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Abstract

Data-to-text generation, a subfield of natural language generation, increases the usability
of structured data and knowledge bases. However, data-to-text generation datasets are not
readily available in most domains and those that exist are arduously small. One solution is
to include more data, though usually not a straightforward option. Alternatively, data aug-
mentation consists of strategies which artificially enlarge the training data by incorporating
slightly varied copies of the original data in order to diversify a dataset that is otherwise

lacking.

This work investigates augmentation as a remedy for training data-to-text generation models
on small datasets. Natural language generation metrics are used to assess the quality of
the generated text with and without augmentation. Experiments demonstrated that, with
augmentation, models achieved equal performance despite the generated text exhibiting
different properties. This suggests that data augmentation can be a useful step in training

data-to-text generation models with limited data.

Keywords: Data-to-text Generation; Data Augmentation; Natural Language Generation;

Language Models
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Chapter 1

Introduction

This thesis investigates the applicability of existing data augmentation strategies for data-
to-text generation and shares results surrounding this idea. I begin by reviewing key con-
cepts pertaining to data-to-text generation, the role of data augmentation in other tasks
such as text classification and computer vision (CV), and evaluating text generation. Next,
I implement three augmentation strategies that are used to address training data-to-text
generation models on small or inadequate datasets. For each strategy I share the imple-
mentation details as well as any observed behaviours the model exhibits after being trained
on augmented data. The remainder of the thesis assesses the capabilities of two models for
data-to-text generation before evaluating the better of the two when different augmentation
strategies are incorporated into the training procedure. I discuss any improvements or lack
thereof when data augmentation is performed and possible reasons that may shed light on
these results. Lastly, I summarize the scope of this thesis and what was learnt prior to
suggesting avenues for future work.

The first chapter is an informal introduction to data-to-text generation and motivates
the incorporation of data augmentation. Furthermore, I present a collection of hypotheses,

contributions, and the overall plan of the thesis.

1.1 Motivation

Everyday, billions of data points are generated and stored for future use. Many methods
exist for conducting analysis such as regression, classification, or visualization, but even
then an individual will have difficulty providing a succinct summary of the data’s content.
Weather and sports reporting, electric vehicle charging, and maritime transport are all
examples of domains that routinely produce batches of data where summary statistics are
insufficient. In these domains, the why and how are more valuable. For example, a captain
of a maritime transport vessel is guaranteed to find more worth in a brief summary of fuel
usage from the day’s travel and any possible concerns than a list of fuel usage statistics for

the day with no accompanying context.



1.2 Problem Statement

The ability to communicate and summarize data from different intervals or distinct situa-
tions is sought after as it facilitates domain understanding and decision making. Manually
summarizing data of this nature is a repetitive and time-consuming task that also requires
domain knowledge. In 2020 when the pandemic was just beginning, the public saw cities
quickly switch from written briefs to dashboards for this very reason despite the former being
more easily absorbed by non-professionals. Data-to-text generation is the task of producing
coherent natural language given non-linguistic input and is an approach for automating the
aforementioned process [27]. Traditionally, data-to-text generation models were pipelines
that produced text following a series of predetermined transformations [82]. While this
guarantees a consistency in the generated text, it does not allow for the text to be dynam-
ically changed conditional on the contents source data. This results in poor generalization
to new domains or even unseen data within the same domain.

In recent years, neural models have shown success on various natural language tasks [30,
47, 7). These models use hundreds of millions of parameters to encode linguistic information
about the data [84]. This high degree of freedom implies a neural model is highly variant in
what it can learn and is a leading reason for their popularity. Albeit, high model variance is
accompanied by a predisposition to overfitting - otherwise known as the bias-variance trade
off [42, 62]. In particular, models with high variance that are trained on small datasets have
a tendency to overfit to learned patterns which do not generalize well.

Procuring a sufficiently large dataset for training a data-to-text generation model is
challenging as data structures such as tables, databases, or time-series are not generally
accompanied by pertinent text in abundance [87]. Example datasets include: WebNLG [26]
and E2E [64] which are used in this work, DART [61], ToTTo [67], and RotoWire [101].
WebNLG and E2E share a niche of structured data that is descriptive and relational with the
generated text conveying this. Commonalities between the two datasets mean conclusions
drawn by the models and augmentation strategies used are more thoroughly investigated. As
such, this is a reason for the specific focus on these two datasets through this work. Existing
datasets are small in comparison to other natural language tasks - usually a magnitude
smaller with only tens of thousands instead of hundreds of thousands or even millions of
examples. Furthermore, the data-text pairs are limited in linguistic diversity for features
such as vocabulary, syntax, and style as they typically follow a loose template for the
content included and the terminology used. Given how data scarce this setting is, data-
to-text generation models are quick to overfit to the few training examples their exposed
to. A classic solution to overfitting is regularization which requires careful hyperparameter
tuning, motivating the inclusion of data augmentation instead [9, 34]. Data augmentation is
informally defined as strategies that artificially enlarge the size of the dataset by producing
slightly modified copies of the original data. Modifying the original training set for data-to-



text generation is nontrivial as the semantics of the target text are connected to the source

data and the syntax constrained by dependencies within the source data.

1.3 Hypothesis

I hypothesized that the general linguistic information learnt during the pre-training of a
language model would result in improved performance on numerous evaluation metrics.
Furthermore, when this language model is extended by the inclusion of data augmentation
more of an improvement would be observed. Finally, I hypothesized that a language model
fine-tuned on augmented data would require less of the original data to be trained as well
as the language model without augmentation that was fine-tuned on the full amount of

training data.

1.4 Contributions

This work has three primary contributions, although supplementary observations are made
in Chapter 4. First, I provide a thorough review of data-to-text generation and the relevant
concepts before providing results for the task using two models and two datasets - WebNLG
and E2E. Next, I provide results for this task when three data augmentation strategies I
implemented are incorporated into the training procedure. To my knowledge these strategies
have not been studied for data-to-text generation prior to this work. As well, I compare the
ability of each data augmentation strategy for mitigating the loss of information when the
amount of training data is drastically reduced.

The methods used in this work are not inherently novel as many have been researched
in adjacent fields, but their application to data-to-text generation is. In fact, data augmen-
tation has been extensively covered in other areas which inspires this work and motivates
how we evaluate methods for this growing intersection with data-to-text generation. Two of
the three augmentation strategies are unexplored for the datasets selected, providing novel
observations as well as adding further evidence to existing ones. Additionally, pre-trained
language models have made new approaches to data augmentation available - some of which
are explored here. Large language models (LLMs) such as the one used here are gaining
traction with data-to-text generation and this work elaborates on their applicability. Nat-
urally, LLMs perform well in scenarios where there is limited data but by incorporating
data augmentation this success is taken one step further. Novel in regard to unexplored
combinations, this work provides a strong basis for future research that is developed from

these avenues.



1.5 Organization of Thesis

Chapter 2 begins with a review of natural language generation (NLG) and subsequently
data-to-text generation, data augmentation, evaluating text generation, and lastly related
work such as motivating examples of data augmentation in CV or other natural language
tasks.

Chapter 3 introduces the two datasets that are used throughout the experiments, the
implementation of the data augmentation strategies, and the methods for evaluating the
experiments.

Chapter 4 presents the results of data-to-text generation with two different models, the
inclusion of three data augmentation strategies, and the effect augmentation has when the
amount of training data is reduced. Furthermore, these results are discussed in terms of
both improvements and shortcomings as well as any possible explanations for confounding
observations.

Chapter 5 concludes the thesis through a summary of observations, their significance,
and any limitations. Finally, the thesis is wrapped up by touching upon fruitful avenues for

future work uncovered in this research.



Chapter 2

Background

2.1 Data-to-text Generation

Natural language generation is generally defined as the construction of models which pro-
duce coherent and understandable text given input data of some form. Data-to-text gener-
ation builds off this definition, being the task of producing text given non-linguistic input
[27]. Although the output of data-to-text generation is always human understandable text,
the input is less consistent with examples being tabular data, meaning representations,
or structured knowledge bases. Throughout this thesis the ground-truth input and output
used for training a data-to-text generation model is referred to as the source data and target
text respectively whereas the text produced by a model during inference in regards to an
experiment or test data is denoted generated text.

Applications of data-to-text generation include: communicating weather forecasts [29,
83, 95, 79], reporting on financial data [71], wildlife blogging [89], summarizing the meaning
behind sensor data [57], and narrating wildlife tracking based on satellite data [72]. While
the source data format for each of these applications varies and the accompanying text
differs in terms of quality and complexity, they all strive to achieve the same goal - imparting
information to the user. Ensuring this information is actionable requires a particular quality
for the generated text which is characterized as fluent, syntactically correct, and faithful to
the content of the source data. One approach that guarantees a certain level of quality
is pipeline models where a data structure is progressively transformed to a standardized

response by a series of modular rules.

2.1.1 Pipeline models

Initially, data-to-text generation was conducted using a pipeline architecture that executed
the following sub-operations: content selection, content planning, and surface realization
[82]. In practical terms that is: what to say, how to say it, and then actually saying it.
Figure 2.1 displays the steps and byproduct of each step for a general pipeline architecture.

While pipeline architectures provide efficient and robust generation [23], they also require



Text Sentence sentence .
text plan Realiser text
Planner Planner plan

Figure 2.1: General three-step pipeline architecture for data-to-text generation. Coloured
segments correspond to the modules or steps while the grey portions pertain to the corre-
sponding output. Figure is from [81, 27] and updated for visibility.
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Figure 2.2: A syntax tree for a sample sequence of text that demonstrates the possibility
for long-range dependencies that may be difficult for some models to handle.

numerous design choices such as enumerating target text possibilities and the rules that
decide what template the data is realized as. For small domains where there is minimal
variation, these limiting factors are the reason pipeline architectures were popular for data-
to-text generation - in short they are cheap and efficient. Now, with the focus of natural

language tasks on generalization, models exhibiting linguistic flexibility are preferred.

2.1.2 Neural models

With the explosion of data, both in terms of quantity and quality, small confined datasets
are no longer the norm and therefore models capable of learning abstract representations
are desirable. The progression of machine learning models has seen a rapid change in per-
spective regarding neural networks [1] being considered promising to becoming the de facto
choice. Now, neural networks regularly achieve state-of-the-art results in various natural
language tasks such as text classification, neural machine translation, text summarization,
and question-answering [31]. Even neural models require numeric features to learn from and
since text data cannot be passed as is, representations of the text have to be derived in order
to be usable. For early applications, token occurrence and frequency features such as bag-of-
words (BoW) [106] or term frequency-inverse document frequency (TF-IDF) [78] were the

predominant text representations. Shortcomings of these text representations include but



are not limited to - sparse features, limited to no support for out-of-vocabulary tokens, and
important words being assigned insignificant values while stop words are found to be signifi-
cant. Most notably though is that BoW and TF-IDF have no way of understanding the role
of a token for the semantics of a phrase, each token is handled independently. The improve-
ment of text representations which grow more abstract, has been one of the most prominent
advances for natural language tasks. In this case, an abstract representation implies that
it would have no meaning to a human at a glance compared to BoW where the resulting
representation can be understood in terms of token occurrence. Abstract representations are
characterized as dense, low-dimensional, and distributed vectors of scalar values. For now
we will assume the importance of abstract representations in both data-to-text generation
and data augmentation. In Section 2.2.1 this concept will be further defined and explored.

The recurrent neural network (RNN) [85] is a neural network architecture that has
demonstrated success on benchmarks for numerous tasks. Their recurrent nature is designed
to handle input sequences of variable length which is regularly the case for text data. As
the sequence length grows, so does the instability of the network due to passes through the
network having to retain all the information in a sole forward-moving signal [68] - this is
deftly labeled the vanishing or exploding gradient problem [35]. RNNs enhanced with long
short-term memory (LSTM) [36] or gated recurrent units (GRU) [17] include mechanisms for
early network information to be carried forward or forgotten, skipping steps. Still, sequences
of text tend to carry long-range dependencies that are challenging for RNN variations to
model as seen in the syntax tree of Figure 2.2. Regardless, the recurrent and sequential
nature of LSTMs and GRUs have spawned further model architectures that are capable of

generating a sequence given an input sequence. Le., generating text from structured data.

2.1.3 Encoder-decoder architectures

The encoder-decoder architecture has become integral for solving sequence-to-sequence
tasks where the goal is to translate a sequence of some length into a potentially differ-
ent length sequence [93]. Traditionally, this architecture is implemented using an RNN for
both the encoder and decoder networks. The first RNN encodes the input sequence into a
vector representation that is subsequently passed to the decoder to generate the resulting
sequence [16]. Encoder-decoder models lend themselves well to the task of neural machine
translation (NMT) as the task can easily be framed as translating a variable-length sequence
of text from a source language to a variable-length sequence of text in a target language
[15]. Fortunately, this perspective for NMT can be extended rather easily to data-to-text
generation where the problem formulation is translating a variable-length sequence of source
data to a variable-length sequence of text [27]. A main drawback of the encoder-decoder
architecture is the bottleneck posed by the internal representation that is shared between
the two networks as highlighted in Figure 2.3. First off, attempting to consolidate the entire

sequence into a vector is limiting and second, there is no mechanism for considering parts of
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Figure 2.3: A general encoder-decoder architecture based on RNNs. The labeled encoder
is highlighted in green and the decoder in orange. Highlighted in a dotted red box is the
aspect of this architecture that is often a bottleneck in sequence-to-sequence tasks.

the encoder-fed sequence that needs to be re-aligned for the decoder. Attention is a mecha-
nism incorporated into encoder-decoders that searches for parts of an input sequence that
are relevant to generating the next token in the output sequence, removing the challenge of
encoding an entire sequence into a fixed-length vector [5]. By giving the decoder a way to
choose parts of the input sequence to pay attention to, it can weigh these for easier retrieval
when generating the output sequence. This entirely removes the need for the model to learn
the alignment between the input and output sequences on its own, allowing it to focus on
learning the sequence-to-sequence mapping.

