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Abstract 

Pain lasting three months or longer is generally referred to as Chronic Pain (CP). 

According to Health Canada, approximately 20% of the Canadian population experience 

CP within their lifespan. CP also greatly burdens society. For example, in 2019 alone, $40 

billion was spent on CP. CP research includes the search for diagnostic tools and pain 

intervention methods. My thesis examined the use of EEG/MEG brain rhythms in CP and 

explored non-traditional intervention, which focused on two main goals. The first goal was 

to explore the inclusion of age in CP analysis, as age can influence brain rhythm 

properties. The second goal was to use virtual reality (VR)-guided meditation as a 

mindfulness-based stress reduction alternative intervention for CP. 

To study CP and aging, a MEG database of 474 healthy controls and 22 CP participants 

was used. The methods included finding the participants’ brain rhythm properties in four 

alpha generation regions of interest (ROIs) and the rhythm property correlations with age. 

A CP case study demonstrated how to include age using support vector regression (SVR). 

The results showed the brain rhythm properties in the four ROIs were significantly 

independent, and negative correlations with medium effect size were found between peak 

alpha frequency (PAF) and age in the frontal, temporal, and parieto-occipital ROIs. In the 

case study, SVR prediction helped identify slowed PAF in the posterior brain area of the 

CP participants. This novel SVR prediction approach helps to include age in CP analysis 

without using age-matched controls. 

To study the VR-guided meditation, ten adult patients with chronic cancer pain were 

recruited. The patients underwent a VR-guided meditation experience in a specially 

designed therapy sequence. Brain rhythm changes measured in EEG before, during, and 

after meditation were compared using topography, coherence, and cluster-based 

permutation techniques. EEG power changes were compared with the patient-reported 

numerical pain rating scores before, during and after meditation. During the therapy, 

increased power was found in β and γ bandwidths, and coherence changes between the 

frontal, parietal, and occipital regions in the θ, α, and γ bands were observed. No 

significant relationships between pain scores and EEG power variations were found. The 

novel EEG recording and analysis methods help reveal specific therapy-related EEG 

changes and can be used to investigate neurophysiological changes in VR pain 

applications. 
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Chapter 1.  
 
Introduction 

1.1. Background 

According to Health Canada, almost 8 million people in Canada or around one-fifth 

of the population, experience chronic pain (CP) (Canada, 2021; Schopflocher, 2011). CP 

refers to pain lasting over three months (Canada, 2021). Examples are lower back pain, 

spinal cord injury pain, arthritis and cancer pain (Treede et al., 2015). CP can impair 

function and significantly impact the patient's quality of life (Government of Canada, 2018). 

It also greatly burdens society, for instance, a total direct and indirect cost of around $40 

billion was spent on CP in 2019 in Canada (Canada, 2020). CP becomes more prevalent 

as people age. According to the USA National Health Interview Survey, 2016, the 

prevalence of CP in the 18-24 age group was 7.0%, 25-44 was 13.2%, 45-64 was 27.8%, 

65-84 was 27.6%, and in the 85+ age group was 33.6% (Dahlhamer, 2018) (Table 1.1). 

Table 1.1. Prevalence of chronic pain in the USA in 2016. 

Age Group Percentage Ratio 

18 - 24 7.0% ≥ 1/15 

25 - 44 13.2% ≥ 1/8 

45 - 64 27.8% ≥ 1/4 

65 - 84 27.6% ≥ 1/4 

85+ 33.6% ≥ 1/3 

 

1.2. Motivation 

Two CP research topics interest us: CP assessment and CP intervention. Even 

with today's advanced medical technology, assessing CP in patients is still challenging. It 

often relies on the patients to estimate and report pain, such as using the numerical pain 

rating scale (NPRS) (Williamson & Hoggart, 2005). However, using a pain scale to self-

report the pain level is rather subjective, and an objective solution to CP assessment is 

desired. In recent years, there has been much research on objective CP assessment 

based on CP biomarkers, and the use of resting-state electroencephalography (EEG) and 
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magnetoencephalography (MEG) as biomarkers are potential ones (Pinheiro et al., 2016; 

Zebhauser et al., 2022). EEG and MEG are neuroimaging tools with high temporal 

resolution which can detect brain rhythm changes. The implementation methodology 

usually requires comparing CP patients' EEG/MEG data with that of matched healthy 

controls. As age can significantly affect the brain's oscillatory signal properties (Chiang et 

al., 2011), age-matched controls are required to minimize false positive results. An aging 

model to extend general future large database studies is desired. This leads to our first 

objective in this thesis: to explore an aging model to overcome the age-matched control 

requirement in CP studies. 

The primary CP intervention approach in North America is through medications, 

such as opioids. However, medications can cause complications and side effects for the 

patients, and alternative CP interventions are highly desired. Mindfulness-based stress 

reduction (MBSR) (Kabat-Zinn, 2003; Rosenzweig et al., 2010) is a potential solution, and 

it is non-invasive, safe, has no side effects and is easy to apply. An implementation of 

MBSR using virtual reality (VR)-guided meditation for CP intervention is of interest to us.  

However, this brings out a new problem in assessing the intervention effect. Our second 

objective in this thesis is to verify VR-guided meditation as an alternative intervention for 

CP and use EEG for the intervention effect assessment. 

1.3. Pain 

Pain is sensory and affective (Talbot et al., 2019), and this thesis only refers to 

sensory pain. Pain involves sensory, motivational and cognitive activities (Melzack & 

Casey, 1968; Ploner et al., 2017) and is a unique experience from sight, hearing, or touch 

(Melzack & Casey, 1968). Pain can be caused by noxious stimuli (physiological) or arise 

from tissue or nerve damage and diseases (pathological) (Kuner, 2004; Liu & Kelliher, 

2022). Physiological pain is to alert that the body is being invaded or damaged, which 

triggers a biological response to escape danger or quit doing something harmful (Melzack 

& Casey, 1968; Kuner, 2004). Pathological pain is due to nociceptive hypersensitivity or 

spontaneous pain, including neuropathic pain, chronic inflammatory pain, etc. (Kuner, 

2004). 

The pain pathway can be described in four processes: the transduction and 

transmission processes in the peripheral nervous system (PNS) and the modulation and 
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perception processes in the central nervous system (CNS) (Christiansen & Cohen, 2018). 

The transduction process starts from a noxious stimulus that triggers the peripheral 

nociceptors. In the transmission process, the signal transmits through the first-order 

neuron and the synapse at the dorsal horn, then to the second-order neuron and ascends 

the spinal cord to the thalamus. The signal further broadcasts to other cortical sites from 

the thalamus, including the somatosensory cortex, the cingulate and the insula. The 

modulation process transforms the signal biologically, and the perception process 

interprets the signal in the brain. The brain can control through the periaqueductal grey in 

the midbrain to stop the perception of pain from being transmitted to the second-order 

neuron with enkephalin (Baller & Ross, 2017). The brain areas which are involved in the 

pain network are anterior cingulate cortex (ACC), primary somatosensory cortex (S1), 

secondary somatosensory cortex (S2), insular cortex (IC), thalamus (Th), prefrontal cortex 

(PFC), nucleus accumbens, amygdala (AMY), basal ganglia (BG), periaqueductal grey 

(PAG), parabrachial nucleus (PB) and cerebellum (Apkarian et al., 2005; Bushnell et al., 

2013). 

In addition to physiological and pathological pain, pain can be classified into five 

types: acute, chronic, neuropathic, nociceptive, and radicular (McLaren, 2023). Acute pain 

lasts relatively short, from minutes to three months, and is typically related to soft-tissue 

injury or temporary illness (McLaren, 2023). Pain that lasts longer than three months or 

beyond the expected healing time, such as lower back pain, spinal cord injury pain, arthritis 

and cancer pain, is referred to as CP (Treede et al., 2015; Canada, 2021). Neuropathic 

pain is related to the damage of the nerves or nervous system. Nociceptive pain is caused 

by damage to body tissue. Radicular pain happens when a spinal nerve is compressed or 

inflamed (McLaren, 2023). Another mechanism classifies pain types as nociceptive, 

inflammatory, and neuropathic pain (Yang & Chang, 2019), where Inflammatory pain 

relates to tissue damage and inflammation. 

Pain diagnosis is mainly through self-reporting with clinical questionnaires or a 

numerical pain rating scale (NPRS) (Williamson & Hoggart, 2005). This method could be 

subjective and inconsistent, and self-reporting may not be applicable if patients cannot 

communicate properly. Objective pain measures are desired in diagnosis, patient 

condition monitoring and treatment delivery. Some objective approaches reported are by 

analyzing (1) pain behaviour, such as facial expression recognition and electrical activity 

of muscles and movement, and (2) physiological signals, such as changes in heart rate, 
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skin conductance, and pupillary dilation, etc. (3) pain brain activity, such as functional 

connectivity (FC) and power changes in theta and alpha brain wavebands (Zhang & 

Seymour, 2014).  

1.4. Chronic Pain 

CP is a pathological condition due to central sensitization, which refers to 

hypersensitization in the spinal cord's dorsal horn (Latremoliere & Woolf, 2009; Woolf, 

2011; Greenwald & Shafritz, 2018). The transition from acute to CP is mainly related to 

neural plasticity: (1) The regrowth of a pain fibre after an injury can be abnormal. The 

nonselective growth factors released by macrophages can cause the non-pain and 

sympathetic fibres to grow. As a result, they could all synapse on a cell that should respond 

to pain only. (2) In an injury, C fibres at the synapse may misfire continuously and cause 

dorsal horn neurons to become more sensitive to stimulation. (3) The CP signal projects 

to the nucleus accumbens may cause the nucleus accumbens to become hypersensitive 

to pain signals (Baller & Ross, 2017). 

CP can alter the brain's chemistry, generating abnormal neurotransmitter levels. 

CP also triggers changes in brain structure and functionality, such as decreased grey 

matter volume and abnormal FC within the salience network (SN) and default-mode 

networks (DMN) (Borsook, 2012; Hemington et al., 2016; Greenwald & Shafritz, 2018). 

For instance, the dorsolateral prefrontal lobe circuits can be altered in CP conditions and 

affect a patient's cognition and emotion, leading to increased fear, anxiety and depression 

(Borsook, 2012).  

The brain functional networks are specific brain regions that are interconnected 

together. DMN comprises brain regions involved in cognitive functions, including the 

posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (mPFC), and inferior 

parietal cortices (Broyd et al., 2009). SN acts as a switch of the other brain networks in 

information processing and comprises the anterior insula (AI) and dorsal anterior cingulate 

cortex (ACC) (Seeley, 2019). CP causes less anticorrelated FC between DMN and SN, 

and cross-network FC can be a biomarker of CP (Hemington et al., 2016). 

CP can result from a large number of pain syndromes. Table 1.2 shows a 

classification mechanism of CP conditions defined by the International Classification of 
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Diseases, Revision 11 (ICD-11) as a reference. There are six basic conditions of CP, and 

all the others not classified by the first six types are grouped in the primary type. 

Table 1.2. A category of chronic pain (Treede et al., 2015) 

Chronic Pain Condition Description 

Cancer Caused by cancer or cancer treatments 

Postsurgical and post-traumatic  Pain occurs after surgery or tissue trauma that lasts for more than three 
months 

Neuropathic Caused by damage to the somatosensory nervous system 

Headache and orofacial Headache and orofacial pain that lasts for more than three months and 
50% of the days 

Visceral Long-lasting pain in an internal organ 

Musculoskeletal Prolonged lasting nociceptive pain in the bones, joints, muscles, or 
tissue 

Primary Chronic pain not caused by the other chronic pain conditions above 

 

Interventions for CP can be through medications and alternative interventions. The 

main medication types available are (1) opioids, such as morphine; (2) nonsteroids, such 

as aspirin and ibuprofen; (3) antidepressants, such as amitriptyline; and (4) antiepileptics, 

such as gabapentin (Borsook, 2012). 

Alternative interventions include invasively stimulating the spinal cord, brain and 

motor cortex and non-invasively stimulating the scalp using magnetic and electric fields 

(Zhang & Seymour, 2014). Other interventions for CP include mindfulness meditation, 

acupuncture, massage, and supplements. Pain management using a virtual reality (VR) 

environment (Mohammad & Ahmad, 2018; Garrett et al., 2020) and VR-guided meditation 

(Fu et al., 2021) have also been investigated recently. 

1.5. Brain Oscillations 

Neurons are nerve cells that transmit messages within the nervous system using 

electrical and chemical signals. A neuron receives messages through its dendrites and 

transmits them along its axon membrane in ion flows. At a synapse which connects the 

axon to another neuron, the electrical signals are converted to chemical neurotransmitters, 
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which can travel through the synaptic gap and reach the receptors of the dendrite of 

another neuron and recreate the electrical signals.  

The human brain neuron impulses generate oscillations and interest researchers 

greatly. The brain oscillation/wave frequency range of 1 to 100 Hz (Buzsáki & Draguhn, 

2004) is related to many neurological, physiological and pathological conditions. Brain 

waves are divided into wave bands that reflect different brain functions. The conventional 

wave bands are delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and 

gamma (30-100 Hz). Generally, the delta rhythm happens in the sleep state. The theta 

rhythm relates to light sleep, meditation, or a deeply relaxed condition. The alpha rhythm 

appears during wakefulness and relaxation and is more apparent when the eyes are 

closed. The beta rhythm links to light brain activity. The gamma rhythm happens when the 

brain is highly active in information processing (Abhang et al., 2016; Siuly et al., 2016). 

In healthy human adults, spontaneous brain rhythms in the 8-12 Hz (Foster et al., 

2017; Scally et al., 2018) frequency range are generally called alpha rhythms. They are 

generated primarily in the frontal, central, temporal, and parieto-occipital brain regions. 

More specifically, the brain rhythms generated in these regions are frontal alpha, mu, tau, 

and posterior alpha, respectively (Richard Clark et al., 2004; Chiang et al., 2011; Jensen 

et al., 2013; Niedermeyer, 1997). 

The posterior alpha rhythm is likely the most prominent feature of spontaneous 

neurophysiological activity, and it was discovered using EEG almost a century ago by 

Berger (1929). Visual stimuli or merely eyes open conditions can attenuate the rhythm 

amplitude (Ciulla et al., 1999; Barry et al., 2007). The posterior alpha typically has a 

spectral power peak frequency and amplitude higher than frontal alpha, mu, and tau 

(Chiang et al., 2011). Split alpha peaks sometimes occur, possibly associated with 

variations in interhemispheric connectivity (Olejarczyk et al., 2017). The frontal alpha 

might be linked to pain perception and suppression, where the increase in frontal alpha 

activity could be related to increased pain intensity and less successful pain suppression 

attempts (Jensen et al., 2013). The mu rhythm is typically in the frequency range of 7-11 

Hz and originates in the sensorimotor cortex in the central area. Its amplitude attenuates 

with movement and even movement planning (Chatrian et al., 1959). The tau rhythm is in 

the frequency range of 8-10 Hz and originates in the auditory cortex in the temporal lobe. 
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Tau amplitude is related to emotion, and auditory stimuli can suppress the rhythm 

(Yokosawa et al., 2020). 

1.6. EEG and MEG 

EEG and MEG are essential neuroimaging techniques for measuring brain 

oscillatory signals. They have a high temporal resolution and are non-invasive and direct 

neurophysiological measures, unlike functional magnetic resonance imaging (fMRI) and 

functional near-infrared spectroscopy (fNIRS). EEG/MEG can detect the electric/magnetic 

fields produced by the neurons’ electric current in the cortex. The electrical impulses of a 

single neuron are too weak to be detected by the EEG/MEG sensors. When many neurons 

work synchronously, EEG/MEG can detect the cortical electrical impulses through rhythms 

or oscillations. 

EEG/MEG recordings are usually performed in either a resting or event-related 

state. In the resting state, the subject is awake and not performing any task. It contrasts 

with the event-related potential (ERP) state for EEG or the event-related field (ERF) state 

for MEG, a task-performing state for measuring brain response to an event. In the resting 

state, subjects are usually asked to either open their eyes and focus on a mark or to close 

their eyes but not fall asleep. Some brain regions show consistent activity patterns in the 

resting state, such as the default mode network (DMN) (Raichle et al., 2001) and 

sensorimotor, executive control, visual, lateralized fronto-parietal, auditory, and temporo-

parietal components (Rosazza & Minati, 2011).  

EEG/MEG sensors are susceptible to noise, which can contaminate the EEG/MEG 

signals and harm EEG/MEG analyses. Environmental noise, including AC power line 

noise (60 Hz in North America and 50 Hz in Europe, and the harmonics), room lighting, 

electromagnetic interference from nearby equipment, etc., can be reduced using shielding 

and DC-operated equipment. Physiological noise from the patient, including eye blinks, 

eye movement, heartbeat, muscle movement, etc., is sometimes unavoidable. However, 

clear instructions, comfortable resting positions, and short recording sessions could 

minimize this noise. 

EEG/MEG recordings are usually performed with built-in noise cancellation and 

detection features. For instance, a notch filter to attenuate powerline noise, and the use 
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of special detection sensors such as an electrocardiogram (ECG) for heartbeats, 

electrooculogram (EOG) for eyeball movement, electromyogram (EMG) for muscle 

contraction, head-coil position (HCP) for head movement, etc. A preprocessing pipeline is 

usually used to prepare the raw data for analysis, which involves a sequence of cleaning 

and processing steps, such as loading the data, extracting the interested segments, fixing 

bad channels, cleaning the data, removing artifacts and performing source localization. 

The sessions below describe the preprocessing and analysis techniques necessary to 

extract and interpret the critical information in the EEG/MEG data. Also, statistical analysis 

techniques are crucial in evaluating the effectiveness of the analysis results. 

1.7. Data Preprocessing 

1.7.1. Bad Channels and Repair 

During the EEG/MEG brain imaging process, it is common to see that some data 

channels may not function properly, such as being extremely noisy or appearing as a flat 

line. For EEG, causes include electrode malfunctioning, electrodes having bad contact 

with the scalp, cables picking up noise, bad electric contact between electrode and cable, 

etc. For MEG, causes include sensor malfunctioning, electromagnetic interference, etc.  

Bad channels can be identified by observing and manually marking during data 

acquisition or by visually inspecting recorded data using a data browsing tool afterward. 

Bad channels can also be identified automatically. Some advanced software tools can 

detect if the signal amplitude exceeds a predefined threshold value. If a channel shows a 

flat line with no signal, using it in the analysis may cause a biased result as a very low 

noise level is weighted on the flat channel. Noisy channels can cause problems in 

averaging, such as in EEG electrode average reference and unnecessary rejections of 

epochs. 

Eliminating bad channels in an analysis may cause an inaccurate overall signal-

to-noise ratio. Bad channels can be replaced using interpolated signals from the 

neighbourhood channels (Perrin et al., 1989). If only some portions of the bad channels 

appear noisy, removing only the bad portions instead of the whole channels is feasible. 

Bad segments can be identified and removed manually or automatically. Manual 

approaches include inspecting the data using a data viewer and examining the recording 
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notes of the participant’s movements. Automated approaches include comparing the 

signal amplitudes with a threshold level in the data channels and/or the ECG, EOG, and 

EMG channels. 

1.7.2. Digital Filtering 

A digital filter is a mathematical algorithm that attenuates the amplitude of discrete 

signals at the desired frequency range. Common EEG/MEG signal processing filter types 

include high-pass, low-pass, bandpass, and notch filters. Below are some usages of digital 

filtering in EEG/MEG preprocessing pipelines. 

(1) Notch filtering is required to remove powerline noise and its harmonics. For 

data recorded in North America, cut-off frequencies are set to 60 Hz, 120 Hz, 180 Hz, etc. 

For data recording in Europe, the cut-off frequencies are set to 50 Hz, 100 Hz, 150 Hz, 

etc. (2) Resampling data to a lower sampling rate can significantly reduce data 

preprocessing time. Before downsampling, an anti-aliasing filter is required to ensure the 

bandwidth complies with the Nyquist frequency requirement. For instance, to downsample 

a 1,000 Hz signal to 250 Hz, a prior low-pass filtering with a cut-off at 125 Hz or lower has 

to be used to avoid signal distortion due to aliasing. (3) For the independent component 

analysis (ICA) artifact removal process, applying a 1 Hz high-pass filter to remove slow 

drifts that ICA is sensitive to is common (Winkler et al., 2015). 

Digital filters can introduce unwanted distortion to the signal, such as amplitude 

and phase distortion, and then affect brain rhythm and connectivity analyses. The 

amplitude distortion can be minimized by designing a filter with a flat passband or steep 

transition band (fast roll-off). The phase delay can be compensated using a zero-phase 

filter that uses a two-pass (applied twice) approach, once forward and backward. 

1.7.3. Artifact Removal 

Artifacts are noises that mix with the signals of interest during recording. 

Environmental and physiological noises are common artifacts in EEG and MEG 

recordings. ICA and signal-space projection (SSP) are useful artifact removal approaches, 

which are especially effective in identifying ocular and cardiac artifacts that cannot be 

easily removed using frequency filtering. 
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SSP assumes signal sources are spatially distributed and the artifact sources have 

a low dimension. SSP projects signals recorded at the sensors into multidimensional 

components. The artifact components with a low dimension are removed, and the 

remaining components are converted back to sensor channels (Uusitalo & Ilmoniemi, 

1997). 

ICA is a blind source separation technique. During EEG/MEG recordings, the 

spatially distributed independent sources project signals to the sensors, where signals are 

linearly mixed. ICA decomposes signals at the sensors back to their independent source 

components, and the artifact components can then be identified and removed. The 

remaining source components are converted back to sensor channels to achieve clean 

data (Bell & Sejnowski, 1995). 

1.7.4. Source Localization 

EEG/MEG sensors can detect the scalp's electric and magnetic brain signals. 

These recorded sensor space signals only reflect the mixed neuronal activity underneath 

the sensors and their adjacency. Source localization is a technique for localizing source 

neuronal activities in the brain. 

Source localization is a complex process consisting of many steps. The first step 

is to reconstruct the structural MRI data from the format of a brain volume into a cortical 

surface. This is required for setting up the source model (source space) and head model. 

The distributed approach uses the source model to represent the EEG/MEG signal source 

locations with a grid of dipoles. The head model defines the geometry of the head and the 

conductivity of different layers of the head. The geometry of the head can be separated 

into tiny elements to match the segmentation of the MRI data using the finite element 

method (FEM) or boundary element method (BEM) (Gramfort et al., 2014). 

Co-registration is a process to align the EEG/MEG sensor locations with the head 

model so they are on the same coordinate system. This requires identifying the fiducial 

landmarks: nasion, left and right preauricular points on the head model and fitting the 

fiducials with the head shape points (HSP) (Gramfort et al., 2014). 

The forward solution describes how the EEG potential or MEG field distributes from 

sources to the head and the sensors. Once the co-registration alignment is done, the 
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source and head models form the forward solution. With the help of the noise-covariance 

matrix derived from the empty room noise recording to provide the noise source 

information, the source localization can be prepared using an inverse operator on the 

forward solution and noise-covariance matrix. Familiar inverse operators include 

minimum-norm, dynamical statistical parametric mapping (dSPM) (Dale et al., 2000), and 

standardized low-resolution brain electromagnetic tomography (sLORETA) (Pascual-

Marqui, 2002). The tools for source localization are readily available in some neuroimaging 

analysis software packages such as MNE-Python (Gramfort et al., 2013). 

1.8. Data Analysis Techniques 

1.8.1. Power Spectral Density 

Power spectral density (PSD) represents the power level of a signal at each 

frequency point in a frequency spectrum. The unit of the sensor space PSD is the square 

of the signal amplitude unit divided by frequency in Hz. The source space PSD can be 

expressed in decibels (dB), a ratio on a logarithmic scale. To obtain PSD for resting-state 

EEG/MEG measurement, data are usually first segmented into epochs of equal length, 

usually between 1 to 10 seconds, then computed using a Fast Fourier Transform (FFT) 

method for each epoch, and the results are averaged to get an improved signal-to-noise 

ratio (Welch, 1967). The discontinuity at the start and end points of the epochs can lead 

to spectral leakage in FFT. Window functions, such as Hanning, Hamming, and discrete 

prolate spheroidal sequence (DPSS) (Slepian, 1978) tapers, can taper the signal 

amplitude at the epoch edges to reduce information loss before computing PSD. 

