
Exploiting Cross-Task Dependencies in
Graph Mining with Containment

Constraints
by

Joanna Che

B.Sc., Simon Fraser University, 2019
B.Eng., Zhejiang University, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Joanna Che 2023
SIMON FRASER UNIVERSITY

Fall 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Joanna Che

Degree: Master of Science

Thesis title: Exploiting Cross-Task Dependencies in Graph
Mining with Containment Constraints

Committee: Chair: Saba Alimadadi
Assistant Professor, Computing Science

Keval Vora
Supervisor
Associate Professor, Computing Science

William (Nick) Sumner
Committee Member
Associate Professor, Computing Science

Anders Miltner
Examiner
Assistant Professor, Computing Science

ii

Abstract

Graph mining workloads search for subgraphs of interest in large graphs. This often involves
finding subgraphs with containment constraints such that the subgraph does not contain a
smaller subgraph (minimality) or the subgraph is not part of a larger subgraph (maximality).
Existing graph mining systems employ efficient task-parallel strategies to quickly explore
subgraphs of interest, however they remain oblivious to containment constraints. Hence,
graph mining systems require expensive constraint checking on every explored match as well
as redundant explorations that limit their scalability.

In this work, we develop a novel exploration model for mining subgraphs with containment
constraints. First, we identify the impact of constraints using different types of dependencies
(successor, predecessor, and lateral) between the subgraphs of interest. Then, we develop
four key task management strategies to exploit these dependencies: (a) task fusion to
merge correlated tasks for increasing cache reuse; (b) task promotion to allow continuous
explorations from available subgraphs and skip re-exploring subgraphs from scratch; (c)
task cancellations to avoid unnecessary constraint checking and prioritizes faster constraint
validations; and (d) task skipping to safely skip certain exploration and validation tasks.
Finally, we extensively evaluate our model on real-world graphs and applications. Our
task management strategies efficiently compute graph mining queries with containment
constraints and our exploration model scales to very large graph mining workloads that
could not be handled with prior approaches.

Keywords: Graph Mining; Pattern Matching; Subgraph Exploration; Maximal Quasi-
Cliques; Graph Keyword Search; Nested Subgraph Queries

iii

Acknowledgements

I am immensely grateful for the invaluable guidance and unwavering support extended to
me by my advisor, Prof. Keval Vora, whose mentorship has played a pivotal role in shaping
this thesis. Without his expertise and unwavering encouragement, this work would not have
reached fruition.

My heartfelt appreciation extends to all my lab mates: Mobin Dariush, Pourya Vaziri,
Lynus Vaz, and Rakesh Mahadasa, whose contributions have been invaluable throughout
this research endeavor. I am especially indebted to Kasra Jamshidi and Mugilan Mariappan
for their exceptional kindness, unwavering support, and invaluable assistance that have been
crucial in shaping the trajectory of this work.

I want to express my deepest gratitude to my family and friends for their unwavering
encouragement and continuous support, which have served as a constant source of strength
and inspiration throughout this transformative journey.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivation . 1
1.2 Our Solution . 5

2 Background 7
2.1 Graph Terminology . 7
2.2 Graph Mining . 7
2.3 Mining with Containment Constraints . 7
2.4 Maximal Quasi-Cliques . 8
2.5 Keyword Search . 8
2.6 Nested Subgraph Queries . 9
2.7 Exploration Tasks in Graph Mining Systems 9

2.7.1 Exploration Tasks (ETasks) . 9

3 Cross-Task Dependencies 12
3.1 Successor Dependency . 12
3.2 Predecessor Dependency . 13
3.3 Lateral Dependency . 14

4 VTasks for Successor Dependencies 15
4.1 VTask: Validation Task . 15
4.2 Task Fusion . 15

v

4.2.1 Aligning Explorations in Fused Tasks 17
4.2.2 Bridging Gaps in VTask Search Trees 19
4.2.3 Efficient RL-Paths . 19

4.3 Promoting VTasks to ETasks . 20
4.4 Generality of Task Fusion & Promotion . 22

5 Lateral Dependencies across VTasks 23
5.1 Generality of Lateral Dependencies . 24

6 Predecessor Dependencies for ETasks 25
6.1 State Space & Virtual State Space . 25
6.2 Skipping ETasks . 26

7 Evaluation 28
7.1 Implementation Details . 28
7.2 Applications, Datasets & Systems . 29

7.2.1 Applications . 29
7.2.2 Datasets . 30
7.2.3 Systems . 31

7.3 Performance Summary . 31
7.4 VTask Performance . 31

7.4.1 VTasks for Maximality . 31
7.4.2 VTasks for Nested Subgraph Queries 32
7.4.3 Task Management Strategies . 32

7.5 Predecessor Dependencies . 33
7.6 Generality of Task Fusion & Promotion . 34

7.6.1 Generality of RL-Path Ordering . 36

8 Related Work 40
8.1 Graph Mining & Pattern Matching. 40
8.2 Maximal Quasi-Cliques . 41
8.3 Graph Keyword Search . 41

9 Conclusions & Future Directions 42
9.1 Conclusion . 42
9.2 Future Directions . 42

Bibliography 44

vi

List of Tables

Table 7.1 Real-world graph datasets used in evaluation. 29
Table 7.2 Synthetic graph datasets used in evaluation. 29
Table 7.3 Summary of Contigra’s performance. 31
Table 7.4 Execution times (in seconds) of Contigra and TThinker for maximal

quasi-cliques. TLE indicates TThinker executions that did not complete
in 24 hours. OOS indicates TThinker executions that ran out of storage
and OOM indicates TThinker executions that ran out of memory. . . 39

vii

List of Figures

Figure 1.1 Example data graph and its quasi-cliques with γ = 0.8. There are
5 γ-quasi-cliques of size 4, but the ones shown on the left are not
maximal due to the size 6 γ-quasi-clique a-b-c-d-e-i (shown on the
right). 2

Figure 1.2 Performance of mining quasi-cliques with and without the maximality
checks. Red bars indicate executions with maximality check that did
not complete in 12 hours. 4

Figure 2.1 Example for Keyword Search on labeled data graph with matches
containing three keywords (colored in red, blue and green). The
matches on the right are minimal, while matches on the left are not
minimal since they contain connected subgraphs that cover all three
keywords. 8

Figure 2.2 Example for NSQ for finding all triangles (P M) not in a house graph
(P +). 9

Figure 2.3 Exploration plan & search tree for tailed-triangle (i.e., triangle with
a dangling edge, shown at level 3). RL-Paths reaching level 3 match,
whereas those terminating at lower levels do not. 10

Figure 3.1 ETask A has a successor dependency with ETask B since A matches
e-d-h-g which is contained inside match e-d-h-g-f which is matched
by B. 13

Figure 3.2 ETask A has predecessor dependencies with ETasks B and C since
A matches x-y-w-z-u which contains x-y-z-u and x-y-w-z which
matched by B and C respectively. 13

Figure 4.1 As ETask matches e-d-g-h for P M , VTask for P + is spawned. Task
alignment permutes e-d-g-h so that it can match e-d-g-h-f for P +. 18

Figure 4.2 Bridging the gap between a triangle (size 3) and a size-5 match. There
are two possible size-4 patterns Pa and Pb and the amount of work
differs based on which one is explored first. If Pa is explored before
Pb, the VTask takes more steps to find size-5 match since c-b-i-a

does not explore further and the VTask needs to backtrack. 18

viii

Figure 4.3 Decision tree for ordering RL-Paths. 19
Figure 4.4 The VTask matches i-b-c-d-a for P +, and is then promoted to

ETask for subsequent exploration. 21

Figure 6.1 State spaces for RL-Paths that match P M
1 and P M

2 26

Figure 7.1 Nested subgraph queries. 33
Figure 7.2 Cache hit rates with and without task promotion. 33
Figure 7.3 Task cancellations due to lateral dependencies. 34
Figure 7.4 Executions with different RL-Path orderings. The ordering picked by

our heuristic is marked with a red triangle. 35
Figure 7.5 Performance of Contigra and Peregrine+ for keyword search with

most frequent (MF) and less frequent labels (LF). Numbers on top
of bars indicate Contigra execution times (sec). 35

Figure 7.6 Number of matches checked for constraints in keyword search. TLE
indicates executions that did not complete in 24 hours. 36

Figure 7.7 Executions with different RL-Path orderings in keyword search. The
ordering picked by our heuristic is marked in red. 37

Figure 7.8 Performance of Contigra and SumPA for quasi-cliques without
maximality constraint. Numbers on top of bars indicate execution
times (in seconds) for Contigra. 37

Figure 7.9 Executions showing the effect of including and not including the
bridging gaps technique for γ-quasi-cliques. 37

Figure 7.10 Executions evaluating different RL-Path orderings in γ-quasi-cliques
on BTER datasets of varying density. 38

ix

Chapter 1

Introduction

Graph mining is important in many domains, such as bioinformatics [4, 23], social network
analysis [22, 34], cybersecurity [49, 45]. These domains have applications where they require
mining subgraphs of interest in large graphs. However, graph mining is a challenging task
because it involves subgraph matching which is NP-complete. Also, the amount of results
can grow exponentially and holding or storing all the results may not be feasible. To
simplify such graph mining tasks, various graph mining systems like Peregrine [26] and
others [46, 5, 6, 7, 44, 39, 43, 18] have been developed which explore subgraphs of interest
in large graphs.

These systems decompose the subgraph exploration into static, independent exploration
tasks that traverse through the graph in parallel, finding one subgraph match per task at a
time. While these systems support applications like counting motifs or finding frequently
occurring subgraphs, several applications like Maximal Quasi-Cliques [35] and Keyword
Search [16] are difficult to run on these systems as they stipulate additional constraints like
maximality or minimality.

In this thesis, we define these additional constraints as Containment Constraints as they
are in the form of a match being present or absent inside another match. To efficiently support
graph mining applications with containment constraints on modern pattern-based graph
mining systems, we develop Contigra, a general execution model for finding subgraphs
with containment constraints.

1.1 Motivation

Containment constraints are common in many applications. For example in social network
analysis, a common use case is community detection for recommending friends. Vertices would
represent people and edges would represent connections between them. A densely connected
subgraph would mean that users in that subgraph would likely know the other users in the
group even if there is no edge connecting them, allowing for friend recommendations [36]. A
containment constraint, such as maximality, can be used to improve results by only returning

1

e
a

f

g

b

cd
i

h

e b

cd

e
a

cd

e
a

d
i

e b

d
i

e
a

d
i

b

c

f

g

b

c

Not Maximal

Data Graph

Maximal

Figure 1.1: Example data graph and its quasi-cliques with γ = 0.8. There are 5 γ-quasi-cliques
of size 4, but the ones shown on the left are not maximal due to the size 6 γ-quasi-clique
a-b-c-d-e-i (shown on the right).

cliques or quasi-cliques (i.e., dense subgraphs that may have missing edges) that are not
contained inside larger cliques or quasi-cliques.

In addition to this, containment constrained graph mining applications can also be
useful for spam emails and can be used to reveal information about these emails and help
investigators with forensic analysis. For example, if a spammer owns multiple domain names
and sends spam emails, we can represent vertices as domains and edges as the subjects
from the emails. The analysis can find relationships between the emails through clustering
methods as it is likely for a spammer to send emails with similar subjects from the domains
they own [49]. As cliques or quasi-cliques are dense subgraphs, they can be used to find
these clusters and identify the domains a spammer may own.

There are also other applications with containment constraints. For example, the Keyword
Search application searches for the minimal connected subgraph that contains all the valid
keywords. This can be useful in many situations such as recommending location-based points
of interest to a user. For example, if a tourist is exploring a city, they may be interested
in terms such as "hotel", "tourist attraction", and "restaurant". The data graph would have
vertices representing locations with labels and edges as roads connecting them. In this
situation, a good recommendation would return locations that contain these terms and are
close to each other [51]. There are also queries that specify neighborhood constraints with
Anti-Vertices [27] that produces subgraphs which are not contained in larger subgraphs
using anti-vertices. These can be further generalized into Nested Subgraph Queries that use
nested MATCH clauses in Cypher/GQL [17, 14].

Figure 1.1 shows an example data graph as well as all the quasi-cliques it contains. A
quasi-clique is a dense graph structure similar to a clique (a fully connected graph), but
there may be a few edges missing. Note that there can be multiple different ways to define
a quasi-clique and they all differ depending on their definition of density. Regardless of
whichever density definition is used, the following issues in finding maximal quasi-cliques
remain the same.

