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Abstract

The equivalence problem is concerned with statistical methodology to assess the equiva-
lence between two medications or two formulations in clinical trials. Frequently, researchers
incorrectly use difference tests to evaluate equivalence. This study introduces three common
equivalence tests (two one-sided tests, power analysis, and the Hauck-Anderson method)
and investigates their performance. We conclude by describing appropriate experimental
design and testing procedures for assessing equivalence between tobacco composition de-
veloped by Health Canada (HC) and the World Health Organization (WHO) and explore
their performance through a simulation-based comparison.

Keywords: Tobacco composition; Equivalence test; Simulation analysis; Experimental de-
sign.
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Chapter 1

Introduction

The Tobacco Reporting Regulations (TRR), which are governed by the Tobacco Control
Directorate (TCD), establish the official measurement procedure that local tobacco man-
ufacturers must follow in order to submit annual reports on the prescribed emissions and
ingredients of tobacco products to Health Canada (HC) [7]. The World Health Organiza-
tion’s (WHO) Tobacco Laboratory Network (TobLabNet) has recently developed a series
of standard operating procedures (SOP) that measure the same tobacco’s chemical data
specified in the TRR. The objectives of both measuring systems are to regulate tobacco
corporations as far as the health and environmental impact of their products are concerned
and to ensure that the public has access to health and safety information regarding tobacco
use.

The TCD states that the smoke nitrosamine methods (T-111B and SOP 03), nicotine
and carbon monoxide (CO) methods (T-115 and SOP 10), and whole tobacco humectant
methods (T-304 and SOP 06) are comparable in measuring data about cigarette constituents
and smoking emission levels. The conclusion is summarized in Table 1.1.

HC Code WHO Code Constituents/Emissions
T-111B SOP03 Determination of Tobacco emission of NAB, NAT, NNK, NNN in Mainstream Intense smoking condition
T-111b SOP03 Determination of Tobacco emission of NAB, NAT, NNK, NNN in Mainstream ISO smoking condition
T-304 SOP06 Determination of Tobacco constituent of humectants/ glycerol in cigarette tobacco filler
T-115 SOP10 Determination of Tobacco emission of Nicotine and Carbon Monoxide in Mainstream Intense smoking condition

Table 1.1: Table of similar tobacco data collection techniques for HC and WHO.

Although two methods might be evaluated as comparable based on practical experience,
it is acknowledged that no two procedures yield statistically identical measurement results
(Hauck & Anderson, 1984) [4] due to varying experimental conditions (ISO, 2018) [1]. So,
Health Canada and this report aim to review statistical methodologies used to demonstrate
statistical equivalence between data collected for tobacco smoke analysis from HC and
WHO, as well as to recommend alternative approaches to determining equivalence where
applicable.
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The traditional two-sample t-test is always considered to compare the two means; it
cannot be used to assess the equivalence of two groups because of the following reasons:
First, the t-test’s conclusion of "do not reject the null hypothesis of equality”, only states
that the sample is insufficient to infer that two groups differ considerably. It does not suggest
that two measurements are identical or equivalent. Secondly, the t-test only compares the
sample mean difference to zero. When the practical significance of the mean difference
exists, it cannot be determined whether the two groups are within an equivalence range.
Moreover, the t-test makes it hard to reject the null hypothesis of equality when the sample
measurement precision is high.

This report first (a) illustrates the t-test’s inadequacies for assessing the equivalence of
two procedures and (b) proposes a series of alternative equivalence tests (power analysis, the
two one-sided t-tests (TOST) (1987), and Hauck-Anderson’s test (1984)). Then the report c)
summarizes equivalence limit and sample size determination methods and further compares
three tests’ power trends on correctly concluding a true equivalence between two groups
with various parameters. The study closes with an application for assessing equivalence
between tobacco’s emission and constituent levels using HC’s method. Figures, tables, and
R codes are presented in the appendix.

2



Chapter 2

Two-sample t-test for equivalence
determination

2.1 Two-sample t-test

The two-sample t-test is a conventional approach to determining if the means of two inde-
pendently normal distributions are substantially different.

Assume that two populations are independently normally distributed and have identical
variances (σ2

R = σ2
T ). The null hypothesis of the t-test is that the two population means are

equal, while its alternative hypothesis states that they are not. The hypotheses are:
H0 : µ1 − µ2 = 0,

HA : µ1 − µ2 ̸= 0.
(2.1)

By randomly collecting two samples (y11, ..., y1n1), (y21, ..., y2n1) from their distributions,
the t-test is run to determine if there is a significant difference under the null hypothesis of
equality. The test statistic is computed based on the sample statistics, containing sample

size (n = n1 = n2), pooled standard deviation (sp =
√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 ) sample mean

(ȳ1, ȳ2) as follows:

T = (ȳ1 − ȳ2)
sp

√
2/n

. (2.2)

Both the critical value approach and the p-value approach employ the critical t-value
from the t-distribution of the entire population as a point of reference to assess a signif-
icant mean difference between two groups. When p < α or |T | > t1−α/2,2n−2, the t-test
concludes that the sample data has adequate evidence that there is (1 − α)% that the
two population means significantly differ. The confidence interval (CI) also concludes a
significant difference when the zero is not contained within the range of mean difference
(ȳ1 − ȳ2) ± t1−α/2,2n−2sp

√
2/n.
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2.2 Problems that arise in using the t-test to determine equiv-
alence

Although the two-sample t-test is an adequate hypothesis test to assess if the means of
two normal groups are significantly different from one another, attempting to use it to
demonstrate equivalence between two groups can lead to a variety of complications. The
following simulation study reveals some difficulties.

We consider simulations with two samples with a range of sample sizes (n=5, 7, 10, 12,
15, 20, 25, 30). For each sample size, the first sample is drawn from a normal distribution
with parameters N(0, 1), whereas the second sample is drawn from a normal distribution
with the same variance but varying population means of 0, 0.5, 1, 2, or 3. For each param-
eter combination of sample size and population mean difference, 1000 paired samples are
generated. The t-test is conducted on every pair of them.

Figure 2.1 contains five curves showing the average probabilities that the t-test fails to
infer the significant difference versus sample sizes for a specific level of mean difference.

Figure 2.1: Plot of probabilities (prob) that a paired t-test fails to determine a significant
difference versus sample size (nvec) for 5 difference mean differences.

Problem 1: Practical significance of the mean difference

The red curve in Figure 2.1 illustrates that only when the t-test is conducted on two pop-
ulations with no actual mean difference, the likelihood of not rejecting the null hypothesis
of equality is 95%. As the mean difference increases, its probability decreases dramatically.

So, the first issue occurs when the magnitude of the difference has little practical signifi-
cance. On the basis of prior experience and professional expertise, subject-matter specialists
sometimes consider that a difference between two means is acceptable. Yet, the t-test cannot
distinguish between statistically significant and scientifically relevant differences.
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Problem 2: Sample measurement precision

Figure 2.1 shows that the t-test has a great chance of failing to conclude a significant mean
difference when the sample size is small. For instance, we expect the t-test to strongly reject
the initial assumption when the mean difference between two groups is 2. However, around
40% of simulated pairs with five data points do not conclude a significant mean difference.

Limentani (2005) observes that higher sample measurement precision (smaller sample
size and/or large sample variance) yields a smaller test statistic value and a greater p-value.
It results in the t-test becoming more likely to conclude that the null hypothesis of equality
should not be rejected.

Problem 3: The t-test’s objective

In the absence of strong evidence that the t-test concludes two mean values are dissimilar
(prob > 0.05 in the Figure 2.1), many analysts confidently state that two populations are
equal [2]. This leads to another problem. Failure to reject the null hypothesis of equality
under the t-test only implies that the sample data has insufficient evidence to make a reliable
conclusion.

5



Chapter 3

Equivalence Tests

This chapter introduces three equivalence tests, they are investigated to compensate for
the shortcomings associated with using the t-test to determine equivalence. These three
tests are:

1. Power analysis emphasizes the t-test’s power to assess an acceptably significant dif-
ference as equivalence in terms of measurement precision [6];

2. Two one-sided t-tests (TOST) with Limentani’s formula present a suitable limit and
sample size determination for equivalence tests [5];

3. An alternative equivalence test for log-normally distributed data was suggested by
Hauck and Anderson (1984) [4].

3.1 Power analysis

3.1.1 Introduction to power analysis

Power analysis is generally employed in experimental design, especially for sample size de-
termination prior to a study. The following subsection uses formulas and simulation studies
to present the relationships between power and the other parameters. The next subsection
demonstrates how the power analysis penalizes samples with high measurement precision
and concludes that a significant mean difference is within an equivalence range.

Power formula

The statistical power B(θ) measures the probability that the test correctly rejects the incor-
rect null hypothesis of equality. The hypothesis is conducted under the population distribu-
tion of mean difference centered at the preset equivalence limit θ in terms of measurement

6



precision. The following calculation illustrates a trade-off between statistical power B(θ)
and the other parameters like sample size n, significance level α, and effect size D.

B(θ) = 1 − β

= P (reject H0|true H1)

= P

(∣∣∣∣∣N
(

θ

σ
√

2/n
, 1
)∣∣∣∣∣ > t1−α/2,2n−2|µD = θ

)

= P

(
N

(
θ

σ
√

2/n
, 1
)

> t1−α/2,2n−2

)
I(θ ≥ 0)

+ P

(
N

(
− θ

σ
√

2/n
, 1
)

> t1−α/2,2n−2

)
I(θ < 0)

= P

(
N(0, 1) > t1−α/2,2n−2 − θ

σ
√

2/n

)
I(θ ≥ 0)

+ P

(
N(0, 1) > t1−α/2,2n−2 + θ

σ
√

2/n

)
I(θ < 0)

= Fv

(
θ

σ
√

2/n
− t1−α/2,2n−2

)
I(θ ≥ 0) + Fv

(
tα/2,2n−2 − θ

σ
√

2/n

)
I(θ < 0)

= Fv

(
D√
2/n

− t1−α/2,2n−2

)
I(θ ≥ 0) + Fv

(
tα/2,2n−2 − D√

2/n

)
I(θ < 0)

(3.1)

The term Fv in the equation (3.1) stands for the distribution function for all values that
are smaller than the observed one under the student’s t distribution with v = 2n−2 degrees
of freedom. The effect size is a standardized division of the standard deviation to mean,
and its formula is written as D = µD

σ = θ
σ .

Simulation analysis

In order to demonstrate how parameters affect the power, a simulation analysis is performed
with two normal populations of the same variances of 1. The intention is to investigate the
variation of the power B(θ) as every statistical parameters, including the significance level
α, sample size n and effect size d vary. Figure 3.2 shows the curve of calculated power versus
influential component.

Figure 3.2 a) specifies the plot of calculated power versus significance level ranging from
0.01 to 0.20, while mean difference and effect size are 1, and sample size is at 30. Figure 3.2
b) depicts how power fluctuates with sample sizes ranging from 5 to 40, assuming α = 0.05
and d = µD = 1. Plot c) depicts the relationship between power and effect size, ranging
from 0 to 3, with α = 0.05 and n = 30.

7



Figure 3.1: Plots of average power (p) changes with various a) significance level (alpha), b)
sample size (n_vec) and c) effect size (d_vec).

a. Power versus significance level

Figure 3.1 a) demonstrates that increasing the significance level raises the statistical power.
In order to understand this trend, the following example emphasizes the link between two
levels.

The following example plots two normal distributions of population mean difference:
N(µ1 = 0, s2

1 = 6) and N(µ2 = 1, s2
2 = 6). In Figure 3.2, the blue area shows the standard

normal distribution of the population mean difference centered at zero under the null hy-
pothesis of the test (µ1 − µ2 = 0). The orange curve depicts the alternative hypothesis that
the population mean of the test group is one unit greater than that of the reference group.
In hypothesis testing, there is only one value for the critical t-value; it reflects the intended
threshold for accepting or rejecting the null hypothesis.

Under the different assumptions regarding the distribution of mean differences, the left
and right panels present two error rates. The area on the left displays the expected signifi-
cance level for the t-test, which is the acceptable probability that the sample data incorrectly
leads to the conclusion that there is a significant difference assuming the two population
means are the same. On the other hand, the shaded region on the right indicates the desired
degree of power, which represents the chance that the sample data is properly collected leads
to the inference that a significant difference between two means.

8



Figure 3.2: Plots of a) significance and b) power of the upper one-sided t-test under the two
states about a given population mean difference.

Therefore, one strategy to increase the power of a test is to use a higher significance
threshold. As the level of significance rises, the optical t-value drops down the x-axis of the
population distribution. So, the chance of a type I error decreases, resulting in an increase
in the test’s power. This explains why increasing the level of importance raises power.

b. Power versus sample size

Figure 3.1 b) illustrates the link between sample size and the power of a test. Both graph and
calculation demonstrate that a increasing sample size increases the power. Their positive
association explains why power analysis penalizes situations with a limited sample size.

c. Power versus effect size

Figure 3.1 c) demonstrates a positive correlation between power and effect size in the range
from 0 to 3. When the effect size grows, the likelihood of detecting a significant mean
difference increases. Because both population variances equal 1, the mean difference equals
the effect size. It is clear that when the effect size or significance of the mean difference
increases, the power becomes close to 1.

In summary, this simulation study demonstrates the trade-offs between various param-
eters and statistical power. As the sample size, degree of significance, or effect size increase,
the power increases.

