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Abstract 

Decreased sound tolerance (DST) is common among many children with Autism 

Spectrum Disorder (ASD).  When children are exposed to specific aversive sounds at 

school, they may be very distressed and can react with behaviours such as covering 

their ears, yelling, screaming, or running out of the room to avoid the aversive sound. 

Schools’ approaches for accommodating DST include letting students wear earplugs or 

earmuffs or allowing them to leave to take breaks in a quiet area. Most wearable devices 

(e.g., earmuffs, ear plugs, noise canceling headphones) tend to block or attenuate all 

sounds indiscriminately, including speech, and if the child leaves the classroom to 

escape the noise, this will disrupt learning and social interaction. Therefore, existing 

strategies tend to interfere with the child’s full participation in class and other activities. 

This thesis aims to develop an intervention tool to selectively filter out aversive sounds 

for children with ASD. Ideally, this tool will attenuate unwanted sounds (e.g., dog 

barking, sirens, jackhammers) while letting other sounds (e.g., the teacher’s voice) to be 

heard. In this thesis, Deep Neural Network (DNN) methods and signal processing 

techniques are employed to intelligently identify the aversive sounds in the environment, 

attenuate them from the ambient sound and pass the rest of the sound to users. To 

identify aversive sounds, a combination of a Recurrent Neural Network (RNN) and a 

Convolutional Neural Network (CNN) is used. After the aversive sound is identified, 

another part of this thesis is dedicated to filter the aversive sound. A DNN-based 

learning framework is proposed to address the audio denoising problem for real-time 

applications.  The proposed method has the ability to suppress stationary noises such as 

engine and air conditioner, and also non-stationary, and dynamic noises such as dog 

barking, siren, and jackhammer. Further, a Graphical User Interface (GUI) is designed to 

combine the identification and filtration components of the intervention. The user-friendly 

GUI enables the users to initiate specific tasks in order to hear their surrounding sounds 

without any disturbances. In order to evaluate the performance of the proposed 

intervention technique, several testing sessions are conducted with autistic individuals.  

Keywords:  Autism Spectrum Disorder; Decreased Sound Tolerance; Deep Neural 

Networks; Environmental Sound Identification, Audio Denoising, Real-

time Processing 
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example, power spectral density) over time such as air 
conditioning sound. 

Non-stationary Noises Non-stationary noises have inconsistent statistical 
properties over time such as siren sound. In the real 
world, most of the noises are non-stationary. 

Dynamic Noises Dynamic noises are a type of non-stationary noises; 
however, they are more complex. For example, they have 
multiple frequency components over a short time interval 
such as speech and a dog barking sound. 
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is 

characterized by abnormal social interactions, verbal, and nonverbal communications, 

and repetitive behaviours from early childhood [1]. According to the Centre of Disease 

Control (CDC), the prevalence of autism is currently 1 in 44 among children aged 8 

years [2] in 2018. Children with ASD demonstrate serious problems with attention, 

orientation, and atypical reactions to the environment and sensory stimuli (45-95% of 

autistic individuals [3]). Hyper-sensitivity to specific sounds, light, or touch is often 

reported among this population [4]. These sensory differences have been found to affect 

other functions, including social, and cognitive abilities [5]. 

Decreased sound tolerance (DST) is one of the most associated clinical features 

reported in children with ASD [6]. Research indicates that certain sounds or specifically 

certain features of sounds such as loud, sudden, high pitched, shrill, unfamiliar, harsh, 

and repetitive are more problematic and can cause aversive reactions for people 

diagnosed with ASD [7], [8].  The most common examples of aversive sounds reported 

by parents include sirens, toilet flush, dog barking, baby crying, fireworks, vacuum 

cleaner, and clapping [8]. These children find everyday sounds extremely aversive, 

interfering with their ability to participate in school, community, and family activities. The 

nature of the aversive sounds varies across individuals, although most commonly, 

families and caregivers describe the trigger sounds as loud, high-pitched, and sudden 

[8]. Aversive sounds do not always share these characteristics and can be sounds that 

are unlikely to be bothersome to individuals without DST [7].  The prevalence of DST is 

reported to range from 50% to 70%  among autistic children and adults at some point in 

their lives [9]. Different forms of DST, including hyperacusis, misophonia, and 

phonophobia, have been identified in the larger audiology literature. Hyperacusis is a 

frequently cited condition and is described as a decreased tolerance for daily noises at 

levels that would not bother most people [9], [10]. Individuals with hyperacusis have 

normal auditory detection thresholds; however, it appears that their threshold for 
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loudness discomfort is lowered, enabling moderately loud noises to be perceived as too 

loud, or even painful [9], [11]. Misophonia, on the other hand, is a neuropsychiatric 

disorder in which “trigger” noises (such as chewing, lip-smacking, tapping, sniffing, and 

so on) evoke excessive and inappropriate emotional reactions even at modest 

amplitudes [12], [13]. Phonophobia is a specialized phobia of certain sounds or groups 

of sounds. Individuals suffering from phonophobia frequently engage in preventative 

behaviours such as avoiding potential sound sources [9], [14] and covering their ears 

[15]. 

Children with ASD often present their aversion to sounds through preemptive and 

physical behaviors which include avoiding the potential sources of the sound  [14] and 

covering their ears [15]. The common emotional reactions reported by families occurring 

during their child’s negative reactions to sounds include stress, irritability, scared, and 

nervousness [8]. The anxiety caused by aversive sounds makes those children reluctant 

to participate in crowded events and noisy places such as school [8], [16]. There is also 

a relationship between the severity of DST and decreased mental health, quality of life, 

and higher autism symptoms [17]. It is not hard to realize that the limitations imposed by 

DST seriously affect the quality of life of the ASD community.  

Few techniques are available to help autistic people with DST, their families, and 

caregivers, cope with the problems caused by auditory stimuli. Table 1-1 shows some of 

the strategies used by parents for dealing with DST [8].  

Table 1-1 Parent’s use of, and satisfaction with, common coping strategies for 
dealing with distressing sounds and noises 

  Parent Satisfaction Rating (%) 

 Strategy Used by 
Very 
Satisfied 

Somewhat 
Satisfied 

Neutral 
Somewhat 
Unsatisfied 

Very 
Unsatisfied 

Warning 94.3% 26.5% 32.5% 26.5% 8.4% 6.0% 

Taking a Break 83.0% 35.6% 37.0% 23.3% 4.1% 0.0% 

Avoid Noisy 
Setting 

81.8% 22.2% 38.9% 22.2% 12.5% 4.2% 
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Headphones 
(with Music) 

59.1% 11.5% 38.5% 21.2% 11.5% 17.3% 

Earmuffs 54.5% 18.8% 35.4% 29.2% 12.5% 4.2% 

Headphones 
(without Music) 

43.2% 18.4% 10.5% 18.4% 18.4% 34.2% 

Ear Plugs 42.0% 2.7% 16.2% 32.4% 18.9% 29.7% 

Noise 
Cancelling 
Headphones 
(without Music 
Playing) 

37.5% 36.4% 21.2% 18.2% 15.2% 9.1% 

White Noise 
Devices 

35.2% 29.0% 16.1% 29.0% 6.5% 19.4% 

Noise 
Cancelling 
Headphones 
(with Music 
Playing) 

30.7% 48.1% 18.5% 18.5% 11.1% 3.7% 

Hearing Aids 1.1% 0.0% 0.0% 100.0% 0.0% 0.0% 

Note: these are ranked based on % used by.  

According to Table 1-1, the most used strategies are warning the child of the 

presence of the noise, taking a break, or avoiding a noisy setting. These strategies 

remove children from the environment and impose major barriers to children’s social 

inclusion and learning opportunities. Another major category is using wearable devices 

such as earmuffs, earplugs, and noise-canceling headphones. Earplugs and earmuffs, 

which use a passive noise isolation strategy, can block aversive sounds to a tolerable 

level, however, they also block other sounds such as human speech that should not be 

filtered. Some headphones block auditory stimuli significantly by providing a masking 

sound such as music or white noise, which might be annoying for some users, and again 

these methods block human speech. Noise-canceling headphones employ signal 

processing tools to reduce unwanted ambient sound, however, they are not effective in 
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filtering non-stationary, highly dynamic, and sudden sounds such as sirens, toilet flush, 

dog barking, baby crying, fireworks, vacuum cleaner, and clapping.  

Furthermore, the issue of sound sensitivity in ASD is a subjective problem meaning 

that the nature and type of sounds can vary from one person to another. For example, 

some individuals expressed that they are sensitive to certain sounds such as dog barking, 

however other individuals are not [8]. Therefore, a one-size-fits intervention is not an 

appropriate solution for these individuals. The appropriate intervention must have the 

ability to be customized for different users with different aversive settings. This problem 

can be better addressed with a smart device that selectively identifies and suppresses the 

aversive sound while leaving the rest of the ambient sounds intact. The smart device 

requires to simulate human intelligence systems for identification and suppression using 

Artificial Intelligence (AI) technique. 

 AI is applied as a powerful analysis, study, and development tool in various 

fields of science and technology. It has led to remarkable outcomes in image detection, 

speech recognition, natural language processing, and signal value estimation. In recent 

years, AI has been employed in different acoustic and audiology studies. For example, 

AI-based Environmental Sound Classification (ESC) techniques are introduced to 

identify environmental sounds. In the ESC problem, the goal is to recognize a specific 

sound source, such as dog barking, siren, and drilling. ESC AI-based techniques can be 

divided into two categories, i.e. supervised [18] and unsupervised learning [19]. 

Supervised algorithms employ labeled data consisting of training inputs and 

corresponding outputs while unsupervised algorithms learn from the patterns in 

unlabeled data using clustering techniques.  

AI has also been employed in signal denoising to attenuate unwanted noises 

from the environment. In speech enhancement, AI is widely used as an effective solution 

for converting a noisy speech signal to a high-quality and clean speech signal. AI-based 

speech enhancement algorithms aimed to attenuate the ambient noise components from 

speech signals to make them more intelligible for the listeners. Several AI-based speech 

denoising and speech enhancement methods are presented to increase the 

performance of speech-related applications such as Automatic Speech Recognition 

(ASR) [20], hearing aids devices [21], and audio/video communications [22].   
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In the following, the related literature is reviewed in detail and the research 

thesis’s contributions are presented. 

1.2. Previous Work 

1.2.1. Environmental sound classification 

The sounds around us in the real world are divided into three categories: (i) 

human sounds such as speech, (ii) sounds that are created by human activities such as 

street sounds and music, and (iii) natural sounds that are created by nature such as 

wind, rain, and animals [23]. All these sounds have their own structure and 

characteristics such as amplitude and frequency. Over the past decades, the 

identification of these sounds has been a focus of research because of its applications in 

various fields including assistive technologies, tools for individuals with hearing 

impairment [24], context awareness [25], surveillance [26], urban planning [27], biology 

[28], monitoring [29], and multimedia information retrieval [30]. 

Speech and music are two categories of audio signals that have been widely 

investigated in the literature [31], [32]. Therefore, speech and music recognition methods 

were merely reflected in Environmental Sound Recognition (ESR) methods. 

In machine learning-based audio signal processing, the main problem is to find 

effective characteristics that provide higher speed and accuracy in audio classification. 

Several signal processing and machine learning techniques are developed to address 

audio classification including matrix factorization [33], dictionary learning [34], wavelet 

filter banks [35], Support Vector Machine (SVM) [36], hidden Markov models (HMM) 

[37], gaussian mixture models (GMM) [38], k-nearest neighbor (KNN) algorithm [39]. 

These methods and algorithms mostly consist of two main processing steps, i.e., feature 

extraction and pattern learning. The feature extraction part is the most important step in 

audio classification system design [40]. In the feature extraction step, each input pattern 

is mapped to a feature vector, which represents the pattern in the feature space and 

distinguishes it from other patterns. Since most environmental sounds are usually non-

stationary and dynamic signals and there are also overlapping background sounds (e.g., 

environmental sounds are typically highly correlated) in the ambient, feature selection 

and extraction are challenging and directly affect the performance of the classification 
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process. Several sound features have been proposed in the literature for environmental 

sound classification including time-domain and frequency-domain representation of the 

signal. Time-domain features include zero-crossing rate (ZCR) [41], linear prediction 

coefficients (LPC) [42], audio signal energy function [43], and maximum amplitude [44]. 

Frequency-domain features or spectral features include short Fourier transform 

coefficients [45], mel-frequency cepstral coefficients (MFCC) [45].  

Following the feature extraction, a classifier is needed to categorize different 

classes of sounds. As mentioned earlier, various traditional pattern learning techniques 

are introduced for the classification process including K-nearest neighbor, neural 

networks, Gaussian mixture model, hidden Markov models, minimum distance, and 

Bayes classifiers. These traditional algorithms have two main disadvantages:  first, since 

their connections between the input and the hidden units are fixed, they do not provide 

both time and frequency invariance. Second, they are limited to short time frames, so 

they are not able to model longer events such as rain and sounds correlations [43]. In 

recent years, deep learning techniques such as Deep Neural Networks (DNNs) [46], 

Convolutional Neural Networks (CNNs) [47], Long Short-Term Memory (LSTM) [48], 

Recurrent Neural Networks (RNNs) [49], and Deep Auto Encoders (DAE) [50] have been 

introduced to enhance the recognition performance of environmental sounds. Due to the 

learning capability of the hierarchical features from high-dimensional raw data, deep 

layers in deep learning are more accurate than the traditional techniques [18]. For 

example, CNNs have been actively used for various sound classification tasks and have 

shown promising performance. They have the ability to obtain energy modulation 

patterns through time and frequency representations such as spectrograms even for 

sounds like drilling, constructional noise, and engine which have noise-like structures. 

On the other hand, they can successfully learn spectro-temporal patterns in different 

sound classes even in situations that some sounds are mixed [47].  They achieved high 

performance in monophonic [51] and polyphonic [52] in real-world environments by 

capturing and processing small input frames of the spectrogram. CNN’s simple 

architecture outperforms traditional approaches such as GMMs, HMMs, and 

Nonnegative Matrix Factorization (NMF) classification techniques [53].  

Similarly, RNNs have been used in the literature for sound classification. They 

are capable of modeling sequential data such as videos and text which makes them a 

powerful algorithm for real-time processing. They have been successfully applied to 
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several audio processing applications such as ASR [54] and polyphonic Sound Event 

Detection (SED) [55]. RNNs use information from the previous layers and time frames 

and provide a memorizer net of information. Recently, RNN and CNN approaches are 

combined to take advantage of both their strengths. Such structure was first proposed in 

[56] for document classification and later applied to image classification [57] and music 

transcription [58]. These studies have shown that the CNN-RNN framework can better 

learn image features and achieves superior performance than the state-of-the-art 

methods. 

Despite these advantages, deep learning algorithms need a huge data set for 

efficient performance. As a result, the main challenge in deep learning problems is 

gathering enough data to train the network. Generally, data collection is a time-

consuming procedure and requires considerable effort and cost, especially when the 

network needs thousands and millions of samples. Data augmentation is a strategy to 

address this problem. In principle, it works by increasing the diversity of the available 

data for training models, without actually collecting new data. There are various data 

augmentation techniques including flip, rotation, scale, crop, translation, and Gaussian 

noise [47], [59]. Among these methods, cropping, padding, and horizontal flipping are 

commonly used to train large neural networks. These augmentations, however, are 

mostly being implemented with low-level transformations, which in general are not 

capable of improving the performance of conventional or advanced deep learning 

classifiers [60]. Those low-level augmentations also have some weaknesses including a 

linear nature and weak data distribution enhancement [47]. Recently, generative 

adversarial networks (GANs) [61] have created new opportunities for researchers to 

achieve better high-quality results. This technique is vastly used in image generation and 

augmentation. The idea of GANs is to simultaneously train two models, a generative 

model G, and a discriminative model D. The generative model creates photorealistic 

images that are similar to the original data distribution and the task of discriminative 

model is to determine whether a given image looks realistic (image came from the 

training data) or artificially created. 

1.2.2.  Speech denoising  

The genesis of multimedia communications several decades ago and the 

importance of high-quality audio in that application was the main motivation for the 
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advancements of speech denoising methods. Since the beginning of this field, several 

audio denoising and speech enhancement methods and systems have been proposed.  

Traditional methods employed different signal processing analysis methods such as 

nonlocal diffusion filters [62], diffusion maps [63], and averaging energy and amplitude 

threshold [64]. Most of those methods are developed for continuous and steady-state 

interferences with limited influence on transient and complex noises including non-

stationary and highly dynamic noises such as siren and dog-barking. Although some of 

the most powerful non-stationary noise suppression algorithms reduce transient noise, 

the output suffers from distortion and is unsatisfactory [65].  

Machine learning approaches for speech denoising employ supervised and 

unsupervised techniques. Supervised data-driven approaches require prior training data 

such as sparse non-negative matrix factorization [66], and neural networks [67]. 

Unsupervised approaches, such as spectrum subtraction [68], prior signal-to-noise ratio 

(SNR) estimation [69], and Wiener filtering [70], however, do not require any prior 

training data. Most of these proposed algorithms estimate the background noise's power 

spectral density (PSD). However, in non-stationary noise reduction, these algorithms' 

performance is severely constrained. In comparison to unsupervised techniques, 

supervised approaches have been found to create higher-quality enhanced speech 

signals by providing more previous information to the system. However, in general, 

these traditional machine learning-based speech enhancement approaches fail to 

suppress non-stationary and highly dynamic noises in voice signals because of their 

fast-fluctuating nature. 

In recent years, deep learning methods such as DNNs [71], CNNs [72], long 

short-term memory (LSTM)  [73], RNNs [74], and deep denoising autoencoders (DDAE) 

[75] have achieved remarkable performance in speech enhancement and audio 

denoising. Deep learning models employ two approaches including (i) directly predicting 

the clean signal [67] and (ii) predicting a mask for filtering [68]. These algorithms 

address the issues in traditional methods by proposing several single and multi-channel 

approaches with either supervised or unsupervised learning models. The superior 

performance of deep learning models, among other data-driven models, is attributed to 

their exceptional nonlinear mapping ability, which directly transforms the noisy signal into 

the enhanced one  [76].  
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One of the most difficult aspects of developing a speech enhancement algorithm 

for audio/video communication is preserving perceived speech quality while suppressing 

noise. In the past, constrained objective functions have been used to optimize such a 

compound objective. Alternatively, a simpler objective like the mean squared (log) error 

(MSE) can be optimized. In a deep learning framework, the major benefit is  the relative 

simplicity to incorporate complex learning objectives that achieves higher quality and 

intelligibility [77].   

