
An Exploration of a Testing Procedure for the 
Aviation Industry 

by 

Liwei Lai 

Bachelor of Science (Hons.), University of Manitoba, 2020 

 

Project Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

in the 

Department of Statistics and Actuarial Science 

Faculty of Science 

 

© Liwei Lai 2023 

SIMON FRASER UNIVERSITY 

Fall 2023 

 

 

Copyright in this work is held by the author. Please ensure that any reproduction  
or re-use is done in accordance with the relevant national copyright legislation. 



ii 

Declaration of Committee 

Name: Liwei Lai 

Degree: Master of Science 

Title: An Exploration of a Testing Procedure for the 
Aviation Industry 

Committee: Chair: Liangliang Wang 
Associate Professor, Statistics and Actuarial 
Science 

 Tim Swartz 
Co-Supervisor 
Professor, Statistics and Actuarial Science 

 Gary Parker 
Co-Supervisor 
Associate Professor, Statistics and Actuarial Science 

 Joan Hu  
Committee Member 
Professor, Statistics and Actuarial Science 

 Sonja Isberg  
Examiner 
Lecturer, Statistics and Actuarial Science 

 



iii 

Abstract 

In the aviation industry, pilot training is paramount, necessitating robust and precise 

assessment methodologies. Despite the shift towards Competency-based Training and 

Assessment (CBTA) recommended by the International Civil Aviation Organization 

(ICAO), there is a notable absence of comprehensive statistical models to substantiate 

the evaluation process. This project explores the application of an enhanced Many-Facet 

Rasch Model (MFRM) employing Bayesian estimation techniques and presents a novel 

approach for quantifying pilot competency scores, ensuring a more granular and 

accurate assessment of pilot capabilities. By analyzing simulated data, the research 

assesses the viability of this statistical approach in operational settings. Potential 

applications and limitations of this methodology within the aviation industry are 

discussed. 

Keywords:  Many-Facet Rasch Model; Bayesian Estimation; Competency-based 

Training and Assessment; Stan 
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Chapter 1.  
 
Introduction 

Civil aviation is an integral component of transportation within our modern 

society, serving as one of the primary modes for long-distance travel for most 

individuals. As highly sophisticated products of modern technology, airlines necessitate 

stringent qualifications from their pilots. Consequently, pilot training emerges as a crucial 

element in the progression of the civil aviation industry. 

Pilots are obligated to complete recurrent training regularly on simulators to 

maintain their certification. In traditional qualification-based trainings, the examination is 

divided into different sections corresponding to different flight phases (take-off, climb, 

cruise, etc.). For each phase, pilots are assigned various tasks and receive a score from 

the instructor for each task. The scoring system typically employs a five-point scale, with 

1 as the lowest and 5 as the highest score. Some countries, however, use a four-point 

scale in their aviation pilot training, but in both systems, a score of 3 is considered 

passing. The aim of the qualification-based training is to ascertain that pilots maintain 

the essential knowledge, skills and experience required to uphold the standards of their 

license. 

With advancements in aircraft technology and growing demands for more 

effective pilot evaluation methods, the International Commercial Aviation Organization 

(ICAO) has, since 2020, introduced a competency-based training and assessment 

approach. A competency is a combination of knowledge, skills, and attitudes required to 

perform a task to the prescribed standard (ICAO 2018). The ICAO has defined 9 

competencies as follows: 

1. Application of Procedures (PRO) 

2. Communication (COM) 

3. Flight Path Management, Automation (FPA) 

4. Flight Path Management, Manual (FPM) 
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5. Leadership & Teamwork (LTW) 

6. Problem Solving & Decision Making (PSD) 

7. Situation Awareness (SAW) 

8. Workload Management (WLM) 

9. Application of Knowledge (KNO) 

 

The goal of competency-based training is to ensure pilots develop required 

competencies to carry out their assigned duties and responsibilities safely, efficiently and 

effectively at workplace (Defalque 2017). In the competency-based training, each task is 

associated with specific competencies, typically three. Rather than grading individual 

tasks, instructors assess each competency based on the pilot's overall performance 

during the training session. This method allows aviation employers to construct their own 

assessments under the ICAO competency framework, ensuring the content is relevant to 

the job's actual requirements. Furthermore, it optimizes the utilization of training tools 

and methodologies, leading to a more holistic and applicable assessment of pilot 

abilities. 

At present, airlines in Europe and the Middle East rely exclusively on 

competency-based training, where instructors grade each competency based on a pilot’s 

overall performance. In contrast, airlines in the U.S. and Canada use a hybrid grading 

system. This system combines both task-based and competency-based assessments: 

during a test, instructors assign a score to each task, and after the test, they grade each 

competency based on the pilot’s overall performance. Meanwhile, airlines in China are 

transitioning towards the competency-based training system, gradually phasing out their 

task-based grading approach. 

Despite the many advantages of competency-based training, it also presents 

some unresolved challenges. A prevailing issue is linking competencies and tasks during 

grading. Although each task associates with specific competencies, grades for each 

competency are determined based on overall performance, rather than being anchored 

to the tasks directly associated with that competency. This lack of specificity can make it 
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challenging to design targeted training plans for improvement. Therefore, it is crucial to 

retain the practice of scoring individual tasks alongside competency assessments. 

Another key issue is the subjective nature of scoring. Whether in task-based or 

competency-based training, scores are determined by instructors, introducing variability 

in grading. Some instructors might be more lenient, while others could be stricter. As a 

result, the same pilot performance might yield different scores from different instructors, 

thereby challenging the reliability and consistency of the assessment process. 

The primary aim of this project is to devise a method for determining suitable 

scores for each competency derived from the raw scores of task grading, while also 

mitigating the impact of instructors' subjective judgements in the assessment process. 

Specifically, we are interested in employing a model from Item Response Theory to 

accomplish our goal. 