9



3.1.2 Power analysis in equivalence tests

When the t-test shows the data cannot support a conclusion of a significant mean difference,
the power analysis is used to validate that the conclusion results because the magnitude of
the mean difference is within a preset equivalence range and is not due to high measurement
precision (Schuirmann, 1987). [6]

The following equation converts the formula of power to the formula of standard devia-
tion and the calculated standard deviation σ1−β based on the desired power represents the
most acceptable measurement precision value.

B(θ) = Fv

(
D√
2/n

− t1−α/2,2n−2

)
I(θ ≥ 0) + Fv

(
tα/2,2n−2 − D√

2/n

)
I(θ < 0)

1 − β = Fv

(
θ

σ
√

2/n
− t1−α/2,2n−2

)
I(θ ≥ 0) + Fv

(
tα/2,2n−2 − θ

σ
√

2/n

)
I(θ < 0)

σ1−β ≈ θ
√

n/2
(z1−β + z1−α/2)I(θ ≥ 0) + θ

√
n/2

(zα/2 − z1−β)I(θ < 0)

σ1−β = θ
√

n/2
(z1−β + z1−α/2)(I(θ ≥ 0) − I(θ < 0))

(3.2)

Consequently, any samples satisfies the following requirements generates more than (1−
β)100% power to infer that the mean difference is within a specific equivalence range about
θ and also carries out the test of hypothesis of insignificant difference at a significance level
of α.


tα/2,2n−2 ≤ ȳ1−ȳ2

sp

√
2/n

≤ t1−α/2,2n−2,

sp ≤ θ
√

n/2
(z1−β+z1−α/2)(I(θ ≥ 0) − I(θ < 0)).

(3.3)

3.2 The two one-sided test (TOST)

3.2.1 Introduction to the TOST

The Two One-Sided Test (TOST) was proposed by Schuirmann (1987) [6] and its application
to assessing equivalence has become widespread recently.

In the equivalence test, the null hypothesis assumes that the groups are distinct, i.e.,
the mean difference between two groups lies outside the preset equivalence range [θ1, θ2]
and its hypotheses are as follows:

H0 : µ1 − µ2 ≤ θ1 or µ1 − µ2 ≥ θ2,

HA : θ1 < µ1 − µ2 < θ2.
(3.4)
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The TOST concludes equivalence when the following requirements are met:
TU =

∣∣∣∣ θ2−(ȳ1−ȳ2)
sp

√
2/n

∣∣∣∣ ≥ t1−α/2,2n−2,

TL =
∣∣∣∣ (ȳ1−ȳ2)−θ1

sp

√
2/n

∣∣∣∣ ≥ t1−α/2,2n−2.
(3.5)

The equation shows that the TOST involves two one-sided t-tests. One evaluates whether
the mean difference is significantly less than the upper equivalence limit, while the other
examines if it is greater than the lower limit. Because lower and upper t-tests are mutually
exclusive, both test statistics are compared to the same critical t-value t1−α/2,2n−2, which is
an upper tail percentile of the central t distribution at the point of the half of significance
level (Westlake, 1981) [8]. So, Schuirmann (1987) indicates that the test concludes equiv-
alence when (1 − α)100% CI for the population mean difference is completely contained
inside the equivalence interval [θ1, θ2] [6].

The test statistic formula demonstrates that greater measurement accuracy results in
a smaller test statistic value and a lower chance of rejecting the null hypothesis of in-
equivalence. It ensures the conclusion is solely based on the magnitude of the mean difference
as the power analysis.

Taking the error rates as potential risks into account improves the experiment design.
Lakens D. (2017) stated that the equivalence test is a Newman-Pearson hypothesis testing
approach that allows the researchers to regulate the equivalence tests based on statistical
and practical experiences [2]. The preset equivalence boundaries are within reasonable values
most of the time, the equivalence test has sufficient statistical power to avoid two error rates
(Tan D., Feng G., Zhu R., & Yang H., 2017). Because the TOST is vulnerable to two types
of mistakes, the beta value is generally set to 0.05 rather than 0.20.

3.2.2 Simulation analysis of the TOST

The following simulation shows the testing procedure for the TOST. Assuming that two
samples of equal size, n1 = n2 = 30 are randomly drawn from N(0, 1) and N(−5, 1). By
considering two equivalence limits, θ1 = −6 and θ2 = −4, there are 1,000 paired simulations
generated.

Figure 3.3 a) displays the histogram of the sample mean difference; it is approximately
normally distributed and centered at the actual population mean difference of −5. By setting
the significance level to α = 0.05, the CI for the mean difference is computed (Green vertical
lines), and the blue vertical lines represent the equivalence range.

The simulated upper and lower test statistics tU and tL are computed as well. Figures
3.3 b) and c) depict their histograms, and the red vertical lines present the critical upper
t-values tα/2,n−1.
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Figure 3.3: Histogram of a) sample mean difference (mean_diff); b) upper test statistics
(TU); c) lower test statistics (TL) over 1,000 simulations under the TOST.

i. Confidence interval approach

As with the standard t-test, the equivalence test can be conducted in three ways. We first
determine whether the predetermined equivalence range [θ1, θ2] covers the CI of their mean
difference, as illustrated by the vertical lines in the Plot 3.3 a).

Table ?? displays the average interval limits for the population mean difference for 1,000
simulations. The value of p = 0.972 shows that the CI of the mean difference falls within
the equivalence range 97.2% of the time.

ȳD LCI UCI θ1 θ2 p

5.01 -5.426 -4.566 -6 -4 0.972

Table 3.1: Table of confidence interval approach under the TOST.

ii. Critical value approach

Under the critical t value approach, we conclude equivalence when both the upper test
statistic of the equivalence limit is greater than the critical t-value of the upper limit of the
population mean difference, TU ≥ t1−α/2,2n−2, and the lower test statistic is smaller than
its lower bound, TL ≤ −t1−α/2,2n−2, simultaneously. Table ?? shows that both average test
statistics over 1,000 runs are greater than the threshold t-value, and 97.2% of TOST rejects
the null hypothesis of non-equivalence and concludes the equivalence between two groups.

12



ȳD t̄L t̄U t p

5.01 -3.934 3.907 1.672 0.972

Table 3.2: Table of critical value approach under the TOST.

iii. P-value approach

The p-value measures the probability that the critical t-values are greater than the computed
test statistics. Figure 3.3 b) and c) show that the majority of test statistic values exceed the
threshold t-value t1−α/2,2n−2. Table ?? further shows 97.2% of the simulated pairs reject
the initial hypothesis of non-equivalence as their respective p-values are significantly smaller
than α/2 = 0.025.

ȳD p̄L p̄U α p

5.01 0.0035 0.0037 0.05 0.972

Table 3.3: Table of p-value approach under the TOST.

3.3 The Hauck-Anderson test

3.3.1 Introduction to the Hauck-Anderson test

Hauck and Anderson (1983) state that the majority of data used in biological applications
is log-normally distributed [4]. Hence, they propose a new equivalence test, its main feature
is to compare the equivalence between two groups on a logarithmic scale.

We assume the two populations are log-normally distributed. By setting the upper and
lower equivalence limits (θ1, θ2) and its hypothesis is as follows:

H0 : log(µ1) − log(µ2) ≤ log(θ1) or log(µ1) − log(µ2) ≥ log(θ2),

HA : log(θ1) < log(µ1) − log(µ2) < log(θ2).
(3.6)

To simplify the above formula, we consider M1 = log(µ1) and M2 = log(µ2) as the
population mean values on logarithmic scales and set A = log(θ1) and B = log(θ2) to
be the logarithms of the lower and upper equivalence limits of θ1 and θ2. The hypotheses
simplify to:

H0 : M1 − M2 ≤ A or M1 − M2 ≥ B,

HA : A ≤ M1 − M2 ≤ B.
(3.7)

Assuming that two samples with the same sizes are drawn from their independent normal
distributions with the same variances, the test statistic in the Hauck-Anderson approach

13



measures the distance between the sample mean difference mD and the midpoint of the
equivalence range µD in terms of measurement precision s′ shown as follows:

T =
∣∣∣∣∣(m1 − m2) − 1

2(A + B)
sp

√
2/n

∣∣∣∣∣ =
∣∣∣∣mD − µD

s′

∣∣∣∣ . (3.8)

Rather than comparing the test statistic T to the critical t value, the Hauck-Anderson
test approaches the problem by measuring the standardized probability of the mean differ-
ence at the edge of the equivalence boundaries.

By taking δ = B−A
2s′ as the width of the standardized equivalence range, the observed

p-value is p = Fv(T − δ) − Fv(−T − δ). It shows a decreasing δ raises the significance of the
resulting p-value, which makes it more challenging to demonstrate equivalence.

The following calculation reveals the probability that the observed test statistic is smaller
than the critical value at the limit of the equivalence limit:

p = Fv(T − δ) − Fv(−T − δ)

= Fv

(∣∣∣∣∣(m1 − m2) − 1
2(A + B)

s′

∣∣∣∣∣− B − A

2s′

)
− Fv

(
−
∣∣∣∣∣(m1 − m2) − 1

2(A + B)
s′

∣∣∣∣∣− B − A

2s′

)

=
[
Fv

(
mD − B

s′

)
− Fv

(−mD + A

s′

)]
(I(2mD ≥ A + B) − I(2mD < A + B))

(3.9)

The first term in the equation (3.5) denotes the probability that the areas for all statis-
tical values smaller than the observed term lie under the sampling distribution of the mean
difference centered at the upper equivalence limit. The second term represents the proba-
bility that the areas for all statistical values are greater than the observed terms under the
distribution of mean difference centered at the lower limit. This suggests that the observed
p-value is the probability that all observed values are within the equivalence range under
the t-distribution of the mean difference. Unlike taking the error rates at the tails of the
t-distribution of the mean difference, it takes them at the center of the t-distribution.

3.3.2 Simulation analysis of the Hauck-Anderson approach

The following simulation shows the testing procedure of the Hauck-Anderson method. We
first assume two samples (y11, ..., y1n1), (y21, ..., y2n2) with the sizes n1 = n2 = 30 are gener-
ated from log-normal distributions logNormal(0, 1) and logNormal(0.5, 1). The logarithmic
equivalence limits are set at A = 0 and B = 1. 1,000 simulations are generated, and their
distributions are shown in the upper panel of Figure 3.5.

The logarithmic sample mean difference and its test statistic are obtained based on
the formula. The left-bottom plot depicts the distributions of the logarithmic sample mean
difference, with the red vertical lines denoting the upper and lower equivalence bounds.
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Figure 3.4: Sampling distribution of two sample means, logarithmic sample mean differences
and t-test statistics using the Hauck-Anderson approach

The final panel of the four-panel Figure 3.4 shows the histogram of test statistics. Its
symmetric feature tells that the usual Student’s t distribution is a good approximation for
the Hauck-Anderson method. The significance level in this test is determined by maximizing
the type I error throughout the interval of the null hypothesis, which is the region located
in the center of the t-distribution. So, when a greater proportion of test statistic data is
closer to 0, the more sample data supports the statement of group equivalence.

Figure 3.5: Sampling distribution of paired samples, sample mean difference and t test
statistics using Hauck-Anderson approach
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In conclusion, the Hauck-Anderson approach initially assumes that two groups have
a significant mean difference (µD < A; µD > B). The measured p-value is the difference
between the probability that all values are less than the observed statistic under the null
hypothesis of the population mean difference, centered at the upper equivalence limit, and
the probability that all values are greater than the observed statistics under the null hy-
pothesis of the population mean difference, centered at the lower equivalence limit. So, the
above simulation shows that 96.9% of the simulated pairs are in the rejection region, which
concludes that most of them are in the equivalence range.

3.4 Equivalence limit determination

Compared to the t-test, equivalence tests yield a more reliable determination of equiva-
lence. Unfortunately, they are not often employed in practice because specific limitations of
experimental designs and equivalence bounds θ must be carefully defined using statistical
knowledge and practical experience before a study.

Several public organizations and professional scholars have provided suggestions on
equivalence range determination. The U.S. Food and Drug Administration (FDA) defines
the set of equivalence limits of the population mean difference as being within 80% to 125%
of the reference value. [3] Chow and Liu (1999) observed that most of the mean differ-
ences within ±20% of the reference mean are considered equivalent. Moreover, Limentani
developed an equivalent limit formula by considering a range of parameters in 2005. [5]

3.4.1 Limentani’s Formula

With three key parameters: an expected sample size (n = nR = nT ), a preset mean difference
δ and an one-sided upper (1 − γ)100% confidence limit of the reference group’s sample
standard deviation, denoted as s∗, the equivalence limit is computed as follows [5].

θ = δ + s∗[t1−α/2,2n−2 + t1−β/2,2n−2]
√

2
n

. (3.10)

The first unknown parameter δ is the absolute value of the mean difference between
the reference and test groups. It is a threshold variable that has a significant impact on
the ability to determine equivalence. For example, if δ increases, θ will likewise rise. When
δ is adjusted to be greater than the sample mean difference, it significantly enhances the
probability that the mean difference is contained within the equivalence boundary [−θ, θ].
Therefore, a larger δ value reduces TOST’s capacity to distinguish small but statistically
significant differences between two means. Usually, δ is assigned zero because a true mean
difference is usually unknown.
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Another unknown parameter in this formula is s∗ = sR

√
n−1

χ2
γ,n−1

. It denotes a one-sided

upper (1−γ)100% confidence limit of the sample standard deviation of the reference group,
based on the theory that a sampling distribution of the standard deviation for a series
of normally distributed groups follows a Chi-square distribution. Compared to the sample
standard deviation, it is more reliable to estimate the population standard deviation.