Normalization is usually used before averaging the PSD of subjects to avoid bias. 

There are several approaches for normalization: (1) dividing by average or total power 

across frequency bins on each channel, (2) dividing by average power across all channels 

for each frequency bin, (3) computing z-score across all channels (Sprecher et al., 2016), 

or (4) applying logarithm in addition to the approaches mentioned above. 

1.8.2. Peak Alpha Frequency and Bandwidth 

Peak alpha frequency (PAF) specifies the frequency in the alpha band with the 

highest amplitude. PAF can also be represented using the centre of gravity or the mean 
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alpha frequency (Klimesch et al., 1997; Klimesch, 1999). The alpha rhythm centre of 

gravity is the weighted sum of spectral estimates divided by alpha power: ∑(a(f) × f) / ∑a(f), 

where f is a frequency bin within the alpha band, a(f) is the PSD amplitude at f (Klimesch, 

1999). The centre of gravity representation is more applicable for multiple alpha peak 

situations. 

Due to neurological conditions, such as CP, aging and cognitive performance 

tasks, PAF can shift off the conventional alpha bandwidth of 8-12 Hz. For PSD analysis, 

the use of individual alpha peak frequency (IAPF) and individual alpha bandwidth (IAB) 

might be more practical (Bazanova, 2012). IAPF specifies the eyes-closed, posterior 

cortex dominant peak frequency and is not restricted to 8-12 Hz. IAB is based on the upper 

and lower frequency points at which amplitude suppression transited between eyes-closed 

and eyes-open conditions. PAF was found not dependent on the left or right hemisphere, 

eyes-closed or eyes-open condition (Bazanova, 2011). Other alpha bandwidth 

approaches include the use of an extended fixed alpha range, such as 5-14 Hz (Moretti et 

al., 2011), 4-14 Hz (Chiang et al., 2008), 6-14 Hz (Scally et al., 2018), etc., and a flexible 

alpha bandwidth using IAPF as the centre frequency and a fixed bandwidth based on the 

centre frequency, such as ±2 Hz or ±2.5 Hz of IAPF (Bazanova & Vernon, 2014). 

1.8.3. Alpha Peak Amplitude 

In EEG recording, the amplitude of the alpha rhythm is usually below 102 µV, and 

in MEG recording, below 103 fT for magnetometer sensors and below 103 fT/cm for 

gradiometer sensors. The alpha peak amplitude refers to the PSD value at PAF. It signifies 

the EEG/MEG power content at the peak frequency. The alpha peak amplitude 

suppression is the amplitude drop from the eyes-closed condition to the eyes-open 

condition at PAF (Bazanova 2012). The alpha peak amplitude unit is (µV)2/Hz for EEG 

and fT2/Hz for MEG magnetometer sensors, and (fT/cm)2/Hz for MEG gradiometer 

sensors. For normalized PSD, alpha peak amplitude has no unit. 

1.8.4. Alpha Band Power 

Alpha power can be represented in absolute or relative form. Absolute alpha power 

is the original computed alpha band power, expressed by the sum of the PSD amplitudes 

across the alpha band frequency bins. The sensor space absolute power unit is (µV)2 for 
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EEG, fT2 for MEG magnetometer sensors, and (fT/cm)2 for MEG gradiometer sensors. 

Relative alpha power relates the band power to the total power as a reference, expressed 

by dividing absolute alpha power by total spectrum power. Relative power has no unit. 

1.8.5. Functional Connectivity 

Functional connectivity (FC) is the statistical relationship in neurophysiological 

signal changes between brain regions. Metrics for FC include coherence, Granger 

causality, phase synchronization, phase-slope index, etc. (Bastos & Schoffelen, 2016), 

and coherence is a commonly used method for FC analysis. Coherence is the linear 

relationship of the frequency spectra power between two brain regions. If the signals are 

directly related, the coherence value equals one. If they are not related, coherence equals 

zero. For signals x and y, their coherence equals the squared cross-spectral density of x 

and y divided by the product of the auto-spectral density of x and the auto-spectral density 

of y (Unde & Shriram, 2014). 

Volume conduction and magnetic field spread can disturb the EEG and MEG 

coherence measurements (Holsheimer & Feenstra, 1977; Winter et al., 2007). For EEG, 

coherence is contributed by neocortical source correlations and volume conduction 

(Srinivasan et al., 1998). Volume conduction can be reduced by the surface Laplacian 

method (Srinivasan et al., 1998) or with electrodes more than 10-12 cm apart (Winter et 

al., 2007). For MEG, coherence is contributed by neocortical sources and the magnetic 

field effect defined by the Biot-Savart law, and the field-spread effect can be minimized 

with sensor pairs more than 20 cm apart (Winter et al., 2007). 

1.9. Statistical Analysis Techniques 

1.9.1. Parametric Methods 

Parametric statistical methods are based on the assumption of the normality of the 

data. That is, the data has the property of normal distribution. Student’s t-test compares 

the means between two samples, and linear regression, which fits sample data using a 

straight line, are examples of parametric methods. 
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1.9.2. Non-parametric Methods 

Non-parametric methods do not require making any assumption of the data 

distribution as for the parametric methods. These methods are suitable for data with 

unknown distribution, outliers, attributes, or data which are not necessarily independent. 

The Shapiro-Wilk, Kolmogorov-Smirnov, or Anderson-Darling tests can be applied to 

check data normality. The non-parametric methods have to be used for neuroimaging data 

for which the distribution is unknown. Non-parametric methods require data to be ranked 

and sorted in ascending order, then work on the data ranks instead of the data values. 

Wilcoxon rank sum test, K-sample Anderson-Darling test, and support vector regression 

are examples of non-parametric tests. Table 1.2 shows a list of parametric tests and their 

non-parametric equivalence. 

Table 1.3. Some standard parametric tests and non-parametric equivalence 
(McDonald, 2014; De Smith, 2021). 

Type Parametric Non-parametric 

statistical significance one-sample t-test Kolmogorov-Smirnov test 

  unpaired t-test Mann-Whitney U test 

  paired t-test Wilcoxon signed-rank test 

ANOVAa ANOVA Kruskal-Wallis test 

  one-way repeated measures ANOVA Friedman test 

regression linear regression Support-vector regression (linear kernel) 

  polynomial regression 
Support-vector regression (polynomial 
kernel) 

correlation Pearson correlation Spearman rank correlation 

    Kendall rank correlation 

the goodness of fit test Chi-squared test Anderson-Darling test 

    Shapiro-Wilk test 

aANOVA: analysis of variance. 

1.9.3. Multiple comparisons 

When a statistical inference test involves multiple comparisons, there is a chance 

of a false positive, also known as the type I error, where the null hypothesis is true but 
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rejected because of a P-value less than or equal to the significance level (α) by chance. 

The family-wise error rate (FWER) or the probability of false positives increases as 

comparisons increase. This could generate misleading results that could cause 

hypotheses to be rejected when they should not. 

One commonly used method for resolving the multiple comparisons error is to 

apply Bonferroni correction (Holm, 1979; Cabin & Mitchell, 2000) by dividing α by the 

number of comparisons to compensate for the false positive rate. The P-value of the 

results has to be equal to or lower than this new α to be significant. 

For the tests with a large number of comparisons, Bonferroni correction may lower 

α too much and cause many false negatives. The false discovery rate (FDR) is a method 

to control the false positive rate. This approach ranks the P-values of the individual tests 

and compares the P-values with (i/m)q, where i is the rank, which starts from 1, m is the 

number of comparisons, and q is the chosen false discovery rate, such as 0.1, 0.2, etc. If 

k is the largest i that P(i) ≤ (i/m)q, then all H(i) are rejected for i = 1, 2, …, k (Benjamini & 

Hochberg, 1995). 

EEG/MEG data are multidimensional as they contain multiple channels and 

multiple time points. Statistical EEG/MEG data analysis inherently involves multiple 

comparisons (Maris & Oostenveld, 2007). Cluster-based permutation is a method of 

resolving multiple comparisons in neuroimaging analysis. Examples include comparing 

PSD topographies and comparing time-frequency responses. The Monte Carlo method is 

used to estimate the P-value. The trials in different conditions are randomly partitioned. 

Samples in different conditions are first quantified using a t-test, and the samples with a t-

value higher than a threshold are selected. Selected samples are clustered by 

neighbourhood, and each cluster's maximum summed t-values are the cluster-level 

statistics. This procedure is repeated many times to form a histogram of cluster-level 

statistics. The P-value is the proportion of test statistics in the histogram with a value 

greater than the observed one (Maris & Oostenveld, 2007). 

1.9.4. Sample Size, Effect Size and Power 

The sample size is the number of samples used in an experiment. Before 

experimenting, it is essential to estimate the number of participants (N) required for the 
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results to be effective, especially for pilot studies. A larger N can provide better statistical 

results. Factors in studies like cost, pain, and difficulties may keep N to a minimum. For 

pilot studies, N = 24 to 36 from a population is a reasonable minimum (Johanson & Brooks, 

2010), and N = 12 per group with two or three groups is also recommended (Julious, 

2005). A possible minimum of N = 10 was also reported (Johanson & Brooks, 2010). 

The P-value shows if an effect exists, where effect size (d) shows the size of the 

effect and the magnitude of differences (Sullivan & Feinn, 2012). d is defined as: 0.01 = 

very small, 0.2 = small, 0.5 = medium, 0.8 = large, 1.2 = very large, 2.0 = huge 

(Sawilowsky, 2009). 

Statistical power is the probability of finding an effect if it exists. A larger sample 

size increases the chance of finding an effect, and an increase in effect size will increase 

the statistical power. The correlations between power, effect size and sample size can be 

computed using power analysis tools such as G*Power (Faul et al., 2007). 

1.10. Machine Learning 

Artificial intelligence (AI) is the field of science that uses algorithms to simulate 

human consciousness and to match or exceed human intelligence. AI can discover, infer, 

and reason and is able to solve many problems, such as natural language processing, 

vision, text-to-speech, and motion, which are human abilities. 

Machine learning (ML) is a subset of AI. ML simulates human learning and uses 

statistical algorithms to learn from data sets to improve accuracy over time without being 

explicitly programmed. The output of ML is the trained models. ML has three main 

categories: supervised, unsupervised, and reinforcement learning. 

Supervised Learning uses data labelled with a tag to train an algorithm to 

recognize the desired patterns. The outcome is a trained model which can predict or 

decide on further unlabelled data input. For instance, pictures of animals with their types 

tagged are used for training, and then the trained algorithm is able to classify further 

unlabelled pictures. Supervised learning is often used in active learning, classification and 

regression. Examples of supervised learning algorithms include support vector machines, 

random forest models and neural networks. 
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When using supervised learning algorithms, data is divided into two parts for 

training and testing. For instance, 80% is for training, and 20% is for testing. However, 

bias may sometimes occur due to how the data are distributed. Cross-validation is an 

approach used to mitigate bias in ML training. K-fold, repeated K-fold, and stratified K-fold 

are commonly used cross-validation methods. K-fold cross-validation divides the data into 

K number of subsets, and in each training, one subset is used as test data, the remaining 

subsets are used as training data, and K times of training are done. Repeated K-fold 

repeats the K-fold cross-validation n number of times and shuffles the data each time. 

Stratified K-fold cross-validation is used in an imbalanced data set. It is similar to K-fold 

cross-validation but with the data rearranged such that each fold represents the whole 

data well. 

Unsupervised Learning uses unlabeled data to train an algorithm. The algorithm is 

required to find the patterns by itself. The outcome is that data are grouped according to 

their characteristics or features. Unsupervised learning is helpful when the patterns are 

unknown or unspecified. For instance, a large number of human portraits are input, and 

the algorithm groups the portraits according to complexion, hair and eye colour. One 

common application of unsupervised learning is clustering. 

Reinforcement learning uses rewards and punishments to train an algorithm to 

learn the desired and undesired actions. The outcome is an algorithm that can optimize 

its actions to achieve the desired goals. For instance, a chess-playing algorithm can learn 

how to win from past successes or failures. Reinforcement learning often sequences 

actions or decisions to achieve a goal. 

Deep learning (DL) is a subset of ML. DL simulates human neural processes using 

a neural network algorithm with multiple layers. A neural network uses connected nodes 

to loosely model the neurons in a brain. The connections simulate synapses to transmit 

signals from one node to another. The nodes are called artificial neurons, and the 

connections are called edges. The artificial neurons are organized in layers. The first layer 

is the input layer for data input, the last layer is the output layer for the final results or 

prediction, and the middle layers are hidden layers that process and transmit signals to 

other layers. Different hidden layers may perform different processes. Deep learning refers 

to using at least two hidden layers in a neural network (Artificial Neural Network, 2023). 

DL is often used to solve complex tasks with high accuracy — for instance, autonomous 
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driving, facial recognition, and medical imaging. Examples of DL algorithms include 

convolution neural networks (CNNs) and recurrent neural networks (RNNs). 

In neuroimaging studies, ML has gained importance rapidly since the early 2000s 

(Davatzikos, 2019). The most used algorithms in neuroimaging include support vector 

machines, random forests, and deep learning models. Support vector machines 

(Schölkopf & Smola, 2002) possess advantages like robustness, flexible kernel and 

parameter adjustments, and ease of use. Random forests (Breiman, 2001) have been 

another favoured family of methods due to their good generalization properties and noise 

removal ability (Davatzikos, 2019). Deep learning models benefit from their ability to deal 

with complex features, good accuracy and nonlinear usages (Davatzikos, 2019). ML has 

been used in neuroimaging to reveal biomarkers for diseases and disorders, brain 

development, aging, and brain states (Davatzikos, 2019). 

1.10.1. Support Vector Regression 

Support vector regression (SVR) is used in Chapter 4 for prediction purposes. SVR 

is a robust machine-learning model with good accuracy (Xu et al., 2015). Although deep 

learning models such as CNNs often generate results with the best accuracy (Fisch et al., 

2021; Guerrero et al., 2021), SVR is non-parametric and has the advantages of easy 

implementation and exemplary performance in terms of a sample size of hundreds in this 

study. Also, SVR is tailored for correlation fittings and is more flexible than the popular 

linear regression. SVR can take linear and non-linear kernels, such as polynomial and 

“radial basis function” (RBF). SVR uses a hyperplane to represent the line of best fit and 

a tube around the hyperplane with a width  representing the acceptable maximum error 

or margin of tolerance. Points outside the tube are support vectors. The distance from the 

support vectors to the tube is slack () and  can be controlled by the regularization 

parameter (C). The SVR algorithm tries to find the best-fit function to maximize the number 

of points in the tube while minimizing  and . 

1.11. Thesis Objectives and Outline 

We planned to collect magnetoencephalography (MEG) data from CP patients and 

healthy controls. However, due to the pandemic and an extended closedown, we instead 

obtained CP datasets from the Open MEG Archive (OMEGA) (Niso et al., 2016) and 
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Simon Fraser University’s (SFU) internal MEG dataset. These datasets help to verify the 

CP properties in brain rhythm with previous findings. Therefore, it is an essential part of 

achieving the thesis goals. 

There are two primary goals to tackle in this thesis. First, to investigate how to 

include age in CP analysis. Second, to explore using VR-guided meditation on chronic 

cancer patients as an alternative intervention and to investigate the brain oscillatory signal 

variations. The following chapters describe the works in this thesis. 

This thesis starts with an introduction to CP and the methodology for processing 

and analyzing EEG and MEG data in this chapter. The specific software tools, analyzing 

and statistical techniques for particular datasets and studies are to be further illustrated in 

the related chapters respectively. 

Chapter 2 presents a literature review of brain rhythm properties related to CP, 

aging, other pathophysiological conditions, and ML prediction. This chapter provides 

essential information on the previous findings that this research can refer to and compare 

with. 

Chapter 3 investigates the brain oscillations of CP using the OMEGA and SFU 

datasets. The aim is to find the trend of neuroimaging properties in CP and verify results 

found in previous studies. The null hypothesis is that alpha rhythm properties and CP have 

no statistically significant relationship. 

Chapter 4 aims to find a novel method to include age in CP analysis. The 

Cambridge Centre for Ageing and Neuroscience (CamCAN) aging datasets are analyzed 

in alpha generation sites to investigate the alpha rhythm properties. When doing CP 

analysis, it is necessary to include age to avoid false significance. We explore SVR, a 

machine-learning regression approach, for this purpose. The null hypothesis is that age 

and alpha rhythm properties have no statistically significant relationship. 

To our knowledge, this is the first exploration of correlations between alpha rhythm 

properties and age in MEG source space PSD regarding multiple alpha generation sites 

using support vector regression (SVR). Also, the first to use SVR-predicted controls in a 

CP study and provide a novel method to include age in CP analyses. 
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Chapter 5 aims to verify a novel therapeutic approach for CP intervention. We 

apply VR-guided meditation to cancer CP patients and explore EEG activities recorded in 

the pre, during and post-meditation conditions. The null hypothesis for inferential statistical 

analysis is that the probability distribution of the condition-specific averages for power 

spectral density and coherence would be identical for all conditions. 

To our knowledge, this is the first exploration of EEG alterations in the brain’s 

electrophysiological signals associated with VR-guided meditation in patients with CP. 

This exploration provides novel EEG recording and analysis methods that can be used to 

investigate neurophysiological changes in VR pain applications 

1.12. Contributions 

Fu, H., Garrett, B., Tao, G., Cordingley, E., Ofoghi, Z., Taverner, T., Sun, C., & Cheung, 
T. (2021). Virtual Reality–Guided Meditation for Chronic Pain in Patients With 
Cancer: Exploratory Analysis of Electroencephalograph Activity. JMIR 
Biomedical Engineering, 6(2), e26332. https://doi.org/10.2196/26332 

Garrett, B., Fu, H., Tao, G., Cordingley, E., Ofoghi, Z., Sun, C., Cheung, T., Taverner, T. 
(2022). Chronic Pain Management in Cancer: An exploratory analysis of 
electroencephalograph activity during virtual reality pain distraction therapy. CPS 
42nd Annual Scientific Meeting, Montreal, Canada. (I worked on the methods, 
analyses, results and part of the discussion.) 

Garrett, B., Fu, H., Tao, G., Cordingley, E., Ofoghi, Z., Sun, C., Cheung, T., Taverner, T. 
(2022). Chronic Pain Management in Cancer: An exploratory analysis of 
electroencephalograph activity during virtual reality pain distraction therapy. 
IPOS 2022 World Congress, Toronto, Canada. (I worked on the methods, 
analyses, results and part of the discussion.) 

Fu, H., Doesburg, S. M., Cheung, T. (2023). Including Age in Chronic Pain MEG 
Analysis Using Support Vector Regression (in the process of submission for 
publication). 

https://doi.org/10.2196/26332
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Chapter 2.  
 
Literature Review 

2.1. Introduction 

There has been evidence for brain rhythm changes in resting state activity in 

chronic pain (CP). However, other neurophysiological conditions also reveal similar 

rhythm changes. It is desired to find the trend in how CP is associated with brain rhythm 

variations and how to differentiate it from the trends of other neurophysiological conditions. 

A literature review of past studies is presented for this purpose. 

Some brain rhythm properties have been recognized as associated with 

neurophysiological conditions, such as CP (Sarnthein et al., 2006; De Vries et al., 2013), 

aging (Chiang et al., 2011; Scally et al., 2018), dementia (Hughes et al., 2019; Moretti et 

al., 2011; Sitnikova et al., 2018), cognitive and working memory performance (Clark et al., 

2004; Klimesch W., 1999). Below is a brief description of some recent findings of brain 

oscillatory rhythm variations for neurophysiological conditions in electroencephalography 

(EEG) / magnetoencephalography (MEG) neuroimaging. 

2.2. Chronic Pain Studies 

Some previous reviews on EEG/MEG CP studies in the resting state summarized 

some waveband changes, such as increased theta and alpha power (Pinheiro et al., 2016) 

and increased theta and beta power (Ploner et al., 2017; Zebhauser et al., 2022). Where 

the increase in theta power is consistent in all three reviews. Ploner et al. (2017) pointed 

out that the abnormal increase in theta power could be caused by a central nervous 

system dysfunction known as thalamocortical dysrhythmia (TCD) and might represent the 

slowing of PAF. Pinheiro et al. (2016) and Ploner et al. (2017) also indicated that the theta 

power increase was mainly in the frontal cortex. 

2.2.1. Studies Using EEG 

Previous findings about band power changes in CP patients included decreased 

alpha power, especially in the posterior lobe (Tran et al., 2004), increased power in the 2-
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25 Hz range, especially in 7-9 Hz (Sarnthein et al., 2006), increased power in the high 

theta and low beta bands (Stern et al., 2006), decreased lower absolute and relative alpha 

power (Jensen et al., 2013), increased absolute delta and theta power, relative delta 

power, and reduced relative alpha power (Buchanan et al., 2021), an inverse correlation 

between normalized alpha central lobe power and pain intensity (Feng et al., 2021), and 

decreased beta and gamma power (Fu et al., 2021). For these studies based on EEG, the 

results mostly agreed on increased theta power and decreased alpha band power. 

Findings about peak amplitude and peak frequency changes included lower peak 

alpha amplitude, especially in central and posterior lobes in patients (Tran et al., 2004;), 

slowed PAF, especially in the posterior lobe (Tran et al., 2004; Sarnthein et al., 2006; 

Stern et al., 2006; De Vries et al., 2013), and peak theta and alpha band frequency slowing 

(Boord et al., 2008). Only one study mentioned a lower peak alpha amplitude for amplitude 

change; most agreed on a slowed PAF. 

2.2.2. Studies Using MEG 

For pain studies based on MEG, findings included decreased power in alpha and 

beta activities in the sensorimotor (mu generation site) and occipital cortices (posterior 

alpha generation site) (Ploner et al., 2006), an increase in theta, beta and gamma power 

and a slowing in PAF (Lim et al., 2016) and a significantly higher alpha-power ratio (power 

7-9 Hz divided by power 9-11 Hz) in patients (Witjes et al., 2021). These studies based on 

MEG depicted results similar to the EEG studies of increased theta power, decreased 

alpha power, and slowed PAF. However, gamma power, seldom mentioned in all the 

studies, showed inconsistency with an increase in MEG (Lim et al., 2016) and a decrease 

in EEG (Fu et al., 2021). 

2.2.3. Summary 

Table 2.1 summarizes the EEG and MEG pain studies above. Despite the 

heterogeneous results of the spectrum analysis, many showed increased theta power, 

decreased alpha power and slowed PAF in CP. The theta power increase likely 

represented slowed PAF (Ploner et al. 2017). 
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Table 2.1. A summary of the chronic pain studies. 