2

In our example, despite there being many quasi-cliques, only two of the ones shown
in Figure 1.1 are maximal. In the figure a-c-d-e is a valid quasi-clique however it is not
maximal because it is contained inside a-b-c-d-e-i. As a result, the Maximal Quasi-Clique
problem must return a-b-c-d-e-i in its result set and any quasi-cliques contained within
it, such as a-c-d-e, must be excluded.

Finding such maximal quasi-cliques on pattern-based graph mining systems is challenging
for several reasons. First, the maximality constraint is not specified on the structure of the
subgraph alone, meaning a user cannot only specify the patterns the system needs to find.
In the previous example, all subgraphs shown are valid quasi-cliques but only a subset of the
results are valid for the Maximal Quasi-Clique application. This is visible in Figure 1.1 where
a-c-d-e and f-g-c-b have the same structure, but only the latter is maximal. In order for
the maximal constraint to be applied, the system needs to be able to check the relationship
between matches. However, exploration tasks in graph mining systems follow static loop
schedules (or matching orders), the task exploring a-c-d-e can remain independent of
the task exploring a-b-c-d-e-i, making it difficult to enforce the maximality constraint
by checking these two matches. The only way to ensure maximality is to examine every
individual match returned by the exploration and ensure it is not contained in a larger
matching subgraph. This would require O

(
C(n, k)

)
matches to be checked (subgraphs of

size k in a graph with n vertices), which is inefficient and does not scale on large graphs
(i.e., as n grows).

Secondly, checking whether a match satisfies maximality is not a simple task. Each
quasi-clique match can potentially be a part of multiple larger quasi-cliques. For instance in
Figure 1.1 the match c-d-e is inside a-c-d-e while it is also inside quasi-cliques b-c-d-e

and a-c-d-e-i. This means, given a match for c-d-e, checking whether it is maximal would
require verifying whether c-d-e is contained in any of those quasi-cliques which are being
explored by other concurrent tasks. This issue is further complicated since maximality checks
can span across multiple sizes. For example a size k quasi-clique might not be inside any
size k + 1 quasi-clique while it may still be part of a size k + 2 quasi-clique. This is a result
of quasi-cliques not adhering to the anti-monotonicity property, where if a property is true
for a graph, then that property will be true for subgraphs contained within that graph. Or
in other words, a subgraph of a quasi-clique may not be a valid quasiclique. As a result, the
process of satisfying the maximality constraint is computationally intensive for each match
as it becomes necessary for every match to go through multiple checks against matches from
other tasks.

We verified the scalability bottleneck in exploring Maximal Quasi-Cliques by measuring
the time taken to find maximal quasi-cliques in different graphs and comparing it with time
taken to only find quasi-cliques (i.e., without maximality constraint). Figure 1.2 shows the
performance for Peregrine [26] and GraphPi [43]. As we can see, the maximality checks
often add over an order of magnitude performance penalty compared to executions without

3

A
m

az
on

D
BL

P

M
ic

o

Pa
te

nt
s

Yo
ut

ub
e

Pr
od

uc
ts

101

103

Ti
m

e
(s

)

Peregrine

A
m

az
on

D
BL

P

M
ic

o

Pa
te

nt
s

Yo
ut

ub
e

Pr
od

uc
ts

GraphPi

A
m

az
on

D
BL

P

M
ic

o

Pa
te

nt
s

Yo
ut

ub
e

Pr
od

uc
ts

TThinker

With Maximality Checks Without Maximality Checks

Figure 1.2: Performance of mining quasi-cliques with and without the maximality checks.
Red bars indicate executions with maximality check that did not complete in 12 hours.

those checks. More importantly, the performance difference between exploring just the
quasi-cliques compared to exploring maximal quasi-cliques grows as graphs grow large,
primarily because the number of matches to be examined increases rapidly; for instance,
453.1 million maximality checks are performed on Patents graph whereas 2.3 billion checks
are performed on the larger Youtube graph. Such increase in the number of matches to be
checked significantly limits scalability; as seen, both GraphPi and Peregrine fail to complete
maximal quasi-cliques on the large Products graph while they finish exploring quasi-cliques
without the maximality constraint.

To address this scalability bottleneck, solutions like TThinker [32] and others [19, 35, 42]
develop custom algorithms for finding maximal quasi-cliques. These solutions reduce the
number of matches to be checked by pruning the sparse regions of the graph that would never
contain the dense quasi-cliques, hence reducing n in O

(
C(n, k)

)
checks However, similar to

the previous pattern-based systems, the issue remains: matches are examined for maximality
individually after they are explored by comparing them with other matches. We measured
how TThinker scales in Figure 1.2 and as we can see, it only successfully completes finding
maximal quasi-cliques for one small graph and does not finish execution for the remaining
five graphs.

The above scalability bottlenecks are also present when enforcing other containment
constraints. Minimal Keyword Search, another example of containment constrained graph
mining application, aims to find subgraphs with certain specific keywords such that they
themselves do not contain smaller subgraphs with all those keywords. Again here, multiple
minimality checks need to be performed for each match against other subgraph matches
that get explored by other tasks, hence limiting scalability for large graphs. Similarly for
Nested Subgraph Queries [17], multiple checks need to be done to ensure that the absence
or presence of subgraphs within and around the matches are explored.

4

1.2 Our Solution

In this thesis, we develop efficient techniques to enable graph mining applications with
containment constraints. Our goal is to enrich the pattern matching strategies in state-
of-the-art pattern-based graph mining systems [39, 26, 43, 18] to enable graph mining
applications with containment constraints. We develop Contigra, a novel execution model
for containment constrained graph mining that actively leverages the containment constraints
to enforce dependencies across concurrent exploration tasks. By doing so, constraint checking
is performed naturally during exploration, hence avoiding expensive checking after matches
are explored while also limiting the number of constraint checks and unnecessary subgraph
explorations.

To enable Contigra we model the effect of containment constraints in terms of dynamic
dependencies across concurrent exploration tasks (Chapter 3). We identify three key depen-
dency types (successor dependencies, lateral dependencies, and predecessor dependencies)
based on the different semantics of constraints. These dependencies lay the foundation for
task management strategies in Contigra to efficiently explore matches that satisfy all the
required containment constraints.

We develop novel strategies in Contigra to actively validate dependencies during
execution. Contigra employs a new kind of task called validation tasks that focus on
validating constraints by exploring matches containing specific subgraphs (Chapter 4). While
validation tasks are spawned dynamically from exploration tasks, we enable task fusion
that fuses exploration and validation tasks together and allows us to maximize cache reuse
through leveraging the associated caches from the explored subgraphs for faster validation.
Furthermore, Contigra uses task promotion, a technique that allows validation tasks to
subsequently continue as exploration tasks, hence skipping other exploration tasks that
would otherwise re-explore the same subgraphs from scratch.

Contigra is also able to automatically infer and impose dependencies across validation
tasks to capture the dynamic progress of validation during execution, and to cancel validation
tasks based on the dynamic progress to avoid unnecessary constraint checking (Chapter 5). As
different validation tasks involve different amounts of computation, Contigra automatically
generates a scheduling order for validation tasks to prioritize quicker validations and higher
cancelation of validation tasks. Prior graph mining solutions have remained oblivious to
dependencies between patterns, and hence are unable to take advantage of the benefits that
exploiting these dependencies could provide.

We further develop strategies in Contigra to skip certain exploration tasks as well
as speed up other exploration tasks by analyzing the constraints across potential matches
they would explore. Our analysis buckets exploration tasks into different categories based on
different possibilities of constraint violations, using which we either safely skip exploration

5

tasks, skip validation of constraints, or perform eager filtering to actively check constraints
(Chapter 6).

We demonstrate the effectiveness of techniques by incorporating Contigra in Peregrine,
a state-of-the-art graph mining system and evaluate its performance across multiple contain-
ment constrained graph mining applications using a variety of graph datasets. Our evaluation
demonstrates that our techniques deliver high performance for mining with containment
constraints compared to existing state-of-the-art, and it further scales to larger graphs that
existing state-of-the-art graph mining systems as well as a custom solution for maximal
quasi-clique failed to process (Chapter 7).

Furthermore, the techniques developed in this thesis are widely applicable beyond
applications with containment constraints. Our modeling of the effects of containment
constraints using dependencies allows Contigra to be useful for any application that
has relationships and constraints across different patterns and their matches. For example
subgraph mining is often required in protein interaction graphs [55], where vertices represent
proteins and edges represent interactions between proteins. The graphs that represent such
data are often noisy due to errors in data collection. In this case, subgraphs that are similar
to the given target patterns should be explored. Even though these subgraphs do not have
any containment constraints, the similarity of subgraphs can be modeled as dependencies
between them as well as the target pattern in order to avoid exploring subgraphs that may
be less relevant due to presence of other subgraphs.

6

Chapter 2

Background

2.1 Graph Terminology

A graph is a tuple G = ⟨V, E, L⟩, consisting of a vertex set V , an edge set E ⊂ V × V , and a
vertex labeling function L : V → L where L is an arbitrary set of possible labels. A subgraph
of G is a tuple ⟨V ′, E′, L⟩ where V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). If S is a subgraph of G, we
say G contains S. We consider undirected graphs for ease of exposition, but our techniques
also apply to directed graphs. A pattern P is an arbitrary graph. Given a data graph G and
a pattern P , if a subgraph S of G can be mapped one-to-one to P such that every edge in
P is also present in S, and S and P have the same labels, then we say S matches P and the
subgraph S is a match for P . We refer to vertices in the input data graph as data vertices
and those in pattern graphs as pattern vertices.

2.2 Graph Mining

2.3 Mining with Containment Constraints

Containment Constraints specify which matches are permissible based on other matches.
A containment constraint is represented as a pair of patterns ⟨P M , P +⟩ that constrains
matches for P M . The constraint is specified over two cases depending on whether P M is
larger or smaller than P +:
(a) If P + contains P M , then constraint ⟨P M , P +⟩ specifies that a match m1 for P M is
permitted iff there is no match m2 for P + such that m1 is a subgraph of m2.
(b) If P + is contained within P M , then constraint ⟨P M , P +⟩ specifies that a match m1 for
P M is permitted iff there is no match m2 for P + such that m2 is a subgraph of m1.
Given a data graph G, a pattern P M and containment constraint ⟨P M , P +⟩, a subgraph
s of G that matches P M is considered valid iff it also satisfies the containment constraint
⟨P M , P +⟩.

7

a h

eb

dc

g

f
i

e
g

f
i

eb

d

g
h

eb

d

a h

eb

a h

b

c
e

g

f

a
h

e
gb

dc

Data Graph Not Minimal Minimal

Keywords: { }

Figure 2.1: Example for Keyword Search on labeled data graph with matches containing
three keywords (colored in red, blue and green). The matches on the right are minimal,
while matches on the left are not minimal since they contain connected subgraphs that cover
all three keywords.

Several graph mining applications have containment constraints, usually in the form of
maximality or minimality of matches. We discuss the representative applications below that
cover the different types of containment constraints.

2.4 Maximal Quasi-Cliques

The Maximal Quasi-Cliques (MQC) application [32] mines γ-quasi-cliques, i.e., dense sub-
graphs of size k where each vertex has degree at least γ(k − 1). The maximality constraint
mandates that the γ-quasi-cliques are not contained in any other γ-quasi-clique. There
can be multiple quasi-cliques of a given size; hence, MQC has a collection of containment
constraints ⟨P M

1 , P +
1 ⟩, ⟨P M

2 , P +
2 ⟩, . . . where each P M

i is a quasi-clique of size k and P +
i is

a quasi-clique of size k′ ≥ k. In Figure 1.1, a-c-d-e is a quasi-clique of size 4 (matches
P M), but it is invalid because a-b-c-d-e-i is a quasi-clique of size 6 (matches P +) and
the former is a subgraph of the latter. The Maximal Cliques application is a special case of
MQC where both P M and P + are cliques (fully connected patterns).