Despite the success of deep learning algorithms in speech enhancement, their 

performance for real-time audio processing applications and complex noisy situations is 

not well investigated. In a real-time application, the system needs to perform all the 

steps, including pre-processing, feature extraction, prediction, and post-processing in a 

short timeframe and the output must be intelligible without any noticeable delay by 

human ears. Therefore, the application of noise suppression for speech enhancement 

using deep learning is considered a highly complex problem. 

1.3. Summary of the Research Project 

This thesis aims to design a framework as an intervention technique for 

individuals with ASD to attenuate selected aversive sounds which cause negative 

impacts on their social life interacting with their environment. The selected sounds are 

commonly reported among the ASD population as examples of aversive noises. First, a 

deep learning-based algorithm is proposed to improve environmental sound 

classification tasks by using various strategies for modeling and data augmentation. The 

proposed model for classification is a unified CNN-RNN network to benefit from both 

CNN as a powerful feature extractor and RNN as a strong sequential pattern learner. 

The input of the model is a frequency representation of the audio signal, and the output 

is the predicted class.  To improve the model’s accuracy, several techniques are used 

including batch normalization, transfer learning, and three feature representations map. 

As mentioned earlier, deep learning models need a huge amount of data samples to 

achieve their remarkable performance. In this thesis, in order to overcome the lack of 

data, two data augmentation strategies including traditional and intelligent augmentation 

are considered. In the traditional data augmentation approach, first, different background 

noises (crowd sound, street sound, and restaurant) are added to the data samples and 

then, pitch shifting is applied. For intelligent data augmentation, a deep convolutional 
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GAN structure is used as a high-quality augmentation method to generate further data 

samples and improve the performance of the classification model. The developed CNN-

RNN network can work in real-time and be programmed with executable instructions to 

identify and classify an aversive sound in the environment.  

When an aversive sound is detected, the filtering system is needed to remove it 

from the signal, in real-time. The main goal of the filtering part is to automatically remove 

the identified aversive signals from the noisy signal using the generated feature map and 

obtain a clean sound. In this thesis, a DNN-based learning framework is proposed to 

address the single-channel speech enhancement problem for real-time applications. 

Single channel speech enhancement is typically referred to the methods in which a filter 

is applied to the noisy speech to recover enhanced speech signal. In this framework, an 

audio file comprising a combination of speech and noise is captured using a 

microphone. The system performs mathematical analysis to extract the audio features 

and provide the input to the DNN model. The DNN model is designed and trained to 

construct a ratio mask from the noisy signal by employing linear and nonlinear weights in 

the learning process. Then, the clean speech coefficients are computed using the ratio 

mask. Pre-processing and post-processing steps are included to increase speech quality 

and integrability. The framework is trained and tested on complex noise structures such 

as dog barking, siren, vacuum cleaner, and engine.  

These algorithms are integrated and deployed into a platform using a graphical 

user interface. The GUI can provide a recommended action to the user. The 

recommended action can be, for example, (1) suppress the signal by stopping the 

transfer of the signal from the microphone to the speaker, (2) attenuate the ambient 

sound by lowering the volume, (3) remove the aversive sound signal from the mix-signal, 

or (4) mask the ambient sound by playing pre-recorded sounds. The GUI can be 

responsible for all communications, settings, customizations, and user-defined 

operations. In order to make the system work in real-time, a framing strategy is proposed 

to show how processing steps are organized. Afterward, several pilot sessions are 

conducted with autistic adults to examine the noise attenuation system introduced in this 

thesis in real-life.    
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1.4. Contribution and Objectives of Research  

In summary, the major contributions and objectives of this thesis are as follows: 

• An intelligent intervention techniques is proposed and designed to 
ameliorate decreased sound tolerance in individuals with ASD.  

In this thesis, a novel intervention technique which employs signal processing and deep 

learning methods is proposed to address the issue of DST among autistic individuals. 

The proposed techniques is able to detect a specific aversive sound in the environment 

and then filter the detected sound while leaving the other sounds intact.   

• A unified CNN-RNN classification framework is proposed for aversive 
sound classification.  

In order to classify and identify aversive sounds, a unified RNN-CNN method is 

proposed to take advantage of both methods.  In this structure, a parallel combination of 

CNN and RNN networks is constructed in which the CNN branch plays the feature 

extractor role to extract semantic representations from the inputs. RNN branch plays the 

temporal summarizer role to label relationships and labels dependency. Experimental 

results demonstrate that the proposed approach achieves superior performance 

compared to the state-of-the-art methods.  

• High-quality new data samples are generated using a deep convolutional 
GAN model. 

The high scalability and excellent sample generation capabilities of deep convolutional 

GAN are employed to create new samples and improve the performance of the 

classification model. Deep convolutional GAN techniques is used mainly for image data 

augmentation, and in this thesis its performance is evaluated on environmental sound 

spectrogram augmentation. The experimental results show that this data augmentation 

method can produce spectrograms with similar structures to the training set. 

• A novel speech enhancement DNN-based framework is proposed.  

A DNN-based learning framework is proposed to address the single-channel speech 

enhancement problem for real-time applications. The simulation results indicate that the 
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proposed method can remove the background noise from the speech signal, even in the 

presence of complex noisy conditions (e.g., unsteady real-world environments) and 

difficult noise types (non-stationary and highly dynamic noises).  

• A comprehensive framework is designed to work in real-time audio 
processing.  

A comprehensive framework is designed to integrate the classification and filtration 

algorithm. A cumulative framing strategy has been considered to operate the system in 

real-time with unnoticeable delay. A user interface is designed and is programmed with 

executable instructions to obtain input data, transmit data and provide output data. 

1.5. Thesis Outline 

This thesis consists of five chapters which are organized as follows.  

In chapter 2, the theory and experimental methodology for environmental sound 

classification including feature selection, feature extraction, model selection, and training 

process are discussed. The simulation results are provided at the end of this chapter 

and compared with the existing state-of-the-art methods. This chapter addresses the 

environmental sound classification and data generation objective. 

In chapter 3, the theory and experimental methodology for filtration including 

audio preprocessing, model selection, and post-processing are discussed. The 

simulation results are provided at the end of this chapter and compared with the existing 

methods. This chapter addresses the sound filtration objective. 

In chapter 4, the combination of classification and filtration frameworks is 

presented. Then, the real-time setting and implementation are explained. The details of 

the prepared demo and its features are also provided in this chapter. This chapter 

addresses the objective of designing a comprehensive framework as an intervention 

technique for individual with ASD. 

In chapter 5, a general discussion, conclusions, and recommendations for future 

works are stated. 
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Chapter 2.  
Environmental sound classification 

2.1. Introduction 

Deep Learning emerged in 2006 as a new area of machine learning and 

achieved significant success in various applications of computer vision, phonetic 

recognition, conversational speech recognition, natural language processing, audio 

processing, robotics, etc [78]. Speech, audio, and acoustics are one of the largest deep 

learning application areas across research labs and industry. Before deep learning, 

sound recognition applications were dependent on traditional signal processing tools to 

extract features such as phonetics concepts. These required a lot of signal processing 

expertise, hand engineering techniques, and efforts for system tuning and optimization. 

However, with deep learning, traditional audio processing techniques are no longer 

needed and a standard data preparation process will be sufficient [47]. The features will 

be extracted automatically from the prepared data and there is no need for manual or 

custom generation of the features. Moreover, deep learning techniques have achieved 

remarkable performance in the area of audio and speech processing [46], [71], [72]. 

Deep learning involves the acquisition of multiple-level representations and 

abstractions that aid in data interpretation [78]. Deep learning is implemented using a 

neural network architecture consisting of several layers. These layers involve linear and 

non-linear functions to model complicated data such as audio and image. Each layer 

receives data from its previous layer, imply the functions, and then passes it to the next 

layer. Each layer consists of several neurons, which are the network's core basic units 

and have various forms of connections to other neurons in other layers. Deep neural 

networks, in essence, are based on the architecture of the human brain. The network is 

trained to produce prescribed outputs given provided inputs. Figure 2-1.A shows the 

schematic of a learning structure known as a neural network including input, hidden, and 

output layers. In this figure, the input layer is where the initial data is fed to the neural 

network. The output layer produces the result for given inputs and hidden layers are 

defined as the intermediate layer between the input and output layer and place where all 

the computation is done. The initial layers allow the system to extract a structured and 

complicated understanding of the patterns in the data. The black arrows in this figure 
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represent the weights that are optimized during the learning process. The weights' main 

function is to give importance to those inputs in each layer that contribute more towards 

the learning. It does so by introducing the sum of the scalar multiplication between the 

input value and the weight matrix. This operation is shown by capital sigma in Figure 2-1 

in each neuron. Afterward, the weighted sum of the inputs in each neuron is activated by 

an activation function. The activation function introduces non-linearity in the working of 

each neuron to consider varying linearity with the inputs. Without this, the output would 

just be a linear combination of input values and would not be able to introduce non-

linearity in the network. In Figure 2-1, the activation function is introduced by capital ℱ, 

following the weighted sum. Note that the activation function does not consist of any 

learnable parameter to be optimized. Optimizing the parameters of the weighted sum in 

each layer is called cognitive analogy and is performed by using optimization algorithms 

such as backpropagation.  

A. 

 

B. 

 

Figure 2-1 Schematic of A. neural network, and B. deep neural network 

A neural network with multiple hidden layers and multiple nodes in each hidden layer is 

known as a deep learning system or a deep neural network. Deep learning neural 

networks are distinguished from neural networks on the basis of their depth or number of 

hidden layers. Deep learning is the development of deep learning algorithms that can be 

used to train and predict output from complex data. The word “deep” in deep learning 

refers to the number of hidden layers i.e. depth of the neural network. Essentially, every 

neural network with more than the three layers, that is, including the Input Layer and 
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Output Layer can be considered a deep learning model. Figure 2-1.B shows the 

structure of a deep neural network. In this chapter, a deep learning-based structure is 

proposed to address environmental sound classification. Several deep learning 

techniques are employed to improve the deep learning structure’s accuracy and 

performance. The proposed structure is able to classify environmental sounds with a 

high accuracy level and achieves superior performance compared to the state-of-the-art 

classification models. 

In the following, the theory behind the deep learning techniques is introduced. 

Afterward, the proposed techniques are introduced and examined. Then, the 

experimental results and conclusion are described. 

2.2. Theory 

Two sub-categories of deep learning techniques include deep discriminative 

models for supervised applications such as classification, recognition, and speech 

recognition, and generative models for unsupervised applications such as clustering, 

and dimensionality reduction. Supervised models need labeled data sets for training and 

are mainly used for classification and regression problems. On the other side, 

unsupervised models do not need prior labeled training datasets and are mainly used for 

clustering and data visualization. In this thesis, the classification techniques are used for 

sound classification. The details of the deep neural network structure and techniques, 

including  Convolutional Neural Network (CNN) layers, Recurrent Neural Network (RNN) 

layers, feature extraction, transfer learning, and data augmentation are explained in 

detail in the following sections. 

2.2.1. CNN  

CNNs are the main and the most widely used structure for image classification, 

image localization, and object recognition in computer vision. CNN is similar to the 

presented neural network in Figure 2-1 which includes neurons, weights, and activation 

functions. In addition, CNN employs outstanding components that make them unique for 

image processing applications. These components include convolutional layers and 

pooling layers. Figure 2-2 shows an overall schematic of a CNN structure including 
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convolutional layers, pooling layers, fully connected layers, and softmax function at the 

end. 

 

Figure 2-2 A typical convolutional neural network structure including input, 
conolutional layers, pooling layers and fully connected layers [79] 

Convolution is the mathematical operation over the matrix representation of an 

input image. An image can be represented as a matrix of image elements arranged in 

columns and rows. The yellow matrix in Figure 2-3 shows a matrix representation of an 

image, e.g. the input image in Figure 2-2. The convolutional operation is defined as the 

convolution of the input image and the filter and results in the output also known as the 

feature map. Filters detect spatial patterns such as edges in an image by detecting the 

changes in intensity values of the image. In CNNs, filters are often represented by a 

3 × 3 matrix. For example, [
1 0 −1
1 0 −1
1 0 −1

] filter can be used for vertical lines detection of an 

input image. The filter weights are considered as the learnable parameters in the CNNs. 

In the terminology of CNN, a convolution operation is a linear operation that involves the 

multiplication of a filter with the input image represented by a matrix. The convolution 

operator takes the convolution filter and slides it over the image or input matrix. In other 

words, the filter moves on the image and scans the input image. By placing the filter on 

each part of the image, the numbers in the filter are multiplied by the corresponding 

pixels in the image. Then, all the numbers add up to create one cell in the output. Figure 

2-3 indicates an example of convolutional operation. For example, placing the filter on 

the upper left of the input shown by the dashed circle in Figure 2-3, will result in 12, 

which is the product of each cell in filter and input, and adding up them together, 

(1 × 1) + (2 × −1) + (3 × 4) + (5 × −2) + (8 × 1) + (9 × 0) + (5 × 0) + (0 × 2) +
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(1 × 3) = 12. This number will be placed at the upper left of the output. Then, the filter 

will slide one pixel to the right and the same procedure will be applied to construct the 

second output which is 4.  

 

Figure 2-3 A convolutional operation 

This pixel size is also known as the stride size, which in this case is 1. As another 

example, if the stride size was 2, the filter moves 2 pixels toward the right to calculate 

the second output and so on. The higher stride results in a lower dimension output. The 

same procedure also applies when the filter moves down to scan the entire image. The 

output of multiplying the filter with the input image is constructed as a reduced dimension 

matrix also known as a feature map which contains features of the image with respect to 

the filter. According to Figure 2-2, these feature maps can be considered as an input to 

the next filter which constructs another CNN layer in the CNN architecture. 

According to Figure 2-2, the constructed feature maps are passed through an 

activation function in order to create nonlinear features in the neural network. In 

complicated data structures such as images and audios, nonlinear activation functions 

make it easier for a neural network to learn information from the data and differentiate 

between the outputs. Figure 2-4 indicates a number of nonlinear functions widely used 

as an activation functions. Among all nonlinear functions, the Rectified Linear Unit 

(ReLU) function is the most popular. ReLU function is defined as the 𝑚𝑎𝑥(0, 𝑥). 

Therefore, it maps the negative values to zero and leaves the positive values as they 

are. The advantage of using ReLU compared to conventional sigmoid, and tanh is that 

ReLU is faster to compute than the other activation functions. This makes a significant 
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difference in training and inference time for neural networks. Leaky ReLU is another 

version of ReLU which has a small slope for negative values instead of a flat slope.  

 

 

Figure 2-4 Nonlinear activation functions in deep neural networks 

Figure 2-2 also contains pooling layers following each convolutional layer and its 

associated activation function. The purpose of the pooling layer is to reduce the spatial 

size of the output of the convolution layer and consequently reduce the computation 

amount. Pooling layers compute the summary of the nearby output of the convolution 

layer and they reduce the dimension of the convolution layer without sacrificing too much 

information. Max pooling and average pooling are the most commonly widely used 

pooling layers in CNNs. To illustrate, a 2 × 2 max-pooling layer considers a rectangle in 

the feature map in which contains four pixels, as the input to the max-pooling layer. The 

maximum of the four pixels is calculated and considered as a single pixel in the output. 

Unlike filter weights, the pooling layer has no wights to be trained in the CNN structure 

and it performs a simple and effective dimensionality reduction of the convolution layer.  

Extracted features using convolutional layers are eventually transferred into a 

vector to create the final output vector. Fully Connected (FC) layers which are also 

called dense layers are used for this purpose. A CNN structure may contain several 

dense layers after convolutional layers as shown in Figure 2-2. The output of the last 

convolution and pooling layer is converted to a single row named dense layer. Then, 

similar to a neural network, they may pass through different dense layers with activation 

functions which are contained trainable parameters. At last, the softmax function is used 

as the activation function in the output layer of CNN to predict a probability distribution. 
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Softmax is used as an activation function for multi-class classification problems where 

the number of classes is more than two class labels.  

2.2.2. RNN  

An RNN is a class of artificial neural networks in which the connection lines 

between the nodes are sequential. It allows RNN to model the dynamic temporal 

behavior of sequences through directed cyclic connections between the nodes [80]. The 

RNN model has different structures including LSTM [81], and Gated Recurrent Unit 

(GRU)  [82]. 

In principle, a standard RNN iterates over the individual input feature vectors 

(𝑥1, 𝑥2, . . . , 𝑥𝑇) and computes the sequence of hidden state vectors (ℎ1, ℎ2, . . . , ℎ𝑇  ) [45]. 

At a frame time 𝑡, where 1 ≤  𝑡 ≤  𝑇, ℎ𝑡 is computed as 

ℎ𝑡 = ℋ(𝑥𝑡 , ℎ𝑡−1) (1) 

where ℋ denotes the hidden layer function. In the proposed network, the GRU 

cell is employed in which the function ℋ is implemented by the compound of the 

following functions, 

𝑟𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟), (2) 

𝑧𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑧𝑧𝑥𝑡 + 𝑊ℎ𝑧ℎ𝑡−1 + 𝑏𝑧), (3) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎ(𝑟𝑡⨀ℎ𝑡−1) + 𝑏ℎ), (4) 

ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ̃𝑡 . (5) 

where the 𝑊 variables denote the weight matrices and the 𝑏 variables are the 

biases. The 𝑟, 𝑧, and ℎ̃ variables represent the reset gate vector, the update gate vector, 

and the new hidden state vector candidate, respectively. The ⨀ operator denotes the 

element-wise vector product. Consider A⨀B as the element-wise multiplication between 
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A and B. A and B are the same dimension matrices to compute a new matrix, C, with the 

same dimension as A and B. Matrix C elements are the products of the corresponding 

elements in A and B, 𝐶𝑖,𝑗 =  𝐴𝑖,𝑗 × 𝐵𝑖,𝑗 which 𝑖 and 𝑗 indicate the index number of rows 

and columns, respectively. RNN networks have different structures according to the 

nature of their input and output. The sequence-to-label structure is when the input is a 

sequence of data, and the output is a single label. The classification problem is 

considered a sequence-to-label RNN structure, and the network output is determined by 

the final state vector ℎ𝑇 as the following. 

