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Abstract

In this thesis, we describe the first-ever large-scale computational analysis of the partially-
deciphered proto-Elamite (PE) script. This script was used to write economic accounts
which follow a very regular “spreadsheet” structure incorporating many numerals. This sets
PE apart from prose corpora which have been considered in prior decipherment work, in
ways that both enable and require exploration of new models and methodologies.

In close collaboration with domain experts, we provide a thorough survey of this corpus
and answer longstanding questions about its content. We describe novel approaches to
multi-modal representation learning, which combine visual information from a VAE-inspired
encoder with contextual features from a neural language model. We apply these models to
evaluate hypotheses about the script’s underlying character inventory, which remains very
uncertain. By analyzing the representations learned by these models, we also deepen our
understanding of the relationships between a set of visually complex signs known as complex
graphemes, and discover a strict grammar which appears to govern their construction.

We apply a novel variant of the bootstrapping classification algorithm to disambiguate
numeric notations with uncertain magnitudes. This enables the first-ever statistical analysis
of the corpus’s numeric content, and of the relationships between the numeric and linguistic
parts of these documents. Given that numeral notations comprise more than half of the
attested corpus, this represents a significant advance in our understanding of the script.

By applying sequence models to study the internal structure of these documents, we inde-
pendently replicate claims about a structure called the “header”, and adduce new evidence
about the size of headers and their distribution across the corpus.

In addition to these main results, we also describe a number of small, focused investigations
into word order, the presence of affixal morphology, and other minor features of the texts.

Keywords: natural language processing; machine learning; multi-modal representation
learning; archaeological decipherment; proto-elamite
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Chapter 1

Introduction

Proto-Elamite is an undeciphered script from the late 4th and early 3rd millennium BCE,
recorded on clay accounting tablets first unearthed by Scheil (1900). Despite being known for
over a century, and subject to analysis by a host of experts over that time (Scheil 1905; Brice
1963; Meriggi 1971; Amiet 1972; Friberg 1978; Desset 2012; Dahl 2019 inter conplures alios)
this script remains undeciphered, and is among the largest-known undeciphered corpora
remaining from the ancient world.

Past work on this corpus, even that undertaken in recent years (e.g. Kelley 2018), has
focused on manual analysis, and attempts at automation have been few and rudimentary
(Kelley, pers. comm.). At the same time, much work in computational decipherment has
focused on simple alphabetic ciphers or on replicating successful manual decipherments:
these tasks are artificially simple compared to de novo decipherment of ancient material,
and do not trivially generalize to this more challenging setting. Moreover, the proto-Elamite
script is speculated to be semasiographic to a greater extent than it is glottographic; in
other words, it may not significantly represent the sound or structure of any particular
linguistic utterance, so much as it encodes symbols with conventional meanings but no truly
“linguistic” content (Damerow 1999; following the terminology of Gorman and Sproat 2023,
this would make proto-Elamite a symbol system which never developed into a true writing
system).

This thesis seeks to bridge the gap between computational and archaeological approaches
to decipherment. We identify areas where tools from statistics and machine learning could
be fruitfully applied to proto-Elamite, and develop new models and resources to modernize
and advance the study of this and other ancient scripts.

The severalfold goals of this work are:

(i) to independently replicate results from historical analyses, some of which have never
been replicated due to the small number of researchers in this field, the age and
obscurity of the original publications, and the gruelling effort required to manually
locate relevant information in the corpus;
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(ii) to develop tools for the exploration and visualization of archaeological corpora, to
aid domain experts in hypothesis generation and to facilitate less-technical users in
understanding and interpreting data and results;

(iii) to develop models which automate time-consuming tasks and alleviate the manual
effort required to test hypotheses, to help domain experts more rapidly narrow in on
promising avenues of analysis; and finally

(iv) to apply techniques from natural language processing to this script, to identify novel
features which can be exploited by decipherers, epigraphers, and other domain experts
to advance their work.

This thesis also surveys the challenges which attend work on undeciphered scripts, and
demonstrates ways to overcome these challenges using methodologies built around close
collaboration with domain experts and multiple replications of results using different models,
data, and data modalities.

1.1 Notes on Methodology

True decipherment operates in a context where the ground truth is not known. Thus it
can be challenging to determine whether a given result is sound, and erroneous claims can
easily propagate since they are hard to definitively disprove. Moreover, even well-intentioned
analysts are liable to see whichever results they want or expect to see, and may remain
unintentionally blind to competing explanations.

We argue that any responsible work on undeciphered data must take explicit steps to
anticipate and minimize these issues. To this end, we have sought throughout this work
to replicate our own results multiple times across different models, different subsets of the
data, and different data modalities. We believe that this approach has helped to denoise
and debias our interpretations: results which only hold for a single setting are more likely to
be spurious (whether from noisy data or misguided analysis) than those which hold across
multiple dissimilar settings.

This work has also been, from its inception, an interdisciplinary collaboration between
domain experts and computer scientists. Our principal collaborators have been Kathryn
Kelley and Willis Monroe, both trained historians and Assyriologists with experience in
cuneiform corpora. Kathryn’s research has included graphotactic analysis of proto-Elamite
and proto-cuneiform, while Willis has experience in the digital humanitites with a focus
on the history of religion, including ancient Mesopotamian religion. Beyond contributing
their personal expertise, they have also served as intermediaries to Jacob Dahl, the foremost
expert on proto-Elamite in the world today. The collective expertise of these collaborators
has allowed us to situate computational results in the appropriate historical and cultural
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context, and to interpret these results with the appropriate nuance. Together, their contri-
butions have been invaluable to guide and ground every step of this work.

In the other direction, we have sought to make our results accessible to these and other
experts by focusing on interpretable models and analyses. This has at times meant fore-
going the state-of-the-art in favor of more interpretable, albeit less statistically powerful,
approaches. This choice is based on the belief that a fully-automated linguistic decipherment
of the corpus may be impossible. The apparent paucity of linguistic content in proto-Elamite
means that there is little information that could be exploited to determine the underlying
language (if the texts are indeed linguistic enough for “the underlying language” to be mean-
ingfully defined); however, the use of logograms or ideograms, the importance of numeric
information, and a collection of rich extra-textual features all mean that the texts can likely
be well-understood even if the putative underlying language remains unknown. In light of
these facts, the features that contribute to a model’s behaviour tend for our purposes to be
oftentimes more useful than the model outputs themselves.

1.2 Outline

This thesis is divided into five parts. In Part I, we introduce our data and review relevant
prior work. Part II describes our initial exploratory analyses, which served to establish
familiarity with the corpus and the unique challenges it poses. Part III presents the main
bulk of our results, which together offer a survey of the proto-Elamite corpus through
a more technical lens than prior work, and give a range of novel insights regarding its
possible content. Part IV summarizes additional work, including some ongoing experiments
and less technical contributions. Finally, Part V summarizes our contributions and possible
directions for future work.

4



Chapter 2

Proto-Elamite

This chapter surveys major contributions from prior manual investigations, in order to
establish what is already known about the proto-Elamite corpus and how current intuitions
have been developed.

2.1 Scheil

The first proto-Elamite tablets were published in Scheil 1900 following their excavation
from Susa, in what would today be Iran. This included only two tablets, and it was not
until Scheil 1905 that a substantial volume of proto-Elamite text became widely available.
Further tablets followed in later editions of the Mémoires de la Délégation en Perse (MDP;
Scheil 1923, 1935; de Mecquenem 1949), in de Mecquenem 1956, and most recently in Dahl
2019.