The RNN architecture has demonstrated success on various natural language tasks in-
cluding data-to-text generation and it remains a popular architecture in research [23]. The
authors of [74] construct an entity-centric model that handles entities separately when
generating text with an LSTM decoder. Additionally, content plans or content ordering
accommodates the recurrent nature of an RNN architecture by laying out dependencies to
be filled in prior to text generation. Content plans have been constructed at the sentence,
paragraph, and document level to improve generating text with RNN decoders [73, 76, 75].
Furthermore, past work on WebNLG has used an LSTM decoder to condition on both a
graph encoder and LSTM encoder to improve the text generation quality [107].

Despite the improvement garnered by attention-mechanisms, encoder-decoders built
upon RNNs such as those in the aforementioned work remain hindered by their sequen-
tial approach to modeling. Any given state within an RNN only ever depends on the last,
forcing a strain on the model to remember necessary information about early sequence

items over long-ranges as mentioned in the last subsection. Summarizing, the consequences
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Figure 2.4: The Transformer model introduced in [97]. The left-hand stack is the encoder
and the right-hand the decoder. Nx refers to the number of encoder- or decoder-layers
the Transformer is initialized with. Transformers take two sequences as input which are
embedded into R™ as input. Figure originally published in [97]

of sequential processing are: that the model cannot be trained in parallel; inference times
quickly grow, especially when decoding long sequences; and as only the previous token is be-
ing directly taken into account, surrounding tokens or any semblance of sentence structure
in the case of text cannot contribute to what is being learnt. In comparison, a model with
a parallel architecture and an attention-mechanism that can view the entire encoder-fed
sequence could possibly improve on the time it takes to train and its sequence-to-sequence

capabilities. In the following subsection, one such model is discussed.

2.1.4 Language models

While language model is a catch-all varying from simple n-gram models to neural networks
trained with deep learning approaches, a large language model (LLM) generally pertains
to the latter. LLMs have been successful in numerous natural language tasks due to their
ability to obtain a general understanding of language and how to generate it [108, 56].
Many LLMs have been proposed in recent years such as the ones used within this work
[18, 77, 45, 102]. Although the foundations of these LLMs are similar, their implementation

is what sets them apart from one another. This section covers that shared foundation and



its relevancy to data-to-text generation. For the remainder of this thesis I will simply use
language models in lieu of LLMs to avoid crowding the paper with acronyms.

Many language models leverage the popular architecture the Transformer as it addresses
the issues discussed for RNNs [97]. Figure 2.4 shows the architecture diagram for the Trans-
former and illustrates the following differences between it and an RNN. First, rather than
compress an entire sequence into a single vector representation to pass to the decoder, the
transformer provides each token with its own dense, low-dimensional, and distributed vector
representation. As well, feed-forward neural networks replace the RNNs for processing en-
abling parallelization. Lastly, a new attention mechanism called self-attention is introduced
that is able to handle long-range dependencies within a sequence. It does this by taking into
account what is at each position of a sequence to then compute an overall representation for
the sequence. This means even dependencies between the first and last token contribute to
the representation. L.e., in the sequence "the woman is going away for a long time and she
will be missed." self-attention creates an awareness the "she" is in reference to the "woman".
But, like an RNN, the Transformer is a suitable architecture for sequence-to-sequence tasks.

Surveys have shown the viability of the Transformer for data-to-text generation and the
improvements it offers over RNN-based models [23, 49]. The self-attention mechanism of
Transformers allows more to be learnt with less training, opening the possibility for detailed
training procedures. Training can differ by the inclusion of data augmentation, curriculum
learning, and the use of external data sources as seen in [58]. Similarly, the Transformer can
be trained with additional learning objectives to improve aspects of data-to-text generation
such as content selection [32] Commonly in data-to-text generation, the source data is
linearized in some manner that way it is easily handled by encoder-decoder Transformer
architectures requiring a sequence. A hierarchical attention mechanism has been explored
with the Transformer that first encodes the source data based on its constituent units then
on its overall structure, removing the loss of information that resides in the structure of the
source data [80]. Most recently, Transformers have led the way in zero- or few-shot settings
for data-to-text generation [39, 14, 11].

Pre-training is the belief that for a target task, initializing model weights randomly is
subpar to utilizing ones from a model that has already been trained on a similar source task
[21]. Although random model weights can be adjusted for a particular task, it may be bene-
ficial in both time and results to instead tune model weights from a similar domain or task.
Language models are generally not trained on supervised tasks, rather they are trained on
a large unlabelled corpora using unsupervised or self-supervised learning to capture model
weights for generalized linguistic features (i.e. syntax and semantics). While pre-training
does not directly solve data-to-text generation, by first learning linguistic information the
model is then able to focus more on learning to generate text from structured data. Models

required to learn both how to generate linguistically correct text and remain faithful to the
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content of the source data are more likely to perform worse, require more data, more time,
and overfit to select examples.
There exists numerous pre-training approaches, listed below are those commonly used

or used by the language models in this work.

o Masked Language Modeling (MLM): The objective here is to learn the context of
a token given the remainder of the sequence. A percentage of the tokens in the orig-
inal sequence are replaced with a generic token, usually [MASK], effectively hiding
the original token from the model. Then, the model tries to reconstruct the original
sequence by replacing the generic tokens with the token it hid. This pre-training ap-
proach is primarily used by language models consisting of only an encoder transformer

and is popular for tasks such as text classification or sentiment analysis.

e Sentence Order Prediction: Using self-supervised learning, the model learns to
predict the order for a list of sentences. Given a scrambled list, the model reconstructs

the original ordering.

e Replaced Token Detection: Rather than replacing tokens with a mask, they are
replaced with another random token from the vocabulary. The model learns to restore

the original tokens, but is not told what tokens were swapped.

e Contrastive Learning: The model learns to discern between similar and dissimilar
data. Pairs of data are assembled based on similarity to train the model embeddings
such that similar pairs are close in the embedding space or far away if they are

dissimilar.

o Span Masking: Language models pre-trained for natural language generation (NLG)
tasks use an alternative approach where instead of a single token being masked, a
span of tokens in the sequence is. The model then tries to reconstruct the span in one
go. This is useful in downstream tasks where the model can benefit from identifying
spans of relevant information in a document. By pre-training the model to predict
spans consisting of named entities, it learns to identify and extract these from unseen
input. This is just one of many reasons the language model used in this work was

selected.

2.2 Natural Language Concepts

The following section will review and discuss the role of relevant natural language processing
(NLP) topics for data-to-text generation. While the topics themselves are not novel, they
contribute to the novelty of this work and thus their contribution solidly understood. These

topics include contextual embeddings, transfer learning, and curriculum learning.
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2.2.1 Contextual embeddings
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Figure 2.5: Results for contextual embeddings out-performing non-contextual embeddings
with varying amounts of data on named-entity recognition (left) and sentiment analysis
(right). Figure originally published in [2].

Machines are not capable of handling text as is, requiring it to be transformed into a
numeric format before being passed to a model. For example, given a vocabulary of size

four the following text sequences are represented as integer vectors:

V ={apple, banana, grape, orange}

s1 =lapple orange grape]

sg =[grape kiwi chestnut peach] (2.1)

Representing text in this manner is a rudimentary approach based on the number of times
a word occurs. Although efficient to implement, it suffers from sparsity and memory issues
as the vocabulary V grows in size. While this captures the composition of a sequence, as
the vocabulary scales so does the dimensionality resulting in convoluted or sparse represen-
tations. Alternatively, to circumvent an abundance of 0’s, the occurrence of tokens can be
replaced with frequencies. Even so, these are discrete text representations as they do not
exist in R™, that is these vectors can only take on a fixed set of values. Furthermore, the
representations discussed above are global representations meaning each token can only be

considered in a single manner. This is a major drawback of global text representations as it
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Figure 2.6: An example demonstrating that contextual embeddings provide multiple repre-
sentations for the same word whereas other approaches only provide a single representation.
Here, "space" pertains to a physical area or room, a space in a sentence, and space in ref-
erence to what is beyond the planet Earth. In each case, additional words are provided to
illustrate the context.

limits a token to a single context when it likely has various, e.g. "The mouse ate the cheese"
versus "I moved my computer mouse".

Rather than a rigid representation for a token in the vocabulary, its representation is
a function of the all the other tokens in the sequence [70]. In the above example, suppose
Ttoken (S€quence) is the function for obtaining a token’s representation and s; and so are the

former and latter sequences, then:

7"mouse(sl) 7& Tmouse(52) (22)

Function computed representations are frequently referred to as contextual embeddings and

are characterized by dense, low-dimensional, and distributed vectors as seen below:

[ 0.7543 [—0.2543]
—0.1249 0.9111

Tmouse(sl) = |—-0.6832| ~ | 0.2169 | = Tmouse(SQ) (23)
| 0.4141 | | —0.8765 |

In addition to multiple possible representations, they are now continuous and exist in R -
Figure 2.6 illustrates this. This means the two token representations are comparable using
the likes of cosine similarity, such that the words "space' and "planet" would have a high

similarity score in the following sentences s3 = "Space and galaxies interest me" s4 = "I love

13



Traditional ML Transfer Learning
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Figure 2.7: Transfer learning visually depicted. Traditional machine learning (left) is de-
scribed as continuously training new models for novel domains. Transfer learning (right)

shows how other domains offer beneficial knowledge for novel domains and that a new
model does not always need to be trained from scratch.

viewing planets through my telescope'.

[ 0.7543 [ 0.6989 ]|
—0.1249 —0.1311

rspace(sg) - *06832 ~ *06423 - rplanet(szl) (24)
| 0.4141 | | 0.5129 |

Two readily-available continuous token representations are word2vec and Glove which
were instantiated using a feed forward neural network and matrix factorization respectively
[54, 69]. Their main shortcoming is that their vocabularies are fixed due to them being pre-
trained. Another approach to learning continuous representations is from language mod-
eling which has been thoroughly covered in previous sections. Language modelling instills
semantic and syntactic knowledge into the contextual embeddings through the self-attention
mechanism. As these contextual embeddings can easily be extracted from a language model,
they are suitable to be transferred to downstream tasks to be used as features or further

fine-tuned [18]. The concept of transfer learning is discussed in the next subsection.

2.2.2 Transfer learning

Transfer learning is defined as the application of knowledge learnt from a source task to a
related, but unexplored target task [65]. Rather than repeatedly training new models from
scratch, a model’s knowledge is repurposed for a new task as depicted in Figure 2.7 The
success of this ideology has been demonstrated for: text classification [19], spam filtering
[51], and digit recognition [8]. In computer vision (CV), a model trained to detect dogs

in an image may provide strong initial results for detecting cats in images before further
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fine-tuning. Transfer learning is omnipresent in CV since the majority of the tasks require
knowledge of low- and mid-level features such as edges, shapes, foreground and background.

Similarly for NLG, regardless of the generated text, there is guaranteed to be transfer-
able knowledge between tasks as each requires knowledge of syntax, semantics, pragmatics,
and/or phonology. As discussed in the previous section, contextual embeddings are easily
shared across tasks and are considered a form of transfer learning as their knowledge is di-
rectly usable as features or as a starting point for fine-tuning. This has motivated numerous
training regimes for language models in an attempt to learn general linguistic features aside
from their supervised tasks [46, 50, 77]. Across these supervised tasks, the internal architec-
ture remains the same with only the output layer changing depending on the task. When
fine-tuning downstream, it must be decided whether all the model weights are adjustable
or just those in the output layer. If the pre-trained model weights are not frozen, then
fine-tuning runs the risk of inflicting mass forgetting and the model’s source task knowledge
is lost. Whereas when the weights are frozen the model has a more difficult time learning
the target task. The balance between forgetting too much and the speed at which the target
task is learnt remains a common challenge. The ease at which pre-trained language models
are adapted for supervised tasks has resulted in a collection of these models being bundled
in the HuggingFace library [102].

In this work, transfer learning will help alleviate the challenge of a small dataset. For
example, the weights of a pre-trained language model are used initially to provide a better
starting point which in turn reduces the training time. Furthermore, leveraging contextual
embeddings from a pre-trained language model are likely better than those that would be
obtained from an insufficient amount of data. Transfer learning offers the opportunity to

obtain better performance that would not be available otherwise.

2.2.3 Curriculum learning

Language models have demonstrated their ability to generate coherent and contextually
relevant text, however training such models is a challenging task due to the complexity and
vast amount of data. Curriculum learning, a machine learning paradigm inspired by human
experience, suggests a promising approach to improve the training of models. This section
will explore the concepts and fundamentals of curriculum learning before discussing the
application to language models in particular.

Curriculum learning is a training strategy that carefully considers the order in which
training samples are presented to the model. The goal is that an intricately designed order
causes the model to more rapidly converge on generalized model parameters. Most simply,
the model can begin with simpler or easier examples before progressing in difficulty. This
technique imitates how humans learn, beginning small on simple telling examples before
approaching complex nuanced examples. The main objective of curriculum learning is to

quicken learning and make it more effective by giving the model a thought out learning
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schedule to build off of. By gradually including more complex examples, the model can
hypothetically build on previously learned concepts and more appropriately adjust model
weights with small yet concise steps. Whereas randomly shuffling the data results in the
model wildly jumping between drastically different training examples that can confuse the
learning process. Curriculum learning, like other methods used in this thesis, has shown
proven results in other fields such as reinforcement learning, computer vision, and most
importantly natural language processing which we extend to data-to-text generation.

One approach is task-based curriculum learning. Here, the training examples are orga-
nized based on their difficulty for the given task. In the case of data-to-text generation,
the curriculum would start the model off on examples with simple source data or shorter
target text before gradually introducing examples with more intricate connections, syntactic
structures, semantic relations, or longer text. Following a task-based curriculum, the model
can practice and master on simpler source data and target text before attempting to address
more challenging examples.