Source Pain Patient (M/F,  
Age) 

Control (M/F, 
Age) 

Method Statistical 
Analysis 

Pain Results 

Tran et 
al., 2004 

spinal cord 
injury (SCI) 
pain 

20 (18M/2F, 
mean 34.3, 
SD 10.6) 

20 (18M/2F, 
mean 33.7, 
SD 11.2) 

EEG - 14 
channels, 
resting state, 
eyes-open 
(EO) & eyes-
closed (EC) 

ANOVA, 
Mann-Whitney 
U-test, sign 
test 

decreased alpha 
power and peak 
amplitude, slowed PAF 

Sarnthein 
et al., 
2006 

neurogenic 
pain 

15 (9M/6F, 
38-75, 
median 64) 

15 (7M/8F, 
41-71, 
median 60) 

EEG - 60 
channels, 
resting state, 
EC & EO 

Wilcoxon test increased power in 2-
25 Hz, slowed PAF 

Stern et 
al., 2006 

neurogenic 
pain 

16 (9M/7F, 
63±10) 

16 (8M/8F, 
56±12) 

EEG - 60 
channels, 
resting state, 
EC & EO, 
LORETA 

non-parametric 
test 

increased high theta 
and low beta power, 
slowed PAF 

Boord et 
al., 2008 

neuropathic 
pain 

16 paraplegia 
patients, 8 
(7M/1F, 
33.5±10.3) 
with chronic 
pain, 8 (8M, 
34.3±10.7) 
without pain 

16 EEG - 14 
channels, EC 
& EO 

ANOVA, sign 
test 

slowed theta and alpha 
frequency 

Jensen et 
al., 2013 

SCI pain 54 SCI 
patients, 38 
(27M/11F, 
mean 51.24, 
SD 12.04) 
with pain, 16 
(15M/1F, 
mean 49.00, 
SD 12.82) 
without pain 

28 (18M/10F, 
mean 44.57, 
SD 13.96)  

EEG - 19 
channels, 
resting state, 
EC 

ANOVA decreased absolute 
and relative alpha 
power 

De Vries 
et al., 
2013 

pancreatitis 
pain 

16 (10M/6F, 
24-59) 

16 (10M/6F) EEG - 26 
channels, 
resting state, 
EC & EO 

repeated 
measures 
ANOVA 

slowed PAF in the 
parietal and occipital 
regions  
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Source Pain Patient (M/F,  
Age) 

Control (M/F, 
Age) 

Method Statistical 
Analysis 

Pain Results 

Buchanan 
et al., 
2021 

post-
concussive 
syndrome 
and chronic 
pain 

57 (21M/36F, 
mean 44.6, 
SD 11.2) 

54 (16M/38F, 
mean 43.5, 
SD 9.4) 

EEG - 19 
channels, 
resting state, 
EO 

Mann-Whitney 
U test, support 
vector machine 

increased absolute 
delta and theta power, 
relative delta power, 
and decreased relative 
alpha power 

Feng et 
al. 2021 

low-back 
pain 

27 (7M/20F, 
mean 44.6, 
SD 2.3) 

  EEG - 64 
channels, 
resting state, 
EC & EO, 
Visual 
Analogue 
Scale 

linear 
regression 

normalized alpha 
central lobe power 
inversely correlated 
with pain intensity 

Fu et al. 
2021 

cancer pain 7 (3M/4F, 37-
66) 

  EEG - 64 
channels, 
EO, resting 
state and VR-
guided 
meditation, 
numerical 
rating scale 

cluster-based 
permutation, 
MANOVA 

increased beta and 
gamma power during 
meditation (the 
opposite at rest) 

Ploner et 
al., 2006 

laser pain 
stimuli (acute 
pain) 

  12 (12M, 22-
41, mean 33) 

MEG - 122 
channels, 
laser pain 
stimuli, 
resting state, 
EC 

Wilcoxon 
signed-rank 
test 

decreased alpha and 
beta power in the 
sensorimotor and 
occipital cortices 

Lim et al., 
2016 

fibromyalgia 18 (18F, 
mean 45.1, 
SD 8.5) 

18 (18F, 
mean 44.7, 
SD 8.8) 

MEG - 306 
channels, 
MRI, 
sLORETA, 
resting state, 
EC & EO 

permutation 
test 

increased theta, beta 
and gamma power, 
slowed PAF 

Witjes et 
al., 2021 

back or leg 
chronic pain 

21 (10M/11F, 
mean 48, SD 
10) 

25 (15M/10F, 
mean 49, SD 
11) 

MEG - 275 
channels, 
resting state, 
EO 

permutation 
test 

higher alpha power 
ratio (7-9 Hz power 
divided by 9-11 Hz 
power) 
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2.3. Aging Studies 

2.3.1. Studies using EEG 

Some typical findings in EEG properties related to aging are described here. The 

alpha rhythm frequency range for healthy adults is in the range of 8-12 Hz. Alpha rhythm 

of 7-8 Hz was observed at one year old (Samson-Dollfus et al., 1997). PAF increased from 

early childhood to adulthood around age 20 (Cellier et al., 2021), and decreased from 

around age 20 gradually (Köpruner et al., 1984; Chiang et al., 2011), or decreased from 

age 45 (Aurlien et al., 2004), there was an indication of a PAF decrease from 20 to 55, 

then increased with aging (Samson-Dollfus et al., 1997). Also, a comparison of an older 

adult group (mean age 69.8) with a young adult group (mean age 20.3) found that the 

older group had a lower PAF (Scally et al., 2018). In summary, PAF decreased gradually 

during adulthood. 

2.3.2. Studies using MEG 

Some findings in aging studies using MEG included a significant decrease in 

relative power in the delta and theta bands from childhood to age 50 and an increase after 

age 60. The alpha, beta, and gamma bands showed the opposite, with significance found 

in the beta band (Gómez et al., 2013), also in relative power, a decrease in the delta, theta 

and alpha bands and an increase in the beta and gamma bands with age (Xifra-Porxas et 

al., 2021). Both of these studies agreed on the decrease in relative power in the delta and 

theta bands and an increase in the beta and gamma bands with aging, although the first 

study showed a change to this after age 60. 

2.3.3. Summary 

Table 2.2 summarizes some aging studies. Generally, an increase in PAF from 

childhood to around age 20 was found. PAF started to decrease in frequency from 

adulthood, though the starting age was inconsistent in the studies from 20 to 45. One 

study found that PAF started to increase again after age 60. Regarding relative power, a 

decrease in delta and theta and an increase in beta and gamma were found with aging. 

The results showed that the property of aging overlaps with CP in PAF slowing.  
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Table 2.2. A summary of the aging studies. 

Source Subject (M/F, 
Age) 

Method Statistical 
Analysis 

Aging Results 

Aurlien et al., 2004 4651 
(2423M/2228F, 0-
100 appx) 

EEG, resting state, 
eyes-closed (EC) 

polynomial 
regression 

PAF decreased gradually 
from age 45 

Chiang et al., 2011 1498 (763M/735F, 
6-86) 

EEG - 19 
channels, resting 
state, EC, 
automated peak 
identification 

smooth 
asymptotically 
linear fits, 
Gaussian fits 

increased PAF from 
childhood to approximately 
age 20 and decreased 
gradually  

Scally et al., 2018 37 young 
(13M/24F, mean 
20.3, SD 2.06) and 
32 older adults 
(11M/21F, mean 
69.75, SD 4.91) 

EEG - 64 
channels, resting 
state, EC 

ANOVA, priori t-
test 

a slowed PAF in older adults 

Gómez et al., 2013 220 (99M/121F, 7-
84) 

MEG - 148 
magnetometer 
channels, resting 
state, EC 

polynomial 
regression 

a decrease in the delta and 
theta relative power from 
childhood to the age of 50 
and an increase after age 60, 
the opposite for alpha, beta 
and gamma 

Xifra-Porxas et al., 
2021 

652 (322M/330F, 
18-88, mean 54.3, 
SD 18.6), 613 
used 

MEG - 306 
channels, MRI, 
resting state, EC, 
principal 
component 
analysis (PCA), 
canonical 
correlation analysis 
(CCA) 

Gaussian 
process 
regression 

a decrease in the delta, theta 
and alpha relative power and 
an increase in the beta and 
gamma relative power 

2.4. Dementia Studies 

2.4.1. Studies using EEG 

Moretti et al. recruited 13 patients with Alzheimer’s disease (AD). The EEG 

recordings showed an increase in alpha3 (10.7–12.7 Hz) power, and the alpha3 / alpha2 

(8.7–10.7 Hz) power ratio was negatively correlated with the hippocampal volume in AD 

(Moretti et al., 2011). 
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2.4.2. Studies using MEG 

Hughes et al. (2019) selected 84 patients with mild cognitive impairment (MCI) and 

84 healthy controls. The MEG recordings found a decrease in PAF in patients compared 

to controls. There was also a decrease in relative alpha power in patients, possibly due to 

a shift of the alpha peak. Mandal et al. (2018) reviewed some MEG studies in AD. Slowing 

oscillation frequency and decreased connectivity in AD were the most common finding. 

2.4.3. Summary 

The brain rhythm changes related to dementia include a change in alpha power, 

though inconsistent in either an increase or decrease. The trends of slowing PAF and 

decreased connectivity were also reported. As a result, the slowed PAF property was 

common in dementia, CP and aging. 

2.5. Cognition and Memory Performance Studies 

2.5.1. Studies using EEG 

Previous studies on cognition and memory performance showed relationships with 

brain rhythm properties. Here is a list of some studies and their findings: (1) Angelakis et 

al. (2004) recruited 19 undergraduate students to participate in a reading test. The EEG 

recording analysis found a positive correlation between PAF and cognitive ability. (2) Clark 

et al. (2003) selected 550 normal subjects aged 11-70 to participate in memory tests. The 

EEG analysis showed that the frontal PAF positively correlated with test performance. (3) 

Bazanova & Aftanas (2006) recruited 129 male students and teachers aged 16-50 to 

participate in a learnability test. The results showed that PAF and alpha power in the EEG 

spectrum were positively correlated with performance. (4) Dickinson et al. (2018) recruited 

59 children with autism spectrum disorder (ASD) and 38 typically developing (TD) children 

to participate in a cognitive test. From the analysis of the EEG recording, in children with 

ASD, PAF was found to be lower and strongly related to non-verbal cognition. (5) Rathee 

et al. (2020) selected 300 healthy subjects for a reading comprehension task. From the 

EEG recording analysis, PAF significantly correlated with a high score in the task. 
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2.5.2. Summary 

Cognitive and memory abilities were found to be positively correlated with PAF. 

Also, one analysis showed that alpha power positively correlated with learnability. These 

results might reveal that alpha rhythm is related to brain performance, especially in 

cognition and memory performance. One interesting point by Clark et al. was that 

spontaneous PAF slowed more in the anterior than the posterior region in aging (Clark et 

al., 2004). 

2.6. Machine Learning Prediction 

The exploratory study in Chapter 4 uses the support vector regression (SVR) 

(Vapnik, 1995; Drucker et al., 1996) approach to predict brain rhythm properties according 

to age. This is a novel approach and no previous examples have been found in using SVR 

or other ML algorithem for the same purpose. 

For reference, we investigated some related approaches used in age prediction. 

Dosenbach et al. (2010) used a support vector machine-based multivariate pattern 

analysis to predict brain maturity, using functional connectivity magnetic resonance 

imaging (FC MRI) data with 238 typically developing subjects aged 7 to 30. The fitting had 

a coefficient of determination (R2) of 0.553. Franke et al. (2012) used relevance vector 

regression (RVR) (Tipping, 2001) to predict age on structural T1-weighted MRI data, with 

N = 394 healthy children and adolescents. The results indicated a mean absolute error 

(MAE) of 1.1 years and a correlation between predicted and chronological age with r = 

0.93. Fisch et al. (2021) described the works of several research teams in a competition 

to predict chronological age using structural T1-weighted MRI data with N = 3,307 healthy 

subjects. The results obtained from deep learning models, such as 3D convolutional 

neural networks (CNNs), were better than those using other algorithms, such as support 

vector machines, relevance vector machines, or Gaussian process regression. The best 

result showed an MAE of 2.90 years (Gong et al., 2021). Xifra-Porxas et al. (2021) used 

two dimensionality reduction techniques: canonical correlation analysis and principal 

component analysis, and Gaussian process regression on structural T1-weighted MRI and 

resting state MEG data, with N = 613 healthy subjects aged 18-88 years. The best result 

was MAE = 4.88 years while combining features of both MRI and MEG using the canonical 

correlation analysis approach. Also, the results were better using spectral properties than 
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connectivity in MEG. Klymenko et al. (2023) used a random forest regression model on 

EEG data, with N = 5785 aged 15 to 99. The results showed an MAE of 15.7 years. 

2.6.1. Summary 

SVR is robust, has good accuracy (Xu et al., 2015) and is tailored for correlation 

fittings. The literature review above showed CNNs had the best performance in a 

competition (Fisch et al., 2021; Guerrero et al., 2021). However, SVR is non-parametric, 

easy to implement and is effiicient for a sample size of hundreds as in the study in Chapter 

4, it is then chosen as the ML algorithm to use for prediction in Chapter 4. 

2.7. Discussion 

In the literature reviewed, the trend of brain rhythm oscillatory variations found in 

CP is mainly a slowed PAF, increased theta power, and decreased alpha power. The 

following factors could cause this phenomenon: (1) The power changes could be due to 

the alpha rhythm shifting to a lower frequency. Hence theta power increased, and alpha 

power decreased (Witjes et al., 2021). (2) Thalamocortical dysrhythmia (TCD) can cause 

abnormalities in theta and alpha wavebands due to specific neurological disorders (Llinás 

et al., 1999; Sarnthein et al., 2006), the increased theta and decreased alpha activity in 

CP could be related to TCD (Sarnthein et al., 2006; Witjes et al., 2021). (3) CP can disrupt 

sleep patterns or other homeostatic mechanisms, causing drowsiness and increasing 

theta activity (Jensen et al., 2013). (4) Drowsiness can cause the resting posterior alpha 

and central mu rhythms to shift to the frontal cortex, increasing frontal alpha but decreasing 

overall alpha activity (Jensen et al., 2013). As frontal brain structures may be linked to 

pain sensation suppression, the increase in frontal alpha could indicate unsuccessful 

suppression attempts (Jensen et al., 2013). 

The trend of brain oscillatory variations in adult aging is similar to CP in slowed 

PAF, so age has to be included in CP studies. The trend for dementia is an increase in 

high alpha power, decreased functional connectivity, and a slowed PAF. The trend for 

cognition and memory performance is a positive correlation with PAF. As CP, dementia, 

and cognitive and memory decline all share the property of slowed PAF, where cognitive 

and memory decline are symptoms of dementia, and cognitive impairment is commonly 

linked with pain and analgesic medications (Moriarty et al., 2011; Khera & Rangasamy, 
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2021), it may require a thorough design in a chronic study to avoid the above-mentioned 

pathophysiological conditions in causing false positive results. 

As the main rhythm variation found in CP is a shift of the alpha activity to a lower 

frequency, Chapter 3 aims to verify the alpha rhythm properties in CP further and focus 

on PAF, peak alpha amplitude, absolute alpha power and relative alpha power. Chapter 

4 aims to understand further the rhythm properties related to aging. The alpha rhythm 

properties will be examined as the primary shared trend between aging and CP is slowed 

PAF. The correlations between aging and alpha rhythm will be explored to derive a method 

to include age in CP analysis. Chapter 5 investigates the rhythm property changes in CP 

when a VR-guided meditation approach is used as an alternative therapy. The delta, theta, 

alpha, beta and gamma band power and coherence will be analyzed as some previous 

findings mentioned changes in band power and coherence in mindfulness meditation 

studies (Lomas et al., 2015; Lee et al., 2018; Cahn and Polich, 2006; Delmonte, 1984). 
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Chapter 3.  
 
Alpha Rhythm Property Changes in Chronic Pain 

Abstract 

Previous works on chronic pain (CP) analyses revealed various resting-state brain 

rhythm property changes, such as in dominant peak frequency, band power, and peak 

amplitude. However, the findings were heterogeneous. This work aims to explore the brain 

rhythm properties of CP using MEG data from two sources and to verify the results with 

previous findings. 

The OMEGA data has 7 CP patients (6 males, aged 42-66, and 1 female, aged 

74) and 158 pain-free, non-Parkinson, healthy controls (41 males, aged 26.96 - 83.78, 

and 117 females, aged 22.53 - 82.84). For the SFU data, dataset 1 has 1 male CP patient 

(aged 47.5) and 1 pain-free male control (aged 53.1); dataset 2 has 24 pain-free, healthy 

controls (17 males, aged 21.0 - 42.5, and 7 females, aged 23.7 - 33.0). Peak alpha 

frequency (PAF), peak amplitude, absolute alpha power and relative power are compared 

between the patients and controls. Mann-Whitney U test is used to verify the significance 

of the results. The Crawford-Howell single-case test verifies if the individual patient differs 

from the controls. Topographies are plotted to reveal the rhythm generation sites. 

The analyses in the OMEGA data showed slowed PAF, decreased power and 

peak amplitude in CP patients, but no significance was found in the Mann-Whitney U test. 

Slowed PAF was also found in the SFU CP data. The Crawford-Howell single-case test 

found significance in slowed PAF in the CP patient in eyes closed condition compared to 

the controls. The topographies demonstrated the posterior alpha, the central mu and the 

temporal tau rhythm generation sites. 

The results matched previous findings in CP studies in slowed PAF, decreased 

alpha power and peak amplitude. No significance was found in the OMEGA data, likely 

due to the limitation of small CP sample sizes. The results, however, might motivate further 

explorations into brain oscillatory activity in CP, especially in using MEG. 



32 

3.1. Introduction 

Apart from acute pain, pain that lasts more than three months or beyond the 

expected healing time is called CP (Canada, 2021). Some examples are low back pain, 

spinal cord injury, and cancer pain (Treede et al., 2015). The most used pain diagnosis 

approach is based on a numerical pain rating scale or clinical questionnaires (Williamson 

& Hoggart, 2005), where patients self-report their pain level or severity. This approach is 

known to be subjective and inconsistent. Some objective pain assessments include 

measuring the patients’ pain behaviour and physiological signals and analyzing pain brain 

activity (Zhang & Seymour, 2014). However, these objective pain diagnosis approaches 

are still mainly in the research stage. 

CP interventions in North America are primarily through medications, and the main 

types are opioids, nonsteroids, antidepressants and antiepileptics (Borsook, 2012). Non-

medication pain interventions include invasively stimulating the spinal cord, brain and 

motor cortex or non-invasively stimulating the scalp using magnetic and electric fields 

(Zhang & Seymour, 2014). Other pain intervention approaches include a VR environment 

(Mohammad & Ahmad, 2018; Garrett et al., 2020), mindfulness meditation, acupuncture, 

massage, and supplements. A novel VR-guided meditation approach (Fu et al., 2021) was 

recently explored. The VR-based approaches are non-invasive, safe, and easy to self-

operate. 

In recent years, much research has explored brain oscillatory signal properties in 

CP (Pinheiro et al., 2016; Zebhauser et al., 2022). Distinct variations were found, including 

dominant peak frequency, band power and peak amplitude. However, the results might 

match or differ between studies. This chapter aimed to verify the brain rhythm properties 

in CP using magnetoencephalography (MEG) datasets. Analyses were performed on CP 

patients and healthy controls to compare brain oscillation properties. The results were 

verified with previous findings. 

3.1.1. Literature Review 

Animal Models 

Emotional and ethical issues may exist when using human models in pain 

assessment tasks. As pain modulates brain oscillation in humans and animals, it is 
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common to use rat models as an alternative to human models, where pain experiments 

using rat models can be more accessible to design and perform (Deuis et al., 2017). 

LeBlanc et al. (2016) used rat models to test the correlation between EEG and pain. The 

results showed an increase in EEG power with pain in the 3-30 Hz range over the primary 

somatosensory cortex (S1) and prefrontal cortex (PFC) and also an increase in coherence 

between PFC and S1 (LeBlanc et al., 2016). These results match previous findings in 

human models with CP (Sarnthein et al., 2006; Stern et al., 2006) and may signify the 

possibility of using rat models to mimic the pain response of humans in brain imaging 

analysis. However, there are factors to consider when using rat models. For instance, 

using isoflurane as anesthesia in EEG electrode implant surgery may induce slow-wave 

activity and increase delta band power (Maclver & Bland, 2014). 

Human Models 

Previous studies showed an association between peak alpha frequency (PAF) 

slowing with pain and CP (Furman et al., 2020; Wydenkeller et al., 2009; De Vries et al., 

2013; Lim et al., 2016). For instance, Lim et al. recorded MEG from 18 females with 

fibromyalgia (FM) and 18 control subjects of matching ages and sex. The finding showed 

a slowing of the dominant alpha peak in the FM patients. De Vries et al. recorded EEG 

from 16 patients with chronic pancreatitis and 16 healthy controls with matching ages, sex, 

and education. The chronic pancreatitis patients showed a slower average PAF. Other 

than slowed PAF, the other most consistent findings in CP patients were increased theta 

power and decreased alpha power (Tran et al., 2004; Stern et al., 2006; Jensen et al., 

2013; Ploner et al., 2006; Lim et al., 2016; Ploner et al., 2006; Witjes et al., 2021; Sarnthein 

et al., 2006; Buchanan et al., 2021). The increased theta and decreased alpha power were 

related to the shift of the alpha rhythm to a lower frequency, and thus, this study focused 

on exploring the alpha rhythm variations. 

3.2. Methods 

3.2.1. Participants 

In the first study, the Open MEG Archive (OMEGA) (Niso et al., 2016), Release 

3.0.0 (March 2022), was used, which had 7 CP patients (6 males, aged 42-66, mean 

52.66, SD 9.02, and 1 female, aged 74) and 158 pain-free, non-Parkinson healthy controls 
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(41 males, aged 26.96-83.78, mean 64.22, SD 12.71, and 117 females, aged 22.53-82.84, 

mean 63.99, SD 10.64). The participants were resting, sitting upright, eyes open, focusing 

on a fixed cross for 5 minutes. The data were collected using CTF MEG (CTF MEG, 

Coquitlam, Canada) with 275 axial gradiometers. The sampling rate was 2400 Hz with a 

hardware low-pass filter at 600 Hz for anti-aliasing, and CTF 3rd-order gradient 

compensation was applied (Niso et al., 2016; 2019). 

The second study used the SFU MEG data, which had two datasets collected in 

2018-2019 using CTF MEG with 275 gradiometer channels and a sampling rate of 1200 

Hz. CTF 3rd-order gradient compensation was applied. Dataset 1 has two participants: a 

CP patient (male, aged 47.5) and a healthy, pain-free control (male, aged 53.1). The 

scanning duration was 8 minutes in resting state and for separate eyes open and eyes 

closed conditions. Dataset 2 has 24 pain-free participants (17 males, aged 21.0-42.5, 

mean age = 28.07, SD = 5.71, and 7 females, aged 23.7-33.0, mean age = 26.86, SD = 

3.18). The scanning duration was 3 minutes in resting state and eyes open condition. 

Dataset 2 was used as a control group for the second study. 

3.2.2. Analysis 

The OMEGA and SFU data studies were performed at different stages of this 

thesis and based on different analysis technologies. The analysis of the OMEGA data was 

performed using MNE-Python (Gramfort et al., 2013). Data were band-pass filtered at 1 

Hz and 55 Hz and cleaned with signal-space projection (SSP) to remove ocular and 

heartbeat artifacts. The alpha rhythm properties were extracted from PSD and compared 

between the CP and control groups. A null hypothesis was set that there was no 

correlation between brain rhythm properties and CP. The brain rhythm properties for 

exploration included PAF, peak amplitude, absolute and relative power. Mann-Whitney U 

test (Mann & Whitney, 1947) was used to verify the significance of the results. 

The SFU data analysis was performed using FieldTrip (Oostenveld et al., 2011). 

The data were band-pass filtered at 1 Hz and 150 Hz to remove slow drifts and high-

frequency noise and notch-filtered at 60 Hz, 120 Hz and 180 Hz to remove power line 

noise and harmonics. Bad channels, muscle artifacts, and head movement were marked 

and removed using a data browser. Ocular and heartbeat artifacts were cleaned using 

independent component analysis (ICA). Topography was plotted to identify the alpha peak 
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generator locations. The Crawford-Howell single-case method (Crawford & Howell, 1998; 

Crawford & Garthwaite, 2004) was applied to verify the SFU data. A null hypothesis was 

set that the PAF of the CP patient was not statistically different from the controls. 

3.3. Results 

3.3.1. OMEGA Data 

After eliminating the participants who showed no prominent alpha peak in PSD 
(determined by alpha band relative power < 10%), only 1 female and 4 male CP patients 
and 91 female and 30 male controls remained. Table 3.1 shows the 
analysis results of the CP patients and matched controls. Lower 
values of PAF, alpha peak amplitude, absolute alpha power and 
relative alpha power were found in patients though no significance in 
the Mann-Whitney U test was found.  