As the earliest substantive treatment of these texts, Scheil 1905 offers only “quelques
observations générales” [some general observations]1 about their history and possible con-
tent. Already at this time it was clear that “tous les textes de nos tablettes, sans aucune
exception, sont des documents de comptabilité” [all of these texts, without exception, are
accounting documents], by virtue of the clear ‘spreadsheet’ structure in which they are writ-
ten. The script itself Scheil takes to be “rigoreusement idéographique” [strictly ideographic]
though this is based on his impression of the texts more than any concrete justification.

“Il serait possible, a priori, que cette écriture eut une origine propre et un développement
autonome” [It would be a priori possible for this script to be an autonomous development],
observes Scheil, in which case the visual similarities he notes with other ancient scripts
would be nothing but “des analogies fortuites, qui ne permettraient pas de conclure à une
origine commune ni même à des emprunts considérables” [fortuitous analogies, which would
not permit conclusions about a common origin nor of significant borrowings]. Despite this,

1All translations in this thesis are the work of the author. We quote the original, non-English publications
to ensure that the meaning is preserved in case of translation errors.
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Scheil is “porté à croire que ce qu[’il] apelle l’écriture proto-élamite est de même origine
que le cunéiforme babylonien” [led to believe that the script he calls proto-Elamite is of the
same origin as Babylonian cuneiform], albeit separated from the latter by a long period of
independent development; Scheil notes examples where other scripts diverged significantly
from a common origin, even where their respective scribes “travaillent, pour ainsi dire, côté
à côté” [work, so to say, side-by-side].

Scheil posits that proto-Elamite did not manage to “se dégager [...] de l’idéographie”
[divest itself from ideography], and that “conventional” writing (presumably meaning glot-
tographic, capable of faithfully recording language and not merely useful as an accounting
technology) developed slowly in Elam by virtue of its position on the “périphérie du monde
civilisé” [periphery of the civilised world]. Thus even at this early stage, Scheil acknowl-
edges that proto-Elamite may not be writing in the strict sense, but rather a complex but
ultimately non-linguistic symbol system.

Scheil writes at a time when linear Elamite and proto-Elamite were not yet recognized
as distinct scripts. There is roughly a 700 year gap between the latest known proto-Elamite
texts and the earliest linear Elamite (Dahl 2009), with no evidence for the continuous trans-
mission of this technology between the two periods. Thus, although the visual resemblance
between the two scripts is undeniable, and the later may certainly be modeled on the ear-
lier, there is insufficient evidence to treat them as “the same” script as did early scholars
(though contra this position, see Section 2.5, below). Furthermore, although Scheil assigns
this script the name “proto-élamite”, this name reflects a geographic rather than linguistic
affinity: there is presently no strong evidence that the script actually represents any form
of the Elamite language.

2.2 Meriggi

Significant advances in understanding the texts occur throughout the 1970s, among which
Meriggi 1971 is particularly notable. This three-volume series undertakes an extensive as-
sessment of proto-Elamite, and includes an attempt to identify and assign labels to every
character in the underlying script. (Such “signlists” had previously been published in indi-
vidual MDP volumes, but had not been combined and standardised across the corpus as
a whole.) Today, proto-Elamite signs are labeled with “M-numbers” acknowledging their
origin in Meriggi’s signlist, though certain of Meriggi’s signs have been renamed or merged
with others as later scholars have come to better understand the texts.

Although parts of the work are of questionable utility (Meriggi, like Scheil, conflates
proto-Elamite with the later linear Elamite, acknowledging however that the latter script
“è notevolmente diversa da quella delle tavolette” [is notably different from that of the
tablets]), in general the work remains a useful summary of the corpus and a survey of
insights which remain relevant to the decipherment process. For example, although Scheil
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“ha anche il merito di aver notato il carattere fonetico di alcuni segni” [has the merit of
having noted the phonetic character of some signs], it is Meriggi who suggests a complete
inventory of possible “syllabic” signs and undertakes the first analysis of suspected names
in proto-Elamite. To this day it remains unclear whether these signs are truly syllabic,
or whether they are truly used to write names. However, it is clear that they represent a
functionally unique subset of the signary, and have therefore been of particular interest to
subsequent decipherment attempts, including our own.

Meriggi’s overview also includes important notes about the expected content of the
texts, including what kind of content should not be expected (“le [forme verbali] in questi
brevissimi « testi » potrebbero anche mancare del tutto” [verbal inflections may thus be
entirely absent from these extremely short ‘texts’]).

Meriggi’s use of Sumerian sign names to label some proto-Elamite signs (such as TUR
for the sign now called M370) highlights the visual similarities between these two scripts.
Some of the signs thus named have since been found to exhibit functional parallels to their
perceived proto-cuneiform equivalents (Friberg 1978; Kelley 2018) and may thus reflect early
borrowings or evidence of a common origin.

2.3 Friberg

Friberg (1978) explores the history and origins of Babylonian mathematics, particularly its
relation, if any, to earlier Sumerian commercial accounts.

A mathematician rather than an Assyriologist, Friberg demonstrates that some proto-
cuneiform accounts include a summary line counting the total number of items recorded
in the preceding text. The summation yields the correct value only when the numbers are
read in base-10, where a “cup” sign tallies the ones and a “disk” tallies the tens.

At first the values of these signs appear certain, as the same relationship is found across
multiple tablets. However, Friberg notes a separate set of texts where the summaries only
equal the expected value when read in base-6, so the disk tallies sixes instead of tens. The
reading of 6 disks to one cup parallels the later Sumerian units of 6 bariga to one ban, used
for measuring grain; and indeed, the texts in question contain a sign resembling early forms
of Sumerian SZE, later used to denote barley rations.

Observing that some numerals in “SZE” texts contain 8 disks, Friberg concludes that
the system cannot be purely base-6, as in that case no more than 5 disks should ever occur.
Since no texts contain 10 or more disks, the next largest digit (the so-called “big disk”)
likely counts 10 disks; big disks occur in groups of 1 or 2, so the next digit (“big cup”)
equals 3 big disks. Proceeding in this way, Friberg ascertains likely values for the complete
“SZE-system” in proto-cuneiform, including digits representing small fractions.

When the same technique is applied to proto-Elamite (this time simplified and formalized
as solving a series of linear equations), readings for the proto-Elamite numerals are obtained.
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These readings produce valid summations across multiple tablets, and in fact exhibit the
same intervals between digits as the proto-cuneiform SZE-system (the shapes of the signs
are also identical). Moreover, in the same way that the proto-cuneiform version of this
number system occurred alongside the sign SZE, the proto-Elamite version occurs alongside
a sign GUR (called M288 in modern transliterations). GUR being a grain measure in later
Sumerian has lead to the assumption that this number system also counts grain (likely in the
form of rations) in proto-Elamite. M288/GUR is one of several proto-Elamite signs which
are now partially understood by means of their apparent cuneiform or proto-cuneiform
parallels.

Friberg’s analysis reveals the presence of multiple distinct number systems in proto-
Elamite, which like the proto-cuneiform systems sometimes use the same signs with different
relative values, and which all use mixed radices. In the same way that the SZE system (now
called the capacity system in proto-Elamite) had an apparent association with grain rations,
we now know that other number systems associate with their own categories of object (the
decimal system being used for animals and laborers, sexagesimal for discrete objects and
perhaps some humans, and bisexagesimal for discretized grain products such as rations;
Englund 2004: 107).