In comparison, data-related curriculum learning focuses on the ordering of the training
data rather than the task difficulty which can be hard to quantify at times. This approach
sorts the training data based on data properties such as frequency, diversity, or similarity.
In the case of data-to-text generation, it might be most beneficial to begin with the most
frequently occurring source data relation before introducing more rare relations. By exposing
the model to a wide range of data gradually and pre-meditated, it has a better chance to
effectively capture the underlying patterns and generalize better to unseen examples and
rarer data.

Curriculum learning offers several benefits for training language models. First, it can
improve learning efficiency by structuring the learning schedule. Beginning with simple
examples, the model can quickly grasp basic patterns in the data and build upon them. The
pre-training of language models accomplishes a similar goal of learning linguistic patterns,
so for this work we focus on curriculum learning to improve task knowledge. Secondly,
curriculum learning can improve generalization of the model by gradually introducing more
complex data. Providing an initial basis of easy-to-learn examples will support the model in
later stages of training. Lastly, common issues of language modeling can be ameliorated with
curriculum learning such as catastrophic forgetting. When randomly shuffled, models may
jump between drastically different examples and easily forgetting what they just learned.
A structured learning schedule encourages learning as well as information retention.

This is not to say that curriculum learning is not without its challenges. Structuring
effective learning schedules necessitates careful consideration and knowledge of task-specific
characteristics, the availability of simple and complex data, and the quality of data. Deter-
mining whether to do task- or data-based curriculum learning and the resulting ordering is

not trivial.
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2.3 Data Augmentation

As mentioned, data augmentation strategies enhance a dataset in terms of size and quality
through slight modifications of the original data. Transformations range from simple to
complex with one of the most used strategies being to draw random noise from a standard
normal distribution and adding this to the existing data in order to reduce overfitting.
Given an overarching goal of data augmentation is to reduce overfitting, it tracks that
adding random noise has been proven to be synonymous with Tikhonov regularization [9]
Although augmentation strategies have grown in complexity, many stem from simple ideas
and are adapted for use. While there exists other methods of reducing overfitting, none
address the heart of the problem like data augmentation - the dataset. I briefly introduce

these methods for the knowledge of the reader as reference to other avenues.

o Dropout [92] is a technique where the values of randomly chosen neurons during
training are zeroed. Rather than learn from a subset of heavily weighted neurons, this

forces the network to learn more robust activation patterns.

e Batch normalization is another regularization method that normalizes the input be-
tween layers to accommodate for the distributional shift [37]. For each batch, the mean
is subtracted and it is divided by the standard deviation resulting in a zero mean and

unit variance.

o Transfer learning has already been extensively discussed [65]. In short, it is effective for
reducing overfitting as models leveraging already trained weights are less susceptible
to falling into poor local solutions. These weights are obtained from a model trained on
a large generalizable dataset such as the BookCorpus dataset [111]. For this dataset,

the model learns low-level features pertaining to story-like language.

o Pre-training was also touched upon in previous topics [20]. Like transfer learning, it
involves exposing a model to a large dataset to learn general features. In pre-training,
weights are initialized but there remains flexibility in the architecture design unlike

transfer learning.

e One- and Zero-shot learning algorithms pose alternative approaches for learning from
limited data. An example of one-shot learning uses distance functions to determine
if unseen data is similar enough to the few training instances [98]. While zero-shot
learning is more extreme, it uses the same concept of identifying classes by finding

dissimilarity in the data [91].

In the following subsections, I discuss the origins of data augmentation in CV as the
concepts are well-formed and have demonstrated success. Following, I explore how these

ideas translate to natural language tasks as well as any challenges that arise in doing so.
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For the strategies cover, I mention how they address overfitting and preserve the context
or given label of the data.

Data augmentation is akin to the imagination of humans. We are able to take a sce-
nario in our mind and modify it to conceptualize a slightly changed scenario. A car in
a different colour, pizza with different toppings, or a corner desk versus a straight desk.
These are all scenarios where we understand the underlying context through examples with
varying features. Furthermore, as humans experience more examples, we learn more general

characteristics. This is what we aim to replicate through incorporating data augmentation.

2.3.1 Motivation from other fields

Vision-based machine learning takes, as input, images and performs computations such as
classification, object detection, and more. Models are trained to recognize patterns in the
data with more complex architectures capturing increasingly intricate patterns. In images,
these patterns may refer to a dog to be detected, colours that lead to the image label, or
distinguishing between an apple and an orange in the image. The challenge that arises, and
this is the case for all machine learning tasks, is when the test data differs from the training
data. The apple on the table covered by a shadow is still an apple, despite the model no
longer recognizing it due to the unseen pattern imposed by the shadow. This is the challenge
data augmentation aims to overcome through the introduction of modified copies to learn
fringe cases [88].

A pressing issue in CV is positional biases. If the object to be detected has never ap-
peared in the bottom right corner then when it does, there is a possibility the object goes
undetected. A quick and efficient solution for positional bias is geometric transformations
which include rotating, flipping, or scaling images. The caveat is that adding these aug-
mented copies into the dataset does not necessarily preserve the labels associated with the
images [4]. For example, in digit recognition, rotating and flipping a 2 is now a 5 but if
this label change is not caught then the model is now learning on inaccurate data. Another
approach is to crop small portions of an image to encourage the model to recognize new
characteristics contributing to the overall label. Cropping was critical in the training of
AlexNet on the ImageNet dataset [43]. Alternatively, augmentation can target red, green,
and blue (RGB) colour channels instead of physical characteristics [103]. Colorspace trans-
formations are challenging as in many cases the coloring contributes to the image’s label,
in particular for image sentiment analysis [12].

Based off cropping, a less intuitive approach involves cropping numerous images and
stitching these portions to form a new amalgamated image to add to the dataset [94].
Seemingly unintuitive, it is suggested the improvement of mixing images occurs in the low-
level features learnt from the increase of edges and angles. In the case of label preservation,
the label is assigned randomly from one of the images that was cropped. While this may

seem to ruin the image-label relation, instead it is possible the model directly learns features
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from the cropped portion pertaining to the label helping its general understanding of the
label. Alternatively, a simple manipulation of the pixels results in noticeable performance
boosts. Noise injection adds a sparse matrix of random values to the existing pixels, slightly
deteriorating the quality of the image [60]. This results in the model learning more robust
features, reducing overfitting, and as the image is hardly affected the label is preserved.
Cropping and noise injection have been explored in tandem with random erasing [109].
Random masking covers a portion of an image with a mask of random values, forcing
the model to learn other descriptive characteristics. Research has also shown that random
erasing pairs well with other augmentation strategies [53].

Lastly, there exists more tailored augmentation strategies that leverage neural models.
I list these for the knowledge of the reader, but due to the nature of this work do not
elaborate further. Neural models have been used to search for adversarial augmentations
that result in misclassifications [59]; generative modeling to unlock unobserved information

from a dataset [10]; and transferring style between images [28], among others.

2.3.2 Application in natural language

Unlike image data, augmenting text is not so straightforward due to its non-numeric nature.
For example, flipping an image continues to be valid whereas flipping a sentence likely
renders it senseless as reading a sentence from end to beginning typically does not have the
same context - if any at all. Text augmentation requires equal or more consideration, but
can be facilitated by drawing parallels and inspiration from work in CV. First, I discuss
data augmentation strategies applied through various natural language tasks before moving
on to examples in data-to-text generation.

With text data, akin to noise injection for image data, random noise can be added by
applying sparse transformations on the character level. These transformations include: in-
serting, deleting, or swapping a percentage of the characters within a sentence [100]. While
this muddles the sentence, it essentially forces the model into learning how to reconstruct an
output given corrupted input. Moving to the word-level, lexical substitution is an augmen-
tation strategy that aims to replace words in the text with their synonyms [41, 63]. In most
cases, the synonym retains the intended context but not all synonyms are created equally
and there are times this is not true. More elaborate substitution schemes help reduce this
risk, although it does not entirely remove it. Similarly, backtranslation is an approach that
makes use of changes at the word-level by accepting incorrect translations as augmented
data [86]. Like synonym replacement, this can cause issues with the label as errors can
lead to different contexts. E.g., "Je suis fini" and "J’ai fini" have differing meanings in FEn-
glish. Like mixing images, SWITCHOUT [99] and MIXUP [104] are two text augmentation
strategies that provide non-obvious improvements. SWITCHOUT also works at the word-
level by randomly replacing words with another from the model’s vocabulary. The latter

has motivated a collection of data augmentation strategies that interpolates the input and
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output given two or more examples from the original dataset [22]. In NMT, one can use
ciphers to generate augmented copies of the training data which will retain distributional
features [38].

Recent research has seen various data augmentation strategies employed for data-to-text
generation to date. On a dataset consisting of basketball statistics and game summaries
[101], stats were slightly perturbed to ensure the overall outcome remained valid while
augmented copies [33]. Another approach has been to incorporate external data as additional
copies, deriving source data from text using information parsing techniques [58]. Noise has
been injected into the hidden states of a trained model to sample augmented input with
minor shifts [40]. Lastly, lexical substitution has been used to create augmented data where

the input is non-natural text data [96]

2.4 Evaluation Strategies

Evaluating natural language models, generation in particular, is challenging as there are
numerous characteristics one should be interested in - fluency, syntactic diversity, lexical
diversity, semantics, correctness, and faithfulness to the input. Existing metrics generally
evaluate one or two of these angles, but never all of them. In this section we discuss the
various types of metrics as well as what they measure and any shortcomings. Metrics are
typically split into string, n-gram, embedding-based, and learning metrics. In this work, I
focus on n-gram and embedding-based metrics for evaluating the conducted experiments.
I chose these metrics because they are computationally inexpensive, correlate well with
human judgement, and allow for comparisons to multiple target texts. For simplicity, the
text output by the model is referred to as the generated text whereas the original text is

denoted as the ground-truth.

2.4.1 N-gram metrics

N-gram metrics compare the generated text to the ground-truth by comparing the occurrence
of n-grams between the two. Elevated scores on these metrics stem from the model being
able to generate the correct vocabulary. This ensures that the generated text matches a
particular quality given by the ground-truth. On the other hand, if the generated text includes
any deviations from the vocabulary then the score is penalized whether the changed n-
grams retain the context or not. While these sorts of metrics promote correctness, they also
discourage lexical diversity.

Bilingual Evaluation Understudy (BLEU) score is an n-gram metric that was originally
proposed for evaluation machine translation [66]. BLEU score is on a range from 0 to 1
with the former implying the generated text has no shared n-grams with the ground-truth
and the latter indicates a perfect translation. It compares n-grams in the generated text to

one or more ground-truth translations for values of "n" in 1 to 4. At its core, BLEU is a
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precision measure for n-grams. For NMT, n-gram based methods are the standard as there
exists only a few correct translations with any other options being considered wrong. In
this case, penalizing n-grams not in the ground-truth is a positive. Text summarization and
data-to-text generation do not have a finite number of correctly generated texts, so naturally
there will be deviation. Despite this, BLEU is a cheap and efficient way of evaluating natural
language models that continues to correlate well with human judgement.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a metric, similar to
BLEU, that consists of varying implementations for different use cases [48]. While BLEU
was intended for NMT and is a metric of precision, ROUGE on the other hand focuses
on recall as it is intended for summarization tasks. A recall metric scores well when it
can reproduce all of the n-grams in the ground-truth, that is given input it generates all
encompassing text. ROUGE is comprised of numerous implementations based on different

underlying measures such as:
o ROUGE-1: assesses the recall of unigrams (words).
o ROUGE-2: assesses the recall of bigram (pairs of words).
o ROUGE-N: assesses the recall of n-grams (tuples of length "n")

« ROUGE-S: assesses the recall of skip-bigram based co-occurrence statistics. Simply,

any pair of words that follow the order in which they appear in the sentence.

o ROUGE-L: assesses the recall of the longest common subsequence (LCS) within the
text. This takes into account sentence structure similarity and identifies the longest

occurring n-gram.

For the experiments in this work, evaluations are primarily done with ROUGE-L (RL) and
discussion of results pertains to the ROUGE-L F1-score if not otherwise specified. Although
ROUGE is better designed for summarization tasks, it still suffers from similar issues to
BLEU due to its reliance on n-gram comparisons.

Metric for Evaluation of Translation with Explicit ORdering (METEOR) is another
metric based on comparing subunits of the text. In particular, METEOR is a generalized
concept of matching unigrams between the generated text and target text. Once all unigram
matches between the two have been found, a score is computed that captures how well-
ordered the matched unigrams are between the generated text and target text. This is a
valuable evaluation metric when the content of the source data has a specific ordering
within the target text that should be enforced.

2.4.2 Embedding-based metrics

BERTScore is an embedding-based evaluation metric that assesses contextual similarity

rather than the regurgitation of previously seen n-grams [105]. As discussed in previous
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sections, the contextual embeddings of pre-trained language models, namely bidirectional
encoder representations from transformers (BERT) [18], facilitate comparison of words and
sentences using cosine similarity or some other distance metric for R”. BERTScore, hence the
title, compares the contextual embedding for the generated text to that of the ground-truth.
While different sentences ultimately result in non-identical embeddings, cosine similarity
is less penalizing in terms of error than precision and recall of occurring n-grams. This
means, generated text with the same semantics but different wording are still scored well.
Conversely, contextual embeddings and why words are located in R™ as they are is a less
transparent evaluation approach. With embedding-based metrics, correctness may be an

afterthought, but are useful for evaluating lexical diversity and semantics.
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Chapter 3

Methodology

3.1 Datasets

For experiments, the methodology discussed next is evaluated using the WebNLG [25, 26]
and E2E [64] datasets. Evaluating with more than one dataset suggests results are general-
izable and promotes reproducibility, particularly as both the datasets are publicly available.
WebNLG and E2E share numerous parallels across their source data and target text, mak-
ing comparisons between the two straightforward. In the datasets the source data consists
of text structured as semantic triples [90] and abstract meaning representations [6] while
the target text is summaries of these representations - presenting it as natural language.
Although the datasets share various similarities given their formulaic nature, they do differ
with respect to size, length of text, and other linguistic characteristics. Table 3.1 displays
the number of training samples, validation, and test data for both datasets. I outline these

differences as they arise in the discussion of the nuances of the datasets which is to follow.