Item Response Theory (IRT), also known as Latent Trait Theory, is a testing 

method for designing, analyzing, and scoring tests and questionnaires. It is particularly 

adept at assessing abilities, attitudes, and other distinct variables. Generally, IRT 

attempts to mathematically model the probability of an identified response based upon 

the interaction of a person's latent ability and characteristics (e.g., difficulty) of an item 

(Ackerman et al., 2023, p.72).  

The predominant use of IRT is in the field of education, where psychometricians 

employ it to craft and structure examinations. IRT's foundational development as a 

theoretical framework took place in the 1950s, when Lord published his doctoral 

dissertation on the theory of latent traits which led to a few other publications (Lord, 

1950; Lord, 1952; Lord, 1953). Rasch (1960) released a book introducing several item 

response models, most notably the renowned Rasch model, which addresses 

dichotomous responses. Following Rasch's development of a polytomous model (1961), 

variations of the model were subsequently introduced. Samejima (1969) introduced the 

Graded Response Model. Later, Andrich (1978) formulated the Rating Scale Model, 

which reinterprets terms from Rasch’s model as thresholds, particularly focusing on 

Likert-type questions. The Partial Credit Model, introduced by Masters (1982), and the 

Generalized Partial Credit Model, presented by Muraki (1997), address scenarios where 

thresholds vary across different items. 
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An additional significant development within the IRT lineage is the Many-Facet 

Rasch Model (Linacre, 1989; Eckes, 2015). Compared to earlier polytomous models, the 

Many-Facet Rasch Model integrates rater severity into its analysis, alongside 

considerations of test-taker’s ability and task difficulty. A recent advancement is the 

introduction of a generalized Many-Facet Rasch model that utilizes Bayesian estimation 

(Uto & Ueno, 2020; Uto, 2022). This model captures all the typical characteristics within 

the IRT framework, a feat that other IRT models couldn't achieve due to inaccurate 

parameter estimation resulting from model complexity. Instead of using traditional 

maximum likelihood estimation, Uto & Ueno (2020) adopted a robust Bayesian 

estimation method using the No-U-Turn Hamiltonian Monte Carlo algorithm, an MCMC 

algorithm. 

In this project, we adopt the Bayesian Many-Facet Rasch Model and propose a 

reparametrized version of it for analyzing pilot competencies. We first estimate pilots' 

abilities, task difficulties and instructor severities based on raw task scores. Following 

this, we project scores for pilots across all tasks in our repository, assuming they were 

evaluated by an average instructor. This will allow us to deduce the score of each 

competency for pilots. 

All computations are performed using R and Stan; the latter leverages 

Hamiltonian Monte Carlo techniques to produce posterior samples (Carpenter et al., 

2017).  

The main challenge of this project is that, while the primary interest is rooted in a 

genuine industry challenge, we were unable to obtain actual data from airline 

companies. In this project, we rely on simulation studies and in-depth discussions. In 

Chapter 2, we elucidate the fundamental statistical model and detail its integration within 

a Bayesian framework. In Chapter 3, simulation studies are undertaken, encompassing 

data generation and posterior estimations. The raw score data are generated based on 

probabilities that we believe closely mirror real-world scoring. Chapter 4 delves into the 

potential applications of this project in industry, explores additional topics, and discusses 

potential real-data scenarios. It's important to underscore that this is preliminary work 

and not a finalized product ready for industry implementation. 
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Chapter 2.  
 
Methods 

2.1. Many-Facet Rasch Model 

Consider a test where questions have scores 𝑙 = 1, 2, …, L. The most common 

form of the Many-Facet Rasch model for the 𝑖𝑡ℎ pilot, 𝑗𝑡ℎ task and 𝑘𝑡ℎ instructor is 

specified as the following log-odd form (Eckes 2015): 

 

ln (
𝑃𝑖𝑗𝑘𝑙

𝑃𝑖𝑗𝑘(𝑙−1)
) = 𝛼𝑖 − 𝛾𝑗 − 𝛿𝑘 − 𝜏𝑙                    for 𝑙 =  2, … , L                                 (1) 

 

where 

 

𝑃𝑖𝑗𝑘𝑙   = probability of pilot 𝑖 receiving a score of 𝑙 on task 𝑗 from  

                           instructor 𝑘, 

𝛼𝑖   = ability of pilot 𝑖, i = 1,…, 𝐼 

𝛾𝑗   = difficulty of task 𝑗, j = 1,…, 𝐽 

𝛿𝑘   = severity of instructor 𝑘, k = 1,…, 𝐾 

𝜏𝑙   = difficulty of receiving score 𝑙 relative to score 𝑙 − 1, l = 2,…, 𝐿 

 

The parameter 𝜏𝑙 can be interpreted as the parameter determining the threshold 

for getting a score of 𝑙 instead of 𝑙 − 1 given that pilot receives one of these scores. The 

parameter 𝜏𝑙 determines the location where the two scores are equally likely. The 

probability can then be expressed as follows:  
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𝑃𝑖𝑗𝑘𝑙 =
exp[∑ (𝛼𝑖−𝛾𝑗−𝛿𝑘−𝜏𝑚)

𝑙
𝑚=1 ]

∑ exp[∑ (𝛼𝑖−𝛾𝑗−𝛿𝑘−𝜏𝑚
𝑙
𝑚=1 )]𝐿

𝑙=1

                                                          (2) 

 

or 

 

𝑃𝑖𝑗𝑘𝑙 =
exp[𝑙∗(𝛼𝑖−𝛾𝑗−𝛿𝑘)−∑ 𝜏𝑚

𝑙
𝑚=1 ]

∑ exp[𝑙∗(𝛼𝑖−𝛾𝑗−𝛿𝑘)−∑ 𝜏𝑚
𝑙
𝑚=1 ]𝐿

𝑙=1

                                                                             (3)  

 

However, due to the summation of the parameters in (2) or the multiplication in 

(3), this model lacks statistical intuitiveness. Additionally, the mixture of positive and 

negative parameter coefficients is not intuitive. In light of these issues, we propose an 

alternative model that offers clearer expression and understanding. 