Table 3.2 shows the comparison between patients and the whole control group, 

and similar results as in Table 3.1 were found. 

Table 3.1. A comparison of the OMEGA chronic pain patients and matched 
controls in alpha rhythm properties. 

 Age Abs Power Rel Power Peak Amp PAF 

Female patient (1) 74.0 3.44E+03 26.30% 1.69E+03 9.4 

Matched control (1) 74.5 1.47E+04 62.80% 2.80E+04 9.6  

Mean Age Abs Power Rel Power Peak Amp PAF 

Male patients (4) 53.3 3.14E+03 18.04% 1.46E+03 9.3 

Matched controls (4) 57.2 4.67E+03 22.45% 2.33E+03 10.0 

 

Table 3.2. A comparison of the OMEGA chronic pain patients and all controls in 
alpha rhythm properties. 

 
Mean Age Abs Power Rel Power Peak Amp PAF 

Chronic Pain Female (1) 74.0 3.44E+03 26.30% 1.69E+03 9.4 

Control Female (91) 63.5 6.16E+03 28.24% 3.40E+03 9.7 

 
Mean Age Abs Power Rel Power Peak Amp PAF 

Chronic Pain Male (4) 53.3 3.14E+03 18.04% 1.46E+03 9.3 

Control Male (30) 64.7 6.48E+03 24.17% 4.32E+03 9.8 
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3.3.2. SFU MEG Data 

Three participants with no alpha peak found in PSD and one outliner were 

eliminated from the comparison. This reduced the healthy controls to 21. Table 3.3 shows 

that the patient's PAF was lower than the matched and mixed controls. For the Crawford-

Howell single-case test, the null hypothesis was rejected for the patient in the eyes-closed 

condition but not the eyes-open condition. The same test was repeated for the individual 

controls in the control group. Only one control was rejected. This reflected that the controls 

had very similar PAF values. 

Table 3.3. A comparison of the ImageTech patient and matched control/all 
controls in PAF. 

 Male Patient 
(N = 1) 

(Eyes Closed) 

Male Patient 
(N = 1) 

(Eyes Open) 

Male Age-
Matched-

Control (N = 1) 

(Eyes Closed) 

Male Age-
Matched-

Control (N = 1) 

(Eyes Open) 

Mixed Controls 
(N = 21) 

(Eyes Open) 

PAF 8.91 Hz 9.22 Hz 9.40 Hz 9.77 Hz 10.47 Hz 

Mean Age 47.5 47.5 53.1 53.1 27.2 

Crawford-
Howell Test 

P = 0.021 P = 0.058 Not tested P = 0.245 P = 0.494 
(mean) 

 

For the SFU data topography plots, the healthy control subjects generated an 

alpha rhythm at around 10 Hz in the parieto-occipital alpha generator site. An example is 

shown in Figure 3.1; the matched control of the patient had a PAF at 9.77 Hz in the parieto-

occipital region. In Figure 3.2, the patient showed a slower PAF at 9.22 Hz in the same 

region. 



37 

 

Figure 3.1. In the SFU data, the matched control of the patient had a PAF at 9.77 
Hz in the parieto-occipital region. 

 

Figure 3.2. In the SFU data, the chronic pain patient had a PAF at 9.22 Hz in the 
parieto-occipital region. 

Figure 3.3 shows the mu wave in the centro-parietal region (the sensorimotor 

region) (see Chapter 1.5. for explanation of mu and tau waves). The PAF at 10.93 Hz was 

in the mu-wave range of 7-11 Hz (Chatrian et al., 1959). Figure 3.4 shows the tau wave in 

the temporal/auditory region. The PAF at 9.52 Hz was in the tau wave range of 8-11 Hz 

(Yokosawa et al., 2020). 



38 

 

Figure 3.3. A mu wave in the centro-parietal region.  

 

Figure 3.4. A tau wave in the temporal region. 

3.4. Discussion 

The findings shown in these studies matched previous findings, such as slowed 

PAF, decreased alpha power and peak amplitude in CP patients (Tran et al., 2004; Lim et 

al., 2016; De Vries et al., 2013). For the OMEGA and SFU data, significance in the alpha 

rhythm property changes was not found, and the null hypothesis was not rejected. 

However, the Crawford-Howell single-case test found significance in slowed PAF in the 

CP patient in eyes closed condition compared to the controls. The topography plots 

depicted the posterior alpha rhythm, the mu rhythm in the centro-parietal region 

(sensorimotor region) and the tau rhythm in the temporal lobe (auditory region). The 

stronger posterior alpha rhythm often covers the lesser tau rhythm, which is challenging 

to detect. The plot could show the tau rhythm due to the alpha rhythm not existing in the 

example. 
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3.4.1. Conclusion 

Alpha rhythm property changes in CP were identified and matched previous 

findings in slowed PAF, decreased alpha power and peak amplitude. The analysis results 

showed no significance in the statistical tests, except the eyes closed condition in the 

Crawford-Howell single-case test, likely due to the small CP sample size limitation in the 

OMEGA and SFU data. Nevertheless, the results might motivate further explorations into 

brain oscillatory activity in CP, especially in using the MEG neuroimaging tool, as the 

primary neuroimaging tools used for the related studies up to now were EEG and MRI 

(Morton et al., 2016; Zebhauser et al., 2022). 
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Chapter 4.  
 
Including Age in Chronic Pain MEG Analysis Using 
Support Vector Regression 

The study in this chapter is in the process of submission for publication. 

Henry Fu, Sam M. Doesburg and Teresa P. L. Cheung 

Abstract 

Introduction: Some previous aging and chronic pain (CP) studies using EEG/MEG 

exhibited similar slowed peak alpha frequency (PAF). The typical CP study design has 

selected age-matched, healthy controls compared to patients to reduce spurious results 

caused by aging. Instead of using age-matched controls, this exploratory study uses a 

support vector regression (SVR) model to include age in a CP MEG analysis. 

Methods: This study used an open-access MEG database of 474 healthy controls and 22 

CP participants aged 18 to 87. It first computed source space power spectral density for 

four alpha rhythm generation sites: frontal (frontal alpha), central (mu), temporal (tau), and 

parieto-occipital (posterior alpha) regions of interest (ROIs). It then used SVR to 

investigate the correlations between age and PAF, peak amplitude, and alpha power for 

controls in the four ROIs. A CP case study explored the alpha rhythm difference between 

CP participants and controls, using the correlations found and CP participants’ age as 

input, then predicted the alpha rhythm property of controls at the same age as CP 

participants. This approach enabled non-age-matched controls in the study. 

Results: K-sample Anderson-Darling tests showed significantly independent brain 

rhythms in the four ROIs with P<0.001. We observed the PAF slowing trends, and the PAF 

of female controls in the 18-27 age group was higher than male controls with significance, 

P<0.025 in three ROIs. Regression results showed PAF was negatively correlated with 

adult aging, with R2=0.147 and P=0.001 in the mixed-sex parieto-occipital ROI. The CP 

case study showed that the CP participants had a slower PAF than the SVR-predicted 

controls in the posterior alpha generation site, though not significant in the Wilcoxon 

signed-rank test. 



41 

Discussion: Our analysis used alpha generation site ROIs, source space power, an 

extended alpha bandwidth of 6-14 Hz, 1 Hz individual alpha band power, and SVR. The 

use of SVR enabled the prediction of PAF across the lifespan of controls for comparison 

with CP participants. This novel method to create an aging model could be applied to other 

pathophysiological studies to mitigate the age-matched control requirement. 

Keywords: aging; alpha rhythm; chronic pain (CP); magnetoencephalography (MEG); 

matched-control; peak alpha frequency (PAF); support vector regression 

(SVR) 

4.1. Introduction 

Brain rhythms are oscillation signals that can be measured using functional 

neuroimaging techniques like electroencephalography (EEG) and 

magnetoencephalography (MEG). EEG detects the changes of tiny electric currents on 

the scalp, and MEG spots the microscopic scale magnetic flux of the brain. EEG/MEG 

possesses excellent temporal resolution and is a non-invasive and direct 

neurophysiological measure, unlike functional magnetic resonance imaging (fMRI) and 

functional near-infrared spectroscopy (fNIRS). Therefore, EEG/MEG is ideal for recording 

brain rhythm activities in pathophysiological conditions, such as chronic pain (CP) (Fu et 

al., 2021). 

Some previous CP studies using EEG/MEG have shown brain rhythm property 

changes mainly related to increased theta and decreased alpha power and slowed PAF 

(Witjes et al., 2021; Boord et al., 2008; De Vries et al., 2013; Lim et al., 2016; Sarnthein 

et al., 2006; Wydenkeller et al., 2009). Among these properties, the slowed PAF in CP 

was most consistent in previous studies, and here are some examples. Sarnthein et al. 

(2006) selected 15 neurogenic pain patients and 15 matched healthy controls. The EEG 

analysis showed increased spectral power in patients from the delta to the beta ranges 

(especially in 7-9 Hz) and a slowed PAF. De Vries et al. (2013) compared 16 chronic 

pancreatitis pain patients with matched controls in four brain regions in sensor space: 

frontal, central, parietal, and occipital, and found slowed PAF in the parietal and occipital 

lobes in their EEG analysis. Another study by Lim et al. (2016) showed that eighteen 

female fibromyalgia patients and eighteen matched healthy controls underwent a MEG 
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scanning for CP test. The analysis depicted that the patients had an increase in theta, 

beta, and gamma power and a slowing in PAF. 

Some aging studies also showed a slowing of PAF with increasing age during 

adulthood. Chiang et al. (2011) examined a control group of 1,498 patients aged 6 to 86 

years using EEG and found that PAF decreased with an increase in age in adults. Scally 

et al. (2018) recorded the eyes-closed resting state EEG of two age groups of 37 young 

adults and 32 older adults and replicated the finding of PAF slowing in the older adult 

group. Jabès et al. (2021) compared the EEG of two healthy groups of 21 adults aged 20-

30 and 27 adults aged 65-75. The results showed PAF slowing and decreased alpha 

absolute and relative power in the older adult group. 

CP can cause a slowed peak alpha frequency (PAF) (Sarnthein et al., 2006). 

However, adult aging also causes this phenomenon (Chiang et al., 2011). In finding 

significant signal differences between CP patients and healthy controls, previous works 

required age-matched patients and controls for analyses to avoid false statistical 

significance in comparisons. This is a limitation; any future clinical translation of such an 

approach in CP would require a consideration of patient age to disambiguate pathological 

oscillatory activity to that associated with healthy aging. An aging model to extend general 

future large database studies is desired. The model may also reduce the time, cost, and 

difficulty of recruiting suitable participants. 

4.2. Methods 

This study explores a method to include age in analyzing MEG parameters in 

pathophysiological conditions and verifies the method in a CP case study. This is a novel 

attempt to mitigate the age-matched patient and control requirement. This study focused 

on the alpha rhythm since the primary changes in rhythm properties in CP found were 

slowed PAF, increased theta, and decreased alpha power, where increased theta could 

be related to a shift of the alpha rhythm to a lower frequency. Also, the primary changes 

in rhythm properties in aging were slowed PAF and decreased alpha power. We sought 

to elucidate associations between alpha rhythm properties and adult aging in four alpha 

rhythm generation sites: frontal, central, temporal, and parieto-occipital regions of interest 

(ROIs). The rhythms within each ROI could show similar rhythm properties for the related 

pathophysiological conditions (Chiang et al., 2011; Jensen et al., 2013; Niedermeyer, 



43 

1997; Chatrian et al., 1959; Yokosawa et al., 2020). The use of ROIs enabled us to 

examine neural power spectra more systematically. A machine learning support vector 

regression (SVR) (Vapnik, 1995; Drucker et al., 1996) model was applied in a CP case 

study to verify the use of non-age-matched controls, and this approach could be extended 

to other pathophysiological studies. 

4.2.1. Participants 

This study used the Cambridge Centre for Ageing Neuroscience (CamCAN) Stage 

2 database (Taylor et al., 2017) MRI and MEG datasets. The MRI datasets were Release 

004 T1 weighted anatomical. The MEG resting state datasets were Release 005 with 

movement compensation and default space transformation. Participants recruited were 

between 18 and 87 of age, with 50 men and 50 women from each decade. Due to 

recruitment difficulties, only 27 men and 29 women were in the youngest decade. All 

participants were MEG scanned at rest with their eyes closed for 8 minutes and 40 

seconds. The actual recording durations were found to vary. There were 619 participants 

with both MRI and MEG recordings. 

The data in the CamCAN database were collected in the UK, where CP is prevalent 

and around one-third of adults suffer (GOV.UK, 2017). CP is common in causing frequent 

poor sleeping (Mathias et al., 2018; Finan et al., 2013; Bowers, 2011; Mann, 2010; 

Pacheco & Rehman, 2020). The CamCAN database did not directly reveal the CP 

information of the participants. However, one question in the MEG prescanning interview 

potentially inferred the participants’ CP status. The question asked how often the 

participants had trouble sleeping in the past month due to pain. The choices were: (1) Not 

in the past month. (2) Less than once a week. (3) 1~2 times a week. (4) 3 or more times 

a week. (5) No answer. 

For the purposes of demonstrating the utility of our algorithm, we have categorized 

participants who answered (1) in the question to be healthy controls with no CP and 

participants who answered (4) in the question to be CP participants. There are 

weaknesses in this inference, as there is no clinically complete evidence that the 

participants were CP patients. However, in the later part of this chapter, we demonstrated 

that our CP participants showed general brain rhythm characteristics similar to CP 
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patients. Data from the participants who replied (2), (3), or (5) were not used in the 

analysis. 

The time difference between the interview and MEG scanning for the CP 

participants had a mean of 99.72 days, median = 63 days, and SD = 99.19 days. We 

removed two outliers, resulting in a mean = 75.83 days, median = 60 days, and SD = 

49.59 days. As the interview date had only the year and month given, the 15th day of each 

month was assumed in the calculations. 

We did not use the OMEGA and SFU data in Chapter 3 in this study because the 

data were collected using a different MEG system: CTF (CTF MEG, Coquitlam, Canada) 

with 275 axial gradiometers and a 2,400 Hz sampling rate. Also, the OMEGA data were 

collected in an eyes-open condition. 

4.2.2. Equipment 

The MRI tool was a Siemens TIM Trio 3T MRI scanner (Siemens Healthcare, 

Erlangen, Germany) with a 32 RF channel head coil. The MEG tool was a VectorView 

MEG system (Elekta Oy, Helsinki, Finland) with a sampling rate of 1,000 Hz, a 0.03 Hz 

high-pass filter, and a 330 Hz low-pass filter. Among the 306 MEG sensors, 204 were 

orthogonal planar gradiometers, and 102 were magnetometers. In addition, there were 

electrocardiogram (ECG), vertical electrooculogram (VEOG), and horizontal 

electrooculogram (HEOG) channels for detecting cardiac and ocular artifacts. Temporal 

signal space separation (Taulu & Simola, 2006) was used to remove noise from external 

sources. MaxFilter 2.2 software (Elekta Oy, Helsinki, Finland), using a correlation of 0.98 

and a window of 10 s, was applied to notch-filter the 50 Hz power line noise and to detect 

and reconstruct bad channels. 
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4.2.3. Data Processing 

 

Figure 4.1. Source localization flow chart. MEG: Magnetoencephalography; MRI: 
magnetic resonance imaging; ICA: independent component analysis; 
BEM: boundary element model; dSPM: dynamic statistical parameter 
mapping. 

Figure 4.1 shows the data processing and source localization procedure. The 

FreeSurfer (Fischl, 2012; Dale et al., 1999) tool was used to reconstruct the T1-weighted 

MRI anatomical from a 3-dimensional volume into a 2-dimensional cortical surface. The 

results were for later MEG-MRI co-registration, single-layer boundary element model 

(BEM) surface generation and source space use. Source localization required the cleaned 

MEG data, noise covariance, and the forward and inverse solutions. The analysis used 

the MNE-Python tool (Gramfort et al., 2013). A cropped 3-minute MEG signal was 

sufficient for our resting-state analysis and helped shorten the preprocessing and analysis 

computing time. The same data length used for the participants could ensure a similar 
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signal-to-noise ratio (SNR) in the analysis. The start time of the cropped recording was 

determined by the turn-on time of the Neuromag head position indicator (HPI) coils plus 

10 seconds for stabilization, where the HPI turn-on time was recorded on the MEG’s 

STI201 stimulation channel. 

MEG magnetometer sensors are sensitive to environmental noise, so the analysis 

picked only the gradiometer channels. The MEG data provided by CamCAN was 

preprocessed – maxfiltered (Taulu & Kajola, 2005; Taulu & Simola, 2006) and already had 

the bad channels repaired and head movement compensated (Taylor et al., 2017). The 

bad channel reconstruction method was not indicated in Taylor et al.’s paper; interpolating 

the neighbourhood channels was the typical approach. The whole 3-minute cropped MEG 

signal was used in further data cleaning, and the data was not divided into epochs. A notch 

filter at 50 Hz and multiples at 100, 150, 200, 250, 300, and 350 Hz was used to remove 

power line noise and its harmonics; also, at 293, 307, 314, 321, and 328 Hz to remove the 

five HPI coil frequency noise. Also, a low-pass filter with a cutoff at 105 Hz was used to 

remove muscle artifacts in the 110-140 Hz range (Nunes & Bloy, 2023). Both filters were 

finite impulse response of zero-phase, two-pass to avoid temporal shifts, and with a 

hamming window for smoothing. The independent component analysis (ICA) process 

(Makeig et al., 1995) was used for ocular and cardiac artifact removal. It used a high-pass 

filter at 1 Hz cutoff to remove slow drifts and the Picard algorithm (Ablin et al., 2018) for 

fast convergence. Due to the high number of MEG channels, 40 ICA components were 

chosen to balance the computing time and to have enough components to isolate the 

artifacts. An automatic ICA process using the EOG and ECG channels was set up like that 

of Xifra-Porxas et al. (2021). Together, these steps effectively cleaned data from the delta 

to the gamma band range. 

4.2.4. Co-registration 

The MEG-MRI co-registrations were performed using a semi-automated approach. 

The first step was using the MNE-Python’s “mne coreg” graphical user interface to 

manually identify the nasion, and left and right preauricular fiducial points on the MRI 

cortical surface. The second step was to use an automated script to fit the fiducials with 

the head shape points (HSP) and refine the process using the iterative closest points (ICP) 

algorithm (Besl & McKay, 1992). The final step involved omitting the bad head shape 

points with a distance greater than 10 mm and re-refining the co-registration with ICP. 
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4.2.5. Source Localization 

Source localization is a process used to determine the positions of the signal 

sources in the brain. Figure 4.1 shows the process of using the co-registration results, 

BEM solution, and source space information to generate the forward model (Hamalainen 

& Sarvas, 1989). The noise covariance matrix was estimated using the empty-room 

recordings. The inverse solution was computed using the dynamic statistical parameter 

mapping (dSPM) method (Dale et al., 2000). 

4.2.6. Source Space PSD 

Table 4.1. Aparc labels corresponding to the four regions of interest (ROIs). 

ROI Aparc Labels 

Frontal frontal, pars 

Central central 

Temporal temporal, bankssts, fusiform, entorhinal, parahippocampal 

Parieto-occipital parietal, supramarginal, occipital, lingual, cuneus, pericalcarine 

 

To estimate the source neural activities in the brain, source space power spectral 

density (PSD) was computed for the ROIs from 1 to 20 Hz using a 10-second, non-

overlapped window with Hann taper smoothing. The 10-second window provided a PSD 

frequency resolution of 0.1 Hz. The ROIs were estimated based on the Aparc parcellation 

(Desikan et al., 2006). Table 4.1 shows the labels corresponding to the four ROIs. The 

average PSD was calculated from the grouped labels in each ROI. PSD was then 

smoothed by boxcar averaging, which helped reduce noise and improve SNR. A boxcar 

window of three points equivalent to a width of 0.3 Hz was used in the PSD data. This 

narrow window was chosen to minimize the chance of eliminating nearby peaks due to 

averaging. This process, however, lowered power amplitude at both ends of the 1-20 Hz 

spectrum, and the spectrum was cropped to 2-19 Hz to remove distortions. The source 

space PSD of every participant was plotted for visual inspection, and participants with 

abnormal PSD patterns, such as ringing as generated in filtering, were dropped. 
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4.2.7. Alpha Rhythm Properties 

A fixed alpha bandwidth of 8-12 Hz (Foster et al., 2017; Scally et al., 2018) could 

not cover all the scenarios in this study, such as the slowing of alpha rhythms due to age 

and CP could shift PAF to 7 Hz or lower. The individual alpha bandwidth (Bazanova & 

Aftana, 2006) was a logical approach to consider, which was based on the upper and 

lower frequency points where amplitude suppression transited between eye-closed and 

eye-open conditions. Due to the availability of only eye-closed data in the CamCAN 

datasets, an extended fixed alpha bandwidth approach (Chiang et al., 2008; Moretti et al., 

2011) was used in this study. 

PAF, amplitude, and band power characterize the alpha rhythm. SciPy’s signal 

function “find_peaks” was used to locate the maxima in the PSD. Based on the maxima, 

PAF and amplitude were determined for each participant individually. The absolute alpha 

band power calculation used a 1 Hz bandwidth (0.5 Hz on each side of PAF). High alpha 

was from PAF to PAF + 0.5 Hz, and low alpha was from PAF - 0.5 Hz to PAF. For instance, 

if a PAF was at 10.0 Hz, the high alpha was from 10.0 to 10.5 Hz, and the low alpha was 

from 9.5 to 10.0 Hz. This narrow bandwidth was chosen to minimize possible overlapping 

with other nearby peaks. Relative alpha power was computed by dividing the absolute 

alpha power by the sum of PSD at each frequency point from 2 to 19 Hz. 

4.2.8. Statistical Analysis 

The non-parametric K-sample Anderson-Darling test (Scholz & Stephens, 1987) 

was used to verify whether the samples in the four ROIs were from a single population 

without specifying the distribution type. A null hypothesis was set that the samples in the 

four ROIs were from the same distribution. 

Boxplots were used for the age groups from 18-27 to 78-87 to show the spread of 

the data, median, mean, and outliers. Boxplots also showed the aging trend for the 

analyses, including mixed-sex, male, and female groups, since sex might affect the 

statistical analysis results (Ko et al., 2021). The analyses included PAF, absolute peak 

amplitude, relative peak amplitude, high and low alpha absolute, and relative power. 

Wilcoxon signed-rank and Mann-Whitney U tests were used to compare the boxplot 
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results. The former is the non-parametric equivalent of the paired t-test, and the latter is 

the non-parametric equivalent of the unpaired t-test.  

SVR (described in Section 1.10.1) was used to study the correlation between the 

controls' alpha rhythm properties and aging. Then, alpha rhythm properties could be 

predicted using the regression at any specified age. Scikit-learn (Pedregosa et al., 2011) 

SVR based on the libsvm (Chang & Lin, 2011) implementation was used, and the analyses 

included in the boxplots above were repeated. Outliers were first removed from the data 

based on the quantile approach. The GridSearchCV function was used to determine the 

best SVR parameters for the regression fittings using the coefficient of determination (R2) 

scoring. R2 has a value from 0 to 1, which shows how well the regression model fits the 

data. Zero means a constant model, and one represents a perfect fit. R2 also depicts effect 

size: small (R2 = 0.01), medium (R2 = 0.09), and large (R2 = 0.25) (Cohen, 1988). The 

parameters to be determined were kernel (linear, polynomial, and RBF), regularization 

parameter (C) (1, 10, 100), the tube width () (0.01, 0.1, 1), and the degree of the 

polynomial kernel (2, 3). The kernel coefficient () was set to the default of the libsvm tool. 

Repeated K-Fold cross-validation was used to mitigate bias, with 5 splits and 10 repeats. 