3.1.1 WebNLG

The WebNLG dataset is crowdsourced from the DBpedia knowledge base which aims to ex-
tract structured content from Wikipedia [3]. As mentioned, the source data is structured as
semantic triples which are comprised of three atomic units: subject, predicate, and object.
For a given example in the dataset, the source data may pertain to a set of semantic triples
with the length of the target text being directly correlated to the size of the set. An example
is given in the top row of Table 3.2. Each set of triples in the dataset along with their
respective summaries are a part of one of the following categories: Airport, Artist, Astro-
naut, Athlete, Building, CelestialBody, City, ComicsCharacter, Company, Food, MeanOf-

Dataset Nirain Nyal Niest
WebNLG | 35,426 | 4,464 | 3,934
E2E 42,061 | 4,672 | 630

Table 3.1: Number of data in the different splits of either dataset.
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Dataset Source Data Target Text
Harold French was
born in 1897

WebNLG | Harold_French | birthYear | 1897

name|[Clowns]
E2E eatType[pub]
near[The Sorrento]

Close to The Sorrento you
can find Clowns pub.

Table 3.2: Source data and target texrt examples for both WebNLG and E2E.

Transportation, Monument, Politician, SportsTeam, University, and Written Work. All of
the categories appear in both the training and test splits of the dataset. Since the model
trains on these categories, we denote it as in-domain data. Whereas, the test set includes
three additional categories of Film, Scientist, and Musical Work. As the model does not see
these categories during training, I denote data from these three categories as out-of-domain
data. WebNLG is supplemented with multiple verbalizations for each set of triples. While
there are 35,426 unique training outputs, there are only 13,211 unique training inputs. Fur-
thermore, a dataset consisting of tens of thousands of training examples is considered data

scarce in comparison to other datasets making this a good challenge for data augmentation.

3.1.2 E2E

The E2E dataset is crowdsourced from human reviews in the restaurant domain [64]. The
source data for E2E are abstract meaning representations (AMRs), specifically slot filter
representations which convey meaning or semantics through properties. Slot filter represen-
tations are popular in describing entities when only a subset of properties from a larger
selection apply. E.g. a restaurant may have one or more food types (Italian and Spanish),
but certainly not all of them. An example is given in the bottom row of Table 3.2. Given
that all the data in E2E pertains to the restaurant domain and any slot filters occurring
in the test split only occur in the train split, the E2E dataset has no need for a concept of
in- and out-of-domain data. Similar to WebNLG, E2E consists of less unique inputs than
outputs. With only 4,862 unique AMRs and 42,061 unique text summaries, E2E offers a
larger disbalance between training data and test data size than WebNLG. Despite this, the
authors claim that the descriptive nature of the E2E data results in more lexically diverse
data for training. With only 7,000 more approximate training data, E2E is also a candidate

dataset for data augmentation.

3.2 Data Augmentation

The data augmentation strategies used in this work are loosely based off motivating work
as reviewed in Section 2.3, but is also adjusted for the data-to-text generation datasets

present. Fach strategy transforms the target tert in some manner before being added back
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Strategy | Sentence
None Coming from the region of Visayas, in the Philippines, Binignit, is a
type of dessert. Which banana as the main ingredient but also has sago in it.
RE Coming from the region of Visayas, in the Philippines, Binignit, is a gqcz
qp dessert. Which banana as rde main ingredient but also hfr sago in frv
LS Coming from the region of Visayas, in the Philippines, Binignit, is a variety
of dessert. Which banana as its main component but also has sago in it.
PP Binignit is a type of dessert from the Visayas region, in the Philippines,
which has a banana as the main ingredient, but also has sago in it.

Table 3.3: Sentences generated using the implemented data augmentation strategies. None:
no augmentation, RE: random erasing, LS: lexical substitution, PP: paraphrasing. Bolded
are examples of the effects each augmentation strategy can have.

to the training data resulting in an enlarged dataset. To ensure comparability between the
augmentation strategies, each one transforms the target text rather than the source data. For
other datasets, it is not guaranteed the augmentation strategies used would be applicable
depending on the source data’s structure. As the WebNLG and E2E datasets are limited
to thousands of unique training data, the amount of augmented data was restricted such
that the cumulative training data does not exceed double the original total. Preliminary
experiments demonstrated that an excess of augmented data resulted in poor results, likely
as the original training data became overshadowed. Despite this self-imposed restriction,
each augmentation strategy is capable of producing numerous augmented copies from a
single training data. Paraphrasing is the most limited in this sense as there is a finite
number of paraphrased versions for a given target text.

In the following subsections I present the high-level details of random erasing, lexical
substitution, and paraphrasing. These details include adaptions for data-to-text generation,
source material, and an example of how the transformation affects the target text. Accom-
panying the details is a pseudo-code implementation to encourage reproducible results if
others choose to do so. The implementations as are, directly correspond to the results in
Chapter 4. Furthermore, lexical substitution is accompanied by a dense equation that con-
tributes to the high quality synonyms it produces. This equation is broken down in the

corresponding subsection.

3.2.1 Random erasing

Random erasing was briefly touched upon in Section 2.3.1. There, it produced augmented
data by randomly erasing part of an image with a mask consisting of random values. Dif-
ferent to cropping, this imposes a grayish rectangle over top the image preventing it from
relying on the erased physical characteristics. The adoption for this strategy was motivated
by its similarity to inserting, deleting, and swapping random characters. In image data,

the random mask consists of random pixels so for text data, the random mask consists of
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random characters which is just a more concentrated way of doing the previously mentioned
token-level transformations. Like the motivating example, I only erase 15% of the target text.
That is, 15% of the processed tokens are replaced with tokens containing random characters
equaling a variable length. For either dataset, this resembles obfuscating a portion of the
target text as seen in the second row of Table 3.3

A key descriptor of random erasing is its ability to learn through occlusion. Occlusion for
our data is considered to be blocking out subsequences within the target text. This could be
understood as training the model on portions of a training data before it is able to generate

the text as fully desired.

Algorithm 1 Random erasing data augmentation algorithm

Input:
D - a dictionary of two lists, source data and tokenized target text
p - the percent of tokens to randomly erase, 0.15

Output:
D*, a dictionary of two lists, |D;| = 2 |D|
1: D*< D
2: for src,tgt pair in D do
3: tgt* < initialize empty array
4: for token in tgt do
5: p1 < Rand(0,1)
6: if p1 > p then
7 t* < Rand(|token|, ASCIICharacters)
8: tgt* append t*
9: else
10: tgt* append token
11: end if
12: end for
13: Append sre, tgt* to D*
14: end for

15: Return D*

3.2.2 Lexical Substitution

Lexical substitution is an easy augmentation strategy to conceptualize as it is a skill humans
use daily when digesting, communicating, and analyzing information. It is natural for an
individual to re-write information they have learnt in their own words by swapping formal
for informal language or to convey a topic on a per case basis depending on the audience.
There are numerous approaches for generating candidate synonyms to replace words with,
but most popular is thesaurus which is the principal behind Word-Net [55]. Look-up methods
such as Word-Net are limited by literal synonyms, imposing a hard constraint on how words

can be substituted.
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The introduction of contextual embeddings offers a soft-substitution method for replac-
ing words with synonyms as seen in Section 2.2.1. One approach for leveraging contextual
embeddings to generate synonym candidates is by masking words and predicting the hidden
word with a BERT language model [18]. An alternate approach provides slightly more di-
verse synonyms which is using the contextual embeddings other similarly embedded words
in R™ based on a distance metric. This removes the context of the surrounding target text
which can constraint the synonym candidates to a small list. To further obfuscate the candi-
dates, applying dropout to a token’s embedding incorporates additional variation by shifting
the space in R™ being searched in. For this work, I opt to use the synonym candidate scoring
equation shared by [110, 96].

n
Scoresia(t,t';5) = Zam x A(h(t;), h(t))) (3.1)
i=0
In Equation 3.1, t is a sequence composed of words [wg, w1, ..., w,]| and its counterpart

t' is the same sequence, but with the BERT internal embeddings having dropout of 0.2
applied at position j. The modified embedding is used to obtain a candidate ¢ which is
substituted into ¢’ such that its sequence resembles [wq, w1, ..., ¢, ... wy].

The terms h(t;) and h(#}) are the concatenation of BERT’s last four hidden layers when
the sequences represented by ¢ and ¢’ are passed through the model. A represents the cosine
similarity between these two stacked vectors. The cosine similarity is then used to scale the
first term in the equation. The term «; ; is the average self-attention across all heads in all
layers of the attention ranging from the it" to the j** token. If i > j then it is from the j*
to the i token. Finally, this scaled self-attention is summed over all tokens.

The previously cited works demonstrate that high quality synonym candidates are gen-
erated when this score is greater than or equal to 0.9. No limit is set for the number of
synonyms that can be incorporated into the augmented copy, but only nouns, adjectives,
adverbs, and numerals are targeted in this implementation. An example of synonyms gen-

erated by this lexical substitution strategy are seen in row three of Table 3.3.

3.2.3 Paraphrasing

Unlike random erasing, paraphrasing has no direct computer vision equivalent. While rule-
based approaches for constructing paraphrased copies exist, most commonly it is done using
an external model such as a language model. Trained similarly to other pre-trained language
models, this approach provides an example-driven albeit computationally expensive way to
paraphrase data. On the shorter sentences in both datasets, limited paraphrased copies
are available and sometimes not at all. Due to the stochastic nature of the augmentation
strategy, I provide precise implementation details to encourage reproducibility and to gauge

the impact of this augmentation strategy.

27



Algorithm 2 Lexical substitution data augmentation algorithm

Input:
D - a dictionary of two lists, source data and tokenized target text

p - the threshold score for a candidate to be accepted, 0.9
Output:
D*, a dictionary of two lists, |D;| = 2 |D|
1: M;s <= Load a pre-trained BERT model
2. D*< D
3: for src, tgt pair in D do
d < empty dictionary
5 candidates(< Dropout(Ms(tgt)embeddings)
6 for ¢ in candidates do
7 s. < Score ¢ with Scoregrys
8
9

>

if s. > p then
Substitute ¢ into tgt

10: end if

11: end for

12: Append sre, tgt, to D*
13: end for

14: return D*

Strategy Level Computational Cost | Language Model?
Random Erasing Token Low No

. o Token )
Lexical Substitution Embedding Medium Yes
Paraphrasing Sequence High Yes

Table 3.4: Presents varying characteristics between the implemented data augmentation
strategies in this work.

For a given training data, I have the paraphrasing model return three paraphrased
copies then check to see which is the most diverse from the augmented target text. Whichever
is most diverse with regards to a word edit score is added to the training data as the
augmented copy. If no satisfactory paraphrased version is produced, then the algorithm
will skip that training data continuing onwards. The external model used for paraphrasing
is based on the bidirectional and auto-regressive transformer (BART) architecture and
is available through the HuggingFace library as "eugenesiow/bart-paraphrase” [45, 46] An
example of paraphrasing augmentation is seen in Table 3.3 in row four. Observe that the

ordering of content has changed and contains fewer words.

3.2.4 Augmentation properties

Table 3.4 highlights some of the key differences between the implemented augmentation

strategies including, most importantly, the computational cost which is elaborated on in
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Algorithm 3 Paraphrasing data augmentation algorithm

Input:
D - a dictionary of two lists, source data and tokenized target text
Output:
D*, a dictionary of two lists, |D;| = 2 |D|
M,, <= Load English paraphrasing model
D*<= D
for src, tgt pair in D do
n < \/||text|| - p
t* <= My(tgt,3) (generate three paraphased copies of tgt)
s* < score(t*)
if d satisfactory = € s* then
Append sre, max(s*) to D*
end if
end for
: Return D*

—_ =
== O

Chapter 4. Random erasing which only accesses select tokens within the target text requires
no external model making it the most inexpensive to implement from a computational
standpoint. Although both lexical substitution and paraphrasing require external models,
lexical substitution does not require a full pass through the model. Rather the internal em-
beddings and hidden states are extracted before the target text passes through the decoder
of the model. Since inference typically is more computationally expensive, lexical substitu-
tion sits at a medium between random erasing and paraphrasing in terms of computational
cost. Additionally, lexical substitution differs from the other two augmentation strategies
in that it manipulates contextual embeddings for the purpose of producing synthetic data.
Lastly, as the target text requires a full pass through the external model in paraphrasing it
achieves the highest computational cost. This is exacerbated by the fact I generate three

different paraphrased copies that are scored.

3.3 Data-to-text Generation Models

The data augmentation strategies in this thesis are assessed with the text-to-text transfer
transformer (T5) language model [77]. Regardless, this work is still interested in the task of
data-to-text generation and thus the previously discussed Transformer is also implemented
and evaluated. The Transformer provides the basis for the T5 and offers an interesting
comparison both in terms of model complexity, but the effect of pre-training and transfer
learning as well. The following subsections loosely discuss common implementation details

for both models as well as any particular decisions of this work.
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3.3.1 Transformer

As the Transformer is an architecture rather than a model, an instance of it must be put
forth in this work. The Transformer model used here follows that of the one used in the
experiments of [97]. The finer details of this model will be discussed next and in Chapter
4. Future references to this model, in particular in Chapter 4, will be referred to as the
Transformer.

Although it is hypothesized and expected that T5 will outperform a Transformer, it
remains valuable for experimental results to act as a baseline given its popularity. Following
the model diagram of 2.4, the embeddings for the input and output of the Transformer are
randomly initialized. The encoder stack of the Transformer consists of multi-headed atten-
tion, an additive and normalization layer, a feed-forward network of dimension D = 256,
and then a final additive and normalization layer. The decoder stack follows a similar struc-
ture, with the primary difference is that the attention is accompanied by a mask to prevent
it from looking forward into the future. For data-to-text generation this is called a causal
mask where each pass of the data reveals the following token one-by-one. A main improve-
ment of this structure over a recurrent neural network (RNN) is that these feed-forward
networks operate independently rather than recursively so these sections of the architecture
are easily paralleled. All the weights are randomly initialized and any parameters that can-
not be randomly initialized are assigned as they were in the paper. This removes any notion
of pre-training for the model, emulating the model learning the task anew. Like the T5, the
source data for the Transformer was converted to a text-to-text format for comparability.
The Transformer was trained on data tokenized at the word-level, split by whitespace, and

special characters.

