leibnitz with a powerful and comprehensive notation, it was presently
seen that the new calculus might aspire to the loftiest ends. But, as if the soil
of this country were unfavourable to its cultivation, it soon drooped and almost
faded into neglect, and we have now to re-import the exotic, with nearly a cen-
tury of foreign improvement, and to render it once more indigenous among us.”
(Babbage & Herschel 1813, p.iv)

Astronomical measurements were not only necessary for both military and commercial
navigation but were also used in support of theology (Ashworth 1994, p.4). There were
concerns about whether other countries were ahead on this front — for example, the Bureau
des Longitudes in France. This was during the time just following the Napoleonic Wars in
which Britain twice defeated Napoleon and had established itself as the world’s foremost
naval power.

Baily thought of himself and was perceived by others as someone who quantified things
— who spared no effort to get precise measurements. In the words of Herschel, cofounder
of the Astronomical Society:

“Baily epitomized sound, thorough, precise thinking: ‘everything to which he
turned his thoughts’, wrote John Herschel, was ‘reduced to number, weight, and
measure’. Baily presented himself and indeed was represented by others as the
perfect citizen, reliable and uncorrupted by interests.” (Ashworth 1994, p.418)

The desire for precision, as well as the use of theory as a handmaiden to that preci-
sion, Ashworth (Ashworth 1994) argued, was seen in the writing of another member of the
Astronomical Society, the mathematician and actuary, Benjamin Gompertz (1779-1865).
Ashworth said:

“Gompertz wrote an extensive article on the importance of theory in correcting
for an instrument’s failing through calculation. He wrote, ‘the instruments sup-
ply data to the theory; but it is theory which invents the instruments’. Further
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it is ‘theory which points out the cause of the defects; theory which directs the
practitioner to the requisite improvements.’ ” (Ashworth 1994, p.438)

In the 1824 article, On Mr. Babbage’s new machine for calculating and printing mathe-
matical tables (Babbage 1889, p.225), Baily provided a history and summary of the math-
ematical tables produced to date. Some of the tables, like those of values of the sine or
logarithm function, were for general use, but some tables were produced with a specific
purpose in mind.

The values from the astronomical observation tables were further used in the production
of tables for navigation. The importance of accuracy and precision was obvious here as errors
in these tables could lead to difficulty or even danger for the mariners who relied on them.
Baily himself found over 500 errors in the tables of the sun and the moon from which the
values published in the volumes of the Nautical Almanac were computed. The Astronomical
Society produced improved tables for navigation and, by end of the 1820s, the Board of
Longitude was closed and the Admiralty was using tables prepared by the Astronomical
Society for navigation. Baily was thus shown to be correct in his belief of the importance
of up to date, accurate tables.

Thus precise measurements, and precision in general, were considered to be highly de-
sirable in the first half of the nineteenth century. There are numerous examples of this but,
in remaining portion of this chapter, I focus on how the data on pendulums and in optics
that Stokes used to verify his work, both theoretical and mathematical, was acquired.

2.2.2 Physics and Empirical Validation and Verification

By the late 1840s there were at least two important quantities, both related to astronomy,
which were not computable from theory but whose numerical quantities were possible to
measure in the field or in the laboratory. Firstly, in the early nineteenth century, in Britain
and elsewhere, the desire to determine as accurately as possible the period of the pendulum
was important. This was largely because pendulum measurements were extensively used
in surveying, in navigation, and in the determination of physical constants including the
gravitational constant, the ellipticity of the earth, and the mean density of the earth.

Secondly, among other problems in optics, the location of more than the first few dark
bands that appear in the caustic when light is shone through a curved surface was not
computable from theory even though many bands were observable in the laboratory. We
will return to this in the context of Stokes’ work in Chapter 3.

In both of these cases, as was typical practice, very precise empirical measurements were
compared to predictions made from theory. Further and specific to these two cases, it was
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not just that theory was being validated by comparison to measured data. In both cases
there was a further mathematical difficulty because it was a non-trivial task to produce
numerical values from the theory for comparison in the first place. This was due to the
prohibitively large number of calculations required.

The large number of computations resulted from the necessity of evaluating definite
integrals which were not integrable in finite terms. Therefore numerical results were being
obtained via partial sums of convergent infinite series after integration of the power series
of the integrand. However, the number of terms required to obtain the desired precision
was too large for the human calculator.

Both of these problems were solved at the same time (in 1848-1850) in the work of
Stokes. In this chapter I focus on questions associated with pendulums. Stokes’ novel
mathematical technique was developed first to solve the optical problem and then used to
complete the solution of the pendulum problem. For this reason, the mathematics that
Stokes developed is explained, in Chapter 3, in reference to how he used it in optics.

2.2.3 Major Pendulum Developments to 1845
2.2.3.1 The Important Theorists, Experimentalists and Explorers

There were many people working with and interested in pendulums during the first half of
the nineteenth century. I have decided to divide the people into three categories: those who
worked primarily on the mathematical and physical theory, those who worked primarily on
obtaining precise experimental results, and those whose efforts were primarily doing field
work. Naturally people often worked in more than one category.

The two most important theorists working on the pendulum project in Britain were Sir
George Gabriel Stokes (1819-1903), and Sir George Biddell Airy (1801-1892). Two other
important important theorists, from a bit earlier, were Friedrich Wilhelm Bessel (1784-
1846), in Germany, and Siméon Denis Poisson (1781-1840), in France. These people built
upon a long tradition following Galileo, Huygens and the Bernoullis.

Stokes was a towering figure in British mathematical physics and is the focal point here.
He spent his entire career at Cambridge where he was the Lucasian Professor of Mathematics
for an astonishing 54 years. Stokes was educated at Pembroke College, Cambridge and
graduated as Senior Wrangler and first Smith’s prizeman in 1841 after which he became a
fellow. He resigned his fellowship in 1857 (as he was required to) upon marriage. However
he was reinstated in 1869 when the rules were changed, and he maintained that fellowship
until 1902.
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Stokes made an enormous number of contributions to a wide variety of fields both in
physics and in mathematics. In physics, Stokes made pioneering contributions to the field
of fluid dynamics, a topic on which he published twenty-three papers. This work included a
formulation of the Navier-Stokes equations which are used to describe fluid flow over a wide
range of magnitudes. He also, of major importance, provided the theory of finite amplitude
oscillatory water waves.

At the beginning of Stokes’ career, there were intense discussions about light — was it
corpuscular or was it a wave, and what was the effect of an assumed ether through which
light moved? As a result, some of Stokes’ work in fluid dynamics was also germane to optical
investigations. Stokes made a multitude of contributions to optics, publishing over sixty
papers that ranged from consolidating older work with sharper mathematics to extending
physical optics. This included work on polarization, double refraction, optical rotation and
fluorescence.

In more strictly mathematical work, he popularized Stokes’ theorem in vector calculus
and contributed to asymptotic expansions — this work is the main focus of this thesis. He
also made contributions to engineering, primarily by enhancing the safety of railway bridges.
His improvements to bridge safety came partly as a result of his mathematical analysis of
bridge stability and partly as a result of participating in inquiries that were made following
bridge failures.

Stokes was accorded numerous awards which include being made a baronet in 1889
and receiving the Copley medal in 1893. He was president of the Royal Society from 1885
to 1890 and was a member of the British House of Commons from 1887 to 1892. For
further biographical information and an analysis and summary of Stokes’ scientific work see
(McCartney, Whitaker & Wood 2019).

Airy was a mathematician and astronomer who was the Astronomer Royal from 1835 to
1881. Two facets of his work are of most interest here — his work in optics which we shall
see shortly and his applied use of the pendulum. Airy was in the first generation of those
educated under the tutelage of the members of the Cambridge Analytical Society. Peacock
was his academic advisor. He was Senior Wrangler in the Tripos examination of 1823 and
first Smith’s prizeman during that same year. In 1826 he wrote Mathematical Tracts on
Physical Astronomy which linked together and covered the topics of optics, astronomy, and
gravitation, naturally combining telescopes and pendulums. Also in 1826, Airy realized that
measurements of the gravitational constant at the top and bottom of a mine shaft would
allow him to determine the mean density of the earth, an experiment that was carried out
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in 1854. For biographical information and a summary of Airy’s scientific work see (Airy &
Airy 1896).

Bessel was a German astronomer, mathematician and physicist who is important to this
thesis because of his pendulum work carried out between 1825 and 1827. Bessel was not
formally trained and was granted an honorary doctorate on the recommendation of Gauss.
He is perhaps best known for using stellar parallax to calculate the distance to stars. For
biographical information and a summary of Bessel’s scientific work see (Fricke 2008).

Poisson was a French mathematician, a student and protégé of Laplace, an engineer
and a physicist whose pendulum work, pertinent for this thesis, was a small portion of
his scientific output. He made important contributions to mechanics, on which he wrote a
widely used book. He also contributed to the fields of electricity, magnetism and optics, and
made fundamental contributions to mathematics. In optics he was originally a defender of
the particle theory of light but subsequently acknowledged the experimental verification of
wave theory of light. For biographical information and a summary of Poisson’s scientific
work see (Costabel 2008).

There were several important experimentalists and explorers who made pendulum mea-
surements either in a laboratory or out in the field. It would be hard to overstate the
importance of the pendulum in nineteenth century physics. Pendulum measurements in
the laboratory were important in preparing for fieldwork, for timing other scientific exper-
iments, and for establishing standards of measurement, including the standard of length.
Pendulums were taken around the world to make local measurements of the gravitational
constant from which the exact shape of the earth was determined. The density of the earth
in various locations was also determined using pendulums as part of an effort to understand
the composition of the earth.

Francis Baily and Henry Kater (1777-1835) were both pivotal, British experimentalists
who spent considerable time making pendulum measurements in the lab and working to
design increasingly more accurate pendulums that could reasonably be used in the field.
Kater was a natural philosopher who started his career in the army, where he participated
in the Great Trigonometric Survey of India. Upon retiring from the army in 1814, he
turned to scientific research which often consisted of the design and improvement of scientific
instruments. His most important contribution was in pendulum design — this work was
vitally important for accurate measurements.

Sir Edward Sabine (1788-1883) was a multifaceted Irish scientist and explorer who trav-
elled widely and used pendulums in the field. President of the Royal Society from 1861-1871,
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Figure 2.1: An idealized, mathematical model of the pendulum (Wikipedia contributors
2023b)

Sabine’s interests ranged widely — from geophysics to ornithology — but terrestrial mag-
netism commanded most of his attention. He went on many explorations around the world
on which pendulum measurements were made. The 1821-22 pendulum expedition around
the Atlantic to determine the eccentricity of the earth earned Sabine the Copley medal.
There are three islands off the coast of Greenland known as the Pendulum Islands where
Sabine made pendulum measurements in 1822. The largest of these islands was named
after Sabine by Carl Christian Koldewey, a German Arctic explorer who led both of the
German North Polar Expeditions of the mid-nineteenth century. For further information
about Sabine see (Reingold 2008).

2.2.3.2 The Idealized Pendulum and the Determination of the Period of the
Pendulum

An idealized model of the pendulum, as shown in Figure 2.1, consists of a pendulum bob
swinging from a pivot on a rod. The pivot is considered to be frictionless, the rod is
considered to be massless, and the pendulum bob is a massive point mass. Analyzing the
forces on this idealized pendulum is a standard application of basic mechanics and yields
an exact solution for the period of the pendulum in the form of an infinite series,
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If the assumption is made that the initial displacement angle, θ, is small, then the period
of the pendulum is well approximated by the formula

T ≈ 2π
1
L

g

which is independent of the initial displacement angle and independent of the mass of the
bob.

The simplifying assumptions built into this model, however, cause significant differences
between the calculated period of a pendulum and the actual period of a pendulum as
measured in a laboratory. Several sources of error result from not taking into account the
real physical situation — there is friction at the pivot, the rod is not massless and its length
may change with temperature or humidity, the pendulum bob is not a point mass and
may not have uniform density, and most certainly will be slowed by drag in the medium
through which it is swung. Further, temperature, altitude and humidity change the drag
characteristics of the medium through which the bob is swung. A further source of error is
the mathematical approximation made in order to make computation of the period possible.
There is a loss of accuracy due to the truncation of the infinite series and that error is a
function of the initial displacement angle which itself may be difficult to set repeatedly.

2.2.3.3 A Compressed History of the Pendulum to 1825

Galileo (1564-1642) is credited with the insight that pendulums can be used for timekeep-
ing. This is despite drawings of pendulums in the work of Leonardo da Vinci (1452-1519)
who appears to have not realized this application of the pendulum. In the first years of
the seventeenth century Galileo found that the period of the pendulum was: approximately
independent of the amplitude of the swing, independent of the mass of the bob, and pro-
portional to the square root of the length. This allowed him to use pendulums in simple
timing applications including the measurement of heart rate (Yoder 1988).
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The first pendulum clock, from 1658, shown in Figure 2.2, was designed by Christiaan
Huygens (1629-1695) during the mid-seventeenth century. There is some uncertainty as to
whether this is actually the first pendulum clock as most sources claim or is rather a slightly
later design of Huygens. For a discussion of this, see (Whitestone 2012).

In Huygens’ design, the swinging of the pendulum bob was captured via a gearing
mechanism which allowed for the number of swings to be counted and displayed. By 1666,
Robert Hooke (1635-1703) had suggested using the pendulum to calculate longitude at sea.
As we have seen, this was one of the tremendously important applications for pendulum
measurements during the nineteenth century.

In 1673, Huygens answered an important theoretical question in time measurement when
he found the curve a falling object must trace out if it is to move from an arbitrary initial
position to a given final position in the same amount of time while under the influence of
gravity alone. The solution to this tautochrone problem is the cycloid whereas, by design,
a bob pendulum swings along the arc of a circle.

In order to force a pendulum bob to move along a cycloidal path, it must be guided and
this creates friction — a source of error. However, the amount of error caused by the friction
between the bob and a guiding surface is more than the truncation error introduced into
the pendulum computations in the case where the swinging pendulum bob traces a circular
arc in a vacuum. Further, the truncation error introduced by rejecting the terms containing
theta from the infinite series for the pendulum period can be controlled by keeping theta,
the initial pendulum displacement angle, small. The truncation error is reduced to zero as
the displacement angle is made infinitesimally small and therefore it was common practice
to compensate for the displacement angle by applying a reduction to infinitesimally small
displacement angle correction factor to the calculation of the pendulum period.

An observed major source of error during the late seventeenth and early eighteenth
century was caused by changes to the length of the pendulum rod during operation as
a result of temperature fluctuations. A variety of people worked on correcting this issue
in several different ways. One method was to use varnished wood for the pendulum rod
to minimize changes in the rod length due to temperature. A more robust method to
correct this type of error was done mechanically. In 1721 George Graham (1673-1751)
used a pendulum bob filled with mercury so that as the pendulum rod expanded with
temperature, the mercury also expanded raising its centre of mass towards the pivot. These
two effects cancelled one another out. In 1726 John Harrison (1793-1776) invented the most
widely used gridiron pendulum for temperature compensation as illustrated in Figure 2.3.
The yellow bars (as shown in the figure) are made of one metal and the blue of another with
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Figure 2.2: The first pendulum clock (Whitestone 2012, p.102)
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Figure 2.3: Illustration of a Pendulum with Mechanical Temperature Compensation
(Wikipedia contributors 2023b)

the two metals chosen such that their thermal expansion characteristics cancel one another
and the length of the pendulum rod remains constant as the temperature fluctuates. The
cancellation, via this method, of error due to temperature fluctuation resulted in precision
pendulum clocks whose error was in the order of a few seconds per week.

2.2.3.4 Kater and the Reversible Pendulum

In 1818, Kater designed an entirely new type of pendulum called a reversible or compound
pendulum. Kater was not the first to do this. Both Gaspard de Prony (1755-1839), in 1800,
and Johann von Bohnenburger (1765-1831), in 1811, proposed a reversible pendulum for the
measurement of g, the gravitational constant (Candela, Martini, Krotkov & Langley 2001,
p.714). However neither work was accepted or published until the late nineteenth century.
The compound pendulum was a significant improvement over the simple pendulum and it is
substantially different. The simple pendulum is a physical approximation to the conceptual
mathematical object — an instrument consisting of a point mass suspended by a weightless,
inextensible cord from a frictionless fixed support.

A compound pendulum, by contrast, is an extended solid body which vibrates about
a fixed axis under the weight of the bob (see Figure 2.4 and Figure 2.5). The pendulum
oscillates about the XX axis, weight W is fixed and weight A is adjustable and can be moved
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Figure 2.4: Compound Pendulum
(Purdue Physics and Astronomy 2023)

Figure 2.5: Compound Pendulum Graphic
(Purdue Physics and Astronomy 2023)

up and down the pendulum rod. This changes the period of pendulum and allows for it
to be adjusted or calibrated to local conditions. Since no pendulum rods are massless, all
physical pendulums are compound pendulums.

Now consider a compound pendulum where the pendulum rod is intended to have sig-
nificant mass and place two knife edges at different distances and on opposite sides of the
centre of gravity of the pendulum rod. This is a convertible compound pendulum. See Fig-
ure 2.6 for a photograph of a Kater compound pendulum and Figure 2.7 for an illustration
of the important parts of a compound pendulum where (a) is the opposing knife edge pivots
from which the pendulum is suspended, (b) is the fine adjustment weight, (c) is the course
adjustment weight, (d) is the bob and (e) are the points for reading.

A convertible pendulum can be swung from either knife edge, each of which is designed
to provide minimum friction at the suspension point about which the pendulum swings. If
a convertible pendulum is first swung from one knife edge and then swung from the other
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Figure 2.6: Kater Compound Pendulum
(Wikipedia contributors 2023b)

Figure 2.7: Kater Pendulum Graphic
(Wikipedia contributors 2023b)
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knife edge, it is possible to adjust small weights (see Figure 2.7) to ensure the period of
the pendulum is the same when swung from either knife edge. At that point, the period of
the pendulum is identical to that of a simple pendulum with length equal to the distance
between the two knife edges. This method does not result in a symmetric mass distribution.
See (Candela et al. 2001) for an explanation of the physics of the Kater pendulum.

It was the Kater pendulum, designed for the absolute determination of the value of the
gravitational constant at a given point, that formed the basis of English pendulum work
in the early nineteenth century. Thirteen of these pendulums were constructed and these
were used by Sabine between 1820 and 1825 in a variety of locations around the world.
Sometimes the experimentalists used the same pendulum in multiple locations and other
times identical pendulums were used in differing locations.

2.2.4 Improved Pendulum Design and Measurements by Bessel

Bessel used a simple pendulum (see Figure 2.8) in Königsberg between 1825 and 1827 to
determine the gravitational constant, g, from the measured period of the pendulum. (Lenzen
& Multhauf 1966, p.313) This was done by comparison to a reference clock (calibrated by
astronomical observation). As seen in Figure 2.9, the pendulum being used to determine g
is swung in front of a calibrated pendulum clock. The number of coincidences in position
between the pendulum being used to measure g and the reference pendulum clock are
counted. This is done by eye and can be observed directly or via a telescope. The telescope
had the advantage that the viewer was further away from the swinging pendulums and
thus would not interfere with the movement of the pendulums. The period of the detached
(non-clock) pendulum can be determined very accurately by the number of coincidences
with the clock pendulum over an extended period of time.

Bessel also took care to separate the clock from the pendulum so that there was no
interference. He also corrected for the stiffness of the wire and the lack of rigidity of
connection between the bob and the wire. Further, Bessel corrected his measurements for
the buoyancy of the pendulum in the air and for the inertia of the air set in motion by the
pendulum. This was done by using correction factors that were applied subsequent to the
measurements.

Later, Bessel improved upon the Kater pendulum in a manner that made it unnecessary
to correct for the buoyancy of the pendulum in the air and for the inertia of the air set in
motion by the pendulum (Candela et al. 2001, p.714). Bessel observed that if the pendulum
was made with a symmetric volume distribution (despite the asymmetric mass distribution)
that the atmospheric effects being corrected for in the Kater pendulum cancelled out. These
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Figure 2.8: Improved simple pendulum design by Bessel (Lenzen & Multhauf 1966, p.313)

Figure 2.9: Method of coincidences (Lenzen & Multhauf 1966, p.308)
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types of pendulums are sometimes called the Repsold-Bessel or Bessel-Repsold reversible
pendulums as they were first manufactured by the firm by the firm A. Repsold and Sons
beginning in 1861 (Candela et al. 2001, p.720).

2.2.4.1 Sabine’s Observations and Baily’s Precise Pendulum Measurements

Upon his return to England, Sabine published three papers on pendulums in the 1829
issue of Philosophical Transactions of the Royal Society of London. The most germane
of these papers, for our purpose, is On the Reduction to a Vacuum of the Vibrations of
an Invariable Pendulum (Sabine 1829). The other two papers are titled Experiments to
Determine the difference in the Number of Vibrations made by an Invariable Pendulum in
the Royal Observatory at Greenwich, and in the Hours in London in which Captain Kater’s
Experiments were made and On the Reduction to a Vacuum of Captain Kater’s Convertible
Pendulum.

Sabine’s papers show that he clearly felt that the vacuum to air correction factor was
not possible to establish from theory, that Bessel had published that this was a problem,
and that the current experimentally determined values were deficient. Sabine found that
his experimental reduction to vacuum exceeded the reduction that it was customary to
compute by 3.845 vibrations per day.

Sabine discovered that Bessel had published (in January 1828) on the problem with the
vacuum to air correction factors in Astronomische Nachrichten. Sabine said:

“he [Bessel] has found the theory incorrect, according to which it has been
customary to reduce the vibrations of a pendulum in air, to the corresponding
vibrations in a vacuum: the incorrectness consisting principally, in no provision
having been made in the theory, for the expenditure of the moving force, on the
particles of the air set in motion by the pendulum in its vibration.” (Sabine 1829,
p.207)

Sabine further noted that experimental evidence existed that showed that the currently
calculated correction factors were inadequate. He said:

“It is now considered, therefore, as established by the experiments, that the true
reduction to a vacuum is considerably greater than it had been customary to
suppose; for the invariable pendulum, for example, nearly as 5 to 3. It was also
obvious, that all pendulums whatsoever, employed in air, and designed to give
results which should be independent of the variable retardation occasioned by
their vibration in air, would require to have the influence of the air on their
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respective vibrations, ascertained by experiment, since it is not attainable by
calculation.” (Sabine 1829, p. 219)

Sabine’s experience led him to postulate that there may be a property of the medium
through which the pendulum was swung that was currently unaccounted for and that the
pendulum was the perfect experimental device to help find that. Sabine conjectured as
follows:

“May it not indicate an inherent, property in the elastic fluids, analogous to
that of viscidity in liquids, of resistance to the motion of bodies passing through
them, independently of their density, a property, in such case, possessed by air
and hydrogen gas in very different degrees; since it would appear from the ex-
periments, that the ratio of the resistance of hydrogen gas to that of air is more
than double the ratio following from their densities. Should the existence of
such a distinct property of resistance, varying in the different elastic fluids, be
confirmed by experiments now in progress with other gases, an apparatus more
suitable than the present to investigate the ratio in which it is possessed by them,
could scarcely be devised: and the pendulum, in addition to its many important
and useful purposes in general physics, may find an application for its very del-
icate, but, with due precaution, not more delicate than certain, determinations,
in the domain of chemistry.” (Sabine 1829, p. 232)

By the end of the 1820s, Baily was working on establishing the precise length of a seconds
pendulum which is a pendulum with a half period of exactly one second. He was aware
(through the work of Bessel) that air resistance had not been completely taken into account
and so had set up a vacuum apparatus in his house to measure a variety of pendulums made
of various materials both while swinging in air and in a vacuum.

By measuring the period of a pendulum in the vacuum apparatus and then measuring the
same, or an identical pendulum in air, it was possible to compute a vacuum to air correction
factor — that is, the factor by which the period of the pendulum changed between when
it was swung in air as compared to when it was swung in a vacuum. It was not practical
at that time to have vacuum apparatus in the field. This meant that the effect of the
air in which the pendulum swung, further complicated by issues of varying temperature,
humidity, and elevation, was a significant challenge.

The number of vibrations of two different pendulums or the same pendulum in different
locations were, in the mid-1820s, considered to be strictly comparable if certain correction
factors were applied. The purpose of these correction factors was to increase the accuracy
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of the measurements so as to permit useful comparisons between measurements taken in
different locations.

Baily knew that there was error in the correction factors — the most egregious one being
the reduction to a vacuum which Bessel had identified as very defective (Baily 1832, p.399).
Other correction factors were somewhat lacking as well. Thomas Young (1773-1829), who
in 1816 was secretary of a commission charged with determining the precise length of the
seconds pendulum, showed that the correction for reduction to sea level was often too large.
Sabine felt there were problems with the reduction to indefinitely small arcs which we saw
earlier was used to account for non-zero and differing initial displacement angles. Sabine
also pointed to error arising from the use of different agate planes on the same knife edge
and to the effect of geological strata in the immediate neighbourhood of the pendulum.

Not only had vacuum to air correction factors been noted defective by Bessel and others,
it was also unsatisfactory that there was no theory that could be used to compute or
explain the observed pendulum period changes between air and vacuum. On May 31, 1832
Baily read a paper to the Royal Society titled On the Correction of a Pendulum for the
Reduction to a Vacuum: together with Remarks on some anomalies observed in Pendulum
experiments (Baily 1832). Baily argued for the importance of the subject by noting that
many distinguished mathematicians and experimentalists were spending valuable time on
this topic and that numerous scientific voyages, by several European countries, were being
undertaken to various places around the world where pendulum vibrations (typically the
number of vibrations in a mean solar day) were being used to determine the eccentricity
of the earth by measuring the variation in the gravitational constant in different locations
around the earth.

To illustrate how this was done, I summarize an example from Airy’s 1826 textbook
Mathematical Tracts on Physical Astronomy, the Figure of the Earth, Precession and Nu-
tation, and the Calculus of Variations (Airy 1826). In this example, he explained how to
compute the eccentricity of the earth using a method “which on account of its great facil-
ity is now very extensively used, ... that of observing the intensity of gravity in different
latitudes, by means of the pendulum” (Airy 1826, p.120).

Airy’s example was as follows. Let p, p′, P be the length of the seconds pendulum at
latitude l, l′, and the equator respectively. Then,

p = P (1 + n sin2 l)

p′ = P (1 + n sin2 l′)
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where n = 5m
2 − e which allowed n to be determined when p and p′ are measured and P , l

and l′ are known. This then enabled e, the eccentricity of the earth to be determined given
that m = 1

289 . The value of m was determined via Clairaut’s theorem which Airy explained:

“ n + e = 5m
2 : a very remarkable proposition, which may be thus stated:

‘Whatever be the law of the Earth’s density, if the ellipticity of the surface be
added to the ratio which the excess of the polar above the equatoreal gravity
bears to the equatoreal gravity, their sum will be 5m

2 , m being the ratio of
the centrifugal force at the equator to the equatoreal gravity.’ This is called
Clairaut’s Theorem.” (Airy 1826, p.106)

This method was employed using data from Madras and Melville Island which yielded an
eccentricity of the earth of 1

300.
Pendulums were employed for other uses as well which Baily did not enumerate in his

paper. For example, pendulums were used to determine the mean density of the earth.
In the eighteenth century, English mathematician Benjamin Robins (1707-1751) discovered
how to use a pendulum to determine muzzle velocity. This gunnery application is a specific
example of the ability to use a pendulum to determine the transfer of momentum. This was
used later in the nineteenth century to measure the elasticity of golf balls and the effect of
spin on the distance a golf ball travels.

Baily continued in this same 1832 paper by noting that all of the correction factors in
use were subject to some error. I focus here on the vacuum to air correction factor because
Stokes accounted for this error in what became a very important paper. Baily noted that
the measurements he made were not explainable by any known theory. He stated it thus:

“But, to whatever cause the observed anomalies may be owing, I must confess
that I have myself, during a long course of experiments on various pendulums,
at different seasons of the year, and under a variety of circumstances, frequently
met with discordancies that have baffled every attempt at explanation by any
of the known laws applicable to the subject: and I believe that other persons
also, who have had much practice in pendulum experiments, have occasionally
met with anomalies for which they have been unable to account satisfactorily.”
(Baily 1832, p.400)

Then again a little later, Baily continued:

“The amount of required correction, however, cannot (according to our present
knowledge of the subject), be determined by calculation, but must, in every
case, be ascertained by actual experiment.” (Baily 1832, p.402)
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Not only did Baily feel that there were anomalies which were unaccounted for but he also
questioned whether there had ever been any assurance that any comparison of pendulum
results were strictly valid. He said:

“so that we are, in fact, at the present moment, totally ignorant whether the
results of any two pendulums that have ever yet been constructed, are in strict
and reasonable accordance with each other. And until this is practically accom-
plished, and can be practically repeated, I do not think that the true length of the
seconds pendulum can be considered as satisfactorily determined.” (Baily 1832,
p.400-401)

Bessel, in 1826, showed that the usual formula for the reduction to a vacuum correction
factor, based on the specific gravity of the moving pendulum bob, was very defective and did
not account for the air that was set in motion by the pendulum, or for the air that adhered
to the pendulum bob. This was the reason (the most direct one according to Bessel) that the
pendulum must be swung in a vacuum. Bessel however did not take the direct approach he
advocated; rather he swung, in air, two equal diameter spheres of different material (brass
and ivory) and the same sphere in air and then in water. These experiments led Bessel to
believe that the vacuum to air correction factor was perhaps double what had previously
been assumed (Baily 1832, p.402).

Baily stated that the required correction factor could not be determined by calculation
because of a lack of knowledge of how to do this. The alternative, then, was to measure the
correction factor and so Baily proceeded to build a vacuum apparatus in his own home so he
could “pursue the subject at leisure” (Baily 1832, p.403). Baily described the apparatus he
used in detail. He positioned the pendulum and surrounding equipment in a specific location
in his home to minimize temperature fluctuation throughout the day and throughout the
year. The vacuum apparatus was mounted to minimize vibration so that external vibrations
did not affect the vibrations of the pendulum. The pendulum vibrations were observed
through a glass plate. From the detailed descriptions of the care taken with the experimental
apparatus, the effort that Baily took to obtain accurate measurements is apparent. Indeed
this is another example of the desire for precision.

As of 1826, there was a formula available to correct the number of vibrations of a
pendulum used in air to what would be expected of the same pendulum swung in a vacuum.
This can be considered to be a theoretical prediction of the vacuum to air correction factor
though it did not come directly from theory but was rather based on empirical evidence.
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To compute an air to vacuum correction factor, Baily used the formula below. He did
this for many pendulums and then he took measurements of those pendulums in air and in
a vacuum in order to compare the measurements to what was calculated using the formula.

I include the formula here to show the physical parameters that were considered relevant.
The formula below, where N is the number of vibrations made by the pendulum in a mean
solar day, computes the number of vibrations to add (as indicated by the + sign) as a result
of a variety of physical parameters. S is the specific gravity of the pendulum mass and
obviously varies from pendulum to pendulum. The remaining symbols represent physical
constants that are pendulum independent and include: the specific gravity of air (σ), the
expansion of mercury (µ), the expansion of air for a one degree increase in temperature (α),
the height of the barometer (β and β′), the temperature of the mercury (τ and τ ′) and the
temperature of the air (t and t′) where the non-prime values are at standard pressure and
temperature and the prime values are at the pressure and temperature at the time of the
experiment.