2.4 Dahl

The most recent body of work on this corpus has been undertaken by Jacob Dahl and
his students. Dahl 2019 includes the most recent and thorough survey of the corpus, and
we encourage the reader to consult that volume for a deep look at this script through the
Assyriological lens.

In earlier work, Dahl (2005a) discusses parallels between proto-Elamite and proto-
cuneiform signs which, based on their meanings in later cuneiform, likely represent live-
stock. The work demonstrates that alternations between pairs of signs (either in successive
entries, or in parallel contexts in different texts) reflect semantic features which are useful
for decipherment, such as different ages or genders of the same animal. These alternations
yield analogical relationships which can allow the meanings of several signs to be inferred
from the meaning of just one sign. Like Friberg, Dahl also exploits information from the
numerals. For example, one tablet records amounts of both M346 and M348; though the
text of the tablet summary only lists M346, its value equals the total of both the preceding
M346 and M348 counts. Thus it appears that M348 could, in this context, be a subtype of
M346, which is recorded separately in the body of the text but lumped in with the more
generic sign in the summary.

Dahl 2005b describes a set of proto-Elamite signs called “complex graphemes”, which
appear to be formed from combinations of signs written side-by-side, one inside the other,
or one in between mirrored copies of the other. According to Dahl’s analysis, certain kinds
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of graphical composition are associated with certain functions, for example “A+B+A” signs
(where one sign is written between mirrored copies of another) he takes as likely to represent
households in charge of accounts. Dahl also discusses the possible meaning and function of
“complex capacity signs” formed by inscribing a numeral inside what is likely a depiction
of a vessel or measuring device.

Dahl et al. 2018 discusses the administrative role of the proto-Elamite texts, with a focus
on terminology relating to workers and overseers. A doctoral dissertation by one of Dahl’s
students (Kelley 2018) expands on this work with a focus on ration texts. “Whereas signs
depicting humans or human body parts in other early writing systems have often been used
as anchors for decipherments”, Dahl et al. (2018: 15) note that “Proto-Elamite is devoid
of any signs that depict humans or human body parts, except for a few early loans from
the related proto-cuneiform writing system”, which makes it challenging to identify terms
representing human laborers. In place of overtly iconic glyphs, their analysis must therefore
rely on other sources of evidence: loans from proto-cuneiform; correlations between numerals
(both in terms of value, and the number system used) and different kinds of counted objects;
and structural properties of the texts which may reflect properties of the individuals recorded
therein.

Of particular note is their conclusion that depictions of tools may sometimes stand in
metonymically for the laborers which use those tools; thus a text which appears to count
yokes may in fact count amounts of grain rationed to laborers whose work employs a yoke.
Care should thus be taken when suggesting readings for signs which appear ‘obviously’
iconic.

So-called “roster” texts appear to record groups of workers or other individuals; many
such texts record certain signs in a consistent order (M317s before M054s before M003s...;
Hawkins 2015). Sheep and goat texts record “more important” animals first (Dahl 2005a);
if a similar practice applies in roster texts, the signs at the beginning of the ordering may
thus reflect higher-status individuals (perhaps the foremen of the work groups in question).

One of the most important recent contributions, particularly for our purposes, has been
the ongoing effort by Jacob Dahl to standardize the proto-Elamite signlist. These efforts
have resulted in a more-or-less consistent labeling scheme for all of the signs in the known
corpus. The working sign names include two kinds of subscripts (or tilde-annotations) to
identify signs which may be related to one another in some way. A numbered annotation
denotes that one sign is subtly distinct from another in appearance, but likely equivalent
in meaning: see for example M310∼1 (also written M3101) and M310 . By contrast,
lettered annotations denote signs which share a similar level of visual similarity, but which
have not been established to share the same meaning: consider M311 and M311∼b
(equivalently, M311b). Importantly, the meanings of these signs may be related to one an-
other, but have not been established as identical. A key step in advancing the understanding
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of this script is to find concrete evidence that these and other variants are or are not truly
equivalent in meaning.

2.5 Desset

Recent work by François Desset is notable for pursuing a more traditionally linguistic ap-
proach to decipherment, which places particular emphasis on so-called “anthroponyms”
which have long been speculated to represent syllabically-written names. Desset 2012 in-
cludes multiple tables of these putative names, organized into groups with matching sub-
strings, as well as a list of the main signs used in anthroponymic sequences. Of interest to
future studies is “l’hypothèse selon laquelle les anthroponymes notés a Suse, Tépé Yahya et
Tépé Ozbaki pouvaient être construits à partir de langues différentes” [the hypothesis that
anthroponyms identified at Susa, Tepe Yahya, and Tepe Ozbaki may come from different
languages], which would accord with the use of some (few) unique signs in tablets from
these locations.

Most recently, Desset et al. 2022 claims a complete decipherment of linear Elamite, and
suggests it may be possible to “proceed in a regressive way [...] trying to apply these “read-
ings” to their graphic counterparts in the earlier PE writing [...] The same signs may have
been used with similar or identical phonemic values to record the names of the persons in-
volved in the transactions and administrative work documented in the late 4th millennium
BCE PE tablets”. This claim is advanced with no accompanying evidence that it actually
yields readable names (in any language) when applied to proto-Elamite, and initial investi-
gations suggest that some of the resulting “names” begin with unlikely sound sequences such
as m-la or m-t (Kelley et al. 2022b). Neither do the authors address how these sound values
could have been preserved across the ca. 700 year gap between the latest proto-Elamite
texts and the earliest linear Elamite. Thus, while this work offers a new avenue for hypoth-
esizing about the sound values of some proto-Elamite signs, its utility presently remains
uncertain, and even in the best-case scenario this line of inquiry leaves the (presumably
large) logographic portion of the script untouched.
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Chapter 3

Data

3.1 Overview

The Cuneiform Digital Library Initiative1 (CDLI) hosts digital images and transliterated
copies of all published proto-Elamite tablets, as well as some unpublished tablets and seals in
personal and museum collections. This corpus is substantially complete, though it continues
to grow slowly as new texts are unearthed or published. The corpus contains approximately
1581 texts, though the exact number varies depending on whether one includes damaged
artifacts which are unreadable, artifacts with numerals but no text, and artifacts which may
actually bear the related proto-cuneiform script.

We refer to individual texts either by citing their original publications, or using the “P-
numbers” which uniquely identify them in the CDLI database. For example, the tablet in
Figure 3.1 is the 102nd text published in MDP 26 (Scheil 1935), so it may be referred to as
MDP 26, 102. The same tablet is recorded in the CDLI database as P008790.2 Occasionally,
a broken tablet will have originally been published as multiple fragments, which have since
been joined together to restore a more complete text. In these cases, each fragment will have
a unique publication, but the CDLI database will only contain the joined text: for example,
P008105 combines fragments which were originally published as MDP 6, 316, MDP 6, 324,
MDP 6, 332, MDP 26S, 336, and MDP 26S, 335. For the sake of brevity, and to clarify
that we always consider the most complete available text, we will primarily refer to texts
by their P-numbers.