3.3.2 T5

The T5 mimics the details of the original paper although the implementation used is from
HuggingFace, a library that facilitates the use of language models [77, 102]. As T5 is appli-
cable to a range of natural language tasks, it has to be specified the kind of head the model
uses to produce the desired output. For this work a language modeling head is used. Unless
specified otherwise, the T5 referred to in this work is the base version available through
HuggingFace signified by "t5-base" in the API.

There are a few reasons to discuss on why T5 was chosen as the language model of choice
for this work. First, T5 is pre-trained on various language tasks cast as text generation prob-
lems meaning in theory it will generalize better to unseen tasks - data-to-text generation.
In comparison, BART is more narrowly focused on text reconstruction and summarization
tasks as a sequence-to-sequence model [46]. Next, T5 is trained on a massive corpus with
text from a multitude of sources which more generally teaches it syntactic structure, seman-

tics, and language. Lastly, there is flexibility when fine-tuning T5 as it employs a unified
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framework that converts all text-based language problems into a text-to-text format. In this
case, so long as the source data is able to be represented via text then the T5 will be able
to generate corresponding text. Meaning, so long as the source data is linearized to a string
then T5 is able to model it as a sequence-to-sequence task. For WebNLG and E2E this is
simply done by flattening the semantic triple or abstract meaning representation.

T5 is different from the Transformer used in this work in a few ways. First is the
pre-training approach used which was span masking that is discussed in Section 2.1.4. Pre-
training imparts a beneficial general understanding of language onto the model as discussed
prior. Architecturally, the T5 uses a relative positional encoding instead of an absolute
positional encoding. Absolute positional encoding operate based on the position of the token
given the max sequence length the model is able to handle. Rather, a relative positional
encoding compares distance between tokens to accommodate for unknown sequence lengths.
Lastly, the T5 model includes layer normalization before each multi-head attention block
(orange in Figure 2.4) to prevent overfitting to any of the tasks or data used during pre-
training.

To avoid catastrophic forgetting, T5 is initialized with a low learning rate and is only
trained for 3 epochs which was found to best when validating different parameters. Further-
more, the weights for the model’s encoder are frozen to retain learnt linguistic information
and only the decoder weights are tuned to adapt to the unseen task.

In Chapter 4, a T5 without pre-training is used to observe the effect prior language
knowledge has for data-to-text generation. In truth, this iteration is not exactly without
pre-training, rather the model weights are randomly initialized to remove the impact of
pre-training. In relevant tables this iteration of the T5 is denoted T5%*.

To the best of my knowledge, this is the first time these augmentation strategies have
been tested with the T5 on these datasets.

3.4 Summary

In this chapter, I shared the implementation of the data augmentation strategies used in
this work as well as how they are incorporated into the training procedure. Additionally,
I outlined my experimental set-up for conducting an analysis of data augmentation for
data-to-text generation when confronted with scarce data.

The next chapter expands upon this discussion by providing further experimental set-up
details. I also share the results for the experiments conducted, highlighting improvements,

shortcomings, and other interesting observations.
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Chapter 4

Analysis

4.1 Research Questions

As discussed in Section 2.3, data augmentation has been proven successful in many natural
language tasks as well as computer vision (CV) while for data-to-text generation the overall
research is more cursory. These fields all require models utilizing large and balanced datasets
for training which, as described, is relatively rare for the field of data-to-text generation due
to its nature.

Although the augmentation strategies explored are not original to this work, their com-
bination with T5, application to these datasets, or usage in data-to-text generation are.
Despite this, I will deepen the understanding of these strategies for data-to-text generation
and show whether they are viable solutions or fall short of the mark. In doing so, I will
answer the following research questions throughout this chapter.

The first question is whether pre-trained language models are suitable for the task of
data-to-text generation. It is common knowledge that these models have rapidly become
state-of-the-art in various natural language tasks, but the inconsistent nature of the source
data does not guarantee "a one size (or model) fits all" approach. I selected a popular pre-
trained language model to be fine-tuned on both datasets before assessing its suitability.

Furthermore, does data augmentation provide consistent and observable increases on
top of said model for data-to-text generation. While pre-training occurs during an entirely
different stage of training a model, its inclusion potentially competes with the improvement
data augmentation would garner.

Lastly, does data augmentation provide more substantial improvements when included
on datasets with even smaller amounts of training data. If so, is there a threshold at which

data augmentation ceases to be impactful.

4.1.1 Training procedure

The training procedure for all models follows roughly the same structure. The data was

tokenized using the respective tokenizers before being passed to the models in batches.
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As the data augmentation strategies initially produce look-ups that facilitate generating
augmented copies then those are incorporated into training the model during run-time. The
T5 model was pre-trained on certain tasks using teacher forcing which we continue with as
well. For comparability, this is also done during training for the transformer. Both models
make use of a cross entropy loss function during training. This means that learning was

done using the logits the models produce and not the resulting sequence probabilities.

4.1.2 Validation and testing procedure

Both the WebNLG and E2E datasets come with pre-defined validation datasets meaning
cross-validation is not required as a standard evaluation is pre-determined. After a number
of training epochs, the model is evaluated on the validation split and scored using loss on
the validation split. After completing all epochs, the model checkpoint with the best score
is retained for evaluating on the test split of the dataset.

The testing procedure is the same for all models and datasets. Using the test split of
the datasets, we generate text from the source data and use existing target text to score the
model with the evaluation metrics discussed in section 2.4.1. To provide further consistency,
HuggingFace has a function for standardizing the settings used in the text generation pro-
cess. All models generate text using beam search decoding due to its improved ability to
search for the optimal resulting sequence [24].

It should be noted that the validation split of the datasets are used when selecting the
few parameter or hyperparameter values that are changed within the models. These are
discussed in the following subsection as well as why the majority of the parameters and

hyperparameters remain untouched.

4.1.3 Hyperparameter selection

The focus of this work is the data augmentation strategies, not the models implemented for
data-to-text generation. Therefore, the model hyperparameters are left largely untouched
to those in the T5 paper [77]. While performance could likely be improved by tuning the
hyperparameters extensively, this negates one of the goals of this work which is to see if
data augmentation is suitable replacement for such a time-consuming endeavor. Only the
number of epochs the model is trained for and the learning rate are adjusted, primarily to
avoid catastrophic forgetting or overfitting. Furthermore, additional parameters could have
been added to the augmentation strategies and tuned but then it is possible to fall into the
same trap as hyperparameter tuning. Instead, the augmentation strategies are similar to
their motivating examples in other tasks unless otherwise specified.

The number of epochs and learning rate were uncovered by training the model without
any augmented copies, using only the training and validation splits of the dataset to find
optimal values. The metric for comparing hyperparameters is METEOR as it is computa-

tionally inexpensive and approximates human judgement well. To account for randomness,
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a configuration is assessed multiple times on the validation split. Lastly, this work assumes
that the augmented copies do not deviate sufficiently from the original data distribution to

warrant new hyperparameters.

Transformer

Parameters for the transformer model follow common implementations available in various
coding libraries and as described in papers. This includes 8 attention heads, 6 layers of
transformer blocks for both the encoder and decoder, a dimension of 256 for the feed-
forward network, and an embedding size of 256 as well. Dropout applied throughout the
Transformer is set to 0.1.

To tokenize the data for the Transformer separate tokenizers are required for the source
data and target text due to differences in structure, set-up, special symbols, and sequence
length. This holds true for both datasets. As some rare tokens in the target text were actually
values such as 6600.66 kms, more caution needed to be taken to ensure none of the data
was invalidated. Text was split on white spaces or commas, but not periods. Certain special
characters were not removed as they were also included from the source data such as /, \,
and -. Early experiments had shown that given the datasets studied, a subword tokenizer
performed worse than the tokenization process outlined above. To better compare with the
T5, the subword tokenizer assessed was a byte-pair encoding tokenzier which is used for the

language model.

TS5

As mentioned, hyperparameters for the T5 model are also selected based on the original
paper or as pre-determined by the HuggingFace library. The data is tokenized using the
associated tokenizer within the library as well which is a trained SentencePiece [44] tokenizer
consisting of sub-word tokens with a vocabulary size of 30,522. The way SentencePiece works
is that no text will have any out-of-vocabulary tokens due to the fact that tokenization
happens at the sub-word level.

The number of epochs for T5 is kept low to mitigate any catastrophic forgetting of the
pre-training and the encoder parameters are frozen as well. Hyperparameter tuning showed
that 3-5 epochs was best with the validation performance beginning to decrease after epoch

3 on average.

4.1.4 Incorporating curriculum learning

Often times the complexity of a dataset can inhibit a model’s ability to learn amidst the
noise. In these scenarios, the solution is not to add more data as this contributes to the
problem but simplify the learning process. As discussed in Section 2.2.3, curriculum learning

includes approaches to training the model on the data in a meaningful order. Recent work
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has shown that curriculum learning is not always a viable solution though, in particular for
the WebNLG dataset [58]. In fact, the authors of the previous work observed a decrease in
performance. The curriculum used for training the model in this work is to pass increas-
ingly complex data. A higher number of semantic triples (WebNLG) or abstract meaning
representations (E2E) directly corresponds to a higher complexity, that is both datasets
have source data that are sets of objects and the larger that set the more complex it is. The
training data is then sorted by this complexity with easier examples being presented to the
model earlier in the epoch.

Their work used the Transformer architecture and so the same effect should be observ-
able with the Transformer used in this work. Furthermore, I use this curriculum to fine-tune
the T5 and see if the effect holds true for this model as well. To confirm whether a curricu-
lum of training on increasingly complex data is worthwhile, I train or fine-tune the models

with and without curriculum learning.

4.1.5 Data-to-text generation

The success of the implemented models on the task of data-to-text generation is evaluated by
following the procedure outlined in Sections 4.1.1 and 4.1.2. Once trained, the model is used
to generate text that is compared to the target text of the test data. Here, all variations
of ROUGE are considered for a comprehensive experiment but when this experiment is
repeated with data augmentation I consider the F1-score of ROUGE sufficient for reporting.

As discussed in 3.1.1, the WebNLG dataset is composed of various categories with a few
not being seen until after training is finished. Part of the experiment includes a breakdown
of the evaluation metrics per category to observe if T5 is able to generalize to the unseen

categories.

4.1.6 Augmentation settings

In section 2.3.1, random erasing was introduced as a data augmentation strategy that is ap-
plied to the input image for various CV tasks. While literature points toward data augmen-
tation being more appropriate for the output in sequence-to-sequence tasks, a comparison
is worthwhile.

The results when data augmentation is included assume that for each training data,
one augmented copy is produced. In some cases, lexical substitution and paraphrasing do
not given their implementation and reliance on external models. Data augmentation in
performed during the training procedure when a new batch is formed and before it is
passed through the model. Between each experiment where data augmentation was used,

the implementation and amount in which an example is augmented does not change.
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4.1.7 Dataset upscaling

Dataset upscaling refers to increasing the size of a dataset, generally done to improve model
performance. This comparison is done with each augmentation strategy as well as a model
trained without augmentation. Not only does this experiment evaluate whether augmented
data can replace collected data, but it also shows whether a model reaches its performance
threshold faster and what amount of training data (Nirqin) does data augmentation work
best with. This experiment is conducted with N4 = None, 1,5, 500, 1, 000, 5, 000, 15, 000,
and 25,000. Conversely, this experiment also informs the dataset size in which augmenta-

tions impact begins to fade.

4.1.8 Dataset considerations

As seen in Table 3.2, both datasets come as formatted source data which need to be lin-
earized to be accepted by the Transformer and T5. One of the primary decisions for selecting
T5 as the language model used in our experiments is that this conversion of any input-to-
text task into a text-to-text task is rather trivial. This means that despite the source data
format, the data-to-text generation process is treated the same across tasks and requires
minimal if any changes to the architecture. While this provides a standardized approach for
handling the data, the WebNLG and E2E datasets contain differences in how it should be
processed such as vocabulary, source data structure, and length of constituent sequences.
Below, I outline some of these differences. The sequence length of the target text is measured
by the count of characters as different tokenizers generate varying amounts of tokens. For
the source data, the comprising number of triples or meaning representations is measured as

the length. The last dataset characteristic we consider is the vocabulary in both datasets.

WebNLG

As previously defined, the WebNLG source data are sets containing a variable amount of
semantic triples. Rounded to the nearest integer, the average number of triples used is 3.
Despite the source data consisting of a few triples, the character count when transformed
for the text-to-text nature of the T5 model is an average of 151 characters. The dispar-
ity between number of triples and character count is explained by the complexity of the
subject, predicate, and object within the triple. For example, one possible predicate is "ele-
vationAboveTheSeaLevel". This predicate when verbalized is not as simple as a one-word
response. When evaluating models I experimented with both retaining compound word as
a single token and splitting it into multiple tokens with the latter appearing to have more
stable model behaviour. On the other hand, the target text in the WebNLG dataset has an
average character count of 116 characters. As discussed for the E2E dataset next, the aver-
age character count is roughly the same between the two but the vocabulary for WebNLG

is much larger. Following a simple strategy of splitting sentences on whitespace and any
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Dataset | Split | BLEU R (P) R (R) R (F1) M
Train | 5.21  39.96 6339 2989  30.18
E2E Dev | 5.06  41.14 6685 3028  31.34
Test | 2449 4629 67.23 3576  41.47
Train | 6.85 4444 5045 4088  10.99
WebNLG | Dev | 7.43  44.05 50.15 4042  11.31
Test | 4.54 4332 4867 4062 853

Table 4.1: BLEU, ROUGE, and METEOR results obtained by a copy-based approach for
data-to-text generation. R: ROUGE, (P): precision, (R): recall, (F1): Fl-score, M: ME-
TEOR. This approach is useful in approximating the difficulty of the task.

commas, the number of unique words in WebNLG is 13,570. This is the first indicator that
n-gram metrics such as BLEU will trend lower on the WebNLG dataset due to the range
of possible words to be verbalized. Although metrics are expected to be different between
datasets, this helps for framing expectations when discussing results and comparing between
the two tasks.