+N ∗ 1
2(Sσ − 1)

∗ β′

β[1 + µ(τ ′ − t)] ∗ 1
1 + α(t′ − t)

If the pendulum mass was not homogeneous then a vibrating specific gravity of the
pendulum was computed which represented the net effect of the combination of all of the
substances of different specific gravities that composed the pendulum bob. Baily credited
Airy with that computation which also took into account how far from the axis of rotation
each particular substance was. It was the calculation of the vacuum to air correction factor
from the above formula that Baily found deficient.

Baily initially swung forty-one (later increased to more than eighty-four) different pen-
dulums in air and in a near vacuum to determine a required multiplicative factor needed
in each case to match the measured difference in the number of pendulum vibrations in a
solar day in air and in a vacuum. This was compared with the calculated air to vacuum
correction factor obtained from the above formula.

In his 1832 paper, Baily described in detail each of the pendulums selected for the
experiment to strengthen the claim that almost every variety of pendulum was tested. He
took a single pendulum, measured it in air, then in vacuum, twice, and then in air again in
an attempt to minimize fluctuations that may occur over time.

In the end, Baily’s results did not agree with those of Bessel. Even though Airy had
suggested to Baily how to calculate the weight of the adhesive air, the correction factor
(in effect the error in the value computed by the above formula) to the calculated value
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of the air to vacuum correction factor was of the order of 2 and depended on the type of
pendulum with the correction factor ranging from 1.58 to 2.827. Given this range, Baily
concluded that it was not possible to compare experiments using pendulums measurements
unless precisely the same kind of pendulum was used.

For the pendulums used in astronomy, there were various mechanical methods to correct
for vibration changes due to pressure changes, for example changing the arc of vibration,
or attaching a syphon barometer to the rod of pendulum. A syphon barometer consisted of
a U shaped tube that was sealed at one end and filled with mercury. At the unsealed end,
changes in atmospheric pressure caused the mercury to move and form a partial vacuum
at the sealed end. This changed the length of pendulum rod as the air pressure changed.
These methods of mechanically compensating for error were insufficient, a fact noted by
both Bessel and Poisson.

In supplementary experiments appended to Baily’s paper, Baily noted that Airy took a
lively interest in precise pendulum measurements and that he made useful and motivating
suggestions and recommendations. Airy said:

“It appears that the phenomena, to which you allude, may generally be explained
by supposing a quantity of air, depending on the figure of the body, to adhere to
it whilst it is moving, and to add to its inertia without altering its gravitation.”
(Baily 1832, p.440)

Baily did a series of experiments to try to find the quantity of air adhering to, or being
dragged by the pendulum bob of various shapes including a sphere, cylinder and disc. The
essential conclusion was that air was adhering to the pendulum in a non-uniform way and
that this was affecting the period of the pendulum in a way that was not understood or
predicted by theory. Baily said:

“It appears then that all these results accord with the theory that a quantity
of air adheres to every pendulum when in motion: and, by thus forming a
portion of the moving body, diminishes its specific gravity; or, rather adds to its
inertia. This adhesive air is confined almost wholly to the two opposite portions
of the pendulum, which lie in the line of its motion; (similar to what takes place
with a body moving through still water), and very little of it adheres to, or is
dragged by, the sides of the pendulum. The shaping of air will consequently
partake, in some measure, of the form of the pendulum; subject probably to
some slight modifications, with the nature of which, however, we are at present
unacquainted. The quantity of air dragged by a pendulum seems to depend on
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the extent and form of surface opposed to its action, and is not affected by the
density of the body.” (Baily 1832, p.456)

Baily foremost credited Bessel for this observation, which was, in 1832, not calculable
from theory. Interestingly Baily also cited the work of Pierre-Louis-George du Buat (1734-
1809) (du Buat 1786) from nearly 50 years earlier and pointed out that the effect of the
medium on the motion of the pendulum was already known at that point and had, despite
initial interest, been largely forgotten. Baily said:

“But, is it not a remarkable circumstance in the history of this subject, that
these important and apparently conclusive experiments of M. Du Buat, [...] is it
not singular that such experiments should have been so soon and so completely
lost sight of, and forgotten, that not one of the many distinguished individuals
actually engaged in those pursuits, and in the investigation of this subject,
should have had the least idea or remembrance of the additional correction for
the reduction to a vacuum so clearly pointed out by M. Du Buat: and that
until the re-discovery of this principle by M. Bessel, as detailed in his valuable
paper on the pendulum, no one should have thought of verifying the suspicion
of Newton that such an effect was probable.” (Baily 1832, p.460)

The Baily paper ended with many pages of tables of experimentally determined correction
factors for a large number of different pendulums.

Thus, by 1832, there was a large volume of very careful measurements of pendulum
motion available and there was recognition that there was no theory available to generate the
correction factors. All theory prior to 1848 was simply unable to explain the experimental
results. We see next how these precise pendulum measurements lead to new physical theory
in the hands of Stokes.

2.3 Stokes and Pendulum Theory

It is with a lack of theory capable of predicting pendulum correction factors but with a
large number of experimental results that Stokes turned his attention to the problem. At
some point prior to December of 1850, Stokes met with Sabine, now Col. Sabine at William
Hallowes Miller’s house and pendulum experiments were discussed. Stokes, in a letter of
December 6th, 1850, recalls the above meeting with Sabine (Stokes 1907a, p.253), which
indicates that he had read Sabine’s paper On the Reduction to a Vacuum of the Vibrations
of an Invariable Pendulum published in 1829.
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Stokes also reported in the 1850 letter to Sabine that he had not seen further notice
about Sabine’s observations that the change in the period of the pendulum in differing
media (in this case, air, a near vacuum and hydrogen) was not caused solely by variation
in density. Stokes stated:

“the experiments showed that the retardation could not at all be inferred from
the density, in passing from one elastic fluid to another.” (Stokes 1907a, p.253)

Thus, during the 1840s Stokes read Sabine’s paper of 1829 and he likely read all three
of Sabine’s papers since they were in the same issue of the same journal. He discussed
the situation in person with Sabine and he noted that there had not been any follow up
publication on finding a solution to the vacuum to air correction factor determination.

Stokes continued in the 1850 letter to tell Sabine that he had effectively solved the
problem and that he had read a paper at the last meeting of the Cambridge Philosophical
Society which he hoped to shortly send to him. That paper, which we will look at in detail
shortly, contained, as Stokes explained:

“the calculation of the resistance to a pendulum in the two cases of a sphere and
of a long cylindrical rod, when the internal friction, as it may be called, of the
fluid is taken into account. The agreement of theory with Baily’s experiments
is very striking.” (Stokes 1907a, p.253)

In a second letter of January 10, 1851 to Sabine, Stokes thanked Sabine for a reply to the
1850 letter. From the second letter, it is apparent that Sabine’s reply must have indicated
to Stokes that additional experiments had been performed on the action of different elastic
fluids on the vibration of the pendulum. Stokes told Sabine that he was already convinced
that the pendulum motion was affected by the media in a manner that was independent of
the media’s density. He based that on the two hydrogen experiments. Further, Stokes told
Sabine that his new theory produced numbers that agreed well with Baily’s experiments
even though Baily’s numbers did not agree with the results generated by the common theory
of fluid motion. Stokes said:

“though Baily’s results are at variance with the common theory of fluid motion,
in which the pressure is supposed equal in all directions in a fluid, or, which
comes to the same, in which the fluid is supposed to be perfectly smooth, they
agree beautifully with the formulae to which I have been led by employing a
theory in which what may be called the internal friction of the fluid is taken
into account.” (Stokes 1907a, p.254)
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Figure 2.10: Stokes to Sabine on the conception of the index of friction (Stokes 1907a,
p.254)

Figure 2.10 is an image of a portion of Stokes’ 1851 letter to Sabine. The text in this
image, along with the accompanying drawings, makes it clear how Stokes was physically
thinking about the problem. Stokes was thinking of the medium surrounding the pendulum
bob as consisting of layers which moved tangentially to one another as the pendulum bob
moved. Stokes said that the layers of fluid through which the bob moved changed from
stack of layers one on top of the other to a stack of layers where the layers closest to the
pendulum had moved more than those further away as the pendulum swung. And that
that movement of one layer upon its neighbours was a source of friction dependent on the
“nature” of the fluid, not the density of the fluid.

We are dealing here with two rather large breakthroughs. The first, as this letter makes
apparent, was the physical realization that there exists in fluid motion a previously unknown
phenomenon — that which results in the boundary layer — which Stokes called the index of
friction of the fluid. The second breakthrough (to be discussed in detail in the next chapter
and not evident from this brief text), was the ability to use asymptotic approximations to
divergent series in order to obtain numbers from this new theory.

Stokes indicated at the end of this letter that he would like to be able to make additional
experimental measurements to determine the index of friction for different gases as well as
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make additional measurements on pendulum vibrations in air in order to test his new theory.
I emphasize that last point — Stokes sought to verify new theoretical results by obtaining
additional experimental measurements.

Stokes wrote a third letter to Sabine about pendulum accuracy in 1863. In this letter,
Stokes reflected and summarized what had passed. He started by expressing appreciation
for the referral to Bessel’s memoir which he had obtained and for the two letters from
Sabine. Stokes then summarized the methods for eliminating the effect of the air on the
pendulum. These he referred to methods 1, 2, 3a and 3b.

Method 1 was the direct method of swinging the pendulum in a vacuum. This eliminated
the effect of air or any other medium on the time of vibration or on the arc of vibration.
This, said Stokes, was the most exact method. Clearly this is not always practically possible
and, in particular, not practical for field work.

Method 2 was to swing the pendulum in air and then in vacuum, under controlled
circumstances, and use the thus obtained correction factor in subsequent uses of the pen-
dulum in air. This, said Stokes, was extremely convenient and any issues with this method
resulting from temperature fluctuations were likely to be small.

Method 3 was the method of Bessel which employed a symmetric convertible pendulum.
A problem with this method is that a pendulum that is convertible in a vacuum is not
convertible in air. There were two ways to approach this problem: in method 3a, an
adjustable weight was used but that destroyed the invariability of the pendulum and had to
be done at each location. Stokes rejected this method. Method 3b) consisted of measuring
the difference in vibration between the two knife edges and using that to compute (as Stokes
showed how to do) the time of vibration as though the pendulum were invariable.

Stokes’ interest in pendulums and pendulum experiments continued throughout his life,
with a particularly large number of letters between Stokes, Sabine, James Thomas Walker
(1826-1896) (referred to as Colonel Walker and appointed Surveyor General of India in
1878), and Oliver Heaviside (1850-1925) in 1872 and 1873. Stokes was recognized by that
time as the British authority on the mathematical modelling of pendulums as evidenced
from comments in a variety of places and from the correspondence. For example, regarding
the Great Trigonometric Survey of India discussed earlier, Larmor, the editor of Stokes’
correspondence, wrote a summary of the letters on the topic of the Indian survey, pen-
dulums, and gravity measurement. That summary makes clear that Stokes’ work on the
pendulum and his discovery of internal friction mid-century established him as the leading
British expert on geodetic matters. Larmor said:
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“The early preoccupation of Sir George Stokes with the reduction of the existing
classical pendulum observations, in connexion with his great memoir on the
resistance offered by viscosity of the air, and the illumination which his memoirs
on Clairaut’s Theorem and the Figure of the Earth threw on the connexion
between the form of the sea level and the distribution of gravity, naturally
constituted him throughout his life the first British authority on the principles
of all geodetic operations. The pendulum observations of the Great Indian
Trigonometrical Survey, the results of which have taken so prominent a position
in the Science of Geodesy, thus occupied a large share of his attention, both
officially at the Royal Society and in the way of private discussion with the
directors of the operations. A large correspondence exists, first with General
Sabine, and later with General J. T. Walker, Col. Herschel, Capt. Heaviside,
and other officers of the Indian Survey.” (Stokes 1907a, p.271)

These letters contain brief mentions of Stokes’ method of divergent series with the
computational results succinctly summarized. For example, in a July 25, 1872 letter to
Walker, Stokes said:

“Many years ago I investigated the problem of the resistance of a fluid to a
pendulum, taking into account the internal friction of the fluid itself. A very
tough problem it was, but I succeeded in obtaining the solution in the case of
a sphere, and in that of a cylindrical rod of which each element was treated as
an element of an infinite cylinder vibrating with the same linear velocity and
without change of direction of the axis. I will send you by book post a copy of
my paper if you have not got it, but I think you have.” (Stokes 1907a, p.275-276)

I will revisit this below when I look at the impact of Stokes’ mathematics on asymptotic
expansion of divergent series following the publication of his 1850 paper.

2.3.1 Stokes’ 1848 Paper on Air Resistance and Pendulums

In 1847, Stokes reported his new results on pendulum vibrations at a meeting of the British
Association at Oxford. These results were published in a short two page note, titled On the
Resistance of the Air to Pendulums (Stokes 1848), in the 1848 volume of the reports. In this
note Stokes stated that he had obtained theoretical results for computing the vibrations of
spherical pendulum bobs and cylindrical pendulum bobs.

Stokes used the common theory of hydrodynamics as previously obtained via different
methods by Claude-Louis Navier (1785-1836), Poisson, and Adhémar Jean Claude Barré de
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Saint-Venant (1797-1886). For a history of hydrodynamics during this time see Worlds of
Flow: a History of Hydrodynamics from the Bernoullis to Prandtl (Darrigol 2005). In this
book, Darrigol emphasized the importance of hydrodynamics in the physical sciences and
chose as his opening sentence an 1857 quote from Thomson to Stokes in which Thomson
said:

“Now I think hydrodynamics is to be the root of all physical science, and is at
present second to none in the beauty of mathematics.” (Darrigol 2005, p.v)

Darrigol enumerated the many worlds of flow to which hydrodynamics was relevant.
These included flow in rivers and canals, blood and sap flow and, important here, the
damping of the seconds pendulum in air. Hydrodynamics was also important to the British
theory of the ether as a perfect liquid.

Further Darrigol identified a divide between theory (called hydrodynamics) and practice
(called hydraulics) with the difficulty that hydrodynamical theory often predicted phenom-
ena that were in opposition what was actually observed or done in practice by the men of
hydraulics. Darrigold said:

“Whereas hydrodynamicists applied advanced mathematics to flows rarely enoun-
tered by engineers, hydraulicians used simple empirical or semi-empirical formu-
las that defied deeper theory.” (Darrigol 2005, p.vi)

In the long and complex history of hydrodynamics in the nineteenth century are parallels
to what I discuss in this thesis. There are theoreticians and there are practitioners. The
theory evolves over time. The empirical results accumulate and intuition is developed that
allows for corrections to calculations or for designs to be improved. The measurements
inform the theory and the theory informs the design of the measuring apparatus.

The computations Stokes made for spherical and long cylindrical rod pendulum bobs
were simple. For a spherical bob, the mass must be increased by half, and for a cylindrical
bob the mass must be increased by the whole of the mass displaced by the bob. This
additional mass increased the inertia of the pendulum but not its weight and in these two
cases measurements agreed with the results of du Buat for spheres oscillating in air and
with the results of Baily for cylinders of one and half inches in diameter.

However, with smaller spheres or thinner rods, the computations from hydrodynamics,
which Stokes published in the eighth volume of the Cambridge Philosophical Transactions,
no longer agreed with experiment. As we have seen, the experimental work of Bessel and
Baily made this evident.
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The case of the sphere was a straightforward calculation from the refined hydrodynamical
theory Stokes developed but, in the case of the cylinder, it was difficult to compute numerical
results from the theory. Stokes said that the theory, in the case of the cylindrical bob,
resulted in a convergent ascending series (meaning in increasing positive powers of the
variable) involving the derivative of the gamma function. As noted, the Stirling series, an
asymptotic approximation to the gamma function, was stated by de Moivre well before this.
It is possible that seeing the derivative of the gamma function caused Stokes to consider
trying to find an analogous approximation method.

In the case of the cylinder, Stokes then applied his new mathematical tool which con-
sisted of converting the convergent series to a descending divergent series, from which he
used the first few terms as an approximation. Stokes used the contemporaneous term
“descending series” to refer to series where the power of the variable increases in the de-
nominator as the terms progress. This simplified, in fact made possible, the numerical
calculations. Stokes said:

“the author has also obtained a descending series, which is much more convenient
for numerical calculation when the diameter of the cylinder is large.” (Stokes
1848, p.7)

Stokes’ 1848 note concluded with a summary of the important formulae he had ob-
tained but did not indicate of how the formulae were obtained. He also provided three
numerical calculations for three different sized cylinders. These calculations were compared
against previously obtained standard results as well as with the experimental results of
Baily. Stokes’ new theory agreed much better with the experimental results of Baily than
the previously obtained theoretical predictions which did not account for internal friction
did. Here for the first time, as far as I know, Stokes is announcing his use of a divergent
series for computation with respect to pendulums.

The most important of Stokes’ papers on pendulums was read on December 9, 1850,
about two years after the British Association report, and was then published in volume
nine of the Transactions of the Cambridge Philosophical Society in 1856. During this time,
Stokes also sent his paper, titled On the Effect of the Internal Friction of Fluids on the
Motion of Pendulums (Stokes 1907a), via post to interested parties. This is a very long
paper, running to 99 pages, focussed on the “reduction to a vacuum” correction factor.
The introduction to this paper provides us with an example of the importance attached to
precision by both Stokes and his readers. Stokes used the words “modern exactness”.
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He stated that pendulums were important for deducing results about physical phenom-
ena and thus there had been a lot of time and energy spent on making accurate pendulum
measurements. Stokes said:

“The great importance the results obtained by means of the pendulum has in-
duced philosophers to devote so much attention to the subject, and to perform
the experiments with such a scrupulous regard to accuracy in every particular,
that pendulum observations may be justly ranked among those most distin-
guished by modern exactness.” (Stokes 1856a, p.8)

What was meant here by “modern exactness”? One meaning is that a measurement of
an actual pendulum in a particular situation can be corrected for comparison with what a
simple pendulum performing indefinitely small oscillations in a vacuum would do. Perhaps it
also meant that Stokes’ theory yielded results that agreed with experimental measurements,
mostly as performed by Baily.

In the first few pages of the 1856 pendulum paper, Stokes outlined the history of compu-
tation of the pendulum correction factor for reduction to a vacuum. First, he pointed to the
important 1828 paper of Bessel in which Bessel pointed out the theoretical considerations
of the necessity of taking account of the inertia of the air as well as of its buoyancy. Bessel
did not make a numerical calculation of the effect of inertia. He did however conclude that
the effect of buoyancy and inertia were the only effects of a fluid of low density on the
pendulum movement.

The Commissioners for the Discovery of the Longitude at Sea, or more popularly the
Board of Longitude, was a British government body formed in 1714 to administer a scheme
of prizes intended to encourage innovators to solve the problem of finding longitude at sea.
Bessel’s statements about the necessity of theory to account for the effect of both inertia
and buoyancy of the air on pendulum motion spurred the Board of Longitude to build a
large vacuum apparatus which Sabine used to measure the effect of air on a pendulum. This
was shortly before the demise of the Board of Longitude in 1828 when it was replaced by
a Resident Committee for Scientific Advice for the Admiralty consisting of three scientific
advisors: Thomas Young, Michael Faraday and Edward Sabine.

These were the results, referred to in Stokes’ 1850 letter to Sabine, that were read
before the Royal Society in March of 1829 and published in the Philosophical Transactions
of the Royal Society of London of the same year. As I discussed above, Sabine’s pendulum
experiments in air, in a near vacuum and, importantly, in hydrogen gas, resulted in the
discovery that, at the same density, air and hydrogen affected the motion of the pendulum
differently.
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Then Stokes mentioned the valuable pendulum work of Baily saying:

“Our knowledge on the subject of the effect of air on the time of vibration of
pendulums has received a most valuable addition from the labours of the late
Mr. Baily, who erected a vacuum apparatus at this own house, with which he
performed many hundreds of careful experiments on a great variety of pendu-
lums.” (Stokes 1856a, p.9)

The results of Baily were read to the Royal Society in May of 1832. Baily used the letter n
to indicate the factor by which the correction for buoyancy must be multiplied to account
for the whole effect of air as measured by his experiments. These agreed with similar
computations by Bessel. However, and critically, at the end of Baily’s paper, in the section
on additional experiments, were results with smaller cylindrical rods that showed that n
increased as the diameter of the rod decreased as though “according to an unknown law”
(Stokes 1856a, p.10).

That was the experimental side of the progress. Stokes mentioned du Buat’s work of
50 years earlier which he felt had been completely overlooked and forgotten. There was,
however, mathematical progress during the 1830s — a paper of Poisson in 1831, a paper
of Challis in 1833, a paper by Green in 1833, and a paper by Plana in 1835. Then Stokes
pointed to a paper of his own read in May of 1843 which handled the case of the pendulum
confined in a sphere (Stokes 1856a, p.11).

Then came the mathematical idea which Stokes built upon to solve the problem. Stokes
learned from Thomson, likely about 1845, of a method that was used to solve problems in
electricity called the method of images and realized that he could adapt that method to the
current problem in pendulum computations. The method of images is a mathematical tool
for solving differential equations, in which the domain of the sought function is extended
by the addition of its mirror image with respect to a symmetry hyperplane. As a result,
certain boundary conditions are satisfied automatically by the presence of the mirror image
which greatly facilitates the solution of the original problem. Stokes said:

“A few years ago Professor Thomson communicated to me a very beautiful
and powerful method which he had applied to the theory of electricity, which
depended on the consideration of what he called electrical images. The same
method, I found, applied, with a certain modification, to some interesting prob-
lems related to ball pendulums. It enabled me to calculate the resistance to a
sphere oscillating in the presence of a fixed sphere, or within a spherical enve-
lope.” (Stokes 1856a, p.11)
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Stokes stated what he was aware of when he started his investigations on the pendulum
correction factors and I have summarized those above. He said:

“The preceding [as I have summarized above] are all the investigations that have
fallen under my notice, of which the object was to calculate from hydrodynamics
the resistance to a body of given form oscillating as a pendulum. They all
proceed on the ordinary equations of the motion of fluids. They all fail to
account for one leading feature of the experimental results, namely, the increase
of the factor n with a decrease in the dimensions of the body. They recognize no
distinction between the action of different fluids, except what arises from their
difference of density.” (Stokes 1856a, p.12)

Stokes noted that none of previous theories accounted for what is now termed viscosity and
it was evident from the experiments of several people that theory and experiment were not
in agreement.

Further Stokes mentioned that he had been in conversation with Dr. Robinson (most
likely this was his father-in-law who was the astronomer at Armagh Observatory in Ireland)
about 7 or 8 years prior (that would be about 1843) and was made aware then of the
unpublished results of Sir James South (1785-1867). South was a British astronomer who
was joint founder of the Astronomical Society of London. South performed experiments
where he attached a piece of gold leaf to the bottom of the pendulum ball so that the gold
leaf was perpendicular to the surface of pendulum and perpendicular to the ground when
the pendulum was at rest. He then observed the motion of the gold leaf as the pendulum
swung and found that the gold leaf stayed perpendicular to the ground until the pendulum
had moved a considerable distance. Stokes described South’s observations thus:

“Sir James South found that the gold leaf retained its perpendicular position
just as if the pendulum had been as rest; and it was not till the gold leaf
carried by the pendulum had been removed to some distance from the surface,
that it began to lag behind. This experiment shews clearly the existence of a
tangential action between the pendulum and the air, and between one layer of
air and another.” (Stokes 1856a, p.12)

This reminded Stokes of an experiment of Charles-Augustin de Coulomb (1736-1806)
where a similar property had been observed. Coulomb had measured the decrement of the
arc of oscillation of a disc spinning in its plane in water under the torsion of a wire and
had published the results, in 1799, in an article titled Expériences destinées à déterminer la
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cohérence des fluides et les lois de leur résistance dans les mouvemens très-lents (Coulomb
1884, p.333).

Further, in the neglected work of du Buat, a property called the viscosity of the fluid
was used to explain slight increased times of vibration in his experiments of oscillations of
spheres in water. Having acquainted himself with the variety of experimental and theoretical
evidence available and with new theory in hand, Stokes was able to compute vacuum to air
correction factors that agreed with the experimental results of Baily.

He first tried to compute the vacuum to air correction factor for the cylindrical pendulum
bob. Stokes explained:

“I first tried a long cylinder, because the solutions of the problem appeared likely
to be simpler than the case of a sphere. But after having proceeded a good way
towards the result, I was stopped by a difficulty relating to the determination
of the arbitrary constants, which appeared as the coefficients of certain infinite
series by which the integral of a certain differential equation was expressed.”
(Stokes 1856a, p.12)

Stokes then put on hold the computations for the cylinder and then tried to compute
the vacuum to air correction factor for a spherical pendulum bob. He said:

“Having failed in the case of the cylinder I tried a sphere, and presently found
that the corresponding differential equation admitted of integration in finite
terms — the result, I found agreed very well with Baily’s experiments when the
numerical value of a certain constant was properly assumed.” (Stokes 1856a,
p.13)

At this point, Stokes had a refined hydrodynamical theory that took into account vis-
cosity and that theory agreed with experimental evidence in the spherical pendulum case.
No new mathematical techniques had been required for the computations thus far.

Stokes then temporarily put aside the pendulum computations and attempted to com-
pute zeros of the Airy integral. The theory for this was well-known — the difficulty lay
entirely in being able to obtain numbers from the theory. After he devised a new mathe-
matical technique that he used to make the Airy integral computations, Stokes returned to
the pendulum computations in the case of the cylindrical bob, and was able to use his new
technique to obtain results. Stokes said:

“I found the method which I had employed in the case of this integral [the
Airy integral] would apply to the problem of the resistance to a cylinder and it
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enabled me to get over the difficulty with which I had before beeen [sic] baffled.
I immediately completed the numerical calculation so far as was requisite to
compare the formulae with Baily’s experiment on cylindrical rods, and found
a remarkably close agreement between theory and observation. These results
were mentioned at the meeting of the British Association at Swansea in 1848,
and are briefly described in the volume of reports for that year.” (Stokes 1856a,
p.13)

On the Effect of the Internal Friction of Fluids on the Motion of Pendulums was devoted
to the finding of the vacuum to air correction factor in two cases: a sphere and a long
cylinder. The results were compared to the experiments of Baily and others. The effect of
the fluid on the time of the vibration as well as on the arc of vibration were considered and
a single number was produced by the theory to account for the effect of the medium on the
motion of the pendulum. Stokes proposed that this effect be called the index of friction.
This was later recognized as an epiphenomenon of viscosity.

Stokes further verified his pendulum results by using an index of friction for water taken
from the results of Coulomb’s experiment on a spinning disk in water. This value for the
index of friction of water was not computed using a pendulum. By using Coulomb’s value
for the index of friction to compute the pendulum vibration period of a pendulum swinging
in water, Stokes found his theory agreed with Bessel’s experiments.

In addition to the ability to compute vacuum to air correction factors for pendulums,
Stokes’ discovery of the index of friction provided an explanation for the formation of clouds.
In simplified terms, the explanation was as follows:

1. A sphere (water droplet) travelling uniformly in a fluid was considered as a limiting
case of a ball pendulum as the length of the wire became arbitrarily large.

2. Stokes’ theory showed that the resistance due to internal friction of a sphere moving
through a fluid was proportional to the radius of the sphere rather than the surface
area of the sphere.

3. The index of friction for air was known from pendulum experiments.

4. The terminal velocity of the water droplets was calculated using the index of friction
for air (the other sources of friction, proportional to the square of the velocity, were
much less significant and were ignored) and was so small that the suspension of water
droplets to form clouds was explained.
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This was, perhaps, another verification of the new theory of the index of friction.
Following the introduction to the paper (approximately 14 pages), the remaining content

was divided into two parts and provided in-depth analysis first of the theory and second a
comparison of the theory with experiment. Part one was the analytical investigation and it
was divided into five sections:

1. an analysis of the physics,

2. the results from theory for the sphere in unlimited media or oscillating within a
medium enclosed by a sphere,

3. the results for the unlimited cylinder in an unlimited medium,

4. justification and discussion of the calculations in sections 2 and 3,

5. an application to oscillatory waves.

Part two of the paper compared the theory of part one with experimental evidence and
consisted of two sections. Section one discussed the experiments of Baily, Bessel, Coulomb
and du Buat. Here Stokes called the work of du Buat excellent and refers to du Buat’s
Principes d’Hydraulique (du Buat 1786) in the second edition published in 1786. Section
two consisted of suggestions for future experiments.

The validity of the method Stokes used is discussed further in the next chapter. At
the close of this chapter, I emphasize how important this major paper of Stokes was — it
elucidated a new physical phenomenon and the calculations were done with the use of a
new numerical method.

As we shall see in the next chapter, when we see precisely how Stokes used divergent
series to find the zeros of the Airy integral, Stokes had a method, using divergent series, to
now obtain numbers from theory that were not previously practically computable which he
could then compare to something that was measurable in a laboratory.
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Chapter 3

Stokes and the Use of Divergent
Series

In the previous two chapters I showed that it was a controversial, non-standard practice to
use divergent series in the late 1840s. I have also detailed why and when Stokes was using
divergent series and the milieu in which this occurred.

In this chapter I show how Stokes used divergent series for asymptotic approximations
and with what justification. I include a detailed discussion of Stokes’ paper that outlines
the mathematical method he used in making calculations from theory both in optics and
for pendulums. As we shall see, Stokes, in the paper where he used divergent series so
effectively for computation, provided no discussion about whether or not the results were
on firm mathematical footing given that he used a divergent series to produce numerical
values. Stokes did, however, in the same time frame, publish on convergence and I look to
this work to understand Stokes’ views of convergence.

Hardy, in Divergent Series (Hardy 1949), referred to Stokes’ paper on convergence,
On the Critical Values of Sums of Periodic Series (Stokes 1849, p.533), as famous because,
Hardy claimed, it was the first time the important concept of uniform convergence appeared
in print. In this paper Stokes carefully discussed convergence with a particular emphasis
on periodic series — series which consisted of sums of sine and cosine functions.

On the Critical Values of Sums of Periodic Series appeared in the same volume (Volume
8) of the Transactions of the Cambridge Philosophical Society as did De Morgan’s 1844 paper
on divergent series. Volume 8 of the Transactions was published in 1849 though the papers
themselves were read earlier and were also on occasion, mailed to interested parties before
publication. Hardy referred to Volume 8 of the Transactions in the following manner:
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“There is one volume of the Transactions of the Cambridge Philosophical Society
(vol.8, published in 1849 and covering the period 1844-9) which contains a very
singular mixture of analytical papers and gives a particularly good picture of the
British analysis of the time. It contains Stokes’ famous paper ‘On the critical
values of the sums of periodic series’, in which uniform convergence appears
first in print; papers by S. Earnshaw and J.R. Young which are little more than
nonsense; and a long and interesting paper by de Morgan on divergent series, a
remarkable mixture of acuteness and confusion.” (Hardy 1949, p.18)

The method that Stokes used to turn convergent definite integrals that did not admit
integration in finite terms into divergent asymptotic expansions was explained in his paper
On the Numerical Calculation of a Class of Definite Integrals and Infinite Series (Stokes
1856b) read on March 11, 1850. My analysis and discussion of that paper follows the
discussion of convergence paper below.