The proto-Elamite script is read from right to left, top to bottom, like the related proto-
cuneiform script. In later cuneiform, the direction of writing changed, but the orientation
of the signs did not, so that later cuneiform signs appear to be rotated 90 degrees with
respect to their archaic forms. This led to a practice whereby proto-cuneiform texts are often
published at a 90 degree angle, so that the signs share the same orientation as their later

1https://cdli.mpiwg-berlin.mpg.de/

2https://cdli.mpiwg-berlin.mpg.de/artifacts/8790
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counterparts. This practice has sometimes carried over to publications of proto-Elamite,
even though this script never underwent such a rotation. In this work, we choose to depict
signs and tablets in their original orientations, as they would have been written and read by
the original scribes. For example, the sign written as in other publications and depicted
as such in the CDLI tablet images will be shown as in this work. This makes more iconic

signs easier to interpret, such as M417∼g which appears to depict an equine head.
Tablets are transliterated using the ASCII Transliteration Format3 (ATF) shown in

Figure 3.1. Every sign which is believed to represent regular text is assigned a unique name
beginning with the letter M (for Piero Meriggi, from whose work in Meriggi 1971 the current
sign names are derived). Signs believed to represent digits are given names starting in N.
Some sign names include a ∼ followed by a string of letters or numbers, as in M157∼a .
We call the part preceding the ∼ the base name of the sign, and the part after the ∼ the
variant. Signs which share the same base name also share visual similarities to a sufficient
degree that experts speculate they may be alternative ways of writing the same underlying
character. The text after the tilde determines how certain experts are about this equivalence:
numbered variants are likely the same sign (M024∼1 and M024 ), while letter variants

represent cases where experts remain deliberately agnostic (M157∼a and M157 ).

There are also a few cases, such as M045∼b , where a sign is labeled as a variant, but
there is no other sign with the same base name for it to be a variant of. Presumably, M045
did exist in a prior version of the corpus, but was later reinterpreted as being a different
sign and was relabeled in the transliterations. This highlights how the proto-Elamite corpus
continues to evolve together with our understanding of the script. To guarantee consistency
in our results, our experiments use static, offline copies of the CDLI corpus downloaded in
June 2018 (Chapters 4–7) and then updated in October 2022 (Chapter 8 onward).

To produce a transliteration, a text is read from right to left, while the ASCII names
of the signs are written down left to right. Digits are always parenthetised and prepended
by the number of times they are repeated (e.g. is transliterated as 3(N01) and not

N01 N01 N01). This is done even when the digit is only written once (e.g. 1(N01)). The
resulting transliteration is divided into numbered lines, where each line represents a logical
division of the document as understood by experts. Most lines comprise a single “entry”,
with a comma delimiter to separate the text of that entry (apparently describing an object
being counted) from the following numeral. Square brackets are used to denote that a span
of text is damaged, while a # or ? following a sign marks that particular sign as damaged.
If a sign is entirely unreadable, it will be transliterated as X (if it is part of the text) or N (if
it is part of a numeral). Breaks of indeterminate length are transliterated with an ellipsis.

3http://oracc.museum.upenn.edu/doc/help/editinginatf/cdliatf/index.html
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Comments and other annotations may be added on their own lines, prepended with # or
@.

3.2 Data Cleaning

To facilitate our work, we convert the raw ATF transliterations into a more structured
format. We first parse ATF documents into a kind of abstract syntax tree, with nodes rep-
resenting spans of text and labeled edges recording containment and adjacency information.
Figure 3.2 shows an example obtained by parsing the text of P008815. Each node has at-
tributes which describe the type of text it represents (single sign, digit, numeral, entry, etc)
as well as any annotations which were attached to that text in the ATF. (For reasons of
space, most of these attributes are omitted from the figure.) We include nodes representing
explicit divisions of the text (such as segments, which is our term for a contiguous span of
text that is clearly delimited by digits or by the beginning or end of the document) as well
as implicit divisions (such as headers, which experts believe to be distinct from the following
entry but which are not visually separated from that entry in any way). This means that the
resulting structure is a directed acyclic graph, but not a tree, as some nodes have multiple
parents (for example, a sign can be part of the first segment and also part of the header).
This graph structure enables us to easily traverse the text of a tablet at various levels of
detail (sign-by-sign, entry-by-entry, etc) and to move from one level of detail to another by
following the parent/child relationships. Each node is assigned a unique ID (UID) which
encodes the type of information that node represents and the location of that information
in the original ATF: for example, P008001:6:num is the numeral on line 6 (zero-indexed) of
the ATF for text P008001, and P008001:6:sgn:3 is sign 3 (also zero-indexed) within that
numeral (in this case, this is the digit 7(N01)).

We parse the entire ATF corpus and serialize the resulting objects as a list of UID
strings and object-attribute-value (OAV) triples. Some texts do not strictly follow the ATF
specifications; in these cases we correct the transliteration after confirming our proposed
corrections with domain experts. We populate a SQL database with the serialized data.
The database also includes comments and other attributes describing every named sign,
extracted from unpublished notes4 graciously shared by J. Dahl (Unpublished).

This conversion offers a number of benefits over the original ATF files. It is occasionally
desirable to treat the beginning of a text as a single contiguous span, and to ignore the
artificial separation between the header and the first entry. Our conversion includes separate
objects describing the header, the following text, and the concatenation of the two, and any

4We are grateful to Carolyn Chen for helping to sanitize the data extracted from these notes during her
time as a volunteer at the SFU Natural Language Lab.
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&P008790 = MDP 26, 102
#atf: lang qpc
@tablet
@obverse
1. M305 ,
# header
2. M056~f M288 , 1(N34) 2(N14) 3(N01)
3. M051~a , 1(N01)
4. M124 , 1(N14)
5. M001# , 3(N01)
6. M041~j , 1(N01)
7. M367 , 2(N01) 2(N39B)
8. M320~m M387~c# x , 1(N39B)
9. M205~c# , 1(N39B)
10. x , 2(N39B)
11. M387~c#? , 2(N01)#
@reverse
@column 1
1. M289~d , 2(N39B)
2. x , 1(N39B)
3. M131~e# M388#
@column 2
1. M288 , 1(N34) 5(N14) 4(N01) 4(N39B)
@top
1. 1(N34)?

Figure 3.1: Line art (top) and ATF transliteration (bottom) for MDP 26, 102 (P008790).
The right half of the image shows the obverse of the text, and the left half the reverse. The
offset parts show where the text continues onto the bottom and side of the tablet. Hatching
indicates damage.
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P008815
Publication: MDP 26, 127

P008815:4:txt
SpanType:header

P008815:4:sgn:0
SignID: 15 (M005∼a)

P008815:4:1sg P008815:6:ent

P008815:6:txt

P008815:6:sgn:0
SignID: 573 (M203∼c)

P008815:6:sgn:1
SignID: 909 (M288)

P008815:6:num
ValueS: 63
ValueD: 63
ValueB: 63
ValueC: 39

P008815:6:sgn:2
SignID: 1473 (N14)

Quantity: 6

P008815:6:sgn:3
SignID: 1465 (N01)

Quantity: 3

P008815:7:ent

P008815:7:txt

P008815:7:sgn:0
SignID: 1114 (M324)

P008815:7:sgn:1
SignID: 909 (288)

P008815:7:num
ValueS: 3
ValueD: 3
ValueB: 3
ValueC: 3

P008815:7:sgn:2
SignID: 1465 (N01)

Quantity: 3

P008815:8:txt

P008815:8:sgn:0
SignID: 467 (M153)

Figure 3.2: Graph representation for P008815 as parsed from the original ATF (some an-
notations omitted for space).

one of these can be retrieved on-the-fly using its UID. This removes the need to explicitly
detect and merge headers with the following text at analysis time.

