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Abstract

When orthogonal blocking of orthogonal designs is not possible, we will have to allow 
either non-orthogonality between treatment factors or non-orthogonality between treatments 
and blocks. An example of this situation is running an experiment with a 12-run design of 
5 factors in three blocks. Two approaches are studied, and their performances in estimation 
efficiency of treatment main effects are compared. Some best designs of 12 runs in three 
blocks and of 20 runs in five blocks are found and tabulated.
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Chapter 1

Introduction

In many scientific investigations, the main interest lies in the study of effects of two

or more factors simultaneously. Factorial designs, especially those of two-levels, are most

commonly used for such investigations. These designs are used to study the effects on

the response over the range of factor levels chosen. A full factorial experimental design

allows all factorial effects to be estimated independently. However, it is often costly to

perform a full factorial experiment because a 2k full factorial design requires 2k runs to be

performed, so these designs are seldom used in practise for large k. For economic reasons,

fractional factorial designs, which consist of a subset or a fraction of full factorial designs are

preferred. Fractional factorial designs are useful at early stages of screening investigations

to systematically sift through many factors and screen out a few important ones.

1.1 Non-regular designs

Fractional factorial designs can be classified into two broad categories: regular fractional

factorial designs and non-regular fractional factorial designs. Regular fractional factorial

designs are constructed through defining relations among factors and have simple aliasing

structure in that any two effects are either orthogonal or fully aliased. An orthogonal

design is a one in which the two levels in each column occur equally often, and in any two

columns all their level combinations appear the same number of times. In regular designs,

any two factorial effects can be estimated independently of each other if they are not fully

aliased. In contrast, non-regular fractional factorial designs exhibit some complex aliasing

structure, meaning that there exist effects that are neither orthogonal nor fully aliased.

1



Regular factorial designs can be constructed for every run size that is a power of 2 (2k−m

runs with k factors). Examples of non-regular factorial designs include Plackett Burman

designs (1946), which are constructed from Hadamard matrices. If a Hadamard matrix

exists, then its order n has to be a multiple of 4, that is n = 4t for some integer t.

Run A B C D E F G H J
1 1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 1 1 -1 1 1 -1 -1 -1
3 -1 1 1 1 -1 -1 1 -1 -1
4 1 -1 -1 1 1 1 1 -1 -1
5 -1 1 -1 -1 -1 1 1 1 -1
6 1 -1 1 -1 1 -1 1 1 -1
7 1 -1 1 1 -1 1 -1 1 -1
8 -1 1 -1 1 1 -1 -1 1 -1
9 -1 -1 1 -1 -1 1 1 -1 1

10 1 1 -1 -1 1 -1 1 -1 1
11 1 1 -1 1 -1 1 -1 -1 1
12 -1 -1 1 1 1 -1 -1 -1 1
13 1 1 1 -1 -1 -1 -1 1 1
14 -1 -1 -1 -1 1 1 -1 1 1
15 -1 -1 -1 1 -1 -1 1 1 1
16 1 1 1 1 1 1 1 1 1

Table 1.1: Regular fractional factorial 29−5 design

Table 1.1 shows a regular fractional factorial 29−5 design matrix of 16 runs with 9

factors, each row representing a run and each column corresponding to a factor. The first

four columns A, B, C and D are given by a full factorial design for four factors. The columns

of remaining factors E, F , G, H and J are then generated using the first four columns.

E = ABC, F = ABD, G = ACD, H = BCD, J = AB.

The relation J = AB implies that the main effect of factor J is fully aliased with the two-

factor interaction between factors A and B. The aliasing pattern divides a set of factorial

effects into groups and the effects from the same group are fully aliased with each other,

and those from different groups are mutually orthogonal. When two effects are fully aliased

in a regular design, it is impossible to distinguish between them based on the data in the

analysis. When a two-factor interaction is fully aliased with a main effect, we often assume

that the two-factor interaction is negligible. But two-factor interactions are often significant
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in practice. This problem can be avoided if a non-regular design is used.

Run A B C D E F G H J
1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1 -1 1 -1 -1 -1 1 1 1
3 1 1 -1 1 -1 -1 -1 1 1
4 -1 1 1 -1 1 -1 -1 -1 1
5 1 -1 1 1 -1 1 -1 -1 -1
6 1 1 -1 1 1 -1 1 -1 -1
7 1 1 1 -1 1 1 -1 1 -1
8 -1 1 1 1 -1 1 1 -1 1
9 -1 -1 1 1 1 -1 1 1 -1

10 -1 -1 -1 1 1 1 -1 1 1
11 1 -1 -1 -1 1 1 1 -1 1
12 -1 1 -1 -1 -1 1 1 1 -1

Table 1.2: Non-regular 12-run design

Table 1.2 shows a non-regular design of 12 runs with nine factors. The nine main

effects columns A,B,C, . . . ,H, J are mutually orthogonal. The interaction AB is neither

orthogonal nor fully aliased with the main effect C.

Columns A, B and C have correlation coefficient −1/3 and thus are partially aliased

with each other. The interaction column AB has correlation of ±1/3 with all other main

effects C, D, . . . J . Although the complex aliasing structure causes difficulty in identifying

the significant effects when conducting analysis, it also gives an opportunity of estimating

the interaction effect AB and the main effect C simultaneously because they are not fully

aliased with each other.

1.2 Blocking

Blocking is a commonly used technique to control systematic noises in experiments.

These noises might come from day-to day variation, operator-to-operator variation, or batch-

to-batch variation. Blocking can effectively eliminate systematic sources of variations and

hence increases the statistical efficiency of fractional factorial designs. The essence of block-

ing is best summarized by a widely quoted statement in Box GE, Hunter WH, Hunter S

(1978), “block what you can, randomize what you cannot”.

For blocked factorial designs, it is essential to keep the block factors orthogonal to the
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treatment factors so that the treatment main effects are estimated without the contamina-

tion of the block effects, which are often significant. This is achieved by making sure that

the two levels of each factor occur equally often within each block. For regular fractional

factorial designs, blocks are constructed by using interaction columns as block factors, and

then associating the distinct level combinations in these columns with different blocks. This

method is referred as the method of replacement in Wu and Hamada (2000).

1.2.1 Blocking Non-regular Factorial Designs

Cheng et al. (2004) extended the method of replacement to non-regular designs. Schoen,

Sartono and Goos (2013) introduced two concepts, i.e. treatment design and full design, in

their approach of determining the optimal blocking arrangements. The treatment design is

an orthogonal array of strength 2, denoted by OA(n, 2k, 2). The full design is an orthogonal

array with one extra column for the blocking factor. Let the number of blocks be denoted

by q. Then, that extra column has q levels. This kind of array is denoted by OA(n, 2k q1, 2).

All possible ways of blocking k-factor treatment designs can be obtained by enumerating

all non-isomorphic full designs of the type OA(n, 2k q1, 2). A key feature of the approach,

known as the single replacement in the literature, is that it ensures orthogonality of the

blocking factor with respect to the main effects of the k treatment factors.