3.1 Stokes’ 1847 Paper on Sums of Periodic Series

At the outset of On the Critical Values of Sums of Periodic Series, Stokes noted that there
were various series by which an arbitrary function can be expressed between certain limits
of the function argument. For example, the independent variable may vary between 0 and
a for a given series representation. Of particular interest, in this paper, were the series that
proceed according to sums of sines of multiples of πx

a
and those which proceed as sums of

cosines of the same angles. These are effectively a particular kind of Fourier series.
The main points of interest of this paper, which was read December 6, 1847, are that:

1. It clearly indicates that Stokes was very carefully considering convergence during this
time period.

2. Stokes made clear statements about what he meant by convergent and divergent,
which I will quote below.

3. It is the first paper in which the concept of uniform convergence appears in print.

At the outset of the paper, Stokes stated that there were many problems in heat, elec-
tricity, and fluid motion which were solved by developing a function in a series or as an
integral of functions of known form. According to Stokes, Fourier, in the 1822 book Théorie
analytique de la chaleur (Fourier 2009), was the first to do so systematically.
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The main object of Stokes’ paper was to investigate how to properly expand an arbitrary
function in a Fourier series when the value of the function at the left and right hand
endpoints, which determine the form of the expansion, were violated. Stokes concluded
that using series was frequently advantageous in these cases.

In the first section of the paper, Stokes proved the possibility of an expansion of an
arbitrary function in a series of sine functions. After noting that there are essentially two
methods to do this expansion, Stokes decided to follow a method employed by Poisson.

Poisson’s method consisted in considering the series as the limit of another series formed
from it by multiplying its terms by the ascending powers of a quantity a little less than
one. Note here the similarity to what, as discussed earlier, De Morgan claimed to be the
principle of Poisson.

Stokes’ reason for this was twofold:

1. This was how series present themselves in physical problems.

2. It was the method Stokes first used when he began the investigations which led to
this paper.

That periodic series appeared directly from physical problems meant that continuity and
convergence properties could be tacitly assumed. This indeed may be a reason why Stokes
did not find it necessary to carefully consider convergence when using his asymptotic ex-
pansions.

According to Stokes, the method of Poisson:

“... has this in its favour, that it is thus that the series present themselves in
physical problems. [It] is the method which I have followed, as being that which
I employed when I first began the following investigations, and accordingly that
which best harmonizes with the rest of the paper.” (Stokes 1849, p.532)

Stokes’ reason for providing a proof in this paper of the well-known theorem that a function
can be expanded in a series of sine functions was that some mathematicians had doubts
about the ability to do this and that Poisson provided insufficient detail on certain points.

Next, Stokes showed how to find the existence and nature of the discontinuities of a
function and the derivatives of a function using the series from which the function was
developed. We saw earlier that this was something that De Morgan claimed, in 1844, was
not possible.

In general it is not possible to find the derivative of a function expressed as a series
by differentiating under the summation sign as Stokes knew. He showed though how it
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was done when it was possible. Stokes stated that it was not necessary for the expanded
function to be finite; it was sufficient for the integral of the function to be finite.

According to Stokes, some physical problems are solved by methods that results in a
definite integral as the solution. Even though that may be the general method, it is possible,
by using a different method, to obtain results as an infinite series. Stokes employed the
second method because numerical approximations using infinite series can be obtained by
summing the first n terms whereas the approximation of an definite integral directly, by
using a trapezoidal approximation for example, can be much more laborious. Stokes was
clearly thinking about computational efficiency.

When using a partial sum of an infinite series to approximate a solution, the convergence
of the series is an essential consideration. Stokes defined divergent and convergent in the
1847 paper in the following way:

“The terms convergent and divergent, as applied to infinite series, will be used
in this paper in their usual sense; that is to say, a series will be considered
convergent when the sum to n terms approaches a finite and unique limit as n
increases beyond all limit, and divergent in the contrary case.” (Stokes 1849,
p.535)

This reads like the Cauchy definition which, when stated with symbols, is that
∞!

i=0
ai is

convergent if and only if for every # > 0 there is a natural number N such that |an+1 +
an+2 + · · ·+ an+p| < # holds for all n > N and all p ≥ 1.

This was not the only place that Stokes used a Cauchy definition. For example, as
historian Jacqueline Stedall (Stedall 2008, p.527) pointed out, Stokes adopted the Bolzano-
Cauchy definition of continuity which states that f(x) is called continuous when, for all
values of x, the difference between f(x) and f(x±h) can be made smaller than any assignable
quantity by sufficiently diminishing h.

The Stokes definition of continuity is relevant because it is during this time that Stokes
realized, and published, in this paper, that for an infinite sum of continuous functions to
be continuous, the convergence must be of a particular kind. Stokes labelled this type of
convergence not infinitely slow.

This understanding arose independently, also in 1847, in the work of Phillip Ludwig
von Seidel (1821-1896). Seidel called the necessary convergence not arbitrarily slow. The
work of Seidel and Stokes foreshadowed the work of Karl Theodor Wilhelm Weierstrass
(1815-1897) on uniform convergence that appeared a few years later (Stedall 2008, p.527).
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The development of the concept of uniform convergence has a complicated history in
the mid-nineteenth century. See for example The Foundation of Analysis in the 19th Cen-
tury by Jesper Lützen (Jahnke 2003, p.155) or Geschichte der gleichmäßigen Konvergenz:
Ursprünge und Entwicklungen des Begriffs in der Analysis des 19. Jahrhunderts by Klaus
Viertel. (Viertel 2014)

According to Stokes, oscillating series such as 1− 1+ 1− 1+ · · · are divergent because,
although the partial sums don’t become infinite, they do not approach a unique limit as
n increases beyond all limit. Further, Stokes defined the difference between conditional
and absolute convergence and gave an example. Stokes called absolutely convergent series
essentially convergent and conditionally convergent series accidentally convergent.

Stokes then made a statement about how and why divergent series may be used. A
divergent series may be used when the first n terms of the divergent series can be seen as
some type of limit of a convergent series. Stokes said:

“Of course the first n terms of a divergent series may be the limits of those
of a convergent series: nor does it appear possible to invent a series so rapidly
divergent that it shall not be possible to find a convergent series which shall have
for the limits of its first n terms the first n terms respectively of the divergent
series. Of course we may employ a divergent series merely as an abbreviated
mode of expressing the limit of the sum of a convergent series. Whenever a
divergent series is employed in this way in the present paper, it will be expressly
stated that the series is so regarded.” (Stokes 1849, p.536)

Later in the paper, Stokes repeated himself and addressed the issue of whether a diver-
gent series could have a different sum depending on which convergent series it was considered
a limit of. Stokes said:

“I would here make one remark on the subject of consistency. We may speak of
the sum of an infinite series which is not convergent, if we define it to mean the
limit of the sum of a convergent series of which the first n terms become in the
limit the same as those of the divergent series. According to this definition, it
appears quite conceivable that the same divergent series should have a different
sum according as it is regarded as the limit of one convergent series or of an-
other. If however we are careful in the same investigation always to regard the
same divergent series, and the series derived from it, as the limits of the same
convergent series and the series derived from it, it does not appear possible to
fall into error, assuming of course that we always reason correctly. For example,
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we may employ the series [...], and the series derived from it by differentiation,
&c., without fear, provided we always regard these series when divergent, or
only accidentally convergent, as the limits of the particular convergent series
formed by multiplying their nth term by gn.” (Stokes 1849, p.539)

These long quotes indicate what Stokes meant, in 1847, by a divergent series. He
articulated when it was safe to use them and how they could be used. Stokes’ statements
are lacking in rigour and, in fact, are difficult to understand. For example, what does it
mean to “assume that we always reason correctly”? Stokes overcame the lack of clarity
about how to ensure the veracity of results obtained from an asymptotic expansion in two
ways.

First, Stokes compared his asymptotic expansion results to results obtained from theory
by other methods — computation from a convergent series, or by evaluation of a definite
integral in finite terms, for example. In this vein, Stokes footnoted a paper On Fluctuating
Functions (Hamilton 1843, p.264) written by Sir Rowan William Hamilton (1805-1865)
which he also referred to in the paper On the Numerical Calculation of a Class of Definite
Integral, analyzed next. Stokes referred to this paper by Hamilton twice because it justified
the results he obtained asymptotically via a completely different method. Second, Stokes
compared his asymptotic results to experimental evidence.

The key point is that the mathematics of Stokes’ asymptotic method did not stand on
its own. By way of contrast, 55 years later, a standard textbook, A Course of Modern
Analysis (Whittaker 1902) by Edmund Taylor Whittaker (1873-1956) published in 1902,
which we will say more about later, defined an asymptotic expansion thus:

“A divergent series

A0 +
A1
x

+ A2
x2

+ · · ·+ An

xn
+ · · ·

in which the sum of the first (n + 1) terms is Sn is said to be an asymptotic
expansion of a function f(x), if the expression xn{f(x) − Sn} tends to zero
as x (supposed for the present to be real and positive) increases indefinitely.”
(Whittaker 1902, p.164)

Whittaker, roughly fifty years after Stokes’ paper, started with a clear definition of an
asymptotic expansion. This is unlike how Stokes presented his thoughts on asymptotic
expansions.

76



Finally, Stokes showed that if a function had an expansion into a convergent series of
sine functions, it was a simple matter to find what the coefficients were. He then addressed
several issues in detail regarding the use of Fourier series. These included:

1. Finding discontinuities of Fourier series.

2. Finding discontinuities of the integrals that are analogous to the Fourier series.

3. Finding discontinuities of sums of infinite series and improper integrals.

I now look at how Stokes found asymptotic expansions.

3.2 Stokes’ 1850 paper on Numerical Calculation of Integrals

I have shown that in the mid-nineteenth century the validity of using divergent series was not
agreed upon and yet there was awareness that they could be very useful if used cautiously.
This position was clearly seen in the De Morgan paper. The questions then are: when should
they be used?, how do you come up with them?, what justification is used for employing
them?, and how are any results thus obtained verified?

Further, we have seen that Stokes, in 1847, published a paper where convergence issues
were carefully examined — a paper in which he defined what he meant by convergence and
divergence and a paper in which the idea of uniform convergence was nascent.

Then, Stokes, at mid-century (March 11, 1850), used divergent series to obtain numerical
approximations for several definite integrals arising in optics. He then used the same method
in computing the vacuum to air correction factors from pendulum theory (December 9,
1850). I will use the computation of the value of a definite integral that arose in optics to
illustrate Stokes’ use of a divergent series in a particular context.

Stokes first used his divergent series method to obtain numerical results in optical theory
and it was then very shortly afterwards used in pendulum theory. The publication dates
indicate this but Stokes himself stated that after developing his technique to evaluate a
definite integral brought to his attention by Airy, he realized that the same method could be
used to compute the vacuum to air correction factor in the case of the cylindrical pendulum
— a problem that he had earlier set aside when the computations appeared to be too
difficult.

Stokes was interested in calculating the numerical values of the definite integral

W =
$ ∞

0
cos π

2 (w
3 −mw) dw

77



for large values of the parameter m. Large in this context meant larger than 4, since Airy
had already done the computations up to that value.

This integral, called the Airy integral, arose while trying to determine the intensity of
light in the neighbourhood of a caustic. A caustic is the envelope of light rays reflected
or refracted by a curved surface. The light intensity an any particular location in the
caustic was mathematically determined using the undulatory theory of light. This theory
was formulated by Augustin-Jean Fresnel (1788-1827) and published in a series of memoirs
during the late 1810s and early 1820s culminating in De la lumière published in 1822. This
work was translated into English by Young between 1827 and 1829 and fully accepted by
Airy by 1831 (Buchwald 1989).

In the early part of the nineteenth century, there was vigorous debate about what
light was. Many of the well-established scientists of this time were followers of Newton’s
corpuscular theory of light which held that light was an emission of particles from a luminous
object. The competing theory was the wave theory of light which held that light was a
vibration in some type of ether — a hypothetical medium that filled space and through
which light travelled. Various experiments were done in order to try to understand which
theory best explained observed phenomena. These experiments included observations of
refraction, interference, diffraction and polarization.

Proponents of these competing theories each tried to use their theory to explain ex-
perimental results. In 1817 the French Académie des Sciences set diffraction as its prize
competition topic. In response to this and building on it afterwards, Fresnel proposed a
wave theory of light where light was vibration in an ether and further, that the movement
of light through the ether was a result of transverse vibration. For a history of optics dur-
ing this time, see A History of Optics from Greek Antiquity to the Nineteenth Century by
Olivier Darrigol (Darrigol 2012). For a detailed explanation of the rise of the wave theory
of light see The Rise of the Wave Theory of Light: Optical Theory and Experiment in the
Early Nineteenth Century by Jed Buchwald (Buchwald 1989).

Airy’s paper On the Intensity of Light in the Neighbourhood of a Caustic (Airy 1838)
appeared in Volume 6 of the Transactions of the Cambridge Philosophical Society in 1838.
In the first paragraph of this paper Airy explicitly stated the motivation for his work.
He sought to generate predictions from the undulatory theory of light to which he could
compare with the results from experiments performed with the intent of testing the theory.
Airy stated it thus:

“When a great physical theory has been established originally on considerations
and experiments of a simple kind, which by degrees have been exchanged for
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comparisons of more distant results of the theory with more complicated cases
of experiment, it has always been considered a matter of great interest, to trace
out accurately by mathematical process the consequences, according to that
theory, of different modifications of circumstances: which can then be compared
with measures that have been made, or that may easily be made in future. It
is with this view that I solicit the indulgence of the Society, for the following
investigation of the Intensity of Light in the neighbourhood of a Caustic, as
mathematically estimated from the Undulatory Theory.” (Airy 1838, p.379)

Here, analogous to Stokes and the pendulum measurements, Airy had a theory which he
wanted to verify by using it to make predictions which he could then test in the laboratory.
After many pages of analysis, Airy concluded that the expression for the disturbance of the
ether at the illuminated point, which is related the intensity of light in the neighbourhood
of the caustic, was

sin 2π
λ
(vt− E)

$ ∞

0
cos π

2 (w
3 −mw) dw

and therefore the intensity of light was
4$ ∞

0
cos π

2 (w
3 −mw) dw

52

Airy computed the value of the integral to obtain the light intensity for values of m =
−4.0 to m = 4.0 in steps of 0.2 which he published in a table in the paper (Airy 1838,
p.391). The method that Airy used for computing these integral values was a modified
midpoint rule:

1. First the upper limit of the integral was reduced from w = ∞ to w = 2.

2. Then the integral was divided into 8 pieces, corresponding nearly to quadrants of the
circular function when m = 0. This gave the following 8 integrals w = 0 to w = 1.00,
w = 1.00 to w = 1.26, w = 1.26 to w = 1.44, w = 1.44 to w = 1.58, w = 1.58 to
w = 1.70, w = 1.70 to w = 1.82, w = 1.82 to w = 1.92 and w = 1.92 to w = 2.00.

3. For each of the integrals, a mesh size that ranged from 0.04 for the first integral to
0.008 for the last integral was selected.

4. For each of these integrals, the midpoint rule was used to approximate the integral.

5. The first four differences were computed for each interval of integration and the mid-
point rule was improved in effect fitting a quartic polynomial to each region.
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The method of numerical quadrature that Airy used to directly evaluate the integral was
a standard technique at that time. For a thorough analysis of the typical numerical methods
used for quadrature during the nineteenth century, see Herman Goldstine’s book titled A
History of Numerical Analysis from the 16th through 19th Century (Goldstine 1977).

Airy further computed W , the square root of the light intensity, for w = 2.00 to w = ∞
using substitution and integration by parts. The integration by parts was performed seven
times and then the remainder, a residual integral, beyond that was discarded. This method
produced a partial sum in the form of an alternating divergent series.

Airy was well aware that the method he employed, with the lower limit of integration
of two for

W =
$ ∞

2
cos π

2 (w
3 −mw) dw

produced a divergent series. Regarding the error incurred by using an alternating divergent
series, Airy said:

“The residual integral, therefore, is certainly less than vn, the last term found in
the series, and is probably much less: and therefore, if the last term computed
consist only of integers in the last place of decimals which we wish to retain,
even though the divergence of the series be just beginning, the use of these terms
will give the integral required with the utmost practical accuracy.” (Airy 1838,
p.400)

This bound on the error of the partial sum of the series is the alternating series test error
bound which had been well-known for a long time.

For values of m approaching m = 3.0, the divergence in the series Airy produced com-
menced sooner. He corrected for that as well stating that the number of terms computed by
a logarithmic process for the part of the integral beginning at 2 was 900 for values of m that
were large (above 3.0). Airy estimated that the error that remained in these calculations
were to digits in the fifth place of decimals, but no higher. Computations were impractical
with the above method beyond m = 4.0.

Later, Airy was able to recompute these values and to include values of the intensity
integral (now regularly referred to as the Airy integral) for values of m between ±5.6 using
a convergent series expansion of the integrand and then integrating term by term. Though
this was an improvement, the calculations beyond m = ±5.6 remained too laborious and
the value of the integral for larger values of m remained unknown.

The values of m for which W = 0 give physical information about the intensity of light
in the neighbourhood of a caustic — specifically W = 0 when there is a dark band in the
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illumination. The values of the integral computed by Airy made it possible to find the
first two roots of W . However, Miller had observed the dark bands in the caustic in the
laboratory and had thus experimentally determined the first 30 zeros of the function W .
The problem for Stokes was to compute the locations of those dark bands using the integral.

Several things about this problem command our attention. The divergent series that
Stokes developed to make these numeric computations came from a convergent integral so
the existence of a finite value was guaranteed. In addition there were already two methods of
computing the integral for restricted values of m, one of which did not employ a divergent
series and the other which employed an alternating divergent series for a portion of the
integral — a portion which was significant for some values of m and insignificant for others.

Further, there was experimental evidence against which the mathematical calculations
could be compared. This was Airy’s motivation for making the calculations in the first
place. According to Stokes, after some effort, he was able to manipulate the Airy integral
into a divergent series from which he easily computed W for large values of m. He was also
able to find the values of m which made W = 0. Stokes said:

“After many trials I at last succeeded in putting Mr. Airy’s integral under a form
from which its numerical value can be calculated with extreme facility when m

is large, whether positive or negative, or even moderately large. Moreover the
form of the expression points out, without any numerical expression, the law of
the progress of the function when m is large. It is very easy to deduce from
this expression a formula which gives the ith root of the equation W = 0 with
hardly any numerical calculation, except what arises from merely passing from
(m/3) 32 , the quantity given immediately, to m itself.” (Stokes 1856b, p.167)

Before describing his new method for computation, Stokes commented on its useful-
ness. The integral W had already been developed in an ascending convergent power series.
According to Stokes, ascending power series are effectively Taylor series where in each sub-
sequent term the variable is raised to a larger positive power and these types of ascending
series occur constantly in solutions to physical problems. Examples of such series, provided
by Stokes, which are convergent for all values of the variable, are e−x, cosx and sin x all
of which are easily computed, with high accuracy, for small values of x but are extremely
inconvenient to use for large values of x because too many terms must be computed in order
to get sufficient accuracy. Note here that all three examples Stokes gave are alternating
series. He did not use ex as an example even though his statement is still true for that
function even though the representative infinite series does not alternate. Perhaps these ex-
amples were chosen because there is an obvious error bound in the first omitted term. On
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the other hand, the Taylor remainder theorem was available to Stokes both in the Lagrange
and Cauchy form though neither of these is as simple to use as the alternating series test.

Stokes was motivated to use divergent series in the first place precisely because conver-
gent ascending series, like those above, are computationally inefficient. Stokes also sought
to find what he termed the “law of progress” of a function. Stokes used this expression to
mean to determine how a function changes as the variable changes and specifically to un-
derstand function behaviour as the variable increases. For example, consider f(x) = sin x.
A visual picture of this is easily formed and the behaviour of the function for large x can

be seen. Representing f(x) = sin x = x− x3

3! +
x5

5! − · · · in its ascending power series makes
the function much harder to visualize. It is also more difficult to figure out what the limit
of the function is as the variable tends to infinity or to find the zeros of the function.

According to Stokes, such series can present themselves as a development of a definite
integral arising in the solution of a physical problem, as in the integral for W above. This
results from computing the Taylor series of the integrand and then integrating term by
term. Convergent infinite series can also present themselves as the development of integrals
which arise as solutions to a linear differential equation which cannot be integrated in finite
terms. Stokes claimed his method was very generally applicable to series of this second
type.

Stokes claimed his method was difficult to describe in general and was best understood
from examples, of which he provided three. The first example was the Airy integral

W =
$ ∞

2
cos π

2 (w
3 −mw) dw

with parameter m such that W =W (m). The second example was

u = 2
π

$ π
2

0
cos(x cos θ) dθ

with parameter x such that u = u(x), and the third example was

v = 2
π

$ x

0

$ π
2

0
cos(x cos θ) x dx dθ.

where the upper limit of integration of the first integral is a parameter in the second integral
such that v = v(x). The second example arose, according to Stokes, in a great many physical
applications, and the third example occurred when investigating diffraction with a circular
aperture in front of a lens.
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Despite the fact that Stokes claimed that it was difficult to describe his method in
general, he gave an overview of the method which I summarize before I describe in the
method in detail using the second of his three examples. Consider a series of the type
described above — that is, an ascending infinite series resulting from an integral solution to
a physical problem or appearing in the solution to a linear differential equation. For infinite
series of this type Stokes’ method to find an asymptotic expansion was as follows:

1. Identify the differential equation which is solved by the given series y = f(x) where
f(x) is a convergent infinite series.

2. Determine which terms of the differential equation are important when x is large,
eliminate the other terms in the differential equation and solve the differential equation
in finite terms.

3. Assume that the solution to the original differential equation is the, typically circular
or exponential, function found in part 2) multiplied by an infinite series in descending
powers of x. This descending series has undetermined coefficients.

4. Use either the original integral (easier) or use the original convergent series (more
difficult) to find the undetermined coefficients introduced in step 3).

Step 3 of the method above was suggested to Stokes after he saw the formulae Cauchy
developed for computation of the Fresnel integrals for large values of the upper limit of inte-
gration. Stokes saw these in Répertoire d’optique moderne (Moigno 1850), a work written by
François-Napoléon-Marie Moigno (1804-1884) between 1847 and 1850. Moigno considered
himself a student of Cauchy. As we saw earlier in the introduction, Cauchy was opposed,
in the main, to the use of divergent series, yet he wrote a paper on their legitimate use.
And, as reported by Moigno, Cauchy produced a divergent series representation of the
Fresnel integrals by repeated use of integration by parts. He then used the partial sums of
those divergent series to evaluate the Fresnel integrals for large values of the upper limit of
integration.

To illustrate Stokes’ method, I have chosen to use the second of his three examples since
the computations are easiest to follow in that case. Consider the integral

u = 2
π

$ π
2

0
cos(x cos θ) dθ

where x is a parameter such that u = u(x). Take the integrand of u and expand the outer
cosine function in a Taylor series centered at zero to get
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u = 2
π

$ π
2

0
(1 − x2 cos2(θ)

2! + x4 cos4(θ)
4! − x6 cos6(θ)

6! + · · · ) dθ.

Then integrate term by term to get a convergent series with interval of convergence x ∈
(−∞,∞) in ascending powers of x:

u = 1 − x2

22 + x4

2242 − x6

224262 + ...

This is this Bessel function of the first kind of order zero — a known series. When
developing this infinite series from the integral, the order of summation and integration
were switched without comment. This is typical in this paper — Stokes did not discuss
convergence issues while explaining his method.

For small values of x, successive terms in the series for u(x) get very small very quickly,
and a good estimate for u(x) can be obtained by truncating the series after a small number
of terms. For larger values of x, however, the terms grow for a considerable period of time
before decreasing and many terms must be included in order for the error, which is bounded
by the first term neglected since u(x) is an alternating series, to become insignificant. It is
this fact that makes the manual computations of such definite integrals unmanageable for
large values of the parameter which in this case is x.

The values of the integral u had been already tabulated by Airy and published in a table
in the eighteenth volume of the Philosophical Magazine (Airy 1841, p.1) for values of x from
zero to ten, at intervals of 0.2. This gave Stokes something to check his computations, and
thus his new method, against.

The next step Stokes took in finding a divergent series representation of u was to find a
differential equation which was satisfied by the power series representation of u. This was
done by performing the operation

x
d

dx

twice on the series u and noticing that

−x2u

was the result. There was no algorithm for this — you differentiate twice and multiply by
powers of x and see if you can determine an equation. Thus Stokes found that u satisfied
the differential equation

d2u

dx2
+ 1
x

du

dx
+ u = 0
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Stokes next made two arguments for only considering the first and last term of the
above differential equation for large x. The first argument, presented in the main body of
the paper, was that an increment in x, which Stokes labelled δx, while perhaps not small
itself was small in relation to x when x was very large. Thus, if the increment in x was
equated with du

dx
, the second term of the differential equation was small when compared to

the first and third terms.
In a footnote, Stokes made a second argument for omitting the second term of the

differential equation. This argument consisted of taking all possible combinations of two
terms of the differential equation and showing that the solution of the differential equation
under any combination but omitting the second term, results in a function whereby the
omitted term was more important than the retained terms.

Stokes said this as follows:

“That the 1st and 3rd terms in
6
d2u

dx2
+ 1
x

du

dx
+ u = 0

7

are ultimately the im-

portant terms, may readily be seen by trying the terms two and two in the
way mentioned in the introduction. Thus, if we suppose the first two to be
the important terms, we get ultimately U = A or U = B log x, either of which
would render the last term more important than the 1st or 2nd, and if we sup-
pose the 2nd and 3rd to be the important terms, we get ultimately u = Ae

−x2
2 ,

which would render the first term more important than either of the others.”
(Stokes 1856b, p.182)

In the quote above when Stokes referred to the way mentioned in the introduction for
trying terms two by two, he said that this was “much as in Lagrange’s method of expanding
implicit functions which is given by Lacroix in his Traité du Calcul” (Stokes 1856b, p.167).

There is no comparison between retaining the first and third term and using all three
terms presumably because the differential equation can be solved in finite terms by standard
methods only when two of the three terms are included. Thus the form of the solution can
only be seen for various values of x for all possible cases with one omitted term.

The simplified differential equation, with the second term omitted, now called the Van
der Pol equation is

d2u

dx2
+ u = 0

and is solved, as per Stokes, with the function

u = A cos δx+B sin δx.
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It is not clear here why Stokes used δx here rather than x since the solution to the Van der
Pol equation is:

u = A cosx+B sin x.

The δx notation was not used further in Stokes’ analysis; however this notation was used
in contemporary work.

The presence of the circular functions in the solution to the simplified differential equa-
tion led Stokes to assume a solution to the original differential equation with all three terms
to be of the form

u = ex
√

−1(Axα +Bxβ + Cxγ + ...)

where the values of A, B, C, ... and α, β, γ, ... were undetermined. I am using the exact
notation of Stokes and I note that the A and B in the full solution do not represent the
same thing as in the equation u = A cos δx+B sin δx which is the solution to the simplified
differential equation.

This solution to the original differential equation can be seen as one where the solution
to the differential equation of two terms (a linear combination of the circular functions) has
been factored out.

The proposed solution, u = ex
√

−1(Axα + Bxβ + Cxγ + ...), and its first and second
derivatives were substituted back into the complete differential equation to provide the
following equation:

√
−1{(2α + 1)Axα−1 + (2β + 1)Bxβ−1 + · · · }+ α2Axα−2 + β2Bxβ−2 + · · · = 0

which, under the assumption that the desired series solution be in descending powers of x
forced

α = −1
2 , β = −3

2 , γ = −5
2 , · · ·

By equating the coefficients on like powers of x, Stokes determined the values of all of
the constants A, B, C, ... in terms of A. After substituting for B, C, ... into the solution,
it was then possible to algebraically manipulate the solution into the form

A(P +
√

−1Q).
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The above procedure was repeated to give a second solution of the form

B(P −
√

−1Q)

and the combination of these two solutions gave the general solution to the original differ-
ential equation of

u = Ax− 1
2 (R cosx+ S sin x) +Bx− 1

2 (R sin x− S cosx)

where
R = 1 − 12 · 32

1 · 2(8x)2 +
12 · 32 · 52 · 72
1 · 2 · 3 · 4(8x)4 · · ·

and
S = 12

1 · (8x) − 12 · 32 · 52
1 · 2 · 3(8x)3 · · ·

This new A and B here were determined from initial conditions which were obtained
from the original equation in the following manner. Consider the original integral to be
evaluated:

u = 2
π

$ π
2

0
cos(x cos θ) dθ = u = 1 − x2

22 + x4

2242 − x6

224262 + ...

and substitute cos θ = 1 − µ into the integral. This substitution, for large values of x,
yielded an approximation to the integral by the function

u = (πx)−
1
2 (cosx+ sin x)

By comparing this solution, which came directly from the convergent integral using
simplifying assumptions based on large x, with

u = Ax− 1
2 (R cosx+ S sin x) +Bx− 1

2 (R sin x− S cosx)

which came from the solution to the differential equation in terms of a divergent series,
Stokes was able to determine the constants. This yielded a value of π− 1

2 for both A and B.
Ultimately the result was that for very large values of x, u can be computed via

u =
" 2

πx

# 1
2
R cos(x− π

4 ) +
" 2

πx

# 1
2
S sin(x− π

4 )

where R and S are divergent series in descending powers of x.
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At this point, Stokes lent authority to his result by noting that Hamilton had already
obtained this result using a different method. Stokes said:

“This expression for u, or rather an expression differing from it in nothing but
notation and arrangement, has been already obtained in a different manner by
Sir William R. Hamilton in a memoir On Fluctuating Functions. See Transac-
tions of the Royal Irish Academy, Vol. XIX, p.313.” (Stokes 1856b, p.182)

This was the first justification of the validity of the method outlined. There was con-
firmation of this directly from Hamilton but it came about 7 years later. On December
17th, 1857, Hamilton wrote to Stokes that he had received the 1850 paper by post nearly
a month prior. Hamilton said that he had received a copy earlier but that he was other-
wise occupied and that he was pleased to receive a second copy of the important paper.
Hamilton was pleased to be credited with finding the asymptotic expansion for the Bessel
function of order zero by a different method but with the same result of Stokes using his
“quite different method” (Stokes 1907b, p.131). Hamilton stated that:

“These numbers (as I had the satisfaction to observe) agreeing with those of your
formula (60), but the law having been independently deduced.” (Stokes 1907b,
p.131)

Immediately after finding his asymptotic expansion, Stokes computed the value of u
for x = 10 and obtained u = −0.24594 which Airy had computed to be −0.2460 from the
convergent series. In order to compare his results with Airy’s result, Stokes picked the largest
value of x for which a numerical result was known. It is not clear what Stokes considers
to be a large value of x since the word large was not quantified in the paper. However, it
made sense to verify the method with the largest value of x for which computation via a
different method was available. This was the second justification for the method outlined.

Stokes continued his analysis of his asymptotic solution, u(x), and showed how to convert
the solution u(x) into a formula for finding the roots of u(x). From this formula, all of the
roots of u(x) with the exception of the first were found. The value of those roots, which
determine the dark bands in the caustic, agreed with the computations of Airy which had
previously been done using a convergent series. This was the third justification for the
method outlined.

88



3.3 Use and Reception of the Stokes Method

Stokes read the paper that explained in detail how he was able to use divergent series for
numerical approximation in the spring of 1850. However he was using this method at least
as early at 1848.

Stokes wrote a short letter to Airy (Stokes 1907a, p.159) on May 12th, 1848. The purpose
of the letter was to respond to an enquiry of Airy, communicated to Stokes by Miller, about
numerical approximations of the Airy integral. These were the calculations that led to the
determination of the null-points of Airy’s integral. In this letter, Stokes immediately stated
the divergent series representation of the integral (worked out in example one in the 1850
paper On the numerical Calculation of a Class of Definite Integrals and Infinite Series.),
said that it diverged “hyper-geometrically” for any value of m or x but that for moderately
large or large values of m, the leading terms converged with “great rapidity” and the first
few terms gave a very good approximation.