 

2.2. The Proposed Model 

We consider the following model with the same number of parameters as (1): 

 

ln (
𝑃𝑖𝑗𝑘𝑙

𝑃𝑖𝑗𝑘𝐿
) = {

𝛼𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜏𝑙   for 𝑙 =  1, 2, … , L − 1

     0   for 𝑙 =  L 
                                   (4) 

 

where 𝜏𝑙 is now a parameter determining the difficulty of receiving a score of 𝑙 relative to 

score L, the base score. For model simplicity, the parameter 𝜏𝑙 is assumed to be the 

same for all tasks. 

Compared to the MFRM model discussed in Section 2.1, the proposed model's 

log-odds form considers a score in relation to a base score, a practice widely accepted 
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in multinomial logistic regression. Additionally, all the parameters in this model carry 

positive signs, which is simpler to interpret. 

From (4) we obtain: 

 

𝑃𝑖𝑗𝑘𝑙 = 𝑃𝑖𝑗𝑘𝐿 ∗ exp(𝛼𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜏𝑙)   for 𝑙 = 1, …, L-1                                (5) 

 

Thus, 

 

1 − 𝑃𝑖𝑗𝑘𝐿 = 𝑃𝑖𝑗𝑘𝐿 ∗  ∑ exp(𝛼𝑖 + 𝛾𝑗 + 𝛿𝑘 + 𝜏𝑙)
𝐿
𝑙=1   for 𝑙 = 1, …, L-1                (6) 

 

Substituting (6) into (5), we have:  

 

𝑃𝑖𝑗𝑘𝑙 = {

exp(𝛼𝑖+𝛾𝑗+𝛿𝑘+𝜏𝑙)

1+∑ exp(𝛼𝑖+𝛾𝑗+𝛿𝑘+𝜏𝑙)
𝐿−1
𝑙=1

  for 𝑙 =  1, 2, … , L − 1

1

1+∑ exp(𝛼𝑖+𝛾𝑗+𝛿𝑘+𝜏𝑙)
𝐿−1
𝑙=1

                       for 𝑙 =  L
                                   (7) 

  

 

2.3. Bayesian Formulation 

For complex models, a Bayesian estimation method generally provides more 

robust estimations (Uto & Ueno, 2020). In the application of pilot testing, there is 

considerable knowledge associated with the pilots, tasks and instructors. Thus, the 

model can be formulated in a Bayesian framework by introducing informative priors on 

the model parameters. Since in our exploration we do not have access to actual pilot 

data, the introduction of prior information is carried out at a theoretical level. 
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In this project, we introduce a multivariate normal prior for the parameters. There 

are many advantages of choosing a multivariate normal prior. Foremost, it is trackable 

and it offers concave shapes that we are likely to expect when eliciting prior opinion. The 

normal distribution also permits an intuitive covariance structure.  

Furthermore, the multivariate normal prior brings flexibility, especially when 

investigating possible correlated relationships. We think in the most general case, there 

are correlations between pilots, tasks, and instructors. For example: 

1. Pilots who test well may be treated leniently by instructors.  

2. An instructor could be stringent regarding certain tasks.  

Correlations may also exist within parameters. For example, tasks within the 

same category are likely correlated. Landing during the day and landing at night should 

have relevance to one another. 

In the context of proposed model (7), we denote the parameter vectors as: 

𝛼 = (𝛼1, … , 𝛼𝐼) 

𝛾 = (𝛾1, … , 𝛾𝐽) 

𝛿 = (𝛿1, … , 𝛿𝐾) 

𝜏 = (𝜏1, … , 𝜏𝐿−1) 

Then the multivariate normal prior is  

(𝛼, 𝛾, 𝛿, 𝜏)𝑇 ~ 𝑁𝐼+𝐽+𝐾+(𝐿−1)(μ, Σ) 

where 

𝜇 = (𝜇𝛼 , 𝜇𝛾 , 𝜇𝛿 , 𝜇𝜏) 
𝑇 

𝜇𝛼 = (𝜇𝛼1 , … , 𝜇𝛼𝐼) 

𝜇𝛾 = (𝜇𝛾1 , … , 𝜇𝛾𝐽) 
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𝜇𝛿 = (𝜇𝛿1 , … , 𝜇𝛿𝐾) 

𝜇𝜏 = (𝜇𝜏1 , … , 𝜇𝜏𝐿−1) 

 

and  

Σ =  

(

 
 

Σ𝛼𝛼 Σ𝛼𝛾 Σ𝛼𝛿 Σ𝛼𝜏

Σ𝛼𝛾
𝑇 Σ𝛾𝛾 Σ𝛾𝛿 Σ𝛾𝜏

Σ𝛼𝛿
𝑇 Σ𝛾𝛿

𝑇 Σ𝛿𝛿 Σ𝛿𝜏

Σ𝛼𝜏
𝑇 Σ𝛾𝜏

𝑇 Σ𝛿𝜏
𝑇 Σ𝜏𝜏)

 
 

 

 

 Each component of the variance-covariance matrix is a sub-matrix. For example, 

Σ𝛼𝛼 is the variance matrix of parameter 𝛼, and Σ𝛼𝛾 is the covariance matrix of 𝛼 and 𝛾.  

Intuitively, on the diagonal, Σ𝛼𝛼 and Σ𝛿𝛿 are diagonal matrices taking the form 𝜎𝛼2𝐼 

and 𝜎𝛾2𝐼, respectively because we think pilots are independent individuals as are 

instructors. Among the remaining matrices, there are unlikely correlations between 

relative difficulty and other parameters, so Σ𝜏𝜏,  Σ𝛼𝜏, Σ𝛾𝜏 and Σ𝛿𝜏 should be 0. Hence, the 

focus of the variance-covariance matrix falls on Σ𝛾𝛾, Σ𝛼𝛾, Σ𝛼𝛿 and Σ𝛾𝛿, i.e., within tasks, 

between pilots and tasks, between pilots and instructors, and between tasks and 

instructors. 