2.5 Keyword Search

The Keyword Search (KWS) application [5] mines connected subgraphs up to a certain size
k whose vertices cover a fixed set of labels W called keywords. Here, the matching subgraphs
must be minimal: every vertex must either have a label from W , or if the vertex is removed
from the subgraph, it is no longer connected. Hence, each minimality constraint has P M

as a size-k pattern covering all labels in W , and P + being its subgraph that also covers all
labels in W . Figure 2.1 shows an example data graph and all the minimal matches covering
labels red, green and blue. Observe that although match a-b-e-h contains vertex h that
does not cover any of the three labels, it is still minimal because the subgraph matching
only a-b-e is disconnected.

8

NOT IN

Figure 2.2: Example for NSQ for finding all triangles (P M) not in a house graph (P +).

2.6 Nested Subgraph Queries

Finally, certain Nested Subgraph Queries [17] (NSQ) can also be modeled as queries with
containment constraints. For instance Figure 2.2 depicts a nested subgraph query for
finding triangles that are not contained inside a size-5 house graph. This query has a single
containment constraint ⟨P M , P +⟩ where P M is the triangle pattern and P + is the house
graph pattern. An Anti-Vertex query [27] can also be modeled as a query with a single
containment constraint ⟨P M , P +⟩ where P M is the pattern without the anti-vertex and P +

is the pattern with an additional regular vertex in place of the anti-vertex.

2.7 Exploration Tasks in Graph Mining Systems

Graph mining systems efficiently explore subgraphs in a data graph G that match a pattern
P . In order to discuss how to efficiently support containment constraints in graph mining
systems, we first provide necessary background about their pattern matching process by
modeling their exploration strategies as parallel exploration tasks.

Execution in graph mining systems can be logically separated into two phases: the
pattern matching phase and the match processing phase. During the pattern matching phase,
subgraphs of the data graph G that match the given pattern P are explored. Each subgraph
is then processed using builtin graph mining algorithms (e.g., counting) or user-defined
functions (e.g., filter, map, and reduce) in the match processing phase. Graph mining
systems develop exploration plans that guide the pattern matching phase. The exploration
plans mainly consist of a matching order or schedule that dictates the order in which
pattern vertices are matched with data vertices. The exploration plans also account for
symmetry-breaking restrictions which use constraints on vertex ids of G to skip duplicate
subgraphs.

2.7.1 Exploration Tasks (ETasks)

Subgraph exploration in the pattern matching phase is decomposed into static, independent
exploration tasks (or ETasks) that traverse G in parallel to generate subgraphs, one subgraph
per thread at a time. ETasks are identified by the tuple ⟨P, S, C⟩, consisting of the pattern
to match P , currently matched subgraph S of the data graph, and a local cache C with an
entry for each vertex in P . Each ETask proceeds in depth-first fashion to match P , with

9

i

ia i b ci

i

a c i

b

c

i

bjb

i c

b

i

c

a

Exploration Plan
Level 0

Level 1

Level 3

Level 2

Subject to

c b>

Figure 2.3: Exploration plan & search tree for tailed-triangle (i.e., triangle with a dangling
edge, shown at level 3). RL-Paths reaching level 3 match, whereas those terminating at lower
levels do not.

S initialized to a single vertex in G (called its root), and C empty. S is then extended
step-by-step with new vertices from G following the matching order, such that S always
matches a subgraph of P . We mark the vertices of P as u0, . . . , u|P |−1, where ui is the i-th
vertex in the matching order.

Initially, S is a match for only u0. For each subsequent vertex ui, the ETask: (a) computes
a set of vertices V using set operations on the adjacency lists of vertices in S as well as
cached values in C; (b) sets V as the cache entry for ui; and (c) extends S using a vertex
v ∈ V , if v has the correct label and satisfies the symmetry breaking restrictions on P ; before
(d) descending in the depth-first traversal to extend S to match ui+1. Once S matches the
entire P , it proceeds to the match processing phase. If there are no unused vertices from V

to extend with, or if ui was the final vertex in P , then the ETask backtracks to the previous
pattern vertex ui−1. The ETask completes when it must backtrack from u1, i.e., when it
must match a new vertex to u0.

When several patterns have identical structure (i.e., same edge and vertex set) but
different labels, the labels are merged so that they are all explored by a single ETask. In this
case, the ETask ignores vertex labels at intermediate steps of the exploration, and for each
found match it computes the final pattern using an isomorphism check [39, 18]. This enables
greater reuse of cache C and reduces per-task overheads recurring across many patterns
with the same structure.

Thus, the depth-first exploration beginning at the initial task state and following the
matching order induces a search tree containing the different subgraphs of G that arise. The
search tree is organized into levels, with level 0 being the root consisting of a single vertex v

and level k − 1 being the subgraphs with k vertices that are explored when starting from v.
Every point in the exploration where the ETask must backtrack corresponds to a root-to-leaf

10

path in this tree. We call each such path an RL-Path of the ETask. An RL-Path matches if
the leaf subgraph corresponds to a match for P . Figure 2.3 shows the exploration plan and
search tree for a tailed-triangle pattern (a triangle with a dangling edge). The RL-Paths
ending at level 3 match, i.e., they result in a tailed-triangle. Other RL-Paths end at lower
levels because they could not be extended by following the exploration plan, and hence they
do not match.

The above model captures the execution of state-of-the-art pattern-based graph mining
systems, including compilation-based systems [39, 43], pattern-aware systems [26, 18], and
decomposition-based systems [6]. They all follow matching orders in depth-first fashion,
computing and caching vertex sets from G using set operations at each step, and mapping
them with pattern vertices until a match is found.

11

Chapter 3

Cross-Task Dependencies

We model the impact of containment constraints in terms of dynamic dependencies across
ETasks. Containment constrained applications must satisfy these dependencies to ensure
correctness or improve efficiency.

With containment constraints, dependencies manifest among ETasks in three ways: (a)
an ETask can depend on another ETask which explores deeper in the search tree (successor
dependency); (b) an ETask can depend on another ETask at a shallower depth in the search
tree (predecessor dependency); and (c) an ETask can depend on another ETask at the same
depth in the search tree (lateral dependency). In all three cases, each matching RL-Path in
the dependent task depends on the result of a different RL-Path in order to determine how
to process its subgraph. Hence, the notion of cross-task dependencies naturally extends to
dependencies between matching RL-Paths in different tasks.

3.1 Successor Dependency

A containment constraint ⟨P M , P +⟩, where P + is larger than P M , constrains subgraphs
matching P M depending on the subgraphs that are explored deeper in search trees. When
subgraphs explored by an ETask A depend on subgraphs explored by another ETask B which
traverses deeper in a search tree, we say A has a successor dependency on B.

For example in maximal quasi-cliques, a matching RL-Path yielding a quasi-clique match
Q has successor dependencies on all RL-Paths exploring larger quasi-cliques which contain Q.
If such larger quasi-cliques exist, then Q is not maximal. Consider the RL-Paths for ETask
A and ETask B in Figure 3.1. A explores a size-4 quasi-clique, while B explores a size-5
quasi-clique. Notice that while A and B explore vertices in different order, by the time B

reaches the final step of the RL-Path it has matched all the vertices in the quasi-clique Q

found by A. Hence, Q is not maximal if B finds a quasi-clique. Since A depends on B, which
explores deeper than A, we say A has a successor dependency on B.

Successor dependencies are validated by efficiently conducting explorations deeper in the
search tree, more details will be presented in Chapter 4.

12

e
e

d

d

g

e d

g h

e

f
f

g

g

h

f g

dh

f

A

B
f g

h d
e

Figure 3.1: ETask A has a successor dependency with ETask B since A matches e-d-h-g
which is contained inside match e-d-h-g-f which is matched by B.

y
y

w

w

z

y w

u z

y
x

w

u z

y

x
x

y zy

x u

zy

x

w

zx

y
y

y

x x

y w

A

B

C

Figure 3.2: ETask A has predecessor dependencies with ETasks B and C since A matches
x-y-w-z-u which contains x-y-z-u and x-y-w-z which matched by B and C respectively.

3.2 Predecessor Dependency

A containment constraint ⟨P M , P +⟩, where P + is smaller than P M , constrains subgraphs
matching P M depending on subgraphs that are explored at a shallower depth in search
trees. When an ETask A depends on an ETask B which traverses to a shallower depth in
the search tree, we say A has a predecessor dependency on B.

For example in minimal keyword search, a subgraph is considered valid based on the
results of all tasks exploring smaller subgraphs with the same vertices. Figure 3.2 shows
RL-Paths from 3 different tasks performing Keyword Search. The ETask for RL-Path A

explores a size-5 subgraph s containing all keywords, and depends on the ETasks exploring
size-4 RL-Paths B and C. B and C both match subgraphs that are contained in s, so if
either of those matches contain the correct keywords then s is not minimal.

Note that in the above example the smaller subgraphs containing all the keywords are
never explored in the RL-Path that matches s. Despite seeming like a local property, con-
straints like minimality induce predecessor dependencies across different tasks. In Chapter 6,
we present how to efficiently validate such predecessor dependencies.

13

3.3 Lateral Dependency

When an ETask A depends on an ETask B which traverses to the same depth in the search
tree, we say that A has a lateral dependency on B. Lateral dependencies are not explicitly
specified by containment constrained applications, since different matching RL-Paths at the
same level explore different subgraphs and hence cannot contain each other. However, they
can be automatically inferred and enforced by the system in order to improve efficiency
by preemptively canceling certain tasks when a different task has already performed the
required computation. These details will be explained in Chapter 5.

14

Chapter 4

VTasks for Successor Dependencies

Successor dependencies must be checked as ETasks explore matching subgraphs at the end of
each RL-Path. We introduce a new kind of task called validation tasks (or VTasks) that are
responsible to validate successor dependencies. In this section, we will describe how VTasks
are launched as subtasks of ETasks, and present Task Fusion and Task Promotion to reuse
exploration states for efficiency.

4.1 VTask: Validation Task

While an ETask begins from a data vertex and traverses the search tree to generate all
subgraphs matching a target pattern, a VTask is a special task represented as ⟨P, SM , S, C⟩
which searches for a subgraph that both: (a) contains the subgraph SM , and (b) matches
the pattern P . Similar to ETask, VTasks also maintain a state consisting of subgraph S and
cache C; however instead of exploring every RL-Path, VTasks terminate as soon as a single
RL-Path containing SM matches. An ETask ⟨P, S, C⟩ launches VTasks every time an RL-Path
matches in order to check the successor dependencies for S. These VTasks take the form
⟨P +, S, S, C⟩, where SM is initialized to S and P + is a pattern larger than P .

For example in maximal quasi-cliques from Figure 1.1, an exploration task ⟨P, S, C⟩ with
P being a 4-clique and S being a-e-d-i will spawn VTasks with P + being size-5 and size-6
quasi-clique patterns that contain a 4-clique. If a VTask matches, then S is contained in
the larger pattern P +, and hence S does not satisfy the containment constraint. This is
the case with a-e-d-i in our example as a VTask finds a-e-d-i-b, hence deeming a-e-d-i

to be not maximal. The containment constraint is satisfied if none of the VTask RL-Paths
matches. Algorithm 1 and Algorithm 2 summarize the core operations performed in ETasks
and VTasks.

4.2 Task Fusion

Implementing VTasks directly using ETasks is not straightforward because it is unclear how
to follow an exploration plan to generate a subgraph containing a specific subgraph SM .

15

Algorithm 1 Exploration Task
1: function ETask(P : pattern, S : subgraph, C : cache)
2: if |P | = |S| then ▷ Leaf node of search tree
3: status←Match
4: for P + ∈ validationPatterns(P) do
5: if VTask(P +, S, S, C) = VTask-Matched then
6: status← No-Match
7: break ▷ Cancel remaining VTasks
8: else
9: cancel ⟨P +, S, C⟩ ▷ Cancel ETask

10: end if
11: end for
12: if status = Match then
13: ProcessMatch(S) ▷ Pass to Match Processing module
14: end if
15: for P + ∈ nextExplorationPatterns(P, S) do
16: if ⟨P +, S, C⟩ was not canceled then
17: ETask(P +, S, C) ▷ Promote to new ETask
18: end if
19: end for
20: else ▷ Intermediate exploration step
21: V ← computeCandidates(P, S, C)
22: for v ∈ V do
23: ETask(P, S ∪ {v}, C)
24: end for
25: end if
26: end function

Specifically, an ETask targeting pattern P can exhibit a successor dependency for another
ETask targeting larger pattern P + which is rooted at a different vertex. Consider the example
in Figure 4.1, where an ETask matches pattern P M (a diamond pattern) with subgraph
S = SM being e-d-g-h and resulting cache C. However, due to the matching order used by
the ETask, no RL-Path of the same task will find the larger quasi-clique containing e-d-g-h.
While it is possible to have multiple different exploration plans for each P +, such an approach
would be infeasible since VTasks would perform many redundant computations in order to
re-explore SM and then match P + from a different starting point. Moreover, sharing C

between tasks statically (i.e., prefix-sharing [39] or shared connected subpattern [18]) only
works when tasks have compatible exploration plans, i.e., results cannot be shared between
dynamically spawned tasks.