The significance of the cross-validated score was evaluated using Scikit-learn’s 

permutation_test_score function (Ojala & Garriga, 2009) with 1,000 permutations and 

significance level (α) = 0.01. The p-value returned specifies the probability that the cross-

validated score would be obtained by chance. The null hypothesis was that age and the 

alpha rhythm properties had no statistically significant relationship. 

4.2.9. Case Study 

In this case study, we investigated if the CP participants exhibited the slowed PAF 

property, as in general CP patients (Sarnthein et al., 2006; De Vries et al., 2013; Lim et 

al., 2016). We used the SVR model to correlate the controls’ PAF with age, then used the 

correlation and CP participants’ age as input to predict the same age controls’ PAF as 

output. The PAFs of controls and CP participants at the same age could then be 

compared; no real age-matched control was required. 

Wilcoxon signed-rank test was used to compare the difference in PAF between the 

CP participants and controls. Two comparisons were made: CP participants with age and 
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sex-matched controls and CP participants with SVR-predicted controls. The comparisons 

were performed in each ROI individually. 

4.3. Results 

The participants who replied (2), (3), or (5) in the interview question were not used 

in the analysis. Also, some participants’ data were found incomplete and then dropped. 

After data preprocessing, the number of controls was 474 (246 males and 228 females, 

mean = 53.90, SD = 18.29), and the number of CP participants was 22 (12 males and 10 

females, mean = 64.03 years, SD = 15.64 years). Table 4.2 lists the number of controls 

and CP participants by age group. 

Table 4.2. Number of controls and CP participants by age groups. SD: standard 
derivation. 

Age Group 18-27 28-37 38-47 48-57 58-67 68-77 78-87 All 

 

Control 38 76 81 76 73 66 64 474 

Male Control 17 38 45 36 35 34 41 246 

Female Control 21 38 36 40 38 32 23 228 

Mean Age 23.92 32.96 43.41 52.73 63.16 72.54 81.43 53.90 

SD of Age 3.12 3.26 2.91 2.98 2.82 2.99 2.67 18.29 

 

CP participants 1 0 3 1 8 4 5 22 

Male CP participants 1 0 1 1 5 3 1 12 

Female CP participants 0 0 2 0 3 1 4 10 

Mean Age 20.75 -- 43.03 54.67 63.54 73.69 80.23 64.03 

SD of Age -- -- 2.80 -- 3.34 3.74 2.71 15.64 

 

The grand average PSD plot of the four alpha-generation sites was used to 

determine an extended alpha bandwidth for the analysis. Figure 4.2 shows the grand 

average PSD of the participants in the four ROIs. Each participant’s PSD was normalized 

by dividing by its mean power across all the frequency points from 2 to 19 Hz before 

averaging. The alpha rhythm in the parieto-occipital ROI had the highest amplitude, which 

matched previous findings (Chiang et al., 2011), and the frontal ROI had the weakest peak 

amplitude among the four ROIs. 
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Figure 4.2. Grand average of normalized source space power spectral density 
(PSD) of controls (N = 474) in the four regions of interest (ROIs). The 
two purple vertical dashed lines show the lower and upper 
boundaries of the extended alpha bandwidth (6-14 Hz). The cyan 
vertical dashed line shows the lower boundaries of the frontal alpha 
bandwidth. 

By inspecting the alpha rhythm widths in the figure, the bandwidth of 6-14 Hz 

(Scally et al., 2018) was determined for finding PAF in the ROIs, 2 Hz in extension to the 

conventional alpha bandwidth of 8-12 Hz on the lower and upper ends. An exception was 

the frontal ROI; the figure shows the left trough of the frontal alpha rhythm was at 6.5 Hz, 

and a 6.5-14 Hz bandwidth was used. Since the frontal ROI power was much weaker than 

the others, a more precise left boundary of the frontal range had to be specified to reduce 

spurious results caused by misrecognizing the theta power as the alpha peak by SciPy’s 

find_peaks function. The prominence parameter of find_peaks was set to 0.15 by 

inspecting the grand average frontal peak amplitude. If an alpha rhythm peak prominence 

was less than this threshold or the peak was outside the extended alpha range, it was 

assumed that no peak was found. Participants with no dominant peak found in an ROI 

were not used in the plot and analysis of that ROI. As the find_peaks function was applied 
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to the four ROIs individually, the number of participants with an alpha peak found differed 

in each ROI. Table 4.3 shows the number of controls and CP participants with an alpha 

peak in the final sample. 

Table 4.3. Number of controls and CP participants in the final sample with peak 
alpha frequency (PAF) found in each region of interest (ROI). N: 
number of participants; M: male; F: female; SD: standard derivation. 

ROI Participant Data Control CP participants 

Frontal 

N 424 (220M/204F) 21 (11M/10F) 

Mean Age 53.47 63.94 

SD Age 18.61 16.02 

Mean PAF 9.23 8.97 

SD of PAF 1.15 0.96 

Central 

N 435 (229M/206F) 21 (11M/10F) 

Mean Age 53.40 63.94 

SD Age 18.61 16.02 

Mean PAF 9.55 9.43 

SD of PAF 1.34 1.33 

Temporal 

N 467 (245M/222F) 21 (12M/9F) 

Mean Age 53.95 64.19 

SD Age 18.34 16.01 

Mean PAF 9.31 9.15 

SD of PAF 1.13 0.98 

Parieto-occipital 

N 468 (245M/223F) 21 (11M/10F) 

Mean Age 53.76 63.94 

SD Age 18.34 16.02 

Mean PAF 9.61 9.26 

SD of PAF 1.07 0.90 

 

4.3.1. K-Sample Anderson-Darling Test 

The K-sample Anderson-Darling test was used to check if the data in the ROIs 

were from the same distribution regarding PAF, absolute peak amplitude, relative peak 

amplitude, high alpha absolute power, low alpha absolute power, high alpha relative 

power, and low alpha relative power. A P-value < 0.001 was obtained in most tests, so the 

alpha rhythm properties significantly differed in the four ROIs. The null hypothesis that all 

the samples in the four ROIs were from the same distribution was rejected.   
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Table 4.4 shows the P-values of the statistical results of the four regions and the 

two-region combinations. Namely, frontal and central ROIs, frontal and temporal ROIs, 

frontal and parieto-occipital ROIs, central and temporal ROIs, central and parieto-occipital 

ROIs, and temporal and parieto-occipital ROIs. The significance levels (α) required to 

reject the null hypothesis was Bonferroni corrected by dividing the two-tailed α of 0.025 by 

six comparisons and then α = 0.004. The only case the null hypothesis failed to reject was 

the frontal and temporal PAF comparison. This evidence showed that choosing the four 

ROIs in this study helped the understanding of alpha rhythm variations in different brain 

areas related to human aging. 

Table 4.4. P-values of the K-sample Anderson-Darling comparisons between the 
different regions of interest (ROIs). All: all four ROIs, f-c: frontal and 
central ROIs, f-t: frontal and temporal ROIs, f-po: frontal and parieto-
occipital ROIs, c-t: central and temporal ROIs, c-po: central and 
parieto-occipital ROIs, t-po: temporal and parieto-occipital ROIs. 
Level of Significance (α) = 0.004 was Bonferroni corrected. 

Alpha Rhythm Property 

ROI Comparison 

All f-c f-t f-po c-t c-po t-po 

Peak Alpha Frequency < 0.001 < 0.001 > 0.250 < 0.001 0.001 0.003 < 0.001 

Absolute Peak Amplitude < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Relative Peak Amplitude < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

High Alpha Absolute Power < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Low Alpha Absolute Power < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

High Alpha Relative Power < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Low Alpha Relative Power < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
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4.3.2. Boxplots 

 

Figure 4.3. Boxplots of PAF versus male control age group. The triangle marker 
shows the mean in each age group, and the orange line shows the 
median. 
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Figure 4.4. Boxplots of PAF versus female control age group. The triangle marker 
shows the mean in each age group, and the orange line shows the 
median. 

Figures Figure 4.3 and Figure 4.4 show the male and female control groups' PAF 

boxplots in the four ROIs. The x-axis is the age group. The y-axis is the frequency in the 

extended alpha band. The orange line in each box shows an age group’s median or the 

50th percentile. A box’s top and bottom lines are the 75th and 25th percentiles. The top 

and bottom whiskers are the 100th and 0th percentiles, excluding outliers. The circles show 

the outliers, and the green triangle shows the mean. The plots show a PAF slowing trend, 

though the central ROI looked less regular. These results matched previous findings in 

slowed PAF with aging (Chiang et al., 2011; Scally et al., 2018; Jabès et al., 2021). By 

observation, the female controls showed a higher mean PAF in the youngest age group 

in all ROIs. To verify if sex has any effect on the alpha rhythm (Matthis et al., 1980; 

Benninger et al., 1984; Díaz De León et al., 1988; Harmony et al., 1990; Chiang et al., 

2011; Ko et al., 2021), Table 4.5A compared the PAF of the male and female controls in 

the 18-27 age group using the Mann-Whitney U test, with significance found in the central, 

temporal, and parietal-occipital ROIs, P<0.025 and level of significance (α) = 0.025 for the 
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two-tailed tests. Bonferroni correction was not required. Table 4.5B compared the mean 

PAF of the male and female controls in all age groups using the Wilcoxon signed-rank 

test. No significant difference was found. 

Table 4.5. (A) Comparison of the PAF of the male and female controls in the 18-
27 age group. (B) Comparison of the mean PAF of the male and female 
controls in all age groups. Level of Significance (α) = 0.025 for the 
two-tailed tests. Bonferroni correction was not required. 

Male vs. female controls: PAF of the 18-27 age group (Mann-Whitey U tests) 

ROI Frontal Central Temporal Parietal-occipital 

Z -1.987 -2.616 -2.251 -2.529 

P-value 0.047 0.009 0.024 0.011 

Male vs. female controls: mean PAF of all age groups (Wilcoxon signed-rank tests) 

ROI Frontal Central Temporal Parietal-occipital 

Z -1.352 -1.014 -1.859 -1.521 

P-value 0.176 0.310 0.063 0.128 

 

For other boxplots not shown here (refer to Appendix D for all the boxplots), the 

absolute amplitude and absolute power plots showed much irregularity, and no apparent 

trend in aging was observed. For the relative amplitude and relative power plots, it seemed 

to be a slight trend of amplitude and power decrease in aging in the central and parietal-

occipital ROIs, but less evident and smooth than the PAF trend. 

4.3.3. Support Vector Regression 

Table 4.6 shows the GridSearchCV exhaustive search results with K-fold cross-

validation of 5 splits and 10 repeats. The results included the best kernel and parameters 

found (C: regularization parameter; : tube width, and degree of the polynomial kernel), 

R2, and P-value. The P-values were obtained using permutation tests with 1,000 

permutations and a significance level α = 0.01 (Ojala & Garriga, 2009). Bolded R2 depicts 

a medium effect size. SVR was applied separately to the mixed-sex, male, and female 

controls, and age was the only input feature. The very low P-values confirmed the 

significance of the results. The PAF of the frontal, temporal, and parietal-occipital ROIs 

showed R2 with medium effect size for the mixed-sex, male, and female controls, except 

the parietal-occipital PAF of the female controls. Besides PAF, the only other alpha rhythm 

property with R2>0 was mixed-sex relative amplitude in the parieto-occipital ROI. As 
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significant relationships were found between PAF and aging, the second null hypothesis 

was rejected. 

Table 4.6. Support vector regression (SVR) fittings of alpha rhythm properties 
versus age. The table shows the grid search results of the best kernel 
and parameters, coefficient of determination (R2), and p-value, with 
repeated K-fold cross-validation of 5 splits and 10 repeats. The p-
values were obtained using permutation tests, with significance level 
α = 0.01. Bolded R2 depicts a medium effect size. PO: parieto-

occipital; C: regularization parameter; : tube width. 

Control 
Alpha Rhythm 

Property 
C  Kernel 

Degree of the 
Polynomial 

R2 P-value 

Mixed-
sex 

Frontal PAF 1 1 Linear  0.155 0.001 

Mixed-
sex 

Central PAF 100 0.1 Linear  0.025 0.001 

Mixed-
sex 

Temporal PAF 100 1 Polynomial 2 0.133 0.001 

Mixed-
sex 

PO PAF 10 0.1 Polynomial 2 0.147 0.001 

Male Frontal PAF 1 0.1 Linear  0.163 0.001 

Male Central PAF 1 0.01 Linear  0.018 0.002 

Male Temporal PAF 1 0.1 Polynomial 3 0.126 0.001 

Male PO PAF 100 0.1 Polynomial 3 0.156 0.001 

Female Frontal PAF 100 1 Linear  0.090 0.001 

Female Central PAF 100 1 Polynomial 2 0.023 0.002 

Female Temporal PAF 100 1 Linear  0.095 0.001 

Female PO PAF 100 1 Polynomial 2 0.089 0.001 

Mixed-
sex 

PO relative 
amplitude 

1 0.01 Linear  0.004 0.001 
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Figure 4.5. Support vector regression (SVR) of PAF versus age of the male 
controls. Cyan circles are PAF data points. The black line is the 
regression model (hyperplane). 
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Figure 4.6. Support vector regression (SVR) of PAF versus age of the female 
controls. Cyan circles are PAF data points. The black line is the 
regression model (hyperplane). 

Figure 4.5 &Figure 4.6 show SVR fittings of PAF versus age of the male and female 

controls, respectively. The figures indicate a downshift of PAF in all four ROIs with slightly 

different slopes and curve shapes. Both male and female controls had similar kernels 

chosen in the frontal (linear) and parieto-occipital (degree 3 and 2 polynomials) ROIs and 

different in the central (linear and degree 2 polynomial) and temporal (degree 3 polynomial 

and linear) ROIs. 
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4.3.4. Case study results 

 

Figure 4.7. Grand average of normalized source space power spectral density 
(PSD) of controls and CP participants in the four regions of interest 
(ROIs). Ncontrol = 474, NCP participants = 22. 

 

Figure 4.7 shows the grand averaged PSD plots in four ROIs of the controls (N = 

474, 246 males and 228 females, mean = 53.90, SD = 18.29) and the CP participants (N 

= 22, 12 males and 10 females, mean age = 64.03, SD = 15.64) (Table 4.2). By 

observation, the plots show the typical slowed PAF of CP patients (Sarnthein et al., 2006; 

Boord et al., 2008; Lim et al., 2016) in all ROIs without including age.  

Table 4.7 shows the mean PAF of the mixed-sex controls and CP participants. The 

CP participants had slower PAFs than the controls in all four ROIs. As the controls and 

CP participants had different mean ages, SVR models were applied to predict the controls’ 

PAF using the CP participants’ mean age as inputs. Compared with the SVR-predicted 

controls, the CP participants showed a slowed PAF only in the parieto-occipital ROI with 
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a difference of 0.20 Hz. The 2.16% difference in the parieto-occipital ROI was the highest 

in all four ROIs, compared to 0.00 to 0.55%. The results implied that the mean PAFs of 

the CP participants were about the same as the controls’ normal aging in the frontal, 

central, and temporal ROIs but slower in the parieto-occipital ROI. 

Table 4.7. Peak alpha frequency (PAF) prediction for controls using SVR. The 
rightmost column shows the SVR-predicted controls obtained by 
using CP participants’ mean age as input. Bolded numbers are the 
mean PAF of CP participants and PAF of SVR-predicted controls. ROI: 
region of interest; PAF: peak alpha frequency; N: number of 
participants. 

ROI Participant Data Control CP participant SVR-Predicted Control 

Frontal 

N 424 21 424 

Mean Age 53.47 63.94 63.94 

Mean PAF 9.23 8.97 8.97 (±0.00%) 

Central 

N 435 21 435 

Mean Age 53.40 63.94 63.94 

Mean PAF 9.55 9.43 9.39 (-0.42%) 

Temporal 

N 467 21 467.0 

Mean Age 53.95 64.19 64.2 

Mean PAF 9.31 9.15 9.10 (-0.55%) 

Parieto-occipital 

N 468 21 468 

Mean Age 53.76 63.94 63.936 

Mean PAF 9.61 9.26 9.46 (+2.16%) 

 

For verification purposes, the CP participants were compared with sex and age-

matched controls using the Wilcoxon signed-rank test (Table 4.8), with a significance level 

(α) = 0.025 for the two-tailed tests, and Bonferroni correction was not required. No 

significance was found in the four ROIs. Table 4.8 also compares PAF between CP 

participants and SVR-predicted controls. Controls’ PAF was predicted using the CP 

participants’ age. Also, no significance was found in the Wilcoxon signed-rank test. 

However, the P-value improved using SVR-predicted controls in the parieto-occipital ROI. 
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Table 4.8. Wilcoxon signed-rank tests of CP participants versus sex and age-
matched controls and SVR-predicted controls. Level of Significance 
(α) = 0.025 for the two-tailed tests. Bonferroni correction was not 
required. 

ROI CP participant 
Matched Control SVR-Predicted Control 

Z P-value Z P-value 

Frontal 21 -0.557 0.578 -0.122 0.903 

Central 21 -0.616 0.538 -0.191 0.848 

Temporal 21 -0.365 0.715 -0.400 0.689 

Parieto-Occipital 21 -0.435 0.664 -0.643 0.520 

 

4.4. Discussion 

We proposed a novel method for including age in pathophysiological studies. The 

method uses SVR to explore the correlations between alpha rhythm properties and age in 

EEG/MEG source space PSD regarding the four alpha generation ROIs. The method was 

tested in a CP case study, and it was found that the CP participants exhibited a slowed 

PAF property in the parietal-occipital ROI, similar to that of general CP patients. The 

method could be used in other pathophysiological studies to mitigate the limitation of age-

matched control requirements. 

This study yielded several primary findings using the novel method. First, the 

slowed PAF was the primary alpha rhythm property related to aging, especially in the 

frontal, temporal, and parieto-occipital ROIs, as found in the boxplots and SVR tests 

(Table 4.6). Second, in the boxplots, female controls showed higher PAF than male 

controls in the 18-27 age group, with significance in the central, temporal, and parieto-

occipital ROIs. Some previous works also compared sex differences in the alpha rhythm 

but mostly in children (Matthis et al., 1980; Benninger et al., 1984; Díaz De León et al., 

1988; Harmony et al., 1990; Chiang et al., 2011; Ko et al., 2021). Third, the boxplots show 

that male controls’ PAF slowing started from the 28-37 age group, but for female controls, 

it started from the 18-27 age group. Similar results but at different ages were previously 

reported (Köpruner et al., 1984; Chiang et al., 2011; Aurlien et al., 2004). Fourth, as shown 

in the case study, the slowed PAF of the CP participants was in the parieto-occipital ROI. 

A previous study (De Vries et al., 2013) also reported a similar finding using EEG and 

sensor space. 

https://www.sciencedirect.com/science/article/pii/S0167876097007733#bBIB12


63 

The SVR results showed that the frontal, temporal, and parieto-occipital PAF 

decreased with age with a medium effect size (Table 4.6). They could be further explored 

as a biomarker for aging. An individual fixed bandwidth of 1 Hz based on PAF was used 

to compute the alpha band power. This helped to avoid misleading alpha power change 

due to the alpha rhythm being shifted off a fixed alpha bandwidth and also to avoid 

overlapping nearby peaks. 

The higher PAF of the female than the male controls in the 18-27 age group and 

the PAF slowing of male controls starting from the 28-37 group depicted unique properties 

of the alpha rhythm. Previous studies showed a similar effect at age 20 (Köpruner et al., 

1984; Chiang et al., 2011) or age 45 (Aurlien et al., 2004). Due to the smaller sample size 

in the 18-27 age group than the other age groups, these effects have yet to be verified. In 

this study, SVR was fitted using hundreds of controls. The regression fitting might become 

less effective for a smaller sample, for instance, less than 25 participants (Jenkins & 

Quintana-Ascencio, 2020).  

The case study showed that one could use SVR to predict rhythm properties 

corresponding to age, such that non-age-matched controls can be used in 

pathophysiological studies. Using SVR to predict features may have the advantage of 

more consistent results. The improved P-values in the Wilcoxon signed-rank test using 

SVR-predicted controls were likely due to the more consistent PAF values from the 

regression (Table 4.8). 

PAF was reported to be positively related to thalamic and salience network (SN) 

activity (McLain et al., 2022). SN acts as a switch in information processing of the other 

brain networks and comprises the ventral anterior insula and anterior cingulate cortices 

(Seeley, 2019). The thalamus receives pain signals from the spinal cord and relays the 

signals to the somatosensory cortex, the cingulate, and the insula (Baller & Ross, 2017). 

This relationship infers that PAF may be associated with pain (McLain et al., 2022). PAF 

may be a biomarker reflecting changes in the neurophysiological properties of the brain 

and may reflect the performance of information sampling and processing of cortical 

neurons (Mierau et al., 2017). De Vries et al. (2013) showed that slowed PAF was related 

to CP, mainly in the parieto-occipital region, using EEG and sensor space. The case study 

showed a similar result: with age included, the CP participants showed slowed PAF only 

in the parieto-occipital ROI. 

https://www.sciencedirect.com/science/article/pii/S0167876097007733#bBIB12
https://www.sciencedirect.com/science/article/pii/S0167876097007733#bBIB12
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The case study has a limitation to be considered in interpreting the results since 

the CP participant data sample size of 22 was relatively low. The Wilcoxon signed-rank 

test results (Table 4.8) showed no significant difference between CP participants and sex 

and age-matched controls, likely because the CP participants had an average delay of 

more than three months between the interview and MEG scans. The conditions of some 

participants could have varied within this period. The non-significant results could also be 

because even normal and age-matched controls could exhibit a PAF standard deviation 

of about 1 Hz (Klimesch, 1996). When compared with SVR-predicted controls, P-values 

improved in the parieto-occipital ROI. This might imply that the SVR method could provide 

more consistent PAF values than sex and age-matched controls. 

4.4.1. Conclusion 

The findings suggest that using multiple ROIs in the alpha rhythm versus age 

correlation analyses was effective, with P-values < 0.001 in comparing the ROIs. The trend 

of PAF changes with age was identified in the ROIs and with medium effect sizes in SVR 

fittings. The slowed PAF started from the 28-37 age group in the male controls is similar 

to previous findings. The case study demonstrated the techniques to include age in a CP 

study using SVR-predicted controls. The PAF versus age regression results can be 

represented in a table format for a quick lookup, reducing computing time in reusing the 

data and SVR models. The proposed novel method could create an aging model for 

pathophysiological studies. This novel method of including age in CP studies may guide 

further studies to explore (1) including age in other pathophysiological studies, such as 

dementia, and (2) using other machine learning approaches, like CNNs, to achieve the 

best accuracy. To our knowledge, our group is the first to use SVR to explore the 

correlation between alpha rhythm properties and age in MEG source space PSD regarding 

the four alpha generation ROIs. We are also the first to use SVR to predict PAF with age 

for controls in a pain analysis. The novel method provides a way to include age in CP or 

other neurophysiological analyses. 
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Chapter 5.  
 
Virtual Reality–Guided Meditation for Chronic Pain in 
Patients with Cancer: Exploratory Analysis of 
Electroencephalograph Activity 

The study in this chapter corresponds to the publication: 

Fu, H., Garrett, B., Tao, G., Cordingley, E., Ofoghi, Z., Taverner, T., Sun, C., & Cheung, 
T. (2021). Virtual Reality–Guided Meditation for Chronic Pain in Patients with Cancer: 
Exploratory Analysis of Electroencephalograph Activity. JMIR Biomedical Engineering, 
6(2), e26332. https://doi.org/10.2196/26332 

Abstract 

Mindfulness-based stress reduction has demonstrated some efficacy for chronic pain (CP) 

management. More recently, virtual reality (VR)–guided meditation has been used to 

assist mindfulness-based stress reduction. Although studies have also found 

electroencephalograph (EEG) changes in the brain during mindfulness meditation 

practices, such changes have not been demonstrated during VR-guided meditation. 