After the sample size is determined, two samples are randomly collected from the pop-
ulation. An equivalence limit θ is computed to assess equivalence between two groups.

3.4.2 Parameter trade-offs on TOST

Limentani’s formula (3.10) demonstrates that the equivalence limit is strongly reliant on
the preset mean difference δ, sample size n, sample standard deviation s, the rates of type
I and type II errors. Hence, this section highlights their trade-offs through tables.

Equivalence limits θ with n and s∗

The following Table 3.4 illustrates how an equivalence limit θ changes for various sample size
n and upper limits of measurement precision s∗ when δ = 0, α = 0.05, β = 0.05 are applied.
It is evident that a small sample size and/or a large variance contribute to a relatively high
equivalence limit.

n=5 n=7 n=9 n=11 n=13 n=15 n=17 n=20 n=25 n=30 n=35 n=40
std=0.5 1.19 0.98 0.85 0.77 0.71 0.66 0.62 0.57 0.51 0.47 0.44 0.41
std=0.6 1.43 1.17 1.02 0.92 0.85 0.79 0.74 0.68 0.61 0.56 0.52 0.49
std=0.7 1.67 1.37 1.19 1.07 0.99 0.92 0.86 0.8 0.72 0.66 0.61 0.57
std=0.8 1.91 1.56 1.36 1.23 1.13 1.05 0.99 0.91 0.82 0.75 0.7 0.65
std=0.9 2.15 1.76 1.53 1.38 1.27 1.18 1.11 1.03 0.92 0.85 0.79 0.74
std=1 2.38 1.95 1.7 1.53 1.41 1.31 1.24 1.14 1.02 0.94 0.87 0.82
std=1.5 3.58 2.93 2.55 2.3 2.12 1.97 1.85 1.71 1.54 1.41 1.31 1.23
std=2 4.77 3.9 3.4 3.07 2.82 2.63 2.47 2.28 2.05 1.88 1.74 1.64
std=2.5 5.96 4.88 4.26 3.84 3.53 3.28 3.09 2.85 2.56 2.35 2.18 2.05
std=3 7.15 5.85 5.11 4.6 4.23 3.94 3.71 3.42 3.07 2.82 2.62 2.45
std=3.5 8.34 6.83 5.96 5.37 4.94 4.6 4.32 4 3.59 3.29 3.05 2.86
std=4 9.54 7.8 6.81 6.14 5.64 5.26 4.94 4.57 4.1 3.76 3.49 3.27
std=4.5 10.73 8.78 7.66 6.9 6.35 5.91 5.56 5.14 4.61 4.23 3.93 3.68
std=5 11.92 9.75 8.51 7.67 7.05 6.57 6.18 5.71 5.12 4.7 4.36 4.09

Table 3.4: Table of θ for various sample size n and upper limit of method precision s∗.

Table 3.4 indicates that an unreliable sample size renders the equivalence limits in-
effective for distinguishing between truly comparable and non-equivalent procedures. For
example, consider a sample that has only 5 data points and whose sample measurement
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precision is 5. The formula yields a great and unrealistic value of 11.92 because the computa-
tion seeks a statistically feasible equivalence limit that infers the equivalence with a certain
degree of power. So, the equivalence limit cannot be solely determined by the formula and
has to be confirmed by practical experience.

In addition, a large standard error usually generates a wide confidence interval for the
mean difference, which results in a greater probability of not rejecting the initial assumption.
So, an equivalence limit must be greater than the reference group’s measurement error s/

√
n

as it ensures the mean difference is the sole reason to infer that the test fails to reject the
null hypothesis of non-equivalence, not the measurement imprecision (Limentani, 2005). [5]

Equivalence Limits θ with α and β

Table 3.5 and Table 3.6 show estimated equivalence limit changes over a variety of error
rates, with s∗ = 3 held constant.

n=5 n=7 n=9 n=11 n=13 n=15 n=17 n=20 n=25 n=30 n=35 n=40
alpha=0.01 16.73 11.73 9.41 8.02 7.09 6.41 5.89 5.29 4.59 4.1 3.74 3.46
alpha=0.05 13.63 9.77 7.91 6.79 6.02 5.46 5.02 4.52 3.93 3.52 3.22 2.97
alpha=0.1 12.31 8.88 7.21 6.2 5.51 4.99 4.6 4.14 3.61 3.23 2.95 2.73
alpha=0.15 11.52 8.33 6.78 5.83 5.18 4.7 4.33 3.9 3.4 3.04 2.78 2.57
alpha=0.2 10.94 7.92 6.45 5.55 4.93 4.48 4.12 3.72 3.24 2.9 2.65 2.45

Table 3.5: Table of θ for various sample size n and significance level α.

n=5 n=7 n=9 n=11 n=13 n=15 n=17 n=20 n=25 n=30 n=35 n=40
beta=0.01 16.73 11.73 9.41 8.02 7.09 6.41 5.89 5.29 4.59 4.1 3.74 3.46
beta=0.05 13.63 9.77 7.91 6.79 6.02 5.46 5.02 4.52 3.93 3.52 3.22 2.97
beta=0.1 12.31 8.88 7.21 6.2 5.51 4.99 4.6 4.14 3.61 3.23 2.95 2.73
beta=0.15 11.52 8.33 6.78 5.83 5.18 4.7 4.33 3.9 3.4 3.04 2.78 2.57
beta=0.2 10.94 7.92 6.45 5.55 4.93 4.48 4.12 3.72 3.24 2.9 2.65 2.45

Table 3.6: Table of θ for various sample size n and beta level β.

As expected, θ decreases with increasing type I or type II error rates. So, it increases
the difficulty of rejecting the null hypothesis of in-equivalence. In a traditional two-sample
t-test, the type I and type II error rates are chosen to be 0.05 and 0.20, respectively. How-
ever, reasonable equivalence limits determined by statistical and practical knowledge have
extremely low chances of producing type II error (a probability that researchers wrongly
conclude that two groups are not equivalent). So, both error rates for equivalence tests are
commonly set to 0.05.
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Summary

The three tables illustrate the explicit links between the equivalence limit and key param-
eters. The following concludes some tips for equivalence limit determination settings:

1. An increasing measurement precision (small sample size or large sample variation) or
a decreasing type of error leads to greater equivalence limits.

2. The equivalence limit must be greater than the reference group’s measurement pre-
cision sR/

√
n, so that the test assesses equivalence based solely on the magnitude of

the sample mean difference.

3. The value of an equivalent limit should also be advised by the statisticians and subject
matter experts together as the related experimental experiences often defines the
appropriate action.

4. Typically, the type I and II errors are set to 0.05 (α = β = 0.05) when a reasonable
equivalence limit is determined.

3.5 Sample size determination

Determining sample size is always an important stage in experimental design. By rewriting
the equivalence limit formula, a sample size for the equivalence test is computed as follows:

θ − δ = s∗[t1−α/2,2n−2 + t1−β/2,2n−2]
√

2
n

≈ σR[z1−α/2 + z1−β/2]
√

2
n

(3.11)

Because the equivalence limit and preset mean difference are highly related to the ref-
erence mean, their values can be rewritten as θ = pθµR and δ = pδµR. The coefficient of
variation (CV = σR/µR), a relative measure of variability in relation to its mean, is under-
taken. Large CV indicates that the standard deviation is relatively larger than the mean.
Hence, the sample size formula with new-defined parameters can be simplified as follows:

(pθ − pδ)µR = sR[z1−α/2 + z1−β/2]
√

2
n

n = 2
[

CVR(z1−α/2 + z1−β/2)
(pθ − pδ)

]2

+ 1
(3.12)

Table 3.7 determines the sample size required for a particular equivalence limit, a preset
mean difference, and a sample standard deviation. As either one of the preset mean difference
and CV increases or the equivalence limit decreases, the required sample size rises.
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δpc CVR θpc =0.05 θpc =0.1 θpc =0.15 θpc =0.2 θpc =0.25 θpc =0.3
0 0.05 32 9 5 3 3 2
0 0.1 124 32 15 9 6 5
0 0.15 278 71 32 19 13 9
0 0.2 493 124 56 32 21 15
0 0.25 770 194 87 50 32 23
0 0.3 1108 278 124 71 46 32
0.02 0.05 87 14 6 4 3 2
0.02 0.1 343 50 20 11 7 5
0.02 0.15 770 110 42 23 15 10
0.02 0.2 1367 194 74 39 25 17
0.02 0.25 2136 302 115 61 38 26
0.02 0.3 3075 434 165 87 54 37
0.04 0.05 770 23 8 5 3 3
0.04 0.1 3075 87 27 14 8 6
0.04 0.15 6916 194 59 29 17 12
0.04 0.2 12294 343 103 50 29 20
0.04 0.25 19209 535 160 77 45 30
0.04 0.3 27660 770 230 110 64 42
0.06 0.05 770 50 11 5 4 3
0.06 0.1 3075 194 39 17 10 7
0.06 0.15 6916 434 87 37 21 14
0.06 0.2 12294 770 153 64 36 23
0.06 0.25 19209 1202 239 99 55 35
0.06 0.3 27660 1730 343 143 78 50
0.08 0.05 87 194 17 7 4 3
0.08 0.1 343 770 64 23 12 8
0.08 0.15 770 1730 143 50 25 16
0.08 0.2 1367 3075 252 87 44 27
0.08 0.25 2136 4803 393 135 68 41
0.08 0.3 3075 6916 566 194 97 59
0.1 0.05 32 Inf 32 9 5 3
0.1 0.1 124 Inf 124 32 15 9
0.1 0.15 278 Inf 278 71 32 19
0.1 0.2 493 Inf 493 124 56 32
0.1 0.25 770 Inf 770 194 87 50
0.1 0.3 1108 Inf 1108 278 124 71

Table 3.7: Table of sample size n for various percentage of equivalence limits pθ, percentage
of preset mean difference pδ and CVR.

For example, suppose paired samples are generated from their normal distributions and
their CV of reference group is computed as 0.25. The equivalence limit θ and the preset
mean difference are set as 20% and 0% of the reference mean, respectively. So, the sample
size for each group should be at least 32 to assess equivalence with sufficient confidence
from Table 3.7. It is notable that when pθ equals to pδ, the denominator of the sample size
formula equals 0, which results in an Inf value.
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3.6 Power comparison for equivalence tests

This section aims to compare the probability of two-sample t-test does not reject the null
hypothesis of equality and powers of three equivalence tests (probabilities of correctly re-
jecting the null hypothesis, which is, concluding the equivalence between two groups in
equivalence tests of power analysis, TOST, and Hauck-Anderson method) as parameters
(mean difference, parameters, distributions, and data kinds) vary while taking 20% of the
reference mean as the half width of the equivalence range θfix. It summarizes the findings
for tests that have stable power to assess equivalence when the t-test concludes the preset
mean difference has an insignificant difference compared to the population mean difference.
The simulation analysis is conducted based on normally and log-normally distributed data
separately.

3.6.1 Normally distributed data

Initial settings

Consider two groups with the same sample size (n = nR = nT ) are randomly generated
from following:

y1R , ..., ynR ∼ N(20, 2),

y1T , ..., ynT ∼ N(µT , 2).
(3.13)

The simulation assumes the test mean is greater than the reference mean. In order
to bring the true mean difference within the equivalence region while ensuring the mean
difference remains greater than zero, the test mean is set to be slightly greater than the
reference group. The test mean is determined by a percentage change from the reference
mean as µT = µR ∗ (1 + p).

Testing procedure

Limentani’s formula (3.10) indicates that an estimated equivalence limit consists of two
terms: a predetermined mean difference δ and the width of an equivalence range θfix. By
taking δ as the desired center of the equivalence range, a t-test for assessing a significant
difference between an actual and a preset mean difference is conducted with the following
hypothesis:

H ′
0 : µT − µR = δ,

H ′
A : µT − µR ̸= δ.

(3.14)

When the p-value of the t-test is greater than the significance level, it implies that the
sample data are inadequate to reject the null hypothesis that µD = δ. This conclusion could
be a consequence of either high measurement precision or the insignificant magnitude of
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the difference between µD and δ. Then three equivalence tests are conducted as a post-hoc
examination. They determine whether sample data has adequate power to draw the reliable
inference that the CI of the mean difference falls into the equivalence range [θ1, θ2] centered
at δ. Their hypotheses are shown as follows:

H0 : µT − µR < θ1 or µT − µR > θ2,

HA : θ1 ≤ µT − µR ≤ θ2.
(3.15)

Simulation setting

After specifying the hypotheses, three parameters are considered to compare the three
tests’ power performance. They are the sample size for each group n = nT = nR, the
reference group’s standard deviation sR, and a percentage change p of the reference mean
as population mean difference µD.

The sample sizes for this simulation study are adjusted to 5, 10, 20, 30, and 40. The
assigned values for the standard deviation are 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 3, 4, 5. A sequence
of percentage changes (p) such as 0, 0.05, 0.10, and 0.15 of the reference mean represents the
population mean difference µD = µR − µT = p ∗ µR. We consider δ = µD, so the probability
of concluding an insignificant difference between the preset and actual mean difference is
proved to be stable at (1 − α)100%.