 

2.4. Devising the Competency Scores 

 After obtaining the estimated parameters for pilots, tasks, instructors and relative 

difficulties using a Bayesian approach, we proceed to calculate a score for each of the 

nine competencies for every pilot. This involves two steps.  

First, we project the scores for each pilot on every task, assuming they are 

graded by an instructor of average severity. To achieve this, we insert the estimated pilot 
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ability and task difficulty into model (7) for each pilot and each task. We then use a value 

of 0 for instructor severity. Thus, for pilot 𝑖 and task 𝑗, the estimated probability of getting 

score 𝑙 is  

𝑃̂𝑖𝑗𝑙 = {

exp(𝛼̂𝑖+𝛾̂𝑗+𝜏̂𝑙)

1+∑ exp(𝛼̂𝑖+𝛾̂𝑗+𝜏̂𝑙)
𝐿−1
𝑙=1

  for 𝑙 =  1, 2, … , L − 1

1

1+∑ exp(𝛼̂𝑖+𝛾̂𝑗+𝜏̂𝑙)
𝐿−1
𝑙=1

                       for 𝑙 =  L
                                            (8) 

Thus, the projected score can be calculated by  

𝑆𝑖𝑗 = ∑ 𝑃̂𝑖𝑗𝑙 ∗ 𝑙
𝐿
𝑙=1                                                                                            (9) 

For pilot 𝑖, we define the projected scores as: 

𝑆𝑖 = (𝑆𝑖1, 𝑆𝑖2,… , 𝑆𝑖𝐽 ) 

Second, as previously mentioned, each task is associated with specific 

competencies. We think that different tasks have different weights for competencies. For 

example, a task associated with competencies of communication, situation awareness, 

and leadership might have weights of 40%, 40% and 20%, respectively. In contrast, 

another task associated with those same competencies could have weights of 30%, 30% 

and 40%, respectively. Thus, for task 𝑗, we define the competency weights as: 

𝑤𝑗 = (𝑤𝑗1, 𝑤𝑗2, 𝑤𝑗3, 𝑤𝑗4, 𝑤𝑗5, 𝑤𝑗6, 𝑤𝑗7, 𝑤𝑗8, 𝑤𝑗9) 

for the nine competencies. The weights are non-negative, 𝑤𝑗𝑐 ≥ 0. They sum to 1, 

∑ 𝑤𝑗𝑐
9
𝑐=1 = 1, and only the weights of the associated competencies are non-zero. The 

weights should be determined by experts in the aviation industry. 

With the projected task scores and competency weights of each task, we 

calculate the score for a competency by taking the weighted average of the scores of 

tasks associated with this competency. Therefore, for pilot 𝑖, the competency score on 

competency 𝑐 is: 

𝜃𝑖𝑐 = 
∑ (𝑤𝑗𝑐∗𝑆𝑖𝑗)
𝐽
𝑗=1

∑ 𝑤𝑗𝑐
𝐽
𝑗=1

  for i = 1, 2, …, 𝐼 and c = 1, 2, …, 9                                  (10) 
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Chapter 3.  
 
Simulation Study 

3.1. Model Validation 

In this subsection, we carry out a simulation to confirm that the Bayesian 

implementation can accurately estimate the underlying parameters. 

For this purpose, we create a simple dataset consisting of scores for 6 pilots, 4 

tasks and 3 instructors. All the tasks are associated with a particular competency. The 

task scores are on a 5-point scale, with score 5 being the highest and 1 the lowest. To 

construct the dataset, we first assign parameter values for model (7) as detailed in Table 

1 to pilots, tasks and instructors. 

 

 
1st 2nd 3rd 4th 5th 6th 

Pilot ability 𝛼𝑖 -0.8 -0.3 0.0 0.2 0.4 1.0 

Task difficulty 𝛾𝑗  0.8 0.0 -0.3 -0.5 
  

Instructor severity 𝛿𝑘  1.0 0.0 -1.0 
   

Table 1 The assigned parameter values for the generated dataset. 

 

Pilots with higher ability values are deemed as proficient; tasks with greater 

positive parameter values are considered easy; and instructors with higher parameter 

values are seen as lenient. 

For the relative difficulty 𝜏𝑙, score 1 is set as the base score, so 𝜏1 is 0. The 

assigned values are as follows: 

 

Score 1 2 3 4 5 
Relative difficulty 𝜏𝑙 0 -1 -0.5 1 1.5 

Table 2 Relative difficulty for generated dataset. 
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Given the assigned parameters, we randomly generate score data based on the 

model described in (7). The scores are generated for every pilot performing each task 

100 times under the supervision of each instructor, resulting in a total 7,200 scores 

(6*4*3*100) in the dataset. Each score is generated independently. The 100 repeated 

tasks done by pilots are not realistic, but they are carried out so that we have strong 

information concerning the parameters. Table 3 presents a sample showcasing the 

structure of the generated data. 

  

Pilot id Task id Instructor id Score 

1 1 1 3 

1 1 1 4 

1 2 1 4 

1 2 1 5 

1 2 2 1 

1 2 2 2 

Table 3 Sample of generated data. 

 

With this dataset, we estimate parameters using Stan to evaluate parameter 

recovery. For the prior distributions, we refer to Section 2.3 and operate under the 

assumption that all parameters are independent, and each follows a normal distribution 

with mean 0 and variance 1. 

 Tables 4 - 7 display the result of the recovery test. Values within brackets 

represent the standard error of the estimated parameter. The results indicates that, with 

large dataset, the Bayesian implementation can accurately recover the selected 

parameters with small standard errors. This provides us with confidence that the Stan 

programming is working correctly. 

 
1st 2nd 3rd 4th 5th 6th 

Pilot ability 𝛼̂𝑖 
S.E. 

-0.79 
(0.01) 

-0.27 
(0.01) 

0.17 
(0.01) 

0.17 
(0.01) 

0.19 
(0.01) 

0.86 
(0.01) 

Table 4 Estimated pilot abilities, with standard errors in parentheses. 
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1st 2nd 3rd 4th 

Task difficulty 𝛾𝑗 
S.E. 