In this letter, Stokes does not appear completely confident in the validity of his method.
Just prior to telling Airy the values of the zeros of the Airy integral he said:

“The series shows (assuming that the convergent part is really an approximation
to the required integral) that w vanishes for...” (Stokes 1907a, p.159)

It was not uncommon at this time to use the terminology, convergent part, to mean the
terms of the divergent series which were decreasing in magnitude. The diverging part of
the series, then, was the terms that followed the smallest term of the divergent series.

Shortly after that Stokes carefully pointed out that his divergent series approximation
failed for small values of x and m. However, Airy’s calculations showed that there was
no dark band until m was large enough to make Stokes’ approximation valid. Stokes also
pointed out the utility of his method stating that he calculated the first fifteen vanishing
points of the integral in less than one and a half hours.

He further confessed that he had been unable to bound the error. Stokes said:

“I have not as yet assigned a limit to the error committed in stopping at any
term, but I hope to be able to do so. I am however at present occupied with
other investigations.” (Stokes 1907a, p.160)

Does this perhaps indicate that Stokes did not feel it tremendously important to provide
an error bound and was content to rely on the comparison of his results to those obtained
by other methods?
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Stokes also stated that the method worked for an integral that Airy had tabulated in
Philosophical Magazine of January 1841 and that he expected it to work for the integral
that applied in the case of circular hole in front of the object-glass (lens) of a telescope which
was Example 3 of the 1850 paper, written two years later. Further Stokes communicated
that he believed his method would apply to a variety of integrals of that type (Stokes 1907a,
p.160).

The extensive correspondence between Stokes and Airy is 34 pages of Volume 2 of Stokes’
correspondence (Stokes 1907a, p.159-192). The first letter of their correspondence is the
May 12, 1848 letter quoted above. Either Airy did not reply to this letter or perhaps the
reply was lost — whatever the reason, the collected correspondence does not contain a reply
from Airy.

I have shown that Stokes’ method for asymptotic approximation was developed in the
late 1840s. Stokes was carefully considering convergence at the end of 1847. By early 1848,
as communicated to Airy, Stokes had an asymptotic expansion method that was somewhat
general and had been applied to the Airy integral. His paper on his asymptotic expansion
method was read in 1850 and published in the Transactions in 1856. The 1857 letter from
Hamilton to Stokes indicates that Stokes’ method of 1848 was circulated by post in 1850.

The caution regarding his method that Stokes displayed when writing to Airy in 1848 is
not present in the paper of 1850. There was also complete lack of discussion of convergence
issues in the 1850 paper, notable particularly given the very careful analysis of convergence
three years earlier.

As a testament to the importance of Stokes’ work analyzed here and, in particular, the
paper On the Numerical Calculation of a Class of Definite Integrals and Infinite Series, I
quote from Lord Kelvin’s tribute to Stokes written on February 12, 1902, ten days after
Stokes’ death. Kelvin said:

“Even pure mathematics of a highly transcendental kind has been enriched by his
penetrating genius; witness his paper ‘On the Numerical Calculation of a Class
of Definite Integrals and Infinite Series*,’ called forth by Airy’s admirable paper
on the intensity of light in the neighbourhood of a caustic, practically the theory
of the rainbow. Prof. Miller had succeeded in observing thirty out of an endless
series of dark bands in a series of spurious rainbows, for the determination of
which Airy had given a transcendental equation and had calculated, of necessity
most laboriously by aid of ten-figure logarithms, results giving only two of those
black bands. Stokes, by mathematical supersubtlety, transformed Airy’s integral
into a form by which the light at any point of any of those thirty bands, and any
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desired greater number of them, could be calculated with but little labour, and
with greater and greater ease for the more and more distant places where Airy’s
direct formula became more and more impracticably laborious. He actually
calculated fifty of the roots, giving the positions of twenty black bands beyond
the thirty seen by Miller.” (Stokes 1907b, p.307)

Thus, this work of Stokes was recognized much later as being a highlight of his early
career. I claim that Stokes was first to develop this type of method to produce an asymptotic
approximation. This is also the opinion of Schlissel who said:

“Stokes was the first investigator to use the complete formal solution as an ap-
proximation tool, in contrast to Carlini who had retained only the first two
terms. He was also the first who seriously attempted to prove that the approx-
imate solution in some sense approximated an actual solution. However Stokes
gave no estimate for the error incurred when only part of the approximating
series is used, and the argument he used to establish a relation between the
approximating series and the actual solution is generally untrue. A method de-
veloped later by Poincaré did demonstrate that the series of the type obtained
by Stokes, later to be called normal series solutions, were indeed the asymp-
totic series solutions of a general class of differential equations.” (Schlissel 1977,
p.318)

An obvious question to ask is what happened to this new tool in the period of time
just following 1850, when at least Airy was aware of it, or even following 1856, when it
was widely available to the scientific community after publication in the Transactions. The
answer to that question appears to be very little. The results that Stokes provided to Airy
were seen to be important but that does not seem to have translated into an uptake in
the use of the Stokes approximation method by others or even by Stokes himself in other
contexts.

There is a paper, read in 1851, and published in the 1856 volume of the Transactions
by J.H Rohrs titled On the Oscillations of a Suspension Chain (Rohrs 1856, p.379-398)
concerning the important topic of how vibrations could lead to bridge collapse. In this
paper Rohrs refers explicitly to Stokes’ paper On the critical values of sums of periodic
series and he also refers several times to assistance he got from Stokes in order to make
certain calculations. It is possible the the asymptotic method was used to make those
calculations but that is not clearly displayed in this paper.

91



Stokes published again on the topic of divergent series in Volume 10 (1864) of the
Transactions in a paper titled On the Discontinuity of Arbitrary Constants which appear in
Divergent Developments (Stokes 1864, p.105-124) which was read May 11, 1857. This paper
starts with a reference to On the Numerical Calculation of a Class of Definite Integrals and
Infinite Series and a reminder that Stokes had found a development of the Airy integral
that admitted extremely easy numerical calculation.

Stokes began On the Discontinuity of Arbitrary Constants which appear in Divergent
Developments with a statement of the value of his method. He said:

“The method there followed is of very general application to a class of functions
which frequently occur in physical problems. Some other examples of its use
are given in the same paper; and I was enabled by the application of it to solve
the problem of the motion of the fluid surrounding a pendulum of the form of
a long cylinder, when the internal friction of the fluid is taken into account.”
(Stokes 1864, p.105)

Stokes considered this paper, read in 1857, as a supplement to his 1850 paper. The appli-
cation to the cylindrical pendulum bob quoted above was exactly the application he had
already discussed in 1850. Stokes, seven years later, does not indicate that he has solved
any further problems with his method.

Stokes further indicated the value of his method for calculation. He said:

“In my former paper, to which the present may be regarded as a supplement, I
have employed these equations to obtain integrals in the form of descending series
multiplied by exponentials. These integrals, when once the arbitrary constants
are determined, are exceedingly convenient for numerical calculation when the
variable is large, notwithstanding that the series involved in them, though at
first rapidly convergent, became ultimately rapidly divergent.” (Stokes 1864,
p.105)

The main purpose of the 1857 paper was to discuss the arbitrary constants obtained
when determining the asymptotic expansion. Stokes indicated that it was possible to find
these in two different ways — numerically or analytically.

Consider two different infinite series representations of a function of interest. One series
consists of ascending terms — this is a convergent series — and the other series consists of
descending terms — this is a divergent series. There are constants that must be determined
that are introduced during the development of the divergent series expansion.
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These constants can be found numerically by computing the value of the convergent
and the divergent series for one or more values of the variable and then equating the results
to find the constants. This method had the advantage of being generally applicable but,
according to Stokes, “wholly devoid of elegance” (Stokes 1864, p.105).

The analytic method consisted of finding a relationship between the constants in the
ascending and descending series by means of a definite integral. With one exception, this
was what Stokes did in the previous work of 1850. In the case of the Airy integral Stokes
was able to find constants analytically for values of m positive, but he was not able to do
so for values of m negative. He did find the values of the constants for m negative but was
unable to give a “satisfactory demonstration of it” (Stokes 1864, p.106).

The reason for this is what is now called Stokes’ phenomena and Stokes is stating that
the value of the constants in his asymptotic expansions are different for different values of
the argument of the variable and further, that these constants change in a discontinuous
manner. He appears to have noticed it first when he changed the parameter in the Airy
integral expansion from positive and real to negative and real — that is, the asymptotic
expansion was different for different classes of the variable. The value of constants exhibits
discontinuities as the argument of m changed from zero to π.

In 1857, he further considered his asymptotic expansions for complex values of the
argument and he wanted to understand exactly where the discontinuity occurred and how
the constants changed. This would allow the divergent series to be used for all complex
values of the variable. The place where these discontinuities occur in the complex plane are
now called Stokes’ lines. Stokes said:

“But though the arbitrary constants which occur as coefficients of the diver-
gent series may be completely determined for real values of the variable, or
even for imaginary values with their amplitudes lying between restricted limits,
something yet remains to be done in order to render the expression by means
of divergent series analytically perfect. I have already remarked in the former
paper (p. 176) that inasmuch as the descending series contain radicals which
do not appear in the ascending series, we may see, a priori, that the arbitrary
constants must be discontinuous. But it is not enough to know that they must
be discontinuous; we must also know where the discontinuity takes place, and
to what the constants change. Then, and not till then, will the expressions by
descending series be complete, inasmuch as we shall be able to use them for all
values of the amplitude of the variable.” (Stokes 1864, p.106)

Stokes considered his 1857 paper a resolution to the stated problem. He said:
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“I have now succeeded in ascertaining the character by which the liability to
discontinuity in these arbitrary constants may be ascertained. I may mention at
once that it consists in this; that an associated divergent series comes to have
all its terms regularly positive. The expression becomes thereby to a certain
extent illusory; and thus it is that analysis gets over the apparent paradox
of furnishing a discontinuous expression for a continuous function. It will be
found that the expressions by divergent series will thus acquire all the requisite
generality, and that though applied without any restriction as to the amplitude
of the variable they will contain only as many unknown constants as correspond
to the degree of the differential equation. The determination, among other
things, of the constants in the development of Mr Airy’s integral will thus be
rendered complete.” (Stokes 1864, p.106)

Stokes, in 1857, proceeded in exactly the same manner as in 1850 and used a simple
example in order to introduce what followed. The example was different function from the
1850 paper function but again Stokes started with an integral and its related ascending
series both of which were convergent for all values of the variable, real or imaginary:

u = 2
$ ∞

0
e−x3 sin 2ax dx = 2a

1 − (2a)3
2.3 + (2a)5

3.4.5 · · ·

The development of the asymptotic expansion to be used to compute the value of u for
large values of a followed which included a lengthy discussion about the validity of using
the asymptotic expansion, including how the expansion could be used and for which values
of the argument the expansion was valid.

Stokes then took the Airy integral and its expansion from the 1850 paper and explained
how the constants in the asymptotic expansion must be discontinuous. Further, Stokes
explained there was a constant in the expansion of the integral regarding the determination
of the resultant force of the fluid on the pendulum that was left undetermined. This constant
was determined in the 1857 paper and was necessary for determining the motion of the fluid
at a great distance from the pendulum (Stokes 1864, p.122).

Stokes had previously noted that the constants in the asymptotic expansion of the Airy
integral were different for positive and negative real values of the variable. In this later
paper, he stated that the constants in his asymptotic expansions changed discontinuously as
the imaginary part of the (now complex) variable changed. Stokes concluded the following:

“That when functions expressible in convergent series according to ascending
powers of the variable are transformed so as to be expressed by exponentials

94



multiplied by series according to descending powers, applicable to the calculation
of the functions for large values of the variable, and ultimately divergent, though
at first rapidly convergent, the series contain in general discontinuous constants,
which change abruptly as the amplitude of the imaginary variable passes through
certain values.” (Stokes 1864, p.124)

Stokes wrote to his soon to be wife in March of 1857 about this. He said:

“Some years ago I attacked an integral of Airy’s, and after a severe trial reduced
it to a readily calculable form. But there was one difficulty about it which,
though I tried till I almost made myself ill, I could not get over, and at last I
had to give it up and profess myself unable to master it. I took it up again a
few days ago, and after a two or three days’ fight, the last of which I sat up till
3, I at last mastered it.” (Stokes 1907b, p.62)

Stokes returned to the topic of asymptotic expansions again, very near the end of his life
in a 1902 Acta Mathematica paper titled On the Discontinuity of Arbitrary Constants that
appear as Multipliers of Semi-convergent Series (Stokes 1902). This was an invited paper for
a collection put together to commemorate Abel in which Stokes chose to summarize three of
his papers (1857, 1868, 1889) on asymptotic expansions published in the Transactions of the
Cambridge Philosophical Society. He did this partly because he felt that, even though the
papers had been available for a lengthy period, publication in Transactions of the Cambridge
Philosophical Society made them not so widely know than if they had been published in
a more widely read journal. This is an interesting comment which may bear upon why
Stokes’ work on asymptotic expansions was not influential and perhaps even indicates that
Stokes was aware of this.

Stokes claimed that the three papers he summarized in 1902 were for the most part
concerned with the complete integral of the differential equations of the second order which
are satisfied by Bessel’s functions.

Even given that we have seen that Stokes returned to and published on the topic of
asymptotic series in 1857, I have not found any use of his method in the years immedi-
ately following the original publication of the method in 1856. A similar situation appears
following the publication in 1864 on the now-called Stokes phenomenon. In the 1902 pa-
per, Stokes described the discontinuous expressions for his asymptotic expressions with the
variable expressed in polar format. Stokes said:
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“The way in which the paradox of giving a discontinuous expression for a con-
tinuous function is explained is this. A semi-convergent series (considered nu-
merically, and apart from its analytical form) defines a function only subject to
a certain amount of vagueness, which is so much the smaller as the modulus of
the variable according to inverse powers of which it proceeds is larger. I have
shown that, in general (i. e. for general values of θ), the vagueness of the su-
perior function ultimately, as r is increased, disappears in comparison with the
whole value of the inferior term. But for the critical values of θ for which the
index of the exponential is real the vagueness of the superior function becomes
sufficient to swallow up the inferior function. As θ passes through the critical
value, the inferior term enters as it were into a mist, is hidden for a little from
view, and comes out with its coefficient changed. The range during which the
inferior term remains in a mist decreases indefinitely as the modulus r increases
indefinitely.” (Stokes 1902, p.396)

As we shall see in the next two chapters, further development of asymptotic expansions
came nearly thirty years later in 1886, in the work of Poincaré and Stieltjes. The work of
these two mathematicians appears to be have been independent of Stokes’ work. As I will
show, there were similarities between what Stokes did and what was to come — for example
computations were needed in a physical situation (in this case celestial mechanics) — and
there were differences (the level of rigour).
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Chapter 4

Celestial mechanics, Mathematics
and Poincaré

At the end of the nineteenth century, Henri Poincaré (1854-1912) was one of the world’s
leading researchers in both pure and applied mathematics as well as in physics. Poincaré’s
applied work encompassed many different fields including celestial mechanics, fluid mechan-
ics, optics, electricity, quantum theory, relativity, and thermodynamics. He also wrote books
on mathematics and physics for the general public as well as essays about the philosophy
and methods of science.

According to Jeremy Gray (Gray 2012), Poincaré’s intellectual output began in 1881
with contributions to the mathematics of complex function theory, complex differential
equations and non-Euclidean geometry, which resulted in the theory of automorphic forms.
During the late 1880s, the period of interest here, Poincaré made major contributions to the
theory of real differential equations and provided, quoting Gray, “a radically new way” to
handle celestial mechanics. His involvement in physics deepened as time progressed, though
he continued to work in mathematics and, according to Gray, Poincaré produced his most
lasting achievement in the creation of algebraic topology (Gray 2012, p.3).

It is perhaps possible to see Poincaré as primarily a mathematician who turned his
attention to physics whereas, in contrast, it would not be possible to consider Stokes this
way. Stokes was primarily interested in solving physical problems and he was adept at
using and inventing new mathematical techniques for that purpose. Gray has provided a
picture of Poincaré which captures Poincaré’s outlook on science and mathematics and this
outlook has understanding at its core. According to Gray, Poincaré thought that science
was understanding based on axioms, principles and experimental data. Gray said:
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“We have no certainly beyond what shared use and discourse can guarantee,
no unmediated access to reality. We do what we can according to our best
understanding of the rules of the game (axioms, principles, the best experimental
data). Mathematics and physics together offer us a rule-governed way of living
in the world, although we may, from time to time, have to change the rules,
and our ability to frame these rules is, in some ways, built into how our minds
work.” (Gray 2012, p.2)

For basic biographical information and an in-depth analysis and summary of Poincaré’s
scientific work see Jeremy Gray’s Henri Poincaré: A Scientific Biography (Gray 2012).

In this chapter and the next, I focus on Poincaré’s work in celestial mechanics and, in
particular, on the use of divergent series in the computation of ephemerides. In this chapter,
I use one of Poincaré’s philosophical works to provide context for the way in which Poincaré
was thinking about the mathematics and physics he developed. I also discuss how this
contrasted with what he saw of the British methodology of which Stokes was a canonical
example.

4.1 Celestial Mechanics

The culmination of Poincaré’s work on celestial mechanics appeared in a three volume text
titled Les méthodes nouvelles de la mécanique céleste which was published in 1892 (Volume
I), 1893 (Volume II) and 1899 (Volume III). This work was translated into English, edited
and published with an introduction by Daniel Goroff in 1993. I will cite from this English
language translation (New Methods in Celestial Mechanics) (Poincaré & Goroff (ed.) 1993).

In the preface of this work on celestial mechanics, Poincaré clearly stated the purpose of
his investigations. I summarize from this preface to indicate that purpose while highlighting
the topics that are important to this thesis.

The major goal of celestial mechanics is to compute ephemerides of astronomical bodies
using the laws of mechanics. During the 1880s and 1890s, that meant using Newton’s laws
of gravitation to predict the orbits of various celestial objects. A difficult and important
problem in celestial mechanics is the three body problem. This consisted of taking the
initial positions and momenta of three point masses and solving for their future positions
according to Newton’s law of universal gravitation. Poincaré stated the importance of
the three-body problem in the first sentence of the preface to New Methods in Celestial
Mechanics. Poincaré stated that the three-body problem was:
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“of such importance in astronomy, and is at the same time so difficult, that all
efforts of geometers have long been directed toward it” (Poincaré & Goroff (ed.)
1993, p.xxi)

The process of exact integration to solve the differential equations of the three body
problem was “manifestly impossible” (Poincaré & Goroff (ed.) 1993, p.xxi) and for that
reason, approximation methods had to be used. I will show these methods use asymptotic
expansions of divergent series.

The final goal of celestial mechanics, according to Poincaré, was to determine whether
or not Newton’s laws alone explain observed astronomical phenomena. The method of
determining this was to predict, from Newtonian theory, using approximation methods if
required, the position and velocity of astronomical bodies and then to use precise obser-
vations to validate those predictions. I emphasize that, just as in the case of Stokes and
the pendulum, the closer the agreement between precise, observational measurements and
good numerical approximations made from theory, the more confidence there was that the
underlying theory was correct. Poincaré said it thus:

“The only means of deciding [if Newton’s laws alone explain all astronomical
phenomena] is to make the most precise observations, and then compare them
to calculated results. This calculation can only be approximate, and it would be
pointless to calculate to more decimals than observation can give us. It is there-
fore useless to ask more precision from calculation than from observation, but
neither should we ask for less. Furthermore, the approximation with which we
can content ourselves today will be insufficient in several centuries. And, in fact,
even admitting the improbability of perfecting measurement instruments, the
very accumulation of observations over several centuries will permit us to know
the coefficients of the various inequalities with greater precision.” (Poincaré &
Goroff (ed.) 1993, p.xxi)

Poincaré explicitly pointed out that the methods of Lagrange, Laplace and Urbain Jean
Joseph Le Verrier (1811-1877) had been, until recently, sufficient for practical usage, and
that those methods produced infinite series solutions where the argument was the masses
of the heavenly bodies. These series solutions consisted of sine and cosine terms as well as a
secular term in the time variable which occurred outside of the periodic terms. In astronomy,
the secular term was used to identify the term of the solution which governed the long term
behaviour of the system. For example, a solution with the form f(t)(cos(nt) + sin(mt)),
where f(t) is not periodic, has secular term f(t). As a result, the convergence of solutions
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with secular terms was doubtful when the value of t was large. This had implications for
the long term stability of the solar system.

Further, the presence of the secular term was, Poincaré claimed, an artifact of the
solution method. He used the example of the Taylor series expansion of sin(αmt) into

αmt− (αmt)3
6 + ... to demonstrate how a periodic solution could appear to but not actually

have a secular term. If the solution to a differential equation were written as sin(αmt) it
would be clear that the solution was fully periodic. If however, the solution appeared or

was written as an infinite series, αmt− (αmt)3
6 + ... as in this example, it was more difficult

to see that this a fully periodic solution. Further, it is possible to remove a common factor,

t in this example, and write t(αm − (αm)3t2
6 + ...) as the representation of the solution.

This does not mean that there is a secular term, t — it is an artifact of how the solution
was developed.

Charles-Eugène Delaunay (1816-1872), Hill, Johan August Hugo Gyldén (1841-1896)
and Anders Lindstedt (1854-1939) had made improvements on the methods of Lagrange,
Laplace and Le Verrier which succeeded in eliminating the secular terms. However, these
improved methods did not produce infinite series that were convergent, Poincaré said, as
understood by a mathematician. This appears to mean that, while a mathematician would
define a series to be convergent if the partial sums tended to a limit, the astronomers were
using series that were useful because they gave satisfactory approximations by truncation
after the first term. The approximations were deemed satisfactory because they accorded
with observation and the convergence of the series was not considered.

Even following the publication of Poincaré’s work showing that series solutions to the
equations of celestial mechanics were divergent, there was credible dissent about this. For
example, Hill, in 1896, claimed that the reasons that Poincaré used to show that the series
were divergent were not convincing, Hill said:

“Recently M. Poincaré has much insisted that, under the latter condition, these
series, in the rigorous mathematical sense, are divergent ... However, the reasons
brought forward to sustain this opinion are scarcely convincing, and I think
there has been some scepticism among astronomers in reference to the matter.
Without attempting to find any flaw in M. Poincaré’s logic, I simply wish to
point out a class of cases where the convergency of the series can be shown.”
(Hill 1896a, p.93)

The confusion and lack of clarity regarding the convergence or divergence of the infinite
series used in celestial mechanics during the 1890s is also evident in the 1889 paper of von
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Bohlin (von Bohlin 1889) titled Zur Frage der Convergenz der Reihenentwickelungen in der
Störungstheorie the subject of which was libration. Von Bohlin said:

“Dass trotzdem die ersten Annäherungen stark convergiren, ist ohne weiteres
klar; es muss aber dahingestellt bleiben, wie der erwähnte Umstand auf die
späteren Annäherungen einwirkt, wenn Produkte von grossen ganzen Zahlen
sich anhäufen. Gehören bei diesen Verhältnissen die Reihen, wenn sie divergiren,
vielleicht zu den halbconvergenten? Und dies vorausgesetzt, welche Genauigkeit
werden sie in verschiedenen Fällen (für verschiedene Integrationsconstanten)
geben? Ist schliesslich die Tendenz zur Divergenz eine Anzeige, dass in allen
Fällen Libration stattfindet? Dies alles sind Fragen, welche wir offen lassen
müssen, an die sich aber sicher nicht nur ein theoretisches Interesse anknüpft.”1

(von Bohlin 1889, p.7)

Libration is an oscillation in the apparent aspect of a secondary body as seen from the pri-
mary object and von Bohlin was analyzing libration as a possible result of incommensurate
orbits of the observing and observed celestial bodies.

The failure of the infinite series of celestial mechanics to converge meant that it was
not possible to get arbitrarily close approximations for computed orbits from the infinite
series. It also meant that fundamental questions about our solar system were not answerable
using Newtonian theory and this included the question about the long term stability of the
universe.

Poincaré, in the late 1880s, like Stokes forty years earlier, was investigating a physical
problem modelled by differential equations which had no closed form solutions. Poincaré
was concerned with the solutions to the differential equations of celestial mechanics whereas
Stokes was concerned both with the differential equations of hydrodynamics as applied to
the pendulum and as well as the differential equations of the wave theory of light.

Before looking in depth, in Chapter 5, at how Poincaré approached and used divergent
series to get predictive numbers from the theory of celestial mechanics, I use Science and
Hypothesis to show how Poincaré was thinking about his work and how he saw it as different
from what the British did.

1That nevertheless the first approximations converge strongly is immediately clear; but it must be left un-
decided how the circumstance mentioned affects later approximations when products of large whole numbers
accumulate. Under these conditions, do the series, if they diverge, perhaps belong to the half-convergent
series? And given this, what precision will they give in different cases (for different constants of integration)?
Finally, is the tendency to diverge an indication that libration is occurring in all cases? All of these are
questions which we must leave open, but which are certainly not only of theoretical interest.
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4.2 Science and Hypothesis

Poincaré’s essay Science and Hypothesis was published in 1902. This book, written for a
non-specialist audience, sheds light on how Poincaré thought about theory confirmation. In
the preface of the work, Poincaré discussed the role of hypothesis in science. A hypothesis,
according to Poincaré, is a proposed explanation made on the basis of limited evidence. It
can be, among other things, the starting point for further investigation. Poincaré said:

“We shall also see that there are several kinds of hypotheses; that some are
verifiable, and when once confirmed by experiment become truths of great fer-
tility; that others may be useful to us in fixing our ideas; and finally, that others
are hypotheses only in appearance, and reduce to definitions or conventions in
disguise. The latter are to be met with especially in mathematics and in the
sciences to which it is applied.” (Poincaré, Larmor & Greenstreet 1952, p.xxii)

The first English translation of Science and Hypothesis by William John Greenstreet
(1861-1930) was published in 1902 with an introduction by Joseph Larmor (1857-1942) and
an author’s preface. A second English translation was published by Harvard University in
1905, translated by Bruce Halstead, and included an introduction by Josiah Royce (1855-
1916). It was published with a new author’s preface.

Larmor, Lucasian Professor of Mathematics at the University of Cambridge from 1903-
1932, made a number of perceptive points in his introduction to Poincaré’s essay about
the role of experiment in theory and about the differences between the philosophy and
methodology underlying French and British mathematical physics. His opinion was that
in England, at that time, there was a growing trend of considering theoretical physical
constructions as being artificially created or developed. Larmor said:

“There has been of late a growing trend of opinion, prompted in part by general
philosophical views, in the direction that the theoretical constructions of physical
science are largely fictitious, that instead of presenting a valid image of the
relations of things on which further progress can be based, they are still little
better than a mirage.” (Poincaré et al. 1952, p.xii)

Larmor felt that works like Science and Hypothesis were important to combat this type
of thinking — that the results of science should be clearly explained to the public to ensure
that science was seen to be explaining reality. Larmor said:

“But much advantage will accrue if men of science become their own epistemol-
ogists, and show to the world by critical exposition in non-technical terms of the
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results and methods of their constructive works, that more than mere instinct
is involved in it.” (Poincaré et al. 1952, p.xii)

Larmor claimed there was a difference in culture between the English and the French
in this regard and we shall see this difference in the approaches of Stokes and Poincaré
to divergent series. There were the “close-knit theories of the classical French mathemat-
ical physicist” (Poincaré et al. 1952, p.xiv) which contrasted with the “somewhat loosely
connected corpus of ideas” (Poincaré et al. 1952, p.xiv) of the British.

Two examples of this difference were given by Larmor. The first compared the French
conception of the ether with that of Maxwell and the second noted the difference between
Laplace and Thomas Young (1773-1829) with regard to the theory of capillarity. Laplace
started with fixed conceptions regarding atomic forces and, from that, logically developed
his argument, whereas Young used “tentative, mobile intuitions” (Poincaré et al. 1952,
p.xv). The end result was the Young-Laplace non-linear partial differential equation that
described the pressure difference across the interface of two static fluids.

Larmor felt that Young’s method allowed him to grasp the fruitful, though partial, anal-
ogy between capillary pressure and other more familiar physics in a way that the elaborate
analytical theories of Laplace did not. Further Larmor felt that the approach of Young and
Laplace were, at least partially, mutually incomprehensible. Larmor said:

“The aperçus of Young were apparently devoid of all cogency to Laplace; while
Young expressed, doubtless in too extreme a way, his sense of the inanity of the
array of mathematical logic of his rival.” (Poincaré et al. 1952, p.xv)

This, of course, was an opinion of Larmor and not everyone would necessarily agree with
this analysis. Fox, in a piece titled The Rise and Fall of Laplacian Physics (Fox 1974), de-
scribed the Laplacian program that dominated French physics in the period roughly between
1799 and 1815 as one in which all physical phenomena were seen as a result of repulsive
and attractive interactions between particles. Further, Fox claimed, optical refraction and
capillary action were among the first two subjects of Laplace’s entry into molecular physics
(Fox 1974, p.100). Fox said:

“In this earliest work on his program Laplace gave lengthy mathematical treat-
ments of optical refraction and capillary action, basing both treatments on the
supposed existence of short-range attractive forces of the type that had been first
postulated by Newton and discussed so often through the eighteenth century.”
(Fox 1974, p.100)
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According to Fox, the Laplacian program, in France, crumbled quickly beginning in
roughly 1815. Young, however, was working in England and that allowed for criticism of
the prevailing theories of heat and light to start earlier, near the beginning of the nineteenth
century. Fox said:

“Significantly, too, it was in England that the freer, if less stimulating, intellec-
tual climate allowed serious criticism of the imponderables of heat and light to
get under way by the first years of the nineteenth century (in the writings of
Rumford, Davy, and Young).” (Fox 1974, p.134)

A new physical theory can start as an analogy with a mechanical dynamical system
and then mature into a problem of mathematical physics where it no longer matters if the
mechanical analogy survived. This method was a predilection of the British according to
Poincaré.

Poincaré’s work on divergent series emerged in France, roughly forty years after the
work of Stokes. Poincaré’s work, as seen in his writing on celestial mechanics and pure
mathematics, consisted more of definitions and logical conclusions than the work of Stokes
which was more pragmatic — it gave results that verified theory.

Larmor’s commentary on the difference in the thought processes between Anglo-Saxons
and Latin peoples was echoed in Poincaré’s preface to the second English translation of
Science and Hypothesis. Most of this preface is an exposition on the topic of national, or
perhaps even racial difference, with commentary on the advantages and disadvantages of
the two different approaches. Poincaré argued that the Latin (i.e. French) approach was
more theoretical, logical, and careful whereas the Anglo-Saxon (i.e. British and American)
approach was more pragmatic, intuitive, and less careful. A series of quotes from this preface
makes clear how Poincaré viewed the differences in style. I claim that this description is
an accurate depiction of the differing approach of Stokes and Poincaré to handling the
divergent series that emerged in various solutions to physical problems.