The width of the equivalence limit θfix is set to 20% of the reference mean. The type I
and II errors for TOST and Hauck-Anderson methods are fixed at 0.05 to reach an overall
type I error value of around 0.025. Because the power analysis is part of the t-test, its error
rates are 0.05. There are 4∗5∗10 = 200 parameter combinations, and 1,000 pairs of samples
are generated for each parameter setting.

After assigning a series of suitable values for parameters of interest, a t-test is conducted
to compare the significant difference between the actual and preset mean difference for each
paired sample. When the p-value is greater than the significance level, three equivalence tests
are conducted. Their average powers of determining equivalence between two populations
under various parameters are summarized in the figures below.

T-test

Figure 3.6 shows an average probability that the test does not reject the null hypothesis that
µD = δ versus sample size, along with an increasing mean difference. Each line represents
the probability trend of a t-test with a specific standard deviation value.
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Figure 3.6: Probability of two-sample t-test does not reject the null hypothesis that δ = µD

as parameters sample size (nT = nR = 5, 10, 20, 30, 40) and standard deviation (σT = σR =
0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 3, 4, 5) vary, under different percentage changes of reference group
(i.p = 0, µD = 0; ii.p = 0.05, µD = 1; iii. p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).

As expected, the plot demonstrates that the t-test has a stable probability of an in-
significant difference between µ and δ when they are actually equal. It also indicates one
of its shortcomings: the t-test does not penalize samples with fewer data points. When a
paired sample has more than 1 unit mean difference and the sample group only contains 5
data points, the t-test still has around a 95% chance of not rejecting the null hypothesis of
equality.

Equivalence test - power analysis

For those paired samples with a p-value greater than the significance level, equivalence
tests are conducted. Figure 3.7 first shows the average power trend of power analysis under
various parameters. Given specific equivalence limits and additional constraints on sample
parameters, the measured power reflects an observed probability that sample data distin-
guish if the CI of the mean difference between two groups is within the predetermined
equivalence range [θ1, θ2] is true. It provides evidence against the possibility that they are
equivalent due to the high precision of the sampling measurement as well.
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Figure 3.7: Power of power analysis as parameters sample size (nT = nR = 5, 10, 20, 30,
40) and standard deviation (σT = σR = 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 3, 4, 5) vary, under
different percentage changes of reference group (i.p = 0, µD = 0; ii.p = 0.05, µD = 1; iii.
p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).

Figure 3.7 shows how the power analysis penalizes the case of high measurement preci-
sion and narrow equivalence ranges. When the sample has a large measurement precision,
a test lacks the power to conclude equivalence. For example, the Table 3.4 indicates that a
sample with a size of 15 and an equivalence limit of 4 requires the sample standard deviation
to be smaller than 3.5 to achieve sufficient power to assess equivalence. So, the line charts
clearly show that for samples with more than 15 data points and a standard deviation lower
than 3.5, their average powers reach 95%.

We expect that the power trend will remain stable as the population mean difference
changes as δ = µD. However, the power trend increases significantly as the population mean
difference increasese where the other parameters remain stable.

Equivalence test - TOST

Figures 3.8 and 3.9 illustrate the power performance of the TOST and the Hauck-Anderson
test as a function of various parameter values. The results exhibit some comparable trends
to the power analysis. Their powers remain constant when the parameters satisfy the condi-
tions from the Table??. Both tests are restricted by small equivalence limits, small sample
sizes, and great variances. Unlike the power analysis, their power trends are stable as the
population mean difference changes.
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Figure 3.8: Power of TOST as the parameters sample size (nT = nR = 5, 10, 20, 30,
40) and standard deviation (σT = σR =0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 3, 4, 5) vary, under
different percentage changes of reference group (i.p = 0, µD = 0; ii.p = 0.05, µD = 1; iii.
p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).
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Equivalence Test - Hauck-Anderson test

Figure 3.9: Power of Hauck-Anderson method as the parameters sample size (nT = nR = 5,
10, 20, 30, 40) and standard deviation (σT = σR = 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 3, 4, 5) vary,
under different percentage changes of reference group (i.p = 0, µD = 0; ii.p = 0.05, µD = 1;
iii. p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).

3.6.2 Log-normally distributed data

Most chemicals are log-normally distributed, so the comparison of powers for equivalence
tests on the log-scaled data is run as well.

We consider the reference group to be derived from a normal distribution with a mean
equal to its log mean and a standard deviation equal to its log standard deviation. We also
assume the test group has the same distribution and standard deviation of the logs as its
reference group. Moreover, the mean of its test group differs from the mean of its reference
group by a specified percentage change, p = MT −MR

MR
, where MR and MT are the means of

the logs for reference and test groups. Thus, the population mean for test groups equals
MT = (1 + p) ∗ MR.

By configuring equivalent parameter settings and setting σ2
R = σ2

T to be the logs of their
standard deviation and nR = nT , data are generated as follows:

log(y1R), ..., log(ynR) ∼ N(5, σR),

log(y1T ), ..., log(ynT ) ∼ N(MT , σT ).
(3.16)
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The sample size is set as n = nT = nR = 5, 10, 20, 30, 40, and the percentage changes of the
reference mean are set as 0, 0.05, 0.10, and 0.15. The standard deviation of each group is set
at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. 4 ∗ 5 ∗ 10 = 200 parameter permutations
are conducted, and 1,000 simulations are generated for each parameter setting.

The Appendix A.2 and Appendix A.3 contain figures and summary tables of the power
result for each equivalence test.

Tests on the log-normally distributed data show similar results as in the normally dis-
tributed case. When δ = µD, the t-test easily demonstrates an insignificant difference be-
tween δ and µD, even when the sample size is extremely small. So, it cannot offer a conclusive
result when samples’ measurement precision is inadequate. Power analysis is too strict to
conclude in-equivalence, especially when the population mean difference is around 0 and is
sensitive to varying mean differences. TOST and the Huack-Anderson method are effective
at penalizing simulations with a small sample size, considerable variance, and small equiv-
alence limits. With specified parameter settings based on Limentani’s formula, both tests
generate stable power to assess equivalence.

3.6.3 Summary for power comparison

The main features of different testing procedures and equivalence limits through simulation
analysis are shown as follows:

• When data distribution and specific population parameters are known, taking 20% of
the reference mean as an equivalence limit is appropriate for equivalence tests.

• Taking a suitable preset mean difference as a part of the equivalence limit gives equiv-
alence tests a reliable foundation to determine the equivalence, so it is important to
employ the t-test as a prior examination for preset and actual mean differences.

• The equivalence limit determination should not only be based on the formula but also
be constrained by practical limitations, as concluded in the previous section.

• The power trend of power analysis is varied with various population mean differences.
When the difference is close to 0, the power analysis lacks the power on the samples
with large measurement precision.

• Both the TOST and Hauck-Anderson methods for normally distributed and log-
normally distributed data have comparable power trends to draw conclusions, and
they are good at penalizing cases with large measurement precision and small equiv-
alence limits.
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Chapter 4

Application of equivalence tests in
clinical trials with application to
tobacco data

Presently, HC does not have full data from these WHO studies, instead only sparse chem-
ical data collected from different tobacco products’ emissions and constituents using HC’s
measurement method is available. The cigarettes are randomly collected various not only
products, but manufacturers to reduce variability. So, this section conducts a simulation-
based comparison of equivalence tests for the level of analytical equivalence in clinical trials
with their application to tobacco data using official HC measurement methods. It takes
various design constraints for the equivalence tests (TOST, Hauck-Anderson test, power
analysis) into account and provides useful suggestions for experimental design.

4.1 Introduction to reference data

Chemical data collected from three different cigarette products manufactured by three dif-
ferent companies using the HC reference techniques is taken as the reference group. These
chemicals are T-111B (nitrosamines, both under mainstream ISO and extreme smoking cir-
cumstances), T-304 (humectants as tobacco’s constituents), and T-115 (nicotine and carbon
monoxide under mainstream intense smoking conditions).

Data distribution

The distributions of the HC’s data on the original and log-transformed scales are graphed
in Appendix B. A quantile-quantile (Q-Q) plot was used to determine if the data on the
original or log scales is normally distributed.

Appendix B.1 displays the distribution of nitrosamines (NAB, NAT, NNK, and NNN)
in conditions of mainstream strong smoking; B.2. displays the distribution of nitrosamines
(NAB, NAT, NNK, and NNN) under mainstream ISO smoking settings; B.3. displays the
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distribution of humectants (glycerol, propylene glycol, and trienthylene glycol), which are
components in a cigarette; and B.4. describes the distribution of nicotine and carbon monox-
ide (CO) under mainstream, intense smoking conditions.

According to these distributions, only CO is normally distributed. All 128 observations
of humectant glycerol are beyond the limits of detection (LOD) and quantification (LOQ),
whereas triethylene glycol had 110/128 observations below the LOD and propylene glycol
had 81/128 observations below the LOD and 3/128 observations below the LOQ. Because
their distributions contain more than half of the constants, these data were not used for
further simulation analysis. Other chemicals, such as Nicotine, nitrosamines, etc., are fairly
log-normally distributed.

Descriptive summary with normal-scaled data

Table 4.1 provides summary statistics of tobacco’s emissions and constituent levels on the
original scale. The table also includes population size, mean, standard deviations, and co-
efficient of variation (CV).

Condition Chemical Units N Mean Std CV
Intense CO mg/cig 1037 27.08 2.64 0.10
Intense NAB ng/cig 140 17.41 9.17 0.53
Intense NAT ng/cig 140 118.50 83.05 0.70
Intense Nicotine mg/cig 1037 2.10 0.46 0.22
Intense NNK ng/cig 140 80.11 61.50 0.77
Intense NNN ng/cig 140 111.50 95.73 0.86
ISO NAB ng/cig 140 7.06 3.82 0.54
ISO NAT ng/cig 140 49.57 34.70 0.70
ISO NNK ng/cig 140 31.89 24.34 0.76
ISO NNN ng/cig 140 42.34 37.23 0.88

Table 4.1: Table of descriptive statistics for original-scale data on chemicals from tobacco
products.

Descriptive summary with logged-scaled data

Because the data have a lognormal distribution, Table 4.2 presents their log scale sum-
mary statistics (CO is excluded from the table since the data is normally distributed). The
columns of mean, SD, and CV are computed based on their log values. Their original means
(Geometric Mean, GM) and standard deviations (Geometric Standard Deviation, GSD) are
computed using the formulas E(X) = eµ+ σ2

2 and var(X) = e2µ+σ2(eσ2 − 1). It is clear that
GM and GSD values are fairly close to the mean and variance of the original-scale data.
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Condition chemical units N log_mean log_std log_CV GM GSD
Intense CO mg/cig 1037 - - - - -
Intense NAT ng/cig 140 4.54 0.69 0.15 118.87 92.82
Intense NNK ng/cig 140 4.17 0.61 0.15 77.95 52.34
Intense NNN ng/cig 140 4.43 0.71 0.16 107.99 87.43
Intense NAB ng/cig 140 2.72 0.53 0.19 17.47 9.95
ISO NAT ng/cig 140 3.63 0.81 0.22 52.36 50.42
ISO NNK ng/cig 140 3.2 0.75 0.23 32.5 28.24
ISO NNN ng/cig 140 3.44 0.8 0.23 42.95 40.67
ISO NAB ng/cig 140 1.82 0.54 0.3 7.14 4.15
Intense Nicotine mg/cig 1037 0.72 0.23 0.32 2.11 0.49

Table 4.2: Table of descriptive statistics for log-scale data on chemicals from tobacco prod-
ucts.

4.2 Equivalence tests with sample size determination

When the data distribution is determined from the sampling histogram, the half width of
the equivalence limits θfix and the preset mean difference δ should be determined by experts
and statisticians together. In this case, we take θfix as 20% of the reference mean and δ = 0.
Then the sample size for each chemical is calculated based on the Table 3.7. It should be
noted that calculated size only provides the minimum boundary, and it is always good to
have more sample data.

After an appropriate equivalence limit and sample size for each tobacco chemical are
determined, a t-test is conducted as a prior examination to compare the actual and preset
mean differences. Three equivalence tests (Power analysis, TOST, and the Hauck-Anderson
method) with assigned parameter values are used when the p-value is greater than the
significance level. The power for each equivalence test represents the probability that sample
data is capable of showing the CI of population mean difference is within an acceptable
equivalence range, while the sample does not have sufficient ability to infer a significant
difference between the preset δ and the actual population mean difference.

Figures 4.1, 4.2 and 4.3 visualize power trends for determining equivalence between
each chemical data set from two different methodologies versus the number of simulated
pairs. Each line represents the average power of concluding a insignificant mean difference
or equivalence between two groups. The calculated sample size for each simulated pair is
also shown in each figure.
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Figure 4.1: Power of equivalence tests with a fixed equivalence limit and a computed sample
size versus the number of simulated pairs for chemicals a) CO under intense condition; b)
NAB under intense condition; c) NAT under intense condition and d) nicotine under intense
condition.
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Figure 4.2: Power of equivalence tests with a fixed equivalence limit and a computed sample
size versus the number of simulated pairs for chemicals a) NNK under intense condition;
b) NNN under intense condition; c) NAB under ISO condition and d) NAT under ISO
condition.
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Figure 4.3: Power of equivalence tests with a fixed equivalence limit and a computed sample
size versus the number of simulated pairs for chemicals a) NNK under ISO condition; b)
NNN under ISO condition.