Run A B C D Block
1 -1 1 -1 1 1
2 -1 -1 -1 -1 1
3 1 1 -1 -1 3
4 -1 -1 1 -1 2
5 1 -1 1 1 3
6 -1 1 1 -1 3
7 -1 1 1 1 2
8 1 1 1 1 1
9 1 1 -1 -1 2

10 -1 -1 -1 1 3
11 1 -1 -1 1 2
12 1 -1 1 -1 1

Table 1.3: Non-regular 12-run design arranged in three blocks via OA(12, 24 31, 2)

As said earlier, to estimate the treatment main effects without the contamination of
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block effects, the block factors should be orthogonal to the treatment factors. For example,

Table 1.3 shows a non-regular design of 12 runs with 4 treatment factors and strength two

arranged in three blocks of size four using an OA(12, 24 31, 2). Since each factor occurs

equally often within each block at each of its levels, each main effect parameter is estimated

orthogonally to the block effects. Another example is a non-regular design of 20 runs with

eight factors arranged in five blocks of size four from the use of an OA(20, 28 51, 2).

Run A B C D E F G H Block
1 -1 1 -1 -1 1 1 1 1 2
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 -1 1 -1 -1 2
4 -1 1 1 -1 1 -1 -1 1 5
5 1 -1 -1 1 -1 1 1 -1 5
6 1 -1 -1 -1 -1 -1 -1 1 2
7 -1 -1 1 1 1 -1 1 -1 2
8 1 -1 -1 1 1 -1 -1 1 3
9 1 1 1 -1 -1 1 1 1 3
10 -1 1 -1 1 -1 -1 -1 1 1
11 -1 -1 1 -1 -1 -1 1 -1 1
12 1 -1 -1 -1 1 1 -1 -1 1
13 -1 -1 1 -1 1 1 -1 -1 3
14 -1 1 -1 1 1 1 -1 -1 4
15 1 1 1 -1 -1 -1 -1 -1 4
16 -1 -1 -1 -1 -1 1 1 1 4
17 -1 1 -1 1 -1 -1 1 -1 3
18 1 -1 1 1 1 -1 1 1 4
19 1 1 -1 -1 1 -1 1 -1 5
20 -1 -1 1 1 -1 1 -1 1 5

Table 1.4: Non-regular 20-run design arranged in 5 blocks via OA(20, 28 51, 2)

But the orthogonality between treatment and block effects is only achieved for non-

regular designs with up to a certain number of factors. In non-regular designs of 12 runs

arranged in three blocks of size four, the orthogonality between treatment and block factors

is present when treatment factors (k) is less than or equal to 4, i.e. an OA(12, 2k 31, 2) for

k ≤ 4. This is because an OA(12, 2k 31, 2) does not exist for k ≥ 5. Similarly, in non-regular

designs of 20 runs arranged into five blocks of size four, treatment and blocks effects are

orthogonal when k is less than or equal to 8, i.e. an OA(20, 2k 51, 2) is only available for

k ≤ 8. For the existence and non-existence of mixed-level orthogonal arrays, we refer to
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Schoen, Eendebak and Nguyen (2010).

1.2.2 Non-orthogonal Blocking of Non-Regular Factorial Designs

Orthogonal blocking is not achievable for non-regular designs when the number k of

factors exceeds a certain number, which is 4 for 12-run factorial designs and 8 for 20-run

designs arranged in 3 and 5 blocks, respectively. For example, Tables 1.5 and 1.6 show two

12-run non-regular factorial designs with 6 factors arranged in 3 blocks.

Run A B C D E F Block
1 -1 1 1 1 -1 1 1
2 1 1 -1 1 1 -1 2
3 -1 1 -1 -1 -1 1 3
4 -1 -1 1 1 1 -1 3
5 1 -1 1 -1 -1 -1 1
6 -1 1 1 -1 1 -1 1
7 1 1 -1 1 -1 -1 1
8 -1 -1 -1 1 1 1 2
9 1 1 1 -1 1 1 2
10 1 -1 -1 -1 1 1 2
11 -1 -1 -1 -1 -1 -1 3
12 1 -1 1 1 -1 1 3

Table 1.5: Non-regular 12-run de-
sign arranged in 3 blocks using one
NOA(12, 26 31, 2)

Run A B C D E F Block
1 1 1 1 1 -1 1 1
2 1 1 -1 -1 -1 -1 1
3 -1 -1 1 1 1 1 1
4 -1 -1 -1 -1 -1 -1 1
5 1 -1 1 -1 1 1 2
6 1 -1 -1 1 1 -1 2
7 -1 1 1 1 -1 1 2
8 -1 1 -1 -1 -1 -1 2
9 1 -1 1 -1 -1 -1 3

10 -1 1 1 -1 1 1 3
11 -1 -1 -1 1 -1 1 3
12 1 1 -1 1 1 -1 3

Table 1.6: Non-regular 12-run design
arranged in 3 blocks using another
NOA(12, 26 31, 2)

A few things need to be mentioned in these designs. In Table 1.5, the treatment factors

are orthogonal to each other in that for any two treatment factors all the level combinations

(−1, 1), (1,−1), (1, 1), (−1,−1) occur the same number of times, but the treatment factors

are not orthogonal to the block effects because the two levels of each factor do not occur

equally often within each block. In Table 1.6, the treatment factors are orthogonal to the

block effects but treatment factors are not orthogonal to each other. Thus, either orthogo-

nality between treatment and block effects or orthogonality between treatment factors has

to be sacrificed to block a 12-run non-regular design with five or more factors in three blocks.

The blocked designs in Tables 1.5 and 1.6 suggest two approaches to the construction of

nearly orthogonal blocked factorial designs.
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• Minimum non-orthogonality between treatment factors while maintaining orthogonal-

ity between treatment and block effects, and

• Minimum non-orthogonality between treatment factors and block effects while main-

taining orthogonality between treatment factors.

Throughout the discussion of this project, two assumptions regarding treatment and

block effects are made:

• There is no interaction between treatment factors and blocks.

• Interactions among treatment factors are all negligible.
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Chapter 2

Approach I: Non-orthogonality

between Treatment Factors

When orthogonality is not achieved in blocked non-regular factorial designs, the ef-

fort is made to construct a non-orthogonal blocked factorial design with minimum non-

orthogonality. One of the two approaches to constructing nearly orthogonal blocked facto-

rial designs is discussed in this chapter and the degree of non-orthogonality is measured with

the J-characteristics of factorial designs to find the best non-orthogonal blocked factorial

designs.

2.1 J-Characteristics

Before discussing our approach, it is important to understand the measure of non-

orthogonality to compare the factorial designs. Deng and Tang (1999) introduced the criteria

for assessing non-regular fractional factorial designs. These criteria are defined using a set

of J values called J-characteristics. Tang (2001) showed that a factorial design is uniquely

determined by its J-characteristics, just as a regular design is uniquely determined by its

defining relation. The set of J-characteristics naturally generalizes the concept of defining

relation associated with regular designs.

Let x1, x2, . . . , xk be k vectors of length n and xj = (x1j , x2j , . . . , xnj)
T for j = 1, 2, . . . , k.

8



Then, the J-characteristic for these k vectors is defined as

J(x1, x2, . . . , xk) =

n∑
i=1

xi1 xi2 · · ·xik.

For k = 2, J(x1, x2) = xT1 x2, which is the inner product of two vectors x1 and x2.

J-characteristics generalize the inner product and are defined for any number of vectors and

we present them in form of cross-product matrix to measure the degree of non-orthogonality

between treatment factors, where each treatment factor (column) is a vector.