Some of our experiments involve relabeling signs with alternative names (Chapter 9). In
the ATF, this can only be achieved by overwriting the original name with the revised name;
this leads to a proliferation of alternative copies of the corpus which are inconvenient to keep
up-to-date with one another. Following our conversion, however, it becomes trivial to add
any number of alternative names to a token simply by adding new object-attribute-value
records to the database. The underlying tokens can still be retrieved using their original
UIDs, and the original sign names are not overwritten.

Using structured representations also helps to simplify analyses which deal with complex
graphemes (Chapter 6), which are characters made up of multiple parts written within one
another or otherwise ligatured together. Depending on the application, these can either be
considered as atomic tokens, or as structured objects which combine several tokens. Our
conversion assigns distinct identifiers to a complex grapheme and to its component parts,
which simplifies the process of switching between these two views.

Finally, the database where the converted objects are stored provides a convenient and
centralized location to aggregate the results from our analyses, both in the form of comments
attached to particular UIDs and as additional OAV triples. This makes it easy to check what
our past analyses have suggested about a given token or sign and to compare results from
different techniques. We add comments, each of which is linked to a set of UIDs, to make an
explicit record of the relationships which we identify between signs, texts, and other objects
of interest. We also provide a command-line interface, which we call CLEE (Command-Line
Environment for proto-Elamite; Figure 3.3), to automate common queries and simplify the
process of adding these comments.
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CommandLine Environment for proto-Elamite
Type help or ? to list commands.

CLEE > desc P008001

P008001

P008001 is the UID for MDP 06, 201

TEXT NUMERAL VALUE(S) LINE

H M157 :4
M319 M032 1(N14) 7(N01) = 17 xN01 (SDB) :6
M321~J 1(N01) = 1 xN01 (SDBC) :7
M321 2(N01) = 2 xN01 (SDBC) :8
M005 4(N01) = 4 xN01 (SDBC) :9
M376 1(N34) 3(N01) 1(N08) = 63.50 xN01 (S) :10
M310 M376 1(N14) 9(N01) = 19 xN01 (SDB) :11
M149~A 9(N01) = 9 xN01 (SDB) :12
M381 M149~A 2(N01) = 2 xN01 (SDBC) :13
M218 M039~B :14

CLEE > desc M388

VARIANTS

M388 (sign id 1364) has variants M388~C

COMMENTS

• can M124 also function as owner? Also M388 etc.?
- see also M124

• M141 perhaps graphical (late) variant of M388?
- see also M141

• M141~a perhaps graphical (late) variant of M388?
- see also M141~A

• Desset 2012 (Premières écritures iraniennes): "Dahl 2009, p. 25,
fig. 1 estime que la paire M305 M388 (parfois accompagnée d’un autre
signe) représente dans certaines séquences non pas le début d’un
anthroponyme." mais la désignation d’un organisme/bureau précédant
la notation de l’anthroponyme luimême.
- see also M305

ATTESTATIONS

M388 is attested 729 times in 375 texts:
P008490 (x25), P008105 (x17), P008185 (x17), P008318 (x15), P272825

Figure 3.3: Sample output from the command-line interface for our converted corpus. Texts
are printed in spreadsheet format alongside helpful annotations, such as the value of each
numeral in modern Hindu-Arabic notation (see Chapter 8). Comments record working hy-
potheses about the corpus, and can be used to link related entities together.
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Part II

Preliminary Results
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Chapter 4

Preliminary Results

This work began with a series of exploratory analyses originally reported in Born et al.
2019. That publication sought to introduce the proto-Elamite dataset to the computer
science community, provide up-to-date descriptive statistics (such as sign counts, which
had not been updated since Dahl 2002), and verify that traditional NLP approaches were
effective on this data.

The latter point warrants particular attention. Recall that experts have questioned the
degree of linguistic information encoded by the proto-Elamite script, and have argued that it
may be primarily semasiographic (i.e. not a true writing system, but only a symbol system).
If these intuitions are correct, then we should not take for granted that this data will be
amenable to analytic methods developed for modern writing systems. Before proceeding
with this work, we therefore wish to establish that NLP models are capable of replicating
results from prior manual analysis. This will help to establish whether it is necessary to
develop entirely novel models for this corpus, or whether the data is sufficiently language-
like to submit to existing methods. This chapter will consequently focus on simple data
exploration and on applications of existing techniques to a new corpus; we will introduce
more novel computational results starting in Part III of this work.

4.1 Descriptive Statistics

We have previously published descriptive statistics, such as sign and token counts, in Born
et al. 2019, with additional information available in the accompanying Python notebook.
This section updates those numbers based on the more recent copy of the corpus which
was used to initialize CLEE. We emphasize, however, that the proto-Elamite corpus con-
tinues to evolve as we gain new insight into the content of these texts (see throughout the
following chapters for examples where we propose corrections or alterations to the current
transliterations). For this reason, even these updated counts should be treated as approx-
imations, which give insight into the general distribution of categories but which are only
truly accurate for the corpus as it exists at the time of writing.
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Sign Types The corpus used to initialize CLEE employs 1693 distinct sign names, which
can be further broken down into 293 basic signs, 44 digits,1 48 numbered tilde-variants, 1061
lettered tilde-variants, and 247 complex graphemes (signs which are visually compositional,
comprising two or three simpler signs either ligatured or written one inside the other). The
complex graphemes can be further distinguished according to their number of component
parts and the pattern in which these parts are repeated: schematically, we observe 9 A+A
type graphemes (the same sign ligatured with or written inside of itself), 211 A+B, 17
A+B+A, 3 A+B+B, and 7 of type A+B+C.

The corpus comprises 35496 tokens, of which 12081 are digits (where we count a cluster
of repeated digits like 2(N01) as a single token; thus this is specifically the number of
transliterated digit tokens) and 1159 are complex graphemes (if we treat complex graphemes
as non-atomic units, and count each of their components as a unique token, the overall total
instead rises to 36740).

Hapaxes There are 736 hapaxes (i.e. hapax legomena, signs which are only attested a
single time), of which 117 are complex graphemes. This accounts for 43% of the overall
signary, and 47% of the complex graphemes—a roughly similar ratio in both categories.
These signs are of key interest, as their rarity makes them challenging for human analysts
to interpret. This rarity also makes them challenging for computers to model, and one
contribution of our work (see esp. Chapters 6 and 9) is to develop multi-modal language
models which are able to learn usable embeddings for these rare signs without the need to
replace so many (if any) with a generic “unknown” token.

Many of these rare signs are labeled as possible variants of a more common sign (e.g.
M217∼f and M217 ), or bear some visual resemblance to a more common sign (e.g.

M486 and M048∼e ). We speculate that a portion of these are in fact semantically-
equivalent graphical variants or mislabeled instances of a more common sign type, a hy-
pothesis which will reappear throughout later chapters (particularly Chapter 9).