As expected, the power trends of power analysis, TOST, and the Hauck-Anderson
method are stable at 95% to conclude the equivalence between two groups, especially when
the desired sample size for each group is greater than 30. When the sample size is less
than 30, it is clear that the three equivalence tests have lower rates to conclude equiva-
lence,especially the power analysis. It strongly indicates that they are strict with a small
sample. Moreover, power trends for most chemicals vary significantly when the number of
simulated pairs is less than 250.
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Chapter 5

Conclusions

This report first illustrates that the traditional two-sample t-test is not a reliable way to
assess equivalence between two groups. One reason is that it only determines a significant
mean difference. But, failure to reject the null hypothesis does not imply that the means
of two groups are equal or similar. A higher measurement precision leads to a greater
probability of failing to reject the null hypothesis of inequality.

So, three equivalence approaches are examined in this report: power analysis, TOST,
and the Hauck-Anderson method. Each assumes that the two groups have a significant mean
difference and then uses sample data to assess equivalence.

The equivalence limit θ and sample size are important parameters for tests; summary
tables based on Limentani’s formula present their trade-offs with other key parameters. By
taking the t-test as a prior examination for the preset mean difference δ, the simulation
is conducted to compare the power trends of three equivalence tests for normally and log-
normally distributed data across a variety of parameter values. The figures show that they all
eventually yield comparable testing capabilities of (1−α)100% on concluding the equivalence
with varying actual mean differences, while power analysis is more sensitive in terms of
measurement precision and actual mean differences.

The simulation-based comparison of equivalence tests for the level of analytical equiva-
lence in clinical trials with their application to tobacco data using official HC measurement
methods is presented in the last section. The final figures show that the three tests have
comparable power and they always penalize cases with a small sample size. Some restrictions
on parameter settings and testing procedures are shown as follows:

• There are trade-offs between the equivalence limit and sample size with other param-
eters, so one can be determined by the summary table when the others are known.
Some restrictions on equivalence limit and sample size determination are summarized
in this report.
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• An acceptable mean difference δ should be determined based on sample statistics and
the subject expert’s practical experiences, and a t-test should be conducted for the
significant difference between the preset and actual mean differences.

• When the t-test shows not enough evidence to reject the initial assumption of equality,
an equivalence test with pre-defined parameters is undertaken. Its p-value represents
the probability that the sample data has adequate power to suggest a fitting preset
mean difference and that its value is within an acceptable equivalence range.

• Equivalence tests are strict on the measurement precision and their equivalence limits
can also be suggested by the experimental experiences, so they are more suitable to
assess equivalence compared to the t-test.

This report conducts a simulation-based experimental design to determine equivalence
with the application of HC’s official measurement method for tobacco chemical data. It only
considers the case where the measured values using two methods under the specific data
distributions have the same population means and variances are independent of each other,
and their means are the same. So, future work on this project would include exploring other
data types. It is also important to figure out the difference among the three equivalence
tests from the perspective of formalizing their power calculations, etc.
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Appendix A

The validation of power for
equivalence test

A.1 Tables of powers for equivalence tests with normally-
distributed data
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A.1.1 0% change between reference and test methods for various theta
(µT − µR = 0)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 0.003 -0.162 0.168 0.92 0.92 0.949 0.949
5 0.3 0.011 -0.47 0.493 0.91 0.91 0.946 0.946
5 0.5 0.005 -0.835 0.846 0.912 0.912 0.941 0.941
5 0.7 -0.012 -1.169 1.144 0.921 0.921 0.954 0.954
5 0.9 -0.025 -1.473 1.424 0.918 0.918 0.95 0.95
5 1 -0.023 -1.671 1.625 0.911 0.91 0.94 0.943
5 2 0.003 -3.255 3.261 0.907 0.303 0.422 0.649
5 3 0.023 -4.927 4.974 0.916 0.043 0.104 0.282
5 4 0.073 -6.591 6.737 0.915 0.002 0.03 0.149
5 5 0.038 -8.141 8.218 0.921 0.002 0.012 0.078
10 0.1 0.003 -0.103 0.109 0.935 0.935 0.967 0.967
10 0.3 -0.002 -0.32 0.315 0.943 0.943 0.967 0.967
10 0.5 0.016 -0.521 0.553 0.936 0.936 0.966 0.966
10 0.7 0.008 -0.745 0.762 0.93 0.93 0.953 0.953
10 0.9 0.002 -0.953 0.958 0.933 0.933 0.96 0.96
10 1 0.019 -1.049 1.086 0.923 0.923 0.962 0.962
10 2 -0.001 -2.114 2.111 0.926 0.857 0.91 0.938
10 3 -0.026 -3.216 3.164 0.937 0.124 0.441 0.644
10 4 0.018 -4.224 4.26 0.924 0.011 0.13 0.352
10 5 -0.005 -5.324 5.315 0.926 0 0.036 0.162
20 0.1 0.001 -0.072 0.073 0.943 0.943 0.97 0.97
20 0.3 -0.005 -0.224 0.215 0.95 0.95 0.974 0.974
20 0.5 -0.001 -0.366 0.363 0.943 0.943 0.977 0.977
20 0.7 0.002 -0.505 0.509 0.941 0.941 0.969 0.969
20 0.9 0.024 -0.635 0.683 0.936 0.936 0.964 0.964
20 1 0.003 -0.723 0.73 0.944 0.944 0.968 0.968
20 2 0.012 -1.455 1.479 0.93 0.93 0.966 0.966
20 3 0.018 -2.159 2.194 0.945 0.888 0.916 0.947
20 4 -0.006 -2.915 2.903 0.944 0.163 0.6 0.735
20 5 -0.005 -3.646 3.636 0.933 0.006 0.234 0.438
30 0.1 0 -0.059 0.059 0.945 0.945 0.97 0.97
30 0.3 0.005 -0.172 0.181 0.948 0.948 0.971 0.971
30 0.5 -0.008 -0.302 0.287 0.931 0.931 0.958 0.958
30 0.7 0.003 -0.41 0.416 0.945 0.945 0.974 0.974
30 0.9 0.002 -0.527 0.532 0.945 0.945 0.979 0.979
30 1 0 -0.59 0.591 0.961 0.961 0.979 0.979
30 2 -0.015 -1.194 1.164 0.949 0.949 0.97 0.97
30 3 -0.013 -1.774 1.748 0.943 0.943 0.97 0.972
30 4 -0.008 -2.374 2.359 0.957 0.769 0.872 0.928
30 5 0.028 -2.911 2.968 0.955 0.06 0.567 0.724
40 0.1 0 -0.051 0.051 0.952 0.952 0.977 0.977
40 0.3 -0.001 -0.153 0.15 0.94 0.94 0.968 0.968
40 0.5 -0.004 -0.257 0.25 0.948 0.948 0.971 0.971
40 0.7 0 -0.357 0.357 0.939 0.939 0.959 0.959
40 0.9 0.008 -0.449 0.464 0.957 0.957 0.978 0.978
40 1 0.001 -0.508 0.51 0.948 0.948 0.975 0.975
40 2 -0.001 -1.012 1.011 0.943 0.943 0.969 0.969
40 3 -0.006 -1.535 1.523 0.945 0.945 0.978 0.978
40 4 0.028 -2.002 2.058 0.952 0.949 0.956 0.967
40 5 0.01 -2.53 2.549 0.956 0.445 0.808 0.884
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A.1.2 5% change between reference and test methods for varying values
of theta (µT − µR = 1)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 1 0.837 1.163 0.931 0.931 0.952 0.952
5 0.3 0.999 0.507 1.492 0.909 0.909 0.947 0.947
5 0.5 1.006 0.209 1.802 0.919 0.919 0.941 0.941
5 0.7 0.993 -0.155 2.141 0.906 0.906 0.933 0.933
5 0.9 0.993 -0.512 2.497 0.911 0.911 0.937 0.937
5 1 0.987 -0.642 2.616 0.905 0.905 0.93 0.936
5 2 0.97 -2.314 4.255 0.925 0.634 0.432 0.656
5 3 0.966 -4.078 6.011 0.92 0.125 0.109 0.281
5 4 1.023 -5.61 7.656 0.926 0.021 0.028 0.142
5 5 0.948 -7.383 9.28 0.93 0.003 0.006 0.079
10 0.1 1.002 0.896 1.108 0.932 0.932 0.957 0.957
10 0.3 1.001 0.682 1.319 0.927 0.927 0.955 0.955
10 0.5 0.99 0.455 1.524 0.933 0.933 0.957 0.957
10 0.7 1 0.249 1.751 0.926 0.926 0.958 0.958
10 0.9 1 0.053 1.947 0.938 0.938 0.961 0.961
10 1 1 -0.057 2.057 0.926 0.926 0.95 0.95
10 2 0.997 -1.152 3.145 0.936 0.935 0.905 0.934
10 3 1.018 -2.169 4.204 0.938 0.58 0.446 0.646
10 4 0.979 -3.278 5.236 0.921 0.084 0.107 0.308
10 5 0.955 -4.3 6.209 0.938 0.007 0.034 0.166
20 0.1 0.999 0.927 1.072 0.943 0.943 0.968 0.968
20 0.3 0.997 0.779 1.215 0.946 0.946 0.975 0.975
20 0.5 1.009 0.646 1.371 0.938 0.938 0.969 0.969
20 0.7 1.008 0.495 1.522 0.946 0.946 0.974 0.974
20 0.9 0.994 0.34 1.648 0.948 0.948 0.973 0.973
20 1 0.988 0.255 1.721 0.96 0.96 0.977 0.977
20 2 1.002 -0.459 2.463 0.927 0.927 0.96 0.96
20 3 0.994 -1.173 3.161 0.948 0.948 0.916 0.952
20 4 0.963 -1.96 3.887 0.944 0.765 0.569 0.723
20 5 0.896 -2.749 4.541 0.945 0.145 0.221 0.457
30 0.1 1.001 0.941 1.06 0.945 0.945 0.968 0.968
30 0.3 0.999 0.822 1.176 0.94 0.94 0.97 0.97
30 0.5 0.996 0.7 1.293 0.948 0.948 0.968 0.968
30 0.7 0.994 0.582 1.407 0.953 0.953 0.972 0.972
30 0.9 1.012 0.478 1.546 0.946 0.946 0.971 0.971
30 1 1.001 0.409 1.593 0.951 0.951 0.974 0.974
30 2 0.998 -0.174 2.171 0.94 0.94 0.96 0.96
30 3 0.967 -0.802 2.736 0.944 0.944 0.974 0.974
30 4 0.945 -1.407 3.298 0.949 0.949 0.882 0.932
30 5 0.996 -1.967 3.958 0.962 0.755 0.564 0.718
40 0.1 0.999 0.948 1.049 0.931 0.931 0.966 0.966
40 0.3 1.002 0.85 1.154 0.949 0.949 0.969 0.969
40 0.5 0.999 0.744 1.254 0.937 0.937 0.964 0.964
40 0.7 1 0.644 1.356 0.953 0.953 0.981 0.981
40 0.9 1.001 0.543 1.459 0.949 0.949 0.968 0.968
40 1 1.005 0.494 1.515 0.955 0.955 0.976 0.976
40 2 1.019 0.005 2.033 0.943 0.943 0.963 0.963
40 3 1.012 -0.516 2.539 0.954 0.954 0.976 0.976
40 4 1.032 -0.998 3.063 0.961 0.961 0.958 0.97
40 5 1.03 -1.502 3.563 0.958 0.958 0.806 0.88
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A.1.3 10% change between reference and test methods for varying values
of theta (µT − µR = 2)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 1.998 1.833 2.162 0.908 0.908 0.938 0.938
5 0.3 1.988 1.499 2.478 0.913 0.913 0.95 0.95
5 0.5 1.997 1.187 2.808 0.914 0.914 0.944 0.944
5 0.7 1.986 0.847 3.124 0.915 0.915 0.949 0.949
5 0.9 2.002 0.521 3.483 0.908 0.908 0.94 0.945
5 1 2.01 0.372 3.648 0.924 0.924 0.944 0.949
5 2 1.949 -1.32 5.218 0.926 0.846 0.415 0.642
5 3 1.946 -2.944 6.836 0.925 0.294 0.123 0.301
5 4 1.928 -4.542 8.398 0.898 0.076 0.036 0.141
5 5 2.003 -6.093 10.099 0.912 0.016 0.02 0.085
10 0.1 2.001 1.894 2.107 0.921 0.921 0.951 0.951
10 0.3 2.005 1.685 2.325 0.933 0.933 0.954 0.954
10 0.5 2.002 1.467 2.538 0.942 0.942 0.97 0.97
10 0.7 2.008 1.252 2.764 0.947 0.947 0.963 0.963
10 0.9 1.983 1.02 2.947 0.934 0.934 0.967 0.967
10 1 1.991 0.919 3.063 0.942 0.942 0.967 0.967
10 2 1.993 -0.126 4.112 0.942 0.942 0.909 0.949
10 3 2.021 -1.199 5.242 0.935 0.868 0.411 0.604
10 4 2.108 -2.103 6.318 0.94 0.342 0.126 0.325
10 5 1.964 -3.398 7.325 0.946 0.063 0.041 0.168
20 0.1 2 1.928 2.073 0.942 0.942 0.965 0.965
20 0.3 2.005 1.787 2.223 0.94 0.94 0.969 0.969
20 0.5 2.005 1.637 2.373 0.938 0.938 0.969 0.969
20 0.7 1.994 1.482 2.506 0.936 0.936 0.962 0.962
20 0.9 2.01 1.35 2.669 0.955 0.955 0.974 0.974
20 1 1.989 1.265 2.713 0.94 0.94 0.972 0.972
20 2 1.988 0.53 3.445 0.947 0.947 0.966 0.966
20 3 2.01 -0.182 4.201 0.937 0.937 0.913 0.946
20 4 1.996 -0.92 4.912 0.942 0.94 0.566 0.735
20 5 2.03 -1.611 5.671 0.932 0.649 0.202 0.409
30 0.1 2 1.941 2.059 0.943 0.943 0.976 0.976
30 0.3 2.003 1.827 2.178 0.947 0.947 0.966 0.966
30 0.5 1.999 1.704 2.294 0.947 0.947 0.974 0.974
30 0.7 1.998 1.587 2.408 0.95 0.95 0.975 0.975
30 0.9 2.005 1.479 2.532 0.939 0.939 0.966 0.966
30 1 2.002 1.412 2.591 0.948 0.948 0.978 0.978
30 2 1.99 0.803 3.177 0.953 0.953 0.982 0.982
30 3 1.976 0.207 3.744 0.944 0.944 0.971 0.973
30 4 1.996 -0.347 4.34 0.938 0.938 0.866 0.927
30 5 2.024 -0.917 4.965 0.955 0.955 0.562 0.71
40 0.1 2 1.949 2.051 0.949 0.949 0.974 0.974
40 0.3 1.997 1.844 2.149 0.952 0.952 0.979 0.979
40 0.5 1.999 1.745 2.253 0.95 0.95 0.968 0.968
40 0.7 1.991 1.636 2.347 0.943 0.943 0.971 0.971
40 0.9 2.003 1.547 2.459 0.952 0.952 0.98 0.98
40 1 1.998 1.49 2.507 0.957 0.957 0.981 0.981
40 2 1.995 0.977 3.013 0.948 0.948 0.972 0.972
40 3 2.007 0.494 3.52 0.938 0.938 0.965 0.965
40 4 1.994 -0.035 4.024 0.944 0.944 0.955 0.971
40 5 2.004 -0.553 4.56 0.96 0.96 0.785 0.876
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A.1.4 15% change between reference and test methods for varying values
of theta (µT − µR = 3)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 3.001 2.838 3.165 0.93 0.93 0.955 0.955
5 0.3 2.997 2.507 3.487 0.922 0.922 0.952 0.952
5 0.5 3.017 2.207 3.826 0.925 0.925 0.956 0.956
5 0.7 2.999 1.851 4.147 0.912 0.912 0.949 0.949
5 0.9 3.003 1.535 4.471 0.916 0.916 0.953 0.955
5 1 3.011 1.37 4.652 0.919 0.919 0.949 0.954
5 2 2.974 -0.318 6.265 0.924 0.911 0.45 0.651
5 3 3.076 -1.782 7.934 0.924 0.541 0.138 0.303
5 4 3.036 -3.513 9.586 0.895 0.154 0.036 0.147
5 5 2.916 -5.201 11.033 0.928 0.05 0.019 0.097
10 0.1 3.003 2.897 3.109 0.94 0.94 0.966 0.966
10 0.3 3.002 2.682 3.322 0.946 0.946 0.971 0.971
10 0.5 2.996 2.468 3.524 0.93 0.93 0.957 0.957
10 0.7 2.989 2.244 3.733 0.93 0.93 0.956 0.956
10 0.9 3.001 2.048 3.954 0.928 0.928 0.956 0.956
10 1 3.014 1.956 4.073 0.911 0.911 0.943 0.943
10 2 2.981 0.873 5.088 0.932 0.932 0.893 0.936
10 3 3.036 -0.135 6.208 0.935 0.932 0.452 0.647
10 4 2.936 -1.298 7.17 0.936 0.681 0.121 0.313
10 5 2.85 -2.352 8.051 0.924 0.212 0.028 0.17
20 0.1 3 2.927 3.073 0.936 0.936 0.966 0.966
20 0.3 3.005 2.788 3.221 0.934 0.934 0.961 0.961
20 0.5 2.997 2.632 3.362 0.943 0.943 0.972 0.972
20 0.7 2.992 2.485 3.5 0.937 0.937 0.967 0.967
20 0.9 3.002 2.344 3.661 0.938 0.938 0.968 0.968
20 1 2.995 2.263 3.728 0.955 0.955 0.974 0.974
20 2 2.981 1.521 4.442 0.95 0.95 0.979 0.979
20 3 3.03 0.87 5.19 0.932 0.932 0.911 0.942
20 4 2.964 0.03 5.898 0.937 0.937 0.574 0.725
20 5 2.943 -0.686 6.572 0.931 0.912 0.216 0.446
30 0.1 3 2.941 3.059 0.945 0.945 0.968 0.968
30 0.3 2.998 2.822 3.175 0.951 0.951 0.976 0.976
30 0.5 3.004 2.707 3.3 0.953 0.953 0.974 0.974
30 0.7 3.005 2.591 3.419 0.937 0.937 0.97 0.97
30 0.9 3.003 2.471 3.534 0.947 0.947 0.976 0.976
30 1 2.997 2.407 3.588 0.945 0.945 0.968 0.968
30 2 2.986 1.799 4.173 0.95 0.95 0.975 0.975
30 3 2.993 1.218 4.768 0.94 0.94 0.963 0.964
30 4 3.006 0.661 5.352 0.938 0.938 0.879 0.927
30 5 2.963 0.048 5.879 0.95 0.95 0.586 0.73
40 0.1 2.999 2.949 3.05 0.945 0.945 0.977 0.977
40 0.3 2.998 2.845 3.151 0.945 0.945 0.971 0.971
40 0.5 2.994 2.738 3.25 0.959 0.959 0.977 0.977
40 0.7 3 2.645 3.356 0.94 0.94 0.969 0.969
40 0.9 3.001 2.544 3.458 0.942 0.942 0.966 0.966
40 1 3.005 2.496 3.514 0.953 0.953 0.972 0.972
40 2 2.999 1.982 4.016 0.943 0.943 0.97 0.97
40 3 2.983 1.449 4.517 0.948 0.948 0.971 0.971
40 4 2.94 0.912 4.967 0.941 0.941 0.955 0.971
40 5 3.011 0.474 5.548 0.937 0.937 0.787 0.868
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A.2 Tables of powers for equivalence tests with log-normally
distributed data