2.2 Construction of Best Non-orthogonal Blocked Designs

Orthogonal blocking of non-regular factorial designs is possible for designs with small

numbers k of treatment factors. We make use of such designs to construct the best non-

orthogonal blocked factorial designs when orthogonal blocking is not possible. Let m′ be the

highest number of treatment factors with which orthogonal blocking in q blocks is possible

for non-regular factorial designs with n runs and strength 2, that is an OA(n, 2k q1, 2) is

available for k ≤ m′ but an OA(n, 2k q1, 2) does not exist for any k ≥ m′ + 1.

1. Start with an orthogonal blocked non-regular factorial design of n runs with k = m′

factors arranged into q blocks, i.e. an OA(n, 2k q1, 2) where k = m′.

2. Add another treatment factor (column) to the OA(n, 2kq1, 2) where k = m′ such that

(a) (k + 1)th treatment factor is orthogonal to the block effects,

(b) there exists the least number of non-orthogonal pairs of treatment factors i.e. J

characteristic of xi and xj for i < j is zero for the maximum number of pairs of

treatment factors,

(c) and J characteristics are minimized for non-orthogonal pairs of treatment factors.

3. Continue adding another treatment factor to the best design just obtained.

The blocked designs obtained in the above give a class of nearly orthogonal arrays.

For convenience, they are called nearly orthogonal arrays of type I, and are denoted by

NOAI(n, 2
k q1, 2) for k ≥ m′ + 1.

9



2.3 Examples

2.3.1 To construct best NOAI(12, 2
5 31, 2)

Orthogonal blocking of a 12-run non-regular factorial design in three blocks is possible

for treatment factors k ≤ 4, i.e. m′ = 4. To construct the best NOAI(12, 2
5 31, 2), we start

with an OA(12, 24 31, 2) and add another treatment factor E such that factor E satisfies all

the conditions in point 2 of the method in Section 2.2.

Let XE = (−1, 1, 1,−1,−1, 1,−1, 1,−1, 1,−1, 1). Thus, the full design is

Run A B C D E Block
1 1 1 -1 -1 -1 1
2 1 1 1 1 1 1
3 -1 -1 -1 -1 1 1
4 -1 -1 1 1 -1 1
5 1 -1 -1 -1 -1 2
6 1 -1 1 1 1 2
7 -1 1 1 -1 -1 2
8 -1 1 -1 1 1 2
9 1 -1 -1 1 -1 3

10 1 1 1 -1 1 3
11 -1 1 -1 1 -1 3
12 -1 -1 1 -1 1 3

Table 2.1: Best NOAI(12, 2
5 31, 2).

The cross-product matrix of the treatment design is

A B C D E
A 12 0 0 0 0
B 0 12 0 0 0
C 0 0 12 0 4
D 0 0 0 12 0
E 0 0 4 0 12

Table 2.2: Cross-product matrix of the treatment design in Table 2.1

The cross-product matrix in Table 2.2 shows the J-characteristics of all possible subsets

of two treatment factors.
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The treatment factor E is orthogonal to the block effects since we can see that the two

levels of each factor occur equally often within each block.

The cross-product matrix shows that the factor E is orthogonal to all other treatment

factors except factor C. Thus, non-orthogonality exists in one pair of treatment factors and

has minimum J-characteristic among all possible 12-run factorial designs with five factors

arranged in three blocks. Since all the conditions are satisfied, this design is one of the best

NOAI(12, 2
5 31, 2).

2.3.2 To construct best NOAI(20, 2
9 51, 2)

For 20-run non-regular designs, orthogonal blocking in five blocks is achievable when

the number of treatment factors k ≤ 8, thus m′ = 8. Table 2.3 shows one of the best

NOAI(20, 2
9 51, 2) which is obtained by adding a factor J (that satisfies all the three con-

ditions) to an OA(20, 28 51, 2).

Run A B C D E F G H J Block
1 1 -1 -1 -1 1 1 -1 -1 -1 1
2 -1 1 -1 1 -1 -1 -1 1 1 1
3 -1 -1 1 -1 -1 -1 1 -1 1 1
4 1 1 1 1 1 1 1 1 -1 1
5 1 1 1 1 -1 1 -1 -1 -1 2
6 -1 -1 1 1 1 -1 1 -1 1 2
7 -1 1 -1 -1 1 1 1 1 1 2
8 1 -1 -1 -1 -1 -1 -1 1 -1 2
9 -1 -1 1 -1 1 1 -1 -1 -1 3

10 1 -1 -1 1 1 -1 -1 1 1 3
11 -1 1 -1 1 -1 -1 1 -1 -1 3
12 1 1 1 -1 -1 1 1 1 1 3
13 1 -1 1 1 1 -1 1 1 -1 4
14 1 1 1 -1 -1 -1 -1 -1 -1 4
15 -1 1 -1 1 1 1 -1 -1 1 4
16 -1 -1 -1 -1 -1 1 1 1 1 4
17 1 1 -1 -1 1 -1 1 -1 -1 5
18 -1 -1 1 1 -1 1 -1 1 1 5
19 1 -1 -1 1 -1 1 1 -1 -1 5
20 -1 1 1 -1 1 -1 -1 1 1 5

Table 2.3: Best NOAI(20, 2
9 51, 2)

The cross-product matrix of the treatment design in Table 2.3 is
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A B C D E F G H J
A 20 0 0 0 0 0 0 0 -12
B 0 20 0 0 0 0 0 0 0
C 0 0 20 0 0 0 0 0 0
D 0 0 0 20 0 0 0 0 0
E 0 0 0 0 20 0 0 0 0
F 0 0 0 0 0 20 0 0 0
G 0 0 0 0 0 0 20 0 0
H 0 0 0 0 0 0 0 20 8
J -12 0 0 0 0 0 0 8 20

Table 2.4: Cross-product matrix of the treatment design in Table 2.3.

It can be noticed that non-orthogonal blocked factorial designs with orthogonality be-

tween treatment and block factors for 12-runs is possible for one non-orthogonal pair of

treatments, whereas for 20-run designs, the orthogonality between treatments and blocks is

only possible in presence of at least two non-orthogonal pairs of treatment factors. Thus,

it seems reasonable that non-orthogonality continues to increase with an increase in the

number of runs and number of factors. This is indeed the case for the best non-orthogonal

blocked factorial designs of 12 and 20 runs with higher numbers of factors. Such designs can

be obtained by continuing adding more columns (m′ + 2,m′ + 3, . . .) to the best obtained

designs with m′ + 1 factors.

The next section presents the best non-orthogonal blocked 12-run and 20-run facto-

rial designs (with orthogonality between treatment factors and block effects) with higher

numbers of factors.

2.4 Best non-orthogonal blocked factorial designs with higher

number of factors using Approach I

Below are the best NOAI(12, 2
k 31, 2)s and NOAI(20, 2

k 51, 2)s for k ≥ m′ + 2, we have

obtained using the method presented in Section 2.2.