I am interested here in drawing attention to the differing scientific practices of France
and England and I am claiming that we can see that difference in the approaches of Poincaré
and Stokes. The fact that these quotes draw attention to the issue that race is being grafted
onto scientific practice, while not unimportant, is not the point I am making. The British,
claimed Poincaré, tended to proceed from the particular to the general whereas the French
proceeded from the general to the particular. Poincaré said:

“The English, even in mathematics, are to proceed always from the particular to
the general, so that they would never have an idea of entering mathematics, as
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do many Germans, by the gate of the theory of aggregates. They are always to
hold, so to speak, one foot in the world of the senses, and never burn the bridges
keeping them in communication with reality. They thus are to be incapable of
comprehending or at least of appreciating certain theories more interesting than
utilitarian, such as the non-Euclidean geometries.” (Poincaré 1905, p.4)

The theory of aggregates, or set theory (Mengenlehre in German) as it is now called,
became foundational in mathematics during the nineteenth century primarily as a result of
the work of Georg Ferdinand Ludwig Philipp Cantor (1845-1918) and, to a lesser extent,
Julius Wilhelm Richard Dedekind (1831-1916). Cantor’s theory was replaced in the early
twentieth century by axiomatic Zermelo-Fraenkel set theory. Starting mathematical studies
with the study of set theory is to start with an abstract foundation that is not referenced
in any way to the physical world. Poincaré further claimed that this contrast between the
French and the British in the importance placed on the primacy of the general versus the
particular was even more acute when physical, as opposed to solely mathematical, problems
were under consideration. Poincaré further said:

“In the study of nature, the contrast between the Anglo-Saxon spirit and the
Latin spirit is still greater. The Latins seek in general to put their thought in
mathematical form; the English prefer to express it by a material representation.
Both doubtless rely only on experience for knowing the world; when they happen
to go beyond this, they consider their foreknowledge as only provisional, and
they hasten to ask its definitive confirmation from nature herself.” (Poincaré
1905, p.5)

Here, Poincaré claimed that, for the British, the model was more important than the
equations and that the reverse was true for the French. Looking back to Stokes’ explanation
of the index of friction, we see this — he provided a drawing in the initial explanation to
show how he was thinking about the physical situation rather than providing the equations
directly. This type of physical explanation is absent from the work of Poincaré whose
discussion, as we shall see, started with definitions from which rigorous mathematics was
developed in a logical manner. Poincaré explained that:

“For a Latin, truth can be expressed only by equations; it must obey laws
simple, logical, symmetric and fitted to satisfy minds in love with mathematical
elegance. The Anglo-Saxon to depict a phenomenon will first be engrossed in
making a model, and he will make it with common materials, such as our crude,
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unaided senses show us them. He also makes a hypothesis, he assumes implicitly
that nature, in her finest elements, is the same as in the complicated aggregates
which alone are within the reach of our senses. He concludes from the body to
the atom.” (Poincaré 1905, p.5)

After Poincaré clearly explained what he felt the differences in approach were, he went on
to analyze the advantages and disadvantages of the British method over that of the French.
He felt that the British approach, in some sense, was indicative of muddled thinking that
rigorous mathematics could have fixed. On the other hand, by placing less emphasis on
mathematical detail, the British were able to make large leaps that led to important results
that the French did not make as they focussed on the mathematical minutiae of a problem.
Poincaré said:

“The English procedure often seem to us crude, the analogies they think they
discover to us seem at times superficial; they are not sufficiently interlocked, not
precise enough; they sometimes permit incoherences, contradictions in terms,
which shock a geometric spirit and which the employment of the mathemati-
cal method would immediately have put in evidence. But most often it is, on
the other hand, very fortunate that they have not perceived these contradic-
tions; else would they have rejected their model and could not have deduced
from it the brilliant results they have often made to come out of it. And then
these very contradictions, when they end by perceiving them, have the advan-
tage of showing them the hypothetical character of their conceptions, whereas
the mathematical method, by its apparent rigor and inflexible course, often in-
spires in us a confidence nothing warrants, and prevents our looking about us.”
(Poincaré 1905, p.6)

In the introduction to the 1905 translation of Science and Hypothesis, Royce stated his
summary of the Poincaré viewpoint of the French method. It was a method, Royce claimed,
that had as a basis a set of mathematical statements which, while not arbitrary, were also
not given as a result of experience with the physical world. Royce said:

“...we consequently have in M. Poincaré’s account a set of conventions, neither
wholly subjective and arbitrary, nor yet imposed upon us unambiguously by the
external compulsion of experience.” (Poincaré 1905, p.xxiii)

The content of Science of Hypothesis, the two introductions by Royce and Larmor, and
most compellingly, the preface that Poincaré wrote for the 1905 translation give insight into
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how mathematical physics was practiced and conceived of differently in Britain and France.
It is not therefore surprising to see, in the next chapter, exactly these types of differences
in the approach to divergent series between the work of Stokes and that of Poincaré.

Again, I reiterate that the discussion above is presented to show that there was a real
difference in practice between the French and the English. I am not commenting on or
concluding anything from the way in which these differences or the reasons for them were
presented by Poincaré, Larmor, or Royce who sometimes framed them, as was the convention
of the day, in terms of hereditary factors, explicitly or otherwise.
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Chapter 5

Poincaré and the Use of Divergent
Series

5.1 The Three Body Problem and the Equations of Dynam-
ics

In 1889, in celebration of the sixtieth birthday of King Oscar II of Sweden, there was a prize
competition. Poincaré submitted an entry to this competition that concerned the stability
of the solar system. His entry, specifically, was an analysis of the three body problem.

The three body problem, at that time, consisted of determining the future paths of
three point masses, given their initial positions and momenta, as they move under mutual
gravitational attraction. It is a special case of the n body problem. The three body problem
can be simplified by making one of the three masses negligible such that it does not exert any
gravitational force on the other two masses. This is called the restricted three body problem.
The earth, moon, and sun system, for example, can be modelled well as a restricted three
body problem when the mass of the moon is neglected.

Poincaré chose to study the three body problem, in part, because the n body problem
was too complex and the two body problem had already been solved with a closed form
solution by Isaac Newton in 1687. Further, the three body problem applies to the familiar
sun, earth and moon system.

The first manuscript that Poincaré prepared for the prize competition was not what
was published by the prize committee when Poincaré was awarded the prize. The history of
Poincaré’s competition entry is interesting and June Barrow-Green’s (Barrow-Green 1996)
book, Poincaré and the Three Body Problem, is the authority on this. In this thesis, I will
use the final version of The Three-Body Problem and the Equations of Dynamics, published
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in Acta Mathematica in 1890, as I focus on how Poincaré handled the divergent series of
celestial mechanics. Recently, in 2017, the final version of Poincaré’s entry to the competi-
tion was translated into English by Bruce Popp (Poincaré & Popp 2017). I have used that
translation here.

Prior to the work of Poincaré, it was generally assumed that the motion of the planets
could be accurately predicted from Newton’s deterministic laws of motion under the force
of gravity as explained by Newton’s theory of gravitation. The discovery of Neptune, in
1846, extremely close to its theoretically predicted location, was a major triumph of the
use of Newton’s theory of gravitation as well as for the computational methods of celestial
mechanics at the time.

“It was a moment of a kind that had not been expected, whereby the obscure
mathematics of perturbation-theory pinpointed the position of a new sphere in
the sky.” (Kollerstrom 2006)

The computations involved in predicting future orbits of any planetary system of more
than two objects require series expansions. Over short time domains, these computations
produced observationally verifiable results. Prior to Poincaré, the convergence of these
series over longer time periods was either assumed or unknown. Further, there was no proof
that Newton’s laws of motion and Newton’s law of universal gravitation were sufficient in
and of themselves to explain planetary motion. This meant, among other things, that it
was unknown whether or not the orbits of the planets in our solar system were stable or
not. This was a question of religious significance and major cultural resonance. Poincaré
investigated this questions as the subject of his entry to the prize competition.

Poincaré showed that the series being used in celestial mechanics during the latter
part of the nineteenth century were divergent and therefore existing methods could not be
used to determine solar system stability. Further Poincaré showed that convergence of the
series solutions to the differential equations of celestial mechanics could not, in general, be
established over long time frames. Thus, it was unknown whether or not the solar system
was stable. Poincaré worked on the stability question in a variety of ways that will not be
discussed in this thesis.

There are different ways to define orbital stability, and dynamical systems stability in
general, and two different conceptions appear in the work of Poincaré. One of those defini-
tions required that the computed approximations of orbits stay bounded in a neighbourhood
of an elliptical orbit. This was the definition used by Lagrange and Laplace. In contrast,
Poisson defined stability to mean that a predicted orbit could stray far from the periodic
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orbit but at some point the celestial body must return to the initial starting position. This
is called Poisson stability or, as Poincaré referred to it, stability in the sense of Poisson. For
a fuller discussion of the history of the definition of stability see (Roque 2011).

I will focus on how Poincaré handled divergent series in his work on celestial mechanics.
To tackle the three body problem, Poincaré started by studying the general equations of
dynamics in their Hamiltonian form. This meant that results that he found in the context of
the three body problem extended well beyond questions in celestial mechanics and provided
a basis for later work in dynamical systems theory.

As Poincaré acknowledged in the author’s preface of (Poincaré & Popp 2017), he was a
long way from fully resolving the stability problem at the conclusion of his analysis of the
three body problem. The success he did have came from his demonstration of the existence
of some specific types of solutions which he called periodic solutions, asymptotic solutions,
and doubly asymptotic solutions. Further, his close analysis of the restricted three body
problem produced rigorous results and showed that the three bodies return arbitrarily close
to their starting positions infinitely many times meaning that the solutions were stable in
the Poisson sense. It also meant the three bodies should be repeatedly observable at given
locations.

This result was generalized shortly afterwards and became the Poincaré recurrence the-
orem which stated that certain dynamical systems will return to positions arbitrarily close
to their initial state in finite time. It was discussed in the context of celestial mechanics, as
we see here, in 1890 by Poincaré, and was proved by Constantin Carathéodory (1873-1950)
in 1919.

A significant portion of Poincaré’s work on the three body problem, and the portion on
which I will focus, involves asymptotic analysis of divergent series. Poincaré showed that
most of the series used in celestial mechanics were divergent but that useful values were
still obtainable from these series. Poincaré, like Stokes did, immediately drew an analogy
to the Stirling series and pointed out that prior, perhaps unwitting, use of divergent series
by Lindstedt and Gyldén had produced useful results. Poincaré said it thus:

“I also show that most of the series used in celestial mechanics and in particular
those of Mr. Lindstedt, which are the simplest, are not convergent. I am sorry in
that way to have thrown some discredit on the work of Mr. Lindstedt or on the
more detailed work of Mr. Gyldén; nothing could be farther from my thoughts.
The methods that they are proposing retain all their practical value. In fact
the value that can be drawn from a numeric calculation using divergent series
is known and the famous Stirling series is a striking example. Because of an
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analogous circumstance, the tried-and-true developments in celestial mechanics
have already rendered such great service and are called on to render even greater
service.” (Poincaré & Popp 2017, p.xx)

This was an acknowledgement by Poincaré that divergent series had been used in celestial
mechanics prior to his study and that the results obtained had been useful where useful
meant that the results were predictions that were verified by astronomical observation.

Part 1 of the memoir The Three Body Problem and the Equation of Dynamics, consisting
of 125 pages, was a review which covers the general properties of differential equations, the
theory of integral invariants and the theory of periodic solutions. In each section of Part 1,
solutions to differential equations were developed under a variety of constraints and then,
in each case, the convergence of the resulting series was investigated. Until the section on
asymptotic solutions, which appeared near the end of the theory of periodic solutions, all
of the series solutions of the differential equations were convergent.

Poincaré, as the memoir progressed, identified an infinite series that formally satisfied
a given differential equation but was not convergent. The radius of convergence of this
series approached zero under certain circumstances and further, there were infinitely many
quantities for which the radius of convergence of the series solution expansion was as small
as desired. Then Poincaré asked:

“But even though they are divergent cannot we get something from them?”
(Poincaré & Popp 2017, p.133)

At this point, Poincaré did something exactly like Stokes did — he asked the reader to
consider a simpler series, for which he then discussed the convergence. The series Poincaré
chose for his example was:

F (w, µ) =
!

n

wn

1 + nµ

which is a two variable function defined as an infinite power series in w. This function and
its infinite series representation was solely a mathematical example; it did not come from
celestial mechanics.

This series converges uniformly when µ is positive and w remains smaller in absolute
value than some positive number w0 smaller than 1. This was roughly forty years later
than when Stokes did his work on divergent series and uniform convergence was now well
established so, unlike Stokes, Poincaré differentiated between uniform and pointwise con-
vergence.
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Poincaré used the uniform convergence of this series to differentiate (Poincaré did not
use partial derivative notation and I have retained his notation) this series with respect to
µ term by term and claimed that

1
p!
dpF (w, µ)

dµp = ±
! np−1wn

(1 + nµ)p

was similarly convergent. There is a small error in the exponent of n in the published work
and term by term differentiation of F (w, µ) shows that what is actually similarly convergent
is the function

1
p!
dpF (w, µ)

dµp =
!

n

(−1)p npwn

(1 + nµ)p+1

Next, Poincaré expanded F (w, µ) via a Taylor series expansion in powers of µ by using
the derivatives above as the coefficients in the Taylor series and obtained the resulting series

!
wn(−n)pµp

Poincaré’s small error in the computation of the derivatives above cancelled out and does
not affect the result above. The summation index above, not explicitly stated by Poincaré,
is p. Also, this expression is to be taken to mean a double summation which I write as

F (w, µ) =
!

p

2
!

n

wn(−n)p
3

µp

Recall that the only constraint on µ in the original convergent infinite seres was that
µ remain positive. Therefore this is an alternating series whose terms do not tend to zero.
Thus it is clearly not convergent.

This was a mathematical example — F was not a function resulting from modelling a
physical situation and neither was it referenced to any of the earlier analysis of the series
that were identified as solutions of the differential equations of celestial mechanics. F is
simply a function defined by a convergent power series. That this power series was taken
and turned into another power series which was divergent provided a simple, uncluttered
example of the convergence issues that appeared when using the series that arose in celestial
mechanics.

Next Poincaré truncated the power series such that the terms when exponent of µ is
greater than p are ‘neglected’ (as Poincaré said). This gave a finite function consisting of
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the first p terms of F which Poincaré called Φp(w, µ). The difference between this finite
function and the original function, scaled by 1

µp
is:

F (w, µ) − Φp(w, µ)
µp

Taking the limit of the above expression as µ approaches 0 from the right, Poincaré
found that Φp(w, µ) asymptotically represented F (w, µ) for small values of µ in the same
way that the Stirling series asymptotically represents the Euler gamma function for large
values of x.

Poincaré, again, clearly drew this analogy to the Stirling series and stated that the
divergent series that arose in his analysis of the dynamical systems equations were exactly
of this sort. For example, series developed earlier in the memoir:

! N

Πwβ1
1 wβ2

2 . . . wβk
k eγt

√
−1 = F (√µ,w1, w2, . . . wk, t)

and
!

wβ1
1 wβ2

2 . . . wβk
k eγt

√
−1

dp
)
N
Π

*

(d√
µ)p = dpF

( d√
µ)p

are uniformly convergent if w remains smaller in absolute value than some bound and √
µ

remains real. However, if NΠ is expanded in powers of √
µ, then the resulting series are

divergent.
Again, Poincaré truncated to a polynomial of degree p, here in powers of √

µ, to get a
function:

Φp (
√
µ,w1, w2, . . . wk, t)

expandable in powers of w and e±t
√

−1. By the same logic, F
8√

µ,w1, w2, . . . wk, t
9
is

asymptotically represented by Φp, however large p is when µ approaches 0 from the right.
Poincaré then stated yet again that series he previously obtained in the memoir are

asymptotic solutions in the same manner as the Stirling series asymptotically represent the
Euler gamma function. At this point, Poincaré expended additional effort to make this
idea understood. He started with a simplified differential equation example with just two
degrees of freedom and kept just the quantity w which gave equations of the form:

dxi
dt + αw

dxi
dw = dF

dyi
,

dyi
dt + αw

dyi
dw = − dF

dxi
(i = 1, 2)
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Because α is expandable in odd powers of √
µ, α2 is expandable in powers of µ. Con-

versely µ is expandable in powers of α2. Thus F can be expanded in powers of α2. Letting
α = 0, reduces F to F0 and the periodic solutions that result

xi = ϕi(t), yi = ψi(t)

serve as a starting point. This was what Stokes did as well — simplify the differential
equation and find the periodic solution to the simplified differential equation. Stokes then
assumed that the solution to the original differential equations was the periodic solution
multiplied by a descending series. Here, Poincaré similarly decided that the complete solu-
tion was the periodic solutions plus something else. Poincaré added a perturbation to the
periodic solutions which yielded

xi = ϕi(t) + ξi, yi = ψi(t) + ηi.

These solutions were substituted back into the differential equations which gave

dξi
dt + αw

dξi
dw = Ξi,

dηi
dt + αw

dηi
dw = Hi.

These new equations were analyzed over several pages where at each stage it was stated
which equations this simplified example was being compared to from the earlier analy-
sis of asymptotic expansions. As before, convergent series initially resulted which, when
transformed in the manner explained above, become divergent series. Poincaré showed and
emphasized that the solution functions he gave were asymptotic solutions, again in the
manner of the Stirling series. Poincaré stated this for a third time on page 142. By this he
meant that a series

θ0i + αθ1i + αθ2i + · · ·

represented the function θi asymptotically, emphasis in the original, when the expression

θi − θ0i − αθ1i − αθ2i − · · ·αp−1θp−1
i

αp−1

approached zero with α.
It was here, at the end of the section on the theory of periodic solutions, that Poincaré

referred the reader to Section 1 of his paper published in the eighth volume of Acta Mathe-
matica for more series analogous to the Stirling series. This is the article Sur Les Intégrales
irrégulières des équations linéaires (Poincaré 1886) analyzed later in this chapter.
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Repeated emphasis on the similarity of these series to the Stirling series is interesting.
Poincaré emphasized that he knew he was starting with a convergent series, that he then
did some manipulations that resulted in a divergent series, and that the reader should be
comfortable with this because it is no different than using the Stirling series to calculate
values of the gamma function. It was a non-mathematical argument that appealed to
familiarity with something widely used.

Poincaré’s memoir continued with Part II, titled Equations of Dynamics and the N-body
Problem, which started with a study of the restricted three body problem. It was here
that Poincaré supported his work with three physical examples. The first example was the
restricted three body problem with two masses, one large, one very small and finite such
that these bodies “describe around their mutual centre of gravity a circumference of uniform
motion” (Poincaré & Popp 2017, p.150). The third body was of infinitesimal mass so that
it did not perturb the motion of the first two bodies. Further the third body was in the
plane containing the circumference of motion of the other two bodies. There are two cases
like this in our solar system:

1. A small planet moving under the influence of the Sun and Jupiter when the eccentricity
of Jupiter is neglected and the inclination of the orbits are neglected.

2. A similar example to Example 1 consisting of the Sun, Earth and Moon, where the
eccentricity of the Earth’s orbit is neglected and the inclination of the Moon’s orbit
to the ecliptic are neglected.

Analysis of these cases resulted in asymptotic solutions which Poincaré then represented
geometrically with trajectory curves. At this point he took care to remind the reader of
his definition of an asymptotic solution as well as the allowed rules of calculation with an
asymptotic solution. Poincaré said:

“Remember that I agreed to state that the series

A0 +A1x+ · · ·Apx
p + · · ·

asymptotically represents the function F (x) for very small x, when

lim
x→0

F (x) −A0 −A1x− · · ·Apx
p

xp
= 0
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In Acta Mathematica, Volume 8, I studied the properties of divergent series
which asymptotically represent certain functions and I recognized that the or-
dinary rules of calculation are applicable to these series. An equality, mean-
ing an equality between a divergent series and a function that it represents
asymptotically, can undergo all the ordinary calculation operations, except for
differentiation.” (Poincaré & Popp 2017, p.162)

The family of the trajectory curves that represent the asymptotic solutions form a surface
which Poincaré called an asymptotic surface. Most of the remainder of The Three Body
Problem and the Equation of Dynamics continues with an analysis of asymptotic surfaces.
This part of Poincaré’s analysis, based on a successive approximation strategy, is beyond
the scope of this thesis but it is this analysis which was used to understand the stability of
the solutions — one of the major objectives of the work.

There is interplay between convergence and stability and Poincaré defined several dif-
ferent types of stability. As we saw earlier, Poisson defined a stable planetary orbit to mean
that the planet returned to its initial position infinitely many times. This definition does
not preclude the orbit growing arbitrarily large (i.e t cosωt). This is different than defining
stability of an orbit of the planet as staying within a certain bounded region of space. Fur-
ther, there was a distinction between secular stability and temporary stability. The t cosωt

type terms do not have secular stability but if t is small and the solutions remain bounded
for those values of t, then there is temporary stability.

The final topics of The Three Body Problem and the Equation of Dynamics include
several impossibility proofs. First Poincaré proved that series produced by Lindstedt are
not convergent — that it, it is not possible for them to converge. Second, he proved the
nonexistence of one-to-one integrals as solutions to the equations of dynamics.

The final chapter of the memoir was an attempt to generalize the three body problem
results to the n body problem which Poincaré concluded was not possible without additional
effort. This conclusion surprised him because, when he started his analysis of the three body
problem, he had expected to be able to generalize immediately to the n body problem.
Poincaré said:

“I believed when I started this work that once the solution of the problem was
found for the specific case that I dealt with it would be immediately general-
izable without having to overcome any new difficulties outside of those which
are due to the larger number of variables and the impossibility of a geometric
representation. I was mistaken.” (Poincaré & Popp 2017, p.237)
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After discussing some of the difficulties encountered while trying to generalize to the n
body problem, Poincaré concluded that he did not have sufficient time for the generalization
and moreover it was premature even to try this at this time. I now turn to the solely
mathematical paper that Poincaré referred to in the prize competition entry.

5.2 Poincaré’s 1886 Acta Mathematica Paper

Sur les intégrales irrégulières des équations linéaires (Poincaré 1886) was published in Acta
Mathematica on December 1, 1886, three years prior to the memoir on the three body
problem. It was referenced several times in the three body problem memoir and has not, to
my knowledge, been translated into English. It is in this paper that Poincaré first explained
his method of finding and handling divergent series. I will discuss it in some detail.

Sur Les Intégrales irrégulières des équations linéaires started by reminding the reader
of the curious properties of the Stirling series, known to all mathematicians. The Stirling
series, divergent for all values of the argument, consists of terms which initially decrease
rapidly and then increase without bound. By truncating the series at the smallest term,
the error in using the asymptotic expansion is minimized. Poincaré said:

Tous les géomètres connaissent les curieuses propriétés de la série de Stirling.
Cette série:

logΓ(x+ 1)

= 1
2 log(2π) +

"
x+ 1

2

#
log x− x+ B1

1 · 2
1
x

− B2
3 · 4

1
x2

+ B3
5 · 6

1
x3

− . . .

est toujours divergente. Cependant on peut en faire légitimement usage pour
les valeurs très grandes de x. En effet les termes après avoir décru avec une très
grande rapidité, croissent ensuite au delà de toute limite. Mais si l’on s’arrête
au plus petit terme, l’erreur commise sur la valeur de logΓ(x+I) est très petite.
(Poincaré 1886, p.295)1

The Bi in the Stirling series are the Bernoulli numbers which were discovered in the early
eighteenth century and named after Jacob Bernoulli (1655-1705).

1All geometers know the curious properties of the Stirling series. This series: logΓ(x+ 1) = 1
2 log(2π) +

)
x+ 1

2

*
log x−x+ B1

1 · 2
1
x

− B2

3 · 4
1
x2

+ B3

5 · 6
1
x3

− . . . is always divergent. However, it can be legitimately used
for very large values of x. Indeed the terms after decreasing with very great rapidity then increase beyond
any limit. But if we stop at the smallest term, the error made on the value of logΓ(x+ 1) is very small.
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Clearly the Stirling series provided a starting point for Poincaré in his discussion of
divergent series. There was no mention in the 1886 paper about why it was of interest
to analyze divergent series and, in particular, there was no mention of the equations that
govern celestial mechanics. This is a mathematical paper only. This naturally raises the
question of why Poincaré was working on this at this time. I conjecture that, even though
there was no explicit statement of this, it was because of the research he was doing in
celestial mechanics. This paper was likely written to encapsulate the new mathematics that
Poincaré was going to make use of in his work on the three body problem and allowed him
to express it in a more fulsome way.

As we saw earlier, in the discussion of the three body memoir, Poincaré took a given
function of two variables, F (w, µ), which was convergent when expanded in powers of w
and showed it to be divergent when expanded in powers of µ. This example mimicked the
behaviour of the type of divergent series that appeared when analyzing the solutions to the
differential equations of celestial mechanics.

In Sur Les Intégrales irrégulières des équations linéaires Poincaré took a different ap-
proach. He first claimed that there are obviously an infinite number of series whose terms,
after decreasing very rapidly, increase beyond any limit. Poincaré created a family of these
series in the manner described below.

First, he took a sequence of numbers, all less than 1, and labeled those A1 ... An where
the lim

n→∞
An was not zero. He then considered the series:

A1
x

· 1 + A2
x2

· 1 · 2 + · · ·+ An

xn
· 1 · 2 · 3 · · ·n+ · · ·

When x is large, the terms decrease quickly but as n grows, the terms of the series eventually
become greater than 1 and the series consequently diverges.

Next, he analyzed the series for n = x and considered the nth term which is

An

nn
n!

and can be bounded above in the following manner:

An

nn
1.2 . . . n < 1

"
1 − 1

n

# "
1 − 2

n

#
. . .

"
1 − n− 1

n

#
< ne−n

For large n, and thus large x, the upper bound ne−n is extremely small.
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Next Poincaré considered a divergent series of the form

J(x) = A0 +
A1
x

+ A2
x2

+ · · ·+ An

xn
+ . . .

where the partial sum Sn is the sum of the first n + 1 terms. Poincaré then defined Sn to
be the asymptotic representation of function J(x) if the expression

xn (J − Sn)

tended to zero when x increased indefinitely. Poincaré said:

“En effet si x est suffisamment grand, on aura

xn (J − Sn) < ε

ε étant tres petit; l’erreur
J − Sn = ε

xn

commise sur la fonction J en prenant les n + 1 premiers termes de la série est
alors extrâmement petite. De plus, elle est beaucoup plus petite que l’erreur
commise en prenant seulement n termes et qui est égale à:

J − Sn−1 =
An + ε

xn

ε étant très petit et An fini.”2 (Poincaré 1886, p.296)

Again, Poincaré compared this with the formula of Stirling and claimed that similarly,
for large values of the argument x, the terms of series decrease rapidly and then increase
without bound but that it is still legitimate to use the series. Poincaré said:

“si x est trés grand, ses termes décroîtront d’abord rapidement pour croître
ensuite au delà de toute limite et que, malgré sa divergence, il sera légitime de

2In effect, if x is sufficiently large, we will have xn (J − Sn) < ε, ε being very small; the errorJ−Sn = ε

xn
committed on the function J by taking the first n+1 terms of the series is then extremely small. Moreover,
it is much smaller than the error made by taking only n terms and which is equal to:J − Sn−1 =

An + ε

xn
, ε

being very small and An finite.
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s’en servir dans le calcul de J . Je dirai aussi quelquefois pour abréger que la
série ... est une série asymptotique.”3 (Poincaré 1886, p.297)

Poincaré used the term asymptotic series here in a manner that suggests he is introducing
the term to the reader for what he has just mathematically defined. Stokes used the term
descending series. There have been other terms used — Stieltjes, as we shall see, used the
term semi-convergent series, also in 1886 in his doctoral thesis, and the term convergently
beginning series has been used in numerical analysis papers but it is the terminology that
Poincaré coined that is now generally used.

For example, Arthur Erdélyi (1908-1977) used the terms asymptotic series and asymp-
totic expansions in the 1954 book Asymptotic Expansions (Erdélyi 1956). The stated pur-
pose of this text was twofold: first, to introduce students to asymptotic evaluations of
integrals containing a large parameter, and, second, to find solutions of ordinary linear dif-
ferential equations by means of asymptotic expansions. The first goal of Erdélyi’s text was
Stokes’ goal in 1848 and the second goal of Erdélyi’s text was Poincaré’s 1886 goal.

Erdélyi claimed that the theory of asymptotic series was initiated by Stieltjes and
Poincaré in 1886. He is referring to this 1886 paper of Poincaré and the thesis of Stieltjes
which is analyzed in the next chapter of this thesis. There is no mention of Stokes in Erdé-
lyi’s book outside of the mention of Stokes lines. It would not be unreasonable for an author
to ask why the locations of the discontinuities in the parameters of asymptotic expansions
bears the name of Stokes had he not developed some of the mathematics of asymptotic
expansions.

Erdélyi distinguished between asymptotic series, which I have referred to as summability
theory, and asymptotic expansions — the construction and investigation of a series which
represents a given function asymptotically. These functions are, Erdélyi said:

“often given by integral representations, or by power series, or else appear as
solutions of differential equations; and in the latter case the ‘variable’ of the
asymptotic expansions may occur either as the independent variable, or else as
a parameter, in the differential equation”. (Erdélyi 1956, p.4)

Poincaré continued Sur Les Intégrales irrégulières des équations linéaires with proofs of
the following properties of asymptotic expansions:

3if x is very large, its terms will first decrease rapidly and then increase beyond any limit and that,
despite its divergence, it will be legitimate to use in the calculation of J . I will also say sometimes for short
that the series ... is an asymptotic series.
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1. The product of the asymptotic expansions of two functions is the asymptotic expansion
of the product of the two functions. As we shall see in Chapter 6, Stieltjes wrote a
paper about the product of two asymptotic expansions in 1887.

2. As a consequence of property one, it is possible to compute any power of an asymptotic
approximation and obtain an asymptotic approximation of the function raised to that
power.

3. An asymptotic series can be substituted in the development of a holomorphic function
as if it were convergent. I understand this to mean that if a holomorphic function has,
as a part, a function for which an asymptotic expansion exists, this expansion can be
substituted into the function.

4. Two asymptotic series can be divided provided division by zero is avoided.

5. Asymptotic series can be integrated term-by-term, with the result being the integral
of the original function, likewise asymptotic. This means that if S is a series that
asymptotically represents a function J (i.e with x large enough and # however small
that

|J − Sn| <
#

xn
)

it follows that

0000
$ ∞

x
J dx−

$ ∞

x
Sn dx

0000 <
#

(n− 1)xn−1 .

Poincaré then stated that it was, in general, not permissible to differentiate an asymptotic
series. As far as I know, this is the first time that the allowable algebra with asymptotic
expansions were clearly stated with proof.

An important remark followed regarding the uniqueness of asymptotic expansions. Up
until this point in the paper, it was implied that when x grew indefinitely that meant
increasing by positive real values. However, Poincaré claimed that the theory was not
changed when x tended to infinity with an argument, θ in x = reiθ, other than zero. There
are, however, some important considerations here which Poincaré stated:

1. For a given function J and a given argument of x, there is only one asymptotic
expansion representation of J.
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2. For a given function J, if x tends to infinity with different arguments, the asymptotic
expansion of J depends on the argument of x. This is Stokes phenomenon where the
asymptotic behaviour of a function can differ in different regions of the complex plane.

3. A given asymptotic expansion can represent more than one function.

Poincaré said:

“Je dis en effet que:
x2

"
J −A0 − A1

x
− A2

x2

#

ne peut pas tendre vers 0 pour tous les arguments de x (ou du moins ne peut
pas tendre uniformément vers 0), sans quoi J serait une fonction holomorphe de
1
x
et la série serait convergente.”4 (Poincaré 1886, p.8)

Poincaré gave a basic example to show that, for the same argument of x, a given series
can represent several different functions asymptotically. Moreover, for a given argument of
x, a given function can only be represented asymptotically by a single series.