A.2.1 0% change between reference and test methods for varying values
of theta (MT − MR = 0)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 0.003 -0.162 0.168 0.92 0.92 0.949 0.949
5 0.2 0.008 -0.313 0.329 0.91 0.91 0.946 0.946
5 0.3 0.003 -0.501 0.507 0.912 0.878 0.87 0.926
5 0.4 -0.007 -0.668 0.654 0.921 0.607 0.668 0.821
5 0.5 -0.014 -0.818 0.791 0.918 0.338 0.444 0.652
5 0.6 -0.014 -1.003 0.975 0.911 0.126 0.248 0.468
5 0.7 0.001 -1.139 1.141 0.907 0.041 0.138 0.326
5 0.8 0.006 -1.314 1.326 0.916 0.021 0.082 0.247
5 0.9 0.016 -1.483 1.516 0.915 0.003 0.047 0.183
5 1 0.008 -1.628 1.644 0.921 0.008 0.028 0.13
10 0.1 0.003 -0.103 0.109 0.935 0.935 0.967 0.967
10 0.2 -0.001 -0.213 0.21 0.943 0.943 0.967 0.967
10 0.3 0.01 -0.313 0.332 0.936 0.936 0.966 0.966
10 0.4 0.005 -0.426 0.435 0.93 0.929 0.947 0.951
10 0.5 0.001 -0.53 0.532 0.933 0.874 0.895 0.935
10 0.6 0.011 -0.629 0.652 0.923 0.549 0.761 0.862
10 0.7 0 -0.74 0.739 0.926 0.254 0.531 0.716
10 0.8 -0.007 -0.858 0.844 0.937 0.071 0.35 0.58
10 0.9 0.004 -0.95 0.958 0.924 0.03 0.226 0.448
10 1 -0.001 -1.065 1.063 0.926 0.008 0.122 0.314
20 0.1 0.001 -0.072 0.073 0.943 0.943 0.97 0.97
20 0.2 -0.003 -0.15 0.143 0.95 0.95 0.974 0.974
20 0.3 -0.001 -0.219 0.218 0.943 0.943 0.977 0.977
20 0.4 0.001 -0.289 0.291 0.941 0.941 0.969 0.969
20 0.5 0.013 -0.353 0.379 0.936 0.936 0.964 0.964
20 0.6 0.002 -0.434 0.438 0.944 0.944 0.967 0.968
20 0.7 0.004 -0.509 0.518 0.93 0.912 0.931 0.955
20 0.8 0.005 -0.576 0.585 0.945 0.779 0.871 0.925
20 0.9 -0.001 -0.656 0.653 0.944 0.416 0.734 0.827
20 1 -0.001 -0.729 0.727 0.933 0.139 0.564 0.736
30 0.1 0 -0.059 0.059 0.945 0.945 0.97 0.97
30 0.2 0.003 -0.114 0.12 0.948 0.948 0.971 0.971
30 0.3 -0.005 -0.181 0.172 0.931 0.931 0.958 0.958
30 0.4 0.001 -0.235 0.237 0.945 0.945 0.974 0.974
30 0.5 0.001 -0.293 0.295 0.945 0.945 0.979 0.979
30 0.6 0 -0.354 0.354 0.961 0.961 0.979 0.979
30 0.7 -0.005 -0.418 0.407 0.949 0.949 0.97 0.97
30 0.8 -0.003 -0.473 0.466 0.943 0.943 0.969 0.971
30 0.9 -0.002 -0.534 0.531 0.957 0.946 0.936 0.963
30 1 0.006 -0.582 0.594 0.955 0.761 0.886 0.939
40 0.1 0 -0.051 0.051 0.952 0.952 0.977 0.977
40 0.2 -0.001 -0.102 0.1 0.94 0.94 0.968 0.968
40 0.3 -0.002 -0.154 0.15 0.948 0.948 0.971 0.971
40 0.4 0 -0.204 0.204 0.939 0.939 0.959 0.959
40 0.5 0.004 -0.249 0.258 0.957 0.957 0.978 0.978
40 0.6 0.001 -0.305 0.306 0.948 0.948 0.975 0.975
40 0.7 0 -0.354 0.354 0.943 0.943 0.969 0.969
40 0.8 -0.002 -0.409 0.406 0.945 0.945 0.978 0.978
40 0.9 0.006 -0.451 0.463 0.952 0.952 0.973 0.975
40 1 0.002 -0.506 0.51 0.956 0.955 0.961 0.974
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A.2.2 5% change between reference and test methods for varying values
of theta (MT − MR = 0.25)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 0.251 0.086 0.415 0.92 0.92 0.953 0.953
5 0.2 0.253 -0.077 0.583 0.91 0.91 0.935 0.935
5 0.3 0.243 -0.252 0.739 0.924 0.923 0.909 0.944
5 0.4 0.251 -0.414 0.916 0.925 0.865 0.652 0.827
5 0.5 0.272 -0.555 1.099 0.924 0.635 0.416 0.657
5 0.6 0.241 -0.721 1.204 0.905 0.367 0.27 0.485
5 0.7 0.227 -0.94 1.395 0.925 0.197 0.123 0.315
5 0.8 0.269 -1.048 1.586 0.91 0.094 0.084 0.233
5 0.9 0.237 -1.19 1.664 0.92 0.055 0.068 0.194
5 1 0.245 -1.395 1.885 0.912 0.021 0.022 0.142
10 0.1 0.252 0.146 0.358 0.932 0.932 0.965 0.965
10 0.2 0.251 0.038 0.463 0.937 0.937 0.961 0.961
10 0.3 0.248 -0.075 0.571 0.941 0.941 0.969 0.969
10 0.4 0.249 -0.177 0.674 0.932 0.932 0.954 0.959
10 0.5 0.245 -0.286 0.776 0.94 0.939 0.903 0.94
10 0.6 0.246 -0.392 0.884 0.939 0.893 0.764 0.873
10 0.7 0.255 -0.489 1 0.932 0.712 0.516 0.703
10 0.8 0.266 -0.58 1.112 0.936 0.426 0.358 0.563
10 0.9 0.253 -0.715 1.222 0.938 0.199 0.199 0.409
10 1 0.254 -0.811 1.319 0.943 0.07 0.127 0.328
20 0.1 0.251 0.179 0.324 0.942 0.942 0.968 0.968
20 0.2 0.248 0.101 0.394 0.929 0.929 0.961 0.961
20 0.3 0.248 0.03 0.467 0.947 0.947 0.97 0.97
20 0.4 0.252 -0.039 0.544 0.944 0.944 0.97 0.97
20 0.5 0.246 -0.124 0.615 0.955 0.955 0.98 0.98
20 0.6 0.259 -0.179 0.698 0.947 0.947 0.968 0.972
20 0.7 0.264 -0.245 0.773 0.93 0.93 0.934 0.952
20 0.8 0.246 -0.337 0.828 0.953 0.953 0.884 0.942
20 0.9 0.24 -0.414 0.894 0.951 0.926 0.737 0.848
20 1 0.236 -0.494 0.967 0.944 0.753 0.568 0.717
30 0.1 0.249 0.19 0.308 0.96 0.96 0.973 0.973
30 0.2 0.248 0.13 0.366 0.946 0.946 0.971 0.971
30 0.3 0.249 0.072 0.426 0.942 0.942 0.966 0.966
30 0.4 0.251 0.016 0.486 0.94 0.94 0.972 0.972
30 0.5 0.254 -0.041 0.549 0.937 0.937 0.961 0.961
30 0.6 0.246 -0.106 0.598 0.948 0.948 0.968 0.968
30 0.7 0.25 -0.164 0.663 0.955 0.955 0.978 0.978
30 0.8 0.246 -0.225 0.718 0.938 0.938 0.96 0.962
30 0.9 0.252 -0.278 0.782 0.958 0.958 0.94 0.965
30 1 0.263 -0.328 0.855 0.953 0.953 0.867 0.922
40 0.1 0.25 0.199 0.301 0.949 0.949 0.971 0.971
40 0.2 0.25 0.148 0.352 0.939 0.939 0.964 0.964
40 0.3 0.25 0.097 0.403 0.939 0.939 0.966 0.966
40 0.4 0.255 0.052 0.458 0.949 0.949 0.972 0.972
40 0.5 0.251 -0.003 0.505 0.946 0.946 0.968 0.968
40 0.6 0.245 -0.058 0.548 0.937 0.937 0.972 0.972
40 0.7 0.251 -0.103 0.605 0.944 0.944 0.962 0.962
40 0.8 0.247 -0.156 0.65 0.945 0.945 0.969 0.969
40 0.9 0.247 -0.212 0.706 0.945 0.945 0.973 0.973
40 1 0.254 -0.252 0.76 0.946 0.946 0.959 0.968
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A.2.3 10% change between reference and test methods for varying values
of theta (MT − MR = 0.5)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 0.504 0.34 0.668 0.917 0.917 0.943 0.943
5 0.2 0.5 0.174 0.826 0.927 0.927 0.95 0.95
5 0.3 0.49 -0.001 0.982 0.913 0.913 0.883 0.93
5 0.4 0.499 -0.168 1.167 0.911 0.905 0.658 0.819
5 0.5 0.503 -0.328 1.334 0.915 0.817 0.41 0.65
5 0.6 0.511 -0.477 1.499 0.92 0.628 0.249 0.474
5 0.7 0.509 -0.649 1.667 0.923 0.394 0.138 0.335
5 0.8 0.487 -0.821 1.795 0.928 0.244 0.073 0.257
5 0.9 0.511 -0.979 2.001 0.929 0.132 0.063 0.207
5 1 0.555 -1.068 2.178 0.914 0.079 0.043 0.154
10 0.1 0.501 0.395 0.607 0.945 0.945 0.974 0.974
10 0.2 0.494 0.283 0.705 0.935 0.935 0.957 0.957
10 0.3 0.507 0.189 0.826 0.931 0.931 0.959 0.959
10 0.4 0.504 0.077 0.932 0.92 0.92 0.953 0.957
10 0.5 0.498 -0.041 1.036 0.936 0.936 0.909 0.944
10 0.6 0.518 -0.116 1.152 0.94 0.939 0.749 0.846
10 0.7 0.505 -0.241 1.251 0.946 0.916 0.538 0.702
10 0.8 0.494 -0.351 1.339 0.93 0.789 0.342 0.552
10 0.9 0.485 -0.473 1.443 0.93 0.563 0.199 0.41
10 1 0.501 -0.558 1.56 0.928 0.338 0.12 0.324
20 0.1 0.5 0.428 0.573 0.943 0.943 0.969 0.969
20 0.2 0.502 0.356 0.647 0.943 0.943 0.966 0.966
20 0.3 0.498 0.281 0.716 0.955 0.955 0.972 0.972
20 0.4 0.494 0.204 0.785 0.93 0.93 0.965 0.965
20 0.5 0.497 0.132 0.862 0.947 0.947 0.969 0.971
20 0.6 0.507 0.073 0.941 0.943 0.943 0.964 0.965
20 0.7 0.503 -0.008 1.014 0.96 0.96 0.954 0.971
20 0.8 0.506 -0.077 1.088 0.933 0.933 0.863 0.922
20 0.9 0.499 -0.159 1.156 0.94 0.94 0.746 0.857
20 1 0.499 -0.231 1.228 0.96 0.959 0.598 0.753
30 0.1 0.5 0.441 0.559 0.957 0.957 0.978 0.978
30 0.2 0.498 0.38 0.616 0.939 0.939 0.965 0.965
30 0.3 0.502 0.325 0.679 0.961 0.961 0.976 0.976
30 0.4 0.498 0.26 0.736 0.947 0.947 0.968 0.968
30 0.5 0.5 0.205 0.794 0.949 0.949 0.971 0.971
30 0.6 0.502 0.148 0.855 0.958 0.958 0.976 0.976
30 0.7 0.496 0.084 0.909 0.948 0.948 0.974 0.975
30 0.8 0.503 0.029 0.977 0.94 0.94 0.958 0.965
30 0.9 0.507 -0.021 1.035 0.935 0.935 0.932 0.95
30 1 0.506 -0.084 1.095 0.949 0.949 0.885 0.94
40 0.1 0.499 0.449 0.55 0.948 0.948 0.968 0.968
40 0.2 0.498 0.396 0.6 0.952 0.952 0.98 0.98
40 0.3 0.501 0.348 0.653 0.958 0.958 0.974 0.974
40 0.4 0.501 0.297 0.704 0.936 0.936 0.962 0.962
40 0.5 0.498 0.243 0.752 0.946 0.946 0.971 0.971
40 0.6 0.499 0.195 0.804 0.946 0.946 0.966 0.966
40 0.7 0.495 0.139 0.851 0.948 0.948 0.973 0.973
40 0.8 0.506 0.098 0.914 0.94 0.94 0.966 0.966
40 0.9 0.491 0.031 0.951 0.943 0.943 0.966 0.969
40 1 0.503 -0.002 1.007 0.939 0.939 0.946 0.963
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A.2.4 15% change between reference and test methods for varying values
of theta (MT − MR = 0.75)