12



Run A B C D E F Block
1 -1 -1 -1 -1 -1 1 1
2 1 1 1 1 -1 -1 1
3 1 1 -1 -1 1 1 1
4 -1 -1 1 1 1 -1 1
5 -1 1 1 1 -1 1 2
6 1 -1 1 -1 1 1 2
7 -1 1 -1 -1 -1 -1 2
8 1 -1 -1 1 1 -1 2
9 -1 1 -1 1 1 1 3

10 1 1 1 -1 -1 -1 3
11 -1 -1 1 -1 1 -1 3
12 1 -1 -1 1 -1 1 3

Run A B C D E F G Block
1 1 1 1 1 1 1 1 1
2 1 1 -1 -1 1 -1 1 1
3 -1 -1 -1 -1 -1 1 -1 1
4 -1 -1 1 1 -1 -1 -1 1
5 1 -1 1 -1 -1 -1 1 2
6 -1 1 -1 -1 1 1 -1 2
7 -1 1 1 1 1 -1 -1 2
8 1 -1 -1 1 -1 1 1 2
9 1 1 1 -1 -1 1 -1 3
10 -1 -1 1 -1 1 1 1 3
11 -1 1 -1 1 -1 -1 1 3
12 1 -1 -1 1 1 -1 -1 3

A B C D E F
A 12 0 0 0 0 0
B 0 12 0 0 -4 0
C 0 0 12 0 0 -4
D 0 0 0 12 0 0
E 0 -4 0 0 12 0
F 0 0 -4 0 0 12

Table 2.5: Best NOAI(12, 2
6 31, 2) and

cross-product matrix

A B C D E F G
A 12 0 0 0 0 0 4
B 0 12 0 0 4 0 0
C 0 0 12 0 0 0 0
D 0 0 0 12 0 -4 0
E 0 4 0 0 12 0 0
F 0 0 0 4 0 12 0
G 4 0 0 0 0 0 12

Table 2.6: Best NOAI(12, 2
7 31, 2) and

cross-product matrix

Run A B C D E F G H Block
1 -1 -1 -1 -1 1 1 1 1 1
2 1 1 1 1 -1 1 -1 1 1
3 1 1 -1 -1 1 -1 1 -1 1
4 -1 -1 1 1 -1 -1 -1 -1 1
5 -1 1 1 1 1 -1 1 1 2
6 -1 1 -1 -1 -1 -1 -1 1 2
7 1 -1 1 -1 -1 1 1 -1 2
8 1 -1 -1 1 1 1 -1 -1 2
9 -1 -1 1 -1 1 1 -1 1 3
10 1 1 1 -1 1 -1 -1 -1 3
11 1 -1 -1 1 -1 -1 1 1 3
12 -1 1 -1 1 -1 1 1 -1 3

Run A B C D E F G H J Block
1 -1 -1 -1 -1 -1 1 1 1 1 1
2 1 1 -1 -1 -1 -1 1 -1 -1 1
3 1 1 1 1 1 1 -1 1 1 1
4 -1 -1 1 1 1 -1 -1 -1 -1 1
5 1 -1 -1 -1 1 -1 -1 1 1 2
6 -1 1 -1 1 1 1 1 -1 1 2
7 1 -1 1 1 -1 -1 1 1 -1 2
8 -1 1 1 -1 -1 1 -1 -1 -1 2
9 1 -1 -1 1 -1 1 -1 -1 1 3

10 -1 -1 1 -1 1 1 1 1 -1 3
11 1 1 1 -1 1 -1 1 -1 1 3
12 -1 1 -1 1 -1 -1 -1 1 -1 3

A B C D E F G H
A 12 0 0 0 0 0 0 -4
B 0 12 0 0 0 -4 0 0
C 0 0 12 0 0 0 -4 0
D 0 0 0 12 -4 0 0 0
E 0 0 0 -4 12 0 0 0
F 0 -4 0 0 0 12 0 0
G 0 0 -4 0 0 0 12 0
H -4 0 0 0 0 0 0 12

Table 2.7: Best NOAI(12, 2
8 31, 2) and

cross-product matrix

A B C D E F G H J
A 12 0 0 0 0 -4 0 0 4
B 0 12 0 0 0 -4 0 -4 0
C 0 0 12 0 4 0 0 0 -4
D 0 0 0 12 0 0 -4 0 0
E 0 0 4 0 12 0 0 0 4
F -4 0 0 0 0 12 0 0 4
G 0 0 0 -4 0 0 12 0 0
H 0 -4 0 0 0 0 0 12 0
J 4 0 -4 0 4 4 0 0 12

Table 2.8: Best NOAI(12, 2
9 31, 2) and

cross-product matrix
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Run A B C D E F G H J K Block
1 1 -1 -1 -1 1 1 -1 -1 1 -1 1
2 -1 1 -1 1 -1 -1 -1 1 -1 1 1
3 1 -1 1 -1 -1 -1 1 -1 -1 -1 1
4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 -1 1 -1 -1 -1 -1 2
6 -1 -1 1 1 1 -1 1 -1 1 -1 2
7 -1 1 -1 -1 1 1 1 1 -1 1 2
8 1 -1 -1 -1 -1 -1 -1 1 1 1 2
9 -1 -1 1 -1 1 1 -1 -1 1 1 3

10 1 -1 -1 1 1 -1 -1 1 -1 -1 3
11 -1 1 -1 1 -1 -1 1 -1 1 1 3
12 1 1 1 -1 -1 1 1 1 1 -1 3
13 1 -1 1 1 1 -1 1 1 -1 1 4
14 1 1 1 -1 -1 -1 -1 -1 -1 -1 4
15 -1 1 -1 1 1 1 -1 -1 1 -1 4
16 -1 -1 -1 -1 -1 1 1 1 1 1 4
17 1 1 -1 -1 1 -1 1 -1 -1 -1 5
18 -1 -1 1 1 -1 1 -1 1 1 1 5
19 1 -1 -1 1 -1 1 1 -1 1 -1 5
20 -1 1 1 -1 1 -1 -1 1 -1 1 5

Run A B C D E F G H J K L Block
1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1
2 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 1
3 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1
4 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 -1 1 -1 -1 -1 -1 1 2
6 -1 -1 1 1 1 -1 1 -1 1 1 1 2
7 -1 1 -1 -1 1 1 1 1 -1 1 -1 2
8 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 2
9 -1 -1 1 -1 1 1 -1 -1 1 1 -1 3
10 1 -1 -1 1 1 -1 -1 1 -1 1 1 3
11 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 3
12 1 1 1 -1 -1 1 1 1 1 -1 -1 3
13 1 -1 1 1 1 -1 1 1 -1 -1 -1 4
14 1 1 1 -1 -1 -1 -1 -1 -1 1 1 4
15 -1 1 -1 1 1 1 -1 -1 1 -1 -1 4
16 -1 -1 -1 -1 -1 1 1 1 1 1 1 4
17 1 1 -1 -1 1 -1 1 -1 -1 1 -1 5
18 -1 -1 1 1 -1 1 -1 1 1 -1 1 5
19 1 -1 -1 1 -1 1 1 -1 1 -1 1 5
20 -1 1 1 -1 1 -1 -1 1 -1 1 -1 5

A B C D E F G H J K
A 20 0 0 0 0 0 0 0 0 -8
B 0 20 0 0 0 0 0 0 -8 0
C 0 0 20 0 0 0 0 0 0 0
D 0 0 0 20 0 0 0 0 0 0
E 0 0 0 0 20 0 0 0 0 0
F 0 0 0 0 0 20 0 0 12 0
G 0 0 0 0 0 0 20 0 0 0
H 0 0 0 0 0 0 0 20 0 12
J 0 -8 0 0 0 12 0 0 20 0
K -8 0 0 0 0 0 0 12 0 20