0.78 
(0.01) 

0.15 
(0.01) 

-0.22 
(0.01) 

-0.33 
(0.01) 

Table 5 Estimated task difficulties, with standard errors in parentheses. 

 

 
1st 2nd 3rd 

Instructor severity 𝛿𝑘 
S.E. 

1.22 
(0.01) 

0.12 
(0.01) 

-1.04 
(0.01) 

Table 6 Estimated instructor severities, with standard errors in parentheses. 

 

Score 1 2 3 4 5 
Relative difficulty 𝜏̂𝑙 

S.E. 
0 -1.23 

(0.01) 
-0.63 

(0.01) 
0.89 

(0.01) 
1.33 

(0.01) 
Table 7 Estimated relative difficulties, with standard errors in parentheses. 

 

3.2. Model Capability 

 In this section we consider what we believe to be some realistic probabilities 

𝑃𝑖𝑗𝑘𝑙. We then investigate the resulting estimated parameters and observe whether the 

induced probabilities are similar to the manually selected probabilities.  

 While maintaining the same number of pilots, tasks, and instructors as the 

dataset presented in Section 3.1, we select the probability distribution for the scores of 

each of the 72 combinations. Table 8 displays the labels assigned to each parameter. 

For pilots, a higher label number signifies better proficiency. In the case of tasks, a 

higher label number denotes easier tasks. Lastly, a higher label number for instructors 

suggests greater leniency in their assessment. 

Based on our knowledge, in a 5-point scale rating, a score of 3 and above is 

deemed as passing. Receiving a score of 1 is highly improbable, while a score of 2 is 

uncommon but still possible. Most pilots typically achieve scores of 3 or 4 based on their 

performance. A score of 5, which denotes perfection, is also quite rare. Table 9 shows 

part of the selected probability distributions. As observed, when both the task difficulty 

and instructor severity remain constant, an increase in pilot ability results in a decreased 
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likelihood of attaining lower scores and an increased likelihood of receiving higher 

scores. 

Parameter Label      
Pilot  1st 2nd 3rd 4th 5th 6th 

Task  1st 2nd 3rd 4th 
  

Instructor  1st 2nd 3rd 
   

Table 8 The labels of pilots, tasks and instructors. 

 

Scores are generated in a manner consistent with the approach outlined in 

Section 3.1. For each of the 72 pilot-task-instructor combinations, scores are 

independently generated based on the probability distribution. Again, while this method 

may not reflect a real-world scenario, it embeds strong information within the data, 

enabling a deeper investigation of the parameters. As in Section 3.1, we estimate the 

parameters using Stan, assuming all parameters are a priori independent, and each 

follows a normal distribution with mean 0 and variance 1. Tables 10 - 13 display the 

estimated parameters along with their standard errors. 

 

Parameter labels  Manually selected probability  
Pilot Task Instructor 1 2 3 4 5 

1st 2nd 2nd 0.02 0.18 0.67 0.13 0.00 

2nd 2nd 2nd 0.02 0.12 0.61 0.25 0.00 

3rd 2nd 2nd 0.01 0.05 0.60 0.30 0.04 

4th 2nd 2nd 0.01 0.04 0.55 0.35 0.05 

5th 2nd 2nd 0.00 0.02 0.5 0.41 0.07 

6th 2nd 2nd 0.00 0.01 0.45 0.45 0.09 

1st 3rd 2nd 0.02 0.12 0.61 0.25 0.00 

2nd 3rd 2nd 0.01 0.05 0.60 0.30 0.04 

3rd 3rd 2nd 0.01 0.04 0.55 0.35 0.05 

4th 3rd 2nd 0.00 0.02 0.50 0.41 0.07 

5th 3rd 2nd 0.00 0.01 0.45 0.45 0.09 

6th 3rd 2nd 0.00 0.01 0.37 0.51 0.11 

 Table 9 Sample of manually selected probability distributions for the five score 
outcomes. 
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1st 2nd 3rd 4th 5th 6th 

Pilot ability 𝛼̂𝑖 
S.E. 

-0.69 
(0.01) 

-0.27 
(0.01) 

0.16 
(0.01) 

0.84 
(0.01) 

1.14 
(0.01) 

2.13 
(0.01) 

Table 10 Estimated pilot ability, with standard errors in parentheses. 

 

 
1st 2nd 3rd 4th 

Task difficulty 𝛾𝑗 
S.E. 

0.46 
(0.01) 

0.38 
(0.01) 

0.74 
(0.01) 

1.80 
(0.01) 

Table 11 Estimated task difficulty, with standard errors in parentheses. 

 

 
1st 2nd 3rd 

Instructor severity 𝛿𝑘 
S.E. 

0.49 
(0.01) 

1.15 
(0.01) 

1.73 
(0.01) 

Table 12 Estimated instructor severity, with standard errors in parentheses. 

 

Score 1 2 3 4 5 
Relative difficulty 𝜏̂𝑙 

S.E. 
0 -0.07 

(0.01) 
2.06 

 (0.01) 
1.66 

 (0.01) 
-0.22 

(0.01) 
Table 13 Estimated relative difficulty, with standard errors in parentheses. 