Sample Statistics Equivalence Testing Result
n std MeanDiff LCI UCI TTEST Power TOST Hauck
5 0.1 0.745 0.582 0.908 0.923 0.923 0.954 0.954
5 0.2 0.75 0.427 1.074 0.93 0.93 0.961 0.961
5 0.3 0.738 0.239 1.237 0.933 0.933 0.905 0.946
5 0.4 0.754 0.079 1.429 0.919 0.919 0.653 0.816
5 0.5 0.749 -0.061 1.559 0.924 0.904 0.447 0.658
5 0.6 0.749 -0.218 1.715 0.9 0.799 0.258 0.448
5 0.7 0.76 -0.412 1.931 0.924 0.604 0.145 0.329
5 0.8 0.797 -0.517 2.11 0.916 0.42 0.085 0.251
5 0.9 0.759 -0.726 2.243 0.926 0.301 0.048 0.19
5 1 0.733 -0.875 2.341 0.918 0.191 0.036 0.145
10 0.1 0.751 0.645 0.858 0.942 0.942 0.968 0.968
10 0.2 0.753 0.542 0.963 0.945 0.945 0.964 0.964
10 0.3 0.754 0.434 1.073 0.948 0.948 0.966 0.966
10 0.4 0.749 0.33 1.169 0.929 0.929 0.951 0.955
10 0.5 0.748 0.209 1.288 0.939 0.939 0.89 0.938
10 0.6 0.765 0.123 1.408 0.93 0.93 0.737 0.85
10 0.7 0.754 0.001 1.506 0.927 0.926 0.508 0.704
10 0.8 0.736 -0.11 1.582 0.935 0.921 0.351 0.577
10 0.9 0.762 -0.197 1.721 0.946 0.855 0.215 0.433
10 1 0.758 -0.304 1.819 0.929 0.668 0.121 0.326
20 0.1 0.748 0.676 0.821 0.943 0.943 0.964 0.964
20 0.2 0.75 0.603 0.897 0.954 0.954 0.98 0.98
20 0.3 0.747 0.527 0.968 0.929 0.929 0.955 0.955
20 0.4 0.754 0.462 1.046 0.942 0.942 0.974 0.974
20 0.5 0.749 0.386 1.113 0.952 0.952 0.974 0.974
20 0.6 0.736 0.304 1.168 0.935 0.935 0.961 0.962
20 0.7 0.756 0.249 1.262 0.938 0.938 0.939 0.953
20 0.8 0.755 0.172 1.338 0.948 0.948 0.858 0.922
20 0.9 0.759 0.101 1.416 0.942 0.942 0.734 0.838
20 1 0.742 0.024 1.46 0.937 0.937 0.583 0.728
30 0.1 0.751 0.691 0.81 0.946 0.946 0.974 0.974
30 0.2 0.75 0.632 0.868 0.936 0.936 0.965 0.965
30 0.3 0.753 0.576 0.931 0.953 0.953 0.968 0.968
30 0.4 0.75 0.515 0.985 0.938 0.938 0.972 0.972
30 0.5 0.754 0.458 1.05 0.945 0.945 0.975 0.975
30 0.6 0.758 0.404 1.112 0.938 0.938 0.969 0.969
30 0.7 0.754 0.339 1.17 0.944 0.944 0.968 0.968
30 0.8 0.756 0.285 1.227 0.936 0.936 0.953 0.96
30 0.9 0.746 0.218 1.274 0.951 0.951 0.937 0.96
30 1 0.74 0.148 1.332 0.944 0.944 0.87 0.922
40 0.1 0.748 0.697 0.799 0.944 0.944 0.965 0.965
40 0.2 0.747 0.645 0.849 0.947 0.947 0.978 0.978
40 0.3 0.748 0.595 0.9 0.954 0.954 0.977 0.977
40 0.4 0.753 0.551 0.956 0.939 0.939 0.971 0.971
40 0.5 0.756 0.503 1.008 0.945 0.945 0.973 0.973
40 0.6 0.751 0.447 1.056 0.938 0.938 0.966 0.966
40 0.7 0.753 0.397 1.109 0.945 0.945 0.971 0.971
40 0.8 0.749 0.343 1.155 0.945 0.945 0.97 0.97
40 0.9 0.731 0.274 1.188 0.96 0.96 0.973 0.974
40 1 0.748 0.243 1.253 0.952 0.952 0.97 0.975
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A.3 Visual comparison on each equivalence tests for log-
normally distributed data

A.3.1 T-test

Figure A.1: Probability of two-sample t-test does not reject the null hypothesis that δ = µD

as the parameters sample size (nT = nR = 5, 10, 20, 30, 40) and standard deviation
(σT = σR = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) vary, under different percentage
changes of reference group (i.p = 0, µD = 0; ii.p = 0.05, µD = 1; iii. p = 0.10, µT − µR = 2;
iv. p = 0.15, µT − µR = 3).
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A.3.2 Power analysis

Figure A.2: Power of power analysis as the parameters sample size (nT = nR = 5, 10, 20,
30, 40) and standard deviation (σT = σR =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) vary,
under different percentage changes of reference group (i.p = 0, µD = 0; ii.p = 0.05, µD = 1;
iii. p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).
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A.3.3 TOST

Figure A.3: Power of TOST as the parameters sample size (nT = nR = 5, 10, 20, 30, 40)
and standard deviation (σT = σR = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) vary, under
different percentage changes of reference group (i.p = 0, µD = 0; ii.p = 0.05, µD = 1; iii.
p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).
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A.3.4 Hauck-Anderson test

Figure A.4: Power of Hauck-Anderson method as the parameters sample size (nT = nR =
5, 10, 20, 30, 40) and standard deviation (σT = σR = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1) vary, under different percentage changes of reference group (i.p = 0, µD = 0;
ii.p = 0.05, µD = 1; iii. p = 0.10, µT − µR = 2; iv. p = 0.15, µT − µR = 3).
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Appendix B

Distributions of chemicals

B.1 Distributions of T-111B / SOP03: NAB, NAT, NNK
and NNN from various cigarettes under intense smoking
conditions

Figure B.1: (a) Distributions of normal-scale chemicals
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Figure B.2: (b) Distributions of log-scale chemicals

Figure B.3: (c) QQ-plot of log-scale chemicals
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B.2 Distributions of T-111B / SOP03: NAB, NAT, NNK
and NNN from various cigarettes under ISO smoking
conditions

Figure B.4: (a) Distributions of normal-scale chemicals
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Figure B.5: (b) Distributions of log-scale chemicals

Figure B.6: (c) QQ-plot of log-scale chemicals
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B.3 Distributions of T-304 / SOP06: glcerol, porpylene gly-
col, trienthylene glycol from various cigarettes (constituents)

Figure B.7: (a) Distributions of normal-scale chemicals

Figure B.8: (b) Distributions of log-scale chemicals
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Figure B.9: (c) QQ-plot of log-scale chemicals
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B.4 Distributions of T-115 / SOP10: CO and Nicotine from
various cigarettes under intense smoking conditions

Figure B.10: (a) Distributions of normal-scale chemicals

Figure B.11: (b) Distributions of log-scale chemicals
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Figure B.12: (c) QQ-plot of log-scale chemicals
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Appendix C

R codes

C.1 R codes for the Table 3.4 - 3.6 about equivalence limit
determination with various parameters

library(openxlsx)
delta = 0
n = c(5,7,9,11,13,15,17,20,25,30,35,40)
wb <- createWorkbook ()