This exploratory study is designed to explore the potential for recording and analyzing 

EEG during VR experiences in terms of the power of EEG waveforms, topographic 

mapping, and coherence. We examine how these measures changed during a VR-guided 

meditation experience in participants with cancer-related CP. 

A total of 10 adult patients with chronic cancer pain underwent a VR-guided meditation 

experience while EEG signals were recorded during the session using a BioSemi 

ActiveTwo system (64 channels, standard 10-20 configuration). The EEG recording 

session consisted of an 8-minute resting condition (pre), a 30-minute sequence of 3 VR-

guided meditation conditions (med), and a final rest condition (post). Power spectral 

density (PSD) was compared between each condition using a cluster-based permutation 

test and across conditions using multivariate analysis of variance. A topographic analysis, 

including coherence exploration, was performed. In addition, an exploratory repeated 

measures correlation was used to examine possible associations between pain scores 

and EEG signal power. 

https://doi.org/10.2196/26332
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The predominant pattern was for increased β and γ bandwidth power in the meditation 

condition (P<.025), compared with both the baseline and postexperience conditions. 

Increased power in the δ bandwidth was evident, although not statistically significant. The 

pre versus post comparison also showed changes in the θ and α bands (P=.02) located 

around the frontal, central, and parietal cortices. Across conditions, multivariate analysis 

of variance tests identified 4 clusters with significant (P<.05) PSD differences in the δ, θ, 

β, and γ bands located around the frontal, central, and parietal cortices. Topographically, 

5 peak channels were identified: AF7, FP2, FC1, CP5, and P5, and verified the changes 

in power in the different brain regions. Coherence changes were observed primarily 

between the frontal, parietal, and occipital regions in the θ, α, and γ bands (P<.0025). No 

significant associations were observed between pain scores and EEG PSD. 

This study demonstrates the feasibility of EEG recording in exploring neurophysiological 

changes in brain activity during VR-guided meditation and its effect on pain reduction. 

These findings suggest that distinct altered neurophysiological brain signals are 

detectable during VR-guided meditation. However, these changes were not necessarily 

associated with pain. These exploratory findings may guide further studies to investigate 

the highlighted regions and EEG bands with respect to VR-guided meditation. 

Trial Registration: ClinicalTrials.gov NCT00102401; 

http://clinicaltrials.gov/ct2/show/NCT00102401 

Keywords: virtual reality (VR); guided meditation; neurophysiology; 

electroencephalograph (EEG) 

5.1. Introduction 

5.1.1. Background 

Chronic pain (CP) is a common condition occurring in 1 in 5 Canadians (Chronic 

pain in Canada, 2019), and it has limited practical treatment approaches. Mindfulness-

based stress reduction (MBSR) has shown some evidence of efficacy in this area (Kabat-

Zinn, 2003; Rosenzweig et al., 2010) and has also been used to treat other clinical 

conditions, such as migraine, depression, addiction, and substance misuse (Kabat-Zinn, 

2003; Lomas et al., 2015). 

http://clinicaltrials.gov/ct2/show/NCT00102401
https://biomedeng.jmir.org/search?type=keyword&term=virtual%20reality&precise=true
https://biomedeng.jmir.org/search?type=keyword&term=guided%20meditation&precise=true
https://biomedeng.jmir.org/search?type=keyword&term=neurophysiology&precise=true
https://biomedeng.jmir.org/search?type=keyword&term=electroencephalograph&precise=true
https://biomedeng.jmir.org/search?type=keyword&term=EEG&precise=true
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Mindfulness meditation encompasses a range of mental exercises that share a 

common focus on regulating attention and awareness to improve well-being (Kabat-Zinn, 

2003; Rosenzweig et al., 2010; Lomas et al., 2015). It is described as the quality of being 

completely engaged in the present moment, free from distractions and judgments, and 

being aware of bodily sensations, thoughts, and feelings without getting caught up by 

them, and it is used as a therapeutic technique in MBSR (Hanson & Mendius, 2009; 

Nyklíček et al., 2014). These practices involve mental training that allows practitioners to 

develop their minds in specific ways to help them deal with stress and anxiety (Lee et al., 

2018; Schoenberg & Vago, 2019). Although the clinical benefits remain somewhat 

controversial, it is generally viewed as a beneficial practice for mental well-being, stress 

reduction, and pain management (Farias & Wikholm, 2016; Keng et al., 2011; Seay et al., 

2002). 

A recent trend in MBSR practice has been the use of immersive virtual reality (VR) 

to help participants focus on meditative exercise (Botella et al., 2013; Erlacher & Chapin, 

2010; Gromala, 2015; Navarro-Haro, 2019; Venuturupalli et al. 2019). However, to date, 

neurological studies have not been performed with VR-guided meditation practices. 

Therefore, this exploratory study sought to identify any identifiable neurological effects of 

VR-guided meditation practices using electroencephalographs (EEGs). 

5.1.2. Neurological Mindfulness Studies 

Subjective reports of the benefits of mindfulness meditation have prompted 

investigations into the potential corresponding neurophysiological states. Exploration of 

fluctuations in brain wave voltage amplitude (power) topography and coherence 

(associated areas of activity) using EEG variations in neural activity assessed with 

functional magnetic resonance imaging and cortical evoked responses to visual and 

auditory stimuli that reflect the impact of meditation on attention (Lomas et al., 2015; Cahn 

& Polich, 2006; Davidson & Lutz, 2008; Ivanovski & Malhi, 2007; Panjwani et al., 2000; 

Heeger & Ress, 2002; Chiesa & Serretti, 2010; Magalhaes et al., 2018; Mishra et al., 2017; 

Froeliger et al., 2012; Goldin et al., 2013). However, findings remain speculative. EEG 

studies have previously reported modulation in α, θ, and γ band frequencies, generally 

with increased power and coherence during mediation (Lomas et al., 2015; Lee et al., 

2018; Cahn & Polich, 2006; Delmonte, 1984). Some studies theoretically conjectured how 

meditative states relate to EEG bandwidths. For example, Travis and Shear (Travis & 
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Shear, 2010) suggested that focused attention (sustained attention is focused on a given 

object) increases γ band power, open monitoring (nonreactive monitoring of an ongoing 

experience) increases θ, and an automatic-self-transcending stage (transcending the 

procedures of the meditation) increases α (Travis & Shear, 2010). Nevertheless, a 

consensus on what we currently know about how EEG forms correlate with meditation or 

how this may map onto stages of mental development or specific cognitive skills is yet to 

be reached (Lee et al., 2018; Schoenberg & Vago, 2019). 

The α frequency band lies between 8 and 12 Hz and is predominantly located in 

the occipital cortex. α waves are present in deep relaxation and sleep, usually when the 

eyes are closed. θ waves are characterized by oscillations in the 4-8 Hz band found in 

both cortical and subcortical structures. Increases in θ have been described during a 

variety of learning and recognition tasks, light sleep (including the rapid-eye-movement 

dream state), and deep meditation. θ and α power changes have been reported to 

increase in a number of meditation studies (Lomas et al., 2015; Cahn & Polich, 2006; 

Ivanovski & Malhi, 2007; Dunn et al., 1999; Fell et al., 2010; Lagopoulos et al., 2009). 

Moreover, γ is a higher frequency range generally regarded as between 30 and 50 Hz, 

although the range reported has varied substantially between 20 and 200 Hz across 

different studies (Fell et al., 2010). This initial research suggests that γ is associated with 

a number of sensory and cognitive high-level information processing functions, such as 

semantic insights, learning, and neural plasticity. Peak γ frequencies around 40 Hz in 

bilateral hemispheres have only been observed in highly practiced meditators (Cahn & 

Polich, 2006; Fell et al., 2010). In addition, a posterior increase in γ activity may be related 

to enhanced perceptual clarity reported in some open monitoring (focusing on awareness 

itself) meditative processes (Lee et al., 2018; Cahn & Polich, 2006; Fell et al., 2010). 

5.1.3. VR-Assisted Mindfulness 

VR is rapidly developing as a new form of media and uses computer-generated 

audio-visual displays and hand controller user interfaces to produce a sense of immersion 

in a digital 3D environment. Instead of watching an image on a typical computer or video 

display, VR technologies provide an increased sense of presence by engaging the senses 

(sight, sound, and touch) in real-time stereoscopic audio-visual media where users can 

move around and explore the environment as if they were there. 
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5.1.4. VR in Pain Management 

One of the most common health care applications of VR is its use in pain 

management. Several studies have explored the value of MBSR in CP management, 

although the reported effect sizes for this technique have been typically mild to moderate, 

and regular adherence with meditative practice is problematic (Rosenzweig et al., 2010; 

Rosenzweig, 1995; Johnson et al., 2005). It has been suggested that combining 

mindfulness meditation within a VR intervention may help support acceptance and 

adherence to practice while having a synergistic effect on pain reduction through 

immersive VR distraction (Garrett et al., 2018; Jin et al., 2016; Shaw et al., 2007). This 

remains an active area of research, as adjunctive VR strategies have been used 

successfully in the treatment of acute pain (Garrett et al., 2014; Maani et al., 2011; Scapin 

et al., 2018; Schmitt et al., 2011; Wolitzky et al., 2005) and more recently have also been 

explored with CP (Botella et al., 2013; Jin et al., 2016; Garrett et al., 2017; Li et al., 2007). 

The theoretical rationale behind why VR may enhance mindfulness skills is that VR 

provides the user with cognitive displacement by actively engaging in a coping activity that 

provides a profound sense of through presence in another world. Cognitive distraction is 

a common strategy in pain control and relies on creating competition for cognitive 

resources, that is, attention to a novel spatial orientation, and engaging within it reduces 

the perception of pain (Eccleston, 1995; Johnson, 2005; Garrett et al., 2018). Therefore, 

immersive VR interventions using stereoscopic head-mounted displays (HMDs) have 

been proposed as powerful tools for providing visual, audio, cognitive, and emotional 

engagement (Dascal et al., 2017; Li et al., 2011; Malloy & Milling, 2010). In MBSR, VR 

experiences are typically accomplished using computer-simulated environments, 

stereoscopic headsets, and motion tracking to support a more immersive meditative 

experience. This was the approach taken in this study, and an EEG analysis was selected 

as a practical technique to assess neurophysiological activity while experiencing VR. 

5.1.5. Objectives 

Overall, this inductive exploratory study sought to assess how EEG power of 

waveforms, their topographic mapping, and coherence measures altered in 3 main states 

during a VR-guided meditation experience in patients with cancer-related CP: at baseline 

(pre), during VR-guided meditation (med), and after VR-guided meditation (post). 

Moreover, we explored whether their pain level was associated with waveform power 
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measures. We were particularly interested in the power, topography, and coherence of α, 

γ, and θ wave activity, and possible synchrony with VR activity, as other researchers have 

reported changes in these 3 waveforms with MBSR activities. Therefore, we were 

interested in determining whether prior findings were consistent with those observed 

during a VR experience. Specifically, the questions we sought to address in this study 

were as follows: 

1. Were there any observable or significant changes between pre and 
during VR-guided meditation experiences and between pre and post 
VR-guided meditation experiences with the power, topographic 
changes, or EEG coherence in specific waveforms? 

2. Was there any evidence that changes in the pain experienced by 
participants during a VR-guided meditation activity were associated 
with observable EEG changes? 

5.2. Methods 

5.2.1. Approach 

An exploratory, single-subject design study was undertaken to compare EEG 

activity and pain levels before, during, and after VR-based meditation practice. This study 

was reviewed and approved by the University of British Columbia Clinical Research Ethics 

Board. 

5.2.2. Recruitment 

A convenience sample of 10 participants was used and recruited from those in an 

existing randomized controlled trial (RCT; ClinicalTrials.gov: NCT 02995434) where 

patients with cancer were using VR as an adjunctive therapy to help manage their CP 

(Textbox 1). These participants were completing or had completed cancer treatment and 

experienced a range of cancer-related pain, including neuropathy, fibromyalgia, 

postsurgical pain, or an exacerbation of pre-existing pain. 
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Participants were purposively recruited, focusing on recruiting those from the RCT 

cohort who had previously responded well to a VR-based meditation experience, with a 

self-reported reduction of a Visual Analog Scale for Pain ≥1. They were invited to 

participate in a single 2-hour VR-guided meditation experience, with EEG recorded in their 

home or at the university, and were offered a Can $100 (US $83) honorarium and 

expenses for taking part. As an exploratory study designed to establish methods and 

feasibility using a limited convenience sample, with an unknown effect size, the power to 

inform the sample size was not calculated a priori. This is acceptable for this type of 

inductive study (Johanson & Brooks, 2009). 

5.2.3. Equipment 

EEG signals were recorded during the session using a BioSemi ActiveTwo system 

(BioSemi) with 64 channels in a standard 10-20 configuration. This system uses a head 

cap system with pin active silver chloride electrodes. The EEG ground (labeled DRL 

[Driven Right Leg]) on the Biosemi system was placed between POz and PO4, and the 

Randomized controlled trial eligibility criteria. 

Eligibility Criteria 

• Aged ≥16 years, with a past or current diagnosis of cancer 

• Prior or ongoing cancer treatment 

• A chronic pain diagnosis (ongoing daily pain for ≥3 months, with 
a Neuropathic Pain Rating Scale of ≥4) 

• Able to understand English (read and write) 

• Normal stereoscopic vision 

• Able to move their head up, down, left, and right and able to 
wear a virtual reality head-mounted display 

• Sufficient fine motor control in one hand to use a game controller 

• Have space at home for a computer and monitor 

Textbox 1. Randomized controlled trial eligibility criteria. 
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EEG reference (labeled CMS [Command Mode Sense]) was placed between POz and 

PO3. The antialiasing filter was a fixed first-order analog filter with −3 dB at 3.6 kHz, and 

the low-pass filter was a fifth-order cascaded integrator-comb digital filter with −3 dB at 

one-fifth the sample rate. A powerline notch filter was not applied because the system 

used active electrodes, a battery power supply, and optic fiber, greatly reducing noise from 

the powerline. Each channel consisted of a 24-bit analog-to-digital converter. Recordings 

were made at 1024 Hz (although one was recorded at 2048 Hz) using ActiView software 

(Biosemi Instrumentation). 

An HTC Vive VR system (HTC) with a Deluxe Audio Strap fitted over the top of the 

EEG cap was used. This system features a 2160×1200 resolution, 90 Hz refresh rate, and 

110° field of view. Positional tracking from 2 infrared cameras enabled 5-degrees-of-

freedom motion tracking of the headset and hand controllers. Integrated stereo 

headphones supported 3D audio immersions. During the initial pilot testing, this system 

was found to work effectively. Minor noise was evident in the EEG from the VR system on 

rare occasions, but we were able to remove most of this noise by careful repositioning of 

the equipment. 

For meditation practice, a commercially available Guided Meditation VR 

application (Cubicle Ninjas) was used. As each meditation was only 10 minutes in this 

app, we selected a single sequence of 3 unique meditations, Zen 2-4, to form a 30-minute 

block of meditation. In the guided meditation experience, users were situated in the Lost 

Woods virtual environment with the Calm music selected. They were able to explore a 

calm, forest 3D environment with running water features with soft chirping bird and gentle 

wind sounds. Using a controller, participants could move to different positions in the forest 

to explore or find a particular viewpoint they liked and found most conducive to their 

meditation. A narrative provided audio guidance on the meditative practice. This 

environment was selected to maximize the similarity with the participants’ prior VR 

experiences in the RCT. 

Both EEG recording and the VR system were run on a Dell G7 17 7790 gaming 

laptop (Intel Core i7-8750H, 16 GB DDR4, RTX 2060) placed in front of the participant. 

During recording, the laptop screen was arranged to display the ActiView software and a 

mirror window of the Guided Meditation VR application experience, showing the 

participant’s perspective in the VR HMD. In addition, a Windows 10 (Microsoft) camera 
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app was used to record the video. This arrangement was recorded using Snagit 

(Techsmith) screen capture software to accommodate the time synchronization of EEG 

and recordings of participants’ physical movements (Figure 5.1). 

 

Figure 5.1. Electroencephalograph recording during a virtual reality experience. 

5.2.4. Procedures 

Participants were seated in front of the laptop, and the laptop webcam was framed 

to capture the participants’ head, arms, and upper body. Before putting on the EEG head 

cap, participants were familiarized with the VR app, its controls, and how to navigate and 

select meditations. The Cz, inion, and left and right preauricular locations were marked 

using standard EEG landmarking methods. These locations were used to align the EEG 

head cap on the participant. The electrode paste was then applied, and the electrode 

contacts were adjusted until the electrode offsets were less than 50 µV. The VR HMD was 

then placed in position over the EEG head cap, and the experience commenced. 
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The overall structure of data collection used an 8-minute resting condition, followed 

by the 30-minute sequence of meditations and followed by another 8-minute rest condition 

(Figure 5.2). The 8-minute period was considered a balance between being shorter to 

reduce strain and being longer for more data; this period has been used in EEG studies 

in a variety of fields for baselines (Boonstra et al., 2016; Konicar et al., 2021; Sikka et al., 

2019). 

 

Figure 5.2. (A) Diagram of equipment setup. (B) Timeline of recording, including 
rest and meditation conditions. (C) Diagram of desktop view. EEG: 
electroencephalograph; NRS: numerical rating scale. 

During the rest conditions, the participants were asked to rest quietly and observe 

a small white crosshair displayed on a black background in the VR HMD. Participants 

were instructed to keep their eyes open while blinking naturally, to keep their eyes on the 

crosshair, and to stay still while not thinking about anything. During the meditation practice, 

participants were instructed to engage with the guided meditation and look around or move 

around the virtual environment as they liked, to find an enjoyable perspective. Each guided 

meditation experience lasted 10 minutes, and participants were instructed to begin the 

next one immediately after the intervening rest condition. Pain was assessed before and 
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after the first rest condition, after each 10-minute guided meditation, and after the second 

rest condition. Participants were asked to verbally rate their pain from 0 to 10 on the simple 

numerical rating scale (NRS) (Williamson & Hoggart, 2005). 

5.2.5. Analysis 

Data Preprocessing 

The recording sessions of the resting condition, the 3 guided meditation conditions, 

and the final resting condition were referred to as the Pre, Med1, Med2, Med3, and Post, 

respectively, for the analysis. These 5 conditions were extracted based on the time stamps 

acquired from the EEG video recordings. 

Figure 5.3 illustrates the EEG data preprocessing steps. The raw EEG data in the 

Biosemi format were imported and preprocessed using FieldTrip software (Donders 

Institute for Brain, Cognition and Behaviour) (Oostenveld et al., 2011). As the bandwidth 

of interest was less than 50 Hz, the data were downsampled to 512 Hz to reduce 

computing time in later processes. To prepare for downsampling, an antialiasing sixth-

order low-pass Butterworth two-pass filter set to 70 Hz was first applied to the data. The 

primary 64 EEG channels were then re-referenced to the averaged left and right mastoid 

electrodes (T7 and T8). This re-referencing process effectively eliminated the noise 

introduced from the original reference electrodes. After this process, the reference 

electrodes T7 and T8 were eliminated from the data, and only 62 channels were retained. 

In addition, a sixth-order high-pass Butterworth two-pass filter with a cut-off at 1 

Hz was used to remove slow drifts and to prepare the data for independent component 

analysis (ICA) (Makeig et al., 1995). The data were further notch-filtered to remove any 

powerline noise and harmonics, with cut-offs set at 60, 120, and 180 Hz. Bad channels 

were identified during the EEG recording process using an EEG data browser and 

rejected. 

These data for each condition were further segmented into nonoverlapping epochs 

of 2 seconds in length to enable signal averaging in the frequency domains (Levy, 1987). 

A data cleaning process was then performed using the FieldTrip automatic artifact removal 

feature, which is based on a Z-transformation and the setting of a threshold to reject bad 

epochs. This artifact removal result was found to be unsatisfactory, so a manual cleaning 
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process was then performed. Segments with participant movement observed in the videos 

were identified, and any residual bad segments and channels were rejected. These steps 

effectively eliminated the artifacts caused by head and body movements. 

 

Figure 5.3. Electroencephalograph data preprocessing chart. EEG: 
electroencephalograph; ICA: independent component analysis. 

Any remaining artifacts caused by eye blinks, eye movements, and external noise 

were eliminated from the data using ICA. These manual artifact removal and ICA 

processes were repeated 3 times during the cleaning process to ensure that all 

movement-based artifacts had been captured. Finally, bad channels were repaired 

(Bigdely-Shamlo et al., 2015) using the established practice of spline interpolation of the 

neighborhood channels on the bad channels (Perrin et al., 1989). 
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Power Spectral Density Analysis 

The power spectral density (PSD) (Johnson et al., 1969) was computed for the 

conditions using a fast Fourier transform method (Cooley & Tukey, 1965). Hanning taper 

smoothing was applied to reduce spectral leakage owing to the discontinuity of the signal 

at the start and end points of the epochs. To improve the signal-to-noise ratio, the average 

PSD of the epochs was used. The PSD was further normalized by dividing the average 

power across all the frequency bins in each channel. The frequency range in the analysis 

was set to 2-50 Hz, which effectively covers the waveforms commonly used in EEG 

analysis. The PSD results of the premeditation experiences, during meditation 

experiences, and postmeditation experiences were then plotted and shown as pre, med, 

and post conditions, respectively. For med, the average PSD of the meditation conditions 

was computed using the average of the 3 meditation conditions (Med1, Med2, and Med3). 

For a graphical overview, a band power box and whisker plot were created. The plot 

revealed the signal power over the typical EEG frequency bands: 2-4 Hz (δ), 4-8 Hz (θ), 

8-12 Hz (α), 12-30 Hz (β), and 30-50 Hz (γ) (Nayak & Anilkumar, 2020). The lower 

boundary of 2 Hz was set to avoid any distortion introduced by the high-pass filter at 1 Hz. 

The upper boundary of 50 Hz was selected to avoid the heavy power-level drop due to 

the use of a 60 Hz notch filter. In addition, 50 Hz was considered a reasonable cut-off 

between the high and low γ ranges. 

Topographic and Coherence Analysis 

To explore the spatial properties of the signals on each EEG channel, a 

topographic mapping of the PSD was plotted according to the traditional frequency ranges. 

The PSD was plotted using a heat map visualization technique to display the magnitude 

of the PSD with a 2D color representation. An interpolation based on the MATLAB 4 grid 

data method was used to smooth the topography, where a surface was fitted to the 

scattered data points using a biharmonic spline interpolation (Sandwell, 2012). This PSD 

plot was used to graphically illustrate the spatial properties associated with the pre, med, 

and post experiences. 

A coherence analysis (Classen, 1998) was performed to visualize the functional 

connectivity between the electrodes as an indication of the brain areas that may be 

functionally integrated. Coherence of the pre, med, and post conditions were plotted for 

the frequency bands. A value between 0 and 1 was displayed for each channel pair. A 
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value of 1 indicates full synchronization between the channel pair, and a value of 0 reveals 

that the channel pair does not work in the synchronized condition. The significance of the 

coherence difference between the conditions was computed using the two-tailed Student 

t test and then plotted. 

Pain 

Pain experience was measured using the NRS. Pain scores were collected from 

the patients as an initial baseline at the start, and after each condition, to explore any 

correlation between pain levels and any PSD changes identified during the meditative 

experience. 

Statistical Analysis 

For the PSD and coherence analysis, the null hypothesis set for inferential 

statistical analysis was that the probability distribution of the condition-specific averages 

for PSD and coherence would be identical for all conditions. 

As a cluster-based permutation test (Maris & Oostenveld, 2007) can be used to 

effectively resolve multiple comparisons in EEG signal statistical analysis, this test was 

used in this study to examine the overall PSD differences between the pre-med, med-

post, and pre-post conditions by identifying the clusters of electrodes with significant 

changes. The tests were conducted using the Monte Carlo method, with 128 permutations, 

two tails, and α=.025 (negative and positive tails together equal .05). In addition, for 

comparison of all 3 conditions together, a multivariate analysis of variance (MANOVA) 

was used, with 2048 permutations, one tail, and α level set to .05. 