𝑦̂ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎ𝑦ℎ𝑇 + 𝑏𝑦) (6) 

Figure 2-5 displays a sequence-to-label RNN structure. In this figure 

𝐻0, 𝐻1, 𝐻2, … represent the output of the previous layers or hidden states, 𝑥0, 𝑥1, 𝑥2, … 

represent the input, and 𝑦̂ is the output label.   

 

Figure 2-5 A Schematic of an GRU over time including input and hidden state 
vectors 

2.2.3. Neural Network Training and Transfer Learning  

CNNs and RNNs are the main blocks to construct a deep neural network model 

architecture. The constructed models learn to produce relevant output according to their 

input given a training dataset of examples. A training dataset includes a set of pairs of 
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input and output data samples which are used to train the neural network model. The 

training process involves finding a set of weights in the neural network, including the 

learnable weights in CNN, RNN, and dense layers such that the neural network output 

can predict the dataset outputs with acceptable performance. The training process is an 

iterative procedure, meaning that it progresses step by step with small updates to the 

model weights in each iteration to improve the performance and the accuracy of the 

neural network model. This procedure is a very time-consuming and costly process that 

needs a huge amount of memory and rich datasets to achieve an acceptable 

performance. Nowadays, there exist huge datasets for different applications of machine 

learning and deep learning. On the other hand, the cost of training neural network 

models on these datasets is very expensive. To overcome these problems, there are 

several methods that are commonly used in the area of deep learning to overcome this 

problem including transfer learning. 

Transfer learning is often used in computer vision and natural language 

processing. It basically takes advantage of the knowledge of a pre-trained model for a 

different but related model. In other words, the weights that a network has learned for 

problem A are transferred to the new problem B. The basic idea is to apply the 

knowledge gained by a model in the problem for which a lot of data samples are 

available to another problem that has limited data samples. In transfer learning, some of 

the middle and early layers of the model are preserved, and only the last layers need to 

be retrained to make the model appropriate for the new task. This reduces the model's 

dependency on labeled data. For example, ImageNet is a large data set consisting of 

about 14 million images, and more than 21000 classes [83]. There exist different CNN 

architectures including Inception [84], VGG family [85], and ResNet [86] which are pre-

trained on the ImageNet dataset, and the model structures along with their learned 

parameters are further used for real-world image-based classification problems with 

fewer amount of data. Figure 2-6 shows a schematic view of transfer learning. In this 

figure, dataset 1 contains a huge amount of data that is trained on a CNN-based neural 

network. The model structure and the learned parameters are stored as “knowledge", 

and further used for other tasks using a smaller dataset 1. In this thesis, the transfer 

learning technique is used to train the neural network and to use the knowledge from a 

pre-trained model on a huge data set and also to save cost and time compared to 

training from scratch. 
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Figure 2-6 A schematic view of transfer learning 

2.2.4. Input Data Preparation and Feature Engineering 

Data preparation is the process of cleaning and transforming raw data for further 

processing and analysis. It is an important step prior to processing and often involves 

reformatting data, making corrections to data, and combining data sets to enrich data. 

Feature engineering or feature extraction is the process of using specific engineering 

knowledge to extract features (characteristics, properties, attributes) from raw data. 

Often these two concepts are used interchangeably, however, in this thesis, feature 

extraction is defined as a set of engineering operations performed on the raw data in 

order to produce suitable input data containing meaningful features for the classification 

task.  

Sounds are created by variations in air pressure. An audio signal is a 

representation of sound, which is represented by a changing level of electrical voltage, 

over time. An audio signal feature can be represented in time-domain and frequency-

domain representations. Error! Reference source not found. shows a time-domain 

example of a sine wave which can be considered as an audio signal for a simple 

explanation of the concepts related to an audio signal. In time-domain feature 

representation, the intensity of air pressure variations over time is called amplitude. The 

period is the amount of time that takes for a signal to complete one full cycle. The 
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amplitude and period definitions are described using Error! Reference source not 
found.. In addition, frequency is defined as the number of waves produced by a signal in 

one second. The frequency is measured in Hertz. 

Various sounds that we hear do not follow such basic and predictable patterns, 

which are introduced using a sine-wave in Error! Reference source not found., and 

contain a constant frequency and amplitude over time. For example, Figure 2-8 shows a 

human speech in time-domain representation which include various frequencies and 

amplitudes. Further, sound signals from different sources with various frequencies can 

be combined to form composite sound signals with highly complicated patterns.  

Figure 2-7 Sine wave signal 
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Figure 2-8 A sample of human voice signal 

Frequency-domain features, including spectrogram, depict the frequency 

information of a signal as well as its amplitude. To transfer a signal from the time domain 

to the frequency domain, the Fourier transform is used. Fourier Transforms decompose 

a signal into its constituent frequencies.  Figure 2-9 shows the spectrogram of the 

human voice signal shown in Figure 2-8. In this figure, the horizontal axis shows the 

time, the vertical axis shows the frequency, and the amplitude is shown by color.  

 

Figure 2-9 A sample of human voice spectrogram 



25 

Among spectrograms, Mel-spectrogram is a logarithmic frequency scale of the 

spectrogram and is considered one of the most common and effective features for 

speech and audio recognition [47]. The mel-scale is a logarithmic frequency scale 

designed to better adapt to human hearing.  This feature is characterized by 

experimenting with human interpretation of pitch to describe the human auditory system 

on a linear scale [87]. The experiment shows that pitch is linearly perceived in the 

frequency range of 0-1000 Hz. Above 1000 Hz, the scale becomes logarithmic. Equation 

(7) describes the formula to convert f (hertz) into f (mel). 

𝑓𝑚𝑒𝑙 = 2595 𝑙𝑜𝑔10(1 +
𝑓ℎ𝑒𝑟𝑡𝑧

700
) (7) 

Figure 2-10 shows a mel-frequency spectrogram representation of the human 

voice signal of Figure 2-8. 

The time-domain and frequency-domain features explained here are utilized to 

extract semantic features from the sound signal to be fed as the input to the neural 

network model.  

 

Figure 2-10 A sample of human voice mel spectrogram 
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2.2.5. Data Augmentation  

In many applications, access to a huge dataset is expensive and sometimes not 

possible. In order to increase the amount of data, data augmentation techniques are 

used to generate new data from the existing data. Data augmentation is a powerful 

strategy to increase the diversity of available data and make it possible to train models 

without collecting new data. There are two data augmentation strategies including 

traditional and intelligent augmentation. In traditional data augmentation, different data 

deformations are used including adding noise, rotation, cropping, translation, flipping, 

scaling, and brightness [88]. For audio, commonly used data augmentation techniques 

include adding background noises like crowd sound, street sound, and restaurant to the 

data samples, and shifting the pitch of the audio samples to create different new sounds. 

In this thesis, the two well-known conventional data augmentation techniques are used 

to increase the number of training data. Figure 2-11 shows the new data constructed 

from a human speech and a background noise, in this case, a restaurant environment, 

which is used in this thesis. Also, Figure 2-12 shows the spectrogram of the original 

audio versus the shifted versions of the original audio. 

 

Figure 2-11 Speech signal, background noise, mixed-signal 

 



27 

 

Figure 2-12 Original audio, shifted up the audio pitch by half an octave and shifted 
down the audio pitch by half an octave 

Another category of data augmentation techniques is known as intelligent data 

augmentation. Generative Adversarial Networks (GANs) are an innovative intelligent 

data augmentation technique to create new data instances that are similar to the training 

data. The GAN framework consists of two models including a generative model and a 

discriminative model. The generator creates samples close to the training samples and 

feeds them to the discriminator. The discriminator then receives the images together 

with the real images and compares them to distinguish the real ones. This process is 

continued until the discriminator cannot distinguish between real and generated images. 

GANs are known to have several drawbacks due to the battle of the two networks. The 

outputs of the generative convolutions model are often inaccurate. In addition, GANs are 

hard to tune and get to work properly. To tackle those drawbacks, a class of GANs 

called Deep Convolutional Generative Adversarial Networks (DCGAN) is proposed that 

has a set of architectural constraints to stabilize GANs [60]. In DCGAN, the discriminator 

(D) is a set of convolution layers with stride, so it downsamples the input image at every 

convolution layer. On the other hand, a generator (G) is a set of convolution layers with 

transpose convolutions, so it upsamples the input image at every convolution layer  [60].  

The architecture of DCGAN is shown in Figure 2-13.  

In this thesis, DCGANs are utilized in order to generate new training data to be fed to the 

neural network classifier.  
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Figure 2-13 DCGAN Architecture 

2.3. Experimental Methodology  

In this section, the previously illustrated techniques are used to architect a deep 

neural network that has the ability to accurately classify different classes of 

environmental sounds including dog barking, siren, jackhammer, and so on. To 

accomplish this task, the utilized available dataset is illustrated. Then, the required 

features are extracted from data in order to be fed to the deep neural network for the 

environmental classification task.  

2.3.1. Dataset 

There are several available datasets for various sorts of sounds including ESC-

10, ESC-50, UrbanSound8K, and FSDK. These datasets are created for different 

applications and contain a huge number of labeled audio samples. In this thesis, the 

UrbanSound8K dataset is used to evaluate the performance of the classification and 

data augmentation techniques. UrbanSound8K consists of 8732 ordinary sounds from 

daily life. These sounds are categorized into 10 classes, i.e. drilling, dog barking, siren, 

air conditioner, car horn, children playing, engine idling, gunshot, jackhammer, and 

street music. These sounds are digital audio files in .wav format and less than 4 

seconds. Mel-spectrograms of some samples of this dataset are presented in Figure 

2-14. 
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Figure 2-14 Mel Spectrograms of some audio samples from UrbandSound8K dataset 

2.3.2. Feature Selection and Transfer Learning 

In this study, a total of three feature engineering techniques are used to build 

three feature representation maps including mel-spectrogram, and decompose audio 

time-series data into harmonic and percussive components. The sounds which are 

considered in this thesis are in various ranges of frequencies. Some of them are 

transient, non-stationary, and have a noise-like structure. They can be categorized as a 

percussive sound class [89]. On the other hand, some of the sounds are consistent and 

stationary sounds and can be categorized as a harmonic sound class [89]. mel-

spectrogram, percussive mel-spectrogram, and harmonic mel-spectrogram ultimately 

provide a three-dimensional image feature map for each audio. Figure 2-15  depicts the 

architecture for this feature map. 
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Figure 2-15 The architecture of feature map creation 

2.3.3. Data Augmentation 

In this section, the DCGAN data augmentation technique is used to generate 

further data samples from the UrbanSound8K dataset and examine the performance 

enhancement of the classification model for environmental sound recognition. The length 

of each data sample is up to 4 seconds. Mel-spectrogram feature extraction is used, and 

the mel-spectrograms are generated using equation (7). The dimension of the generated 

images is 768 × 384. To avoid a huge amount of training parameters, the original 

images are resized to 64 × 64. Then, the windows of audio data are extracted as sub-

samples from each audio sample. As the first feature map, a log-scaled mel spectrogram 

is created using audio sub-samples.  

 

Figure 2-16 The DCGAN generator Architecture 
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The architectures for the generator is illustrated in Figure 2-16. The GAN 

generator in this study is comprised of 4 convolutional layers. Batch normalization is 

applied to every layer of the network to improve learning efficiency. Batch Normalization 

is a method used to normalize the values of each batch of output features at each layer 

of the deep neural network before feeding it to the next layer. Batch normalization has 

proved advantages which makes the deep neural network training process faster and 

more stable through the normalization of the inputs at each layer [90].  The DCGAN 

model is trained over 400 epochs using a batch size of 32. The DCGAN structure 

including the overall layers structures is set based on [60]. In the generator model, the 

ReLU activation function is used after each layer except the last one. For the last layer, 

the hyper tangent activation function is applied to obtain the image of 3 channels with 

pixel values between -1 and 1.  

For the discriminator, instead of a hyper tangent, standard sigmoid activation is 

used on the output layer to determine the probability of the generated image. The stride 

size for the discriminator is 4, 4, 4, 2 respectively. The Adaptive Moment Estimation 

(ADAM) optimizer is used in order to update network weights [91]. 

2.3.4. Classification Model Architecture 

In the proposed classification architecture in this thesis in order to overcome the 

environmental sound classification task, a parallel combination of CNN and RNN 

networks is constructed. Figure 2-17 shows the detailed structure of the proposed CNN-

RNN network. In this architecture, the CNN branch plays the feature extractor role to 

extract semantic representations from the inputs. RNN branch plays the temporal 

summarizer role to label relationships and labels dependency. The pre-processed 

training data is fed to each neural branch in order to extract features and learn patterns 

using both CNN and RNN networks. Afterward, the extracted features are concatenated 

and passed through three dense layers in order to construct the final output which is the 

probability of each class related to the input data.  

In order to utilize the knowledge from previously learned models and apply them 

to the classifier task in this thesis, transfer learning is used to train the CNN branch. The 

pre-trained VGG-19 (Visual Geometry Group) model is used as a feature extractor to 

extract features from all three dimension feature maps. VGG-19 is a convolutional neural 
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network model trained on the ImageNet dataset which contains over 14 million images 

belonging to 1000 classes. The pre-trained VGG model then follows with the average 

pooling layer and drops out in order to decrease the dimensions of the input and make 

use of regularization to reduce overfitting and improve generalization error, respectively. 

The extracted features are then flattened using a dense layer with a Leaky ReLU 

activation function to make them ready to be concatenated with the output of the RNN 

branch. 

 In the RNN branch, a deep GRU-based RNN architecture is used. The input to 

this branch is the mel-spectrogram of the constructed training data which are fed to the 

input layer. The RNN branch consists of two GRU layers followed by batch 

normalization. Afterward, a dense layer with Leaky RelU followed by batch normalization 

is used to make the output ready to be concatenated with the output of the CNN branch. 

The next step is to concatenate the output of the CNN and the RNN branches in order to 

make use of the extracted information in both branches. To complete the classification 

architecture, the concatenated data are passed through two dense layers with Leaky 

ReLU and batch normalization. Afterward, the last layer consists of a dense layer with 

the SoftMax activation function which predict a probability distribution for the 10 classes.  

In order to train the explained architecture, the loss function is calculated by 

comparing the predicted class for each input data sample and its true label. Then the 

cost function is calculated using all the examples in each batch of training data. For the 

loss function, the categorical cross-entropy loss is used which is a well-known loss 

function for classification tasks. Also, the ADAM optimizer is used to update the weights 

of the CNN-RNN architecture. 
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Figure 2-17 The proposed architecture of the CNN-RNN model for classification. 
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2.4. Results 

In this section, the overall performance of the proposed CNN-RNN architecture 

and the DCGAN data augmentation technique is explained. In order to evaluate the 

performance of the augmentation techniques used in this thesis, two scenarios are 

considered including the evaluation of the proposed CNN-RNN model using the original 

training data and the performance of the model using the augmented data added to the 

original data. Table 2-1 illustrates the classification accuracy in both scenarios. The 

accuracy of the model using the original data is 93.3% while using the augmented data 

adding to the original data could improve the accuracy of the model by 4.7%. This result 

indicates that using augmentation techniques has a significant impact on the accuracy of 

the model, concluding the fact that adding more data to the model would improve the 

performance of the overall model. Moreover, another implicit conclusion from the 

presented result is that the generated images using DCGAN have similar features to the 

original data and adding them to the original data would lead to improving the accuracy 

of the proposed model. 

To corroborate these findings, the overall accuracy and loss of the CNN-RNN 

model for training and validation datasets are presented in this thesis. The overall 

accuracy and loss of the CNN-RNN model for training and validation datasets are 

presented in Figure 2-18. Based on the results shown in Figure 2-18, the model loss and 

accuracy between the training and validation process are quite consistent. Although the 

accuracy and loss overfit slightly in the beginning, after epoch 40, as the training epochs 

go through, the training and validation loss are become closer, resulting in resolving the 

overfitting problem in the beginning. The fluctuations that happened in the accuracy and 

loss plots in Figure 2-18 are due to the batch ADAM optimizer which means that the 

training and validation data are batched and then feed to the model. 

Table 2-2 illustrates a comprehensive comparison of the proposed CNN-RNN 

model in this thesis and other state-of-the-art deep learning models presented in the 

literature including CNN, RNN, AlexNet, and GoogleNet on the same dataset. This table 

shows that the proposed CNN-RNN model is able to surpass other state-of-the-art 

models.  
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Table 2-1 Results of comparing the classifier’s accuracy when using original 
images or original and generated images. 

 Classification Accuracy (%) 

Original 93.3 

Original + Generated 98.0 

 

 

Figure 2-18 overall accuracy and loss 
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Table 2-2 Previous state-of-the-art ESC models vs Proposed model 

Framework 
Classification Accuracy 
(%) 

Ref. 

PiczakCNN 

AlexNet 

GoogleNet 

RNN 

MC-Net + LMC 

WCCGAN 

The proposed model 

73.7 

92 

93 

82.09 

95 

94 

98 

[18] 

[92] 

[92] 

[93] 

[94] 

[95] 

LMC: Log-Mel spectrogram + Spectral 
Contrast  

WCCGAN: Weighted Cycle-Consistent 
Generative Adversarial Network 

  

 

2.5. Conclusion  

In this chapter, a unified CNN-RNN structure is proposed to address the 

environmental sound classification task. Several deep learning techniques including 

transfer learning and data augmentation are used to improve the model performance. 