For this, we develop Task Fusion, where VTasks are fused with the ETask that spawned
them, copying their state to guarantee that only subgraphs containing SM are found. Hence,
the available S is reused along with the ETask’s cache C to compute the remaining vertex
sets that complete an RL-Path. However, tasks cannot be easily fused by simply setting the
VTask state to ⟨P +, S, S, C⟩ (i.e., reusing S and C for the larger pattern P +) due to two
main obstacles. First, the exploration plan for continuing to match P + using S would lead
to incorrect execution of VTasks due to incompatibility with the exploration plan for P M

(i.e., matching order and symmetry-breaking restrictions already applied on S). And second,

16

Algorithm 2 Validation Task
27: function VTask(P : pattern, SM : subgraph, S : subgraph, C : cache)
28: PS ← pattern(S)
29: for ρ ∈ validPermutations(PS) do
30: S′ ← permute S using ρ ▷ Align S with exploration plan for P
31: C′ ← permute C to correspond to S′

32: if |P | = |S′| − 1 then
33: V ← computeCandidates(P, S′, C′)
34: C ← permute C′ back ▷ Reuse the VTask cache
35: if V ̸= ∅ then ▷ There are matches for P containing SM

36: return VTask-Matched
37: end if
38: else
39: P + ← nextIntermediatePattern(PS) ▷ From Section 4.2.2
40: V ← computeCandidates(P +, S′, C′)
41: for v ∈ V do
42: if VTask(P, SM , S′ ∪ {v}, C′) = VTask-Matched then
43: C ← permute C′ back ▷ Reuse the VTask cache
44: return VTask-Matched
45: end if
46: end for
47: end if
48: end for
49: return No-VTask-Match
50: end function

the target pattern for an ETask and the target pattern for a VTask can differ by more than
one level, leaving a non-trivial matching strategy for VTask to follow. We describe how these
issues are addressed next.

4.2.1 Aligning Explorations in Fused Tasks

In our example in Figure 4.1, analyzing P + (a diamond-house pattern that matches
e-d-g-h-f) results in a symmetry-breaking restriction u1 > u3, i.e., the data vertex mapped
to u1 should have a larger id than the one mapped to u3. Hence, e-d-g-h is an invalid
intermediate state for P +, since u1 is mapped to g which is smaller than h mapped to u3.
While symmetry-breaking restrictions cannot be enforced when checking successor depen-
dencies, forgoing them completely (i.e., pattern-oblivious exploration) drastically reduces
performance [26].

Moreover, the exploration plan for matching P + is incompatible with the plan followed
by the RL-Path matching P M . Following the exploration plan for P +, candidate vertices for
u4 are drawn from the common neighbors of d and h (mapped to u2 and u3). But d and h

have no common neighbors, so e-d-g-h-f is never found. This means the exploration plan
for P + cannot be applied to check successor dependencies.

We address both issues using a combination of pattern-aware and pattern-oblivious
approaches. The ETask uses the exploration plan with symmetry-breaking restrictions
during exploration, and then it carefully adjusts the state to undo restrictions and reconcile

17

C
1
2
3

S

e
CS

h d

eg

...

ETask
C

1
2
3

C'
1
2
3

permute

h g

ed

f
C'

1

... ...

4

S'

Spawned VTask for
S

i

a c

b
j

d

e g
f

h

Data Graph h d

eg

h g

ed

S'

Figure 4.1: As ETask matches e-d-g-h for P M , VTask for P + is spawned. Task alignment
permutes e-d-g-h so that it can match e-d-g-h-f for P +.

c b

i

i a

bc

i d

bc

i j

bc

c i

jb
d

b j

ic
d

i

c b

i

...

ETask
Search Tree of
VTask for

Figure 4.2: Bridging the gap between a triangle (size 3) and a size-5 match. There are two
possible size-4 patterns Pa and Pb and the amount of work differs based on which one is
explored first. If Pa is explored before Pb, the VTask takes more steps to find size-5 match
since c-b-i-a does not explore further and the VTask needs to backtrack.

exploration plans before executing the VTask. To safely account for all possible ways a match
for P + could be encountered beginning from e-d-g-h, the exploration plan for P + is applied
to those permutations of e-d-g-h that match the diamond pattern. One such permutation
is shown in Figure 4.1, where the exploration plan draws candidates for u4 from the shared
neighborhood of g and h, yielding e-d-g-h-f.

Lines 29–48 in Algorithm 2 show how state is adjusted in VTasks. For each valid
permutation ρ, the subgraph S is permuted into a new subgraph S′. ρ is also applied to the
cache C to obtain a new cache C ′ (Line 31) that is consistent with S′. The VTask proceeds
to compute data vertices to match P + using S′ and C ′ (Line 33). Then, C ′ is permuted
back to C in order to allow other VTasks to correctly reuse the computations in the current
VTask (Lines 34 and 43).

18

LabelsMixed

Dense

Sparse

Dense

Sparse

Degree

Degree

High

Low

Data
Graph

Target
Patterns

Neither Sparse
Nor Dense

Order Sparse
Patterns First

Order Dense
Patterns First

Figure 4.3: Decision tree for ordering RL-Paths.

The necessary permutations are computed before exploration, and they are only applied
when executing VTasks, hence ensuring ETasks explore each subgraph exactly once.

4.2.2 Bridging Gaps in VTask Search Trees

Successor dependencies between SM and the target subgraph that is one level away from SM

in the RL-Path can be checked by operating on S′ and C ′ (Line 33 in Algorithm 2). However,
achieving this for subgraphs that are more than one level away from SM requires more work.
Figure 4.2 shows an instance of this case. The ETask explores P M of size 3 (a triangle), but
the VTask searches for P + with 5 vertices. Naïvely executing the VTask from P M to P +

would lead to similar issues arising from symmetry-breaking restrictions incorrectly pruning
subgraphs when fusing VTasks with ETasks.

To correctly check successor dependencies in such cases, we bridge the gap between the
ETask’s target pattern and the VTask’s target pattern. We chart a path through the search
tree by choosing which pattern to explore at each intermediate step. As existing systems
cannot provide exploration plans for continuing exploration from an arbitrary subgraph,
we implement each intermediate step as a VTask invocation, so it can be fused with the
previous step. This allows using the underlying system’s exploration plans for the patterns
at intermediate steps. Successor dependencies are therefore verified correctly as the plans for
each separate VTask are aligned, while avoiding redundancy since caches are shared between
steps. This idea is demonstrated in Algorithm 2, where on Line 42 the VTask recurses until
the gap between the initial subgraph and the target pattern is closed, i.e., a matching
RL-Path is explored.

4.2.3 Efficient RL-Paths

The above procedure opens up multiple RL-Path options from SM to the target pattern of
the VTask. In our example, there are 3 RL-Paths starting at SM that the VTask can take to
match P +. As each RL-Path results in different amounts of matching work, the performance

19

of VTasks is sensitive to the order in which RL-Paths are taken to validate dependencies. For
example, in Figure 4.2, the triangle i-b-c contains 3 vertices whereas P + contains 5 vertices.
If the VTask first attempts to match the tailed triangle Pa, it would compute i-b-c-a only
to find that it cannot be further extended to match P +, and then backtrack to compute
i-b-c-d which would eventually lead to i-b-c-d-j that matches P +. On the other hand,
the VTask going through Pb before Pa would compute i-c-b-j which would directly lead to
i-c-b-j-d, hence matching P + in the first RL-Path.

To select an efficient ordering of RL-Paths, we develop heuristics that estimate the
likelihood of matching the subgraphs at each intermediate step based on the relationship of
the target patterns to each other and to the data graph. Our heuristics are based only on
the density of the data graph and the possible patterns in order to compute the priority of
different paths statically before exploration begins.

Figure 4.3 shows our heuristics as a decision tree. The majority of matches occur in dense
regions of the data graph, where dense subgraphs are common and likely surrounded by other
dense subgraphs [29]. If the target pattern is dense, the expected number of matching dense
subgraphs at each intermediate step is higher, causing more work since each intermediate
subgraph is further processed by the VTask. Hence when the target patterns are all dense
(e.g., high γ values in maximal quasi-cliques), the RL-Path exploring the sparsest patterns
is chosen first in order to reduce intermediate matches. However, when target patterns are
sparse, this trend reverses. Sparse subgraphs are present throughout the data graph and
high-degree vertices in dense regions of the graph often reach into sparse regions, where the
sparsest patterns have matches. Hence, when the target patterns are sparse, we prioritize RL-
Paths targeting the densest patterns. Finally, if the target patterns include both sparse and
dense patterns, we base our decision on the density of the data graph; for dense data graphs,
sparse patterns are prioritized, and for sparse data graphs we prioritize dense patterns.

4.3 Promoting VTasks to ETasks

Applications like maximal quasi-cliques explore quasi-cliques of multiple sizes. In such cases,
different ETasks explore patterns of different sizes, with certain VTasks checking dependencies
against target patterns that are expected to be explored by other ETasks. Furthermore,
constraints like maximality lead to exploring successors even when they get violated, i.e.,
if a VTask matches a P + that contains P M , then this P + becomes P M in the subsequent
ETask and a larger pattern that contains it would become P + in its VTask. This means the
results computed by VTasks can be cached for future ETasks to avoid exploring the same
subgraphs that were found by VTasks. We achieve this by promoting the VTask to an ETask,
and canceling the original ETask which would have explored the subgraph from scratch.
Thus, the resulting ETask directly uses the VTask cache C and the matched subgraph S for
subsequent processing and validation.

20

Cache
1

... ...

4

ETask
i ...

di

c b

di

c b

di

c b
a

VTask

di

c b
j

PROMOTE

ETask

a b c d j

a j

Figure 4.4: The VTask matches i-b-c-d-a for P +, and is then promoted to ETask for
subsequent exploration.

Figure 4.4 shows an example following the patterns and data graph from Figure 4.1. The
RL-Path belonging to the initial ETask finds the match i-b-c-d with cache C containing
entries for the first 4 pattern vertices. Then a VTask is spawned which inherits C and
finds a match i-b-c-d-a for P +, caching candidates for the 5th pattern vertex at C[4].
Subsequently, this VTask is promoted to an ETask, and hence it immediately finds another
match i-b-c-d-j without additional computation by reusing the candidates in C[4].

VTasks are statically analyzed to identify the ones that target the same subgraphs as
ETasks. Several VTasks originating from different ETasks can target the same pattern, and all
VTasks that target the same P + are valid candidates to be promoted to an ETask exploring
P +. Since a single ETask is required to explore P +, only one of the candidate VTasks is
promoted to an ETask. While all candidate VTasks have a single matching RL-Path, when
promoted to an ETask the remaining RL-Paths in the search tree also get explored. With
each VTask having a different starting point, the size of the search tree and the number
of RL-Paths that are traversed upon promotion differs across VTasks. Hence, the choice
of which VTask is promoted to a given ETask has a direct impact in the amount of work
performed by the promoted ETask. We determine which matching VTask gets promoted to
a given ETask using the same heuristic from Section 4.2.2 that minimizes the number of
RL-Paths the VTask will produce when it is treated as an ETask.

As shown in Algorithm 1, when an ETask finishes matching pattern P it runs VTasks on
lines 4–11 to match P +. If a VTask targeting P + does not match, then any ETask to P +

from the same state cannot match, and hence the ETask is directly canceled on line 9. If all
the VTasks match, since VTasks fuse their caches with that of the ETask which launched
them (lines 34 and 43), the promoted ETask reuses the candidates already computed by the
VTasks (line 21).