The effect size was calculated after the cluster-based permutation test. First, a 

bounded rectangular area spanning each cluster was identified. This rectangular area was 

bounded by the frequency window of the cluster and all the channels in that cluster. The 

PSD in this area was then averaged. The maximum Cohen d effect size was then 

computed using FieldTrip for each of the conditions. The effect size was not computed for 

the MANOVA because it requires the specification of 2 mean groups for comparison. 

Generally, a Cohen d effect size around 0.2 is considered small and around 0.8 and higher 

is considered large to very large (Cohen, 1988; Sawilowsky, 2009). Finally, peak channel 

tests were performed to verify the PSD changes, and post hoc power analyses using 
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G*Power (Faul et al., 2007) were performed to indicate statistical power based on the effect 

sizes observed in the sample. 

For the coherence analysis, the Student t test was used to examine significant 

coherence differences between the conditions. Parameters were set to two-tailed, paired 

samples, and α=.05, with a 10% false discovery rate (FDR) adjustment set (Benjamini & 

Hochberg, 2018). 

To explore the associations between pain scores and PSD, repeated measures 

correlation (Bakdash & Marusich, 2017) was conducted. Some peak PSD channels 

identified with a high significance of PSD change from the cluster topoplot were input for 

each condition as the repeated independent variable, and the NRS pain score was input 

as the dependent variable. 

5.3. Results 

5.3.1. Overview 

A total of 10 participants were recruited (Table 5.1). As we went through the data 

cleaning process, the data from 1 participant (S05) were found to be excessively noisy, 

and on video review, 2 other participants (S08 and S09) were found not to be following 

the procedures. Hence, their results were excluded, and a sample size of 7 was used in 

the final analysis. 

Table 5.1. Participant demographics. 

Subject Age (years) Sex Cancer history 

S01 59 Female Abdominal tumors 

S02 66 Male Non-Hodgkin lymphoma 

S03 37 Male Non-Hodgkin lymphoma 

S04 58 Female Breast cancer 

S06 47 Female Chondrosarcoma 

S07 50 Female Colon cancer 

S10 64 Male Prostate cancer 



81 

5.3.2. PSD Analysis 

Figure 5.4 illustrates the average of the power spectrum of the 3 conditions to 

provide a general overview of the power spectrum in the data, whereas Figure 5.5 shows 

the box and whisker plot of band power of the pre, med, and post conditions in the 5 

traditional frequency ranges. From these figures, the differences in power in the frequency 

bands between the conditions were identified. The post condition power level had the 

lowest median and mean values in the δ range. The med condition changed from the 

lowest median and mean values in θ and α to the highest median and mean values in β 

and γ. 

 

Figure 5.4. Grand average power spectrum. 
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Figure 5.5. Power level changes between the pre, med, and post conditions in 
different frequency ranges. Boxplot shows the median and range of 
power level of the participants. Line plot shows the changes in mean 
power. 

The topographic distribution of the PSD is shown in Figure 5.6. Differences in pre, 

med, and post conditions are shown spatially in all bands and in different brain regions. 

Changes in the power levels during meditation were observed in all frequency bands. In 

δ, an increase in power level in the central occipital region was observed, and a drop of 

power in the frontal-central region was observed in the post condition. In θ, there was a 

drop in the power level in the frontal cortex. In α, a decrease in power level in the central 

parietal region was noted. In the β band, an increase in power level was found in the 

bilateral central and prefrontal regions during meditation. In γ, an increase in power level 

was noted in the left frontal (LF) and right frontal (RF) regions, and a slight increase in the 

central parietal region was observed. 
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Figure 5.6. Topography of power spectrum shown in different frequency ranges. 
Different color scales are used for the frequency ranges to reveal the 
details in the central areas. 
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Figure 5.7. Power spectrum analysis using the cluster-based permutation test. 
Clusters of electrodes found with significant changes in power are 
marked with a circle marker at the electrodes. The color bars show 
the permutation test t-value level. MANOVA: multivariate analysis of 
variance. 

Error! Reference source not found. shows the topoplot of the two-tailed cluster-

based permutation test results. The conditions were compared in the test, including two-

tailed pre versus med, med versus post, and pre versus post and a one-tailed MANOVA 

for all 3 conditions together. The clusters of electrodes with significant differences found 

in PSD changes were marked with a circle marker at the electrodes. The color bars 

indicate the t values computed from the test. For the pre versus med comparison, a cluster 

with a significance of P=.02 was found in the range of 24.5-31 Hz (high β and low γ) in the 

frontal cortex. For the med versus post comparison, significance was found in the β and γ 

ranges. A cluster with a significance of P=.001 was found in the range of 37-50 Hz (γ), 

and the cluster covered most brain regions; a cluster with a P value of .008 was found in 

the range of 23-36 Hz (high β and low γ) in the frontal and central cortices. For the pre 

versus post condition comparison, a cluster with P=.02 was obtained in the frontal, central, 

and parietal regions in the range of 8-9.5 Hz (high θ and low α). The MANOVA cluster-



85 

based permutation test for all the pre, med, and post conditions returned 4 clusters with 

P≤.05, where the test was one-tailed. The first cluster found has P=.002 in the range of 

37.5-50 Hz (γ) in the frontal, central, and parietal cortices. The second cluster with P=.03 

was found in the range of 31-36 Hz (low γ) in the frontal and central cortices. The third 

cluster with P=.03 was found in the range of 2-5 Hz (δ and low θ) in the frontal, central, 

and parietal cortices. The last cluster with P=.04 was found in the range of 24-30 Hz (high 

β) in the frontal and central cortices. Table 5.2 shows the test results for all the clusters of 

significance. The very large effect size indicated that the permutation tests were effective 

in rejecting the null hypothesis. 

Table 5.2. Cluster-based permutation test results. All clusters with P≤.025 are 
shown for the first 3 tests, and clusters with P≤.05 are shown for the 
multivariate analysis of variance test. 

Comparison and cluster P value Effect size 

Pre-med 

1 .02 1.252 

Med-post 

1 .001 3.190 

2 .008 1.318 

Pre-post 

1 .02 1.504 

MANOVAa 

1 .002 —b 

2 .03 — 

3 .03 — 

4 .04 — 
aMANOVA: multivariate analysis of variance.  
bNot calculated as it required to specify which 2 conditions to compare. 

By inspecting the topoplots (Figure 5.6 and Error! Reference source not found.), 

5 peak channels with noticeable changes in the power levels between the conditions were 

selected for additional analysis and for better understanding the observed power level 

changes. The peak channels selected were AF7 and Fp2 in the prefrontal region, FC1 in 

the frontal region, CP5 in the left central (LC) region, and P5 in the left parietal (LP) region. 

Two-tailed, paired-sample t tests were performed to examine the overall PSD changes in 

different conditions. These tests were conducted on the pre and med, med and post, and 

pre and post conditions. The resulting P values were reported with an FDR adjusted to 
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10%. The t test results were plotted graphically for ease of interpretation. For each of the 

peak channels, a combined plot of the results of the 3 conditions was used. 

 

Figure 5.8. Graphical depiction of P values of changes in power spectral density 
between conditions for the selected channels. Shading indicates 
significance found at the .025 level, and shading above the dashed 
line indicates the adjusted significance at the .0025 level (with the 
false discovery rate set to 10%). 
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Figure 5.8 shows the P values obtained in a graphical form for the comparison of 

the 3 conditions. The upper shaded areas represent P≤.025. The shaded areas above the 

dashed line represent the adjusted significance with P≤.0025. 

A statistical power analysis was also performed to verify the probability of detecting 

a true effect in the t tests. Table 5.3 shows the maximum effect size value and the 

respective frequency point found for each channel and for each comparison. Table 5.4 

shows the statistical power based on the effect sizes listed in Table 5.3. It is shown that 

the t test results have a high power ≥0.7302 even when using the adjusted α value of .005. 

Table 5.3. The maximum channel effect size and the frequency at which it was 
located. 

Channel Pre-med Med-post Pre-post 

 Max effect 
size 

Frequency 
(Hz) 

Max effect 
size 

Frequency 
(Hz) 

Max effect 
size 

Frequency 
(Hz) 

AF7 1.9542a 31 1.9946 31.5 1.5613 17.5 

Fp2 2.3861 32 3.7903 31.5 1.4682 9.5 

FC1 1.1037 13.5 2.9888 29 1.9221 9.5 

CP5 1.1651 15 2.1765 39 1.9937 2.5 

P5 1.0514 40 2.6077 3.5 2.0736 8.5 
aBolded values indicate where P≤.0025 was found for that frequency value. 

Table 5.4. Power analysis for the effect size found. 

Channel Pre-med, α=.005 Med-post, α=.005 Pre-post, α=.005 

AF7 0.7472a 0.7676 0.5073 

Fp2 0.9125 0.9998 0.4450 

FC1 0.2225 0.9890 0.7302 

CP5 0.2556 0.8470 0.7672 

P5 0.1962 0.9558 0.8047 
aBolded values indicate where P≤.0025 was achieved. 

5.3.3. Topographic and Coherence Analysis 

Figure 5.9 demonstrates the coherence detected in the α band during meditation. 

The functional connectivity level is represented by a red to blue color scale. The red color 

with a value close to 1 indicates that a channel pair is highly synchronized in the signal 

transfer. The blue color with a value close to 0 indicates that the channel pair is working 

independently. 
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Figure 5.10 shows the significant difference in coherence for the comparison of the 

med and post conditions in the α band. Channel pairs with P≤.025 are highlighted in green. 

Those with P≤.0025 (FDR adjusted) are highlighted in yellow. For clarity, the EEG 

channels were divided into regions according to their respective locations in the brain, 

namely, LF, LC, LP, left occipital, central parietal and occipital, RF, right central, right 

parietal and right occipital. Table 5.5 summarizes the results of a series of plots, as shown 

in Figure 5.10, for all the bands and all 3 comparisons. The table shows the significant 

coherence changes with P≤.0025 between the brain regions, where 1 denotes the pre and 

med comparison, 2 denotes the med and post comparison, and 3 denotes the pre and 

post comparison. The frequency band of the region pair at which a significance was found 

is shown with the Greek letter of the band. The number inside parentheses indicates the 

number of significant channel pairs in the frequency band. 

 

Figure 5.9. Coherence between the electroencephalograph channels during the 
virtual reality–guided meditation and in the α frequency range. 
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Figure 5.10. Channel pairs with significant coherence difference between the 
meditation and post meditation conditions in the α band. t test was 
used in the analysis, and channel pairs with a P≤.025 are highlighted 
in green, and channel pairs with a P≤.0025 (with the false discovery 
rate set to 10%) are highlighted in yellow. CPO: central parietal and 
occipital; LC: left central; LF: left frontal; LO: left occipital; LP: left 
parietal; RC: right central; RF: right frontal; RO: right occipital; RP: 
right parietal. 

As shown in Table 5.5, significant changes were mostly found between the frontal 

and parietal regions, namely, RF-LP (11 channel pairs) and LF-LP (4 channel pairs). In 

addition, the most active regions were LP (related to 17 channel pairs), RF (15 channel 

pairs), LF (7 channel pairs), right parietal (7 channel pairs), and central parietal and 

occipital (7 channel pairs). For the 3 comparisons overall, significant changes were mostly 

found between the frontal and parietal and occipital regions, particularly in the θ, α, and β 

bands in the med-post comparison. For the pre-med comparison, the frontal-parietal 

region-pair coherence changes were observed in the γ band. For the pre-post comparison, 

the frontal-parietal and occipital region-pair coherence changes were observed in the δ, 

α, and β bands. Table 5.6 shows the effect sizes of the 2 regions of interest, namely, RF-
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LP and LF-LP. Some large to very large effect sizes (≥0.8) were found in the δ, θ, α, and 

γ bands. 

Table 5.5. False discovery rate–adjusted significant coherence changes found 
in the region pairs for the 3 comparisons: 1: pre versus med, 2: med 
versus post, and 3: pre versus post. 

Region LFa LCb LPc LOd CPOe RFf RCg RPh ROi 

RO 3: δj 3: θ —k — — — — — ✓l 

RP — — 2: δ(2)m 2: δ 2: δ 2: α; 3: β 1: θ ✓ — 

RC — — — — — 1: β 3: α (✓) — — 

RF — — 1: γ(2); 2: 
θ(2), α(5); 
3: δ(2) 

— 2: α ✓ — — — 

CPO 3: δ α 1: α; 2: 
α(2) 

— — ✓ — — — — 

LO — — — ✓ — — — — — 

LP 2: θ, 
α(2), β 

— ✓ — — — — — — 

LC — ✓ — — — — — — — 

LF ✓ — — — — — — — — 

aLF: left frontal.  
bLC: left central.  
cLP: left parietal.  
dLO: left occipital.  
eCPO: central parietal and occipital.  
fRF: right frontal.  
gRC: right central.  
hRP: right parietal.  
iRO: right occipital.  
jGreek letter indicates the frequency band of the region pair with significant change.  
kThe empty cells in the upper left of the check mark diagonal show no significant channel pair was found. The cells in 
the lower right of the check mark diagonal are not used, as they are just mirrored duplicates of the cells in the upper 
left of the check mark diagonal.  
lThe checkmark indicates a region connects to the same region in the region pair.  
mNumber within parentheses indicates the number of channel pairs with significant changes in that frequency band. If 
there is only 1 channel pair, the number is not shown. 
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Table 5.6. Effect sizes of the 2 region pairs of interest: right frontal-left parietal 
and left frontal-left parietal. 

Band Region-pair RF-LPa average, effect size Region-pair LF-LPb average, effect size 

 Pre-med Med-post Pre-post Pre-med Med-post Pre-post 

δ 0.2873 0.7545 0.8511c 0.1636 0.4461 0.2862 

θ 0.5568 0.7738 0.1496 0.7464 0.8234 0.1610 

α 0.5855 1.3032 0.8593 0.7742 1.7736 1.0655 

β 0.4643 0.6142 0.2211 0.2759 0.5135 0.1294 

γ 0.3482 1.0220 0.2218 0.3032 0.5880 0.1633 
aRF-LP: right frontal-left parietal.  
bLF-LP: left frontal-left parietal.  
cBolded values indicate large and very large effect sizes. 

Table 5.7 shows the NRS pain scores collected immediately after the pre, Med1, 

Med2, Med3, and post conditions. A repeated measures correlation analysis was 

performed on some selected peak channels and clusters. In the test, no significant 

relationship between the collected pain scores and PSD was found. 

Table 5.7. Numerical rating scale scores collected after each condition. 

Participant NRSa score 

 Pre Med1 Med2 Med3 Post 

S01 4 2 2 2 1 

S02 4 3 0 0 1 

S03 7 4 7 5 3 

S04 6 5 4 4 3 

S06 5 6 5 4 5 

S07 3 5 4 2.5 4 

S10 3 3 2 2 2 
aNRS: numerical rating scale. 

5.4. Discussion 

5.4.1. Principal Findings 

Overview 

In answer to the primary research question, there were significant changes in EEG 

power and coherence among three conditions (pre, VR-guided meditation, and post). 

Therefore, the null hypothesis of no difference was rejected. 
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The visual inspection of the global normalized power spectrum analyses revealed 

various changes in all bandwidths. The predominant pattern was for increased δ, β, and γ 

bandwidth power in the meditation condition, compared with both the pre and post 

conditions. In the θ and α bandwidths, the changes in power were more varied within the 

3 conditions. 

Pre-Medication Versus VR-Guided Meditation 

Visual inspection of the topographic distribution showed 2 main patterns 

comparing meditation with the prior resting condition. The first was an increase in power 

of δ (mainly in the central and occipital areas), β (mainly in the bilateral prefrontal areas), 

and γ (mainly in the frontal and bilateral prefrontal areas) during VR-guided meditation. 

The second pattern that emerged from the visual topography map was decreased 

low-frequency range power of the θ (mainly in frontal areas) and α (mainly in occipital and 

parietal areas) bandwidths in the med condition compared with the pre condition. 

However, these visually observed changes were not significant in the permutation test. 

Among the significant changes identified, the permutation test showed that a 

cluster of increased signals occurring across the high β and low γ range (24.5-31 Hz) in 

frontal areas was significantly different in the pre condition than in the med condition. In 

addition, comparison of single selective channels between conditions showed a significant 

difference in this bandwidth in the frontal areas recorded from AF7 and FP2. 

β waves generally replace α waves when participants open their eyes, and in the 

motor cortex, β waves are associated with muscle motor activity (Johnson et al., 1969; 

Nayak & Anilkumar, 2020). They are normally most prominent in the frontal and central 

head regions and attenuate posteriorly. This may have been the case for the increase 

observed here. β activity is also commonly associated with drowsiness, stage nonrapid 

eye movement 1 sleep, and subsequently decreases in deeper sleep, and β activity is not 

affected by eye opening (Nayak & Anilkumar, 2020). Interestingly, sedative medications 

are also known to increase the amplitude and quantity of β activity (Louis & Frey, 2016). 

This finding suggests that an increase in the power of the β range might potentially be 

useful as a neurophysiological correlate of VR-guided meditation. Nevertheless, findings 

regarding changes in the β band with meditation have been inconsistent. Several studies 

have reported no significant changes associated with meditation in the β range (Lomas et 
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al., 2015; Lagopoulos et al., 2009). However, an increase in β and θ band power was 

reported in one study after a longer period of 6 weeks of meditation compared with 

baseline (Ahani et al., 2014). It is possible that the changes in β power in the meditation 

condition compared with the premeditation condition here may be more specific to the use 

of VR-guided meditation and the visual activity involved, but further work is required to 

explore this. 

In contrast, the activity of the γ band has been reported to be associated with 

activation of the default mode network (Berkovich-Ohana et al., 2012). The default mode 

network is most frequently detected during the resting conditions and reflects the neural 

activity of different brain areas, such as the cingulate cortex, hippocampus, medial frontal 

lobes, inferior parietal lobes, and temporal lobes. It is thought to be involved in self-

consciousness; self-processing; and introspective functions, including emotional 

awareness and processing (Imperatori et al., 2016; Garrison et al., 2015; Buckner et al., 

2008; Greicius et al., 2003). An increase in γ band activity in the frontal and prefrontal 

areas during VR-guided meditation could reflect the activation of such introspective 

experiences through meditation. The increase in γ power may also have been due to the 

activation of attentional networks and visual processing of the meditative VR environment 

(Braboszcz et al., 2017). 

It is also noteworthy that others have reported an increase in γ band power related 

to meditation (Cahn & Polich, 2006; Braboszcz et al., 2017; Berkovich-Ohana et al., 2012). 

For example, one study reported an increase in the γ band (25-45 Hz) during meditation 

compared with the resting state in the temporal and parieto-occipital areas in mindfulness 

meditation practitioners (Berkovich-Ohana et al., 2012). Another study reported that the 

proficiency level of the meditator is associated with the increased level of the γ band (60-

110 Hz) in the parieto-occipital region in meditative states relative to the mind-wandering 

state in experienced meditators compared with healthy controls. Although it is noteworthy, 

in this study, no significant difference was found between the states of meditation and 

mind wandering (Braboszcz et al., 2017). 

VR-Guided Meditation Versus Post-Meditation 

In contrast to the pattern of increase in high β and low γ activity in the meditation 

condition compared with the prior rest condition, here, we observed a pattern of reduced 

β and γ power in the post condition compared with the meditation condition in the 
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topographic maps. This was followed by permutation test results in terms of 2 significant 

clusters of differences in the β cluster (23-36 Hz) and γ cluster (37-50 Hz) in the post 

versus med condition. These findings suggest a potential regression back to the baseline 

state activity and further suggest that changes in high β and low γ activity are associated 

with a VR meditative state. Analysis of single selective channels also supported 

widespread significant differences in the power of β and γ bandwidths in the frontal, 

central, and parietal channels (FP2, FC1, CP5, and P5). 

As γ band oscillation has also been reported to be associated with attention toward 

pain and hypervigilance (Tiemann et al., 2012; Tiemann et al., 2010), the significant 

reduction in γ band activity following the VR meditation experience could potentially show 

that less attentional capacity is directed toward pain after using a meditative VR 

environment. However, this is conjectural and requires further verification. 

Pre-Meditation Versus Post VR-Guided Meditation 

The comparison of the pre and post conditions could provide an indication of a VR-

guided meditation effect in our study. These changes were mainly observed in the α 

frequency range in terms of an increase in α power in the frontal and central areas in the 

post condition compared with the pre condition. This was accompanied by a significant 

cluster-based permutation analysis finding over a cluster of channels in the frontal and 

central areas (8-9.5 Hz) and significant differences in α power in channels such as Fp2, 

FC1, CP5, and P5. An increase in the θ band in the central areas and a decrease in the θ 

band in the posterior occipital areas were also observed in the power spectrum analysis; 

however, these changes were not found to be significant in single-channel analysis. The 

posterior dominant α rhythm is characteristically present in normal conscious EEG 

recordings in the occipital region. It is a defining feature of the normal background rhythm 

of the adult EEG, best observed with the eyes closed and during mental relaxation and is 

attenuated by eye opening and mental effort. θ waveforms are characteristically observed 

more in drowsiness and in the early stages of sleep, such as light sleep (the nonrapid eye 

movement 1 and nonrapid eye movement 2 sleep phases) (Nayak & Anilkumar, 2020). 

Increases in α-θ bandwidths have previously been reported to be associated with 

mindfulness meditation, and the α-θ border (7-8 Hz) has also been suggested as an 

optimal range for indicating visualization activity (Lomas et al., 2015; Belkofer et al., 2014; 

Faber et al., 2015). 
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A final observation worthy of note is that there was a reduction in the δ range power 

in the post condition compared with the pre condition, which was significantly different in 

the LC and parietal channels (CP5 and P5). Moreover, although changes in the δ range 

were not significant in the pairwise pre-post comparison, a cluster of channels was 

identified to be significant in MANOVA. δ is seen more in deep, dreamless sleep, and 

meditation activities where awareness is more detached (Lomas et al., 2015; Nayak & 

Anilkumar, 2020). Such a general pattern of reduction in δ power in the post condition 

compared with the pre condition could possibly be related to the effect of VR-guided 

meditation on brain activity and would need further work to explore if this is a significant 

trend. 

Coherence 

The significant coherence changes suggested that variations in brain connectivity 

occurred between the different test conditions. Coherence was found predominantly 

between the frontal and parietal and occipital cortices and in different wave bands, namely, 

in γ for the pre and med conditions; in θ, α, and β for the med and post conditions; and in 

δ, α, and β for the pre and post conditions. The γ coherence changes between the pre 

and med conditions were likely associated with activity during the VR-guided meditation. 

Between the med and post conditions, it shifted to slower frequencies, possibly suggesting 

a postmeditation effect. The pre-post comparison showed coherence in the δ, α, and β 

ranges. The reasons for this are unclear and could be related to the individual responses 

of the participants after the VR-guided meditation. The coherence values were computed 

without removing volume conduction effects, such as using the surface Laplacian method. 

However, significant coherence changes were mainly found between the frontal and 

parietal regions, the electrodes were far apart, and the coherence contributions due to 

volume conduction should be small (Srinivasan et al., 1998). 

Pain and EEG Signals 

In terms of the secondary focus of the study to explore pain changes correlated 

with EEG variations, we found no significant association between pain reduction and 

changes in electrophysiological signal. This could be due to the limited sample size of this 

exploratory study. More electrophysiological studies on a larger sample population could 

potentially identify EEG correlates associated with pain reduction after VR-guided 

meditation. 
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5.4.2. Limitations 

As an exploratory study, the sample numbers were small and not necessarily 

representative of the wider population of patients with CP, which limited the power to 

identify differences. Therefore, there is a need for neurophysiological studies with larger 

samples to validate these results and to explore this phenomenon better. In addition, this 

was a single cohort study with no comparison group, although resting states before and 

after meditation were used as a no-mindfulness within-subjects control. Finally, the study 

focused on short-term neurophysiological alterations in the electrophysiology of the brain, 

and the long-term effects of meditative VR environments are still unknown, which will 

require longitudinal studies. 