For data augmentation, a generative model using DCGAN is used to address the lack of 

data problem for environmental sound classification. This data augmentation method 

can produce spectrograms with similar structures to the training set. Applying a CNN-

RNN algorithm on a mix of the real dataset and generated images show that the DCGAN 

method has the ability to improve the performance of the environmental sound 

classification task. Experimental results on UrbanSound8K datasets demonstrate that 

the proposed approach achieves superior performance to the state-of-the-art methods. 
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Chapter 3. Sound Filtration 

3.1. Introduction 

People are living in noisy environments nowadays. In a noisy environment, it is 

not easy to focus, have a conversation or relax. Environmental noise, also known as 

noise pollution or sound pollution, is the propagation of noise with ranging impacts on 

human activity. Most of the environmental noises are considered harmful to a degree. 

The source of environmental noise is mainly caused by human activities, machines, 

transport, and so on. The environmental noises can be categorized into different groups 

including continuity (continuous and discrete), periodicity (periodic and aperiodic), 

probability (deterministic and random), and stationarity (stationary and non-stationary) 

[96].  

In the latest category, the stationary category, the main distinction between 

stationary and non-stationary sound is that the features of a stationary sound, such as 

frequency and spectral content, do not vary over time, whereas the features of a non-

stationary sound change with time. Examples of stationary sounds are engine, white 

noise, and air conditioning while speech, traffic noises, and washing machine noises are 

examples of non-stationary sounds. Most of the sounds in the environment are non-

stationary. Among non-stationary sounds, some of them are more complex and slightly 

different from others, such as speech, dog barking, and sirens. These sounds are highly 

dynamic since they have multiple frequency components in a short time interval (less 

than 30 ms), which makes them difficult to identify, understand, and analyze by 

computers. 

Several techniques are introduced to attenuate stationary and non-stationary 

noises in the real world. The main goal of these techniques is to take the audio signal 

from a microphone, which contains a mix of noise sound and desired sound, clean the 

mixed sound to get rid of the noise and send the cleaned sound to a speaker. The 

attenuating process traditionally is addressed using statistical signal processing tools 

[62]–[64]. However, they are not able to reduce non-stationary and dynamic noises due 

to their complex nature, and thus, the clean signal is partly corrupted due to the 

existence of the non-stationary sounds [97]. The state-of-the-art works in noise 
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attenuation and noise suppression are employed the unique characteristics and 

capabilities of the machine learning and deep learning techniques to address the 

problem with conventional signal processing approaches [67], [72], [98] . Figure 3-1 

shows the overall approach using deep learning-based techniques for noise reduction. In 

this figure, the noisy signal which contains a mixture of desired sound and noise is 

considered as the input sound. Then, features of the mixed sound are used to prepare 

the input data to be fed to the deep neural network. The deep neural network results in a 

clean signal, which only contains the desired sound. 

 

Figure 3-1 A schematic of deep learning-based techniques for noise reduction 

Although deep learning methods have shown impressive performance to remove 

stationary and non-stationary noises [71], [72], [97], compared to the traditional methods, 

there is still room to improve their performance and the quality of the resulted clean 

sound. Moreover, in terms of non-stationary sounds, due to their complexity and 

dynamic nature, there are few publications and efforts that successfully investigate the 

problem of noise attenuation with non-stationary sounds. In this chapter of the thesis, the 

effort is to well address this problem and investigate the intelligence approach 

considering the limitation in terms of quality and intelligibility of clean signal and real-time 

processing. The successfully applied strategies are evaluated to show the performance 

and the quality of the proposed techniques to address the limitations and improve the 

accuracy and the performance of the noise suppression strategies compared to previous 

works.  

In this chapter, a deep-learning-based architecture is proposed to address the 

environmental noise attenuation task. The proposed method employs signal processing 

and deep learning techniques to achieve superior performance in both noise reduction 

levels and speech quality levels. The main goal of this section is to address the existing 
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challenges in the area of noise reduction and speech enhancement which are mentioned 

as follows. 

• Noise reduction in complex noisy situations: The existing techniques for speech 

enhancement need to be improved in order to be effective on non-stationary 

noises with a complex and highly dynamic structure such as dog barking, siren, 

car horn, and a baby crying.  

• Speech quality: Existing techniques for speech enhancement in noisy 

environments corrupt the speech signal and decrease its intelligibility. In this 

thesis, signal processing tools are used along with powerful neural network 

models to address this problem. 

In the following, the proposed method, experimental settings, and obtained 

results are presented and discussed.  

3.2. Experimental Methodology 

In this section, the procedure of the speech enhancement algorithm based on the 

DNN network is explained. Figure 3-2 shows the overall block diagram for the entire 

system, including the pre-processing, the model structure, and the post-processing. 

According to Figure 3-2, a raw noise signal is added to a clean speech to construct the 

input to the algorithm. In this thesis, mixed-signal is considered as the combination of a 

noise signal and a clean speech. Then, the input signal passed through the pre-

processing box, proposed DNN architecture, and post-processing box in order to 

produce a clean signal as the output.  The pre-processing, the DNN architecture, and 

the post-processing steps are described in detail in the following sections. 
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Figure 3-2 The proposed speech denoising architecture 

3.2.1. Pre-processing  

Before the explanation of pre-processing box, the generated mixed signal is 

introduced. Figure 3-3 shows the mixed-signal generation process. The mixed-signal in 

the input of Figure 3-2 is generated using a combination of a clean speech and a noise 

signal which are assumed to be uncorrelated and can be formulated as, 

𝑋(𝑘) = 𝑆(𝑘) + G ∗ 𝑁(𝑘) (8) 
where 𝑋(𝑘) is the mixed-signal, 𝑆(𝑘) is the clean speech signal, 𝑁(𝑘) is the noise 

signal, G is the noise gain, and k is the discrete-time index.  The noise gain creates the 

various distributions of noise and clean signals in the mixture, resulting in various signal-

to-noise ratios (SNRs). These variants are considered to simulate a noisy real-world 

environment. The aim is to extract the signal 𝑆(𝑘) from the mixed-signal 𝑋(𝑘).  
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Figure 3-3 The mixing process of noise and clean signal 

In Figure 3-2, the pre-processing part is highlighted by a dashed red box filled 

with light red.  The first step of pre-processing part is Filter 1. This is a bandpass filter 

that is considered a passive attenuation gate for improving the quality or intelligibility of 

the mixed signal. This filter allows frequency range between 40 Hz and 40 kHz to pass 

and cuts off other frequencies outside this range. Suppressing the range of noises is 

considered to be useful since those do not exist in the human voice range [99].  

Human ears can tolerate a latency between 20-40 ms [100] and the system 

needs to be configured to have the latency in this range to work smoothly in real-time. 

Therefore, the next step is framing, where the filtered mix signal, 𝑋̂(𝑘), is divided into 

short-length frames. A-frame size is chosen such that the human auditory system cannot 

understand the associated delay in processing, decision making, and aversive sound 

suppression for each sound segment or frame. Then a Hanning window with 50% 

overlap is used to keep the information at the edge of the frames.   

In the signal processing context, the well-known Fast Fourier Transform (FFT) is 

commonly used to transfer a signal from the time domain into the frequency domain. The 

FFT provides amplitude and phase representation of a signal in the frequency 

domain. The amplitude is encoded as the magnitude of the complex number while the 
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phase is encoded as the angle. The following equations represent the relationship 

between the real and imaginary parts and with the amplitude and phase. 

𝑅𝑒𝑎𝑙 𝑃𝑎𝑟𝑡 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ×  𝐶𝑜𝑠(𝑃ℎ𝑎𝑠𝑒) (9) 

𝐼𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑃𝑎𝑟𝑡 = 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ×  𝑆𝑖𝑛(𝑃ℎ𝑎𝑠𝑒) (10) 

Figure 3-4 shows the relationship between amplitude and phase, with the 

imaginary and real parts of the complex number. Moreover, the concept of Inverse FFT 

(IFFT) is used in order to construct a time-domain signal from the imaginary and real 

part of the frequency domain representation of a signal. Therefore, given the magnitude 

and the phase of a signal in the frequency domain, the time domain signal can be 

calculated using the IFFT. 

 

Figure 3-4 The relationship between amplitude and phase of a signal in terms of a 
= real (Re) and b = imaginary (Im) parts.  

In this thesis, the Short Time Fourier Transform (STFT) which is a form of FFT 

with smaller time frames is used to convert the framed signal into the frequency domain 

to obtain audio features. STFT  is the most widely used technique which is able to 

represent features of both stationary and non-stationary sounds [101]. Figure 3-5 shows 
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the STFT of three noises including dog barking, siren, and engine. As shown in this 

figure, the sounds that we are dealing with have various range of frequencies. 

 

Figure 3-5 the FFT of three noises with different structures 

The STFT produces a complex matrix spectrogram that is linearly scaled and 

factored into a real-valued phase term and a complex-valued amplitude term [102].  

𝑋̂𝐹𝐹𝑇(𝑛, 𝑚) = ∑ 𝑥(𝑘 + 𝑛𝑁)𝑤(𝑘)𝑒−𝑗2𝜋𝑚𝑘 𝑁⁄

𝑁−1

𝑚=0

 
(11) 
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where 𝑛, 𝑚, 𝑁, and 𝑤 represent the frame index, the discrete-frequency index, the 

frame length, and the analysis window function, respectively. The polar form of STFT of 

the mixed signal is represented by, 

𝑋̂𝐹𝐹𝑇(𝑛, 𝑚) = |𝑋̂𝐹𝐹𝑇(𝑛, 𝑚)|𝑒𝑗∠𝑋̂𝐹𝐹𝑇(𝑛,𝑚) = 𝐹(𝑛, 𝑚) + 𝑗𝐴(𝑛, 𝑚) (12) 

where 𝐹(𝑛, 𝑚) are the amplitude and 𝐴(𝑛, 𝑚) is the phase.  

To prepare the features of mixed-signal and the target clean speech as the input 

and the output of the DNN model, the logarithm of the amplitudes 𝐴(𝑛, 𝑚) is calculated. 

𝐴(𝑛, 𝑚) represents the Log Power Spectrum (LPS) features of the mixed-signal and can 

be formulated by, 

𝐿𝑃𝑆 = log (
2

𝑁
𝐴(𝑛, 𝑚)) (13) 

where 𝑁 is the length of the signal frame. The LPS vector is normalized between 0 and 1 

to make the training process faster and they are fed to the DNN model as the input.  

3.2.2. DNN Model 

The DNN is introduced by an orange box in Figure 3-2. The DNN's input is the 

normalized and flattened LPS vector, which is the output of the pre-processing box. The 

DNN model is constructed such that its output is a predicted mask vector. The predicted 

mask is measured to extract the speech components in a time domain. In order to 

construct the output for the DNN architecture and the supervised noise attenuation task, 

the mask vectors are computed by dividing the squared absolute values of clean speech 

signal magnitudes by the squared sum of mixed-signal and clean signal magnitudes, 

using the following equation, 

𝑀(𝑘) = (
𝑆2(𝑛, 𝑚)

𝑆2(𝑛, 𝑚) + 𝑋2(𝑛, 𝑚)
)0.5 

(14) 

where the  𝑆2(𝑛, 𝑚) and 𝑋2(𝑛, 𝑚) are the energy of speech and mixed signals at the nth 

frame and mth frequency bin, respectively [65]. 
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The proposed DNN speech enhancement model architecture is illustrated in 

Figure 3-6. The model is a fully connected neural network including seven dense layers 

and two GRU layers. The first two layers are GRUs to extract information from 

sequential data and to preserve a memory from previous layers, as an inherent 

capability of the GRUs. Each GRU is then followed by a batch normalization to speed up 

the training process. In the proposed architecture, the last GRU layer is then followed by 

three double branches dense layers. The two branches include a branch consisting of a 

dense layer with an activation function, to extract features related to the nonlinear part of 

the feature map, and another branch consisting of a dense layer without an activation 

function, to obtain features related to the linear part of the feature map. To illustrate, the 

linear branch maintains information from the previous layer to the next layer. Therefore, 

using a linear and nonlinear activated branched avoids missing information, which is an 

inherent effect of using nonlinear activation functions.  

As is shown in  Figure 3-6, in the right direction, the inputs, which are the GRUs’ 

output features, are passed through a dense layer with the Leaky ReLU as a nonlinear 

activation function followed by batch normalization. In the same manner, at the left 

direction, the inputs are passed through a dense layer without an activation function 

followed by a batch normalization. The linear and nonlinear parts are then added 

together to create the final feature map in each step. This strategy is repeated three 

times over the rest of the DNN model to prepare the final feature map. Finally, in order to 

prepare the final output and the predicted masks, a dense layer is used to map the final 

features to the same dimension as the constructed mask vectors.  

The Mean Square Error (MSE) loss function, which is well-known for regression 

problems [103], is used to compute the squared error between the predictions and the 

real mask vectors. MSE is defined as, 

𝑀𝑆𝐸(𝑛) = 𝐸[(𝑆̂(𝑛)  − 𝑆(𝑛))2] (15) 

where 𝑆(𝑛) and 𝑆̂(𝑛) denote the real mask vector and its prediction in the n-th frame. 

Also, ADAM optimizer is used to solve the optimization algorithm and to update DNN 

architecture’s weights in GRUs and dense layers.  
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Figure 3-6 The DNN model structure for filtration 
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3.2.3. Post-processing  

In Figure 3-2, the post-processing part is highlighted by a dashed green box. 

Post-processing steps include the predicted mask modification, reconstruction, and 

tuning of the clean speech signal in the time domain. Instead of using the raw output of 

the DNN model, the mask vector is passed through filter 2, a Gaussian smooth function 

that is used for denoising the predicted mask vectors [104]. The level of smoothing is 

controlled by the standard deviation of the Gaussian number. The smoothed masked 

then is multiplied by the amplitude of the mixed signal to create the clean speech signal 

amplitudes, computed by, 

𝐴𝐶 = 𝑀 × 𝐴𝑀 (16) 

where 𝐴𝐶, 𝑀 and 𝐴𝑀 denote the predicted amplitude of clean signal, mask, and 

amplitude of mix signal. 

Up to this point, the amplitude of the clean speech signal is computed in the 

frequency domain. The phase of the clean speech and the mixed speech are considered 

the same and therefore, the phase of the clean speech can be extracted from the mixed-

signal and stored in order to construct the clean speech. To transform the clean signal to 

the time domain, the IFFT is used using the mixed-signal phase and computed 

amplitude from the post-processing step. During the IFFT process, the speech signal is 

reconstructed by vectorizing the complex part of the computed real and the imaginary 

values of the signal. This step is completed in the complex box in Figure 3-2. At the end, 

the predicted clean speech is passed through filter 3, which is a bandpass filter for a final 

tune to improve the quality of the predicted signal. 

3.2.4. Data Preparation for Noise Filtration Task  

The performance of the proposed architecture is examined using the Librispeech 

[105] and ESC-50 [106] datasets. The LibriSpeech dataset is a collection of 

approximately 1,000 hours of human speech and ESC-50 has 50 classes with 40 

samples in each class. 200 utterances from various English speakers (female and male) 

are randomly selected from the first dataset as the clean speech for training and testing 

purposes. For the noise dataset, the ESC-50 dataset, which includes stationary noises 
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(e.g. engine), non-stationary noises (e.g. vacuum cleaner), and highly dynamic noises 

(e.g. siren sounds) is employed. The reason for choosing ESC-50 as the noise signal 

dataset for the noise attenuation task is that this dataset includes most of the challenging 

sound for autistic individuals. The noise samples are selected such that they include a 

clear noise over the entire audio sample. Clean speech and noise signals are consisting 

of a vector representing the values over time and they are down-sampled to 8kHz to 

adjust the dataset size for training and also speed up the real-time processing practice. 

The selected noise and clean speech signals are added together with three different 

SNRs. This way, the architecture can be trained and learned from different noisy 

environments in terms of the power and intensity of the noise signal. The mixed signals 

are then framed and used as the input to the DNN model.  In this thesis, 20% of the 

created dataset is selected for validation. The model is trained for 100 epochs with an 

MSE function as a loss function using a batch size of 128. To reduce overfitting and 

improve generalization error, the dataset is shuffled and then fed to the model. 

Moreover, 20 unseen mixed signals are specified as the test set to evaluate the 

performance and assess the capability of the trained model.   

3.3. Simulation Results 

In this section, the simulation results of the proposed DNN architecture are 

presented. First, the visual representation of the predicted clean speech and the 

predicted masks are illustrated in order to visually see the performance and the 

effectiveness of the proposed model. Afterward, a comprehensive study is performed to 

evaluate the performance and the accuracy of the proposed DNN in this thesis and to 

compare it with other state-of-the-art methods available in the literature.  

To visually observe the experimental results, the spectrograms of the clean 

speech signal, the noise signal, the mixture of the speech signal with the noise at SNR 

of 0 dB, and the enhanced speech predicted by the proposed method in this thesis, are 

presented in Figure 3-7. According to Figure 3-7, it is observed that the proposed 

method effectively suppresses the background noise, and the predicted speech signal is 

close to the clean version. In highly dynamic noise structures such as dog barking and 

siren, eliminating the noise signal without any corruption to the speech signal is 

complicated and difficult. Figure 3-7 shows that the proposed method in this thesis is 
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capable of suppressing the highly dynamic noises and the resulted filtered speech is 

close to the clean speech spectrogram.  

Siren 

 

 

Engine 

 

 

Vacuum Cleaner 

 

 

Dog Barking 

 
 

Figure 3-7 Spectrogram performance of the proposed method for different noise 
structure types 
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To further discuss the effectiveness and capability of the proposed method, the 

estimated ratio mask vectors, which is the output of the DNN model, are compared with 

the computed ratio mask in equation 14, which are considered the real ratio mask 

vectors. Figure 3-8 shows four randomly selected samples of the estimated ratio mask 

vectors compared to the real ones computed directly from the clean reference and the 

mixed signals. The simulation results show that the predicted and real masks are very 

close to each other, which indicates the accuracy and performance of the proposed DNN 

model. According to Figure 3-8, the DNN model can predict the fluctuations in the ratio 

masks to generate a clean speech at the end of the process. 