E2E

The E2E dataset has slightly different source data which is sets of slot filters. I use the
number of slot filters as the input length for E2E. This results in an average input length
of 5 which is slightly larger than the WebNLG dataset. Conversely, the average character
count for the E2E input is 106. A simple explanation is that E2E uses more slot filters
than WebNLG uses triples, but the slot filters are less complex in nature. For example, slot
filters found in E2E are "priceRange”, "name’", "familyFriendly", and more which are easily
answered with a single string, float, or boolean value. Despite the difference in source data,
the target text of E2E is roughly the same with an average character count of 109. Although,
following the same strategy for identifying E2E’s target text vocabulary, it results in one
that is much smaller with only 4320 unique words. This means by even just regurgitating

known words, the model has a better chance at avoiding certain metrics from decreasing.

4.2 Results

This section demonstrates the capabilities of the selected models for the task of data-to-text
generation. Furthermore, it highlights the results obtained when these models are supple-
mented with data augmentation strategies - whether there are improvements or a lack
thereof. In particular, these methods are explored with respect to a data scarce environ-
ment by investigating what occurs when the amount of training data is reduced. The main
approach to investigating these results is through natural language generation metrics as
discussed in Section 2.4.1, but in some cases further tables and figures are provided to delve

deeper into aspects of the augmented data and how that impacts data-to-text generation.
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WebNLG E2E
B R (1) M B R (F1) M
no | 2.23 2318 1844 | 20.73 4825 50.79
yes | 1.01  12.94 13.84 | 2557 41.92 31.37
no | 3274 5775 5879 | 61.71 64.23  69.48
yes | 31.19 5348 53.70 | 61.21  66.19  70.58

Model CL

Transformer

Tb

Table 4.2: The impact of including a curriculum into the training procedure with both the
T5 and Transformer. no: implies training data was randomized yes: curriculum learning was
performed.

WebNLG E2E
B R(P) R(R) R(FL) M B R(P) R(MR) R(FI) M
Transformer | 2.23  21.96 26.65 23.18 18.44 | 29.73 50.25 48.29 4825 50.79
T5* 11.16 3648 20.34 2433 19.97 | 45.65 68.43 39.97 49.42 4458
T5 3274 6399 5391 57.75 5879 | 61.71 7271 58.64 6423 69.43

Model

Table 4.3: The results of applying a Transformer, T5 without pre-training, and a T5 with
pre-training to WebNLG and E2E. * implies that the model was initialized without pre-
training.

4.2.1 Curriculum learning

Table 4.2 displays the outcome of training a Transformer and T5 with and without curricu-
lum learning. Similar to the aforementioned work, it is observed that curriculum learning
results in decreased performance across three different evaluation metrics for both the Trans-
former and T5 when dealing with the WebNLG dataset. Furthermore, curriculum learning
only decreases the performance of the Transformer when trained on the E2E dataset. For
the T5 trained on the E2E dataset with curriculum learning, there are slight improvements
such as a 1.96 increase in the ROUGE F1-score and 0.9 increase in METEOR. These im-
provements are insignificant and cannot be confirmed as anything more than randomness
based on the experimental settings. Although out of the scope of this work, I suggest fur-
ther exploration into curriculum learning for data-to-text generation as a research avenue.
The results presented moving forward assume that the model has been trained without

curriculum learning.

4.2.2 Results of data-to-text generation

First and foremost, the question of how difficult of a challenge is data-to-text generation
must be answered. A crude method for approximating the difficulty a model will have
learning from the data is to construct a copy-based approach as was historically popular
with data-to-text generation. For both datasets, any special characters which define a new

unit in the source data are removed, conjoined words are split apart, and any additional
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Building - b b
MeanOfTransportation - b b
ComicsCharacter A b b
CelestialBody A k k
Food - E E

Film E E
WrittenWork A E E
Politician - B E
University - b b
Company A E E

Artist 1 b b

Monument A E B
Scientist E E
MusicalWork - E E
City E E

Athlete E E

Airport - b b
Astronaut - b b
SportsTeam A E E

Categories

0 25 50 0 25 50 0 25 50
BLEU ROUGE METEOR

Figure 4.1: A breakdown of BLEU, ROUGE, and METEOR for the WebNLG dataset on the
various categories within its test data. Film, Scientist, and MusicalWork are the categories
that are not part of the training data.

tags dropped. Treating this stitched together version of the source data as generated text,
it is then compared to the target text with the evaluation metrics mentioned in this work.

Table 4.1 demonstrates the results of the aforementioned copy-based approach for data-
to-text generation which provides a brief glimpse into the complexity of the two datasets. For
the E2E dataset, simply copying the source data to act as the generated tert demonstrates
inconsistencies. While the ROUGE precision and F1-scores are high, the remaining metrics
such as BLEU, ROUGE recall, and METEOR are below average in comparison. This can be
explained by the fact that much of the source data directly appears in the target text which
would lead to high precision as it is being copied. Consequently, a high ROUGE precision
will lead to a higher ROUGE Fl-score. A similar effect is noticeable for the WebNLG
dataset as well with precision being the best performing ROUGE metric. The BLEU score
for WebNLG shows consistency with the test data being the most difficult split naturally.
This is not the case for the E2E dataset where the BLEU score is improved four-fold from
the train and dev splits. The reasoning for this can be contributed to fewer examples in the
test set thus allowing a few successful copied predictions to skew the results towards higher
evaluation metrics. Because of this we should expect for the E2E test set to perform better
on evaluation metrics, in particular with regards to the WebNLG dataset. For the WebNLG
dataset, the test set has a more balanced mixture of regurgitating keywords as well as filler
words to create a coherent sentence. This is evident in the balanced ROUGE precision and

recall scores, meaning for the WebNLG dataset the most appropriate metric is ROUGE
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Fl-score. METEOR corresponds to a matching of unigrams between the generated text and
target text. The nature of the E2E dataset is better suited for this evaluation metric than
WebNLG as the attributes in the source data have less dependencies than the semantic
triples in WebNLG. This means the target tert in E2E has more possible alignments of the
target text that show up in evaluation.

Table 4.3 displays the results obtained on the task of data-to-text generation with no
augmentation, procuring a set of baseline results for comparison moving forward. In addition
to the T5 language model, the results for a Transformer model are provided. While the
Transformer is not continually used as a baseline in this work, it acts as a comparison for
the T5 model and assesses the impact of pre-training. As expected, the WebNLG is the more
challenging dataset to train on as noted by the low BLEU score of 2.23 the Transformer
achieves. Similarly to BLEU, ROUGE also underperforms in comparison to the copy-based
architecture further highlighting the troubles the Transformer experienced learning on the
WebNLG dataset. Conversely, the Transformer demonstrates a 9.9 point increase with the
METEOR evaluation metric.

The second row of Table 4.3 shows the results of the T5 being initialized without pre-
training then trained. It is observed that the architecture change alone prompts improve-
ments of 8.93 on BLEU, 1.15 on ROUGE, and 1.53 on METEOR for WebNLG and im-
provements of 15.92 on BLEU and 1.17 on ROUGE, but a decrease of 6.21 on METEOR for
E2E. A decrease on METEOR appears anomalous and it appears that the more complex
structure of the T5 language model provides a general improvement.

In the bottom row of Table 4.3, when comparing the T5 to itself without pre-training
and the Transformer on the WebNLG dataset I noted an overall increase for all recorded
evaluation metrics. While the Transformer demonstrates mixed success at modeling the
dataset, ultimately T5 vastly outperforms it all on fronts - highlighting the efficacy of
pre-training. As expected, ROUGE precision is the best performing metric at 63.99 for
the T5 on the WebNLG dataset although the METEOR score rises an intriguing amount
from both the copy-based model, the Transformer, and now with pre-training. Up 50.26
and 40.35 in METEOR respectively. Though not conclusive, by definition this means some
combination of unigram selection and alignment is roughly half that of the target text.
Similar results are noted for the E2E dataset, albeit the evaluation metrics are elevated
all around as predicted from the copy approach used to gauge the datasets. With a high
ROUGE precision and METEOR score, 72.71 and 69.48, T5 demonstrates its ability to recall
the proper terminology for the E2E dataset coupled with the generated text being properly
aligned with the target text. Figure 4.1 breaks down the performance of a pre-trained T5
model on the different categories that make up the WebNLG dataset.
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WebNLG E2E
B R(F1) M B R (F1) M
None | 1.96 2951 6.94 | 7.29 4227 41.49
1 425 3416 1280 | 17.16 37.68  36.80
5 | 1915 3877 29.09 | 36.57 40.71  36.49
500 |30.85 51.25 49.24 | 54.35 60.10 61.29
1,000 | 30.72 51.86 50.46 | 55.91  60.55  62.75
5,000 |31.47 56.11 56.32 | 61.86 65.92  72.37
15,000 | 32.16  56.95 5851 | 63.53 67.50 72.76
25,000 | 32.51 56.75 58.31 | 63.21 66.85 72.68

Table 4.4: The performance of a pre-trained T5 when the amount of training data, Nipqin
progressively increases from no training data up to 25,000 training data.

4.2.3 Amount of training data

Table 4.3 demonstrated the efficacy of training the T5 on a complete albeit small dataset.
One benefit of pre-trained language models is their ability to be fine-tuned to new data
with as little as a few examples. Table 4.4 displays the results across various metrics for
fine-tuning a TH model on progressive amounts of data for both the WebNLG and E2E
datasets. Evidently, when no fine-tuning occurs and the T5 is initialized with out-of-the-box
parameters the performance is not much better than the copy-based model demonstrated
in Table 4.1. From no training data to just a single example on the WebNLG dataset
roughly improves the performance two-fold on BLEU and METEOR, while ROUGE F1-
score increases by 4.65. On E2E BLEU increases more than two-fold while the other two
metrics marginally decline. As the value of N increases in the leftmost column so do the
associated metrics before reaching what appears to be a threshold in improvement for
the T5 model. For WebNLG, this threshold appears around N = 5,000 and N = 15,000
for E2E. This corresponds to approximately, 32.0, 56.0, and 58.0 for BLEU, ROUGE and
METEOR respectively for WebNLG which aligns with the results obtained by the best
performing model in 4.3. For E2E this threshold is defined by 63.0, 67.0, and 72.0 for
BLEU, ROUGE, and METEOR respectively which similarly aligns with the information in
the aforementioned table.

For WebNLG, BLEU seems to reach its threshold first for N¢.q;, = 500 while ROUGE
and METEOR reach it around Nypqin = 5,000. With the E2E data the three evaluation
metrics all reach their threshold at roughly the same amount of training data, that is when
Nirain = 5, 000.

4.2.4 Augmenting data-to-text generation

Recall Section 2.3 where the origins of data augmentation were discussed and the motivation
for its application to data-to-text generation. In computer vision, data augmentation most

often transforms the image which is being analyzed. That is, the input or source data in
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WebNLG E2E
B R(F1) M B R(F1) M
Source Data | 28.38 5242 53.27 | 51.25 59.50  63.29
Target Text | 31.75  56.58 57.35 | 61.69 67.80 74.29

To Augment

Table 4.5: A comparison of the random erasing augmentation strategy being applied to the
source data and target text.

Strategy WebNLG E2E

B R(FL) M BS B R (F1) M BS
None 3274  57.75 5379 92.66 | 61.71 6423 69.48 96.12
RE 3175  56.58 57.35 93.52 | 61.69 67.89 74.29 96.24
LS 2781  57.38 5873 93.29 | 60.20 66.76  73.79  96.13
PP 32.78 56.87 58.95 93.74 | 60.77 6475 68.23 96.04

Table 4.6: Presents the results of fine-tuning a pre-trained T5 with the inclusion of data
augmentation. None: means no data augmentation occurred, RE: random erasing, LS: lexical
substitution, PP: paraphrasing, BS: BERTScore. Bolded values mark the best performance
on the corresponding metric.

that case. As briefly mentioned, this raises a flag for data-to-text generation. Opposed to
the source data always being an image like in computer vision, for data-to-text generation it
might be numeric, graphs, or a string. More generally, data-to-text generation is a sequence-
to-sequence task which fundamentally relies on a consistent mapping between the input and
output sequence. I used the random erasing augmentation strategy to dictate how I apply
the remainder of the augmentation strategies, barring paraphrasing which logistically does
not make sense to apply to source data.

Table 4.5 highlights the difference between applying an augmentation strategy to the
source data or target text, in particular the random erasing augmentation strategy. Once
again reporting BLEU, ROUGE, and METEOR, across all three metrics and both datasets
it is evident that in the context of data-to-text generation augmentation is better suited for
the target text. Though dataset characteristics could be attributed for this difference, the
more plausible explanation is that for data-to-text generation and more largely sequence-
to-sequence tasks augmentation should be performed on the target text. ROUGE and ME-
TEOR have been the more telling metrics throughout this analysis and exhibit clear de-
creases of 4.06 and 4.08 on WebNLG and 10.44 and 11.00 on E2E respectively. The decrease
in the model that occurs when random erasing is applied to the source data is a result of
information necessary to the target text being replaced with random characters that then

does not appear in the generated text because the model has no prior knowledge of it.
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WebNLG E2E

0.72 1 1.14 A None
Random Erasing
Lexical Substitution
Paraphrasing
0.70 A 1.12 A
o
2 0.68 1 1.10 1
|
c
°
©
= 0.66 A 1.08 -
>
0.64 - 1.06 1
0.62 1.04 1
1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
Epoch Epoch

Figure 4.2: Displays the loss over three epochs of a pre-trained T5 without augmentation,
with random erasing, lexical substitution, and then paraphrasing. The loss for WebNLG is
presented on the left and E2E on the right.