Zipf’s Law Word frequencies in natural language corpora have been observed to approx-
imately follow a power law, such that the frequency n of the rth-most-common word is
roughly

n ∝ 1
rα

1This is fully 5 signs short of the number of digits reported in Born et al. 2019. The difference owes to
the removal of some very short texts which are likely instances of the proto-cuneiform script rather than
proto-Elamite. These were included in the original corpus because the two scripts can be hard to distinguish
in some settings, particularly on very small clay tokens which bear only a single sign or numeral. Although
such texts were included in the corpus used for our earliest publications, we do not believe their presence
had a significant impact on any of our results, as we focused on non-numeric signs which do not generally
occur on the documents in question.
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Figure 4.1: Log-log plot of sign probabilities (frequency over total sign count) versus rank
in the transliterated proto-Elamite corpus. The dotted line shows the idealized shape of the
curve when α = 1.21. Orange triangles are complex graphemes, and blue crosses are all
other sign types.

for some scale term α close to 1 (Zipf 1935; Moreno-Sánchez et al. 2016). This relation
has been termed Zipf’s Law. So-called “Zipfian distributions” have been claimed to arise
for a wide range of languages and language modalities, prompting some authors to use the
presence of this distribution as a test for linguistic content. However, Farmer et al. (2004)
note that similar frequency distributions can also arise from a variety of non-linguistic
processes, implying that a Zipfian frequency distribution is not, by itself, sufficient evidence
that a symbolic system encodes language. In the other direction, the absence of a Zipfian
frequency distribution may suggest that a symbolic system is not linguistic, though Moreno-
Sánchez et al. (2016) show empirically that some natural language corpora exhibit notable
deviations from an ideal Zipf relation, so only extreme deviations should be taken as evidence
against linguistic content.

The current working transliterations for proto-Elamite do appear to follow a Zipf distri-
bution, with an exponent of approximately α = 1.21 (Figure 4.1). This exponent is within
the range expected for natural language texts based on the work in Moreno-Sánchez et al.
2016. Thus, despite the prevailing view that these texts may lack linguistic content, in terms
of raw character frequency they are not immediately distinguishable from true language
(though the same may not be true at the level of character n-grams, see Section 4.2). This
suggests that it may be possible to analyze this corpus using tools from natural language
processing, even if there is no natural language to be found within.
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4.2 Sign Frequency and n-Gram Counts

n-gram frequency is another useful datapoint for understanding the overall content of the
corpus and for building a more nuanced understanding of sign use (Dahl 2002; Kelley 2018).
Figure 4.2 shows the most common proto-Elamite unigrams, bigrams, and trigrams. These
counts exclude n-grams containing numeric signs or broken or unreadable signs (transcribed
as X or [...]); n-grams which span a boundary between entries are also excluded. Note the
sharp drop-off in frequency from the most frequent signs to the rest of the signary; similar
results were presented in Dahl 2002.

The most common unigrams include “object” signs and signs belonging to Meriggi’s
syllabary. The most common object signs are M288 (a grain container), M388 (“per-
son/man”), M124 (a person/worker category paralleling M388), M054 (a yoke, usually

indicating a person/worker category or animal), M297 (possibly “bread” or “beer”), and

M346 (“ewe”). The common syllabary signs are M218 , M371 (which may double
as an object sign/worker category), M387 (identical to the digit with value “100”), and

M066 .
The n-gram counts reveal the scale at which complex sequences of information are

repeated across tablets. At the token level, there are over 1600 trigrams excluding numeric
signs; among these, we find only 11 trigram types which are repeated at least 5 times total,
and two of these end in the “grain container” sign M288 and are therefore best parsed as
spanning a “word” boundary. 52 additional trigram types are repeated three or four times
in total, leaving the great majority (98%) of trigram types to appear only once or twice.2

The most frequent trigram, M377∼e M347 M371 (found 17 times per Figure 4.2),
appears in no more than about 1.5% of the texts. Even among bigrams, the most common
can only occur in up to 3.2% of texts.

Impressionistically, this looks like a lesser degree of repetition than would be expected
for linguistic data, where to take an English example, common bigrams like “of the” are fre-
quent both within and across texts. External comparisons are needed to establish whether
this impression is correct, but such comparisons are not straightforward. Third millennium
Sumerian or Akkadian accounting tablets are reasonable corpora to compare against, but
these are generally available only in transliteration (using sign readings) while proto-Elamite
is transcribed (using sign names). This distinction makes n-gram counts from the two cor-
pora incomparable without further work to transform the data. The training data from the
shared task in Zampieri et al. 2019 offers a rare exception where cuneiform text is repre-

2These numbers treat tilde-variants as distinct signs, following the working hypothesis among proto-
Elamite specialists. Collapsing variants together does not appreciably change these results, however, as it
only increases most trigram counts by 1 or 2 instances. A similar result holds for bigram counts.
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0 10 20 30 40 50
Bigram Frequency (with constituent unigram counts)

M371 M288
M259 M218

M377~e M347
M096 M288
M009 M371
M347 M371
M388 M218
M218 M288
M305 M388
M004 M218

22 (308, 829)
22 (69, 525)

23 (56, 84)
26 (212, 829)

30 (223, 308)
31 (84, 308)

32 (620, 525)
36 (525, 829)

40 (127, 620)
45 (115, 525)

0 5 10 15 20
Trigram Frequency (with constituent bigram counts)

M347 M219 M101
M219 M218 M288
M371 M009 M371
M259 M218 M288

|M131+M388| M101 M066
M386~a M240 M096

M004 M263 M218
M340 M054 M388

M097~h M004 M218
M377~e M347 M371

5 (6, 8)
5 (16, 36)
5 (6, 30)
5 (22, 36)
5 (5, 8)

6 (12, 16)
7 (9, 18)
7 (14, 17)

11 (13, 45)
17 (23, 31)

Figure 4.2: The 10 most frequent proto-Elamite unigrams, bigrams, and trigrams (top to
bottom). In parentheses are given the frequencies of the two unigrams comprising each
bigram, and the two bigrams comprising each trigram: note that some frequent n grams are
comprised of relatively infrequent n− 1-grams.

sented using Unicode cuneiform signs, however this data comes from literary genres which
are more prose-like than administrative accounts, and are thus also likely incomparable for
this discussion.

Despite these difficulties, a qualitative assessment of Ur III Sumerian administrative
texts suggests that they are highly repetitious, with information of wide importance to
the administration (e.g. basic nouns, phrases describing administrative functions, month
names, ruler names, etc.) occurring frequently. If one expects such information to be simi-
larly frequent in the proto-Elamite administrative record, it apparently cannot be routinely
encoded using trigrams nor possibly even bigrams; only unigrams appear to repeat with
sufficient frequency to capture the expected distribution of very common administrative
terms. This suggests that the script may employ relatively few multi-sign words, or that
multi-sign words were only used to represent relatively uncommon entities.

One type of entity which may have been represented using multi-sign strings are the
so-called anthroponyms, or strings speculated to represent personal names. Dahl (2019:
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85) lists frequently-attested signs (10 instances or more) with “proposed syllabic values”
obtained through traditional graphotactic analysis; Figure 4.3 presents the frequency of
the most common bigrams and trigrams limited to this subset of signs. This list fails to
include what is thought to be the most commonly attested personal name, M377∼e M347
M371 mentioned above, since the middle sign is not included in Dahl’s published
list of candidate syllables. Nonetheless the strings in this figure are representative of the
set of suspected personal names (Desset 2012), since object signs which are understood to
encode separate units of information have been weeded out. Overall we see that a small
handful of 3-sign personal names are repeated at least 4 times across the corpus, but the
majority appear 3 times or less. 2-sign names appear to be more frequent, although some
of the bigrams in the figure simply represent substrings from the trigrams.3 The ten most
common namelike bigrams all appear 13 or more times across the corpus, and the most
frequent alone appears 45 times (M004 M218 , including as part of a common trigram
in Figure 4.3, accounting for 11 of its uses).