Siren 

 

Engine 

 
 

Vacuum Cleaner  

 

 
Dog Barking 

 
Figure 3-8 A comparison between the estimated masks by the proposed method 

and the real masks 

To evaluate the performance of the proposed algorithm, four standard and most 

commonly used speech quality measurements are used.  
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• Perceptual Evaluation Speech Quality (PESQ):  this metric is used to 

evaluate speech quality, calculated by comparing the predicted and clean speech 

signals. PESQ is calculated as a linear combination of average disturbance values and 

average asymmetrical disturbance values between a reference signal and an estimated 

signal. Although it assesses the noise speech quality, some features such as loudness, 

loss, delay, and echo are not expressed in the PESQ score [107]. In the PESQ test, the 

representative values are from -0.5 to 4.5, demonstrating the minimum and maximum 

speech quality.  

• Short-Time Objective Intelligibility (STOI): reflects the improvement in 

speech intelligibility and has a strong correlation to subjective listening test scores [108]. 

STOI is based on an intermediate intelligibility measure for the short-time time-frequency 

domain and uses a simple Digital Fourier Transform (DFT)-based time-frequency  

decomposition [108]. STOI score ranges from 0 to 1 where a better speech intelligibility 

receives a higher STOI score. 

• Segmental Signal to Noise Ratio (Seg SNR): evaluates the overall 

speech quality and the performance of noise reduction. Seg SNR computes the 

segmental signal-to-noise ratio (SNR) in dB by comparing a noisy signal with a clean 

reference signal. The Seg SNR for a speech signal is formulated as follows, 

𝑆𝑒𝑔 𝑆𝑁𝑅 = 𝑚𝑒𝑎𝑛(10𝑙𝑜𝑔10

(
∑ 𝑥2(𝑛)𝑁

𝑛=1

∑ (𝑥(𝑛)−𝑥̂(𝑛))2𝑁
𝑛=1

)

) (17) 

where N is the length of the signal frame, x(n) is the clean speech signal and 𝑥̂(𝑛) is the 

enhanced or predicted speech signal  [109]. 

• The Log-Likelihood Ratio (LLR): represents the quality level of speech 

signals by measuring the difference between the linear prediction of the clean reference 

signal and the degraded signal  [110]. LLR score ranges from 0 to 2 where higher LLR 

scores mean better speech qualities. 

Table 3-1 illustrates the performance of the proposed DNN architecture for the 

noise attenuation task. The noise signals are selected such that they include various 

noise types including, highly dynamic noises (siren), non-stationary noises (vacuum 

cleaner), and stationary noises (engine). Dog barking is also considered the fourth noise 
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sample to show the algorithm’s performance in a difficult situation where the noise has 

structural similarity to the speech. This resemblance is notified from the spectrograms 

representing the clean speech and the dog bark in Figure 3-7. The clean speech and 

noise signals are mixed with four different SNRs, including, -3 dB, 0 dB, 3 dB, and 10 

dB, to comprise various noisy conditions. Table 3-1 presents the experimental results of 

the average performance based on PESQ, STOI, Seg SNR, and LLR scores on the 

selected test samples. For all these measurements, higher scores indicate better 

performances. According to Table 3-1, the simulation results show that the proposed 

method provides high speech intelligibility with significant speech quality improvements. 

The results indicate that the enhanced speech quality is the highest at 10dB and is 

degraded as it gets to -3dB. This is due to the noise level amplification, which illustrates 

the high power and intensity of the noise. Moreover, the results demonstrate that the 

proposed framework has significantly enhanced speech quality even at higher noise 

levels of -3dB and 0dB.  

To compare the simulation results with other existing methods, the Wiener 

filtering method [111] and an LSTM network [112] are simulated and the results are 

provided in the form of bar charts in Figure 3-9. According to this figure, the proposed 

method in this thesis has enhanced speech quality and intelligibility compared to those 

two methods in [111] and [112] which represents the effectiveness and reliability of the 

proposed method in suppressing different noises. In the stationary and non-stationary 

noises such as engine and vacuum cleaner, the simulation results show that the LSTM 

networks perform close to our method. Figure 3-9 shows that the Wiener filtering method 

and LSTM network do not have satisfactory performances in eliminating the complex 

noisy structures such as dog barking and siren. On the other hand, the proposed method 

in this thesis achieved a higher level of noise suppression for those complex conditions. 

According to Seg SNR and STOI scores, which are representing the noise reduction 

level and speech quality, the method here significantly improves the denoised speech 

signal and accomplishes a higher level of noise reduction compared to the other two 

methods in [111] and [112]. 
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Table 3-1 The performance measurements of the proposed method for different noise structure 
types 

 SNRs Test Results 

  PESQ STOI Seg SNR  LLR 

Siren 

-3 dB  

0 dB 

3 dB 

10 dB 

1.6162 

2.3564  

2.8372  

3.2567 

0.516 

0.6504  

0.668  

0.698  

1.2519 

3.1065 

3.7530 

3.9237 

1.2749 

1.5719 

1.6983 

1.8601 

Engine 

-3 dB  

0 dB 

3 dB 

10 dB 

1.5196 

2.4095 

2.6525 

3.1156 

0.6026 

0.7788 

0.7848 

0.8163 

2.5174 

4.2853 

4.7296 

4.8516 

1.3725 

1.6011 

1.6791 

1.8164 

Vacuum Cleaner 

-3 dB  

0 dB 

3 dB 

10 dB 

1.4998 

2.5080 

2.7352 

3.3297 

0.5576 

0.6804  

0.6941 

0.7116 

1.9869 

3.2365 

4.0709 

4.8583 

1.4671 

1.5697 

1.5738 

1.5764 

Dog Barking 

-3 dB  

0 dB 

3 dB 

10 dB 

1.8148 

2.4782 

2.7153 

3.1299 

0.5644 

0.6844  

0.6891 

0.7164 

1.4928 

3.8941 

4.1668 

4.8946 

1.3941 

1.4813 

1.5095 

1.5818 

 

  

  

Figure 3-9 Performance comparison of the proposed algorithms with other 
algorithms in terms of PESQ, STOI, Seg SNR and LLR scores. 
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3.4.  Conclusion 

This chapter proposes an innovative solution to address the speech 

enhancement problem using a DNN-based learning framework for real-time applications. 

The proposed framework receives a noisy speech signal as an input and extracts its 

features to feed to a DNN model. The proposed DNN model is designed and trained to 

generate a ratio mask to eliminate the background noise from the noisy speech signal. 

Signal processing techniques are utilized to increase speech quality and integrability 

before and after the DNN model. The proposed techniques and DNN model are applied 

to the Librispeech dataset for the clean speech sources and ESC-50 datasets for the 

noise sources. The simulation results indicate that the proposed method can remove the 

background noise from the speech signal, even in the presence of complex noisy 

conditions (e.g., unsteady real-world environments) and difficult noise types (non-

stationary and highly dynamic noises). Four speech quality measurements including 

PESQ, STOI, Seg SNR, and LLR are employed to evaluate the performance of the 

proposed method in terms of the noise reduction level, speech quality, and intelligibility. 

Moreover, the spectrograms and the predicted masks are provided to demonstrate the 

significant performance of the proposed technique under different circumstances from 

low to high SNRs. 
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Chapter 4. Integration of Sound Classification and 
Filtration 

4.1. Introduction 

The model inference is considered an important step in the production of 

machine learning and deep learning models. The model inference is generally referred 

to the process of using a trained model to infer a result from previously unseen data. At 

first glance, the training and model inference may seem to be similar, as in both cases 

data is fed through the model. However, in training, a model will process the data in 

order to update the learnable parameters of the model, reduce the cost function and 

evaluate the desired outputs to reach an acceptable level of accuracy and loss. In 

contrast, the model inference process is used to evaluate the ability and the 

performance of the model against a new set of data. Figure 4-1 shows the overall 

schematic of an inference structure. In this figure, in the training stage, the training 

dataset including input and labeled output data pairs is used to build a trained model 

which meets the modeling criteria such as accuracy and loss. After the model has been 

successfully trained, in the inference stage, the trained model is utilized to make a 

prediction based on new unseen data to evaluate the model in real applications. 

 

Figure 4-1 The overall schematic of an inference structure 
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For AI models, there are two types of inferences or model deployments including 

batch inference and real-time inference.  

• The batch inference is an asynchronous procedure that makes predictions based 

on a set of data for end-users or commercial applications such as text translation, 

accounting systems, and email tagging. These predictions are not required to be 

in real-time.  

• Real-time inference also known as on-demand predictions requires the model to 

make predictions immediately. This inference is useful for analyzing data from 

streaming and interactive applications such as robotic systems, speech 

recognition, and self-driving cars. 

Since human ears are highly sensitive to delay (less than 40ms latency), a real-

time inference is required for this application to identify and filter aversive sounds 

instantly. Therefore, the system needs to work super-fast in its computational and 

predicational processes. For real-time inference, there are several important metrics to 

optimize such as latency, throughput, and cost. Latency is the delay between a user's 

action and the response of the application to the user's action. Throughput is a measure 

of how many units of information a system can process in a given amount of time. Cost 

also includes the cost of providing powerful processors, memory, and network. In 

general, machine learning and deep learning applications aim to minimize latency and 

cost while maximizing throughput. 

Deep learning-based algorithms have achieved remarkable performance in 

various applications from computer vision to natural language processing. However, 

deep learning models require excessive computational power due to their number of 

layers, neurons, and layers’ structures. This makes the inference process complex for 

the deep learning model to be deployed in real-time and also increases the cost to 

provide such powerful processors.  

As it is mentioned early, in this project, the system needs to respond in less than 

40 ms, which includes recording data, executing inference, data pre-processing, model 

prediction, data post-processing, and returning the results to the system or application. 

Today’s mobile devices and CPUs cannot support this computation power in terms of 

latency and energy consumption. One approach to address the latency and power 
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requirement for this purpose is the use of accelerators such as Graphics Processing 

Units (GPUs) and Tensor Processing Units (TPUs). GPUs tend to be optimized for 

parallel throughput and are often used in training infrastructure. While TPUs are both 

useful in training and have advantages for large complex models and large batch sizes, 

especially during inference.  There are two ways to use an accelerator, i.e.  cloud 

computing and AI edge computing.  

• Cloud computing is the delivery of computing services including servers, storage, 

databases, networking, and software over the Internet (“the cloud”) to offer faster 

innovation.  Cloud-based system utilizes GPUs that work well in highly parallel 

applications in a data center.  

• AI edge computing refers to the deployment of AI applications on the devices - 

'on the edge'. It’s called “AI edge” because the AI processing computation is 

done near the user at the edge of the network, where the data is located, rather 

than cloud computing facility or private data center.   

In the edge devices such as mobile phones, the average GPU memory size is 

much smaller than the average GPU size in a data center such as Amazon Web 

Services (AWS) and Google Cloud. On the other hand, access to a limited GPU 

available on the device comes at a price and also can lead to a battery draining quickly. 

Therefore, deploying a deep learning model to a data center and then exposing it 

through an Application Programming Interface (API) can be a reasonable choice for 

inference. 

In this chapter, the integration of an aversive sound classifier and filter which are 

described in chapters 2 and 3, is presented. In the following, the framing strategy is 

explained to show how new samples are organized to make the system works in real-

time. Afterward, the integration procedure of the classifier and filter is explained. Then, 

the processing time and required specifications are presented. In the following, the 

application representation including the graphical user interface is shown. Afterward, 

several pilot sessions are conducted with autistic adults to examine the noise attenuation 

system introduced in this thesis in real-life. Finally, the conclusion is discussed. 
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4.2. Data Framing  

 Framing refers to the process of capturing data in short time intervals for further 

data processing, prediction, and inference. Operating in real-time requires a framing 

strategy such that the system could perform information processing in real-time using 

time-series data. In our application, the frequency representation of non-stationary and 

dynamic sounds such as Fast Fourier Transform (FFT) is not effective for a large-size 

signal since the spectral features in non-stationary signals change quickly over time. 

Therefore, data framing is required to split data for the use of FFT for feature extraction.  

 In this thesis, frame size is chosen very small such that the human cannot 

perceive the delay associated with processing, decision making, and aversive sound 

suppression for each sound segment or frame. This very small frame size is not capable 

of representing information and express a sound signature. both concerns including the 

delay and representing information can be addressed using a cumulative framing 

strategy. Figure 4-2 represents the cumulative framing strategy used in this thesis. 

 

Figure 4-2 The cumulative framing strategy used in this thesis 

According to Figure 4-2, a 16 ms frame size is used.  Each framed signal 

consists of 128 data samples with an 8 kHz sampling rate.  When a frame is recorded by 
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a microphone, the data preparation process is applied to the signal frame, in order to 

extract the required features. Since the extracted features are poor to represent the 

information contained in the frame, seven recorded frames are considered to be 

cumulated to represent meaningful information. Those frames are recorded by 

microphone, and each placed in a column of an input matrix. The input matrix size for 

the proposed deep neural network for the noise suppression task is 128 × 7. The 

created feature matrix is flattened to a vector and is fed to the neural network model. 

Afterward, a new frame of 128 data samples is recorded by microphone and after the 

preparation process required for feature extraction, is placed in the last column on the 

feature matrix. Accordingly, the first column on the feature matrix is removed. The first 6 

columns of the new matrix are the same as the last 6 columns of the previous matrix.  

For the classification task, the input matrix size is 128 × 173 which is required to 

create the three-dimensional feature map. To create this feature map, the signal frame 

of 128 × 1 is transferred to a mel-spectrogram with 128 mels which creates the first 

column of 128 × 1 in the feature map matrix. 173 frames are added together to create 

the final first dimension of the feature map. The percussive and harmonic mel 

spectrograms are also formed to create the final three-dimensional feature as the input 

to the CNN-RNN model. After each recording, the first column will be removed, and all 

the columns are shifted one space to the left. The new input vector will be fed to the 

model and this process is repeated. 

In order to efficiently employ the memory usage and the storage space for the 

system, and accelerate the data processing phase, the recorded data is stored once in 

the memory and the data preparation for classification and filtration performs in parallel. 

Also, the shared feature characteristics in classification and filtration are calculated and 

stored once to be used in both models. This framing cumulative strategy provides the 

system with an accelerated speed compared to sequential computation and comes to 

the system with the ability to work in real-time with an unnoticeable delay. Additionally, 

keeping the data samples from the previous steps, provides the model with meaningful 

features and information, compared to providing the system only with the new data. 
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4.3. Model structure and task modification for individuals 
with ASD 

The goal of this thesis is to design a framework as an intervention technique for 

individuals with ASD to attenuate selected aversive sounds. The classifier introduced in 

Chapter 2 was originally trained to classify the environmental aversive sounds into 10 

different classes including drilling, dog barking, siren, air conditioner, car horn, children 

playing, engine idling, gunshot, jackhammer, and street music. The classifier was trained 

on UrbanSound8K. This way, the introduced CNN-RNN model has a unique capability 

compared to other state-of-the-art methods and machine learning structures in the 

literature in terms of effectiveness, accuracy, and performance. In this chapter, three 

aversive sounds including siren, dog barking, and drilling are selected for the inference 

and integration of the classification and filtration task. These are the three top aversive 

sounds among autistic individuals  [8]. Therefore, the classifier output is modified to 

return the probability of the existence of these three aversive sounds and the other 

outputs are considered non-aversive. Moreover, over one hour of recorded 

environmental non-aversive sounds is added to the training and evaluation datasets in 

order to enrich the UrbanSound8K dataset. Therefore, the output of the classifier 

contains four classes including siren, dog barking, drilling, and non-aversive. 

The filtration introduced in Chapter 3 is used to suppress the aversive sound in 

the mixed-signal received from the environment. The proposed deep neural network 

model has been trained on the ESC-50 dataset which contains 50 classes of aversive 

sounds, with 40 samples in each class. Also, 200 utterances from various English 

speakers (female and male) have been randomly selected from the LibriSpeech dataset 

as the clean speech to be added to the ESC-50 data set to create the mixed-signal for 

training and testing purposes.  

Based on comprehensive research and study by [8], individuals with ASD want to 

attenuate selective aversive sounds. For example, an individual may be required to 

attenuate siren and dog barking even though the other individual may find the dog 

barking a neutral sound and requires filtering siren and drilling. Therefore, a single filter 

that works in every situation may not  be effective. In general, sound sensitivity in 

individuals with ASD is a subjective problem. As a result, in order to address the problem 

of aversive sound attenuation for individuals with ASD, the general application filter 
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introduced in Chapter 3 is divided into three different sub-filters, which are able to 

attenuate the aversive sounds including siren, dog barking, and drilling, separately. 

Three sub-filters are developed using the deep neural network architecture introduced in 

Chapter 3 using transfer learning and fine-tuned by three different datasets which 

contain a mixed signal that is constructed using siren, dog barking, and drilling. 

Therefore, the modified classifier is capable of predicting the probability of each of the 

three introduced aversive sounds in the environmental sound, and the resulting 

probability is used as an indicator to activate different filters. 

4.4. Integration of classification and filtration 

In this section, the modified filtration and classification algorithms are integrated 

to build the desired framework, which is capable of classifying and filtering the selected 

aversive sounds, simultaneously. Figure 4-3 shows the overall block diagram of the 

entire system, integrating the classification and filtration tasks. The first step in this 

process is to receive the environmental sound through the microphone. The microphone 

records a small sound frame (16 ms) which consists of 128 data samples using an 8 kHz 

sampling rate. The cumulative framing strategy is then used to prepare the appropriate 

data structure and correct data size which is used in the classification and filtration 

blocks. Afterward, the structured data is fed to the classification and filtration 

simultaneously. However, the filtration is out of the loop until an aversive sound is 

identified by the classifier. The input to the classifier is used to create the appropriate 

feature map for the classification task. The classifier, which contains the CNN-RNN 

network, determines whether the environmental sound contains siren, dog barking, 

drilling, or it is a non-aversive sound. If the classifier specifies the environmental sound 

as a non-aversive sound, the input sound from the microphone is directly sent to the 

speaker. Otherwise, the classifier tags the environmental sound as one of the aversive 

sound classes, and returns the probability of each aversive sound. In this scenario, the 

classifier output is used to activate the filtration stage and choose the appropriate trained 

deep neural network model, based on the identified class, in order to predict mask 

vectors for clean signal creation. Based on Figure 4-3, the selected deep neural network 

model uses the extracted features, from the cumulative framing strategy block, as the 

input to the model to predict the mask vectors. Mask vectors that contain the amplitudes 

of the clean signal are then post-processed and using the phase of the original 
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environment signal, and the IFFT technique, to form the clean signal. The clean signal is 

then passed through the speaker for the user and the system also notifies the user about 

the presence of an aversive sound with its class name. This notification occurs through 

the graphical user interface described in the next section. 