Table 2.9: Best NOAI (20, 2
10 51, 2) and cross-product matrix

A B C D E F G H J K L
A 20 0 0 0 0 0 0 0 0 0 0
B 0 20 0 0 0 0 0 0 -8 0 0
C 0 0 20 0 0 0 0 0 0 0 0
D 0 0 0 20 0 0 0 0 0 -8 12
E 0 0 0 0 20 0 0 0 0 12 -8
F 0 0 0 0 0 20 0 0 12 0 0
G 0 0 0 0 0 0 20 0 0 0 0
H 0 0 0 0 0 0 0 20 0 0 0
J 0 -8 0 0 0 12 0 0 20 0 0
K 0 0 0 -8 12 0 0 0 0 20 0
L 0 0 0 12 -8 0 0 0 0 0 20

Table 2.10: Best NOAI (20, 2
11 51, 2) and cross-product ma-

trix

Run A B C D E F G H J K L M Block
1 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 1
2 -1 1 -1 1 -1 -1 -1 1 -1 -1 1 -1 1
3 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 -1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 -1 1 -1 -1 -1 -1 1 1 2
6 -1 -1 1 1 1 -1 1 -1 1 1 1 -1 2
7 -1 1 -1 -1 1 1 1 1 -1 1 -1 -1 2
8 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 2
9 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 3

10 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 3
11 -1 1 -1 1 -1 -1 1 -1 -1 -1 1 1 3
12 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 3
13 1 -1 1 1 1 -1 1 1 -1 -1 -1 1 4
14 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 4
15 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 4
16 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 4
17 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 5
18 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1 5
19 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 5
20 -1 1 1 -1 1 -1 -1 1 -1 1 -1 -1 5

Run A B C D E F G H J K L M N Block
1 1 -1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1
2 -1 1 -1 1 -1 -1 -1 1 1 -1 1 -1 -1 1
3 -1 -1 1 -1 -1 -1 1 -1 -1 1 1 1 -1 1
4 1 1 1 1 1 1 1 1 1 -1 -1 1 1 1
5 1 1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1 2
6 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1 1 2
7 -1 1 -1 -1 1 1 1 1 -1 1 1 -1 -1 2
8 1 -1 -1 -1 -1 -1 -1 1 1 1 -1 1 1 2
9 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 1 3

10 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -1 3
11 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 -1 -1 3
12 1 1 1 -1 -1 1 1 1 1 1 1 -1 1 3
13 1 -1 1 1 1 -1 1 1 -1 1 -1 -1 -1 4
14 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 4
15 -1 1 -1 1 1 1 -1 -1 1 1 1 1 1 4
16 -1 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 1 4
17 1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 -1 5
18 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1 5
19 1 -1 -1 1 -1 1 1 -1 -1 -1 -1 -1 1 5
20 -1 1 1 -1 1 -1 -1 1 1 1 1 1 -1 5

A B C D E F G H J K L M
A 20 0 0 0 0 0 0 0 0 0 0 12
B 0 20 0 0 0 0 0 0 -8 0 0 0
C 0 0 20 0 0 0 0 0 0 0 0 0
D 0 0 0 20 0 0 0 0 0 -8 12 0
E 0 0 0 0 20 0 0 0 0 12 -8 0
F 0 0 0 0 0 20 0 0 12 0 0 0
G 0 0 0 0 0 0 20 0 0 0 0 0
H 0 0 0 0 0 0 0 20 0 0 0 -8
J 0 -8 0 0 0 12 0 0 20 0 0 0
K 0 0 0 -8 12 0 0 0 0 20 0 0
L 0 0 0 12 -8 0 0 0 0 0 20 0
M 12 0 0 0 0 0 0 -8 0 0 0 20

Table 2.11: Best NOAI (20, 2
12 51, 2) and cross-product ma-

trix

A B C D E F G H J K L M N
A 20 0 0 0 0 0 0 0 0 0 -12 0 0
B 0 20 0 0 0 0 0 0 12 0 0 0 -8
C 0 0 20 0 0 0 0 0 0 0 0 8 0
D 0 0 0 20 0 0 0 0 0 -12 0 0 0
E 0 0 0 0 20 0 0 0 0 8 0 0 0
F 0 0 0 0 0 20 0 0 -8 0 0 0 12
G 0 0 0 0 0 0 20 0 0 0 0 -12 0
H 0 0 0 0 0 0 0 20 0 0 8 0 0
J 0 12 0 0 0 -8 0 0 20 0 0 0 0
K 0 0 0 -12 8 0 0 0 0 20 0 0 0
L -12 0 0 0 0 0 0 8 0 0 20 0 0
M 0 0 8 0 0 0 -12 0 0 0 0 20 0
N 0 -8 0 0 0 12 0 0 0 0 0 0 20

Table 2.12: Best NOAI (20, 2
13 51, 2) and cross-product ma-

trix
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Chapter 3

Approach II: Non-orthogonality

between Treatment Factors and

Blocks

Chapter 2 discussed one approach to constructing the best non-orthogonal blocked

factorial designs by allowing non-orthogonality between treatment factors but having or-

thogonality between treatment factors and block effects. This chapter introduces another

approach to obtaining the best non-orthogonal blocked factorial designs which allows for

non-orthogonality between treatment factors and block effects while maintaining orthogo-

nality between treatment factors. All possible 12-run and 20-run blocked factorial designs

are compared and the best designs are obtained and tabulated.

3.1 Construction of the Best Non-orthogonal Blocked Facto-

rial Design

Our second approach allows for non-orthogonality between treatment factors and block

effects while maintaining the orthogonality between treatment factors. The best designs are

the ones that have minimum non-orthogonality between treatment factors and block effects

among all possible designs of n runs with k factors arranged in q blocks.

To obtain the best non-orthogonal blocked factorial design of n runs with k factors

(where k > m′) arranged in q blocks,
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1. Start with a non-regular fractional factorial design of n runs with k factors from using

an OA(n, 2k, 2) where k > m′.

2. Add a q-level column such that

(a) each entry in the added column occurs the same number of times and

(b) the added column is orthogonal to the maximum possible number of treatment

factors.

3. Measure the extent of non-orthogonality (discussed in Section 3.2) and the designs

that have minimum non-orthogonality between treatment factors and block effects

among all possible designs are the best non-orthogonal blocked designs.

For convenience, the blocked designs obtained this way are called nearly orthogonal

arrays of type II, and are denoted by NOAII(n, 2
k q1, 2).

3.2 Measure of Non-orthogonality between Treatment and

Block Effects

Two vectors are orthogonal if each entry occurs equally often in each vector and all the

level combinations occur the same number of times. If the q-level added column (blocking

factor) and treatment factors have each entry occurring an equal number of times, then non-

orthogonality can be measured by the variability in the frequencies of all level combinations

in each treatment factor and block effect.

A two-level treatment factor u and a q-level blocking factor will have z = 2q different level

combinations and let the frequencies of occurrence of these level combinations be denoted

by fu1, fu2, . . . , fuz. The variability in the frequencies of level combinations in a treatment

factor u and block factor is measured as

s2u =
1

z − 1

z∑
j=1

(fuj − f̄u)
2,

where f̄u is the mean of the frequencies of z = 2q level combinations.

Thus, the total variability in the frequencies of level combinations in a factorial design

with k factors is measured as
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S2 =
k∑

u=1

s2u =
k∑

u=1

 1

z − 1

z∑
j=1

(fuj − f̄u)
2

 . (3.1)

It must be noted that an orthogonal blocked factorial design will have zero variability

in the frequencies of level combinations, i.e. S2 = 0. Thus, the factorial designs with

minimum variability in the frequencies, i.e. minimum S2 among all possible designs are the

best non-orthogonal blocked factorial designs.