 

Lacking the "true parameters" for direct comparison, we input the estimated 

parameters from Tables 10 -13 in model (7) to determine the estimated probability 

distributions. In Table 14, an extension of Table 9, we compare these estimated 

distributions with the manually selected probability distributions based on the parameter 

labels. It's evident that differences exist, indicating that the estimated parameters don't 

accurately induce the manually selected probabilities. A striking observation is the static 

nature of score probabilities even as pilot ability increases. This indicates that the model 

is incapable of identifying all potential probability distributions. 
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Parameter labels  Manually selected probability  Estimated probability Manually selected - Estimated 
 

Pilot     Task  Instructor  1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1st 2nd 2nd 0.02 0.18 0.67 0.13 0.00 0.02 0.06 0.53 0.34 0.05 0.00 0.12 0.14 -0.21 -0.05 

2nd 2nd 2nd 0.02 0.12 0.61 0.25 0.00 0.02 0.06 0.53 0.34 0.05 0.00 0.06 0.08 -0.09 -0.05 

3rd 2nd 2nd 0.01 0.05 0.60 0.30 0.04 0.01 0.06 0.53 0.34 0.05 0.00 -0.01 0.07 -0.04 -0.01 

4th 2nd 2nd 0.01 0.04 0.55 0.35 0.05 0.01 0.06 0.53 0.34 0.05 0.00 -0.02 0.02 0.01 0.00 

5th 2nd 2nd 0.00 0.02 0.50 0.41 0.07 0.01 0.06 0.53 0.34 0.05 -0.01 -0.04 -0.03 0.07 0.02 

6th 2nd 2nd 0.00 0.01 0.45 0.45 0.09 0.01 0.06 0.53 0.34 0.05 -0.01 -0.05 -0.08 0.11 0.04 

1st 3rd 2nd 0.02 0.12 0.61 0.25 0.00 0.02 0.06 0.53 0.34 0.05 0.00 0.06 0.08 -0.09 -0.05 

2nd 3rd 2nd 0.01 0.05 0.60 0.30 0.04 0.02 0.06 0.52 0.34 0.05 -0.01 -0.01 0.08 -0.04 -0.01 

3rd 3rd 2nd 0.01 0.04 0.55 0.35 0.05 0.01 0.06 0.53 0.34 0.05 0.00 -0.02 0.02 0.01 0.00 

4th 3rd 2nd 0.00 0.02 0.50 0.41 0.07 0.01 0.06 0.53 0.34 0.05 -0.01 -0.04 -0.03 0.07 0.02 

5th 3rd 2nd 0.00 0.01 0.45 0.45 0.09 0.01 0.06 0.53 0.34 0.05 -0.01 -0.05 -0.08 0.11 0.04 

6th 3rd 2nd 0.00 0.01 0.37 0.51 0.11 0.01 0.06 0.53 0.34 0.05 -0.01 -0.05 -0.16 0.17 0.06 

Table 14 Sample of manually selected probabilities subtracting estimated probabilities. 
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3.3. The Effect of Priors 

 In this section, we explore the effect of prior distributions.  

It is important to recognize that, in real-world training environments, pilots rarely 

perform each task and get assessed by several instructors hundreds of times. Therefore, 

large datasets like the one in Section 3.1 are uncommon. To simulate a more realistic 

dataset, we proceed as follows: we keep the same setting of 6 pilots, 4 tasks and 3 

instructors, with their parameter values unchanged as in Section 3.1. Considering that 

pilots undergo recurrent training regularly (usually at least once a year, depending on the 

regulations of different countries), we treat each training session as a "batch." In every 

batch, each pilot completes all tasks and is evaluated by just one instructor, with each 

instructor assessing two pilots. For instance, in batch 1, pilots 1 and 2 are evaluated by 

instructor 1, pilots 3 and 4 by instructor 2, and pilots 5 and 6 by instructor 3. For this 

section, we simulate the scores for 15 batches to create the small dataset, detailing the 

instructor assignments in Table 15. This results in a total of 360 scores. 

 

 
batch 

  

pilot 1-5 6-10 11-15 

1 instructor 1 instructor 2 instructor 3 

2 instructor 1 instructor 2 instructor 3 

3 instructor 2 instructor 3 instructor 1 

4 instructor 2 instructor 3 instructor 1 

5 instructor 3 instructor 1 instructor 2 

6 instructor 3 instructor 1 instructor 2 

Table 15 Instructor assignment. 

 

Keeping the prior distributions consistent with Section 3.1, wherein all 

parameters follow Normal(0,1) distribution independently, we then obtain the estimated 

parameters from this smaller dataset. A comparative review of the estimated parameters 

between this dataset and the comprehensive dataset is presented in Tables 16 - 19. 
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1st 2nd 3rd 4th 5th 6th 

True parameter -0.80 -0.30 0.00 0.20 0.40 1.00 

Pilot ability 𝛼̂𝑖 

with large dataset 

-0.79 
 

-0.27 
 

0.17 
 

0.16 
 

0.19 
 

0.86 
 

Pilot ability 𝛼̂𝑖 

with small dataset 

-0.36 

 

-0.36 

 

0.03 

 

0.16 

 

0.17 

 

0.69 

 

Table 16 Comparison of estimated pilot abilities. 

 

 
1st 2nd 3rd 4th 

True parameter 0.80 0.00 -0.30 -0.50 

Task difficulty 𝛾𝑗 

with large dataset 

0.78 
 

0.15 
 

-0.22 
 

-0.33 
 

Task difficulty 𝛾𝑗 

with small dataset 

0.61 

 

0.03 

 

-0.15 

 

-0.23 

 

Table 17 Comparison of estimated task difficulties. 

 

 
1st 2nd 3rd 

True parameter 1.00 0.00 -1.00 

Instructor severity 𝛿𝑘  

with large dataset 

1.22 
 

0.12 
 

-1.04 
 

Instructor severity 𝛿𝑘  

with small dataset 

1.38 

 

-0.19 

 

-0.82 

 

Table 18 Comparison of estimated instructor severities. 
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Score 1 2 3 4 5 

True parameter 0 -1.00 -0.50 1.00 1.50 

Relative difficulty 𝜏̂𝑙  

with large dataset 

0 -1.23  -0.63  0.89  1.33  

Relative difficulty 𝜏̂𝑙  

with small dataset 

0 -1.59 

 

-0.67 

 

0.84 

 

1.56 

 

Table 19 Comparison of estimated relative difficulties. 