 

Figure 4-3 The integration of Classifier and Filter 

4.5. Graphical User Interface (GUI) Design 

In this section, a graphical user interface (GUI) is designed using the Python 

Tkinter library to make communication between users and the software. The interface is 

responsible for all communications, settings, customizations, and user-defined 

operations. The GUI can be compatible with every operating system including Windows, 

MacOS, IOS, and Android. The background of the GUI is designed like a smartwatch to 

show that this software can be implemented into a smartwatch. Figure 4-4 shows the 

GUI's first and second pages. In Figure 4-4 top view, the status bar “Normal” indicates 

the system mode. This status bar alerts the user about the presence of the aversive 

sound and active operation by the system such as suppressing or attenuating the sound. 

For example, the operation modes can be, “Normal”, meaning that there is no aversive 

sound identified by the system, and “Aversive”, for when an aversive sound being 

identified by the system. In the Normal mode, the filtration algorithm is not activated, so 
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the speakers play intact environmental sounds. Users are able to turn the volume of 

upcoming environmental sounds on the speakers up and down using the ambient 

volume slider.  

An activation slider is configured to manually turn on and off the filtration 

algorithm. This slider is configured for situations where the system misidentifies a sound 

as an aversive sound and provides the user with the ability to inactivate the filtration. 

“ON” mode is shown in green color and “OFF” mode is shown in red color. As another 

optional feature of this software, the GUI provides playing music.  In case the system 

fails to identify an aversive sound in the environment, the user can play music, white 

noise, or any preferred sounds to mask the aversive sound. Users can also control the 

volume of the music using the music volume slider. 

The Settings button is configured for users’ customizations such as choosing 

their preferred music and selecting the aversive sounds (see below). The exit buttons 

will close the entire program. The software also presents the time in hours and minutes 

using the clock status bar.  

A  

 
B 
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Figure 4-4 A)The GUI first page B) The GUI second page 

Figure 4-4 B shows the second page of the GUI. This page is activated by 

pressing the setting button on the first page. On this page, the users are able to choose 

and upload their preferred music and sound to be stored in the memory, select  the 

aversive sounds to be suppressed, and also choose their preferred music or some pre-

uploaded neutral sounds such as white noise, rain, wind, ocean, and waves to be 

played. Users can upload their favorite music by using the browse button on the right. 

The save button in green color will save all the changes by the user and update the 

system. The exit buttons on this page will close the second page and turn back to the 

first page. Figure 4-5 shows the options menu in which the users can define what kind of 

sounds they are willing to hear facing an aversive sound.  
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Figure 4-5 The favorite sounds option menu 

4.6. Experimental Setup and Simulation Results 

The proposed intervention in this thesis was designed to capture a very small 

chunk of environmental sound (16 ms) in order to operate in real-time. As mentioned, 

human ears are sensitive to delay and tolerate a latency of less than 40 ms. The 

processing time to execute the pre-processing and post-processing steps including 

feature map creation and clean signal reconstruction is 1-2 ms using 4 CPUs with 16 GB 

RAM. The required processing time to record sample data is 16 ms, while the overall 

time required for sample data recording and processing steps is around 17 to 18 ms. 

Even though this number is less than the acceptable delay for human ears, the 

processing time of the predictions in deep neural network algorithms is still needed to 

add to the required time for recording the data samples and processing steps. Due to the 

high performance and the accuracy of the proposed deep learning architects in this 

thesis, their several complex layers, neurons, and millions of parameters to generate 

such an outcome, are computationally intense. Considering the two deep neural network 

models for classification and filtration in the process, they add a huge delay of around 

400 ms to the system which is unacceptable. Real-time deep learning-based processing 

is expensive to achieve considering the associated delay in the system unless the 
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platform contains an accelerator like GPU and TPU, which could speed up the 

processing and reduce the computational time.   

As mentioned earlier, cloud-based deployment and AI edge deployment are used 

to address the deployment of deep learning models. In this thesis, the cloud-based 

approach is used due to its advantages over the AI edge deployment. The cloud 

computing advantages are high-speed computation, scalability, simple deployment, 

painless try and error, trouble-free debugging, unlimited storage capacity, backup and 

restore data, data loss prevention, and efficiency and cost reduction. Even though the AI 

edge deployment also has many advantages in the current system application, 

considering the resources and implementation time on AI edge, the cloud computing is 

considered more efficient.  

Nowadays, there are several deep learning cloud services available for training, 

inference, and deployment assignments. The most commonly used service providers are 

AWS, Google Cloud, and Microsoft Azure. In comparison, AWS is now running for 

almost 7 years and as a result, they have more capital, more infrastructure, and better 

and more scalable services available for users compared to other web services. In this 

thesis, an Amazon EC2 G3 service is used which is the latest generation of Amazon 

EC2 GPU graphics instances that deliver a powerful combination of CPU, host memory, 

and GPU capacity. G3 instances provide access to NVIDIA Tesla M60 GPUs, each with 

up to 2,048 parallel processing cores, and 8 GB of GPU memory. Considering high-

speed internet access, the system introduced in this thesis takes around 65-75 ms to 

perform all the processing steps, data recording, and inference using the deep neural 

network models which are less than the previous processing time of 400 ms. As it is 

clear from the simulation results, the use of AWS EC2 with 32 CPUs and 8 GB GPU 

RAM reduces the processing time by the order of 6 compared to an operating system 

using 4 CPUs with 16 GB RAM. Even though the processing time is still out of the range 

of human ears' latency tolerance, the system is successfully deployed on a cloud service 

with small noticeable latency. While not ideal, this latency was small enough that we 

proceeded with initial testing sessions with individuals with ASD in order to examine the 

performance of the system. This improvement in reducing latency is a huge step toward 

the deployment of the system to operate in real-time for real applications. The 

processing time is also affected by the high-speed internet availability and it is expected 
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that AI edge deployment solve the latency problem entirely due to its proven 

performance in other commercial applications. 

4.7. Testing Sessions Experiment and Results 

In order to examine the noise attenuation system introduced in this thesis in real-

life, testing sessions were scheduled with adults on the autism spectrum who self-

reported a history of negative reactions to sound. For this purpose, a comprehensive test 

scenario was designed, and the documentation of a use case was prepared. The testing 

scenarios document describes an action the user may undertake with the system. It also 

describes a situation when the user may find themselves in while using that system. In 

other words, the scenario document is an instruction for the testing sessions, the 

participant specifications, individual requirements, measurable and un-measurable 

metrics, result normalization, and system performance assessment. The aim of testing 

sessions was to find out information on participants’ comfort levels while listening to 

various sounds with and without interventions.  According to the document, different 

scenarios were considered to be tested on the participant. To illustrate, a summary of 

the steps during each session is provided. The pre-session interviews and preparation 

steps are ignored in the summary below.  

• Step 1: Play the siren and dog barking in order to get to the comfortable listening 

level of the participant. The participant wears headphones connected to the 

laptop. The test taker plays the sounds each in 5s through zoom. Zoom is 

running on iPad with speakers on. The test takers increase the volume from 0 

upwards until the participant raises hand to indicate the loudest comfortable 

listening level. 

• Step 2: Play each aversive sound and get comfort ratings incrementally. 

Participants will rate their comfort with the aversive sounds in 10 increasing 

increments in volume from 0 to the max comfortable listening level found in step 

1. 

• Step 3: Using the aversive sound filtration tool, to find the loudest comfortable 

listening level for music. Participants will adjust the volume and find the loudest 

volume that is still comfortable for them for the music sound, starting from zero. 
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The music is played continuously through the platform on the laptop, through the 

earphones worn by the participant. Participants can manually adjust the volume 

slider to increase/decrease the volume.  After they find their comfort level, they 

will pause the music and go to the next step. The system records the settings 

automatically. 

• Step 4: Using the aversive sound filtration tool, to find the loudest comfortable 

listening level for white noise. Participants will adjust the volume and find the 

loudest volume that is still comfortable for them for the white noise sound, 

starting from zero. The white noise is played continuously through the platform 

on the laptop, through the earphones worn by the participant. Participants can 

manually adjust the volume slider to increase/decrease the volume.  After they 

find their comfort level, they will pause the white noise and go to the next step. 

The system records the settings automatically. 

• Step 5: Test the effect of masking the siren with music. The test taker plays the 

aversive sound over Zoom on the iPad at volume specified in Step 1 and then 

participants press the play button for music simultaneously at the level specified 

in Step 3. Then the participant pauses the music and provide a comfort rating. 

• Step 6: Test the effect of masking the siren with white noise. The test taker plays 

the aversive sound over Zoom on the iPad at volume specified in Step 1 and 

then participants press the play button for white noise simultaneously at the level 

specified in Step 4. Then the participant pauses the music and provide a comfort 

rating.  

• Step 7: Test the effect of masking the siren using the filter without speech. The 

test taker plays aversive sound through Zoom on the iPad; the participant then 

presses the filtration button, which filters out the aversive sound from the signal 

being delivered to the ears.  The participant then provides a comfort rating. 

• Step 8: Test the effect of masking the siren using the filter with speech. The test 

taker plays aversive sound + speech through Zoom on the iPad; the participant 

then presses the filtration button, which filters out the aversive sound from the 

signal being delivered to the ears.  The participant then provides a comfort rating. 
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• Step 9: Repeat steps for the dog barking sound 

• Step 10: Qualitative feedback 

In this experiment, four different sounds were included: two neutral sounds (birds 

and rain) [113], and two aversive sounds (siren and dog barking). The neutral sounds 

were included between the aversive sounds in step 1 in order to make the participant 

comfortable during the testing session.  

For this pilot test, eight participants with ASD were recruited to evaluate the 

performance of the system. Inclusion criteria for the participant included: a history of 

sensitivity to sounds, participant’s normal hearing (thresholds ≤ 20 dB HL between 250 

to 8000 Hz), and a verbal IQ over 85 for participating in a testing session. The 

demographical information of the participants is presented in Table 4-1.  

Table 4-1 The demographical information of the participants 

Participant 
number 

1 2 3 4 5 6 7 8 

Age (years) 29 25 50 19 19 21 46 31 

Primary 
Language 

English English English English English English Spanish English 

Highest 
Education 

Bachelor 
Degree 

Bachelor 
Degree 

Half a 
Bachelor 
Degree 

College 
Certificate 

Elementary 
School 

Elementary 
School 

Bachelor 
Degree 

Bachelor 
Degree 

Living 
Situation 

With 
roommate 

- Alone 
With 

parents 
With 

roommate 
With 

parents 

With 
spouse/ 

partner 

Alone 

Due to the covid-19 pandemic, the testing sessions are held remotely at first 

(n=6). With the ease of Covid-19 restrictions, as of the preparation of this thesis in the 

summer of 2022, two in-person sessions were also run based on the participant’s 

preference. Remote sessions were conducted using a web conferencing application and 

each participant received the testing materials including a windows laptop, a headphone, 

and a tablet. The tablet was used as an external camera so the experimenter could talk 

to the participants while the testing session was conducted. The sessions were run by 

two experimenters. One experimenter provided instructions to participants and was 

responsible for communicating with participants.  The second experimenter (myself) was 

responsible for session setup, software operation, solving any technical issues during 

the test, and performing the test. 
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At each step, participants were asked to rate their comfort level based on a 4-

point Likert rating scale, illustrated in Table 4-2 (very comfortable = 1; very 

uncomfortable = 4). 

Table 4-2 Comfort rate based on a 4-point Likert rating scale 

 Comfort Rate 

Very Comfortable 1 

Somewhat Comfortable 2 

Somewhat Uncomfortable 3 

Very Uncomfortable 4 

There was substantial variability in comfort ratings between participants. For 

example, one participant found the volume 20% of the maximum volume the highest 

level of uncomfortability and therefore, the comfort level would be 4 for this experiment. 

Another participant found the volume 100% of the maximum volume somewhat 

comfortable or very comfortable.  

Table 4-3 shows the average comfort rating for different scenarios for the eight 

individuals with ASD participating in testing sessions. According to this table, the 

average comfort rate for siren and dog barking, at the maximum level defined by the 

participant, without any intervention technique is about 3.7. It means that the average 

participants are very uncomfortable while the siren and dog barking are playing through 

the microphone. When music and white noise were played to mask the siren and dog 

barking, average comfort rating changed to around 3, showing that on average 

participants’ comfort improved somewhat but that they were still somewhat 

uncomfortable. The use of filtration technique (no speech present) changed comfort 

ratings to an average 2.0, indicating that the average participants became somewhat 

comfortable when the filtration technique was applied (when there was no speech in the 

sound playing through the microphone).  The last scenario (filtration with speech 

present) was to use the filter while there was speech in the original signal. According to 

Table 4-3, the average comfort rating was 3.2. Even though this comfort rate is better 

than the original comfort level for unfiltered aversive sounds ((3.7), it is not satisfactory to 

be very comfortable for the participant. A comprehensive study based on qualitative 

feedback has been performed in order to figure out the reasons. While the participants 

are comfortable with the level of aversive sound filtration, the high level of rating is due 

to the unpleasant speech. A couple of participants find the speech synthetic while others 
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find the speech subject boring and uninteresting. There were cases that report speech 

intelligibility as the reason for a high rating. In the next rounds of testing sessions, more 

participants need to be recruited and more scenarios need to be defined to diverse the 

comfort rates and to further study the performance of the system in real-life. 

 
Table 4-3 Average comfort rate for different scenarios 

 Average Comfort Rate 

Comfort rate with siren 3.7 

Comfort rate with dog barking 3.6 

  

Comfort rate with siren and music masking  2.7 

Comfort rate with siren and white-noise masking  2.7 

Comfort rate with siren and noise suppression tool without 
speech 2.1 

Comfort rate with siren and noise suppression tool with speech 3.3 

  

Comfort rate with dog bark and music masking  3.5 

Comfort rate with dog bark and white-noise masking 2.7 

Comfort rate with dog bark and noise suppression tool without 
speech 2 

Comfort rate with dog bark and filtration tool with speech 3.1 

4.8. Conclusion 

In this chapter, the classification and filtration algorithm designed in chapters 2 

and 3 are integrated to present the integrated system structure. The input environmental 

sound is presented using a cumulative framing strategy to save memory and 

computation costs. Then, the modified version of the classification and filtration task 

specified for individuals with ASD is explained. Afterward, the integrated system is 

introduced and different scenarios which may happen in the operation are explained. 

The designed GUI that interacts between the backend software and the user has been 

explained. The deployment strategy is then introduced and the simulation results along 

with the testing session results are described. According to the simulation results and 

testing sessions, the proposed integrated system is able to work in real-time using the 

cloud computation technique and is able to identify the aversive sound in the 

environment and filter the predicted aversive sound through the filtration process. 
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Moreover, most of the experiment performed in this thesis shows that the participants 

who are suffered from ASD find the system introduced here as a successful strategy to 

filter the aversive sound and increase their comfort level while using the presented 

software. 
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Chapter 5. Conclusion 

5.1. Introduction 

In this thesis, a new intervention technique is proposed to ameliorate auditory 

sensitivity in children with ASD. The proposed technique employs a deep learning-based 

algorithm to identify the specified aversive sounds in the environment and a noise 

filtering system to eliminate the intensity of the identified sounds. The specified aversive 

sounds are among the sounds that are commonly reported among the ASD population. 

The proposed deep learning-based technique receives a mixed signal consisting of the 

aversive sound such as siren and non-aversive sounds such as speech as an input and 

extracts its features to feed to the identification model for classification. In chapter 2, the 

detailed description of the proposed classification algorithm is provided. The proposed 

classifier is a unified CNN-RNN framework for environmental sound classification which 

benefits from the advantages of CNN and RNN. The input of the algorithm is a three-

dimensional feature map including mel-spectrogram and decomposing audio time-series 

data into harmonic and percussive components, and the output is the predicted class.  

Furthermore, several deep learning techniques including transfer learning and data 

augmentation are used to improve the model performance. For data augmentation, a 

generative model using DCGAN is used to address the lack of data problem for 

environmental sound classification. This data augmentation method can produce 

spectrograms with similar structures to the original dataset. The performance of the 

proposed classification algorithm is examined using the UrbanSound8K dataset and 

achieved an overall accuracy of 98% to detect a target sound in the environment and is 

able to surpass other state-of-the-art algorithms. 

When an aversive sound is detected by the classifier, the filtering system will be 

activated to remove the aversive part of the signal. In chapter 3, the detailed description 

of the proposed filtration algorithm is provided. The proposed algorithm is a DNN-based 

framework which employs deep learning and signal processing techniques to suppress 

the specified aversive sound from a mixed signal and pass the non-aversive sounds. 

The algorithm receives a mixed signal as an input and extracts its features to feed to a 

DNN model. The proposed DNN model is designed and trained to generate a ratio mask 

in order to create the clean signal. Signal processing techniques are utilized to increase 
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the output sound quality and integrability before and after the DNN model. The proposed 

techniques and DNN model are trained on the Librispeech dataset as the clean speech 

sources and the ESC-50 dataset as the aversive sound sources. The simulation results 

indicate that the proposed method can remove the aversive sound from the mixed 

signal, even in the presence of complex noisy conditions (variant SNRs) and difficult 

noise types (non-stationary and highly dynamic noises). 

In Chapter 4, the proposed classification and filtration algorithms are integrated 

to present the overall intervention technique. This system is able to identify an aversive 

sound in the environment, alert the user of the presence of the aversive sound and filter 

the aversive sound while passing non-aversive sounds. The entire system is formed in 

the shape of a GUI to communicate with users and give them the ability to customize 

and control the system. The designed software is using a framing strategy which able 

the system to work in real-time. The software is deployed on the AWS data center using 

a GPU and is compatible with every operating system. To evaluate the performance of 

the aversive sound attenuation software on auditory sensitivity in real-life, several testing 

sessions are conducted in collaboration with individuals with ASD to assess the 

functionality of the proposed software in the real setting and obtain valuable feedback for 

further improvement. Eight participants with ASD and sound sensitivity history are 

recruited to examine the performance of the system. The details of testing session steps 

are provided in Chapter 4. According to the session results, the proposed intervention 

technique is able to ameliorate comfort level in the presence of aversive sounds.  