## with various std values
alpha = 0.05
beta = 0.05
gamma =0.20
std_list = c(seq (0.5 ,0.9 ,0.1) , seq (1 ,5 ,0.5))

theta_vec <- c()
theta <- data.frame(matrix(ncol = length(n), nrow = length(std_list )))
colnames(theta) <- paste0(’n=’,n,sep=’’)
rownames(theta) <- paste0(’std=’,std_list ,sep=’’)

for (i in 1: length(n)){
m = n[i]
for (j in 1: length(std_list )){

std = std_list[j]
sst=std*sqrt((m-1)/qchisq(p=gamma , df=m-1, lower.tail=FALSE ))
theta_value = round(delta+sst*(qt(p=1-alpha , df=2*m-2) +

qt(p=1-beta/2, df=2*m-2))*sqrt(2/m),2)
theta_vec = append(theta_vec , theta_value)

}
theta[,i] = theta_vec
theta_vec = c()}

addWorksheet(wb , sheetName = ’std’)
writeData(wb, sheet = ’std’, theta , rowNames=TRUE)
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## with various alpha values
std = 3
n = c(5,7,9,11,13,15,17,20,25,30,35,40)
alpha = c(0.01 , 0.05, 0.10, 0.15, 0.20)

theta_vec <- c()
theta <- data.frame(matrix(ncol = length(n), nrow = length(alpha )))
colnames(theta) <- paste0(’n=’,n,sep=’’)
rownames(theta) <- paste0(’alpha=’,alpha ,sep=’’)

for (i in 1: length(n)){
m = n[i]
for (j in 1: length(alpha )){

a = alpha[j]
sst=std*sqrt((m-1)/qchisq(p=gamma , df=m-1))
theta_value = round(delta+sst*(qt(p=1-a, df=2*m-2) +

qt(p=1-beta/2, df=2*m-2))*sqrt(2/m),2)
theta_vec = append(theta_vec , theta_value)

}
theta[,i] = theta_vec
theta_vec = c()}

addWorksheet(wb , sheetName = ’alpha’)
writeData(wb, sheet = ’alpha ’, theta , rowNames=TRUE)

## with various beta values
std = 3
alpha = 0.05
beta = c(0.01, 0.05, 0.10, 0.15, 0.20)

theta_vec <- c()
theta <- data.frame(matrix(ncol = length(n), nrow = length(beta )))
colnames(theta) <- paste0(’n=’,n,sep=’’)
rownames(theta) <- paste0(’beta=’,beta ,sep=’’)

for (i in 1: length(n)){
m = n[i]
for (j in 1: length(beta )){

b = beta[j]
sst=std*sqrt((m-1)/qchisq(p=gamma , df=m-1))
theta_value = round(delta+sst*(qt(p=1-alpha , df=2*m-2) +

qt(p=1-b/2, df=2*m-2))*sqrt(2/m),2)
theta_vec = append(theta_vec , theta_value)

}
theta[,i] = theta_vec
theta_vec = c()}

addWorksheet(wb , sheetName = ’beta’)
writeData(wb, sheet = ’beta’, theta , rowNames=TRUE)

saveWorkbook(wb , "␣")
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C.2 R codes for the Table 3.7 for sample size determination
with various parameters

## read libraries into R
library(readxl)
library(writexl)

set.seed (1231) ##to get the exactly same sampling data on each round

##### initial setting
alpha =0.05
beta =0.05
gamma =0.20
size = 1000
cv_vec = seq (0.05, 0.4, 0.05)
delta_vec = seq(0, 0.1, 0.02)
theta_vec = seq(0.05 , 0.3, 0.05)

n_vec <- c()
m_vec <- c()
final <- data.frame(CV=rep(cv_vec , length(delta_vec )))

for (t in 1: length(theta_vec)){
theta = theta_vec[t]
for (k in 1: length(delta_vec)){

p = delta_vec[k]
for (j in 1: length(cv_vec)){

cv = cv_vec[j]
cv1 = as.character(cv)

n = ceiling (2*(cv*(qnorm(1-alpha )+qnorm(1-beta/2))/(theta -p))^2)+1
n_vec = append(n_vec , n)

}
m_vec = append(m_vec ,n_vec)
n_vec = c()}
final = cbind(final ,m_vec)
colnames(final )[t+1]= paste(’theta_pc_’,theta_vec[t])
m_vec = c()}

final <- data.frame(delta_pc=rep(delta_vec , each=length(cv_vec)),final)

write_xlsx(final ,"␣")
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C.3 R codes for the Figure 3.6 - 3.9 about power comparison
of equivalence tests for normally distributed data

## read libraries into R
library(writexl)
library(openxlsx)
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggpubr)

set.seed (1231) ##to get the exactly same sampling data on each round

##### initial setting
alpha = 0.025
beta = 0.025
alpha1 = 0.05
beta1 = 0.05
size = 1000
n_vec = c(5, 10, 20, 30, 40)
std_vec = c(seq(0.1, 0.9, 0.2), seq(1, 5, 1))
pc_vec = c(0, 0.05, 0.1, 0.15)

refmean = 20 # reference mean
thetafix = 0.2*refmean # FDA theta suggestion

df <- NULL
sum_list <- list()
wb <- createWorkbook ()
chem_summary <- data.frame(n=numeric(),

std=numeric(),
MeanDiff=numeric(),
LCI=numeric(),
UCI=numeric ())

for (k in 1: length(pc_vec)){
p = pc_vec[k]
delta = refmean*p

for (j in 1: length(n_vec)){
m = n_vec[j]
m1 = as.character (1:m)

for (t in 1: length(std_vec)){
std = std_vec[t]
std1 = as.character(std)

refchem = as.data.frame(matrix(rnorm(n=m*size , mean=refmean ,
sd=std), nrow=size , ncol=m))

testchem = as.data.frame(matrix(rnorm(n=m*size , mean=refmean*(1+p),
sd=std), nrow=size , ncol=m))
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colnames(refchem) = c(paste(’r’, m1, sep=’’))
colnames(testchem) = c(paste(’t’, m1, sep=’’))

refchem$ref_freq = rep(m,size)
refchem$ref_mean = apply(refchem [,1:m], 1, mean)
refchem$ref_std = apply(refchem [,1:m], 1, sd)
refchem$ref_var = refchem$ref_std^2

testchem$test_freq = rep(m,size)
testchem$test_mean = apply(testchem [,1:m], 1, mean)
testchem$test_std = apply(testchem [,1:m], 1, sd)
testchem$test_var = testchem$test_std^2
chemn = cbind(refchem ,testchem)

Testing <- as.data.frame(chemn) %>%
mutate(mean_diff = test_mean -ref_mean ,

tvalue = (mean_diff -delta)/sqrt(ref_var*(2/m)),
pvalue = 2*(1-pt(abs(tvalue),2*m-2)),
TTEST_result = ifelse ((pvalue <=alpha), "UnEqual", "Equal"),

theta = delta+thetafix ,
negtheta = delta -thetafix ,
t = qt(p=1-alpha/2, df=2*m-2),
LCI = mean_diff -t*sqrt(ref_var*(2/m)),
UCI = mean_diff+t*sqrt(ref_var*(2/m)),
TOST_result = ifelse(TTEST_result =="Equal",
ifelse(negtheta <=LCI & UCI <=theta , "Equiv",
"UnEquiv"), NA),

sigma = (theta/(sqrt(2/m)))/(qnorm(p=1-alpha1/2)+
qnorm(1-beta1 ))*(((theta >=0)*1)-((theta <0)*1)),

TTEST_result1 = ifelse ((pvalue <= alpha1),
"UnEqual", "Equal"),

Power_result = ifelse(TTEST_result1 =="Equal",
ifelse(sqrt((ref_var+test_var)/2)<sigma , "Equiv",
"UnEquiv"), NA),

Hauck_delta = thetafix/(sqrt(2*ref_var/m)),
Hauck_Tvalue = (mean_diff -delta)/(sqrt(2*ref_var/m)),
Hauck_pvalue = pt(abs(Hauck_Tvalue)-Hauck_delta , 2*m-2)-
pt(-abs(Hauck_Tvalue)-Hauck_delta , 2*m-2),

Hauck_result = ifelse(TTEST_result =="Equal",
ifelse(Hauck_pvalue <=alpha , "Equiv", "UnEquiv"), NA))

chem_summary[t, ’n’] = m
chem_summary[t, ’std’] = std
chem_summary[t, ’MeanDiff ’] = round(mean(Testing$mean_diff),3)
chem_summary[t, ’LCI’] = round(mean(Testing$LCI),3)
chem_summary[t, ’UCI’] = round(mean(Testing$UCI),3)
chem_summary[t, ’TTEST’] = round(length(which(Testing$TTEST_result1 ==

’Equal’))/size , 3)
chem_summary[t, ’Power’] = round(length(which(Testing$Power_result ==

’Equiv’))/size , 3)
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chem_summary[t, ’TOST’] = round(length(which(Testing$TOST_result ==
’Equiv’))/size , 3)

chem_summary[t, ’Hauck’] = round(length(which(Testing$Hauck_result ==
’Equiv’))/size ,3)}

df[[j]] = chem_summary}
finaltest = rbind(df[[1]] , df[[2]] , df[[3]], df[[4]], df [[5]])
sum_list[[k]] <- finaltest
addWorksheet(wb , sheetName = paste0(’p=’,p,’mean␣diff=’,round(delta ,2),

sep=’’))
writeData(wb, sheet = paste0(’p=’,p,’mean␣diff=’,round(delta ,2), sep=’’),

finaltest )}

saveWorkbook(wb , "␣")

long_list <- list()
for (i in 1:4){

long_list[[i]] <- gather(sum_list[[i]], test , power , TTEST:Hauck ,
factor_key=TRUE)}

list <- c(’TTEST’, ’Power’, ’TOST’, ’Hauck’)
for (i in 1: length(list )){

p00 <- long_list [[1]] %>%
filter(test==list[i]) %>%
ggplot(aes(x=n, y=power , group=std , color=std))+
coord_cartesian(ylim = c(0, 1))+
geom_line ()+
geom_hline(yintercept = 0.95, col=’red’, cex=1)

p05 <- long_list [[2]] %>%
filter(test==list[i]) %>%
ggplot(aes(x=n, y=power , group=std , color=std))+
coord_cartesian(ylim = c(0, 1))+
geom_line ()+
geom_hline(yintercept = 0.95, col=’red’, cex=1)

p10 <- long_list [[3]] %>%
filter(test==list[i]) %>%
ggplot(aes(x=n, y=power , group=std , color=std))+
coord_cartesian(ylim = c(0, 1))+
geom_line ()+
geom_hline(yintercept = 0.95, col=’red’, cex=1)

p15 <- long_list [[4]] %>%
filter(test==list[i]) %>%
ggplot(aes(x=n, y=power , group=std , color=std)) +
coord_cartesian(ylim = c(0, 1)) +
geom_line ()+
geom_hline(yintercept = 0.95, col=’red’, cex=1)

print(ggarrange(p00 , p05 , p10 , p15 + rremove("x.text"),
labels = c("␣␣p=0", "p=0.05", "p=0.10", "p=0.15"),
label.x = 0.7, label.y = 1,
font.label = list(size = 12),
ncol = 2, nrow = 2))}

63


	Declaration of Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Two-sample t-test for equivalence determination
	Two-sample t-test
	Problems that arise in using the t-test to determine equivalence

	Equivalence Tests
	Power analysis
	Introduction to power analysis
	Power analysis in equivalence tests

	The two one-sided test (TOST)
	Introduction to the TOST
	Simulation analysis of the TOST

	The Hauck-Anderson test
	Introduction to the Hauck-Anderson test
	Simulation analysis of the Hauck-Anderson approach

	Equivalence limit determination
	Limentani's Formula
	Parameter trade-offs on TOST

	Sample size determination
	Power comparison for equivalence tests
	Normally distributed data
	Log-normally distributed data
	Summary for power comparison


	Application of equivalence tests in clinical trials with application to tobacco data
	Introduction to reference data
	Equivalence tests with sample size determination

	Conclusions
	Bibliography
	Appendix The validation of power for equivalence test
	Tables of powers for equivalence tests with normally-distributed data
	0% change between reference and test methods for various theta (T-R=0)
	5% change between reference and test methods for varying values of theta (T-R=1)
	10% change between reference and test methods for varying values of theta (T-R=2)
	15% change between reference and test methods for varying values of theta (T-R=3)

	Tables of powers for equivalence tests with log-normally distributed data
	0% change between reference and test methods for varying values of theta (MT-MR=0)
	5% change between reference and test methods for varying values of theta (MT-MR=0.25)
	10% change between reference and test methods for varying values of theta (MT-MR=0.5)
	15% change between reference and test methods for varying values of theta (MT-MR=0.75)

	Visual comparison on each equivalence tests for log-normally distributed data
	T-test
	Power analysis
	TOST
	Hauck-Anderson test


	Appendix Distributions of chemicals
	Distributions of T-111B / SOP03: NAB, NAT, NNK and NNN from various cigarettes under intense smoking conditions
	Distributions of T-111B / SOP03: NAB, NAT, NNK and NNN from various cigarettes under ISO smoking conditions
	Distributions of T-304 / SOP06: glcerol, porpylene glycol, trienthylene glycol from various cigarettes (constituents)
	Distributions of T-115 / SOP10: CO and Nicotine from various cigarettes under intense smoking conditions

	Appendix R codes
	R codes for the Table 3.4 - 3.6 about equivalence limit determination with various parameters
	R codes for the Table ??or sample size determination with various parameters
	R codes for the Figure 3.6 - 3.9 about power comparison of equivalence tests for normally distributed data