 

As expected, we observe that the parameters estimated from a small dataset are 

not as accurate as those estimated from a larger one. However, in industry, we usually 

have some foundational knowledge regarding the parameters under assessment. For 

example, a pilot with more than 10 years of flight experience is expected to possess 

greater ability than a recent flight school graduate. This inherent knowledge allows us to 

establish more informed prior distributions, enhancing the accuracy of the estimations.  

Using pilot abilities as an example: assume that based on historical performance 

metrics, we observe that the higher the pilot label number, the more proficient the pilot. 

Specifically, the 1st pilot is perceived as the least proficient, while the 6th pilot is the most 

proficient.  

In Section 3.1, we used an independent Normal(0,1) as the prior distribution for 

all pilots to carry out the analysis. In this Section, we assign independent normal prior 

distributions for the six pilots, with the prior mean being -0.6, -0.2, 0.0, 0.2, 0.4 and 1.0 

respectively. These values more closely align with the assigned parameter values from 

which we generated the dataset in Section 3.1. As for the variance, we consider two 

distinct settings. The first setting maintains the variances of these priors at 1 as in 

Section 3.1, while the second adjusts them to 0.2. The discrepancy between the 

estimated parameters and the assigned parameter values is given by 

𝐷 = ∑ |𝛼̂𝑖 − 𝛼𝑖|
𝐼
𝑖=1                                                                                              (11) 

where 𝛼𝑖 represents the assigned ability for pilot 𝑖 and 𝛼̂𝑖 denotes the estimated pilot 

ability for pilot 𝑖. 
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Table 20 presents an overview of the estimated pilot abilities under each test 

condition as well as the discrepancy. The parameter 𝜇𝑝 is used to denote the improved 

prior means -0.6, -0.2, 0.0, 0.2, 0.4 and 1. We can see that with the small dataset, 

specifying the improved prior means without changing the variance results in better 

estimates for some of the pilot abilities and lowers the discrepancy statistic D, but the 

first three estimated parameters remain unimproved. 

Meanwhile, if a smaller variance can be applied along with the improved prior 

means, the results yield more accurate estimates, as indicated by the discrepancy 

statistic D. However, the estimated ability for the 1st pilot at -0.54, aligns more closely 

with the prior mean than with the true value. This suggests that, with limited data, the 

estimated outcome is significantly influenced by the prior mean and the variance. 

 

Pilot 1st 2nd 3rd 4th 5th 6th D 
True parameter -0.80 -0.30 0.00 0.20 0.40 1.00  

Pilot ability 𝛼̂𝑖 with 

large dataset. 

Normal (0, 1). 

-0.79 
 

-0.27 
 

0.02 
 

0.16 
 

0.19 
 

0.86 
 

0.45 

Pilot ability 𝛼̂𝑖 with 

small dataset.  

Normal (0, 1). 

-0.36 

 

-0.36 

 

0.03 

 

0.16 

 

0.17 

 

0.69 

 

1.11 

Pilot ability 𝛼̂𝑖 with 

small dataset.  

Normal (𝜇𝑝, 1). 

-0.34 

 

-0.30 

 

0.10 

 

0.26 

 

0.31 

 

0.98 

 

0.73 

Pilot ability 𝛼̂𝑖 with 

small dataset.  

Normal (𝜇𝑝, 0.2). 

-0.54 

 

-0.23 

 

0.02 

 

0.20 

 

0.37 

 

0.98 

 

0.40 

Table 20 Comparison of estimated pilot abilities, with different datasets and prior 
distributions. The discrepancy statistic D is defined in equation (11). 
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3.4. Competency Score 

 In this section, we illustrate the procedure of calculating a competency score for 

a specific competency, using one pilot as an example, and elaborate on the merits of 

utilizing the competency score as a better approach. 

To recapitulate the methodology for calculating the competency score, the 

following steps are taken: 

1. Estimate parameters using model (7) and Bayesian estimation. 

2. Obtain the estimated probabilities for each student pertaining to each task, 

assuming they are graded by an average instructor by inputting the estimated 

parameters into model (8). 

3. Calculate the projected scores for each pilot on each task utilizing equation 

(9). 

4. For a specific competency of a pilot, calculate the competency score based 

on the projected scores and the corresponding weights of the competency. 

Thus, we first determine the estimated task difficulties, instructor severities and 

relative difficulties using the same small dataset from Section 3.3. When assigning 

priors, we proceed as follows: based on prior knowledge, we select prior means to be 

(0.5, 0, -0.3, -0.6) for task difficulties, (0.8, 0, -0.8) for instructor severities, and (-0.8, -

0.4, 1, 1.3) for relative difficulties. The variance is 0.2 for all the prior distributions. The 

results are presented in Tables 21 – 23.  

 
1st 2nd 3rd 4th 

Task difficulty 𝛾𝑗 0.47  0.01  -0.33  -0.57  
Table 21 Estimated task difficulty based on small dataset. 

 

 
1st 2nd 3rd 

Instructor severity 𝛿𝑘 0.83  0.00  -0.86  
Table 22 Estimated instructor severity based on small dataset. 
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Score 1 2 3 4 5 
Relative difficulty 𝜏̂𝑙 0 -1.03  -0.46  1.00 

  
1.64 

Table 23 Estimated relative difficulty based on small dataset. 

 

After acquiring all the estimated parameters, we incorporate the estimated 

parameters from Tables 20-23 into model (8) to determine the estimated probability 

distributions for the 1st pilot. As highlighted in Section 2.4, we adopt a value of 0 for 

instructor severity, assuming the pilots are graded by an instructor with average severity. 

Table 24 presents the estimated probabilities for the 1st pilot performing each of the four 

tasks.  

 

Parameters Estimated probability 
1st Pilot Task Instructor 1 2 3 4 5 

-0.54 0.47 0 0.11 0.04 0.06 0.27 0.52 

-0.54 0.01 0 0.16 0.03 0.06 0.26 0.49 

-0.54 -0.33 0 0.21 0.03 0.06 0.24 0.46 

-0.54 -0.57 0 0.26 0.03 0.05 0.23 0.43 

Table 24 Estimated probabilities for the 1st pilot, with ability 𝛼̂1 = −0.54. 