4.2.5 General augmentation

As seen in Table 4.6, definitive improvements are difficult to observe with the exception
being random erasing on the E2E dataset. Otherwise, it appears data augmentation may
help as much as it may harm. For the provided results, random erasing and paraphrasing
provide incremental improvements in comparison to lexical substitution. A common obser-
vation across all strategies is that improvement generally occurs in ROUGE and METEOR
as opposed to BLEU. For WebNLG, the improvement on any of the metrics does not ex-
ceed 0.16 which is hardly convincing of significant improvement. In comparison, observable
improvement on the E2E dataset is more significant with ROUGE increasing by 3.66 and
4.81 on METEOR with random erasing.

Despite minimal improvements, all augmentation strategies approximately match the
model fine-tuned without augmentation on the BERTScore metric. In fact, for WebNLG
the model augmented with paraphrased copies garners a 1.08 improvement while on E2E
random erasing garners a less impressive 0.2 increase. Values for BERTScore greater than
90 imply the generated text of the augmented models have high degrees of similarity with
the target text in the embedded representations.

Figure 4.2 displays the validation loss over the three training epochs for a pre-trained

T5 model without augmentation, with random erasing, lexical substitution, and finally
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v WebNLG E2E
train augment B R (Fl) M B R (Fl) M

1 1 2.89 3510 752 | 2256 3777 33.75
) S 21.69 36.60 24.71 | 37.79 47.94 46.10
500 500 31.5 5246 50.31 | 56.16 58.06 58.27

1,000 1,000 30.53  52.97 50.69 | 59.19 64.03 70.07
5,000 5,000 31.60 56.02 56.13 | 61.69 65.09 71.19
15,000 | 15,000 | 32.07 56.99 58.72 | 64.43 67.81 74.83
25,000 | 25,000 | 32.53 56.34 58.72 | 65.79 68.61 75.69

Table 4.7: The performance of a pre-trained T5 with random erasing augmentation when
the amount of training data, Nyqipn, progressively increases from a single training data up
to 25,000 training data. Nyygment displays the amount of augmented data incorporated. The
totals for this column should match that of Ng.q, unless an augmented version cannot be
generated for the original training data.

paraphrasing. In both cases, the model without augmentation demonstrates worse loss than
those with augmentation. Contrary to Table 4.6, for WebNLG random erasing achieves the

best loss while lexical substitution does for E2E.

4.2.6 Augmentation on reduced training data

Similar to Table 4.2.3, I demonstrate the results of fine-tuning a pre-trained T5H on reduced
amounts of training data with the exception that the fine-tuning includes augmented data. In
particular, it is augmented with the random erasing strategy. The results of this experiment
are displayed in Table 4.7 for both the WebNLG and E2FE dataset. For the former, there
is no immediate evidence that random erasing improves any aspect of the training process
when subjected to limited data though it does not noticeably do harm either. Contrarily,
there is limited evidence that random erasing pushes the model towards the performance
threshold for BLEU on E2E more quickly as every value for Ni,.qip, except for Nipqin = 5, 000
improves in comparison to the experiment without augmentation. This is coupled with an
improvement of 2.26 in BLEU, 1.11 in ROUGE, and 2.93 in METEOR over the previous
best further demonstrating the improvement random erasing obtains on E2E.

In the same vein, Table 4.8 displays the results on the same experimental set-up, but
now the augmentation strategy used is lexical substitution. Table 4.6 showed that lexical
substitution either harmed or exhibited no measurable effect on the performance of a pre-
trained T5 for WebNLG and the same conclusion is drawn here in this experiment as well.
Table 4.6 showed that lexical substitution either harmed or exhibited no measurable effect
on the performance of a pre-trained T5 for WebNLG and the same observation is drawn
from Table 4.8. This is because the metrics used rely on comparing generated tokens. Again,

the same conclusion is drawn for E2E with the exception that lexical substitution improves
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N, N WebNLG E2E
rain augment B R (Fl) M B R (Fl) M
1 1 6.13 33.94 1742 | 12.15 26.44  23.32
) ) 13.15 35,51 2292 | 28.53 46.64 45.30
500 481 29.31 52.25 50.32 | 51.15 56.78  56.03
1,000 998 28.88 53.46 51.47 | 55.72 61.13 62.62
5,000 4,976 2598 56.39 56.44 | 61.73 65.88 71.34
15,000 | 15,000 | 26.74 57.16 58.38 | 61.05 66.90 73.46
25,000 | 24,959 | 26.69 57.11 5855 | 61.85 67.57 74.32

Table 4.8: The performance of a pre-trained T5 with lexical substitution augmentation when
the amount of training data, Nyqipn, progressively increases from a single training data up
to 25,000 training data.Ngygment displays the amount of augmented data incorporated. The
totals for this column should match that of Ng.q, unless an augmented version cannot be
generated for the original training data.

Neoo | N WebNLG E2E
rain augment B R (Fl) M B R (Fl) M

1 1 3.71 37.28  9.09 | 25.82 43.72 41.87
) 4 14.39  37.75 3242 | 37.56  37.78  34.26
500 473 33.70 51.46 49.19 | 56.27  57.89  59.32
1,000 979 31.79  53.94 53.09 | 56.64 60.55 64.15
5,000 4,961 32.44 55.88 57.16 | 63.04 6577 72.89
15,000 | 14,972 | 31.72 56.10 57.50 | 63.36 66.41 72.69
25,000 | 24,933 | 32.53 56.67 58.78 | 63.99 66.54 74.01

Table 4.9: The performance of a pre-trained T5 with paraphrasing augmentation when the
amount of training data, Ny.qin, progressively increases from a single training data up to
25,000 training data. Ngygment displays the amount of augmented data incorporated. The
totals for this column should match that of Ng.q;n unless an augmented version cannot be
generated for the original training data.

the METEOR score from the previous best by 1.56 which hints at an impact on the training
procedure though this is not conclusive.

Lastly, Table 4.9 shows the results for the third augmentation strategy in this exper-
imental set-up - paraphrasing. Again, no obvious pattern is gleaned from this table for
WebNLG and only a minor improvement is noted for E2E. Similar to Table 4.8, paraphras-
ing provides an improvement for E2E with METEOR of 1.23. Once again, this is hardly a

significant result and is not conclusive.

4.2.7 Introducing lexical diversity

Table 4.10 highlights that lexical substitution results in a pre-trained T5 producing more
unique words throughout the generated text than without augmentation. As many of the

evaluation metrics employed are computed by comparing words in the generated text to
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Augmented ‘ WebNLG ‘ E2E
No LS 78,923 13,203
LS 81,822 14,995

Table 4.10: Contains the number of unique tokens that appear in the generated text produced
by a pre-trained T5 that is fine-tuned without augmentation and one augmented with lexical
substitution. No LS: without augmentation, LS: augmented with lexical substitution. The
bolded model is the one which produces more unique tokens.

the target text, this sheds light on why lexical substitution achieves diminished scores in
Table 4.6 with regards to the other augmentation strategies and even the model without
augmentation. Regardless, Table 4.6 also demonstrates that the BERTScore value for lexical
substitution does not decrease like other metrics suggesting the context and information of

the generated text does not change.

4.3 Discussion

In this subsection I highlight various interesting or confounding findings observed in the
experimental results previously presented. I consider possible explanations for any notable
patterns in the results as well as rebuttal for results that conflict with my initial hypotheses.
For the following discussion, I include qualitative analysis where pertinent to provide further
context. Lastly, I highlight data issues which may work against data augmentation and data-

to-text generation.

4.3.1 Data-to-text generation

While both the Transformer and T5 without pre-training provide a good base to build upon,
the effect of pre-training is significant and evident across both datasets used in this work.
The improvement is most pronounced in WebNLG, the more challenging dataset of the two
as seen in Table 4.1. Given what we know from Sections 4.1.8 and 4.1.8 the target text is
objectively more complex for WebNLG while the source data is less granular.

A concern that remains unchecked is that pre-training accounts for the improvements
data augmentation would garner on evaluation metrics. Although augmentation may incite
benefits beyond the metrics employed.

The Transformer did not perform as strongly on either dataset as I had expected, even
declining in both the BLEU and ROUGE metric from the copy-based model which has no
mechanism for adding words to the generated text that are not in the source data.

Although the Transformer architecture is an adaptable architecture that provides a con-
sistent building block for further data-to-text generation models, the easy incorporation of
pre-training with language models effectively replaces the demand for customized Trans-

former models. Pre-training’s drastic improvement over the Transformer and T5 without it
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highlights that generally learning linguistic features alleviates the challenge during training.
Instead, the model is able to focus on remaining truthful to the source data and ordering
it appropriately in the generated text. In fact, data augmentation may be better applied to
pre-training to further the potential improvement it offers.

Lastly, I did not observe any improvement from curriculum learning when training the
Transformer and T5. Despite this being the case for this work, it cannot be generalized to
all data-to-text generation applications. The models used and the nature of the datasets

likely have an effect on the efficacy of curriculum learning.

4.3.2 Augmentation for data-to-text generation

In both computer vision and text classification data augmentation transforms the input,
that is an image or text being passed to the model. For machine translation, a popular
augmentation strategy backtranslation transforms the output which is the target text. For
data-to-text generation it is conceptually intuitive to follow the precedent set by machine
translation given that both are sequence-to-sequence tasks, but the inspiration of augmen-
tation strategies from other tasks warranted testing data augmentation to transform the
source data or target text. Table 4.5 shows this comparison where the augmentation strat-
egy used was random erasing. Clearly, augmenting the target text is the superior approach,
achieving an average improvement of 6.90 on BLEU, 6.27 on ROUGE, and 7.54 on ME-
TEOR. This improvement is attributed to data augmentation changing the source data
which is not reflected in the target text, resulting in a mismatch between the information
the model thinks the generated text should contain and what is contained in the target text
used for evaluation. While more intricate augmentation strategies exist that leverage both
the source data and target text, in this work the focus remained on strategies affecting the
target text. Finally, the idea of augmenting the source data may be enticing but it is impor-
tant to recall that between applications the source data will vary greatly and augmentation
strategies may not always be applicable removing the capability to reproduce results.
Contrary to my hypothesis at the beginning of this work, the three data augmentation
strategies studied produce very modest results with minimal improvement to performance
as seen in Table 4.6. The exception being that random erasing demonstrates an improve-
ment for E2E on ROUGE and METEOR of 3.66 and 4.81 respectively. I further report
BERTScore in Table 4.6 as an evaluation metric which describes the similarity between
the embedded representation of the generated text and target text. While n-gram evaluation
metrics such as those reported correlate with human judgement and are important for judg-
ing whether the proper terminology is in the generated text, that is also one of their pitfalls
discussed in Section 2.4.1. BLEU, ROUGE, and METEOR are all penalized when the ter-
minology of the generated text does not match that of the target text whereas BERTScore
does not rely on particular wording rather the context of the text as a whole. For either
dataset in Table 4.6 this is the fourth column. Although minimal, for WebNLG all three
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augmentation strategies improve upon the BERTScore of the pre-trained T5 without aug-
mentation as paraphrasing achieves the best score. For E2E the improvement is even more
minor with only random erasing and lexical substitution surpassing the BERTScore of the
model without augmentation and the former strategy achieving the best result. The most
notable observation pertaining to BERTScore is for WebNLG. When augmenting through
lexical substitution the T5 model suffered a 4.93 decrease in BLEU. Despite this notable
decline, when augmented with lexical substitution the BERTScore rises by a meager 0.86
which implies that despite different terminology the content contained within the generated
text is the same. This is observed for E2E as well, just to a lesser degree.

I ran experiments with progressing number of epochs and noted that past 3 or 4 epochs,
the augmented models began to perform worse. In these cases, the incorporation of slightly
different yet largely the same data caused the model to overfit to the training data. Fur-
thermore overfitting may have been coupled with catastrophic forgetting, a phenomenon
pre-trained language models experience when their weights deviate due to too much train-
ing. Now, this outlines the setting and circumstances in which data augmentation is useful
for pre-trained language models. The question remains, at what point does an augmentation
strategy become a hindrance in terms of the time required to train a model. Random eras-
ing was the least computationally expensive augmentation strategy of the three due to not
requiring any further models or algorithms for its implementation. To augment a batch with
random erasing took 0.00009 seconds for WebNLG and 0.0001 seconds for E2E. Next, lexi-
cal substitution took on average 1.06 and 0.88 seconds for WebNLG and E2E respectively.
This is explained by the fact that lexical substitution has to sequentially access each token
to assess whether a candidate synonym should be included in the augmented copy. Lastly,
paraphrasing took on average 2.1 and 1.54 seconds to augment a batch for WebNLG and
E2E respectively. Paraphrasing does not require token-level access like lexical substitution,
but the external model it uses is more computational complexity hence it taking the longest
to augment. On top of model improvements, it is important to take into consideration the
time-cost these data augmentation strategies have to weigh which one is best for a given

situation.

4.3.3 Random erasing

Random erasing’s performance offered the largest boost of the three augmentation strate-
gies, in particular when applied to the E2E dataset. While further experimentation and anal-
ysis needs to be done to assert whether random erasing improves performance on WebNLG,
it certain that the T5 trained with random erasing is better than without for E2E. That
being said, there are indicators that random erasing offers improvements on both. One such

observation is in Figure 4.2 where training with random erasing achieves the best loss curve
for WebNLG.
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As mentioned, random erasing is the least computationally expensive of the three aug-
mentation techniques with a single pass of the target text resulting in the augmented copy
with subsequences of the characters erased. The algorithm for performing random erasing
is approximately 10,000 times faster than lexical substitution and 20,000 times faster than
paraphrasing. Additionally, the lack of extra models to perform any part of the augmen-
tation means random erasing has the lowest memory cost of the three strategies. While
all of the augmentation strategies can be performed in advance, this low memory cost and

computational simplicity facilitates its incorporation during the training process.