5.4.3. Conclusion 

These findings suggest that distinct altered neurophysiological brain signals are 

detectable during VR-guided meditation, predominantly in terms of an increase in the 

power of the β and γ bands. Changes in the α and θ bands were also identified, 

predominantly as a pattern in VR-guided meditation compared with the resting baseline, 

possibly reflecting the specific impact of visual activity during VR-guided meditation. Some 

changes in coherence were also observed between the frontal and parietal and occipital 

cortices during VR-guided meditation. No significant association between NRS pain 

scores and changes in EEG signals was observed. Although this is an exploratory study, 

the results of this work clearly demonstrate the feasibility of EEG recording and 

subsequent data processing and analysis during VR experiences in patients using modern 

VR HMDs. To our knowledge, this is the first exploration of EEG alterations in the brain’s 

electrophysiological signals associated with VR-guided meditation in patients with CP and 

should provide some valuable initial data to inform future work in this field. 
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Chapter 6.  
 
Discussion 

6.1. Brain Oscillation Variations in Chronic Pain 

The literature review in Chapter 2 shows that brain oscillations are closely related 

to the brain's information processing, and the analysis of oscillations is conceptually 

suitable for understanding the processes of chronic pain (CP). Despite the heterogeneous 

types of pain, data, and study results in the literature review, a summary showed that the 

trend of brain oscillatory activity changes in CP was primarily a slowed PAF. There were 

also works showing power changes in the theta and alpha bands. The theta power 

increase and the alpha power decrease could be related to thalamocortical dysrhythmia 

(TCD), which exhibits decreased inhibition of the thalamus and increased neurons’ spikes 

in the theta band (Llinás et al., 1999). A slowed PAF in the oscillatory activity was also 

confirmed for the other reviewed pathophysiological conditions, such as dementia, lower 

cognition and memory performance, and aging in adults. This may imply that PAF could 

be a biomarker of CP and other pathophysiological conditions. 

An important point derived from the literature review is that while performing CP 

analysis to investigate brain rhythm changes, it is necessary to minimize the effect of other 

pathophysiological conditions to avoid possible false positive results. This suggests a 

better understanding of the relationship between those conditions and CP, and a more 

thorough study design can be helpful. 

The literature review also showed that CP analyses often required age-matched 

patients and controls to compare the differences in brain oscillatory activities. Chapter 4 

aimed at this issue and explored an aging model that can be used to include age in CP 

studies. 

In Chapter 3, CP brain oscillatory activity analyses were performed using CP MEG 

data from OMEGA and SFU. The study results showed CP patients had lower PAF, alpha 

power and alpha amplitude than matched controls, though significance was not found. 

Similar results were also found when mixed controls were used in the comparison. 
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For the SFU data, the patient was compared with a matched control and a group 

of mixed controls. A slowed PAF was found in the patient in both cases, and the Crawford-

Howell single-case test showed significance in slowed PAF in the eyes closed condition 

of the patient but not the eyes open condition. The average age of the mixed controls was 

around 20 years younger than the patient; this was a limitation since the slowed PAF is 

age-related. 

The topographies of the SFU data showed the alpha rhythm at the parieto-occipital 

generation site, where the CP patient had a lower PAF than the matched control. The 

topographies also revealed the mu wave in the centro-parietal cortex and the tau wave in 

the temporal lobe. Topography helps to reveal the location of CP sources, as pain is 

associated with a network of brain areas: primary and secondary somatosensory, anterior 

cingulate, insular, prefrontal and parietal cortices, and subcortical areas, including the 

thalamus (Apkarian et al., 2005). 

The study using OMEGA data found no significance in the results, partly due to 

the small sample size limitation. However, using MEG data in a CP study was successfully 

demonstrated. The use of MEG in CP studies is still relatively rare compared to using EEG 

or fMRI. As shown in the literature review, pain is not only associated spatially with 

extended brain areas but also relates to a complex temporal-spectral pattern of brain 

rhythms: delta, theta, alpha, beta and gamma, as shown in the literature review summary 

(Table 2.1). MEG has advantages in high spatial and temporal resolutions, and it has the 

potential to reveal the brain oscillation variations due to CP, as MEG is more sensitive 

than EEG for tangential sources, which are the majority of cortical sources (Piastra et al., 

2021). 

6.2. Including Age in Chronic Pain Analysis 

The literature review in Chapter 2 revealed that both aging and CP could cause 

slowed PAF. To avoid false significance in CP studies, age has to be included in the 

analyses. The study in Chapter 4 aimed at this problem. The study started with a MEG 

dataset of over 600 subjects. After data preprocessing, a pain-free, healthy control group 

was obtained with 474 subjects. The alpha rhythm in four brain ROIs: the frontal, central, 

temporal and parieto-occipital areas, were evaluated based on PAF, absolute and relative 

peak amplitude, and high and low alpha absolute and relative power. The use of the four 



100 

ROIs was verified by the K-sample Anderson-Darling test. Boxplots and support vector 

regression confirmed the alpha rhythm property variations in aging. 

The K-sample Anderson-Darling test results showed that the four brain ROIs had 

a significant difference of P<0.001 in alpha rhythm properties in all ROI comparisons. The 

PAF comparison test between the frontal and temporal ROIs showed no significance due 

to the similarity in PAF slowing trends in these ROIs in aging. This evidence showed that 

choosing the four ROIs in the study was practical in understanding the alpha rhythm 

variations in brain cortices related to human aging. 

The boxplots provided an idea of the alpha rhythm variation trends for the mixed-

sex, male and female groups. The results showed a slowed PAF in four ROIs. Other 

variation trends observed included the relative amplitude and relative power drop in adult 

aging, but they were less evident and smooth than the PAF trend. The results were further 

verified with SVR. The frontal, temporal and parieto-occipital PAF in the mixed age group 

decreased with age with a medium effect size in statistics.  

SVR is easy to use and available from scikit-learn (Pedregosa et al., 2011). SVR 

can take both linear and non-linear kernels to fit different data properties. Also, SVR can 

take multiple inputs with weights. Unlike OLS linear regression, SVR has adjustable 

hyperparameters for fine-tuning the regression fittings and is more advanced and suitable 

for neuroimaging analyses. The case study showed that one could use SVR to achieve 

the PAF value corresponding to age, such that non-age-matched controls can be used in 

CP studies. Even matched controls can have inconsistent brain rhythm properties, so the 

SVR approach using the best-fitting curve can even out irregularities. It may achieve better 

analysis results than using age-matched controls. The CP case study result showed that 

the patients had a slower PAF than the SVR-predicted controls in the posterior alpha 

generation site, though not significant. This might be partly related to the limitation of the 

pain data since there was an average delay of around 100 days between the interview 

and MEG scanning, and the pain condition could have been changed. 

To our knowledge, the study in Chapter 4 is the first to characterize the correlations 

between alpha rhythm properties and age in four alpha generation sites using source 

space MEG and SVR. A novel SVR-prediction approach was proposed for building an 

aging model for including age in CP studies. 
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6.3. Brain Oscillation and Synchrony Variations Under 
Chronic Pain Intervention 

In Chapter 5, the study was designed to investigate brain oscillation and synchrony 

variations pre, during and post a VR-guided meditation. The VR experience was used as 

an alternative CP intervention. The study examined the waveband power changes in the 

three meditation conditions through a grand average power spectral density plot, the 

topography of the power spectrum, selected electrodes investigation, coherence 

evaluation, and the clustered-base permutation test to verify the results. The relationship 

between pain level changes and EEG variations in meditation therapy was examined and 

verified using repeated measures correlation. 

The grand average power spectrum plot and the boxplot depicted the overall power 

changes in the wavebands in the three meditation conditions. Increased δ, β, and γ power 

in meditation and varying θ and α power within the three conditions were found. The 

topography showed the power changes in different brain cortices in the three conditions. 

The topographies depicted that during meditation, an increase in δ power mainly in the 

central and occipital areas, a decrease in θ power in the frontal area and a decrease in α 

in occipital and parietal areas. Also, β power increased in the bilateral prefrontal areas, 

and γ power increased in the frontal and bilateral prefrontal areas. The topographies 

described the increase and decrease of power in the wavebands and their respective brain 

areas. 

The cluster-based permutation test showed significant signal changes between the 

three conditions. The pre versus med condition showed a cluster of increased signals 

occurring across the high β and low γ range (24.5-31 Hz) in the frontal area. The med 

versus post condition showed two clusters of differences in the high β and low γ cluster 

(23-36 Hz) and γ cluster (37-50 Hz) in the frontal, central and parietal areas. The pre 

versus post condition showed a significant α cluster (8-9.5 Hz) in the frontal, central and 

parietal areas. The selected electrodes depicted results supporting these findings. AF7 

and Fp2 showed significance in the frontal area in the high β and low γ range, FP2, FC1, 

CP5, and P5 showed significance in the frontal, central and parietal areas in the high β 

and low γ, also Fp2, FC1, CP5, and P5 in the frontal, central and parietal areas in α.  
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Previous findings in mindfulness meditation studies were increased power and 

coherence in α, θ, and γ band frequencies (Lomas et al., 2015; Lee et al., 2018; Cahn & 

Polich, 2006; Delmonte, 1984). The increase in β in this study could be related to muscle 

motor activity in the motor cortex, drowsiness, stage nonrapid eye movement 1 sleep, and 

decreases in deeper sleep. The increase in γ power could be associated with the default 

mode network (DMN) (Berkovich-Ohana et al., 2012), also the activation of attentional 

networks and visual processing of the meditative VR environment (Braboszcz et al., 2017). 

The reduction of γ band activity following the VR meditation experience could potentially 

show that less attentional capacity is directed toward pain after using a meditative VR 

environment 

Significant coherence changes were found predominantly between the frontal and 

parietal and occipital cortices and in different wavebands, namely, in γ for the pre and med 

conditions; in θ, α, and β for the med and post-conditions; and in δ, α, and β for the pre 

and post conditions. The enhanced changes in the frontal and parietal connectivity during 

meditation could be related to the function of the frontoparietal network (FPN) and DMN. 

The VR-guided meditation implicated control and attentional processes in FPN, and the 

goal-directed cognition process of DMN (Uddin et al., 2019). 

For the correlations between pain level changes and EEG variations during 

meditation. No significant relationships between pain scores and EEG power variations 

were observed. This might be partly due to the limited sample size. The results of this 

work demonstrate the feasibility of EEG recording in a VR-guided meditation test. The 

data processing and results proved that signal variations between the pre, during and 

post-meditation were significantly identified. This study provides novel EEG recording and 

analysis methods that can be used to investigate neurophysiological changes in VR pain 

applications 

6.4. Conclusion 

EEG and MEG can effectively identify brain oscillation variations in 

neurophysiological conditions. Recent studies have found that using EEG/MEG, brain 

oscillatory signal variations depicted correlations with CP and aging. In particular, slowed 

PAF, increased theta and decreased alpha power with CP, and slowed PAF with aging. 

This thesis verified the shared slowed PAF property in CP and aging, and the SVR 
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approach was used to correlate age and PAF in the frontal, central, temporal and parieto-

occipital ROIs. For CP analysis, SVR can be applied to predict PAF from a group of healthy 

controls using patients’ age. This approach can create an aging model to extend general 

future large database pathophysiological studies. 

VR-guided meditation is a promising alternative approach for CP intervention. EEG 

was used in this thesis to explore the neurophysiological changes in brain activity during 

meditation. Specific VR-related EEG variations were identified in PSD and coherence in 

different wavebands and brain areas pre, during and post meditation. This signifies the 

potential use of EEG to monitor the effect of VR-guided mediation studies. 

6.5. Future Directions 

The novel method of using SVR to include age in CP studies may guide further 

studies to explore (1) including age in other pathophysiological studies, such as dementia, 

and (2) using other machine learning approaches, like convolutional neural networks 

(CNNs), to achieve the best accuracy. 

The novel EEG recording and analysis methods for VR-guided meditation may 

guide further studies to explore and identify brain regions and wave bands with respect to 

VR therapies for CP. 

The VR exploratory study found no significant relationships between pain scores 

and EEG signals. This could be related to the limited sample size used. Future studies on 

a larger sample could identify the relationships between pain reduction and the effect of 

VR-guided meditation. 
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Appendix A. 
 
A Study of Multiple Alpha Peaks 

This study used the CamCAN Magnetoencephalography (MEG) datasets (Shafto 

et al., 2014; Taylor et al., 2017) to investigate the multiple alpha peak properties in four 

alpha rhythm generation sites: frontal, central, temporal, and parieto-occipital regions of 

interest (ROIs). As described in Chapter 4, source space PSD was plotted for the control 

group (N= 474, 246 males and 228 females, mean = 53.90, SD = 18.29) and pain group 

(N=22, 12 males and 10 females, mean = 64.03, SD = 15.64).  

Multiple or split alpha peaks are common in the EEG/MEG spectrum. The split 

alpha peaks could be generated from independent or interconnected sites in the cortex 

(Olejarczyk et al., 2017; Chiang et al., 2011). For example, Figures A1 to A3 show the 

PSD and topographies of a selected subject, and two peaks are observed in the alpha 

band. The topographies of the low alpha and high alpha bands show that the central and 

parieto-occipital ROIs were the signal generation sites, respectively. 

 

Frequency (Hz) 

Figure A1. Source power spectral density (PSD) plot of a subject showing two 
peaks in the alpha band. The PSD unit is dB. 
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Figure A2. Topography of the peak in the central ROI in the low alpha range (8-
10 Hz). The colour bar unit is dB. 

 

Figure A3. Topography of the peak in the parieto-occipital ROI in the high alpha 
range (10-13 Hz). 
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For this study, the PSD computed from the CamCAN datasets was smoothed 

using a 9-point boxcar equivalent to a window of 0.9 Hz to minimize false peaks due to 

noise extrema (Chiang et al., 2008). Scipy’s (Virtanen et al., 2020) find_peak function was 

then used to find the number of peaks. The prominence parameter of SciPy’s “find_peaks” 

was set to 0.15. If an alpha rhythm peak prominence was less than this threshold, it was 

assumed that no peak was found. 

Table A1 lists the results for all subjects. The frontal and central ROIs have the 

highest percentage of no peak of 11.6% and 9.0%, likely due to the relatively weak 

amplitudes in these two regions and, in some cases, not being distinguishable from noise. 

For single peaks, the parieto-occipital region has the highest percentage of 77.3%. The 

central and temporal ROIs have a higher percentage of double peaks of more than 25%. 

The percentage of triple peaks is less than 3% in all ROIs, with the highest of 2.8% in the 

central ROI. No four or more peaks were detected in the PSD. 

Table A2 shows the difference between all subjects in Table A1(A) and controls in 

Table A1(B). A difference of 1.3% or less is found in each category. This is likely because 

the controls dominated with 83.5% of all subjects. Comparing controls in Table A1(B) with 

the pain group in Table A1(E), the controls have a higher no-peak percentage in the frontal 

and central ROIs, and the pain group has a higher no-peak percentage in the temporal 

and parieto-occipital ROIs. Table A3 shows this percentage difference. 

Tables A1(C) and (D) show the number of peaks in the male and female controls. 

Table A4 shows the difference in percentage between these two groups. The male control 

group has a 4.4% higher two-peak rate in the frontal ROI, and the female control group 

has a 6.0% higher two-peak rate in the central ROI. 

A null hypothesis was set that no difference existed between the mean number of 

peaks in the four ROIs. ANOVA tests showed significance for all subjects, controls, male 

controls and female controls, but not the pain group, as shown in Table A1, whereas a 

Bonferroni corrected α = 0.0083 was assumed. A post hoc test was done for controls using 

Bonferroni. The comparisons of central vs temporal, central vs parieto-occipital, and 

temporal vs parieto-occipital failed to reject the null hypothesis. MANOVA tests were done 

for all subjects and controls with sex as an additoinal factor, and no significance was found. 

This implies that sex is not a factor in the number of peaks. 
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Table A1. The number of alpha peaks found in the regions of interest (ROIs) in 
the CamCAM MEG database. Frontal: the frontal ROI. Central: the 
central ROI. Temporal: the temporal ROI. PO: the parieto-occipital 
ROI. 

A: All (ANOVA of the four ROIs, p = 1.46e-05) 

No. Peaks Frontal Percentage Central Percentage Temporal Percentage PO Percentage 

0 66 11.6% 51 9.0% 15 2.6% 11 1.9% 

1 382 67.3% 340 59.9% 400 70.4% 439 77.3% 

2 112 19.7% 161 28.3% 144 25.4% 113 19.9% 

3 8 1.4% 16 2.8% 9 1.6% 5 0.9% 

Total 568 100.0% 568 100.0% 568 100.0% 568 100.0% 

B: Controls (ANOVA of the four ROIs, p = 2.08e-05) 

No. Peaks Frontal Percentage Central Percentage Temporal Percentage PO Percentage 

0 50 10.5% 39 8.2% 7 1.5% 6 1.3% 

1 325 68.6% 284 59.9% 340 71.7% 368 77.6% 

2 94 19.8% 137 28.9% 119 25.1% 95 20.0% 

3 5 1.1% 14 3.0% 8 1.7% 5 1.1% 

Total 474 100.0% 474 100.0% 474 100.0% 474 100.0% 

C: Male Controls (ANOVA of the four ROIs, p = 0.0059) 

No. Peaks Frontal Percentage Central Percentage Temporal Percentage PO Percentage 

0 26 10.6% 17 6.9% 1 0.4% 1 0.4% 

1 165 67.1% 157 63.8% 178 72.4% 193 78.5% 

2 54 22.0% 64 26.0% 63 25.6% 48 19.5% 

3 1 0.4% 8 3.3% 4 1.6% 4 1.6% 

Total 246 100.0% 246 100.0% 246 100.0% 246 100.0% 

D: Female Controls (ANOVA of the four ROIs, p = 0.0059) 

No. Peaks Frontal Percentage Central Percentage Temporal Percentage PO Percentage 

0 24 10.5% 22 9.6% 6 2.6% 5 2.2% 

1 160 70.2% 127 55.7% 162 71.1% 175 76.8% 

2 40 17.5% 73 32.0% 56 24.6% 47 20.6% 
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3 4 1.8% 6 2.6% 4 1.8% 1 0.4% 

Total 228 100.0% 228 100.0% 228 100.0% 228 100.0% 

E: Pain Group (ANOVA of the four regions, p = 0.92) 

No. Peaks Frontal Percentage Central Percentage Temporal Percentage PO Percentage 

0 1 4.5% 1 4.5% 1 4.5% 1 4.5% 

1 16 72.7% 15 68.2% 15 68.2% 17 77.3% 

2 4 18.2% 6 27.3% 6 27.3% 4 18.2% 

3 1 4.5% 0 0.0% 0 0.0% 0 0.0% 

Total 22 100.0% 22 100.0% 22 100.0% 22 100.0% 

 

 

Table A2.  The difference in the number of peaks between all subjects in Table 
A1(A) and controls in Table A1(B). 

No. Peaks Frontal Central Temporal PO 

0 1.1% 0.8% 1.2% 0.7% 

1 -1.3% -0.1% -1.3% -0.3% 

2 -0.1% -0.6% 0.2% -0.1% 

3 0.4% -0.1% -0.1% -0.2% 

 

 

Table A3. The difference in the number of peaks between the control and pain 
groups. 

No. Peaks Frontal Central Temporal PO 

0 6.0% 3.7% -3.1% -3.3% 

1 -4.2% -8.3% 3.5% 0.4% 

2 1.6% 1.6% -2.2% 1.9% 

3 -3.5% 3.0% 1.7% 1.1% 
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Table A4. The difference in the number of peaks between the male and female 
controls. 

No. Peaks Frontal Central Temporal PO 

0 0.0% -2.7% -2.2% -1.8% 

1 -3.1% 8.1% 1.3% 1.7% 

2 4.4% -6.0% 1.0% -1.1% 

3 -1.3% 0.6% -0.1% 1.2% 
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Appendix B. 
 
Effect of SSP Projectors on Raw Data 

This analysis demonstrates raw MEG noise reduction using the signal-space 

projection (SSP) technique. The PSD plots below demonstrate the effect of the number of 

projectors used in SSP for environmental noise reduction. The system-provided projectors 

were discarded, and the projectors were created from the empty-room MEG recording. 

Reference: 

https://mne.tools/stable/auto_tutorials/preprocessing/50_artifact_correction_ssp.html 

• Number of gradiometer projectors: 0 

• Number of magnetometer projectors: 0 to 15 

The aim is to select the minimum number of projectors required to separate the 

environmental noise, since a large number of projectors will lower the rank of the data 

matrix. Figure B1 shows the PSD of magnetometers with the number of projectors from 0 

to 15. The top plot shows the PSD of gradiometers. Gradiometers are less noise-prone, 

and we used gradiometers in the top plot as a reference. The other plots show the effect 

of the number of projectors used. Where the number of projectors equals 6 or 7 seems 

optimal. 

https://mne.tools/stable/auto_tutorials/preprocessing/50_artifact_correction_ssp.html
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Figure B1. (A) PSD of gradiometers. (B)-(Q) PSD of magnetometers with the 
number of projectors from 0 to 15. 
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Appendix C. 
 
Parcellation 

Aparc Parcellation is used in Chapter 4 in labelling the source positions. Figure C1 

shows the Aparc parcellation label map. Figure C2 shows the Aparc.a2009s label map. 

Table C1 shows the labels used in the brain areas in the Apace pacellation. 

Reference: Desikan et al., 2006 

 

Figure C1. A subject with Aparc parcellation (68 labels). 
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Figure C2. A subject with Aparc.a2009s parcellation. 

Table C1. Aparc labels used in five brain regions of interest. 

Region of Interest # Labels 

Frontal 18 

Superior Frontal  

Rostral and Caudal Middle Frontal  

Pars Opercularis, Pars Triangularis, and Pars Orbitalis  

Lateral and Medial Orbitofrontal  

Frontal Pole  

Central 6 

Precentral  

Paracentral  

Postcentral  

Parietal 8 

Superior Parietal  
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Inferior Parietal  

Supramarginal  

Precuneus  

Temporal 18 

Superior, Middle, and Inferior Temporal  

Banks of the Superior Temporal Sulcus  

Fusiform  

Transverse Temporal  

Entorhinal  

Temporal Pole  

Parahippocampal  

Occipital 8 

Lateral Occipital  

Lingual  

Cuneus  

Pericalcarine  
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Appendix D. 
 
Boxplots of Alpha Rhythm Properties versus Control 
Age Group 

Boxplots of all the alpha rhythm properties versus age group in Chapter 4 are 

shown below, with initial outliers removed to help zooming in on the y-axis. 

 

Figure D1. Peak alpha frequency versus control age group 



142 

 

Figure D2. Peak alpha frequency versus male control age group 

 

Figure D3. Peak alpha frequency versus female control age group 
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Figure D4. Peak alpha absolute amplitude versus control age group 

 

Figure D5. Peak alpha absolute amplitude versus male control age group 
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Figure D6. Peak alpha absolute amplitude versus female control age group 

 

Figure D7. Peak alpha relative amplitude versus control age group 
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Figure D8. Peak alpha relative amplitude versus male control age group 

 

Figure D9. Peak alpha relative amplitude versus female control age group 
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Figure D10. High alpha absolute power versus control age group 

 

Figure D11. High alpha absolute power versus male control age group 
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Figure D12. High alpha absolute power versus female control age group 

 

Figure D13. Low alpha absolute power versus control age group 
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Figure D14. Low alpha absolute power versus male control age group 

 

Figure D15. Low alpha absolute power versus female control age group 
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Figure D16. High alpha relative power versus control age group 

 

Figure D17. High alpha relative power versus male control age group 
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Figure D18. High alpha relative power versus female control age group 

 

Figure D19. Low alpha relative power versus control age group 
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Figure D20. Low alpha relative power versus male control age group 

 

Figure D21. Low alpha relative power versus female control age group 