21

4.4 Generality of Task Fusion & Promotion

While task fusion and task promotion enable efficient execution while validating successor
dependencies, they can also be applied to groups of ETasks in graph mining applications
without successor dependencies (i.e., beyond containment constrained applications). An
ETask A targeting pattern P is fused with another ETask B targeting P ′ if P ′ is a subgraph
of P , applying task alignment and bridging gaps as necessary. Then, if an RL-Path in B

does not match P ′, A can be skipped to avoid exploring the same subgraphs. On the other
hand, matching RL-Paths in B are promoted to executions of A to reuse caches and avoid
redundant exploration from scratch.

22

Chapter 5

Lateral Dependencies across VTasks

Applications often have multiple constraints ⟨P M , P +
1 ⟩, ⟨P M , P +

2 ⟩, . . . on the same pattern
P M . For example, the maximality constraint in quasi-clique results into multiple constraints
between a given quasi-clique of size k and different quasi-cliques of size k+1, each representing
a different P +

i . In such cases, when an ETask matches the subgraph S for P M , multiple
VTasks need to be scheduled, each targeting a different P +

i . However, the subgraph S satisfies
the application constraints only if it fulfills all of its dependencies, i.e., S must satisfy all
constraints on P M that matches S. Hence, if one of the VTasks matches P +, the other
VTasks do not need to be executed as those dependency checks would not contribute to the
final decision for S. For example, in Figure 4.2 the ETask has a couple options for size 4
patterns, Pa and Pb. There is a lateral dependency between Pa and Pb, if the ETask creates
VTasks to target Pa and Pb, if one of the VTasks matches, the other VTask does not need to
be scheduled.

To avoid executing such unnecessary VTasks, we impose lateral dependencies between
VTasks arising from the same ETask, which in turn enforces a serial execution of those VTasks.
By doing so, VTasks can be easily canceled during execution; when any VTask in the serial
execution matches, the remaining VTasks from that specific ETask are simply not executed
(line 7 in Algorithm 2) and the ETask moves to matching the next RL-Path.

Since a single matching VTask cancels the remaining ones, it is important to order the
VTasks such that the most likely to match are executed first. While the previous heuristics
for ordering RL-Paths (Section 4.2.2) sought to reduce the chances of matching, here we
want to identify VTasks that match as quickly as possible in order to end the validation
process. Hence, we apply the same heuristics to estimate the relative likelihood of matching
subgraphs but with the resulting decision inverted, i.e., choose sparse patterns first if dense
patterns first is prescribed, and vice versa.

Our lateral dependency-based execution enables VTask cancellation in a light-weight
manner compared to any alternate solution that concurrently schedules all VTasks as it
would require periodic synchronization to check whether the task is canceled. It is important

23

to note that there is already sufficient parallelism in the form of ETasks, so serially executing
VTasks does not affect scalability.

5.1 Generality of Lateral Dependencies

In addition to lateral dependencies for VTasks, there are situations where lateral dependencies
can be applied across ETasks.

For example subgraph mining is often required in protein interaction graphs [55], where
vertices represent proteins and edges represent interactions between proteins. The graphs that
represent such data are often noisy due to errors in data collection. In this case, subgraphs
that are similar to the given target patterns should be explored. The similarity of subgraphs
can be modeled as dependencies between the subgraphs in order to avoid exploring subgraphs
that may be less relevant due to presence of other subgraphs. Specifically, this results in
lateral dependencies across similar subgraphs of the same size. The lateral dependencies can
be explored here to dynamically skip ETasks by choosing certain specific types of subgraphs
(e.g., those matching sparsest patterns). In this case, ETasks that match those specific
types of patterns end up canceling other ETasks that are of different kind in order to avoid
irrelevant subgraphs.

24

Chapter 6

Predecessor Dependencies for
ETasks

Unlike successor dependencies, predecessor dependencies are local to the explored subgraph
S. Hence, we do not use special VTasks to validate predecessor dependencies, but instead
perform validation on ETasks as they match RL-Paths.

A naïve approach to validate a predecessor dependency ⟨P M , P +⟩ is to backtrack in the
RL-Path for P M to check if any of the intermediate subgraphs at previous steps matches
P +. However, RL-Paths do not necessarily explore all possible subgraphs of their target
subgraph (as illustrated by Figure 3.2 in Chapter 3), and hence such an approach can miss
containment constraints for one or more P +.

6.1 State Space & Virtual State Space

Validating predecessor dependencies requires examining all possible subgraph states under
all possible RL-Paths resulting from different exploration plans that target the same subgraph
S. We call the set of these states the state space of an RL-Path. For example Figure 6.1a
shows the state space of the RL-Path that explores labeled subgraph e-g-f-i that matches
P M

1 for minimal keyword search. Note that the state space includes the smaller subgraph
f-e-g containing all keywords.

For each matching RL-Path there are combinatorially many states explored at preceding
levels, and therefore constructing and traversing all states in the space for every matching
RL-Path is non-trivial. To alleviate this cost, we determine which states can violate the
predecessor dependencies before exploration begins, using per-pattern virtual state spaces.
For each target pattern P , we treat P as if it were the resulting state of a matching RL-Path,
and construct its virtual state space, comprising of all connected subgraphs of P . This
virtual state space corresponds one-to-one with the state space of all RL-Paths that match P ,
which allows us to statically determine before exploration begins whether any states violate
the containment constraints.

25

e

g i

e

f i
e

f g
f

g i

e g

if

Violating

State Space
S=

=

e f g i

e f

ge i i

e

f

g i

(a) Contains violating state.

a b e h

a h

he

e

hb

b h

b e
a

b h
a

h e

State Space h a

eb
S=

=

(b) Does not contain violating state.

Figure 6.1: State spaces for RL-Paths that match P M
1 and P M

2 .

6.2 Skipping ETasks

An RL-Path R exploring state S that matches P M violates the constraint ⟨P M , P +⟩ for
predecessor dependency when a state S′ in its state space matches P +. In this case, S is a
violating state. For example in keyword search application which has minimality constraint,
an RL-Path R has a violating state S if a smaller subgraph of S contains each of the necessary
keywords.

We analyze the target patterns and group them in three cases based on whether the
states in their virtual space violate the application constraints. For a given target pattern
P M , either: (a) there is some violating state, meaning every match for P M violates its
predecessor dependencies; or (b) none of the states are violating, meaning every match for
P M satisfies its predecessor dependencies. In addition, since an ETask can explore multiple
patterns with the same structure but different labels (merged labels explained in Section 2.7),
ETasks exploring multiple target patterns can fall in a third category (c) where they may
explore some RL-Paths which violate predecessor dependencies, and others which do not.

In the first case, ETasks targeting P M are unnecessary and can be safely skipped. In
our example, the subgraphs in the virtual state space for P M

1 are identical in structure and
labeling to those in the state space shown in Figure 6.1a. Hence the virtual state space also
contains a violating subgraph, causing any RL-Path matching P M

1 to violate the minimality
constraint. Thus, all ETasks targeting P M

1 are skipped. For the second case where every
match for P M satisfies its predecessor dependencies, the ETasks targeting P M do not need
to check containment constraints. Figure 6.1b shows the state space of an RL-Path matching
P M

2 ; the virtual state space of P M
2 has no violating states, and hence its ETasks do not

perform any dependency checks.

26

Finally for the third case, ETasks perform eager filtering by checking constraints when
exploring each RL-Path. ETasks maintain a set of violating states for each level in the search
tree, corresponding to the violating states in the state space of the merged patterns which
are guaranteed to violate predecessor dependencies. Then at each level of exploration, if the
current state matches a violating state for that level, the RL-Path is canceled and the ETask
immediately backtracks.

This categorization drastically reduces the cost of satisfying predecessor dependencies by
moving the computational burden from execution-time checks at each matching RL-Path to
virtual state space analysis before execution. In KWS with 3 keywords and the exploration
depth 4 (i.e., patterns have at most 5 vertices), 273 of 287 patterns are guaranteed to violate
predecessor dependencies, and the ETasks targeting these patterns are completely skipped
(i.e., a 95% reduction).

27

Chapter 7

Evaluation

We evaluate the effectiveness of Contigra for containment constrained graph mining
applications. We first evaluate the effectiveness of VTasks for successor dependencies on
maximal quasi-cliques and nested subgraph queries. Then we evaluate the performance of
our task management strategies such as task promotion, lateral dependencies, and RL-Path
ordering. Then we evaluate the effectiveness of static analysis for predecessor dependencies
on keyword search. Finally we evaluate generality of our techniques on applications without
containment constraints by evaluating quasi-cliques.

7.1 Implementation Details

We develop Contigra on top of Peregrine+, a modified version of the state-of-the-art
graph mining system Peregrine [26] which supports simultaneous exploration of multiple
patterns proposed in recent works which are not open-source [18, 37]. We implemented caches
in Peregrine ETasks: set operation results are associated with each pattern vertex in a cache,
and previous cache entries are reused to compute new operations. Patterns with identical
pattern cores are explored simultaneously (i.e., Shared Connected Subpattern [18]), and
ETasks to such patterns share their caches (i.e., intra-pattern reuse [18]). These modifications
were implemented in ∼4300 lines of code.

ETasks and VTasks are implemented as individual recursive matching steps like in
Algorithm 1 and Algorithm 2. Hence, task fusion and task promotion can be applied
transparently to combinations of ETasks and VTasks by calling the appropriate function
with the current subgraph and cache. For task fusion, the task exploring deeper ensures
the subgraph and cache are consistent with its target pattern by permuting them. For task
promotion, a valid subgraph has already been explored and hence no permutation is required.

To avoid runtime overheads, many aspects of task management are computed before
exploration begins. ETasks maintain lists of VTasks that must be executed, and VTasks
maintain plans for bridging gaps to target patterns. All tasks also track which tasks they can
promote to, sorted using our heuristics for ordering RL-Paths. Finally, the permutations for

28

Data Graphs Vertices Edges Labels GCC
Amazon (AZ) 334.9K 925.9K 0 0.21
DBLP (DB) 317.1K 1.0M 0 0.31
Mico (MI) 96.6K 1.1M 28 0.41
Patents (PA) 2.7M 14.0M 36 0.07
Youtube (YT) 7.7M 50.7M 23 0.11
Products (PR) 2.4M 61.9M 46 0.13

Table 7.1: Real-world graph datasets used in evaluation.

GCC Value Vertices Edges Final GCC
0.1 477.2K 3.8M 0.10
0.2 477.5K 3.7M 0.21
0.3 477.2K 3.7M 0.32
0.4 477.4K 3.7M 0.42
0.5 477.3K 3.7M 0.51

Table 7.2: Synthetic graph datasets used in evaluation.

aligning exploration plans are stored in lookup tables indexed by pattern combinations. Since
these computations occur at pattern-level and not per match, it took only 0.1s–2s across all
our experiments, compared to pattern exploration times which are often in 10’s-1000’s of
seconds.

7.2 Applications, Datasets & Systems

7.2.1 Applications

We evaluate three containment constrained applications to cover the different dependency
types: Maximal Quasi-Cliques (MQC) and Nested Subgraph Queries (NSQ) for successor de-
pendencies, and Keyword Search (KWS) for predecessor dependencies. Lateral dependencies
are automatically imposed across VTasks during execution. The maximal quasi-cliques finds
γ-quasi-cliques up to size 6 that are maximal with γ between 0.8 and 0.6, which results in
exploring 7–26 different quasi-clique patterns. We use two different nested subgraph queries:
the first query searches all triangles not contained in two size-5 patterns shown in Figure 7.1a,
whereas the second query searches all tailed triangles not contained in size-6 patterns shown
in Figure 7.1b. In keyword search, we explore minimal subgraphs with up to five vertices
that contain two different sets of 3 keyword labels: first set containing most frequent labels
occurring in the data graph, and other set containing less frequent labels. Each label set
results in matching upto 287 different patterns.

29

7.2.2 Datasets

Both real and synthetic graph datasets are used in our experiments. Table 7.1 and Table 7.2
show the details of the graph datasets used in our experiments. They list the number of
vertices, edges, the number of unique labels, as well as the Global Clustering Coefficient
(GCC). GCC measures the density of the datasets. GCC is calculated by the ratio of three
times the number of triangles over the number of wedges.