The second part of the 1886 paper used the mathematics developed in first part to
analyze the results obtained by Lazarus Immanuel Fuchs (1833-1902) and Wilhelm Ludwig
Thomé (1841-1910) for solutions to the linear differential equation

Pn
dny

dxn
+ Pn−1

dn−1y

dxn−1 + . . .+ P1
dy

dx
+ P0y = 0

where the coefficients Pi are integer polynomials in x of degree i.
There are n independent series solutions that satisfy this differential equation of order

n, if the degree of the polynomials Pn, Pn−1, . . . , P0 steadily decreases, meaning that the
degree of Pi−1 is always less than the degree of Pi. These solutions all converge for |x| large
enough. Poincaré, however, wanted to consider the series solutions

xα
"
A0 +

A1
x

+ A0
x2

+ . . .

#

where α was given by some determining equation and |x| was large, but the condition on
the degree of the polynomials was removed such that the solutions that formally satisfy the
linear differential equation became:

4I say in effect that: x2
)
J − A0 − A1

x
− A2

x2

*
cannot tend to 0 for all arguments of x (or at least cannot

tend uniformly to 0), otherwise J would be a holomorphic function of 1
x
and the series would be convergent.
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eQxa
"
A0 +

A1
x

+ A2
x2

+ . . .

#

where Q was an integer polynomial in x. These series are not always convergent.
The remainder of the paper analyzed these solutions under various conditions and con-

cluded that the most general integral of an equation was represented asymptotically by one
of the normal series which formally satisfies this same equation. It is this mathematics from
Sur Les Intégrales irrégulières des équations linéaires that was repeatedly referred to in the
three body memoir and was used in the New Methods of Celestial Mechanics.

Schlissel claimed that it is this work that established asymptotic expansions to solutions
of differential equations as a distinctive branch of mathematics. Schlissel said:

“The theory of asymptotic series solutions of differential equations became a
distinctive branch of mathematics with the contributions of one of France’s
most eminent mathematicians Henri Poincaré(1854-1912). His introduction of
the theory of asymptotic series replaced the vague ‘approximate solution’ with
the precise notion of ‘asymptotic solution’.” (Schlissel 1977, p.321)

I claim that the work of Poincaré did this, as we shall see below, and did more than this. It
also provided methods and justification for obtaining asymptotic expansions to convergent
infinite series regardless of whether or not those infinite series were formal solutions of a
differential equation.

I used the example of Erdélyi’s 1954 text earlier to show that the language of Poincaré
is now typically used. In 1965, the British mathematician Edward Thomas Copson (1901-
1980) wrote Asympotic Expansions (Copson 1965) in which he acknowledged the advice
and help of Erdélyi. This text was written at the request of the admiralty and expanded
upon a shorter work written in 1943. Perhaps not coincidentally, Erdélyi’s work, as with a
vast amount of mathematical research in those days, was supported by the Office of Naval
Research in the United States. I expand on this point in the conclusion.

Copson’s assessment of Poincaré’s work is broader. He claimed that Poincaré had the
most influence on the mathematics of divergent series that later developed. Copson said:

“The modern theory of asymptotic expansions originated in the work of Poincaré.
The subject falls roughly into two parts. The first part deals with the summa-
bility of asymptotic series, and with the validity of such operations as term
by term differentiation or integration; the second is concerned with the actual
construction of a series which represents a given function asymptotically. This
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tract discusses the asymptotic representation of a function defined by a definite
integral or contour integral, usually an analytic function of a complex variable
z.” (Copson 1965, p.3)

Copson further commented on the importance of Poincaré’s work specifically with regard
to the finding of approximate solutions to differential equations. Copson claimed:

“Poincaré’s theory of asymptotic series had a profound effect on the study of
approximate solutions of differential equations. The vague concept of approxi-
mate solution was replaced by the well defined asymptotic solution. Henceforth
approximate solutions would be considered within the framework of Poincaré’s
theory of asymptotic series.” (Copson 1965, p.329)

In the conclusion, I will again use the work of Whittaker, Copson and Erdélyi to estab-
lish that Poincaré’s definitions were used in the textbooks that followed. It appears that
the work of Stokes did not influence the later development of the mathematics of asymp-
totic expansions. Prior to Poincaré, clear definitions regarding asymptotic expansion were
lacking, and statements and proofs of the allowed algebra of asymptotic expansions were
also lacking. Poincaré, in 1886, clearly and carefully provided theory that he himself used
only a few years later. He applied his theory to the equations of celestial mechanics to win
a major prize and then built upon those results in the enormously influential New Methods
in Celestial Mechanics. Subsequent to 1886, asymptotic expansions, improved and refined
perhaps, became part of standard texts of mathematical practice. They were built on the
work of Poincaré.

This chapter began with a discussion of the prize competition and the three body prob-
lem. Part of the discussion concerned the stability of the solar system and part of answering
that question required an understanding of the behaviour of the infinite series involved. Dur-
ing the time in which Poincaré wrote and then refined his prize competition entry, he also
wrote an article for a general audience in which he reflected on stability of the solar system.
In that article, he brought forth physical arguments which he claimed have a large enough
impact on the long term stability of the solar system that the mathematical approximations
were not a determining factor.

I conclude this chapter with a short commentary based on Poincaré’s 1898 Nature article
titled On the Stability of the Solar System (Poincaré 1898), which is a translation of an
article originally published in the Annuaire du Bureau des Longitudes. In this article,
Poincaré first said that many people had demonstrated the stability of the solar system and
that various physical effects that might affect the long term stability of the solar system
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had been studied and found to be not consequential. He did, however, point out that each
demonstration was a successive approximation and that it is possible that future rigorous
reasoning could show that the solar system was, in fact, unstable. Poincaré provided the
results of his earlier investigations and stated that he had shown that, in particular cases,
the orbit of one planet will return an infinite number of times to very nearly its initial
position.

The majority of the rest of the article was a reflection on what Poincaré felt would the
final resting position of the celestial bodies of our solar system. This discussion was based
on an energy use or entropy argument. Poincaré claimed that, over a very long time frame,
things like the energy loss due to tidal movements among other forces, which Poincaré called
complementary forces, outweigh other considerations. Those other considerations included
mathematical approximations of which the neglecting of terms when using series expansions
was one example. Poincaré said:

“... without quoting figures, I think that the effects of these complementary
forces are much greater than those of the terms neglected by the analysts in the
most recent demonstrations on stability.” (Poincaré 1898, p.184)

Poincaré went on to conclude that that the celestial bodies are very slowly tending
toward a state of final repose and stated again that neglected terms in the stability demon-
strations were inconsequential. In the final paragraph of On the Stability of the Solar
System, Poincaré said:

“Thus the celestial bodies do not escape Carnot’s law, according to which the
world tends to a state of final repose. They would not escape it, even if they
were separated by an absolute vacuum. Their energy is dissipated; and although
this dissipation only takes place extremely slowly, it is sufficiently rapid that one
need not consider terms neglected in the actual demonstrations of the stability
of the solar system.” (Poincaré 1898, p.185)

We have now seen two episodes in the mid to late nineteenth century where asymptotic
expansions were used — first by Stokes in 1848 and again by Poincaré in 1886. Both of
these episodes were motivated by a physical problem — for Stokes the problem originated
in hydrodynamics and for Poincaré the problem came from celestial mechanics. We have
also seen that the work of Poincaré was oriented and presented very differently from that
of Stokes. Poincaré’s work was much more ‘mathematical’ whereas the works of Stokes was
more pragmatic.
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This difference in the presentation of the work of Poincaré and Stokes was, in part, a
reflection of the differing mathematical practices of the French and the English as discussed
earlier in Chapter 4. However, given that the work of Poincaré was forty years after the
work of Stokes, the changing standards of rigour during this time almost certainly played a
role as well.

The process of rigorisation of analysis during the nineteenth century was motivated by
a variety of factors. New technical developments, of which Fourier series is a particularly
important example, made it necessary to examine the concepts of limit, function, conver-
gence, and continuity more closely. The separation of mathematics from physics, and the
separation of analysis from geometry, removed two previous foundational justifications for
analysis, which then required replacement. Teaching was also a motivating force for clarifi-
cation of the foundations of analysis; Cauchy, Weierstrass, and Dedekind were all motivated
to examine foundational issues while preparing to lecture or while authoring textbooks.

The rigorous foundations of analysis recognized today developed primarily in two places
and the development was dominated by two people. Cauchy, in France, played the major
role in the first half of the nineteenth century and Weierstrass, in Germany, played the major
role in the second half of the nineteenth century resulting in a satisfactory foundation for
analysis by the beginnings of the twentieth century. These developments in analysis are
well explained in (Lützen 2003) and (Archibald 2007).

In the Lützen chapter of A History of Analysis (Jahnke 2003), I note that there is
no mention of any British mathematicians. The uptake of rigorous mathematical analysis
happened later in England then on the continent and that change was fomented, in part,
by Hardy via his influential 1907 textbook, A Course of Pure Mathematics (Hardy 1908).
For example, historian Ivor Grattan-Guinness concluded that, with some exceptions that
occurred during the mid-nineteenth century, that rigorous standards of analysis came to
Britain early in the twentieth century. He said:

“The Continental Analysis did not make much impact in Britain until the early
1840s, when William Thompson, later to become Lord Kelvin but then still a
teenager, began to study Fourier series and integrals. Even then British interest
lay chiefly in applications to mathematical physics, where the achievements were
very brilliant, rather than in foundations ... Not until the work in the early years
of this century [the 20th] by G.H. Hardy and W.H. Young were foundational
studies brought fully into British education and research.” (Grattan-Guinness
2000, p.31)
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Thus, part of the difference seen between the work of Stokes and Poincaré is a result
of the change in standards of analysis in the time between Stokes and Poincaré. This is
in addition to the difference resulting from the culture in which the work was done. One
salient difference is that Poincaré clearly had uniform convergence and he used the term
absolutely convergent as well. All of the language in Poincaré’s work sounds modern in
contrast to that of Stokes and Poincaré was writing after Weierstrass, of whose work he was
well aware, so there was no vague language involving limits.

Further the role of analysis changed substantially over the course of the nineteenth
century such that at the end of the nineteenth century all physical theories were stated in
mathematical terms. At the beginning of the century, by contrast, mathematical methods
were limited primarily to celestial astronomy (Archibald 2003).

Next, and finally, I examine the 1886 doctoral dissertation of Stieltjes — a piece of
mathematics, unrelated to any physical problem, which examined how to efficiently compute
approximate values for several specific, and possibly divergent, infinite series.
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Chapter 6

Stieltjes and Semi-convergent
Series

Thomas Jan Stieltjes (1856-1894) was a Dutch mathematician who is now well-known for
his work which founded the analytic theory of continued fractions. This was the context
in which he introduced the Riemann-Stieltjes integral. This best known work of Stieltjes,
from the early 1890s, interfaced with divergent series in a manner that was a precursor
to summability theory. In this thesis, I omit discussion about the relationship between
divergent series and summability theory and focus on the asymptotic expansions of divergent
series. Prior to 1890, Stieltjes considered asymptotic expansions of divergent series. This
was the topic of his doctoral thesis and the work that I focus on here.

Stieltjes used the term semi-convergent rather than asymptotic for these series and, in
this chapter, I use these two terms interchangeably. Kline (Kline 1990) claimed that the
term semi-convergent was used throughout the nineteenth century after being introduced by
Legendre in 1798 in his book Essai de la théorie des nombres and that the term also applied
to oscillating series. Divergent oscillating series do not converge but their partial sums stay
bounded. A second edition of Legendre’s book was published in 1808 and was reprinted
by Cambridge University Press in 2009 (Legendre 2009). As seen in the introduction of
this thesis, Legendre was interested in the distribution of the prime numbers amongst the
positive integers.

Ferraro (Ferraro 2007b) claimed that Legendre knew the divergent and asymptotic na-
ture of the series he used and Legendre termed them semi-convergent because “they first
decrease (converge, in the language of his time) and then increase (diverge)” (Ferraro 2007b,
p.474). Here the term semi-convergent will always mean the same as asymptotic.
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Stieltjes, who worked briefly as an assistant at Leiden University, decided to pursue
mathematical studies after corresponding with Charles Hermite (1822-1901) about celestial
mechanics. Hermite, along with Darboux, later became Stieltjes’ doctoral advisor at the
suggestion of the two Frenchmen.

Stieltjes had an extensive correspondence with Hermite both before and subsequent to
his doctoral thesis. This correspondence was published in 1905 in two volumes (Hermite
& Stieltjes 1905a) and (Hermite & Stieltjes 1905b). In a February 13, 1886 letter, Stieltjes
wrote to Hermite about his thesis topic. He told Hermite that he had abandoned his original
topic because, though he felt he had some insight into it, there was too much more work
needed. Stieltjes said:

“Je travaille à ma Thèse Étude de quelques séries semi-convergentes, en deux
mois j’espère l’avoir finie. Vous voyez, par là, que j’ai abandonné ma première
idée. En effet, d’un côté, j’étais peu content de certaines parties et, de plus,
j’avais vu que le sujet comporte encore de grands développements que j’entrevois
un peu, mais qui demandent encore beaucoup de travail.”1 (Hermite & Stieltjes
1905a, p.180)

Shortly after he informed Hermite of the change of thesis topic, Stieltjes told Hermite
that much of his thesis may not be of much interest to Hermite but that his idea for a
semi-convergent series for Γ(ai), with a real, may be of interest. Stieltjes said:

“Ma Thèse contiendra beaucoup de choses qui vous intéresseront bien peu.
Ce qui vous plaira peut-être le mieux, c’est que j’ai l’idée d’une série semi-
convergente pour Γ(ai) a réel très grand ou plutôt de logΓ(ai).”2 (Hermite &
Stieltjes 1905a, p.181)

In the 1886 letter, Stieltjes further explained how he started with Gauss’ definition of
Γ(ai) and developed that into a semi-convergent expansion. The work detailed in this letter
was replicated with very little change in his thesis as we shall see. Stieltjes concluded that
what he had done was so simple that he could not believe it was anything new.

1I am working on my Thesis Study of some semi-convergent series, in two months I hope to have finished
it. You see, by that, that I have abandoned my first idea. Indeed, on the one hand, I was not happy with
certain parts and, moreover, I had seen that the subject still includes great developments which I foresee a
little, but which still require a lot of work.

2My Thesis will contain many things which will interest you very little. What you may like best is that
I have the idea of a semi-convergent series for Γ(ai) a very large real or rather logΓ(ai)
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Earlier letters, from July of 1885, indicate that Stieltjes had likely originally considered a
thesis topic investigating the Riemann zeta function. In a letter from July 29, 1885, which
followed correspondence about the zeros of the zeta function, Hermite informed Stieltjes
that he and Darboux were interested in him obtaining the title of Doctor which would
allow Stieltjes to become a professor in a provincial faculty of science until a position in
Paris was arranged (Hermite & Stieltjes 1905a, p.165). On August 28, 1885, in his next
letter to Hermite, Stieltjes responded very enthusiastically to the suggestion that he obtain
a doctorate and indicated that Hermite would have already found out through Darboux that
he had accepted the proposition. The remainder of this letter was about elliptic functions
and properties of the Riemann zeta function.

Stieltjes’ thesis was published after he had already obtained a professorship, in 1884,
at the University of Leiden. The professorship was made possible by the intervention of
Hermite who helped get Stieltjes awarded an honorary doctorate after the University of
Groningen declined his well supported application due to a lack of a diploma. In 1889,
Stieltjes accepted a position at the University of Toulouse where he remained until his
death.

Stieltjes’ doctoral thesis was much later in his career than is typical now. Stieltjes
already had a professorship, was already well-known internationally, and was already a
published mathematician when his thesis was published. His thesis resembles a paper as it
does not look substantially different from the papers that came before it.

There was no mention of the divergent series of celestial mechanics in Stieltjes’ doctoral
thesis despite the initial interest in celestial mechanics that precipitated Stieltjes’ math-
ematical studies. As we shall see, some of the examples he used in his thesis are from
number theory. Here then is another and different motivation for the study of asymptotic
expansions of divergent series.

For basic biographical information and an analysis and summary of Stieltjes’ scientific
work see the introduction to the annotated and republished collected works of Stieltjes,
edited by Gerrit van Dijk and published in 1993 to commemorate the one hundredth an-
niversary of the death of Stieltjes (Stieltjes & van Dijk (ed.) 1993a).

6.1 Stieltjes’ 1884 Paper on Continued Fractions

Just prior to the publication of his thesis, Stieltjes authored, in 1884, a first paper on
continued fractions titled Sur un développement en fraction continue (Stieltjes 1884). In
this paper he proved the convergence of the continued fraction
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z −

1 · 1
1 · 3

z −

3 · 3
5 · 7

z −

4 · 4
7 · 9
z − · · ·

in the slit complex z-plane excluding the interval (−1, 1). To do this Stieltjes started with
the approximation, via Gaussian quadrature, of the integral

$ +1

−1
F (x)dx ≈ A1 F (x1) +A2 F (x2) + . . .+An F (xn)

where F (x) was not specified. He had shown in a previous memoir (Stieltjes 1887) that

−1 < x1 < −1 + A1 < x2 < −1 + A1 +A2 < x3 < . . . < −1 + A1 + . . .+An−1 < xn < +1.

Gaussian quadrature is a method of numeric integration in which a definite integral,
between the limits of −1 and 1, is approximated with a weighted sum of carefully selected
function evaluations of the integrand. There are several types of Gaussian quadrature
and the type that Stieltjes used, now called Gaussian-Legendre quadrature, required the
integrand to be evaluated at the (always real) zeros of the nth order Legendre orthogonal
polynomials normalized such that Pn(1) = 1. Thus it is immediately apparent why all of the
xi’s, called nodes, are between −1 and 1. Further, for this selection of nodes, the correct
weighting (here Ai) is computed from the nodes and the derivative of Pn(x) and always
results in weights that are positive and less than one.

The only restriction on the integrand, F (x), is that it must be possible to evaluate it at
the nodes. The Gaussian-Legendre quadrature rule will only be an accurate approximation
to the integral if F (x) is well-approximated by a polynomial of degree 2n − 1 or less on
[−1, 1]. The approximation is exact when the integrand, F (x), is any polynomial of degree
2n− 1 or less.

A series of approximations to a continued fraction can be found by terminating the
continued fraction after n terms and simply evaluating the resulting finite fraction. This is
called the nth order approximate of the continued fraction which Stieltjes denoted Pn

Qn
. He

then considered the partial fraction decomposition of the approximate
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Pn

Qn
= A1
z − x1

+ A2
z − x2

+ · · ·+ An

z − xn

where the Ai and xi are the same as for the Gaussian quadrature approximation of the
definite integral from −1 to 1 of F (x). The Ai and xi are therefore all bounded between
−1 and 1. Since the xi appear as roots of Qn, z was excluded from taking any values
in the interval (1,−1). The partial function decomposition is an infinite series as n tends
to infinity and in the limit as n tends to infinity the sum of the partial fractions can be
represented as an integral such that

lim
n→∞

Pn

Qn
=

$ +1

−1

dx

z − x
.

This is a convergent definite integral when z does not take any value between −1 and 1.
Therefore the continued fraction converges with the same restriction on z. Stieltjes relied
on the Ai’s and xi’s being in the interval (−1, 1) and that they came from the Gaussian
approximation to the definite integral to claim that the infinite series he used was convergent.

Stieltjes published, in 1883 and 1884, work on which the above analysis was based.
This is considered his early work on moments (Fischer 2010, p.160) in which he approached
the moment problem through a discussion of Gaussian quadrature by means of continued
fractions. The Stieltjes moment problem, in modern terminology, is to find the necessary
and sufficient conditions for a sequence, m0,m1,m2, ... to be of the form

mn =
$ ∞

0
xndµ(x)

for some measure µ.
By 1883 Stieltjes had shown that, for an arbitrary positive weight function, f , the

Gaussian quadrature formula for $ b

a
g(x)f(x)dx

converged to g when g was a uniformly convergent series of Legendre polynomials. The
proof was connected to the analysis of the continued fraction

M0

x− α0 −
λ1

x− α1 −
λ2

x− α2 −
λ3

x− α3 − · · ·
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which was associated with the definite integral
$ b

a

f(z)
x− z

dz.

Stieltjes later investigated the continued fraction

1

a1z +
1

a2 +
1

a3z +
1

a4 + · · ·
in work which was published in 1894 just before his death. This is considered his most
important work and was titled Recherches sur les fractions continues (Stieltjes 1894). Again,
Stieltjes considered the roots of the polynomials of the sequence of approximates to the
continued fraction and formed a partial fraction decomposition which he was able to use to
manipulate the continued fraction into an infinite series in decreasing powers of z,

∞!

k=1
(−1)k−1Ck−1

zk
.

From this he obtained a related infinite series which he used to show that when that infinite
series diverged, the related continued fraction converged (Bernkopf 2008, p.57). This was
an interesting use of a divergent series in a manner that does not require an expansion or
a sum. It was somewhat akin to what Leibniz did regarding the log(−1) discussed in the
introduction. The convergence or divergence of an infinite series was used to say something
about value or the convergence of something else.

Perhaps part of Stieltjes’ interest in semi-convergent series as a thesis topic was a result
of his investigations in continued fractions prior to his thesis. Certainly Stieltjes continued
to use semi-convergent series subsequent to the thesis and they were useful to him in his
important later investigations into continued fractions.
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6.2 Stieltjes’ 1886 Doctoral Thesis

In June of 1886, Stieltjes’ doctoral thesis was published in the Annales scientifiques de
l’École normale supérieure. The title of the thesis was Recherches sur quelques séries semi-
convergentes (Stieltjes 1886) and it was 58 pages long and contained neither footnotes nor
a bibliography.

Stieltjes stated the scope and intent of his thesis in an eight page introduction. Stieltjes’
goal for the thesis was to study several semi-convergent series where the variable was exclu-
sively real and positive. He kept to a real, positive variable which he consistently called a.
However, he spent a significant portion of the thesis examining both the semi-convergent
expansion of Γ(ai) and J(ai) where a was real and positive and J(ai) is a Bessel function.
Thus he considered a semi-convergent expansion for a function with a purely imaginary
argument, say b, where b = ai.

Stieltjes divided the series he investigated into two kinds. Series of the first kind were
alternating series and series of the second kind had all terms of the same sign. This was an
important distinction. For series of the first kind the exact value of the function is always
between the sum of the first n and n + 1 terms of the series even though this value may
not converge to any particular limit. It is much more difficult to bound the error in the
approximation of a function for infinite series of the second kind. Stieltjes called both types
of series semi-convergent.

Stieltjes placed little emphasis on series of the first kind after he showed how an error
bound was relatively easily obtained for these types of semi-convergent series. He then
investigated five particular examples of semi-convergent series of the second kind, each in
its own section. Those section headings and lengths are:

1. Study of the logarithmic integral (11 pages),

2. Study of the integrals
$ ∞

0

sin au
1 + u2

du,

$ ∞

0

u cos au
1 + u2

du (5 pages),

3. Semi-convergent series expansion of logΓ(ai) (12 pages),

4. Study of the integrals of the differential equation d2z

da2
+ 1
a

dz

da
+ z = 0 (22 pages),

5. Study of the function P(a) =
∞!

1

1
e
n
a − 1

(7 pages).

Stieltjes claimed that the treatment of series of the second kind in the mathematical
literature were quite rare and that he had only encountered one — a series due to Oskar
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Schlömilch (1823-1901). This is a somewhat surprising statement since Stieltjes had an
interest in celestial mechanics where divergent series were contemporaneously being used.
However, he was likely unaware that Poincaré had proved that some of the series used in
celestial mechanics were divergent and had provided asymptotic expansions for them since
that work was published essentially concurrently.

There are other reasons to believe Stieltjes had likely seen treatment of series of the
second kind previously. First, he mentioned the Stirling series in his thesis. Also, in 1890,
Stieltjes published a paper titled Sur la valeur asymptotique des polynômes de Legendre
(Stieltjes 1890) on the asymptotic behaviour of the Legendre polynomials. This built upon
the 1878 work of Darboux. While Stieltjes’ 1890 paper was four years after the doctoral
thesis, Darboux was the co-supervisor for Stieltjes’ thesis. It is likely that Stieltjes would
have known that, in an 1878 paper, Darboux gave an asymptotic series for the Legendre
polynomials (Darboux 1878) which generalized an asymptotic formula given by Laplace
— this 1790 asymptotic expansion of Laplace is mentioned in the introduction along with
Laplace’s 1812 asymptotic expansion of the error function.

When considering the asymptotic behaviour of the Legendre polynomials there are two
fundamental problems — the asymptotic behaviour of the polynomials outside the interval
of orthogonality and the asymptotic behaviour inside the orthogonality interval. The second
problem is more difficult (Szegö 1939, p.195) and it is the problem that Laplace, Darboux
and Stieltjes solved with an increasing level of sophistication. For these three expansions,
see (Szegö 1939, p.194-195). These expansions, typically written as Pn(cos θ) make clear
that the argument for which the expansion is being used is between −1 and 1. The Legendre
polynomials were the polynomials Stieltjes used in Gaussian quadrature.

Darboux’s semi-convergent series for the Legendre polynomials was, however, a poor
example of an asymptotic expansion, partly because there was no closed expression or bound
on the error term. Moreover, Darboux’s semi-convergent infinite series was asymptotic for
some values of the variable and was convergent for other values of the variable. For the
values of the variable where the semi-convergent series was convergent, the series did not
converge to the Legendre polynomial it approximated and thus it was an example of an
asymptotic expansion that did not converge to the function that it approximated. According
to Van Assche, the reason for this was that the method of Darboux did not work correctly.
Darboux’s method consisted of using the singularities, of which there are two, on the circle
of convergence of the generating function of the Legendre polynomials. Each singularity
gave information about the polynomial with the result that the infinite series converged to
a function that was twice the one being approximated. VanAssche said:
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“The reason why things go wrong here is that the formula is obtained by the
so-called method of Darboux which consists of obtaining asymptotic results of a
sequence by carefully examining the singularities on the circle of convergence of
the generating function. The generating function of Legendre polynomials has
two singularities on the circle of convergence, and at each singularity one picks
up information on Pn(cos θ). This is probably the reason why the convergence of
the infinite series is to 2Pn(cos θ) rather than Pn(cos θ). Stieltjes’ generalization
of Laplace’s asymptotic formula for the Legendre polynomials does not suffer
from either problem.” (Van Assche 1993, p.24)

Stieltjes, in 1890, was able to generalize Laplace’s asymptotic formula for the Legendre
polynomials and provide an expansion where the error term was boundable and the expan-
sion converged, in the ordinary sense, to the function, Pn(cos(θ)), it approximated. This,
when combined another asymptotic formula that related the Legendre polynomial asymp-
totic expansion to the Bessel function of order zero, allowed Stieltjes to find an asymptotic
series for the Bessel function, J0, already obtained by Poisson, but now with an error bound
(Van Assche 1993, p.25). It is hard to imagine that Stieltjes was unaware of these various
other examples of semi-convergent series when he made the statement that he was only
aware in the literature of the series of Schlömilch. Perhaps Stieltjes felt that the Schlömilch
example was the only one in the literature that was mathematically rigorous enough.

In the remainder of this chapter, I look first at the Schlömilch semi-convergent expansion
because that provides an overview of Stieltjes’ method. Then I provide a general discussion
of the method of Stieltjes and follow that with a detailed analysis of the Stieltjes method
in the context of finding a semi-convergent expansion to the logarithmic integral. Finally I
consider the remaining examples of the thesis, in less detail, in order to clarify what Stieltjes
accomplished in his thesis. Later we shall see that, in an 1890 paper, Stieltjes built upon
the work he did with the Schlömilch example in his dissertation.

6.2.1 The Schlömilch Semi-convergent Expansion

I claim that Stieltjes analyzed the Schlömilch semi-convergent expansion for J∞ in his thesis
partially because it allowed him, as it did Schlömilch, to start with an integral expression
for the nth order Bessel function of the first kind and then find a semi-convergent expansion
for J∞. Stieltjes, with his new method, found the same semi-convergent series as Schlömilch
which provided Stieltjes with confidence in his method. Stieltjes was also able to provide a
better error bound than Schlömilch.
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The Schlömilch example is from an 1861 paper, published in Zeitschrift für Mathematik
und Physik, a journal of which Schlömilch was the founder and an editor, and concerned
the semi-convergent series representing the function:

P(a) =
∞!

n=1

1
e
n
a − 1

This was the last of the five examples that Stieltjes analyzed in his thesis and, after some
discussion here, we return to it later.

He first summarized the results obtained by Schlömilch — a remarkable semi-convergent
series according to Stieltjes:

J∞ = B2
1

2 · 2!a + B2
2

4 · 4!a3 + . . .+ B2
n

2n · (2n)!a2n−1 +Rn

where the Bi are the Bernoulli numbers. Schlömilch initially provided a bound on Rn of
π

2Tn+1 where Tn+1 is the first term omitted. As Stieltjes pointed out, Schlömilch noted that
this bound was not the best possible and returned to his analysis and provided a better
bound of

2nBn+1
Bn

1
a

2
π2

6 + 1
4π2a2

3

Tn

Stieltjes then discussed this series and the bound on the remainder term from his point
of view. To do that he used the formula:

J∞ =
"
p.v.

$ ∞

0

4avdv
1 − v2

#
P

" 1
4π2av

#

where p.v. denoted the Cauchy principal value of the integral. P(a) is the original function
for which a semi-convergent expansion was desired and Stieltjes had showed previously that

P(a) = a(log a+ Θ) + 1
4 − J∞

After he showed this representation of J∞ was equivalent to the semi-convergent series
of Schlömilch, Stieltjes used the method of finding the zero of Rn, which will be explained
below, and gave a simpler and better approximation of Rn of

2π2a− 5
12
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Stieltjes evaluated P
"1
4

#
using his semi-convergent series to get P

"1
4

#
= 0.0189994

where the exact value is 0.0189992. From this he concluded that the approximation was
excellent. Stieltjes said:

“L’approximation avec laquelle nous avons résolu l’équation Rn = 0 ne laisse
rien à désirer.”3 (Stieltjes & van Dijk (ed.) 1993a, p.258)

I now turn to a general discussion of Stieltjes’ method before returning to the remaining
four examples.

6.2.2 The Stieltjes Method of Semi-convergent Expansion

Stieltjes defined his terms and explained his method before he developed his five examples.
He then used his method on a first, simple example for which he gave a careful detailed
explanation. This example was the asymptotic expansion of the logarithmic integral.

In this section, I briefly discuss the method of Stieltjes in general terms. In the following
section, I use the Stieltjes study of the logarithmic integral to demonstrate how his method
worked on a specific example. I do not discuss the other examples in the Stieltjes thesis in
detail but summarize them to bring forth some of the important features of Stieltjes’ work.

Stieltjes considered a divergent series representation of the function F(a),

F(a) = m0 +
m1
a

+ m2
a2

+ m3
a3

+ . . .

which he said cannot be used indefinitely for numerical calculation because the series is di-
vergent. He then immediately said that the series representation of F(a) must be considered
symbolically which meant that, in the limit as a approached infinity:

limF(a) = m0,

lim a [F(a) −m0] = m1,

lim a2
4
F(a) −m0 − m1

a

5
= m2.