5.2. Future Works 

A list of possible expansions to the current work is as follows: 

1. In Chapter 2 and 3, the classification and filtration models can be trained on more 

data samples to diversify the dataset and improve the model performance in real 

field. The dataset can be captured from the real environment or in an acoustic 

laboratory.  

2. In chapter 4, the existing software can be implemented into a standalone device 

on the edge using an artificial intelligence (AI) chip to avoid network latency and 

increase data security. Some of the AI chips utilize GPU, CPU, memory, power 
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management and high-speed interfaces to enable faster training and 

deployment. 

3. In Chapter 4, a long-term field testing can be conducted with children with ASD in 

their daily lives to understand the impact of the device to improve the quality of 

life for the children and their families. Improving the quality of life is achieved by 

removing some of the barriers to increase social interactions and participation 

and improve mental health.   

 

 

 

 

 

 

 

 

 



77 

References 

[1] B. Haesen, B. Boets, and J. Wagemans, “A review of behavioural and 
electrophysiological studies on auditory processing and speech perception in 
autism spectrum disorders,” Research in Autism Spectrum Disorders, vol. 5, no. 
2. Elsevier, pp. 701–714, Apr. 01, 2011, doi: 10.1016/j.rasd.2010.11.006. 

[2] “Autism Prevalence Higher in CDC’s ADDM Network | CDC Online Newsroom | 
CDC.” https://www.cdc.gov/media/releases/2021/p1202-autism.html (accessed 
Mar. 14, 2022). 

[3] A. Ben-Sasson, S. A. Cermak, G. I. Orsmond, H. Tager-Flusberg, M. B. Kadlec, 
and A. S. Carter, “Sensory clusters of toddlers with autism spectrum disorders: 
differences in affective symptoms,” J. Child Psychol. Psychiatry., vol. 49, no. 8, 
pp. 817–825, Aug. 2008, doi: 10.1111/J.1469-7610.2008.01899.X. 

[4] E. J. Marco, L. B. N. Hinkley, S. S. Hill, and S. S. Nagarajan, “Sensory Processing 
in Autism: A Review of Neurophysiologic Findings,” Pediatr. Res., vol. 69, no. 5 Pt 
2, p. 48R, May 2011, doi: 10.1203/PDR.0B013E3182130C54. 

[5] G. Dawson and R. Watling, “Interventions to facilitate auditory, visual, and motor 
integration in autism: a review of the evidence,” J. Autism Dev. Disord., vol. 30, 
no. 5, pp. 415–421, 2000, doi: 10.1023/A:1005547422749. 

[6] J. Kern, M. Trivedi, C. Garver, … B. G.-, and  undefined 2006, “The pattern of 
sensory processing abnormalities in autism,” journals.sagepub.com, vol. 10, no. 5, 
pp. 480–494, Sep. 2006, doi: 10.1177/1362361306066564. 

[7] M. W. M. Kuiper, E. W. M. Verhoeven, and H. M. Geurts, “Stop Making Noise! 
Auditory Sensitivity in Adults with an Autism Spectrum Disorder Diagnosis: 
Physiological Habituation and Subjective Detection Thresholds,” J. Autism Dev. 
Disord., vol. 49, no. 5, pp. 2116–2128, May 2019, doi: 10.1007/s10803-019-
03890-9. 

[8] N. E. Scheerer, T. Q. Boucher, B. Bahmei, G. Iarocci, S. Arzanpour, and E. 
Birmingham, “Family Experiences of Decreased Sound Tolerance in ASD,” J. 
Autism Dev. Disord., 2021, doi: 10.1007/S10803-021-05282-4. 

[9] Z. J. Williams, J. L. He, C. J. Cascio, and T. G. Woynaroski, “A review of 
decreased sound tolerance in autism: Definitions, phenomenology, and potential 
mechanisms,” Neurosci. Biobehav. Rev., vol. 121, pp. 1–17, Feb. 2021, doi: 
10.1016/J.NEUBIOREV.2020.11.030. 

[10] S. Khalfa et al., “Increased perception of loudness in autism,” Hear. Res., vol. 
198, no. 1–2, pp. 87–92, Dec. 2004, doi: 10.1016/J.HEARES.2004.07.006. 

[11] M. M. Phillips, D. P., & Carr, “Disturbances of loudness perception,” J. Am. Acad. 



78 

Audiol., vol. 9, no. 5, pp. 371–379, 1998. 

[12] J. J. Brout et al., “Investigating Misophonia: A Review of the Empirical Literature, 
Clinical Implications, and a Research Agenda,” Front. Neurosci., vol. 0, no. FEB, 
p. 36, Feb. 2018, doi: 10.3389/FNINS.2018.00036. 

[13] J. Claiborn, J. M. Claiborn, T. H. Dozier, S. L. Hart, and J. Lee, “SELF-
IDENTIFIED MISOPHONIA PHENOMENOLOGY, IMPACT, AND CLINICAL 
CORRELATES,” Psychol. Thought, vol. 13, no. 2, pp. 349–375, Oct. 2020, doi: 
10.37708/psyct.v13i2.454. 

[14] P. Jastreboff, M. J.-S. in Hearing, and  undefined 2014, “Treatments for 
decreased sound tolerance (hyperacusis and misophonia),” Citeseer, Accessed: 
Jun. 23, 2021. [Online]. Available: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1067.3711&rep=rep1&t
ype=pdf. 

[15] H. Weber, K. Pfadenhauer, M. Stöhr, and A. Rösler, “Central hyperacusis with 
phonophobia in multiple sclerosis,” Mult. Scler., vol. 8, no. 6, pp. 505–509, Dec. 
2002, doi: 10.1191/1352458502ms814oa. 

[16] J. Law, E. Rubenstein, … A. M.-P. A., and  undefined 2016, “Auditory sensitivity 
issues in children with autism spectrum disorders: Characteristics and burden,” 
iancommunity.org, Accessed: Nov. 15, 2021. [Online]. Available: 
https://iancommunity.org/sites/default/files/galleries/conference-
presentations/Law_PAS_2016.pdf. 

[17] E. Boucher, T. Q., Scheerer, N. E., Iarocci, G., Bahmei, B., Arzanpour, S., & 
Birmingham, “Misophonia, hyperacusis, and the relationship with quality of life in 
autistic and non-autistic adults.” 

[18] K. P.-2015 I. 25th I. W. on and  undefined 2015, “Environmental sound 
classification with convolutional neural networks,” ieeexplore.ieee.org, Accessed: 
Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7324337/?casa_token=7jlPqDKatO
AAAAAA:ookWSDS23gdvKhT_6k0JUb4b271LnXDf92PPgUttb15kAtOf9H8d9btlg
95_8fkU9cC1NVk24xI. 

[19] H. B. Sailor, D. M. Agrawal, and H. A. Patil, “Unsupervised filterbank learning 
using Convolutional Restricted Boltzmann Machine for environmental sound 
classification,” in Proceedings of the Annual Conference of the International 
Speech Communication Association, INTERSPEECH, 2017, vol. 2017-August, 
pp. 3107–3111, doi: 10.21437/Interspeech.2017-831. 

[20] D. Yu and L. Deng, Automatic Speech Recognition. London: Springer London, 
2015. 

[21] N. Shankar, G. S. Bhat, and I. M. S. Panahi, “Efficient two-microphone speech 
enhancement using basic recurrent neural network cell for hearing and hearing 



79 

aids,” J. Acoust. Soc. Am., vol. 148, no. 1, pp. 389–400, Jul. 2020, doi: 
10.1121/10.0001600. 

[22] H. K. Maganti, D. Gatica-Perez, and I. McCowan, “Speech enhancement and 
recognition in meetings with an audio-visual sensor array,” IEEE Trans. Audio, 
Speech Lang. Process., vol. 15, no. 8, pp. 2257–2269, Sep. 2007, doi: 
10.1109/TASL.2007.906197. 

[23] S. Duan, J. Zhang, P. Roe, and M. Towsey, “A survey of tagging techniques for 
music, speech and environmental sound,” Artif. Intell. Rev., vol. 42, no. 4, pp. 
637–661, Dec. 2014, doi: 10.1007/s10462-012-9362-y. 

[24] E. Alexandre, L. Cuadra, … M. R.-I. T. on, and  undefined 2007, “Feature 
selection for sound classification in hearing aids through restricted search driven 
by genetic algorithms,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. 
Available: 
https://ieeexplore.ieee.org/abstract/document/4317557/?casa_token=veVuJSfdLz
EAAAAA:GAxDr0zhvT97eqmA3kCU0bm4K_gSP0WeVjvt2BiMYtwBew_PsOnf5z
mNc6ToVwfTL1Ko-EGgHbw. 

[25] D. Mital, G. L.-R. and A. Systems, and  undefined 1989, “A voice-activated robot 
with artificial intelligence,” Elsevier, Accessed: Jun. 23, 2021. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/092188908990033X. 

[26] K. Łopatka, P. Zwan, and A. Czyzewski, “Dangerous sound event recognition 
using support vector machine classifiers,” Adv. Intell. Soft Comput., vol. 80, pp. 
49–57, 2010, doi: 10.1007/978-3-642-14989-4_5. 

[27] D. Barchiesi, D. Giannoulis, … D. S.-I. S., and  undefined 2015, “Acoustic scene 
classification: Classifying environments from the sounds they produce,” 
ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7078982/?casa_token=HdGKDdUX
1Z4AAAAA:9arCAXTbDchg7og9wlGRUlQhgmvvlW6yYhZbGkdT9D4F5kTCro6Ty
7FwBX1if2rbvhAfR_ng758. 

[28] F. González-Hernández, L. S.-F.-A. Acoustics, and  undefined 2017, “Marine 
mammal sound classification based on a parallel recognition model and octave 
analysis,” Elsevier, Accessed: Jun. 23, 2021. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S0003682X16305254. 

[29] L. Ballan, A. Bazzica, … M. B.-… on M. and, and  undefined 2009, “Deep 
networks for audio event classification in soccer videos,” ieeexplore.ieee.org, 
Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5202537/?casa_token=njtjCErHyQ
wAAAAA:JOoxPtFuD1LhvO1VpSFMFTWHCfkJkk2LPYmx8kP_eHR3nkamo2RiL
s_CexQLzNKnMOEwgPylmPU. 

[30] M. Vacher, J.-F. Serignat, and S. Chaillol, “Sound Classification in a Smart Room 
Environment: an Approach using GMM and HMM Methods,” 2007. Accessed: 



80 

Jun. 23, 2021. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00957418. 

[31] B. Kostek, P. Szczuko, P. Zwan, and P. Dalka, “Processing of musical data 
employing rough sets and artificial neural networks,” Lect. Notes Comput. Sci. 
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3400 
LNCS, pp. 112–133, 2005, doi: 10.1007/11427834_5. 

[32] E. Pyshkin and A. Kuznetsov, “Searching for music: from melodies in mind to the 
resources on the web,” 2010. Accessed: Jun. 23, 2021. [Online]. Available: 
http://code.google.com/p/musicip-libofa. 

[33] A. Mesaros, T. Heittola, O. Dikmen, and T. Virtanen, “Sound event detection in 
real life recordings using coupled matrix factorization of spectral representations 
and class activity annotations,” in ICASSP, IEEE International Conference on 
Acoustics, Speech and Signal Processing - Proceedings, Aug. 2015, vol. 2015-
August, pp. 151–155, doi: 10.1109/ICASSP.2015.7177950. 

[34] J. Salamon, J. B.-2015 I. I. C. on, and  undefined 2015, “Unsupervised feature 
learning for urban sound classification,” ieeexplore.ieee.org, Accessed: Jun. 23, 
2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7177954/?casa_token=3_4ovfK8hB
AAAAAA:yEJuw8aJsr4ZmGjYPLAyaCU5PtrYgElXwxISLNsoJQM1QUn-DU-
e3p9vX5RCQ8e1E1rBN4Kt7x8. 

[35] J. Geiger, K. H.-2015 23rd E. S. Processing, and  undefined 2015, “Improving 
event detection for audio surveillance using gabor filterbank features,” 
ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7362476/?casa_token=vCQ3z1UB
B4oAAAAA:PFoamBSdpzJxfXEjK0KzEgZktXjv9ha8SS4ywoByReNItgKzFLSyLTJ
D_5IvjCIiL_b7E446vto. 

[36] S. Sameh and Z. Lachiri, “Multiclass support vector machines for environmental 
sounds classification in visual domain based on log-Gabor filters,” Int. J. Speech 
Technol., vol. 16, no. 2, pp. 203–213, Jun. 2013, doi: 10.1007/s10772-012-9174-
0. 

[37] F. Su, L. Yang, T. Lu, and G. Wang, “Environmental sound classification for scene 
recognition using local discriminant bases and HMM,” in MM’11 - Proceedings of 
the 2011 ACM Multimedia Conference and Co-Located Workshops, 2011, pp. 
1389–1392, doi: 10.1145/2072298.2072022. 

[38] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, “Context-dependent sound 
event detection,” Eurasip J. Audio, Speech, Music Process., vol. 2013, no. 1, 
2013, doi: 10.1186/1687-4722-2013-1. 

[39] L. Lu, H. Jiang, and H. Zhang, “A robust audio classification and segmentation 
method,” in Proceedings of the ninth ACM international conference on Multimedia  
- MULTIMEDIA ’01, 2001, p. 203, doi: 10.1145/500141.500173. 



81 

[40] V. Peltonen, J. Tuomi, A. K.-… S. Processing, and  undefined 2002, 
“Computational auditory scene recognition,” ieeexplore.ieee.org, Accessed: Jun. 
23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5745009/?casa_token=bOtjAnnBqz
MAAAAA:x1HUaK5GdEppbKqqUhAe-40GO1CFBh_un5RbCq1cyrQIBITJrwx-
nl7ACDsBdkgSstay60-PMlQ. 

[41] B. K.-P. of the IEEE and  undefined 1986, “Spectral analysis and discrimination by 
zero-crossings,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/1457931/?casa_token=FpyxTnikTD
QAAAAA:lOA5iKh1usYSDj6w4EydO6VzVWvGO49zmNyBMr5DxvDi68iXQm25Lq
a5X8Dmw6eOarBkhK7t6sE. 

[42] J. Markel and A. Gray, Linear prediction of speech. 2013. 

[43] T. Zhang, C. K.-I. T. on speech and audio, and  undefined 2001, “Audio content 
analysis for online audiovisual data segmentation and classification,” 
ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/917689/?casa_token=pNKYcrT2in0
AAAAA:a60XhdyRsWpXnyxpnFo4cKdQESENa9jAFJKRxwcAf50TE8IBYXmB_2L
JWWuPmkXOlzO6zKmugDY. 

[44] G. Tzanetakis, P. C.-I. T. on speech and, and  undefined 2002, “Musical genre 
classification of audio signals,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. 
[Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/1021072/?casa_token=IbQJn1O5a
FUAAAAA:FNU5YBY6E6QS9yv583pcN1a3260SwiLYOJ_qC18Tzvg2ToLU1d1rI4
HrRKTMRAkl0cgExpvvmXc. 

[45] S. Chu, S. Narayanan, C. K.-I. T. on Audio, and  undefined 2009, “Environmental 
sound recognition with time–frequency audio features,” ieeexplore.ieee.org, 
Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5109766/?casa_token=44P1Rm-
XuDMAAAAA:1x0QJoOFELJ4w0ta_u-b2MCbYrT-ajiwC5-
i5_7suBxDCNloxWZiH21AfNh_qiDn5n42K-oJMrs. 

[46] H. Lu, H. Zhang, and A. Nayak, “A Deep Neural Network for Audio Classification 
with a Classifier Attention Mechanism,” Jun. 2020, Accessed: Jun. 23, 2021. 
[Online]. Available: http://arxiv.org/abs/2006.09815. 

[47] J. Salamon, J. B.-I. S. P. Letters, and  undefined 2017, “Deep convolutional neural 
networks and data augmentation for environmental sound classification,” 
ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7829341/?casa_token=spe1dJbHw
zAAAAAA:OWTZs8w60PHZkTqKCmjcPYRUwz-ETB59nM9yEA0jJTGBYo-
84grtlKpNj9EZTV_R--JDBFRJj8Q. 

[48] C. Villanueva, J. Vincent, A. Slowinski, and M.-P. Hosseini, “Respiratory Sound 
Classification Using Long-Short Term Memory.” Accessed: Jun. 23, 2021. 



82 

[Online]. Available: https://arxiv.org/abs/2008.02900. 

[49] M. D. R, A. M. Kavitkar, and V. Soumya, “Sound Recognition Using Recurrent 
Neural Network,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 4, pp. 815–819, 
2018. 

[50] F. Roche, T. Hueber, S. Limier, and L. Girin, “Autoencoders for music sound 
modeling: a comparison of linear, shallow, deep, recurrent and variational 
models,” Proc. Sound Music Comput. Conf., pp. 415–422, Jun. 2018, Accessed: 
Jun. 23, 2021. [Online]. Available: http://arxiv.org/abs/1806.04096. 

[51] T. V. and H. H. O. Gencoglu, “Recognition of acoustic events using deep neural 
networks | IEEE Conference Publication | IEEE Xplore.” 
https://ieeexplore.ieee.org/abstract/document/6952140?casa_token=TypXI0mEwv
wAAAAA:uggA6ERZl0-
aNcxrPyUOIy7ilfkZSHYIaqBoyuAzRg9bsHxq43WxXWRH1rW-u-
4OiBW93kCiTGE (accessed Jun. 23, 2021). 

[52] H. H. and T. V. E. Cakir, T. Heittola, “Polyphonic sound event detection using 
multi label deep neural networks,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. 
[Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7280624/?casa_token=qcsc1OQYjn
kAAAAA:_6dAMjEltRP-RtM1gJE-4tN_rGLQo8u7PpYRGR2ilOapCJ1sFTO-
vZjzlz3KHcLSUPErOXd2gNY. 