Table 7.1 shows the graph datasets used in our experiments, commonly used to evaluate
graph mining solutions [39, 26, 18, 29, 6]. Amazon (AZ) [50] is a co-purchasing network.
In this graph, vertices represent products sold and an edge between two vertices represent
products that are frequently purchased together. For example, if a user buys product A and
product A is often purchased with product B, there will be an edge in the graph between
the vertices representing vertex A and vertex B. DBLP (DB) [50] is a co-authorship network.
Vertices represent computer science researchers and two researchers are adjacent if they
have co-authored a paper. A returned subgraph will contain authors who have collaborated
together on a paper. The Patents (PA) [20] graph represents citations between patents.
Vertices represent patents and edges represent citations which shows related patents. Youtube
(YT) [12] is a network made from crawling the YouTube site. Each vertex in the graph
represent a video and each edge in the graph represents a related video that was suggested
for the original video. A returned subgraph will show which videos are related to each other.
Finally Products (PR) [24] is a larger co-purchasing network on Amazon products. Similar
to the smaller Amazon dataset, this dataset also represent vertices as products and edges
represent products that are frequently purchased together.

Table 7.2 shows the synthetic graph datasets used in our experiments. We generate these
datasets using the method described in [33]. We choose BTER (Block Two Level Erdos-
Renyi) graphs for generating these datasets as it generates graphs that match a provided
degree distribution and a given clustering coefficient. We specify a power-law distribution
for the vertices as real-world graphs are known to follow a power-law distribution, with
approximately 500K vertices and vary the GCC. The final number of generated vertices and
edges are shown in the Table 7.2. The number of vertices and edges are similar with only
the GCC differing between the datasets. We vary the GCC from 0.1-0.5 and we show the
provided GCC as well as the actual GCC of the dataset in the table.

Containment constrained applications are computationally expensive compared to tradi-
tional mining applications, and existing state-of-the-art cannot compute results for several of
these graph datasets. Larger graphs (beyond the ones listed in Table 7.1) require higher time
budget for experiments compared to traditional applications mainly due to the computational
difficulty in checking containment constraints.

30

Application Baseline Speedup
Maximal Quasi-Cliques (§7.4.1) TThinker 12–41700×
Nested Subgraph Queries (§7.4.2) Peregrine+ 5.6–379×
Keyword Search (§7.5) Peregrine+ 21–16000×
Quasi-Cliques (§7.6) Peregrine+ 2.4–7.2×

Table 7.3: Summary of Contigra’s performance.

7.2.3 Systems

We compare the performance of our techniques with two state-of-the-art systems: Peregrine+
and TThinker [32]. Peregrine+ is a general graph mining system that extends Peregrine [26]
by batching the exploration plans together for efficiency (explained in Section 7.1). For nested
subgraph queries and keyword search applications, we wrote the containment constraint
checking code in the user callback of Peregrine+ (∼600 lines of code). TThinker on the other
hand develops a custom solution for mining maximal quasi-cliques using strategies to prune
sparse regions of the graph that would never contain dense quasi-cliques.

All experiments we conducted on a 3.10GHz Intel(R) Xeon(R) Gold 6242R CPU with
64GB RAM and 40 physical cores, allowing 80 threads with hyperthreading.

7.3 Performance Summary

Table 7.3 summarizes the performance of Contigra compared to state-of-the-art baselines.
Contigra enables efficient execution of containment constrained graph mining applications
compared to the Peregrine+ graph mining system as well as the custom TThinker for
maximal quasi-cliques. Moreover, Contigra scales to larger graphs that these baselines
could not handle mainly because Contigra verifies dependencies actively during exploration
whereas these baselines examine matches after they are explored, hence often running out
of time or requiring massive memory/storage capacities to hold the explored matches for
constraint checking. Finally, Contigra’s task fusion and task promotion techniques also
speed up graph mining execution in unconstrained applications like quasi-cliques.

7.4 VTask Performance

We study the performance of VTask and associated techniques for validating successor
dependencies.

7.4.1 VTasks for Maximality

Table 7.4 compares the performance of maximal γ-quasi-cliques for Contigra and the state-
of-the-art TThinker. As shown, Contigra is 12–41,000× faster than TThinker. Contigra

31

delivers high performance due to VTasks and their associated techniques; we observed that
up to 76.7% of VTasks and up to 72% of ETasks get canceled as VTasks check constraints,
and task promotion increases the cache utilization to 75%. TThinker is only able to complete
executions on the small Amazon and DBLP graphs, where its execution is dominated
primarily by the phase that checks maximality of the explored subgraphs, failing on the
larger data graphs due to its massive space requirements. On the MiCo graph TThinker
runs out of storage after using 208GB of buffer space to store its exploration tasks, while
only producing 280MB of potentially maximal quasi-cliques for future post-processing. On
Patents, YouTube, and Products, TThinker exhausts the system’s 64GB of memory, despite
all three graphs taking less than 1GB space. Hence, the speedups reported for these large
graphs are only a lower bound.

7.4.2 VTasks for Nested Subgraph Queries

We evaluate two nested subgraph queries shown in Figure 7.1. The baseline in Peregrine+
extends each matched subgraph in the user-defined function to ensure it is not contained
in any match for the larger patterns. Figure 7.1c compares the performance of Contigra
with the Peregrine+ baseline. As shown, Contigra is 5.6–379× faster than the Peregrine+
baseline. This is mainly due to task fusion that enables cache reuse between VTasks, whereas
the user-defined function in Peregrine+ has no access to the ETask caches. We again observe
that Peregrine+ executions for several inputs do not complete in 24 hours, hence we plot
conservative speedups.

7.4.3 Task Management Strategies

Task Promotion.

To evaluate the benefits of task promotion, we compare the hit rate of ETask caches with
and without task promotion enabled in maximal quasi-cliques application. Figure 7.2 shows
that cache hit rates can rise to 73% with task promotion from only 48% when it is disabled,
as redundant operations are cached instead of recomputed.

Lateral Dependencies.

We quantify the effectiveness of VTask cancellation via lateral dependencies on the speedups
over the baseline. Figure 7.3 shows executions of maximal quasi-cliques measuring the
percentage of VTasks that were canceled. As shown, up to 77% of VTasks get canceled,
motivating the importance of lateral dependencies.

RL-Path Ordering.

Choosing which RL-Paths to explore first can affect performance when scheduling VTasks and
bridging gaps between ETasks and VTasks. We study this performance impact and evaluate

32

A NOT IN

(a) Query A

B NOT IN

(b) Query B

MI PA YT PR
0

5Sp
ee

du
p

MI PA YT PR
0

10

50

100
Query A

375

380

Query B

PRG+ CONTIGRA

(c) Performance.

Figure 7.1: Nested subgraph queries.

0.6 0.7 0.8
γ

0

25

50

75

100

C
ac
he

H
it
R
at
e

Mico

0.6 0.7 0.8
γ

Patents

0.6 0.7 0.8
γ

Youtube

0.7 0.8
γ

Products

With Task Promotion Without Task Promotion

Figure 7.2: Cache hit rates with and without task promotion.

the effectiveness of our heuristics for prioritizing RL-Paths. Figure 7.4 shows executions of
maximal quasi-cliques on various data graphs with different orderings of RL-Paths. As we
can see, the performance difference between the fastest and the slowest executions is up
to 2×. Our heuristics select the fastest executions in most of the cases. For Youtube with
γ = 0.7 our choice is within 1.8 seconds of the fastest execution and for Patents with γ = 0.7
and γ = 0.8 our choice is within 0.1 seconds of the fastest execution.

7.5 Predecessor Dependencies

We evaluate keyword search with minimality constraint that results into predecessor depen-
dencies. It searches for up to size-5 subgraphs containing 3 keyword labels that are most
frequent in the data graph and other 3 keyword labels that are less frequent. Task promotion
is also enabled in keyword search; since subgraphs of multiple sizes are explored, when an
RL-Path to level k matches, its ETask gets promoted to patterns in level k + 1.

33

0.6 0.7 0.8
γ

0

25

50

75

100
%

of
C

an
ce

lle
d

Ta
sk

s Mico

0.6 0.7 0.8
γ

Patents

0.6 0.7 0.8
γ

Youtube

0.7 0.8
γ

Products

VTasks ETasks

Figure 7.3: Task cancellations due to lateral dependencies.

Figure 7.5 compares the results for Contigra and Peregrine+ baseline. Contigra
performs 21–16138× faster than the baseline. This is due to the reduction in ETasks that
are executed thanks to the combination of virtual state space analysis and eager filtering, as
well as task promotion strategy. We observe that in comparison to Peregrine+ we explore
only 0.6–2.5% of all possible ETasks. To break down which techniques lead to such aggressive
reduction, we disabled task promotion in Contigra and compared the performance when
task promotion is enabled. We observed that with task promotion Contigra explores only
19–47% of the ETasks in all cases except on YouTube graph, where up to 80% of the ETasks
are explored mainly because many subgraphs end up having valid labels. Finally, eager
filtering and task cancellation lead to far fewer RL-Paths being explored; and hence fewer
dependency checks were performed; Figure 7.6 shows task elimination explores 40-85% fewer
matches while eager filtering explores ∼0.01% matches.

RL-Path Ordering.

RL-Path ordering can significantly impact performance when promoting ETasks. Figure 7.7
shows the execution time using two opposing strategies for prioritizing RL-Paths. The
dense strategy prioritizes RL-Paths targeting dense patterns first, while the sparse strategy
prioritizes those targeting sparse patterns first. Our heuristics lead to the faster choice,
giving up to 4.4× speedup. For Mico and Patents the performance difference is only ∼0.6
seconds.

7.6 Generality of Task Fusion & Promotion

We further evaluate the generality of task fusion and task promotion for applications without
containment constraints. We run quasi-cliques without maximality constraints but with task
fusion and task promotion between ETasks enabled and compare the performance to the

34

0.6

14

16

18

20

22

24
Ex

ec
ut

io
n

Ti
m

e
(s

)

0.7 0.8

7

8

9

10

11

DBLP

γ

0.6

4.5e3

5e3

5.5e3

6e3

6.5e3

0.7 0.8

1e3

1.2e3

1.4e3

1.6e3

1.8e3

Mico

γ

0.7 0.8

6e3

8e3

1e4

1.2e4

1.4e4

Products

γ

0.6

1.2e3

1.3e3

1.4e3

1.5e3

Ex
ec

ut
io

n
Ti

m
e

(s
)

0.7 0.8

20

25

30

35

Youtube

γ

0.6

2e2

2.5e2

3e2

3.5e2

0.7 0.8
2

2.5

3

3.5

Patents

γ

Figure 7.4: Executions with different RL-Path orderings. The ordering picked by our heuristic
is marked with a red triangle.

LF MF
0

5

LF MF
0

20

27

LF MF
0

20

40
2026

LF MF
0

50

1e2
809

2e3

4e3

6e3

Sp
ee

du
p

0.36

4.02

Mico

5e2
1e3

1.5e3 0.55
Patents

5e3

1e4 9.92
Products

1e4

2e4 4.93
Youtube

PRG+ CONTIGRA w/o Task Promotion CONTIGRA

Figure 7.5: Performance of Contigra and Peregrine+ for keyword search with most frequent
(MF) and less frequent labels (LF). Numbers on top of bars indicate Contigra execution
times (sec).

35

LF MF

107

109

1011
#

of
M

at
ch

es

Mico

LF MF

107

109

1011

Patents

LF MF

107

109

1011

××

T
L
E

××

T
L
E

Products

LF MF

108

1010

1012

1014
Youtube

PRG+ CONTIGRA w/o Filter CONTIGRA Valid Matches

Figure 7.6: Number of matches checked for constraints in keyword search. TLE indicates
executions that did not complete in 24 hours.

Peregrine+ baseline without these techniques. Figure 7.8 shows the speedups of Contigra
over the baseline when matching γ-quasi-cliques without checking maximality. Task fusion
and task promotion for ETasks lead to 2.4–7.2× faster execution.

To further drill down on the impacts of our strategies, we also evaluate the benefits in
task fusion provided by bridging gaps. Figure 7.9 shows the execution of Contigra with
and without bridging gaps. Bridging gaps has up to 5.88× speedup due to the improvements
in cache reuse.

7.6.1 Generality of RL-Path Ordering

The generality of RL-Path ordering is evaluated in Figure 7.10. We use the synthetic datasets
for evaluation. Figure 7.10 shows the execution time for two opposing strategies for prioritizing
RL-Paths and how dataset density affects our heuristics. We observe that when the target
patterns are very dense (ie. γ = 0.8) the density of the dataset does not matter and purely
focusing on the target patterns is the correct choice. As less dense target patterns are added
for γ = 0.7, the density of the dataset begins to affect the execution time. With γ = 0.6,
there is a mix of dense and sparse target patterns and the density of the dataset has a greater
effect on execution time. These experiments further reinforce the need for our heuristics to
check both the density of the target patterns and the density of the datasets if necessary.