Should it be desired to use the divergent series to evaluate F(a), then that could only be
done with certainty after a discussion of the remainder term left after using a finite number
of terms. I interpret this to mean that symbolically meant as a formal series without regard
to convergence.

3The approximation with which we solved the equation Rn = 0 leaves nothing to be desired.
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This is a less sophisticated statement than that of Poincaré who defined Sn to be the
asymptotic representation of function J(x) if the expression

xn (J − Sn)

tended to zero when x increased indefinitely. Stieltjes simply wrote down a divergent series
and then claimed that for large values of the variable one could identify the constants in
the series by recursively taking the above limits. However, Stieltjes observed that there are
only a few cases where the coefficients m0, m1, m2, ... follow a simple law which made
finding large numbers of the constants impractical by Stieltjes’ method of taking limits.
This meant that his method did not work in general and there were only a few examples
for which he method worked.

Next Stieltjes considered the terms of the series representation of F(a) and labelled them
in the following manner:

F(a) = T1 + T2 + ...+ Tn +Rn

where he called Rn the complementary term; an expression I use interchangeably with
remainder term.

If the terms were alternating in sign, then the series was called a semi-convergent series

of the first kind and it was immediately possible to see that F(a) lay between
n!

1
Tn and

n+1!

1
Tn. That, in turn, provided a bound on Rn as less in absolute value than Tn. If terms

of the series were all of the same sign, then the series was a semi-convergent series of the
second kind. While there was some commentary about series of the first kind, the thesis,
in the main, was an attempt to study semi-convergent series of the second kind and say
something about Rn. There are, of course, series which are not of the first or second kind in
which the terms are positive and negative but do not alternate. Stieltjes made no mention
of this possibility.

In semi-convergent series of the second kind, the terms decrease at first and then increase
beyond all limit. If Tn is the smallest term in a series of the second kind, then Rn can exceed
in absolute value any multiple of Tn. Thus Rn, if tied to Tn, will not provide the best error
bound. Stieltjes said:

139



“donnera toujours des limites trop étendues et qui ne permettent point de tirer
tout le parti possible de la série”4 (Stieltjes & van Dijk (ed.) 1993a, p.203)

Stieltjes then introduced a key idea into the thesis. For series of the second kind, an
error bound was determined by finding the first integer value of n larger than that for which
the sign of the monotonic sequence Rn changed. For that value of n, the remainder term is
bounded by Tn. This meant solving the transcendental equation Rn = 0 where n was now
considered to be a continuous variable. Given that Rn = 0 is a transcendental equation, it
was not possible to find the root algebraically and it was generally estimated by expanding
the expression for Rn in its own semi-convergent expansion.

Stieltjes did not claim that the change of sign of Rn always happened in the neighbour-
hood of the smallest term, Tn, though he did say that this was desirable and that, in all
the cases studied so far, this had always been the case. There is only one root to Rn = 0
due to the monotonicity of the sequence and the value of n was approximated by another
semi-convergent series of the form

n = αa+ α0 +
α1
a

+ α2
a2

+ . . .

which was inverted to give

a = βn+ β0 +
β1
n

+ β2
n2

+ . . .

As Stieltjes admitted, it so far does not look like progress has been made but if only a
weak approximation to Rn = 0 was required then it was possible to numerically compute
using the two series above attributing much smaller values to a and n than were used in
actually approximating F(a). Stieltjes claimed that the approximation thus obtained for n
was generally sufficient.

In light of this analysis of the error bound for series of the second kind, Stieltjes briefly
returned to semi-convergent series of the first kind where finding the solution to Rn = 0
was replaced with finding the solution of the also transcendental equation dRn

dn
= 0. The

solution to this equation was approximated by Rn−1 = Rn from which straightforward
analysis gave lim

n→∞
Rn

Tn
= 1

2, a not surprising result given the alternating nature of the series
of the first kind.

4will always give bounds that are too far apart and which do not allow us to derive all possible advantage
from the series
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The rest of the thesis considered series of the second kind which come up in a variety of
contexts. These are the five examples listed above at the beginning of the chapter. I now
consider the first of those examples in detail.

6.2.3 Finding the Semi-convergent Expansion of the Logarithmic Integral

Stieltjes stated that finding an asymptotic expansion to the logarithmic integral was a
very simple example of a series of the second kind. He started with the definition of the
logarithmic integral,

li(a) =
$ a

0

du

log u
which is an improper integral when a ≥ 1. Stieltjes was careful to make the definition of
li(a) rigorous re-stating it as

li(a) = lim
ε=0

"$ 1−ε

0

du

log u +
$ a

1+ε

du

log u

#
.

Stieltjes was interested in and published in number theory, including a failed proof of the
Riemann hypothesis. His interest in the logarithmic integral may well have been because it
provides a very good approximation to the prime counting function.

Stieltjes replaced the argument in li(a) with ea and made a substitution in the variable
of integration which gave

li (ea) = ea
2$ 1−ε

0

e−av

1 − v
dv +

$ ∞

1+ε

e−avdv

1 − v

3

Then the fraction 1
1 − v

in the integrals was replaced with the identity,

1
1 − v

= 1 + v + v2 + . . .+ vn−1 + vn

1 − v
,

and the integral was integrated term by term which gave

li (ea) = ea
41
a
+ 1
a2

+ 1 · 2
a3

+ . . .+ 1 · 2 . . . (n− 1)
an

+Rn

5

and this is a semi-convergent series for li (ea).
The geometric series only converges for values of |v| < 1 but there was no such restriction

placed on v here making this identity, exact for finite values of n, a formal statement of
equality when n approached infinity and when the absolute value of v was greater than or
equal to 1.
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The value of Rn, the remainder term, was

Rn =
$ 1−ε

0

vne−av

1 − v
dv +

$ ∞

1+ε

vne−av

1 − v
dv

meaning that Stieltjes had obtained an asymptotic expansion of li(ea) with an expression
for the remainder term, Rn, where Rn was the Cauchy principal value of

$ ∞

0

vne−av

1 − v
dv

Without evaluating this integral, Stieltjes determined that Rn always decreased as n
increased so that, as promised, Rn = 0 had a single root, which Stieltjes proceeded to find.
First a and n were coupled via a = n+η where η was finite. Then a method of Laplace from
the Théorie analytique des probabilités (Laplace 1812) was applied because it was applicable
to evaluating integrals which contain functions raised to a high power. Consider a function,
f(x), twice continuously differentiable on the interval [a, b] with a unique point x0 ∈ [a, b]
where f(x0) = maxx0∈[a,b]f(x) and f ′′(x0) < 0. The method of Laplace states that, as
M → ∞,

$ b

a
eMf(x) dx ≈

1
2π

M |f ′′(x0)|
eMf(x0)

Laplace’s method can be used to derive Stirling’s approximation from the definition of the
gamma function (Wikipedia contributors 2023a).

Several pages of analysis followed in which Laplace’s method was applied and some
terms were neglected as they were small in comparison to the dominant terms. The end
result of the computation was that Rn was found to be

Rn = e−a

:
2π
n

4
η − 1

3 +
"1
6η3 − 1

2η2 + 1
12η + 1

540

# 1
n

+
" 1
40η5 − 5

24η4 + 25
72η3 − 1

24η2 + 1
288η + 25

6048

# 1
n2

+ . . .

The importance of the relationship Stieltjes set up between a and n of a = n + η is worth
commenting on here. The only restriction placed on η was finiteness. It was thus a statement
that a and n were related by some additive constant. This assumption was equivalent to
assuming that the remainder term was to be computed at a value of n where Tn was at its
smallest. Stieltjes said it thus:
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“Comme on suppose que η a une valeur finie, la supposition a = n+ η indique
évidemment que nous considérons le reste d’un terme Tn dans le voisinage du
plus petit terme.”5 (Stieltjes & van Dijk (ed.) 1993a, p.209)

Next Stieltjes set η to a semi-convergent expansion in powers of n which was then
substituted into the expression for Rn. Because Rn was equated to zero, the coefficients
of the various power of 1

n
in the equation Rn = 0 were zero. That allowed Stieltjes to

determine that:
a = n+ β0 +

β1
n

+ β2
n2

+ . . . ,

where the values of β were determined to be:

β0 = +1
3 ,

β1 = + 8
405

β2 = − 184
25515

From that he deduced that

n = a− 1
3 − 8

405a + 16
25515a2 − · · ·

These series for a and n are semi-convergent series of the first kind.
Let N be the approximate value of the root of Rn = 0. The complete result was

summarized as follows:

li (ea) = ea
41
a
+ 1
a2

+ . . .+ 1 · 2 . . . (n− 1)
an

+Rn

5

with N an approximation formed from truncating the semi-convergent series for n giving

N = a− 1
3 − 8

405a + 16
25515a2 .

where the error in the approximation of li(ea) was of order
:
2π
a
.

The approximation in solving the equation Rn = 0 was judged empirically by comparison
to the exact value. The value of n was first set to 1 and then to 2, and a comparison was

5As we assume that η has a finite value, the assumption a = n+ η obviously indicates that we consider
the remainder term Tn in the neighbourhood of the smallest term.

143



Figure 6.1: Comparison of Exact and Approximate Value of li(ea) (Stieltjes & van Dijk (ed.)
1993a, p.214)

made to an exact value which was computed using the convergent series

li(ea) = γ + log(a) + a

1 · 1! +
a2

2 · 2! +
a3

3 · 3! + ...

with the results as shown in Figure 6.1. This showed Stieltjes that the calculation of the
value of n needed in the approximation obtained by his method was much larger than
necessary.

Stieltjes then computed the value of li(10000000000) and obtained 455055614.5866 using
23 terms of the asymptotic expansion which is the exact answer to four decimal places. In
comparison, using the convergent series with 23 terms gave only the largest term. Thus it
was necessary to make significantly more computations with the convergent series than were
needed to find the approximation by the semi-convergent series for a comparable degree of
accuracy.

Not content with only the above method for computing an error bound for the developed
asymptotic expansion for li(ea) above, Stieltjes found another way that, in this particular
case, allowed a simple form to be obtained for the complementary term Rn. This form also
gave an alternate method for relating n and a using the expansion

a = n+ β0 +
β1
n

+ . . .

Assume that 0 < b < a such that

li (ea) = li
)
eb

*
+

$ a

b

eu

u
du,

and integrate by parts to get

li (ea) =ea
41
a
+ 1
a2

+ . . .+ 1 · 2 . . . (n− 1)
an

+Rn

5

Rn = 1 · 2 · 3 · · ·n · e−a
$ a

an

eu

un+1du
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where an needs to be determined but clearly it is the value of a that makes Rn = 0. By
using the relationship Rn−1 = Tn +Rn and continuing with the computation of the values
of β0,β1, ..., Stieltjes found exactly the same values of β0,β1, ... that were obtained by the
more generally applicable method first used.

The section of the thesis concerning a semi-convergent series for li(a) concluded with
a brief remark that for values of a less than one, a semi-convergent series of the first
kind was obtained instead. In that case, the bounding of the error in the expansion was
straightforward and was of the order of the first term omitted.

6.2.4 Finding Semi-convergent Expansions

The method Stieltjes used to develop an asymptotic expansion for li(a), relied on a clever
use of the geometric series. Thus it was not a general method. The method of finding the
error bound was more general but, again, it relied on the use of a specialized technique of
Laplace in order to evaluate the necessary integral.

Without going into as much detail as was done in the previous section, I will now
comment on the similarities between the 5 examples chosen by Stieltjes and the way in
which the asymptotic expansions and their error bounds were found. From this I conclude
that what Stieltjes knew how to do in 1886 was to find asymptotic expansions of a limited
number of functions for which he could find a way of simplifying and evaluating the resulting
integrals.

Unlike the more sophisticated work done by Poincaré in the same year, in Stieltjes’ thesis
there was no discussion on what was mathematically possible with asymptotic expansions.
Stieltjes did not address adding, multiplying, differentiating or integrating the expansions
he found. He did, however, partially return to this the very next year in a paper titled Note
sur la multiplication de deux séries (Stieltjes 1914, p.95).

The second example in the Stieltjes thesis was a study of the integrals:
$ ∞

0

sin au
1 + u2

du and
$ ∞

0

u cos au
1 + u2

du

The method Stieltjes used to find an asymptotic expansion for these integrals started dif-
ferently. The first integral was restated with a complex argument to give

$ ∞

0

eaui

1 + u2
du

which was evaluated on a contour consisting of a square in the first quadrant with one vertex
at the origin. The integral along the x-axis is the same as integrating along the other three
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sides of the square with caution required at the point (0, i). The contour at that point was
deformed using a semicircle around that point with small radius #. The integral containing
the sine function is the imaginary part of this integral and the integral containing the cosine
function is the derivative with respect to a of the integral with the sine function.

From this point, the method Stieltjes used for obtaining the expansion and the remainder
term are exactly analogous to how he proceeded for li(a). Stieltjes used the geometric series
identity with the variable now v2 rather than v. This allowed him to find the asymptotic
expansion and compute the remainder term in exactly the same manner so he omitted most
of the details of the computations in the presentation of this example.

It is interesting that after finding both of the asymptotic expansions of these integrals
via the method above, Stieltjes then used the partial fraction decomposition

1
1 − v2

= 1
2

" 1
1 − v

#
+ 1

2

" 1
1 + v

#

to show that
$ ∞

0

sin au
1 + u2

du is related to the logarithmic integral in the following manner:

$ ∞

0

sin au
1 + u2

du = 1
2e

−a li (ea) − 1
2e

a li
8
e−a9

Further, he used known values of the logarithmic integral and the above relationship to
compute the exact value of the integrals in order to see how good his semi-convergent
approximations were. There was no attempt to simply use the asymptotic expansions of
li (ea) and combine them using arithmetic. Perhaps that is because this would have required
an analysis of whether or not it is valid to do this type of arithmetic with semi-convergent
series, a topic which he took up the following year.

Excepting the idea of taking the integrals
$ ∞

0

sin au
1 + u2

du and
$ ∞

0

u cos au
1 + u2

du and repre-
senting them as a portion of a contour integral in the complex plane, this example was a
replication of the first example. The essential step in both cases was replacing

1
1 − x

= 1 + x+ x2 + . . .+ xn−1 + xn

1 − x
,

where in the first example x = v and in the second example x = v2. It was this step in both
cases that allowed Stieltjes the ability to integrate term by term and resulted in divergent
series.

In the third of the five examples of the Stieltjes thesis, a semi-convergent series expansion
for logΓ(ai) was developed. As explained in the introductory section of his thesis, Stieltjes
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was interested in providing information of the behaviour of the function 1
Γ(z) where the

variable z was purely imaginary. Stieltjes said:

“Nous arrivons maintenant à un exemple tiré de la théorie de la fonction Γ. Aprés
avoir rappelé en quelques mots le résultat principal des nombreuses recherches
auxquelles a donné lieu l’étude de la série qui sert à calculer logΓ(a), nous
considérons une autre série, n’ayant rien à ajouter à un sujet qui est si bien
exposé dans la première Partie du travail de M. Bourguet sur les intégrales
eulériennes. La considération de logΓ(ai) conduit à une série de seconde espèce,
composée des mêmes termes que la série de Stirling dont nous faisons l’étude.
Le résultat auquel nous arrivons permet de se faire une idée nette de la manière
dont se comporte la fonction holomorphe 1

Γ(z) , lorsque la variable z décrit l’axe
des y.”6 (Stieltjes & van Dijk (ed.) 1993a, p.206)

The goal of the third example was to find an expansion of logΓ(ai) with a clear expression
for the remainder term. In the introduction, Stieltjes mentioned the Stirling series but did
not emphasize it in the same way that both Stokes and Poincaré did. They both pointed
to the Stirling asymptotic approximation in a manner that was intended to reassure — a
comparison with something similar that most mathematicians were aware of and had made
use of. Stieltjes did not do this.

Stieltjes summarized the Stirling semi-convergent series by claiming that the first rig-
orous work on it had been done by Cauchy who, Stieltjes claimed, started from a formula
that Jacques Philippe Marie Binet (1786-1856) found. It was in a paper of 1839 that Binet
gave two integral representations for

µ(x) = lnΓ(x) − (x− 1
2) ln x+ x− 1

2 log 2π

which are now called Binet’s formulas (Roy 2011, p.480). Cauchy used these formulas to
prove, in 1843, that the error in using the formula for lnΓ(x + 1) was of the order of the
first term omitted (Roy 2011, p.479).

6We now come to an example taken from the theory of the Γ function. After recalling in a few words the
main result of the numerous researches to which the study of the series used to calculate logΓ(a) has given
rise, we consider another series, having nothing to add to a subject which is so well exposed in the first part
of the work of Mr. Bourguet on Eulerian integrals. The consideration of logΓ(ai) leads to a series of the
second kind, composed of the same terms as the Stirling series which we are studying. The result we arrive
at allows us to get a clear idea of how the holomorphic function 1

Γ(z) behaves, when the variable z describes

the y axis.
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The semi-convergent expansion for logΓ(z) is typically written as follows:

lnΓ(z) = 1
2 ln(2π) +

"
z − 1

2

#
ln z − z +

∞!

n=1

B2n
2n(2n− 1)z2n−1

= 1
2 ln(2π) +

"
z − 1

2

#
ln z − z + 1

12z − 1
360z3 +

1
1260z5 − . . .

Stieltjes started with a formula due to Binet

logΓ(a) =
"
a− 1

2

#
log a− a+ 1

2 log 2π +
$ ∞

0

" 1
eu − 1 − 1

u
+ 1

2

#
e−au

u
du

which he rewrote as

logΓ(a) =
"
a− 1

2

#
log a− a+ 1

2 log 2π + 1
π

$ ∞

0

du

1 + u2
log

" 1
1 − e−2πau

#

because it was easier to find the expression for the remainder term from this form of the
function. The variable a is real.

Stieltjes claimed Louis Bourguet (1678-1742) had found the index of the smallest term
of the expansion to be

πa+ 3
4 − 3

32πa

Stieltjes used his method of setting dRn

dn
to zero to find the value of n that gave the smallest

error bound since the remainder term he found was a semi-convergent series of the first kind.
This gave the following value for n:

n = πa+ 1
4 − 13

96πa
It appears that Stieltjes’ purpose with this analysis was simply to show that he could find
the index of the minimum term more accurately.

After this Stieltjes considered the semi-convergent expansion of logΓ(ai) — that is, for
arguments of the Γ function that were purely imaginary. He started with what he claimed
was the definition of the Γ function adopted by Gauss:

Γ(ai) = lim
n→∞

eai log(n)

ai(1 + ai)
)
1 + ai

2

*
· · ·

)
1 + ai

n

*
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potentially to avoid the problem of taking logarithms of imaginary quantities. In this
analysis, stated later, a was constrained to being positive.

After several pages of analysis taken from this starting point, Stieltjes concluded that
it was possible to change a to ai in Binet’s formula without introducing error. As we saw
earlier, this was mostly a replication of the work that Stieltjes had sent to Hermite in the
letter of February 13, 1886.

6.2.5 Finding Semi-convergent Expansions Involving a Differential Equa-
tion

The fourth example in the thesis involved finding semi-convergent series for integrals or
divergent series which were solutions to a given differential equation. This is the closest
example to those of both Stokes and Poincaré whose main motivation for asymptotic ex-
pansions was the numerical approximation of functions which were solutions of differential
equations with important application in physics.

Only in the introduction to his work did Stieltjes say anything about applications. He
stated that the differential equation of interest

d2z

da2
+ 1
a

dz

da
+ z = 0

arose in several questions from mathematical physics. This is the Bessel differential equation
of order zero with solution

c1J0(a) + c2Y0(a).

This was the same differential equation that Stokes used during his effort to find values of
the integral

u = 2
π

$ π
2

0
cos(x cos θ)dθ

Unlike Stieltjes, Stokes did not start with the differential equation. Stokes started with
an integral for which he wanted to compute values for large values of the parameter x. He
then determined that the integral was a solution of the Bessel differential equation and then
he used assumptions about the important terms in the differential equation to develop his
asymptotic expansion. For Stieltjes, the only use of the differential equation was to check
that after manipulating the integral solutions of the differential equation into an asymptotic
expansion, they remained solutions of the differential equation.

The evaluation of these integrals using contour integration for the function J(ai) followed
over many pages of analysis. The steps that were taken were justified by various means
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including: substitution into the differential equation, comparison with the results of Weber,
and comparison with results of Riemann. This allowed Stieltjes to state that

J(ai) = ea

π2

$ ∞

0

$ ∞

0

e−2au

1 − u+ v

du dv√
uv

where the principal value of the integral was to be used.
Stieltjes then used the technique that he used in all previous examples to turn this

integral into a semi-convergent series — that is, he used a geometric series identity. In this
case it was the following identity:

1
1 − u+ v

= 1
1 + v

+ u

(1 + v)2 + · · ·+ un−1

(1 + v)n + un

(1 + v)n(1 − u+ v)

which he found by dividing (1 + v) − u into 1 considering u as the variable.
This allowed Stieltjes to find the semi-convergent expression for J(ai) along with, crit-

ically, an expression for the remainder term for which he then solved the transcendent
equation Rn = 0.

J(ai) = ea
:

1
2aπ

6

1 + 12
1 · 8a + 12 · 32

1 · 2 · (8a)2 + · · ·+ 12 · 32 . . . (2n− 3)2
1 · 2 . . . (n− 1)(8a)n−1

7

+Rn

where

Rn =
:
2a
π3

$ ∞

0

$ ∞

0

une−2au

(1 + v)n(1 − u+ v)
dudv√
uv

After several pages of analysis of the integral for Rn, Stieltjes found the following series
representation for Rn:

Rn = e−2a
:

4a
πn2

4
η + 2

3 +
"1
6η3 − 1

2η2 − 1
2η − 179

540

# 1
n
+ · · ·

5

from which the value of n such that Rn = 0 was approximated. That value of n was used
to determine the number of terms to use from the semi-convergent series of J(ai).

In the conclusion of the section pertaining to this example, Stieltjes compared his result
to that of Riemann and concluded that he had confirmed and clarified Riemann’s result.
Stieltjes said:
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“Riemann, en donnant la série semi-convergente, écrivait

J(ai) = ea
:

1
2πa

!

n<2a+1

[1 · 3 · · · (2n− 1)]2
1 · 2 · · ·n(8a)n

et il ajoutait qu’on ne peut calculer ainsi J(ai) qu’en négligeant des parties de
l’ordre e−2a vis-à-vis de l’unité. Le résultat auquel nous sommes arrivé confirme
et précise ces indications.”7 (Stieltjes & van Dijk (ed.) 1993a, p.252)

This example and, similarly, the final example of the thesis regarding the function

P (a) =
∞!

1

1
e
n
a

−1 considered at the beginning of this section, appear to have been chosen to

show that Stieltjes could, by his new method, produce a semi-convergent series that agreed
with what had been previously obtained. And further, Stieltjes showed that his introduction
of an additional semi-convergent series to determine when the reminder term changed sign
gave a value of n that, when used to compute a value for the functions under consideration,
gave a better bound on the error on the approximation than had been previously stated.

6.3 Concluding Remarks on Stieltjes and Semi-convergent
Series

Throughout the thesis, Stieltjes referred to several different mathematicians and their work
— Schlömilch, Bourguet, Poisson, Lipschitz, Riemann, Laplace, and Weber. I have listed
all of these people because I claim that, despite the fact that Stieltjes’ thesis was published
in exactly the same year as Poincaré’s paper on asymptotic expansions, his work was done
independently of Poincaré. This is also the conclusion of Kline (Kline 1990, p.1104).

There was no mention of Poincaré in Stieltjes’ thesis and, unsurprisingly, there was
also no mention of the work of Stokes from 36 years earlier. In Poincaré’s work of 1886 on
asymptotic expansions there was, reciprocally, no mention of Stieltjes; however it is unlikely
that Poincaré was unaware of Stieltjes since there was a common contact through Hermite.
Certainly by 1894, Poincaré was well aware of Stieltjes’ work on continued fractions. When

7Riemann, giving the semi-convergent series, wrote

J(ai) = ea
:

1
2πa

!

n<2a+1

[1 · 3 · · · (2n − 1)]2

1 · 2 · · ·n(8a)n

and he added that one can thus calculate J(ai) only by neglecting parts of the order e−2a with respect to
unity. The result we arrived at confirms and clarifies these indications.
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that work was awarded a prize by the Académie des Sciences, Poincaré said, on behalf of
the jury:

“Le travail de M. Stieltjes est donc un des plus remarquables Mémoires d’analyse
qui aient été écrits dans ces dernières annéees; il s’ajoute à beaucoup d’autres
qui ont placé leur auteur à un rang éminant dans la Science de notre époque....
La commission a l’honneur de proposer à l’Académie d’accorder à, M. Stieltjes
le plus haut témoignage de son approbation en ordonnant l’insertion de son
Mémoire “Sur les fractions continues” dans le Recueil des Savants étrangers (à
l’Académie) et elle émet le vœu qu’un prix puisse lui être accordé sur la fondation
Lecomte”8 (Stieltjes & van Dijk (ed.) 1993a, p.3)

The work of Stieltjes on asymptotic expansions had points in common with both the
work of Stokes and Poincaré but also exhibited noticeable differences. In comparing the
work of Stieltjes with Stokes, one similarity was the comparison of the numbers obtained
from the asymptotic expansions to exact results or observations. That these comparisons
were favourable was then a justification for the use of divergent series. The final statement
of Stieltjes’ thesis was a numerical example designed to show how good the approximations
he obtained were. This is reminiscent of how Stokes decided his approximations were good.

Stieltjes’ method was completely different from the one Stokes used to obtain an asymp-
totic approximation — one that had the distinct advantage of providing an error bound for
the approximation. Further, unlike Stokes, there was no recourse to any differential equa-
tion to which the function or integral to be approximated may be a solution. In contrast,
the method of Stokes relied completely on assumptions about the differential equation to
which the function to be approximated was a solution.

Like both Stokes and Poincaré, Stieltjes similarly compared the asymptotic approxi-
mations to results obtained by other means. Again and significantly, the Stieltjes method
produced an error bound — something that was not present in the work of Stokes. Stieltjes’
major advance over Stokes was that he had a limited method that worked without the need
for an attendant differential equation. His method also produced an error bound.

8Therefore Stieltjes’ work is one of the most remarkable memoirs in analysis which have been written
in the past years; it adds to many others which have placed their author in an eminent rank within the
Science of our period... The committee takes pride in proposing the Academy award Mr. Stieltjes the highest
evidence of his approval by ordering the insertion of his memoir “Sur les fractions continues” into the Recueil
des Savants étrangers (à l’Académie) and the committee expresses the wish that a prize could be awarded
him from the Lecomte foundation.
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Copson (Copson 1965), whose work on asymptotic expansion is elaborated on in the
conclusion to this thesis, said that Stieltjes’ ability to produce an error bound was a notable
feature of his thesis. Copson said:

“During the nineteenth century, asymptotic expansions were obtained for many
of the special functions of analysis, sometimes only formally, sometimes with a
rigorous discussion of the order of magnitude of the error. Of particular inter-
est is Stieltjes’s doctorate thesis in which he examined the error committed by
stopping at the least term of the asymptotic representations of certain impor-
tant special functions, and showed how the approximation so obtained could be
improved.” (Copson 1965, p.3)

Stieltjes and Poincaré did their work in the same year and, as noted earlier and worth
repeating, Stieltjes’ statement about what a semi-convergent expansion was a less sophisti-
cated statement than that of Poincaré who defined Sn to be the asymptotic representation
of the function J(x) if the expression

xn (J − Sn)

tended to zero when x increased indefinitely.
Stieltjes simply wrote down the general form of a divergent series and then claimed

that for large values of the variable the coefficients in the series could sometimes be found
by taking limits. As we shall see, it is the Poincaré definition that became the standard
definition.

When Stieltjes found the semi-convergent expansion for sin(u)
1 + u2

he did so from his first
principles. This was despite that fact that he had already found the asymptotic expansion
for the logarithmic integral and he could have used that algebraically to find the asymptotic
expansion for sin(u)

1 + u2
. Poincaré, on the other hand used several pages of his paper to

establish and prove the mathematical operations permitted with asymptotic expansions
before finding any expansions.

This opinion of the differences between the Stieltjes and Poincaré work on asymptotic
expansion is not fully shared by Schlissel, who claimed that the definitions of Poincaré and
Stieltjes are the same, but who agrees that Stieltjes did not develop the theorems that
Poincaré did. Further Schlissel claimed that Stieltjes found the asymptotic expansion of
the Bessel equation by a highly specialized procedure — a statement with which I agree
because Stieltjes’ procedure only works for certain types of functions. Schlissel said:
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“The same definition of asymptotic series was given in the doctoral dissertation
of the Swedish [sic] mathematician Stieltjes [1886] without, however, any of the
theorems developed by Poincaré. Stieltjes found the asymptotic series solution
for the Bessel equation of order zero by a highly specialized procedure.” (Schlissel
1977, p.327)

For the reasons enumerated above, I claim that there was a higher level of rigour and
sophistication in Poincaré’s work compared to the more ad hoc or heuristic methods of
Stokes or Stieltjes. This is a likely reason why, in later work, the vocabulary of Poincaré
and his methods were used to build the fully rigorous theory of asymptotic expansions. In
the conclusion of this thesis, I comment further on the reception of the work of Stokes,
Poincaré, and Stieltjes in the years following 1886.
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Chapter 7

Conclusion

In this thesis, I have provided detailed analysis of the 1856 work of Stokes, the 1886 work
of Poincaré, and the 1886 work of Stieltjes, all of which involve divergent series and the
development of asymptotic expansions. I have also examined additional work of these three
individuals and the work of other contemporaneous mathematicians to provide mathemati-
cal context. Further, I have analyzed the social context — in particular the role of precision
— of the mathematical work studied in this thesis and I have demonstrated the difference
between the British and the French approach to mathematics during this time and for this
subject.

I have shown that, independently, and for differing reasons, these three people used
asymptotic expansions in their computations. Stokes, Poincaré and Stieltjes had different
motivations for using asymptotic expansions and each of their approaches was different.
Further, their work had differing levels of impact on the fuller development of asymptotic
expansions that took place in the first half of the twentieth century.

The early reception of the work of these three mathematicians provides a method of
assessing the immediate impact of their work. A look at the mature theory of asymptotic
expansions fifty years on provides a picture of how the work analyzed in this thesis became
a standard tool of analysis. I will use both methods in the discussion that follows.

The textbooks and papers of Whittaker are used to assess the early reception of the
theory of asymptotic expansions done by Stokes, Poincaré and Stieltjes. The work of Copson
and Erdélyi provide a picture of how this early work on asymptotic expansions described
in this thesis became a standard part of numerical analysis which arose as a distinct field
of study in the early twentieth century (Maidment 2021).
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7.1 Whittaker’s Early Response to Poincaré’s Work

Edmund Taylor Whittaker graduated as Second Wrangler in the mathematical tripos in
1885 and a year later was elected to a fellowship at Trinity College, Cambridge. In 1905, he
was elected a fellow of the Royal Society and, among many other awards, he was knighted
in 1945. He spent the bulk of his career as a professor of mathematics at the University of
Edinburgh. His main interests were in fundamental mathematical physics and, along with
many important mathematical papers, he authored several textbooks which have become
classics. For basic biographic and scientific information on Whittaker, see (Martin 2008).
For a more fulsome account of Whittaker’s life, both as an academic and as a person, and for
an analysis of the large impact he had on the development of the field of numerical analysis
through the founding of Britain’s first mathematical laboratory, see (Maidment 2021) and
(Maidment & McCartney 2019).