0 10 20 30 40 50
Bigram Frequency (with constituent unigram counts)

M242~b M096
M097~h M004

M240 M096
M219 M218

M066 M352~o
M263 M218
M387 M218
M259 M218
M009 M371
M004 M218

13 (25, 212)
13 (46, 115)

16 (49, 212)
16 (88, 525)

18 (243, 40)
18 (174, 525)

21 (249, 525)
22 (69, 525)

30 (223, 308)
45 (115, 525)

0 2 4 6 8 10 12
Trigram Frequency (with constituent bigram counts)

M032 M387 M218
M262 M259 M218

|M131+M388| M004 M263
M101 M066 M263

M066 M352~o M218
M371 M009 M371

|M131+M388| M101 M066
M386~a M240 M096

M004 M263 M218
M097~h M004 M218

3 (3, 21)
3 (4, 22)
3 (3, 9)
3 (8, 5)

4 (18, 4)
5 (6, 30)
5 (5, 8)

6 (12, 16)
7 (9, 18)

11 (13, 45)

Figure 4.3: The 10 most frequent proto-Elamite bigrams and trigrams (top to bottom),
limited to signs in Dahl’s (2019) candidate syllabary. In parentheses are given the frequencies
of the two unigrams comprising each bigram, and the two bigrams comprising each trigram.

Repeated n-grams, anthroponymic or otherwise, become increasingly rare for n > 3.
No 4-gram or 5-gram appears more than 3 times; no 6-gram appears more than twice; and
no 7-gram appears more than once. This low level of repetition indicates that common
frequency-based linguistic decipherment methods may be ineffective on this corpus, as the
distribution of observed collocation frequencies is quite flat. We can overcome this limita-
tion to some extent by performing a “fuzzy” matching to find strings which differ by only a

3Moreover, according to Desset’s (2016) traditional analysis of 515 candidate anthroponymic sequences,
“250 (48.5 %) were made of 3 signs, 118 (22.9 %) of 4 signs, 83 (16.1 %) of 2 signs, 38 (7.3 %) of 5 signs, 15
(2.9 %) of 6 signs, 8 (1.5 %) of 7 signs and 3 (0.5 %) of 8 signs.”
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few characters: for example, the only two 6-grams which occur multiple times in the corpus
differ from one another by only a single sign:

M305 M388 M240 M097∼h M004 M218

M305 M388 M146 M097∼h M004 M218

A further variant appears once in the corpus:

M305 M388 M347 M097∼h M004 M218

Traditional graphotactic analysis parses the first of these strings as an institution, house-
hold, or person class (M305) and a person class (M388), followed by some further designa-
tion(s) of the individual (M240 M097∼h M004 M218).

The identical contexts seen above suggest that the signs M240, M146 and M347 may play
parallel roles in the proto-Elamite script. These signs may be yet another classifier preceding
a stable personal name M097∼h M004 M218, or they may reflect a naming pattern in which
the first element can alternate. In Section 11.2 we will show that a technique for detecting
affixal morphology, adapted from Alice Kober’s (1945) work on Linear B, identifies these as
candidate prefixes in keeping with the second hypothesis.

4.3 Hierarchical Sign Clustering

Manual decipherment of PE has proceeded in part by identifying that certain signs occur in
largely the same contexts as other signs. This has produced groupings of signs into “owners”,
“objects”, and other functionally related sets (Dahl 2009). For example, M388 and M124

are known to be parallel “overseer” signs which appear in alternation with one another
(Dahl et al. 2018: 25). In a similar vein, Knight et al. 2011 used a hierarchical clustering
over characters to discover equivalencies between certain letter shapes, which ultimately led
to their decipherment of the Copiale manuscript.

We have investigated three techniques for clustering signs hierarchically based on the
way they occur and co-occur within texts in proto-Elamite. In our neighbor-based clustering,
we prepare a co-occurrence vector for each sign by counting how many times every other
sign occurs to its immediate left or right; we cluster the signs, using these co-occurrence
vectors as input features, using the scipy.cluster.hierarchy.linkage method in Python.
Our HMM clustering groups signs based on the emission probabilities of a 10 state hidden
Markov model (HMM) trained on the transliterated corpus: we use the same scipy method
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for clustering, with the rows of the trained emission matrix as input features. Finally we
compute a generalized Brown clustering as described in Derczynski and Chester 2016.

By using three different clustering techniques, we can search for clusters which recur
across all three methods to maximize the likelihood of finding those that are meaningful.
This reduces the impact of noise in the data, which we expect to be necessary given the
small size of the proto-Elamite corpus and the difficulty of distinguishing spurious groupings
from those which may reflect as-yet-unobserved similarities between signs.

4.3.1 Clustering Evaluation

We identify commonalities between our three clusterings using the following heuristic. Given
a set of signs S, we find for each clustering the height of the smallest subtree containing
every sign in S. If all of these subtrees are short (which we take to mean not larger than
2|S|) then we call S a stable cluster.

In many cases, the stable clusters comprise variants of the same sign. This is the case
for M157 and M157∼a , which cluster together across all techniques and are already
believed to function similarly to each other, if not identically.

One very large stable cluster comprises the signs M057 , M066 , M096 , M218

, and M371 . This cluster is shown as it appears in each clustering in Figure 4.4.
These signs belong to Meriggi’s proposed syllabary (Meriggi 1971, esp. pp. 173–4) and are
hypothesized to represent names syllabically (or as a mixture of logographs and syllables;
Desset 2016: 83). Desset (2016: 83) likewise identified “approximately 200 different signs”
from possible anthroponyms, “among which M4, M9, M66, M96, M218 and M371 must be
noticed for their high frequency.” Desset’s list differs from our cluster by only two signs,
replacing M057 with M004 and M009. M004 and M009 group with other members of the
putative syllabary in each clustering, but their position is more variable across the three
techniques. For M009 at least, this may indicate multivalent use: besides its inclusion in
hypothesised names (e.g. Meriggi 1971: 173; Dahl 2019: 85), it appears in various different
administrative contexts that don’t appear to include names (e.g P008206) and as an account
postscript (see below here and Section 4.4.3).

All three methods group the five signs in our cluster close to other suspected syllabic
signs; however, since each technique groups them with a different subset of the syllabary,
only these five form a stable group across all three methods. This may be due simply to their
frequency, or they could in fact form a distinct subgroup within the proposed syllabary. We
will see in Section 5.2 that there is evidence for the latter.

While this discussion has focused on the stable clusters for which we can provide some
interpretation, others represent groups of signs with no previously recognised relationship,
such as M003∼b and M263∼a (Figure 4.5). M003(∼b/c) are “stick” signs
understood in some PE contexts to denote worker categories (Dahl et al. 2018); they are
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Figure 4.4: Detail of the (a) neighbor-based, (b) HMM, and (c) Brown clusterings showing
signs possibly used in anthroponyms. M057, M066, M096, M218, and M371 are considered
a stable cluster due to their proximity in all three clusterings.

graphically comparable to proto-cuneiform PAP∼a-c ( ) and PA ( ), the latter of which
can, in later Sumerian, indicate ugula, a work group foreman/administrator.

Figure 4.5: M003∼b clusters identically with M263∼a in all three techniques.