36

LF MF

0

5

10
Ex

ec
ut

io
n

Ti
m

e
(s

)

Mico

LF MF

0

10

20

30

40

Patents

LF MF

0

1e3

2e3

Youtube

LF MF

0

2e3

4e3

6e3

8e3

Products

Dense Sparse

Figure 7.7: Executions with different RL-Path orderings in keyword search. The ordering
picked by our heuristic is marked in red.

0.6 0.7 0.8
γ

0

2

4

6

Sp
ee

du
p

2.4e3

760

1.5e3

Mico

0.6 0.7 0.8
γ

0

1

2

3

4

67
1.31

1.31

Patents

0.6 0.7 0.8
γ

0

2

4

6

8 196

15.7
13.8

Youtube

0.7 0.8
γ

0.0

2.5

5.0

7.5

10.0

5.5e3

4.7e3

Products

PRG+ CONTIGRA

Figure 7.8: Performance of Contigra and SumPA for quasi-cliques without maximality
constraint. Numbers on top of bars indicate execution times (in seconds) for Contigra.

0.6 0.7 0.8
γ

0

2e3

4e3

Ex
ec

ut
io

n
Ti

m
e

(s
)

Mico

0.6 0.7 0.8
γ

0

5

10

0.6 0.7 0.8
γ

0

20

40

0.7 0.8
γ

0

1e4

2e4

3e4
Products

50

1e2

Patents

5e2

1e3
Youtube

Without Bridging Gaps With Bridging Gaps

Figure 7.9: Executions showing the effect of including and not including the bridging gaps
technique for γ-quasi-cliques.

37

0.1 0.2 0.3 0.4 0.5
GCC

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
)

γ = 0.6

0.1 0.2 0.3 0.4 0.5
GCC

101

102

103

γ = 0.7

0.1 0.2 0.3 0.4 0.5
GCC

101

102

103
γ = 0.8

Sparse Dense

Figure 7.10: Executions evaluating different RL-Path orderings in γ-quasi-cliques on BTER
datasets of varying density.

38

γ = 0.6
Contigra TThinker Speedup

Amazon 0.92 9224.17 1.00e+4×
DBLP 13.76 TLE 6.28e+3×
Mico 4266.89 OOS 20.3×
Patents 199.28 OOM 434×
Youtube 1156.75 OOM 74.7×

γ = 0.7
Contigra TThinker Speedup

Amazon 0.11 1263.08 1.20e+4×
DBLP 6.59 13435.26 2.04e+3×
Mico 887.67 OOS 97.3×
Patents 2.07 OOM 4.17e+4×
Youtube 18.59 OOM 4.65e+3×
Products 5867.63 OOM 14.7×

γ = 0.8
Contigra TThinker Speedup

Amazon 0.12 785.24 6.53e+3×
DBLP 6.64 595.64 89.7×
Mico 1083.62 OOS 79.7×
Patents 2.92 OOM 2.96e+4×
Youtube 25.65 OOM 3.37e+3×
Products 7181.76 OOM 12×

Table 7.4: Execution times (in seconds) of Contigra and TThinker for maximal quasi-
cliques. TLE indicates TThinker executions that did not complete in 24 hours. OOS indicates
TThinker executions that ran out of storage and OOM indicates TThinker executions that
ran out of memory.

39

Chapter 8

Related Work
There are many general-purpose graph mining systems and custom algorithms developed in
the literature. However to the best of our knowledge, Contigra is the first general execution
model for containment constrained applications.

8.1 Graph Mining & Pattern Matching.
General-purpose graph mining systems [46, 15, 48, 26, 39, 56, 10, 5, 18, 6, 9] combine
efficient pattern matching strategies with a programmable match processing module to
support multiple different graph mining applications.

These systems can be divided into two main types, pattern-oblivious and pattern-aware.
Pattern-oblivious systems [46, 15, 48, 56, 10, 5] explore subgraphs through iterative extensions
by edges or vertices without taking pattern structure into account. Arabesque [46] was
the first general graph mining system and it uses a "filter-process" model that filters out
subgraphs during exploration based on specific properties before passing it to a user-defined
process. However, Arabesque encounters significant bottlenecks due to memory limitations as
a result of its breadth-first search exploration model. Subsequent works such as Fractal [15],
Pangolin [10], Tesseract [5], and other pattern-aware systems overcome the memory bottleneck
by changing to a depth-first search exploration model. Some pattern-oblivious systems such
as Arabesque [5] and Tesseract [5] also require applications to be anti-monotonic. This limits
the type of applications they can support because not all applications with containment
constraints are anti-monotonic, such as maximal quasi-cliques.

Pattern-aware systems [26, 18, 6, 9] exploit structural properties of target patterns in
the pattern matching module, enabling powerful optimizations [28, 29, 7]. Peregrine [26]
introduced the concept of pattern-awareness through analysing structural properties of target
patterns. Peregrine also introduced a pattern-based programming model that allows users to
easily specify graph mining applications. Furthermore Peregrine also defined and natively
supports AntiVertices [27] and can support simple nested subgraph queries. SumPA [18]
extends Peregrine by using Peregrine’s structure analysis and taking Peregrine’s matching
orders to merge multiple target patterns together into its execution plan. This allows SumPA
to simultaneously explore multiple target patterns. GraphPi [43] is another pattern-aware

40

system that uses a cost model to determine the optimal schedule for execution. However these
systems cannot handle containment constraints as it is not possible to specify a relationship
between target patterns and applications with containment constraints will require additional
processing after execution to ensure containment constraints are satisfied.

Pattern-based graph mining also benefits from research in pattern matching systems [2,
37, 43, 41, 44, 11, 38, 8, 53, 25, 30] that enable techniques from architecture research [44,
11, 8], dataflow systems [41, 2], sampling theory [25, 30], and compilers [43, 37]. None of
these solutions consider containment constraints across subgraphs, hence requiring users
to implement the constraint checking logic in UDF, leading to redundant operations and
inefficiency.

8.2 Maximal Quasi-Cliques
There are several specialized maximal quasi-clique solutions [35, 40, 54, 42, 13, 32, 19].
Most recent solutions are based on Quick [35] which incorporates pruning techniques from
prior algorithms like Crochet [40] and Cocain [54]. Newer algorithms such as KernelQC [42]
and Quick+ from GThinker [19] add even more pruning strategies. All these algorithms
reduce the search space by pruning sparse regions of the graph. However, they all rely on
post-processing to eliminate matches that are not maximal as the pruning strategies are
unable to remove all non-maximal results. These solutions are unsuitable for mining maximal
quasi-cliques on large graphs as they are only able to handle specific sizes that allow them
to heavily prune the original data graph. By removing the majority of the data graph, they
limit their search space to a size manageable size. On the other hand, Contigra efficiently
executes maximal quasi-clique without post-processing and can further support general
constrained applications.

8.3 Graph Keyword Search
There are many specialized keyword search algorithms [16, 3, 31, 21, 52, 47]. BANKS [3]
introduced the concept of keyword search on graph data by enabling search across relational
tables connected by foreign keys. BANKS searches by starting at a keyword and working
backwards to find an answer, Kacholia et al [31] work enhances BANKS with bi-directional
search that speculatively searches forward from arbitrary vertices in order to find key words.
BLINKS [21] then enhanced bi-directional graph keyword search [31] using a novel indexing
scheme, allowing faster search as well as tunable time-space tradeoff. More recently, keyword
search has been applied to RDF [16] and knowledge graphs [52]. Elbassuoni et al. [16]
performs keyword search by using an inverted index from the keywords to the labels and
checks each edge after it has been added to determine if the edge is valid or not. These
algorithms explore in pattern-oblivious manner and hence explore redundant subgraphs that
cannot be minimal, whereas Contigra is able to skip such subgraphs using virtual state
space analysis.

41

Chapter 9

Conclusions & Future Directions

9.1 Conclusion

This thesis presents Contigra for graph mining with containment constraints. Contigra
models containment constraints as cross-task dependencies and exploits these dependencies
to develop several techniques. Using successor dependencies, task fusion allows exploration
and validation tasks to be merged together to maximize cache reuse. Task promotion
prevents redundant work from occurring by converting validation tasks to exploration
tasks eliminating the need for exploration to begin from scratch. Furthermore within task
fusion, techniques like bridging gaps and efficient RL-Path ordering further refine execution
by optimizing cache reuse and task cancellation. Lateral dependencies enable dynamic
cancellation of unnecessary validation tasks, significantly reducing the number of constraint
checks. Finally with predecessor dependencies, entire exploration tasks can be skipped
through static analysis and eager filtering allows exploration tasks to stop prematurely if
the constraints are determined to be unsatisfiable. These techniques collectively eliminate
redundant work and maximizes cache reuse, enabling containment constraints to be checked
efficiently during executing, thus removing the need for matches to be examined individually
after exploration. For applications with containment constraints, Contigra is significantly
faster than state-of-the-art systems. Moreover Contigra scales to massive workloads that
could not be handled by existing systems. Finally, the techniques developed in this thesis are
are also applicable to applications that do not have containment constraints, by modeling
their execution requirements in terms of dependencies across subgraphs.

9.2 Future Directions

Contigra is the first to consider a general set of containment constrained problems. As
such Contigra can provide the basis for future systems to efficiently support containment
constraints by building on top of or extending Contigra.

42

A possible extension to Contigra is its interaction with modern techniques like Subgraph
Morphing [29]. Given a query, subgraph morphing generates multiple equivalent queries and
uses a cost-model to determine the most efficient execution plan. If we incorporate subgraph
morphing into Contigra, there are some interesting challenges that occur. The cost model
from subgraph morphing needs to change. Subgraph morphing does all of its analysis
statically before choosing the optimal set of queries for execution. However, Contigra has
dynamic tasks. As these tasks can be cancelled or spawned at runtime, the cost model will
need to take into account the effect of task fusion and task promotion. This may require
dynamically switching execution plans on the fly or fine-tuning the execution plan depending
on the specific exploration task.

Another possible extension to Contigra is applying the strategies developed for graph
pattern mining systems to graph databases. Graph databases like Neo4j [1] already support
some types of containment queries such as Nested Subgraph Queries with their nested
MATCH clauses. However, graph databases do not have any support for maximality and
they use a completely different execution model compared to graph pattern mining systems.

Finally, we can also generalize containment constraints to a wider scope. Contigra
supports matches that are fully contained or are fully absent from another match. Conti-
gra does not consider constraints that are partially contained within another match, or
overlapping matches. For example, we may want all house graphs whose triangle portion of
the house is not part of any square with a diagonal. This increases the complexity of the
relationships between the patterns as now there can be multiple target patterns for VTasks.
Currently in Contigra, each VTasks only needs to be responsible for one target pattern.
But when queries are overlapping, we will now need to consider how to incorporate these
partial patterns into VTasks.

43

Bibliography

[1] Neo4j. https://neo4j.com/.

[2] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Distributed
Evaluation of Subgraph Queries Using Worst-Case Optimal Low-Memory Dataflows.
Proceedings of the VLDB Endowment, 11(6):691–704, February 2018.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching
and browsing in databases using banks. In Proceedings 18th International Conference
on Data Engineering, pages 431–440, Feb 2002.

[4] Malay Bhattacharyya and Sanghamitra Bandyopadhyay. Mining the largest quasi-clique
in human protein interactome. In 2009 International Conference on Adaptive and
Intelligent Systems, pages 194–199, 2009.

[5] Laurent Bindschaedler, Jasmina Malicevic, Baptiste Lepers, Ashvin Goel, and Willy
Zwaenepoel. Tesseract: Distributed, General Graph Pattern Mining on Evolving Graphs.
In Proceedings of the Sixteenth European Conference on Computer Systems, EuroSys
’21, pages 458–473, 2021.

[6] Jingji Chen and Xuehai Qian. Decomine: A compilation-based graph pattern mining
system with pattern decomposition. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 1, ASPLOS 2023, page 47–61, 2022.

[7] Jingji Chen and Xuehai Qian. Khuzdul: Efficient and scalable distributed graph
pattern mining engine. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, page 413–426. Association for Computing Machinery, 2023.