3.3 Examples

3.3.1 To construct best NOAII(12, 2
5 31, 2)

To obtain the best non-orthogonal blocked 12-run factorial design with k = 5 factors

arranged in q = 3 blocks, we need to start with an OA(12, 25, 2).

Let the added q = 3 level column, i.e. the block factor, be (0, 1, 1, 1, 0, 2, 2, 2, 0, 0, 1, 2).

Each entry (0, 1, 2) occurs four times and z = 6 level combinations in a treatment factor

and the added block factor are (−1, 0), (−1, 1), (−1, 2), (1, 0), (1, 1) and (1, 2).

Run A B C D E Block
1 -1 -1 -1 -1 -1 3
2 -1 -1 -1 1 1 1
3 -1 1 1 -1 1 1
4 1 -1 1 1 -1 1
5 1 1 1 1 -1 3
6 1 1 -1 1 1 2
7 -1 1 -1 -1 -1 2
8 -1 1 1 1 -1 2
9 -1 -1 1 1 1 3
10 1 1 -1 -1 1 3
11 1 -1 -1 1 -1 1
12 1 -1 1 -1 1 2

Table 3.1: Best NOAII(12, 2
5 31, 2)

Table 3.1 shows the best NOAII(12, 2
5 31, 2) with orthogonality between treatment fac-

tors and non-orthogonality between treatment factors and blocks.

The frequencies of z = 6 level combinations between treatments factors and block factor
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Treatment factor and Block f1 f2 f3 f4 f5 f6
(−1, 0) (−1, 1) (−1, 2) (1, 0) (1, 1) (1, 2)

A and Block 2 2 2 2 2 2
B and Block 2 3 1 2 1 3
C and Block 2 2 2 2 2 2
D and Block 2 2 2 2 2 2
E and Block 2 2 2 2 2 2

Table 3.2: Frequencies of level combinations.

A B C D E Total

Block 0.0 0.8 0.0 0.0 0.0 0.8

Table 3.3: Non-orthogonality of the design in Table 3.1

are shown in Table 3.2. Since factor B and the blocking factor have an unequal number of

level combinations, non-orthogonality exists which is shown in Table 3.3.

The design in Table 3.1 has non-orthogonality of 0.8 which is the least among all possible

12-run non-orthogonal blocked factorial designs with 5 factors arranged in three blocks.

Thus, this design is one of the best non-orthogonal blocked 12-run factorial design, i.e. best

NOAII(12, 2
5 31, 2).

3.3.2 To construct best NOAII(20, 2
9 51, 2)

To find the best non-orthogonal blocked factorial designs, we start with a non-regular

factorial design OA(20, 29, 2) and add a five-level block factor such that each entry in the

block factor (added column) occurs the same number of times and the block factor is as

orthogonal as possible to the treatment factors.

Table 3.5 shows the variability of the design in Table 3.4. The total variability is 4.44

which is the least among all possible factorial designs of 20 runs with 9 factors arranged in

five blocks. Thus, the design in Table 3.4 is one of the best NOAII(20, 2
9 51, 2).

Non-orthogonal blocked factorial designs with higher numbers of factors can be obtained

in a similar way. The next section presents the best non-orthogonal blocked designs with

higher numbers of factors for 12 and 20 runs arranged in three and five blocks, respectively.
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Run A B C D E F G H J Block
1 1 -1 1 1 1 1 -1 -1 1 5
2 -1 1 -1 1 -1 1 1 1 1 5
3 -1 -1 -1 1 -1 1 -1 1 1 5
4 1 1 -1 1 1 -1 -1 -1 -1 1
5 1 1 -1 -1 1 1 -1 1 1 1
6 -1 -1 1 1 -1 1 1 -1 -1 1
7 1 -1 1 -1 1 1 1 1 -1 3
8 -1 -1 -1 -1 -1 -1 -1 -1 -1 4
9 -1 -1 1 -1 1 -1 1 1 1 1
10 1 1 -1 -1 -1 -1 1 -1 1 2
11 -1 1 1 -1 -1 -1 -1 1 -1 3
12 1 -1 1 1 -1 -1 -1 -1 1 3
13 -1 1 1 -1 1 1 -1 -1 -1 2
14 1 -1 -1 1 1 -1 1 1 -1 2
15 -1 1 -1 1 1 1 1 -1 -1 3
16 1 1 1 -1 -1 1 1 -1 1 4
17 -1 -1 -1 -1 1 -1 1 -1 1 5
18 1 -1 -1 -1 -1 1 -1 1 -1 2
19 -1 1 1 1 1 -1 -1 1 1 4
20 1 1 1 1 -1 -1 1 1 -1 4

Table 3.4: Best NOAII(20, 2
9 51, 2)

A B C D E F G H J Total
Block 0.4444 0.4444 0.8889 0.4444 0.4444 0.4444 0.0 0.0 1.3333 4.4444

Table 3.5: Non-orthogonality of the design in Table 3.4

3.4 Best non-orthogonal blocked designs (Higher

number of factors)
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Run A B C D E F Block
1 -1 -1 -1 -1 -1 -1 1
2 -1 1 1 1 1 1 2
3 1 -1 -1 -1 1 1 2
4 1 -1 1 1 -1 -1 3
5 -1 1 -1 1 -1 1 1
6 1 1 1 -1 1 -1 1
7 1 -1 1 1 -1 1 1
8 -1 1 1 -1 -1 -1 2
9 1 1 -1 1 1 -1 2

10 -1 -1 -1 1 1 -1 3
11 1 1 -1 -1 -1 1 3
12 -1 -1 1 -1 1 1 3

Run A B C D E F G Block
1 -1 -1 -1 -1 -1 -1 -1 1
2 -1 -1 1 1 1 1 1 1
3 1 1 -1 -1 -1 1 1 2
4 -1 1 -1 1 1 -1 -1 2
5 1 1 1 -1 1 -1 1 1
6 1 - 1 1 1 -1 1 -1 1
7 1 -1 -1 1 1 -1 1 2
8 1 1 1 1 -1 -1 -1 3
9 -1 1 1 -1 1 1 -1 2
10 1 -1 -1 -1 1 1 -1 3
11 -1 -1 -1 -1 -1 -1 1 3
12 -1 1 -1 1 -1 1 1 3

A B C D E F Total
Block 0.0 0.8 0.0 0.0 0.8 0.0 1.6

Table 3.6: Best NOAII(12, 2
6 31, 2) and non-

orthogonality table.

A B C D E F G Total
Block 0.0 0.8 0.8 0.0 0.8 0.0 0.0 2.4

Table 3.7: Best NOAII(12, 2
7 31, 2) and non-

orthogonality table.