4.3.4 Lexical substitution

Lexical substitution offers the most inconsistent performance boosts out of the three aug-
mentation strategies. For both WebNLG and E2E, lexical substitution results in BLEU
decreasing. Otherwise, the other metrics remain on par with the model trained without
augmentation. In fact, for E2E, the lexical substitution augmentation performs better than
paraphrasing and the T5 without augmentation by 5.56 and 4.31 respectively on ME-
TEOR. Furthermore, Table 4.6 demonstrates that lexical substitution achieves competitive
BERTScore values implying the decreas to BLEU might not be all bad and rather hints at
an increase in diversity. Lexical substitution also achieves the best loss curve in Figure 4.2
for the E2E dataset.

Lexical substitution was the augmentation strategy that required the most algorithm de-
cisions and parameter setting. While this allows the strategy to be configurable for different
datasets, it also requires the most parameter tuning to find satisfactory implementations.
Extensive experimenting with the lexical substitution algorithm would likely garner better
results though such tuning was not within the scope of this work. In the case of compu-
tational concerns, lexical substitution can be made more simple at the detriment of worse
performance. This implementation of lexical substitution utilized contextual embeddings
to search for synonyms within the neighbourhood of the embedding space for the word to
be swapped, but others may make use of Word-Net or some other synonym recommending
procedure. To further my implementation of lexical substitution, one could fine-tune the
model whose contextual embeddings are extracted from on the current dataset. The issue
here is that less diverse synonyms would be provided, more likely resulting in overfitting.

Table 4.10 shows the number of unique tokens in the generated text for a model fine-tuned
without data augmentation and one fine-tuned on training data that has been augmented
with lexical substitution. As seen, lexical substitution results in an increased vocabulary
for both datasets. One might argue that the decrease in BLEU displayed in Table 4.6 when
using lexical substitution is a result of the model being trained to generate incorrect words
yet none of the other metrics show the same decline with some even improving as way
of the augmentation. So, if some metrics are saying the augmented model is even better

at generating text with correct terminology and the context has not deviated from the
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reference text then there must be an explanation. A difference of 2,899 and 1,792 tokens
for WebNLG and E2E respectively between the unaugmented and augmented model is a
drastic difference. I conject that the decrease in BLEU for lexical substitution is caused by

increased diversity in the tokens used within the generated tezt.

4.3.5 Paraphrasing

Paraphrasing appears to offer a slight yet consistent improvement to the WebNLG dataset
as seen in Table 4.6 and a slight yet consistent decline for E2E. Although computationally
expensive and the longest time to augment per batch on both datasets, paraphrasing can
be easy to implement and holds real-world intuition. The main parameter associated with
paraphrasing augmentation is the number of paraphrased copies to generate. Due to the
simplicity and length of the target text in WebNLG and E2E as well as the size of the
datasets, I only produced one augmented copy per training data. Further tuning of when
and how many augmented copies are produced could lead to better results. Exploration into
configurable paraphrasing models may require less augmented data to observe improved

results as well.

4.3.6 Augmentation on reduced training data

At first glance, the results of Tables 4.4, 4.7, 4.8, and 4.9 are almost indistinguishably
equal. No consistent pattern is evident with seemingly random improvements and declines
in performance occurring for smaller values of N4, While larger values appear to reach the
same threshold in performance, akin to the best results displayed in Table 4.3. In Section
4.2.6, I highlighted when any of the three augmentation strategies obtained better results
or the results for each value of Ny.q;, converged more quickly than the model without
augmentation.

Focusing on an aspect of the latter, I did observe an interesting pattern. For values of
Nirain = 500, 1,000, 5,000 there was more consistent improvement over the pre-trained T5
without augmentation results. On these dataset sizes the augmentation strategies performed
as follows. Random erasing demonstrated minor improvements, but across both datasets
nonetheless. For the previously stated values of Ny.qin, On average, random erasing improved
BLEU by 0.2, ROUGE by 0.75, and METEOR by 0.37 for WebNLG. For E2E, BLEU
improved by 1.65, ROUGE by 0.2, and METEOR by 1.04. As one might expect, lexical
substitution provided no improvement on BLEU for either dataset and surprisingly no
metric for E2E. On WebNLG, lexical substitution garnered an improvement on ROUGE of
0.96 and on METEOR of only 0.73. Lastly, paraphrasing achieves improvements on average
for Nirgin = 500, 1,000,5,000 with the following metrics. For WebNLG on BLEU by 1.63,
ROUGE by 0.69, and METEOR by 1.14. For E2E there was only an improvement on BLEU
which was by 1.28. While unexpectedly augmentation did not show consistent or meaningful

improvements for all values of Ny.qn, when focusing on a subset of these values it is observed
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that there is a range of dataset sizes where augmentation is consistently beneficial. In
particular, random erasing which boosted results across all metrics. For applications of data-
to-text generation where training data is very scarce, it is likely that data augmentation
improves the model whether by incorporating more training data or simply providing enough

diversity to avoid overfitting to the few original training data.

4.4 Comparison to Augmentation for Natural Language Pro-
cessing

The improvement to results provided by data augmentation in this thesis are distinctly
less profound than in CV and even other natural language tasks such as text classification
and machine translation. For example, the authors of [13] and [100] consistently observe
improved performance from token-level augmentation such random erasing on supervised
learning tasks for natural language processing (NLP). Though, it is stated that on more
difficult tasks this improvement tends to drop.

I believe that augmentation for data-to-text generation in its current state is less effective
than it is for counterpart tasks due to its inherent complexity. For text classification, the
input is always text regardless of the domain it is extracted from. Whereas the source data
for data-to-text generation can have vastly different structures, for example, a sequence of
numeric values cannot be treated the same as a collection of edges and nodes from a graph.
In fact, the data between WebNLG and E2E could be tackled in different ways but for
comparability I chose to use the T5 model as it could handle both. I argue this point of view
because: a) the number of applicable is almost certainly less than the possible verbalizations
for a given source data and b) minor transformations to text may not result in a label
change, but if we consider the difference between "It is raining" and "It is downpouring" in

the context of summarizing weather data there is a huge difference.

4.5 Considerations

As is the case with any machine learning work, there are a myriad of considerations to take
into account. In a perfect world, biased data would not exist but as the authors of [52] note
this is not the case and most often has social implications.

In practice, datasets can be screened prior to use for bias and the problematic data
removed. The nature in which augmented data is included, typically with a factor of ran-
domness, its possible that data augmentation introduces biases into the data as well. Not
all biases have such an extreme implication, for example augmentation can simply affect
the disposition of text. Consider data augmentation via paraphrasing. In my implementa-
tion this utilizes an external model that was trained on other data with its own style and

vocabulary. Passing the text from WebNLG and E2E might result in paraphrased data that
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utilizes different words or even sentence structure. Similarly, the lexical substitution imple-
mentation utilizes BERT’s contextual embeddings which were trained on data separate from
either of the datasets in this work. Substituted words might not be contextually relevant
in this scenario, be overly formal, or any other number of issues. This could explain why of
the three augmentation strategies, random erasing is the most consistent despite being the

least computationally expensive and from an implementation point of view the simplest.

4.6 Summary

In the Analysis, I assessed a pre-trained language model’s ability to be adapted for data-to-
text generation and the benefits it provides. I further evaluated how three data augmentation
strategies complemented this model for the task at hand and the effects or lack thereof
that were exhibited. From this, I constructed an understanding of how these augmentation
strategies affect evaluation metrics such as BLEU, ROUGE, METEOR, and BERT Score.
Furthermore, I analyzed whether augmentation played a role in improving the model’s
performance when encountering small or incomplete datasets.

In the remaining chapter I summarize the conclusions of this work on data-to-text
generation and data augmentation, provide final remarks, and outline possible avenues at

this intersection of topics that future work could pursue.
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Chapter 5

Conclusions

5.1 Summary

This thesis demonstrated the T5’s capability for data-to-text generation and its ability to
be improved upon with data augmentation. The three augmentation strategies used in this
work were random erasing, lexical substitution, and paraphrasing. Although the results are
modest, random erasing showed the most consistent improvement on evaluation metrics
while retaining the original context of the generated text followed by paraphrasing. Across
experiments, random erasing performed better than the model with no data augmentation
on both WebNLG and E2E at times. Paraphrasing performed well, but was computationally
expensive whereas random erasing was the least expensive in terms of time and memory.
Lexical substitution was not only computationally expensive, but also performed worse
than the model trained without augmentation. Summarizing, 32.78 is the best BLEU score
achieved on WebNLG which occurs when using all of the training data and doubling it with
paraphrased augmented copies while 65.79 is the maximum score for E2E and is obtained
when only 25,000 of the training data is used and then doubled using random erasing.

As hypothesized, data-to-text generation does not benefit from augmenting the source
data. That is, the applicable data augmentation strategy studied for its effect on the source
data versus the target text did not. Augmentation that transforms the content of the source
data theoretically can diminish the correctness of the corresponding target text.

With the exception of ROUGE for WebNLG and BLEU for E2E, improvements were
achieved via augmentation on both datasets. In general, WebNLG was viewed as the more
difficult task and this was expressed with lower results than obtained for E2E. Augmenta-
tion on E2E achieved greater margins of improvement than on WebNLG, reinforcing the
discrepancy between the two tasks. As expected, a more difficult task benefits less from
data augmentation although improvements can still be obtained.

Evidently when trained on less data the model’s performance worsens. Incorporating
data augmentation, there is not a clear observable relationship between the amount of

training data and an improvement on evaluation metrics. For datasets of size 500, 1,000,
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and 5,000 it appears that random erasing and paraphrasing marginally improve model
performance, but further datasets are likely required to confidently conclude whether this
is true.

Lexical substitution was a computationally expensive augmentation strategy and pro-
duced the least consistent improvements - at times doing more harm than good. Yet, it is
likely that the drastic nature in which it substituted words within the text resulted in the
most diverse augmented data. In particular, this had ill effects on BLEU for both datasets.
Lexical substitution did result in 2,899 and 1,792 more unique tokens in the generated text
for WebNLG and E2E respectively. This expanded vocabulary by the augmented model is
not erroneous terminology either, just different wording for the same context. From a results
standpoint, lexical substitution falls short of random erasing and paraphrasing, but appears
to add diversity to the model’s vocabulary. Better evaluation approaches may help conclude
augmentation strategies that go beyond evaluation metrics, influencing the characteristics

of a model’s generated text.

5.2 Future Work

As discussed through Chapter 4, a major decision of data augmentation is deciding how
much augmented data should be included in the training process. While figures in Sections
4.2.3 and 4.2.6 hint at what this optimal value may be, they are only conclusive for WebNLG
and E2E and loosely so. Treating the amount of augmented data as a hyperparameter to be
tuned is equally as time-consuming. The amount of augmentation a dataset can withstand
before it loses its integrity and ground-truth distribution depends on factors such as its size,
the complexity, the model applied, and the strategy itself. For example, a small dataset can
only incorporate so much augmented data before a model will begin to learn the shifted
distribution. Future work investigating functions, metrics, or approaches that approximate
how much augmented data a dataset can withstand before being corrupted would be highly
valuable in facilitating reproducible data augmentation research.

In this work, I demonstrated the performance of two models the Transformer and T5
language model on data-to-text generation and the impact of data augmentation by in-
corporating three different strategies. Only more can be learnt about the intersection of
data-to-text generation and data augmentation if more models, datasets, and strategies are
experimentally evaluated with. Data-to-text generation is less popular than other natural
language tasks and so wide-spanning research such as this will continue to provide more
coverage and a further understanding of the task. Another avenue of data-to-text genera-
tion are encoder-decoder models with external mechanisms for addressing usual issues in the
generated text. Porting data augmentation to these models could open up more accessible

research than the computationally expensive language models. Data-to-text generation is
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sorely lacking a comprehensive survey of data augmentation for the task in comparison to
its counterparts such as text classification or computer vision.

In Section 4.2.7, Table 4.10 demonstrated that by augmenting with lexical substitution
the generated text produced upwards of thousands new tokens than without the strategy. Ef-
fects such as these go unseen within the results as lexical substitution did not perform worse
on metrics such as ROUGE and METEOR. This begs the question if augmentation does
and can do more than just prevent overfitting. If lexical substitution increases the number
of tokens produced then what impact does paraphrasing have on the characteristics of the
text. A valuable avenue for future research could be exploring whether augmentation can
be used to impose desired characteristics onto the generated text such as a change in writ-
ing style. In doing so, the model could be prevented from overfitting while simultaneously
generating text in a different manner.

The nature of data-to-text generation and the training data required means tailored
data augmentation strategies such as those that exist for text classification or computer
vision do not exist. Rather than adopting strategies presented for other tasks, embedding-
based augmentation strategies should be researched. This would prevent erroneous data that
invalidates the source data or target text from being produced by augmentation strategies as
it would work on a lower level. Research on these augmentation strategies is growing more
popular in other tasks such as neural machine translation, another sequence-to-sequence
task [38]. Future research may wish to follow their lead.

Lastly, data-to-text generation lacks real-world datasets that are publicly available. This
work has shown that a combination of language models and data augmentation obtains sat-
isfactory performance on data-to-text generation datasets even when there are as few as
thousands of training data. Requiring such few training data means these methods can be
used to address real-world data with less and less domain specific tailoring. Challenges asso-
ciated with real-world data would then become the focus of research and how to handle more
nuanced relationships between the source data and target tert. Models and data augmen-
tation strategies can continue to be developed and evaluated against benchmark datasets
such as those used in this work, but without diversity in experimentation many issues may
continue to go unnoticed. Despite requiring collaboration between natural language genera-
tion researchers and domain experts, there are numerous domains as mentioned in Chapter
1 where data-to-text generation could dutifully be applied and lend a profound impact such

as conservation monitoring, business decision-making, and weather reporting.
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