[8] Qihang Chen, Boyu Tian, and Mingyu Gao. Fingers: Exploiting fine-grained parallelism
in graph mining accelerators. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’22, page 43–55, New York, NY, USA, 2022. Association for Computing Machinery.

[9] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali.
Sandslash: A two-level framework for efficient graph pattern mining. In Proceedings of
the ACM International Conference on Supercomputing, ICS ’21, page 378–391, 2021.

[10] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. Pangolin: An
Efficient and Flexible Graph Mining System on CPU and GPU. Proceedings of the
VLDB Endowment, 13(10):1190–1205, April 2020.

44

[11] Xuhao Chen, Tianhao Huang, Shuotao Xu, Thomas Bourgeat, Chanwoo Chung, and
Arvind Arvind. Flexminer: A pattern-aware accelerator for graph pattern mining. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 581–594, 2021.

[12] Xu Cheng, C. Dale, and Jiangchuan Liu. Statistics and social network of youtube videos.
In Hans van den Berg and Gunnar Karlsson, editors, Quality of Service, 2008. IWQoS
2008. 16th International Workshop on, pages 229–238. IEEE, June 2008.

[13] Qiangqiang Dai, Rong-Hua Li, Meihao Liao, Hongzhi Chen, and Guoren Wang. Fast
maximal clique enumeration on uncertain graphs: A pivot-based approach. In Proceedings
of the 2022 International Conference on Management of Data, SIGMOD ’22, page
2034–2047, 2022.

[14] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin,
Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan
Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj Vrgoč, Mingxi Wu,
and Fred Zemke. Graph pattern matching in gql and sql/pgq. In Proceedings of the
2022 International Conference on Management of Data, SIGMOD ’22, page 2246–2258,
New York, NY, USA, 2022. Association for Computing Machinery.

[15] Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan
Parthasarathy. Fractal: A General-Purpose Graph Pattern Mining System. In Pro-
ceedings of the 2019 International Conference on Management of Data, SIGMOD ’19,
pages 1357–1374, 2019.

[16] Shady Elbassuoni and Roi Blanco. Keyword search over rdf graphs. In Proceedings of
the 20th ACM International Conference on Information and Knowledge Management,
CIKM ’11, page 237–242, New York, NY, USA, 2011. Association for Computing
Machinery.

[17] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor.
Cypher: An Evolving Query Language for Property Graphs. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, pages 1433–1445,
2018.

[18] Chuangyi Gui, Xiaofei Liao, Long Zheng, Pengcheng Yao, Qinggang Wang, and Hai
Jin. SumPA: Efficient Pattern-Centric Graph Mining with Pattern Abstraction. In 30th
International Conference on Parallel Architectures and Compilation Techniques, PACT
’21, pages 318–330, 2021.

[19] Guimu Guo, Da Yan, M. Tamer Özsu, Zhe Jiang, and Jalal Khalil. Scalable mining of
maximal quasi-cliques: An algorithm-system codesign approach. Proc. VLDB Endow.,
14(4):573–585, dec 2020.

[20] Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg. The NBER Patent Citation Data
File: Lessons, Insights and Methodological Tools. NBER Working Paper 8498, 2001.

45

[21] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks: Ranked keyword searches
on graphs. In Proceedings of the 2007 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’07, page 305–316, New York, NY, USA, 2007. Association
for Computing Machinery.

[22] John Hopcroft, Omar Khan, Brian Kulis, and Bart Selman. Tracking evolving com-
munities in large linked networks. Proceedings of the National Academy of Sciences,
101(suppl_1):5249–5253, 2004.

[23] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou. Mining
Coherent Dense Subgraphs Across Massive Biological Networks for Functional Discovery.
Bioinformatics, 21:i213–i221, 06 2005.

[24] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine
Learning on Graphs. CoRR, abs/2005.00687, 2020.

[25] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir
Braverman, and Ion Stoica. ASAP: Fast, Approximate Graph Pattern Mining at Scale.
In Proceedings of the 13th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’18, pages 745–761, 2018.

[26] Kasra Jamshidi, Rakesh Mahadasa, and Keval Vora. Peregrine: A Pattern-Aware Graph
Mining System. In Proceedings of the Fifteenth European Conference on Computer
Systems, EuroSys ’20, pages 1–16, 2020.

[27] Kasra Jamshidi, Mugilan Mariappan, and Keval Vora. Anti-Vertex for Neighborhood
Constraints in Subgraph Queries. In Proceedings of the ACM SIGMOD Joint Interna-
tional Workshop on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA), GRADES-NDA ’22, pages 1–9, 2022.

[28] Kasra Jamshidi and Keval Vora. A Deeper Dive into Pattern-Aware Subgraph Ex-
ploration with PEREGRINE. SIGOPS Operating Systems Review, 55(1):1–10, June
2021.

[29] Kasra Jamshidi, Harry Xu, and Keval Vora. Accelerating graph mining systems with
subgraph morphing. In Proceedings of the Eighteenth European Conference on Computer
Systems, EuroSys ’23, page 162–181, 2023.

[30] Peng Jiang, Yihua Wei, Jiya Su, Rujia Wang, and Bo Wu. Samplemine: A framework
for applying random sampling to subgraph pattern mining through loop perforation. In
Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, PACT ’22, page 185–197, New York, NY, USA, 2023. Association for
Computing Machinery.

[31] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai,
and Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph
databases. In Proceedings of the 31st International Conference on Very Large Data
Bases, VLDB ’05, page 505–516. VLDB Endowment, 2005.

[32] Jalal Khalil, Da Yan, Guimu Guo, and Lyuheng Yuan. Parallel mining of large maximal
quasi-cliques. The VLDB Journal, 31(4):649–674, nov 2021.

46

[33] Tamara G. Kolda, Ali Pinar, Todd Plantenga, and C. Seshadhri. A scalable generative
graph model with community structure. SIAM Journal on Scientific Computing,
36(5):C424–C452, 2014.

[34] Junqiu Li, Xingyuan Wang, and Yaozu Cui. Uncovering the overlapping community
structure of complex networks by maximal cliques. Physica A: Statistical Mechanics
and its Applications, 415:398–406, 2014.

[35] Guimei Liu and Limsoon Wong. Effective pruning techniques for mining quasi-cliques.
In Walter Daelemans, Bart Goethals, and Katharina Morik, editors, Machine Learning
and Knowledge Discovery in Databases, pages 33–49, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[36] Anjum Ibna Matin, Sawgath Jahan, and Mohammad Rezwanul Huq. Community
recommendation in social network using strong friends and quasi-clique approach. In
8th International Conference on Electrical and Computer Engineering, pages 453–456,
2014.

[37] Daniel Mawhirter, Sam Reinehr, Wei Han, Noah Fields, Miles Claver, Connor Holmes,
Jedidiah McClurg, Tongping Liu, and Bo Wu. Dryadic: Flexible and Fast Graph Pattern
Matching at Scale. In 30th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’21, pages 289–303, 2021.

[38] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu. GraphZero:
A High-Performance Subgraph Matching System. SIGOPS Operating Systems Review,
55(1):21–37, June 2021.

[39] Daniel Mawhirter and Bo Wu. AutoMine: Harmonizing High-Level Abstraction and
High Performance for Graph Mining. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, pages 509–523, 2019.

[40] Jian Pei, Daxin Jiang, and Aidong Zhang. On mining cross-graph quasi-cliques. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Dis-
covery in Data Mining, KDD ’05, page 228–238, New York, NY, USA, 2005. Association
for Computing Machinery.

[41] Zhengping Qian, Chenqiang Min, Longbin Lai, Yong Fang, Gaofeng Li, Youyang
Yao, Bingqing Lyu, Xiaoli Zhou, Zhimin Chen, and Jingren Zhou. GAIA: A system
for interactive analysis on distributed graphs using a High-Level language. In 18th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 21),
pages 321–335. USENIX Association, April 2021.

[42] Seyed-Vahid Sanei-Mehri, Apurba Das, Hooman Hashemi, and Srikanta Tirthapura.
Mining largest maximal quasi-cliques. ACM Trans. Knowl. Discov. Data, 15(5), apr
2021.

[43] Tianhui Shi, Mingshu Zhai, Yi Xu, and Jidong Zhai. GraphPi: High Performance Graph
Pattern Matching through Effective Redundancy Elimination. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’20, pages 1–14, 2020.

47

[44] Nishil Talati, Haojie Ye, Yichen Yang, Leul Belayneh, Kuan-Yu Chen, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. Ndminer: Accelerating graph pattern mining
using near data processing. In Proceedings of the 49th Annual International Symposium
on Computer Architecture, ISCA ’22, page 146–159, 2022.

[45] Brian K. Tanner, Gary Warner, Henry Stern, and Scott Olechowski. Koobface: The
evolution of the social botnet. In 2010 eCrime Researchers Summit, pages 1–10, 2010.

[46] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A System for Distributed Graph
Mining. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 425–440, 2015.

[47] Haixun Wang and Charu Aggarwal. A Survey of Algorithms for Keyword Search on
Graph Data, pages 249–273. Springer, 02 2010.

[48] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry Xu.
RStream: Marrying Relational Algebra with Streaming for Efficient Graph Mining on a
Single Machine. In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’18, pages 763–782, 2018.

[49] Chun Wei, Alan Sprague, Gary Warner, and Anthony Skjellum. Mining spam email
to identify common origins for forensic application. In Proceedings of the 2008 ACM
Symposium on Applied Computing, SAC ’08, page 1433–1437, 2008.

[50] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Communities based
on Ground-Truth. Knowledge and Information Systems, 42(1):181–213, 2015.

[51] Jianye Yang, Wu Yao, and Wenjie Zhang. Keyword search on large graphs: A survey.
Data Science and Engineering, 6(2):142–162, March 2021.

[52] Yueji Yang, Divykant Agrawal, H. V. Jagadish, Anthony K. H. Tung, and Shuang Wu.
An efficient parallel keyword search engine on knowledge graphs. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 338–349, 2019.

[53] Zhengyi Yang, Longbin Lai, Xuemin Lin, Kongzhang Hao, and Wenjie Zhang. HUGE:
An Efficient and Scalable Subgraph Enumeration System. In Proceedings of the 2021
International Conference on Management of Data, SIGMOD ’21, pages 2049–2062,
2021.

[54] Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis. Coherent closed quasi-
clique discovery from large dense graph databases. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’06, page 797–802, New York, NY, USA, 2006. Association for Computing Machinery.

[55] Shijie Zhang, Jiong Yang, and Wei Jin. Sapper: Subgraph indexing and approximate
matching in large graphs. Proc. VLDB Endow., 3(1–2):1185–1194, sep 2010.

[56] Cheng Zhao, Zhibin Zhang, Peng Xu, Tianqi Zheng, and Jiafeng Guo. Kaleido: An
Efficient Out-of-core Graph Mining System on A Single Machine. In 36th IEEE
International Conference on Data Engineering, ICDE ’20, pages 673–684, 2020.

48

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Our Solution

	Background
	Graph Terminology
	Graph Mining
	Mining with Containment Constraints
	Maximal Quasi-Cliques
	Keyword Search
	Nested Subgraph Queries
	Exploration Tasks in Graph Mining Systems
	Exploration Tasks (ETasks)

	Cross-Task Dependencies
	Successor Dependency
	Predecessor Dependency
	Lateral Dependency

	VTasks for Successor Dependencies
	VTask: Validation Task
	Task Fusion
	Aligning Explorations in Fused Tasks
	Bridging Gaps in VTask Search Trees
	Efficient RL-Paths

	Promoting VTasks to ETasks
	Generality of Task Fusion & Promotion

	Lateral Dependencies across VTasks
	Generality of Lateral Dependencies

	Predecessor Dependencies for ETasks
	State Space & Virtual State Space
	Skipping ETasks

	Evaluation
	Implementation Details
	Applications, Datasets & Systems
	Applications
	Datasets
	Systems

	Performance Summary
	VTask Performance
	VTasks for Maximality
	VTasks for Nested Subgraph Queries
	Task Management Strategies

	Predecessor Dependencies
	Generality of Task Fusion & Promotion
	Generality of RL-Path Ordering

	Related Work
	Graph Mining & Pattern Matching.
	Maximal Quasi-Cliques
	Graph Keyword Search

	Conclusions & Future Directions
	Conclusion
	Future Directions

	Bibliography