Run A B C D E F G H Block
1 -1 -1 -1 -1 -1 -1 -1 -1 1
2 -1 -1 -1 1 1 1 1 1 1
3 1 1 1 -1 -1 1 1 1 1
4 -1 1 1 -1 1 -1 -1 1 3
5 1 -1 1 1 1 -1 1 -1 2
6 1 1 -1 1 -1 1 -1 -1 2
7 1 1 -1 -1 1 -1 1 -1 3
8 1 -1 1 1 -1 -1 -1 1 3
9 -1 1 1 1 1 1 -1 -1 1

10 1 -1 -1 -1 1 1 -1 1 2
11 -1 1 -1 1 -1 -1 1 1 2
12 -1 -1 1 -1 -1 1 1 -1 3

Run A B C D E F G H J Block
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
2 -1 -1 -1 -1 1 1 1 1 1 3
3 -1 1 1 1 -1 -1 -1 1 1 3
4 1 -1 1 1 -1 1 1 -1 -1 3
5 1 1 -1 1 1 -1 1 -1 1 1
6 1 1 1 -1 1 1 -1 1 -1 1
7 -1 1 1 -1 -1 1 1 -1 1 2
8 -1 1 -1 1 1 1 -1 -1 -1 3
9 -1 -1 1 1 1 -1 1 1 -1 1

10 1 1 -1 -1 -1 -1 1 1 -1 2
11 1 -1 1 -1 1 -1 -1 -1 1 2
12 1 -1 -1 1 -1 1 -1 1 1 2

A B C D E F G H Total
Block 0.8 0.0 0.8 0.8 0.0 0.8 0.0 0.0 3.2

Table 3.8: Best NOAII(12, 2
8 31, 2) and non-

orthogonality table.

A B C D E F G H J Total
Block 0.8 0.0 0.0 0.8 0.8 0.8 0.0 0.0 0.8 4

Table 3.9: Best NOAII(12, 2
9 31, 2) and non-

orthogonality table.
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Run A B C D E F G H J K Block
1 -1 1 1 -1 -1 -1 -1 1 -1 1 1
2 -1 1 1 -1 1 1 -1 -1 -1 -1 1
3 -1 1 1 1 1 -1 -1 1 1 -1 1
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1
5 -1 -1 -1 1 -1 1 -1 1 1 1 2
6 -1 -1 -1 -1 1 -1 1 -1 1 1 3
7 1 -1 1 1 1 1 -1 -1 1 1 3
8 1 1 1 1 -1 -1 1 1 -1 1 5
9 1 -1 -1 1 1 -1 1 1 -1 -1 2

10 -1 -1 1 1 -1 1 1 -1 -1 -1 2
11 1 1 1 -1 -1 1 1 -1 1 1 2
12 1 1 -1 -1 -1 -1 1 -1 1 -1 4
13 -1 1 -1 1 -1 1 1 1 1 -1 3
14 -1 -1 1 -1 1 -1 1 1 1 1 4
15 1 1 -1 1 1 -1 -1 -1 -1 1 4
16 1 -1 1 1 -1 -1 -1 -1 1 -1 5
17 1 -1 -1 -1 -1 1 -1 1 -1 1 3
18 1 -1 1 -1 1 1 1 1 -1 -1 4
19 -1 1 -1 1 1 1 1 -1 -1 1 5
20 1 1 -1 -1 1 1 -1 1 1 -1 5

Run A B C D E F G H J K L Block
1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 1
2 -1 1 1 -1 1 -1 1 1 1 1 -1 1
3 1 1 -1 -1 1 1 -1 1 1 -1 -1 1
4 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1
5 1 -1 1 1 -1 -1 -1 -1 1 -1 1 2
6 -1 -1 -1 1 -1 1 -1 1 1 1 1 2
7 -1 1 -1 1 -1 1 1 1 1 -1 -1 2
8 -1 -1 -1 -1 1 -1 1 -1 1 1 1 5
9 1 -1 1 1 1 1 -1 -1 1 1 -1 4

10 -1 1 1 -1 1 1 -1 -1 -1 -1 1 4
11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4
12 1 1 -1 1 1 -1 -1 -1 -1 1 -1 5
13 -1 1 -1 1 1 1 1 -1 -1 1 1 2
14 -1 1 1 1 1 -1 -1 1 1 -1 1 3
15 1 1 1 1 -1 -1 1 1 -1 1 1 4
16 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 5
17 1 1 1 -1 -1 1 1 -1 1 1 -1 3
18 1 -1 1 -1 1 1 1 1 -1 -1 1 3
19 1 -1 -1 -1 -1 1 -1 1 -1 1 1 3
20 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 5

A B C D E F G H J K Total
Block 1.3 0.9 0.4 0.9 0.4 0.9 1.3 0.0 0.4 0.4 7.1

Table 3.10: Best NOAII(20, 2
10 51, 2) and non-

orthogonality table.

A B C D E F G H J K L Total
Block 0.9 0.0 0.9 1.3 0.4 0.9 0.4 0.9 0.9 0.4 0.9 8

Table 3.11: Best NOAII(20, 2
11 51, 2) and non-

orthogonality table.

Run A B C D E F G H J K L M Block
1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 1
2 1 1 1 1 -1 -1 1 1 -1 1 1 -1 1
3 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 1
4 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1
5 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 2
6 1 -1 1 1 1 1 -1 -1 1 1 -1 1 2
7 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 5
8 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 5
9 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 4

10 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 4
11 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 4
12 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 5
13 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 2
14 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 2
15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3
16 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 4
17 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 3
18 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 3
19 1 -1 1 -1 1 1 1 1 -1 -1 1 1 3
20 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 5

Run A B C D E F G H J K L M N Block
1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1
2 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 1
3 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1 1
4 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 1 1
5 1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 2
6 1 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 3
7 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 4
8 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 1 4
9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2

10 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 3
11 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 4
12 1 1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 5
13 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 -1 2
14 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 4
15 -1 1 1 1 1 -1 -1 1 1 -1 1 1 -1 5
16 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 5
17 1 -1 1 1 1 1 -1 -1 1 1 -1 1 1 2
18 -1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 3
19 1 -1 -1 -1 -1 1 - 1 1 -1 1 1 1 1 3
20 1 1 -1 1 1 - 1 -1 -1 -1 1 -1 1 -1 5

A B C D E F G H J K L M Total
Block 0.4 1.7 0.4 0.4 0 1.3 0.4 0.8 0.8 0.8 0.4 0.8 8.8

Table 3.12: Best NOAII(20, 2
12 51, 2) and non-

orthogonality table.

A B C D E F G H J K L M N Total
Block 0 1.3 0.4 0.4 0 0.4 1.3 0.4 0.4 0.4 1.3 0.4 2.2 9.3

Table 3.13: Best NOAII(20, 2
13 51, 2) and non-

orthogonality table.
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Chapter 4

Comparison

In Chapters 2 and 3, we studied the two approaches for constructing the best non-

orthogonal blocked factorial designs when orthogonal blocking is not achievable. The first

approach allows non-orthogonality between treatment factors while the second approach al-

lows non-orthogonality between treatment factors and block effects. This chapter compares

the two approaches in terms of design efficiency and ease of obtaining the best designs.

4.1 Design Efficiency

Efficiency is a crucial concept in the optimal design of experiments. Optimal designs pro-

vide better estimation of model parameters by minimizing the variances of estimators. The

optimal design problem is to choose a design among all competing designs which minimizes

the variances of estimated parameters.

One of the most popular is D-optimality criterion that aims at minimizing the determi-

nant of the variance-covariance matrix of estimators, i.e minimizing det[V ar(β̂)], which is

proportional to the volume of a confidence ellipsoid for β, under normality assumptions.