 

Subsequently, utilizing formula (9), we calculate the projected scores for the 1st 

pilot, and the scores for these four tasks are represented as 𝑆1 = (3.93, 3.76, 3.59, 3.45). 

Assuming all four tasks associate with the competency of situation awareness, 

with respective weights of 10%, 30%, 40%, and 60%, the competency score of situation 

awareness for the 1st pilot, calculated using formula (10), is: 

4.06 ∗ 10%+ 3.88 ∗ 30%+ 3.70 ∗ 40%+ 3.56 ∗ 60%

10%+ 30%+ 40%+ 60%
=  3.70. 

Utilizing the same methodology, we compute the competency score of situation 

awareness for the 6th pilot, arriving at a value of 4.24. This score is higher than that of 
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the 1st pilot, a result consistent with our initial settings where the 6th pilot possesses a 

greater ability parameter than the 1st.  

On the other hand, as mentioned in Chapter 1, the current competency-based 

grading system evaluates each pilot's competencies based on a subjective evaluation of 

overall performance by the instructor, rather than deriving from specific task scores. 

Table 25 presents the raw scores of the fourth batch in the small dataset for both the 1st 

pilot, assessed by the 1st instructor, and the 6th pilot, assessed by the 3rd instructor.  

It is evident that both the 1st and 6th pilots have comparable scores, with the 6th 

pilot attaining a score of 3 for the 1st task. Given that all the four tasks are associated 

with competency of situation awareness, it is reasonable to say that these two pilots 

have the same level of situation awareness. However, utilizing our model, we are able to 

identify that the 6th pilot is indeed more adept in situation awareness than the 1st pilot. 

This is achieved by accounting for instructor severity, recognizing that the 1st instructor 

tends to be more lenient than the 3rd instructor. 

 

Task 1 2 3 4 

1st pilot 
 1st instructor  

4 5 4 5 

6th pilot 
3rd instructor 

3 5 5 5 

Table 25 Average scores for the 1st and 6th pilot for each task in the forth batch, 
graded by 1st and 3rd instructor respectively. 
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Chapter 4.  
 
Discussion 

We have discussed a reparametrized version of the Many-facet Rasch Model 

with Bayesian estimation and presented the calculation of the competency score, based 

on certain assumptions and what we believe is realistic in practice.  

While humans can account for complexities, there's a limit to the number of 

factors a person can consider simultaneously and consistently. Compared to the current 

method, a competency score obtained from our model offers many advantages: 

1.  Objectivity. Relying on task grading data, our model mitigates the influence 

of emotions, personal bias and other subjective factors that can introduce 

inconsistencies. 

2. Complexity. The model can consider a large number of parameters 

simultaneously and account for intricate relationships among those 

parameters, thereby providing a more nuanced score. 

3. Reproducibility. This approach allows for examination and replication by 

fellow researchers, guaranteeing not just reproducibility, but also creating 

opportunities for further studies. 

While the proposed model offers numerous advantages, however, it is not 

without limitations. As illustrated in Section 3.2, the model is unable to identify all 

possible probability distributions. However, it should be noted that the test conducted is 

based on manually selected probabilities. The availability of real data from the industry 

may potentially illuminate ways to enhance the model's performance. 

Another issue is, with Bayesian estimation, large amount of data is required for 

accurate parameter estimation. Relying solely on scores from a single test is unlikely to 

yield reliable estimates, especially for pilots. Since real datasets are not available, we 

use our simulated dataset to hypothesize that pilots would need scores from 

approximately 15 test batches to provide sufficient information for parameter estimation. 
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Consequently, new pilots, who haven't undergone as many tests, may not be effectively 

assessed under this model.  

A potential solution within the aviation industry, where tasks typically remain 

consistent and the members of instructors don’t change much, is to use data from 

experienced pilots to calibrate the model. This entails forming a dataset with scores from 

the experienced pilots and estimating parameters to obtain reliable assessments of task 

difficulties and instructor severities, leading to the formation of stronger prior distributions 

for them. The calibrated model can then be used to estimate the abilities of new pilots. 

For the prior distributions of new pilots, a comparative approach might be effective. 

Specifically, if new pilots achieve similar grades on tasks as experienced pilots did, and 

are evaluated by instructors of similar severity, we might infer that the new pilot's abilities 

are akin to those of the experienced pilots. 

Additionally, a further challenge arises from the fact that, while pilots routinely 

perform certain tasks like take-offs and landings in every test, other tasks may not be 

executed as frequently. This irregularity in task performance can result in insufficient 

data for accurate estimation of scores for these less frequent tasks. To address this, one 

potential solution is to categorize tasks, using these categories as substitutes in the 

estimation process. There are two possible ways of doing this.  

1. Grouping by Similar Competencies: Tasks that are similar, particularly in 

terms of their associated competencies, can be grouped together. This 

approach assumes that tasks requiring similar skills or knowledge are 

equivalent for estimation purposes. 

2. Grouping by Difficulty Level: Subsequently, tasks might be grouped based on 

their level of difficulty. This method groups tasks that are perceived to be of 

similar challenge, assuming they require comparable skill levels from the 

pilot. 

Furthermore, there are several aspects that warrant additional exploration. One 

such area is the impact of time on task scores. With pilots gaining flight experience, it's 

plausible that their skills enhance over time, resulting in improved scores for the same 

tasks. Thus, a possible avenue for future research lies in the time-weighted tasks. 
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Specifically, more recent task scores might be given higher weight, whereas older 

scores might be considered less critical in the assessment. 

Another aspect warranting further investigation in this project is the identifiability 

of the estimated parameters. In Section 3.2, when assessing the model's capabilities, 

employing a small variance, such as 0.2, in the prior distributions results in differing 

estimates for pilot ability, task difficulty, instructor severity, and relative difficulty. Despite 

these variations, the resultant estimated probabilities are notably similar, even though 

none of them precisely align with the manually selected probabilities.   
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