In September of 1899, the sixty-ninth meeting of the British Association for the Ad-
vancement of Science was held in Dover. The report of this meeting was published in
1900 and, in that report, was a lengthly article written by Whittaker titled Report on the
Progress of the Solution of the Problem of Three Bodies (Whittaker 1900). The was the
fulfilment of Whittaker’s obligation to provide, to the BAAS, a comprehensive summary
of the development of planetary theory between 1868 and 1898. Whittaker worked for two
years (Maidment 2021, p.46) on this report with the consequent result that he was then
recognized as an authority on celestial mechanics. For example, in 1915, the previous Royal
Astronomer of Ireland, Robert Stawell Ball (1840-1913) said:

“Then as to his scientific attainments, he knows more of the mathematical part
of astronomy than anyone else in Great Britain, or if you like to add Europe,
Asia, Africa, and America, I won’t demur.” (Maidment & McCartney 2019,
p.185)

In the report, Whittaker explained that the fundamental problem of dynamical as-
tronomy was a determination of the orbits of mutually attracting particles according to
Newtonian law and that the solution to this problem relied on the solution of differential
equations via infinite series. Whittaker said:

“The solution of the problem depends on the integration of a system of differ-
ential equations; and various methods have been given for the solution of the
equations by means of infinite series of known functions. The methods are,
however, in general cumbrous; the convergence of the series employed has only
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recently been considered with any success, and the true nature of the integrals
of the problem is unknown.” (Whittaker 1900, p.121)

Whittaker used the phrase “the true nature of the integrals” where the integrals, as he said,
were solutions to differential equations that were found in the form of infinite series. The
true nature of the solutions was the behaviour of the solutions over a long time interval. This
was difficult to determine either because of slow convergence or because of the divergence
of the infinite series solutions. The question of the stability of the solar system required
answers to questions about exactly this type of behaviour and this was unknown.

Whittaker chose to limit the scope of his report to the theory that considered solely the
mathematical discussion of the fundamental problem as he stated it. This meant excluding
material that pertained to numerical applications or to the suitability of developments for
the purposes of computation. Whittaker reported on developments up to and including the
last volume of Poincaré’s Les méthodes nouvelles de la mécanique céleste. He therefore read
Poincaré’s entry to the prize competition on the three body problem and saw asymptotic
expansions being used there. Thus, he also saw Poincaré’s reference to his 1886 paper on
the theory of asymptotic expansions.

According to Whittaker, the modern era of celestial mechanics began with Hill who
changed the way the three body problem was approached. Rather than starting with
the solution to the two body problem and perturbing that solution to account for the
introduction of a third body, Hill started by solving the restricted three body problem
directly.

Hill was an American astronomer and mathematician who, as we saw earlier, responded
quickly and rather negatively to Poincaré’s statements about the divergence of infinite series
in celestial mechanics. Simon Newcomb (1835-1909), director of the American Ephemeris
project called Hill “the greatest master of mathematical astronomy during the last quarter
of the nineteenth century” (Eisele 2008, p.398). As part of his work for this project, Hill
reconstructed the theories and tables of lunar and planetary motion. These calculations
were a particular case of the three body problem (Eisele 2008, p.399).

According to Whittaker, and he likely meant prior to 1886, Hill did not consider as
least some types of convergence issues. For example, Hill computed the motion of the
lunar perigee, by solving — what Whittaker called — Hill’s equation or the generalized
Gyldén-Lindstedt equation which resulted in infinite series in the form

w =
∞!

r=−∞
ar cos{(c+ 2r)t+ a}.
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The method Hill used transformed this series into an infinite number of homogeneous linear
equations. The value of c which gave the determinant of infinite coefficient matrix of this
linear system a value of zero was used to determine the motion of the lunar perigee. As we
saw earlier, Hill wrote about the convergence of infinite series in 1896. Whittaker said:

“The convergence of the infinite determinant was not considered by Hill; this
gap in the work was filled by Poincaré in 1886.” (Whittaker 1900, p.132)

By 1890, Whittaker claimed that Poincaré had made progress on the question of stability
of the solar system by demonstrating the existence of asymptotic solutions to the restricted
three body problem which implied an infinite number of solutions stable in the Poisson sense.
An asymptotic solution, as per Whittaker, was a collection of the asymptotic expansions
of all of the functions that satisfied the differential equations of celestial mechanics for the
three body problem. Whittaker also used the term asymptotic solution for what Poincaré
called an asymptotic expansion and when quoting or discussing Whittaker, I have used his
term asymptotic solution.

The restricted three body problem, as discussed in Chapter 4, is the three body problem
where one of the three bodies has a negligible mass relative to the other two and thus exerts
no influence on the motion of the other two bodies. The zero mass body is assumed to orbit
around the centre of mass of the other two bodies and in the plane of orbit of those two
bodies. Poincaré considered two types of stability. Poisson stability meant that an orbiting
body returns to within epsilon of its initial position an infinite number of times. The other
type of stability requires an orbiting body to stay within epsilon of its previous orbits.

Whittaker said:

“The existence of asymptotic solutions (which will be explained later) shows
that an infinite number of particular solutions of the restricted problem of three
bodies exist, which are not stable in Poisson’s sense of the word. But M. Poincaré
now proves that there are also an infinite number which are stable, and, further,
that the former are the exception and the latter are the rule, in the same sense
as commensurable numbers are the exception and incommensurable numbers
are the rule. In other words, the probability that the initial circumstances may
be such as to give rise to an unstable solution is zero.” (Whittaker 1900, p.145)

The probabilistic comment about the likelihood of unstable solution was phrased in a sur-
prising manner given that Whittaker’s report pre-dates measure theory. Whittaker com-
mented in general on the two types of stability, linked them together and said that one type
of stability implied the other. Whittaker said:
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“Poincaré’s memoirs of 1881-6 on curves defined by differential equations lead
to one result of importance in Dynamical Astronomy. In order that the system
of n bodies may be stable, two conditions must be fulfilled: firstly, the mutual
distances must always remain within certain limits; and, secondly, if the system
has a definite configuration at any instant, it must be possible to find a subse-
quent instant at which the configuration differs from this as little as we please.
It follows from the investigations of this series of memoirs that, if the first of
these conditions is satisfied, the second is also.” (Whittaker 1900, p.133)

I focus next on what Whittaker said about asymptotic solutions. Whittaker’s first
explanation of an asymptotic solution, in the 1899 report, was that it was a solution that
approached the original periodic solution more and more closely as the time increases. Whit-
taker claimed that Poincaré developed the theory of asymptotic solutions for the differential
equations of dynamics.

Shortly after the above claims, Whittaker stated that the asymptotic solutions used in
celestial mechanics are not convergent and belong to an “important class of developments
which are now called Asymptotic Expansions [his emphasis]” (Whittaker 1900, p.149). Whit-
taker claimed that the best known examples of this kind series were: the Stirling series for
the Γ-function, and the “so-called semiconvergent expansions” for the Bessel functions and
the Riemann ζ-function.

Whittaker then summarized Poincaré’s example from the 1886 paper,

F (w, µ) =
!

n

wn

1 + nµ
=

!

n,p

wn(−n)pµp,

detailed in Chapter 5 of this thesis, and provided the Poincaré definition of what it meant
for an infinite sum to be an asymptotic series representation of the original function. Whit-
taker followed that with a summary of Poincaré’s results in celestial mechanics from Sur le
problème des trois corps et les équations de la dynamique (Poincaré & Popp 2017).

Subsequent to the work in 1886 and 1890, Poincaré’s Les Méthodes Nouvelles de la
Mécanique Céleste was published in three volumes in 1892, 1893 and 1898. Of this work
and relating to asymptotic expansions Whittaker reported the following:

“The theories of periodic solutions, characteristic exponents, asymptotic solu-
tions, and the non-existence of uniform integrals were somewhat more com-
pletely discussed in 1892 by Poincaré himself in the first volume of his treatise
on the new developments of dynamical astronomy. The second volume, which
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was published in 1893, and contains a good deal of matter which had not ap-
peared in the memoir of 1891, opens with a chapter on asymptotic expansions”
(Whittaker 1900, p.152)

The preceding analysis of Whittaker’s 1899 British Association report shows that Whit-
taker learned of asymptotic expansions from Poincaré while reviewing Poincaré’s work on
celestial mechanics. It was only shortly after this report that Whittaker authored A Course
in Modern Analysis (Whittaker 1902) published in 1902. This text was revised and a second
author, George Neville Watson (1886-1965), was added resulting in a second edition pub-
lished in 1915. A Course in Modern Analysis was a standard analysis textbook for many
years in England and is still in print with a fifth edition printed in 2021.

That this textbook was influential and important can be shown in several ways. For
example, Hardy in his 1947 text Divergent Series referred to his former teacher Whittaker’s
text for the proof of Stirling’s theorem. Further, in 1941, A Course in Modern Analysis
was included among a selected list of mathematical analysis books for use in universities
published by American Mathematical Monthly (Moulton 1941). In the view of June Barrow-
Green (Barrow-Green 2002), Whittaker and Watson’s Modern Analysis is “one of the most
enduring of the English mathematics textbooks of the twentieth century” and was for many
years “virtually the only book in English to give an introductory account of the methods
of analysis, and of the special functions used in mathematical physics”.

Stokes, as seen in Chapter 3, did not give a definition of an asymptotic expansion.
Both Stieltjes and Poincaré provided definitions. Whittaker gave essentially the Poincaré
definition in his textbook and he used the name asymptotic expansion as coined by Poincaré.
The Stieltjes term semi-convergent was used in the Whittaker text but it was used for what
is now typically called a conditionally convergent series.

Chapter 8 of the 1902 Whittaker textbook was titled Asymptotic Expansions. This
textbook was published just sixteen yeas after the work of Poincaré and Stieltjes and just
three years after Whittaker’s British Association Report on celestial mechanics. It therefore
serves to show how the three introductions of asymptotic expansions into the mathematical
literature analyzed in this thesis were disseminated, at least in English.

Whittaker began Chapter 8 with a divergent series representation for the convergent

integral f(x) =
$ ∞

x

ex−t dt

t
produced by repeatedly integrating by parts. The infinite

series obtained for f(x) diverged for all values of x. Whittaker bounded the error in using
this divergent series to approximate the function for large values of x by approximating the
remainder integral with an inequality that required that x > 2n where n was the number
of terms of the asymptotic expansion used in the approximation.
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This motivating example was followed by the Poincaré definition of an asymptotic ex-
pansion. Whittaker said:

“A divergent series

A0 +
A1
x

+ A2
x2

+ · · ·++An

xn
+ · · ·

in which the sum of the first (n + 1) terms is Sn is said to be an asymptotic
expansion of a function f(x), if the expression xn{f(x) − Sn} tends to zero
as x (supposed for the present to be real and positive) increases indefinitely.”
(Whittaker 1902, p.164)

Whittaker tells us that this definition was Poincaré’s:

“The definition which has just been given is due to Poincaré. Special asymptotic
expansions had, however, been discovered and used in the eighteenth century by
Stirling, Maclaurin and Euler. Asymptotic expansions are of great importance
in the theory of Linear Differential Equations, and in Dynamical Astronomy;
these applications are, however, outside the scope of the present work, and for
them reference may be made to Schlesinger’s Handbuch der Theorie der linearen
Differentialgleichungen, and the second volume of Poincaré’s Les Méthodes Nou-
velles de la Mécanique Céleste.” (Whittaker 1902, p.165)

Ludwig Schlesinger (1864-1933) was a German-educated mathematician whose hand-
book on linear differential equations was published in two volumes in 1895 and 1897. Whit-
taker referred directly in the text quoted above to Poincaré’s Les Méthodes Nouvelles de la
Mécanique Céleste, and he footnoted, in the above quote, the definition given in Poincaré’s
1886 paper.

Whittaker had, so far, found an asymptotic expansion for an integral using integration
by parts where the analysis was for real and positive values of the variable. He also gave
the Poincaré definition of an asymptotic expansion. He followed the definition with another
example where he used the geometric series to take a convergent infinite series with terms
ck

x+ k
and produce a divergent series — a procedure which Whittaker said was “not legit-

imate” because the resulting series was divergent. However, he showed the resulting series
was an asymptotic expansion. Whittaker said:

“If, therefore, it were allowable to expand each fraction 1
x+ k

in this way, and
to rearrange the series according to descending powers of x, we should obtain
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the series
A1
x

+ A2
x3

+ . . .+ An

xn
+ . . .

where
A1 =

∞!

k=1
ck; A2 = −

∞!

k=1
kck, etc.

But this procedure is not legitimate, and in fact the series diverges. We can,
however, shew that the series is an asymptotic expansion of f(x), which will
enable us to calculate f(x) for large values of x.” (Whittaker 1902, p.166)

Using the geometric series outside of its interval of convergence was the main method of
finding asymptotic expansions in the 1886 work of Stieltjes. There was no mention of
Stieltjes in the Whittaker text.

Whittaker then continued, as in Poincaré, to show that two asymptotic expansions can
be multiplied and that an asymptotic expansion can be integrated term by term. He further
showed that a given series can be an asymptotic expansion of several distinct functions but
that a function cannot be represented by more than one distinct asymptotic expansion for
real positive values of the variable. The careful statement of the domain indicates that
Whittaker was likely aware of the Stokes line phenomenon. Chapter 8 of the Whittaker
text on asymptotic expansions concluded with exercises where exercise 4 was the Schlömilch
example as seen in the Stieltjes thesis.

The differences between the first (1902) and the second (1915) editions of Modern Anal-
ysis provide insight about how the theory of asymptotic expansions was maturing in the
first part of the twentieth century. There were three main differences between the 1902
and the 1915 text: numeric justification was added, the symbol ∼ was introduced to mean
asymptotically equal, and there was an additional section on summability theory added to
the chapter which likely came from the Bromwich text as we shall describe below.

Numeric justification was added to the first example (f(x) =
$ ∞

x

ex−t dt

t
) of the Chap-

ter 8. Five terms of the asymptotic expansion were used to compute an approximation for
f(10). These choices for n and x maintained the necessary relationship between x and n

that allowed an error bound to be computed. Whittaker found that

“Taking even fairly small values of x and n

S5(10) = .09152, and 0 < f(10) − S5(10) < .00012.”

(Whittaker & Watson 1915, p.151)
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The title of Chapter 8 was changed to Asymptotic expansions and Summable Series in
the 1915 edition. The new material added to Chapter 8 was on methods of summing series.
This is another way of considering divergent series where the methods of summability theory
are used to assign a number to a divergent series. Note that summability theory developed
later than asymptotic analysis and this is reflected in the differences between the first and
second editions of the Whittaker and Watson text.

Finally, unlike the first edition of A Course in Modern Analysis, the second edition
included a list of references at the end of the chapter on asymptotic expansions. Those refer-
ences were to work of Poincaré (first) followed by Borel, Bromwich, Barnes, Hardy/Littlewood,
Watson, and Chapman. There was no mention of Stokes or of Stieltjes.

The reference to Thomas John I’Anson Bromwich (1875-1929) deserves particular atten-
tion because Bromwich wrote An Introduction to the Theory of Infinite Series (Bromwich
1908), published in 1908, midway between the first and second editions of Whittaker’s
text. In the preface of the work, Bromwich explained that his textbook was based on lec-
tures in elementary analysis he gave at Queen’s College, Galway between 1902 and 1907
(Bromwich 1908, p.v). However, Chapter XI, titled Non-convergent and Asymptotic Series
was added when preparing the manuscript for publication.

The first paragraph of Chapter XI, which Bromwich claimed “contains a tolerably com-
plete account of the recently developed theories of non-convergent and asymptotic series”
(Bromwich 1908, p.ix), listed the principal sources from which Bromwich derived the ma-
terial for the chapter. In full, this list consisted of three papers of Borel (1901, 1896, 1899),
one paper of Cesàro (1890), two papers of Hardy (1904, 1903), a paper of E. Le Roy (1902),
the 1886 paper of Poincaré analyzed in this thesis, a paper by Van Vleck (1905), and a paper
by Vivanti (1906). Bromwich continued the chapter with a historical summary followed by
a presentation of both summability theory and asymptotic expansions.

Bromwich presented a fairly standard history of asymptotic expansions where he began
with the older analysts (pre Abel and Cauchy) who had “little hesitation in using non-
convergent series both in theoretical and numerical investigations”(Bromwich 1908, p.261).
These early analysts, claimed Bromwich, used only series now called asymptotic. He further
claimed that the sums were used to the point where the terms were sufficiently small.
According to Bromwich, an important type of asymptotic series were later used in astronomy
to calculate planetary motion and it was Poincaré who showed that these series did not
converge and who explained why, even though the results of calculations using asymptotic
expansions were confirmed by observation. Bromwich said:
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“An important class of such series consists of the series used by astronomers
to calculate the planetary positions: it has been proved by Poincaré that these
series do not converge, but yet the results of the calculations are confirmed
by observations. The explanation of this fact may be inferred from Poincaré’s
theory of asymptotic series.” (Bromwich 1908, p.262)

Bromwich then noted Cauchy’s work which established the asymptotic property of the
Stirling series and claimed that the possibility of obtaining other useful asymptotic series
was generally overlooked following Cauchy, with the exception of Stokes, who, Bromwich
stated, published three remarkable papers in 1850, 1857 and 1868. That work of Stokes
is extensively discussed in Chapter 3 of this thesis. Then, according to Bromwich, came
the 1886 papers of Stieltjes and Poincaré, discussed in Chapters 5 and 6 of this thesis.
This is the only time where I have seen the work of Stokes referred to in a synopsis of the
development of asymptotic expansions. Further, Whittaker and Watson (1915) references
this Bromwich text but the book does include the reference to the Stokes papers.

Chapter 11 of the Bromwich text is mostly about summability theory. The chapter is
divided into 43 articles, of which six articles concern asymptotic expansions. Articles 130
and 131 consist of Euler’s method of using an alternating series asymptotic expansion to
find a value for the constant now usually referred to as Euler’s γ constant. Thus Bromwich
bounded the error to the first term omitted. He clearly pointed out that, unlike the error
bounds for approximations using convergent series, it was not possible to push the approx-
imation to an arbitrary degree of accuracy when using an asymptotic expansion. Article
132 consists of three expansions and their derivation — the logarithmic integral, the Fresnel
integrals, and the Stirling series.

Of the remaining three articles on asymptotic expansions, two of them consist of a
summary of the work of the Poincaré along with a discussion of the application of the work
of Poincaré to the solution of differential equations. The final article gives a simple method
attributed to Stokes for dealing with certain types of real series.

I conclude that it was the work of Poincaré that most influenced the development, in
Britain, of the theory of asymptotic expansions. This is primarily based on the mathematical
content of Chapter 8 of first edition of A Course in Modern Analysis, the statements made
in that chapter about where the definitions originated, and the references at the chapter
end of the second edition.

Whittaker’s 1899 summary of progress on the three body problem and his 1902 textbook
are part of a bigger picture of the genesis of the field of numerical analysis at the turn of
the twentieth century. It is difficult to determine exactly when numerical analysis became

164



a field of study in its own right. As we have seen, in part, in this thesis, there are many
and varied methods of obtaining numbers from theory. Maidment, for example, in a paper
titled, The Edinburgh Mathematical Laboratory and Edmund Taylor Whittaker’s role in the
early development of numerical analysis in Britain (Maidment 2021), said the following:

“It is difficult to pinpoint when numerical analysis became a field in its own
right. Various techniques that now form the subject had been worked on since
antiquity. Dominique Tournés explains that the techniques developed in astron-
omy, celestial mechanics, and rational mechanics led to the first professional
applied mathematicians in the late 19th and early 20th centuries, which was
approximately the time when the numerical analysis we know today became an
autonomous discipline.” (Maidment 2021, p.41)

Whittaker’s role in the genesis of numerical analysis, with which asymptotic analysis is
closely associated, is further revealed in his establishment of the first mathematical labo-
ratory in Britain. Whittaker’s decision to establish a mathematical laboratory, according
to Maidment, was partially due to his interest in the practical techniques relating to as-
tronomy (Maidment 2021, p.46). A second motivation for the laboratory, in a reflection of
the discussion of precision from Chapter 2 of this thesis, was his friendship with a number
of actuaries who were working in Edinburgh, a key centre for life assurance, and who were
experiencing mathematical difficulties (Maidment 2021, p.46).

One important outcome of the laboratory was another influential textbook by Whit-
taker and co-author, George Robinson. Published in 1924, The Calculus of Observations,
contained, among many other topics, techniques for the numerical solution of differential
equations. Whittaker’s work here was influenced by Carl Runge (1856-1927) who pioneered
modern numerical analysis in Germany around the turn of the century.

Next, I briefly consider two later texts which were influential in England and the United
States to show how asymptotic expansions became a standard tool of analysis.

7.2 Asymptotic Expansions at Mid-twentieth Century

I have chosen the 1956 text of Erdélyi and the 1965 text of Copson, both of which are titled
Asymptotic Expansions because they are standard references on this topic and both authors
make clear statements about their perception of the origin of the asymptotic expansions
they describe. I have previously used quotes, in Chapter 5, from both Copson and Erdélyi to
substantiate the importance of Poincaré in the initial development of asymptotic expansions.
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Here, I provide more detail about Erdélyi and Copson’s work partly to show how asymptotic
expansions became a standard tool of analysis.

Erdélyi was born in Hungary in 1908 and educated in both Czechoslovakia and Germany.
He was forced to flee Czechoslovakia in 1938 by the Nazis and, as a result, moved to the
University of Edinburgh where he stayed until 1949 (Colton 2008, p.266). After his move
to Edinburgh, Erdélyi was a consultant to the Admiralty Computing Service, set up 1943
to assist the admiralty with computing during wartime (Maidment 2021, p.58). He then
moved to California Institute of Technology from which he returned to Edinburgh in 1964
where he stayed until his death in 1977 (Colton 2008, p.266).

Erdélyi’s move to Caltech was precipitated by the death of Harry Bateman (1882-1946),
a British mathematician who was a professor at Caltech, and who left behind a large volume
of notes on special functions which Erdélyi was appointed to edit and publish. This Bate-
man project resulted in five volumes of reference handbooks titled Higher Transcendental
Functions and Tables of Integral Transforms which became basic references for mathemati-
cians and physicists worldwide until the need for them was removed by computing. At
the conclusion of the Bateman project, Erdélyi studied asymptotic expansions of integrals
and solutions of differential equations making several advances in the subject (Colton 2008,
p.266).

Remarkably, this work of Erdélyi was influenced by work on boundary-layer theory
then being done at Caltech and we see, for a second time, a relationship between asymptotic
expansions and boundary-layer theory which we first saw with Stokes. David Colton, author
of the Complete Dictionary of Scientific Biography article on Erdélyi summarized Erdélyi’s
work on asymptotic expansion in the following way:

“Erdélyi demonstrated that the Poincaré-type definition of an asymptotic expan-
sion is much too narrow for a satisfactory discussion of the asymptotic behavior
of functions depending on more than one parameter. These investigations of
asymptotic analysis were influenced by the work then being undertaken in the
Guggenheim Aeronautical Laboratory at Caltech on the development of an im-
proved boundary-layer theory for viscous fluid-flow past obstacles, and Erdélyi’s
lifelong interest in singular perturbation theory can be traced back to this time.
His book Asymptotic Expansions appeared in 1956 and is now regarded as one
of the classic monographs on the subject of asymptotic analysis.” (Colton 2008,
p.266)

Copson was born in England, educated at Oxford and immediately obtained a lecture-
ship at Edinburgh upon graduation in 1922. He moved shortly after to the University of St.

166



Andrew’s from which he retired in 1969 having spent time in the interim at Royal Naval
College, University College, Dundee and Harvard University (Rankin 1981, p.564).

The work of both Copson and Erdélyi grew out of working papers and reports that were
requested by their respective governments in support of military operations. Copson au-
thored, in 1943, a short monograph titled The Asymptotic Expansion of a Function Defined
by a Definite Integral or Contour Integral which was intended for use in Admiralty Research
Establishments and was written at the request of the Director of the Admiralty Computing
Services. This was one of a series on monographs on topics that were inadequately covered
in easily accessible literature (Rankin 1981, p.565). This is perhaps indicative that in the
years between Whittaker in 1902 or even 1915 and 1943 that there had not been much
textbook treatment of the topic of asymptotic expansions. It also reflects the evolution of
the importance of asymptotic expansions.

Copson’s 1965 book was an enlargement that built upon work he had previously done at
the request of the Admiralty Computing Service. In the preface to his 1965 book, Copson
thanked Erdélyi for his generous advice and encouragement. Reciprocally, Erdélyi stated
that the second chapter of his book, whose topic is the most important methods for the
asymptotic expansion of functions defined by integrals, owed much to the excellent pamphlet
on this subject by Copson. Both Copson and Erdélyi had a close personal connection to
Whittaker. Whittaker helped Erdélyi flee from German-occupied Czechoslovakia and obtain
a position at the University of Edinburgh and Copson was Whittaker’s son-in-law.

In the case of Erdélyi, his 1956 book was an unabridged and unaltered replication of
a technical report prepared under contract for the United States Office of Naval Research
during the time that Erdélyi was at Caltech. Erdélyi footnoted the work of J.G. van der
Corput from 1951 and 1952, again titled Asymptotic Expansions, which was contained in
working papers prepared for the National Bureau of Standards.

Erdélyi’s Asymptotic Expansions (Erdélyi 1956) was based on a course of lectures given
in 1954 at Caltech whose purpose was to introduce students to “various methods for the
asymptotic evaluation of integrals containing a large parameter, and to the study of solutions
of ordinary linear differential equations by means of asymptotic expansions” (Erdélyi 1956,
p.iii). In the introduction to the text, Erdélyi commented on both the origin of the termi-
nology he used and origin of the theory.

Erdélyi stated that Stieltjes used the term semi-convergent, Fritz Emde (1873-1951)
used the term convergently beginning series and Poincaré used the term asymptotic series.
Further, it is the term of Poincaré that is now generally used. Erdélyi then stated that the
theory of asymptotic series was initiated by Stieltjes (1886) and Poincaré (1886).
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Copson provided a more detailed history of asymptotic expansions that started in 1730
with the Stirling series, and mentioned work of Euler, Laplace, Legendre (and the very little
used term demi-convergente) and noted that the doctorate of Stieltjes was of particular
interest. Copson went on to conclude that the modern theory of asymptotic expansions
originated in the work of Poincaré.

Unlike the early twentieth century work by Whittaker who firmly situated the work on
asymptotic expansions in the development of celestial mechanics, both Copson’s and Erdé-
lyi’s texts are a mathematical exposition of asymptotic expansions. I do not mean to imply
that there were no other publications about asymptotic expansions between Whittaker and
Copson/Erdélyi; indeed there were many. However, these two works and this brief discus-
sion of their contents and statements about the origin of their material serves to reinforce
my conclusion that it was the work of Poincaré that originated the theory of asymptotic
expansions and the main parameters for its subsequent use.

7.3 Concluding Remarks

Stokes’ motivation for his work was efficient computation of numerical predictions from
theory. These computations allowed for comparison between theoretical predictions and
empirical observations which Stokes used to aid in the development of the theoretical un-
derstanding of physical observations. Divergent series, for Stokes, led to numerical results
that had two different and important outcomes: first, he was the first to understand and
provide theory for the physical phenomenon of viscosity, and second, he was able to provide
numerical approximations to important integrals in mathematical physics that led to values
confirmed by laboratory observations.

Forty years after Stokes, Poincaré was also interested in verifying and answering ques-
tions about the physical world. In his case, there were at least two questions of interest in
celestial mechanics. The first question was whether or not Newton’s gravitational theory
was sufficient to explain the observed orbits and the second question was whether or not
the solar system was stable.

Poincaré employed asymptotic expansions in the analysis of the differential equations
of celestial mechanics as part of his program to determine the stability of the solar system.
Poincaré also published an influential and general mathematical paper, independent of
application, on asymptotic expansions with careful definitions, proofs and allowed algebra
operations. The mathematical paper was published first and provided the theory which
Poincaré immediately used in his applied work on celestial mechanics.
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Stieltjes’ use of asymptotic expansions was motivated solely by mathematical considera-
tions partially related to his interest in finding the values of convergent continued fractions.
He provided more heuristic definitions than Poincaré and provided fewer proofs. Stielt-
jes had a novel and significant method of bounding error in approximations obtained from
asymptotic expansions and he used his method to bound the error for asymptotic expansions
to a number of important functions, several of which arose in number theory.

Several works on asymptotic expansions during the very late nineteenth century and
first half of the twentieth century, detailed above, establish that it was the work of Poincaré
that was ultimately the most influential on the development of asymptotic expansions. This
is seen in the definitions, the terminology and the methods used in later textbooks.

My conclusion that the work of Poincaré was the most impactful is based on the math-
ematical reception of each of Stokes’, Poincaré’s and Stieltjes’ work. If, instead, I consider
how the use of asymptotic expansions developed by each of these individuals impacted our
understanding of physical reality, then Stokes’ discovery may well have been the most sign-
ficant. He was able to identify and provide a theory for the effects of viscosity. This was
a newly identified principle in hydrodynamics which Stokes discovered because he had the
tool, in asymptotic expansions, that he needed to compute numbers which, when compared
with observation, identified a lacuna in existing theory.

Stieltjes, apart from a very brief mention that the Bessel differential equation was useful
in many applications from mathematical physics, appeared to be completely uninterested
in the physical application of his work. Poincaré’s statements about solar system stability,
while important and part of which was later codified as the Poincaré recurrence theorem
of dynamical systems, were not something which changed underlying theory or led to the
ability to understand or use physics in a novel manner. The discovery of ‘internal friction’
and its effect on the motion of the pendulum by Stokes and thus an understanding of the
boundary layer in fluid dynamics had a dramatic impact by this measure.

With regard to the context of the early work on asymptotic expansions that thesis
explores, I conclude that the work of Stokes was dramatically affected by the social context
in which he worked. During the first half of the nineteenth century, the societal value
placed on precision played a large role in the types of experiments that were performed
and the instruments that were designed and used. The results of the experiments with
these instruments were used to determine values of fundamental physical constants and
elucidate the structure of the physical world. The desire for precision and the attendant
precise laboratory measurements that were available to Stokes led directly to his desire to
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provide better numerical computations from theory and this led in turn to an improvement
in physical theory.

Further I have provided evidence, based mostly on the direct statements of Poincaré,
from which I have concluded that the work of the British mathematicians was oriented
differently from that of the French and that we can see that difference when comparing
the work of Stokes to that of Poincaré. During the late nineteenth century, British mathe-
matics was less focussed on rigour and more focussed on the practical solution to problems
in mathematical physics — problems that arose in mechanics, hydrodynamics, optics or
electromagnetism for example. The French, however, were more likely to take a more rig-
orous, mathematical approach which resulted in careful definitions and development of a
more complete mathematical theory before that theory was used in the service of answering
physical questions.

Prior to Poincaré there were a series of uses of asymptotic expansion in which conver-
gence was either not addressed or not handled well. In the later half of the nineteenth
century, the language to discuss convergence became more widely available. This rigoriza-
tion of analysis started with Cauchy and was refined by Weierstrass as we saw at the end
of Chapter 5. This provides an additional explanation as to the mathematical differences
between the work of Stokes and Poincaré.

We have seen three episodes of the appearance of asymptotic expansions during the
nineteenth century — episodes which were not well-connected to one another. The work of
Stokes, Stieltjes and Poincaré have points of similarity and also there is significant differences
between them. They did the most significant work on asymptotic expansions during the
nineteenth century.
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