The model used for the analysis of a blocked factorial design having design matrix

X = (X1, X2, . . . , Xk) is given by

Y = µ 1n +X β + Z γ + ϵ (4.1)

where Y is the vector of observations, 1n is a vector of n ones, µ is the grand mean, β is a

vector of treatment main effects, Z = (Z1,Z2, . . . ,Zq−1) are orthogonal block contrasts, γ
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is the vector of block parameters and ϵ is the vector of random error terms such that

E(ϵ) = 0n and V ar(ϵ) = σ2In. (4.2)

To estimate β, the following theorem is used.

Theorem 4.1 Consider the linear model in (4.1) under the assumptions in (4.2). Then

β is estimable if and only if XTX − XTPZX is invertible, in which case the best linear

unbiased estimator (BLUE) for β is given by

β̂ = (XTX −XTPZX)−1 (X − PZX)T Y

because X and Z are all orthogonal to 1n and has

V ar(β̂) = σ2 (XTX −XTPZX)−1

where PZ is projection matrix onto the linear subspace spanned by the columns of Z, and

has an explicit form of

PZ = Z(ZTZ)−1 ZT . (4.3)

As a functional of information matrix,

M = σ2(V ar(β̂))−1 = XTX −XTPZX,

the D-optimality criterion aims at maximizing det[M ] = det[XTX − XTPZX]. If the

design D is such that the design matrix X (treatment factors) has orthogonal columns

and columns of X are orthogonal to Z (block factors), then M = n I and thus,

det(M) = nk where k is the number of treatment factors. In this case, we have that

det(M) = det[XTX −XTPZX] = nk.

Therefore,

Deff =
det[XTX −XTPZX]

1
k

n
= 1.

For a non-orthogonal blocked factorial design, the value of Deff will be smaller than one.

The D-efficiency as given by Deff will be used to assess blocked factorial designs. The

higher the efficiency, the better the design.
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4.2 Results for Two Classes of Blocked Designs

We first give an example to illustrate the calculation of D-efficiency using NOA(12, 25 31, 2)s.

Table 4.1 shows the best design obtained using Approach I that allows for non-orthogonality

between treatment factors while maintaining orthogonality between treatment factors and

block effects.

Run A B C D E Block
1 1 1 -1 -1 -1 1
2 1 1 1 1 1 1
3 -1 -1 -1 -1 1 1
4 -1 -1 1 1 -1 1
5 1 -1 -1 -1 -1 2
6 1 -1 1 1 1 2
7 -1 1 1 -1 -1 2
8 -1 1 -1 1 1 2
9 1 -1 -1 1 -1 3

10 1 1 1 -1 1 3
11 -1 1 -1 1 -1 3
12 -1 -1 1 -1 1 3

Table 4.1: Best NOAI(12, 2
5 31, 2)

Since the treatment factors and blocks are orthogonal, we have that ZTX = 0. In such

case, the D-efficiency Deff reduces to

Deff =
det[XTX]

1
k

n
.

Thus,

Deff =
det[XTX]

1
5

12
= 0.9767.

The design obtained using Approach II allowing non-orthogonality between treatment

factors and blocks while maintaining orthogonality between treatment effects is shown in

Table 4.2. To obtain the D-efficiency Deff of this design, we first need to find its projec-

tion matrix PZ .

Let Z1 and Z2 be two mutually orthogonal block contrasts. Then Z = (Z1,Z2). The

projection matrix PZ is obtained by substituting the matrix Z in equation 4.3. Thus, the
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Run A B C D E Block
1 -1 -1 -1 -1 -1 0
2 -1 -1 -1 1 1 1
3 -1 1 1 -1 1 1
4 1 -1 1 1 -1 1
5 1 1 1 1 -1 0
6 1 1 -1 1 1 2
7 -1 1 -1 -1 -1 2
8 -1 1 1 1 -1 2
9 -1 -1 1 1 1 0

10 1 1 -1 -1 1 0
11 1 -1 -1 1 -1 1
12 1 -1 1 -1 1 2

Table 4.2: Best NOAII(12, 2
5 31, 2)

D-efficiency of the design in Table 4.2 is

Deff =
det[XTX −XTPZX]

1
k

n
= 0.9641.

Efficiency Comparison between Best NOAI(n, 2
k q1, 2)s and NOAII(n, 2

k q1, 2)s

Tables 4.3 and 4.4 show the values of D-efficiency of the best nearly-orthogonal designs of

12 and 20 runs obtained using approach I and II.

Design Approach I Approach II
NOA(12, 25 31, 2) 0.9767 0.9641
NOA(12, 26 31, 2) 0.9614 0.9394
NOA(12, 27 31, 2) 0.9507 0.9210
NOA(12, 28 31, 2) 0.9428 0.9018

Table 4.3: D-efficiency for designs of 12 runs in three blocks.

It is evident from the tables that the values of Deff of 12 and 20 runs designs obtained

using approach I are closer to 1, which means they are less non-orthogonal as compared

to the designs obtained using approach II. Thus, it can be said that approach I gives us a

better class of designs that have minimal non-orthogonality and are more efficient.
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Design Approach I Approach II
NOA(20, 29 51, 2) 0.9216 0.8909
NOA(20, 210 51, 2) 0.8634 0.8500
NOA(20, 211 51, 2) 0.8185 0.8050
NOA(20, 212 51, 2) 0.7829 0.7949

Table 4.4: D-efficiency for designs of 20 runs in five blocks.

4.3 Complexity in Construction of the Best Designs

Approach I involves adding another treatment factor k + 1 to the best non-orthogonal

design with k factors such that it satisfies the three conditions mentioned in Section 2.2.

For example, to obtain the best NOAI(12, 2
7 31, 2), we add a treatment factor to the best

NOAI(12, 2
6 31, 2). More generally, we should consider simultaneously adding three columns

(treatment factors) to the OA(12, 24 31, 2), which is bit complex. To obtain

NOAII(n, 2
k q1, 2) using approach II , we just need to add a q-level blocking factor to the

orthogonal n-run non-regular design with k factors (that is easily available in any software

like R). Thus, finding the best NOA(n, 2k q1, 2) is more straightforward by approach II as

it is by approach I.
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Chapter 5

Summary

In this project, non-orthogonal blocking of non-regular designs is studied. In non-

regular designs, orthogonal blocking is possible for up to a certain number of factors.

When orthogonal blocking is not possible, we need to construct non-orthogonal blocked

designs that are as orthogonal as possible. To do so, we have to allow either non-orthogonality

between treatment factors or non-orthogonality between treatment factors and blocks.

Two approaches are discussed to construct the best non-orthogonal blocked factorial

designs. Chapter 2 introduced the first approach that allows for non-orthogonality be-

tween treatment factors. It also discussed a measure of non-orthogonality to compare and

determine the best designs among all competing ones. Best non-orthogonal blocked de-

signs i.e NOAI(n, 2
k q1, 2) for 12 runs in three blocks and 20 runs arranged in five blocks,

found by our method, are computed and tabulated.

The second approach that allows for non-orthogonality between treatment factors and

blocks while maintaining orthogonality between treatment factors is discussed in Chapter

3. The non-orthogonality in the design is measured by summing over the variability in

the frequencies of all the level combinations between a two-level treatment factor and the

q-level block factor. Using our method, the best 12-run and 20-run designs arranged in

three and five blocks respectively, are tabulated.

Both approaches give useful designs, but it’s important to find out which approach

is the better one to use. The comparison is done in terms of design efficiency using D-

optimality criterion and in terms of complexity in construction. While approach I gives

rise to more efficient designs, approach II is easier to implement computationally.
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