[53] E. Cakır, G. Parascandolo, T. H.-… on Audio,  undefined Speech, and  undefined 
2017, “Convolutional recurrent neural networks for polyphonic sound event 
detection,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7933050/?casa_token=X3IMPWMT
trsAAAAA:EranRFJYXYIPJJkRszqQfJ747N8Zsa2attiXYNiBN1ygkzMKsn0le5S9E
z1Z3DKTOibv7Lkb8X0. 

[54] A. Graves, A. Mohamed, G. H.-2013 I. international, and  undefined 2013, 
“Speech recognition with deep recurrent neural networks,” ieeexplore.ieee.org, 
Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/6638947/?casa_token=lHGs3SD9Q
LwAAAAA:JEkFg6oP7UVFJ5AG3rUDWb0Ut5qdi4-Zmd-
Ue6hsWEL72yxMTbTfSxHiwNIbwve4He5CennsiqM. 

[55] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neural networks for 
polyphonic sound event detection in real life recordings,” in ICASSP, IEEE 
International Conference on Acoustics, Speech and Signal Processing - 
Proceedings, May 2016, vol. 2016-May, pp. 6440–6444, doi: 
10.1109/ICASSP.2016.7472917. 

[56] D. Tang, B. Qin, and T. Liu, “Document Modeling with Gated Recurrent Neural 
Network for Sentiment Classification,” Association for Computational Linguistics, 
2015. Accessed: Jun. 23, 2021. [Online]. Available: http://ir.hit.edu.cn/. 



83 

[57] Z. Zuo et al., “Convolutional Recurrent Neural Networks: Learning Spatial 
Dependencies for Image Representation.” Accessed: Jun. 23, 2021. [Online]. 
Available: https://www.cv-
foundation.org/openaccess/content_cvpr_workshops_2015/W03/html/Zuo_Convol
utional_Recurrent_Neural_2015_CVPR_paper.html. 

[58] S. Sigtia, E. Benetos, S. D.-I. T. on, and  undefined 2016, “An end-to-end neural 
network for polyphonic piano music transcription,” ieeexplore.ieee.org, Accessed: 
Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7416164/?casa_token=GNWdyEP
M-dcAAAAA:vZUD-
okHEA6ecRaJSQ4sl08q_f2XiAdtHCvvzP49vm1WGKfuvjfBEuJ3hlGTMHJvi5GUz
506FtI. 

[59] Y. Liu, X. Zhu, Z. Qin, and J. Li, “Emotion Classification with Data Augmentation 
Using Generative Adversarial Networks ‘Prediction of Sea Level of East Coast of 
Britain’ View project Biological Image Processing and Analysis View project 
Emotion Classification with Data Augmentation Using Generative Adversarial 
Networks,” Springer, vol. 10939 LNAI, pp. 349–360, 2018, doi: 10.1007/978-3-
319-93040-4_28. 

[60] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with 
deep convolutional generative adversarial networks,” Nov. 2016, Accessed: Jun. 
23, 2021. [Online]. Available: https://arxiv.org/abs/1511.06434v2. 

[61] I. J. Goodfellow et al., “Generative Adversarial Nets.” Accessed: Jun. 23, 2021. 
[Online]. Available: http://www.github.com/goodfeli/adversarial. 

[62] R. Talmon, I. Cohen, and S. Gannot, “Transient Noise Reduction Using Nonlocal 
Diffusion Filters,” IEEE Trans. Audio, Speech Lang. Process., vol. 19, no. 6, pp. 
1584–1599, 2011, doi: 10.1109/TASL.2010.2093651. 

[63] R. Talmon, I. Cohen, S. G.-2011 I. International, and  undefined 2011, “Clustering 
and suppression of transient noise in speech signals using diffusion maps,” 
ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/5947500/?casa_token=_Kf5nJUjwS
8AAAAA:lWp_Me42lTGcFWzC9hVvP0wIfbEEvX21SBJRVyYjRNtLiL_2nVI-
egObC_bVRGolA_WovBCauNY. 

[64] K. Cao and M. Wang, “Transient noise suppression algorithm in speech system 
ARTICLES YOU MAY BE INTERESTED IN,” aip.scitation.org, vol. 1864, p. 
20006, Jul. 2017, doi: 10.1063/1.4992823. 

[65] R. Ullah, M. S. Islam, Z. Ye, and M. Asif, “Semi-supervised transient noise 
suppression using OMLSA and SNMF algorithms,” Appl. Acoust., vol. 170, p. 
107533, Dec. 2020, doi: 10.1016/j.apacoust.2020.107533. 

[66] N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and unsupervised 
speech enhancement using nonnegative matrix factorization,” IEEE Trans. Audio, 



84 

Speech Lang. Process., vol. 21, no. 10, pp. 2140–2151, 2013, doi: 
10.1109/TASL.2013.2270369. 

[67] S. Tamura and A. Waibel, “NOISE REDUCTION USING CONNECTIONIST 
MODELS.,” in ICASSP, IEEE International Conference on Acoustics, Speech and 
Signal Processing - Proceedings, 1988, pp. 553–556, doi: 
10.1109/icassp.1988.196643. 

[68] S. D. Kamath and P. C. Loizou, “A MULTI-BAND SPECTRAL SUBTRACTION 
METHOD FOR ENHANCING SPEECH CORRUPTED BY COLORED NOISE.” 
Accessed: Jun. 23, 2021. [Online]. Available: 
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.4102&rep=rep1&typ
e=pdf. 

[69] P. S.-1996 I. I. C. on Acoustics and  undefined 1996, “Speech enhancement 
based on a priori signal to noise estimation,” ieeexplore.ieee.org, Accessed: Jun. 
23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/543199/?casa_token=fOmqul4Ofe
MAAAAA:1sgmyVnyzsjB1JabY3HKOSQvx_jo_VJ3wxaufL5G0ZzKbTieEopmxXH
_6Nb8RSWnowB_2ReenRY. 

[70] J. Lim, A. O.-I. T. on Acoustics,  undefined Speech, and  undefined 1978, “All-pole 
modeling of degraded speech,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. 
[Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/1163086/?casa_token=dkMatbPwgj
MAAAAA:9ppqKkHF2yjVpPm0u6ayGWHGtT0BiA2C8ioH5geBGs22y8m2VupSB
W1SR8gzohB7EoxgdAiPbww. 

[71] Y. Xu, J. Du, L. Dai, C. L.-I. T. on Audio, and  undefined 2014, “A regression 
approach to speech enhancement based on deep neural networks,” 
ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/6932438/?casa_token=o95kQhdsCf
MAAAAA:UG36qiH0_BRd4E06HzOWJ35nG_P7xS9Yrwh9FGt_U14i8QugzjI3Xm
phdrKbdOSTMjFIHfibSCQ. 

[72] M. Nikzad, A. Nicolson, Y. Gao, J. Zhou, K. K. Paliwal, and F. Shang, “Deep 
Residual-Dense Lattice Network for Speech Enhancement,” Proc. AAAI Conf. 
Artif. Intell., vol. 34, no. 05, pp. 8552–8559, Apr. 2020, doi: 
10.1609/aaai.v34i05.6377. 

[73] M. Strake, B. Defraene, K. Fluyt, W. Tirry, and T. Fingscheidt, “Speech 
enhancement by LSTM-based noise suppression followed by CNN-based speech 
restoration,” EURASIP J. Adv. Signal Process., vol. 2020, no. 1, Dec. 2020, doi: 
10.1186/s13634-020-00707-1. 

[74] Y. Hu et al., “DCCRN: Deep complex convolution recurrent network for phase-
aware speech enhancement,” in Proceedings of the Annual Conference of the 
International Speech Communication Association, INTERSPEECH, 2020, vol. 
2020-October, pp. 2472–2476, doi: 10.21437/Interspeech.2020-2537. 



85 

[75] Y. Tsao, S. Matsuda, X. Lu, and C. Hori, “Speech enhancement based on deep 
denoising Auto-Encoder Speech Enhancement Based on Deep Denoising 
Autoencoder,” 2013. Accessed: Jun. 23, 2021. [Online]. Available: 
https://www.researchgate.net/publication/283600839. 

[76] S. Fu, C. Liao, Y. T.-I. S. P. Letters, and  undefined 2019, “Learning with learned 
loss function: Speech enhancement with quality-net to improve perceptual 
evaluation of speech quality,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. 
[Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/8902088/?casa_token=cAlRcuSZC
ZwAAAAA:jgzfMcYD1sEomMV678hOCy7kllFuTUV8m41AmEgNXExHb9Z8KmXZ
_-zybSM85tqWKtmJeEWOuJ0. 

[77] Y. Xia, S. Braun, C. Reddy, … H. D.-I. 2020-2020, and  undefined 2020, 
“Weighted speech distortion losses for neural-network-based real-time speech 
enhancement,” ieeexplore.ieee.org, Accessed: Jun. 23, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/9054254/?casa_token=8fEvcswgev
AAAAAA:x42tZaHD-GGCSws7JSak1zbli-
HimNSfE6BMrF4y0NMwVWq0FG4dYEmJSp9r27m3n0tdmIjGcMw. 

[78] L. Deng, D. Yu, L. Deng, and D. Yu, “Deep Learning: Methods and Applications,” 
Found. Trends R Signal Process., vol. 7, pp. 197–387, 2013, doi: 
10.1561/2000000039. 

[79] I. Tabian, H. Fu, and Z. S. Khodaei, “A Convolutional Neural Network for Impact 
Detection and Characterization of Complex Composite Structures,” Sensors 2019, 
Vol. 19, Page 4933, vol. 19, no. 22, p. 4933, Nov. 2019, doi: 10.3390/S19224933. 

[80] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “CNN-RNN: A Unified 
Framework for Multi-label Image Classification,” 2016. 

[81] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., 
vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735. 

[82] K. Cho et al., “Learning Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation.” Accessed: Jun. 24, 2021. [Online]. Available: 
https://arxiv.org/abs/1406.1078. 

[83] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” pp. 248–255, Mar. 2010, doi: 
10.1109/CVPR.2009.5206848. 

[84] C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. 
Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June-2015, pp. 1–9, Oct. 2015, 
doi: 10.1109/CVPR.2015.7298594. 

[85] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. 
Track Proc., Sep. 2014, Accessed: Jan. 30, 2022. [Online]. Available: 



86 

https://arxiv.org/abs/1409.1556v6. 

[86] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image 
Recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 
2016-December, pp. 770–778, Dec. 2015, doi: 10.48550/arxiv.1512.03385. 

[87] S. Alvarez-buylla Puente, “Single and Multi-Label Environmental Sound 
Classification Using Convolutional Neural Networks Master’s thesis in the 
Programme Sound and Vibration,” 2018. Accessed: Jun. 24, 2021. [Online]. 
Available: https://odr.chalmers.se/handle/20.500.12380/255604. 

[88] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for 
Deep Learning,” J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi: 
10.1186/S40537-019-0197-0/FIGURES/33. 

[89] D. Sarkar, R. Bali, and T. Ghosh, “Hands-on transfer learning with Python : 
implement advanced deep learning and neural network models using TensorFlow 
and Keras.” 

[90] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift,” 32nd Int. Conf. Mach. Learn. ICML 
2015, vol. 1, pp. 448–456, Feb. 2015, doi: 10.48550/arxiv.1502.03167. 

[91] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” Dec. 
2015, Accessed: Jun. 24, 2021. [Online]. Available: 
https://arxiv.org/abs/1412.6980v9. 

[92] V. Boddapati, A. Petef, J. Rasmusson, and L. Lundberg, “Classifying 
environmental sounds using image recognition networks,” Procedia Comput. Sci., 
vol. 112, pp. 2048–2056, Jan. 2017, doi: 10.1016/J.PROCS.2017.08.250. 

[93] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated 
Recurrent Neural Networks on Sequence Modeling,” Dec. 2014, Accessed: Jun. 
24, 2021. [Online]. Available: http://arxiv.org/abs/1412.3555. 

[94] Y. Su, K. Zhang, J. Wang, and K. Madani, “Environment Sound Classification 
Using a Two-Stream CNN Based on Decision-Level Fusion,” Sensors 2019, Vol. 
19, Page 1733, vol. 19, no. 7, p. 1733, Apr. 2019, doi: 10.3390/S19071733. 

[95] M. Esmaeilpour, P. Cardinal, and A. Lameiras Koerich, “Unsupervised feature 
learning for environmental sound classification using Weighted Cycle-Consistent 
Generative Adversarial Network,” Appl. Soft Comput., vol. 86, p. 105912, Jan. 
2020, doi: 10.1016/J.ASOC.2019.105912. 

[96] “Difference Between Stationary and Non-Stationary Signals.” 
https://askanydifference.com/difference-between-stationary-and-non-stationary-
signals/ (accessed Jun. 27, 2022). 



87 

[97] N. Pan, J. Chen, and B. H. F. Juang, “Comparative study of deep learning based 
and traditional single-channel noise-reduction algorithms,” 2019 Asia-Pacific 
Signal Inf. Process. Assoc. Annu. Summit Conf. APSIPA ASC 2019, pp. 1880–
1884, Nov. 2019, doi: 10.1109/APSIPAASC47483.2019.9023278. 

[98] L. Xu, Z. Wei, S. F. A. Zaidi, B. Ren, and J. Yang, “Speech enhancement based 
on nonnegative matrix factorization in constant-Q frequency domain,” Appl. 
Acoust., vol. 174, p. 107732, Mar. 2021, doi: 
10.1016/J.APACOUST.2020.107732. 

[99] B. Kirubagari, R. S.-B. I. J. of, and  undefined 2012, “A Noval Approach in Speech 
Enhancement for Reducing Noise Using Bandpass Filter and Spectral 
Subtraction,” journal.bonfring.org, Accessed: Jun. 24, 2021. [Online]. Available: 
http://www.journal.bonfring.org/abstract.php?id=6&archiveid=109. 

[100] M. A. Stone and B. C. J. Moore, “Tolerable hearing aid delays. I. Estimation of 
limits imposed by the auditory path alone using simulated hearing losses,” Ear 
Hear., vol. 20, no. 3, pp. 182–192, Jun. 1999, doi: 10.1097/00003446-199906000-
00002. 

[101] I. Y. Soon and S. N. Koh, “Speech Enhancement Using 2-D Fourier Transform,” 
IEEE Trans. Speech Audio Process., vol. 11, no. 6, pp. 717–724, 2003, doi: 
10.1109/TSA.2003.816063. 

[102] S. Kelkar, … L. G.-I. T. on, and  undefined 1983, “An extension of Parseval’s 
theorem and its use in calculating transient energy in the frequency domain,” 
ieeexplore.ieee.org, Accessed: Jun. 24, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/4180434/?casa_token=u5_qN2iFIN
8AAAAA:Ii_WskxUv5B2pyaKU5nD-
e2zrjcKJ3YCBgGVRJUmPxGGWBK19HiCf4ftDtGQmVHEj5C7oZGl28I. 

[103] J. Fürnkranz et al., “Mean Squared Error,” Encycl. Mach. Learn., pp. 653–653, 
2011, doi: 10.1007/978-0-387-30164-8_528. 

[104] A. Singh and J. Singh, “Comparative Analysis of Gaussian Filter with Wavelet 
Denoising for Various Noises Present in Images,” Indian J. Sci. Technol., vol. 9, 
no. 47, 2016, doi: 10.17485/ijst/2016/v9i47/106843. 

[105] V. Panayotov, G. Chen, … D. P.-2015 I. international, and  undefined 2015, 
“Librispeech: an asr corpus based on public domain audio books,” 
ieeexplore.ieee.org, Accessed: Jun. 24, 2021. [Online]. Available: 
https://ieeexplore.ieee.org/abstract/document/7178964/?casa_token=rz40qCHe1b
AAAAAA:azelbtYhDFYyLAcif0miodEmrZguoeZvwzH_6HsJyLvHEQarTwV6mkJ48
HPhKZvb_0dqfvnqcYI. 

[106] K. J. Piczak, “ESC: Dataset for environmental sound classification,” in MM 2015 - 
Proceedings of the 2015 ACM Multimedia Conference, Oct. 2015, pp. 1015–1018, 
doi: 10.1145/2733373.2806390. 



88 

[107] M. Gogate, K. Dashtipour, A. Adeel, and A. Hussain, “CochleaNet: A robust 
language-independent audio-visual model for real-time speech enhancement,” Inf. 
Fusion, vol. 63, pp. 273–285, Nov. 2020, doi: 10.1016/j.inffus.2020.04.001. 

[108] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-time objective 
intelligibility measure for time-frequency weighted noisy speech,” in ICASSP, 
IEEE International Conference on Acoustics, Speech and Signal Processing - 
Proceedings, 2010, pp. 4214–4217, doi: 10.1109/ICASSP.2010.5495701. 

[109] Q. Huang, C. Bao, X. Wang, and Y. Xiang, “Speech enhancement method based 
on multi-band excitation model,” Appl. Acoust., vol. 163, p. 107236, Jun. 2020, 
doi: 10.1016/j.apacoust.2020.107236. 

[110] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures for speech 
enhancement,” IEEE Trans. Audio, Speech Lang. Process., vol. 16, no. 1, pp. 
229–238, Jan. 2008, doi: 10.1109/TASL.2007.911054. 

[111] T. V. Sreenivas and P. Kirnapure, “Codebook constrained wiener filtering for 
speech enhancement,” IEEE Trans. Speech Audio Process., vol. 4, no. 5, pp. 
383–389, 1996, doi: 10.1109/89.536932. 

[112] N. L. Westhausen and B. T. Meyer, “Dual-Signal Transformation LSTM Network 
for Real-Time Noise Suppression,” Proc. Annu. Conf. Int. Speech Commun. 
Assoc. INTERSPEECH, vol. 2020-October, pp. 2477–2481, May 2020, Accessed: 
Jun. 24, 2021. [Online]. Available: http://arxiv.org/abs/2005.07551. 

[113] W. Yang et al., “Affective auditory stimulus database: An expanded version of the 
International Affective Digitized Sounds (IADS-E),” Behav. Res. Methods, vol. 50, 
no. 4, pp. 1415–1429, Aug. 2018, doi: 10.3758/S13428-018-1027-6/TABLES/8. 

 
 