M263∼a is one of a series of depictions of “vessels”, this particular variant appearing
in 27 texts; notably the base sign M263 appears as a possible element in personal names
(Dahl 2019: 85). Interestingly, M003∼b and M263∼a only appear together in a single text
(P008727), one of a closely-related group of short texts that each end in the administrative
postscript M009 M003∼b or M009 M003∼c . It can also be noted that M263∼1
occurs in another text belonging to this small group.

We leave for future work to interpret this and the many other stable clusters resulting
from our work, as such analysis requires deeper Assyriological exploration than is warranted
in the present context. These additional groupings are detailed in the data exploration
toolkit released alongside Born et al. 2019. The complete dendrograms for each clustering
are also available there, or in Appendix A.1 of this thesis.

Although we have not performed a full study of the clusterings produced when sign
variants are collapsed together, preliminary comparisons suggests this may also be worth
pursuing. For instance, a new cluster of small livestock signs arises in the neighbor-based
clustering, comprising M367 (“billy-goat”), M346 (“sheep” or “ewe”), M006
(“ram”), and M309 (possible animal byproduct). Existing clusters, such as the stable
cluster of syllabic signs, appear to remain intact, but a complete comparison of the tech-
niques in this setting is warranted.
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4.4 LDA Topic Model

Latent Dirichlet Allocation (LDA; Blei et al. 2003) is a topic modeling algorithm which
attempts to group related words into topics and determine which topics are discussed in
a given set of documents. Notably, LDA infers topical relationships solely based on rates
of term co-occurrence, meaning it can run on undeciphered texts to yield information on
which terms may be related. Note, however, that topics may be semantically broad, and one
must be careful not to infer too much about a sign’s meaning simply from its appearance in
a given topic. LDA differs from the other clustering techniques we have considered in that
it also provides a means for grouping tablets based on the topics they discuss, which may
reveal genres or other meaningful divisions of the corpus.

We induced a 10-topic LDA model over the proto-Elamite corpus using the gensim

Python library. We chose a small number of topics to make the task of interpreting the
model more manageable; fewer topics make for fewer sets of representative signs to analyze.
Furthermore, with 10 topics the model learns topics which are mostly non-overlapping
(Figure 4.6), meaning there are few redundant topics to sort through. We note, however,
that model perplexity drops sharply above 80 topics, and topic coherence peaks around 110
topics; future work may therefore do well to investigate larger models.

PC1

PC2

1
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6

7
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Figure 4.6: Intertopic distance (measured as Jensen-Shannon divergence) visualized with
LDAVis (Sievert and Shirley 2014) using two principal components (PC1 and PC2). Larger
circles represent more common topics.

In the following sections, we will attempt to interpret the topics from this model to
establish whether and to what extent they relate to known patterns of sign use and specu-
lative genre divisions in proto-Elamite, or perhaps even reveal new such patterns. However,
as LDA is a probabilistic algorithm, repeated executions generally return distinct sets of
topics even on the same data; thus our interpretations should ideally be informed by some
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notion of topic stability, so that we do not place too much weight on a particular sign
grouping that only occurs in this particular run of the algorithm.

Mäntylä et al. (2018) provide a technique for finding stable topics by looking for sim-
ilarities across multiple executions of the LDA algorithm. These authors suggest learning
k models with t topics each, to get a total of t× k topic-term vectors. Running k-medoids
on these topic-term vectors produces t topic clusters. The stability of a cluster is defined as
the rank-biased overlap (RBO) between all vectors in that cluster:

RBO(T1, T2, p, d) = Xd

d
· pd + 1− p

p

d∑︂
i=1

Xi

i
· pi

where T1 and T2 are ranked lists (a pair of topic-term vectors from the cluster in question),
d is the evaluation depth (only the d most predictive words for each topic are considered),
and Xd is the length of the intersection of the first d entries in T1 with the first d entries in
T2. p is a “rank bias” which determines the effect of reordering between terms in different
topics. p = 1 ignores the relative order of terms: so long as the d most predictive terms are
the same across T1 and T2, these will be treated as “the same topic”. As p decreases, more
weight is assigned to terms which are more highly predictive. The authors suggest p = 0.9
which we follow. The higher the mean pairwise RBO between vectors in a cluster, the more
stable the topic represented by that cluster, i.e. the more likely a similar topic is to occur
in any given run of LDA. We apply this method to our data to measure topic stability
across 30 random restarts, and we make note of cases where a topic’s stability influences
our interpretations in the coming sections.4

4.4.1 Topic 1

The most representative signs for this topic are M376 and M056∼f . M376 has been
speculated to represent either a human worker category or cattle; M056∼f is a depiction
of a plow, comparable to the proto-cuneiform sign for plow, APIN . As a candidate for
representing cattle, M376 is a sign of particular interest, since a sign-set for bovines has
not been securely identified in proto-Elamite, despite the clear cultural importance of cattle
suggested by proto-Elamite cylinder seal depictions (Dahl 2016).

We note that M376 can be viewed as a top-down depiction of a plow, whereas M056∼f is
a view from the side. In light of this suggestive shape, and the apparent association between
these two signs implied by the topic model, it is tempting to propose a novel reading for
M376 as another kind of plow sign, possibly denoting a cattle-drawn plow in keeping with
the prior proposed meanings for this sign. In Chapter 8 we will discuss an interesting text
which contains multiple instances of this sign, and which very clearly shows that it is

4The raw RBO values and term frequencies from this stability analysis are available in Appendix A.2.
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associated with significantly larger amounts of grain than another proposed livestock sign
which probably represents a goat (M367∼i ). This would seem to be consistent with the
reading of M376 as a plow animal which would presumably require larger feed amounts,
though this raises the new question of why a single text would record feed amounts for both
goats and cattle, where in other documents it is more typical to find goats counted together
with sheep.

We also note that M376 and M056∼f never occur in the same text, and in our stabil-
ity analysis there is no stable cluster that contains both of these signs, though there are
stable clusters which group both M376 and M056∼f with other signs that are predictive of
this topic. These two signs therefore appear to have roughly complementary distributions,
occurring in similar contexts but never at the same time. If we accept the very tentative
proposal that this sign may be another representation for a plow, this complementarity
could be explained as different types of plow being used for different products or areas (and
thus recorded in different texts), or as some scribes using an idiosyncratic sign for plow in
place of the sign with a proto-cuneiform parallel.

At present, these proposals cannot be treated as anything more than speculation, but
even as speculation this discussion demonstrates how patterns identified by models can help
to spur hypothesis generation and prompt new interpretations of this ancient data.

4.4.2 Topic 3

The visually-similar signs M297∼b and M297 are both highly representative of this
topic. This is interesting as the relationship between these two signs has been uncertain
(Meriggi 1971: 74). M297∼b was hypothesised to indicate a “keg” by Friberg (1978). It
is an “object” sign that almost always appears in the ultimate or penultimate position of
sign strings; it sometimes appears in the summary line of accounts followed by numerical
notations that quantify amounts of grain or liquids. Friberg suspected such texts referred
to ale distributions; ale is thought to have been a staple of the proto-Elamite diet at Susa.
Meriggi suggested M297 may indicate “bread”, but he also included it in his syllabary; it
is the 6th most common sign in proto-Elamite, appearing in 145 texts, and M297∼b is the
31st most common, appearing in 66 texts. Yet topic 3 is the dominant topic in only 85
texts, suggesting that this topic covers only a subset of the accounts that refer to M297 or
M297∼b. Also of note is the fact that M297∼b occurs in topic 3 at a significantly higher
rate than M297, despite being rarer in general—a much higher percentage of the overall
uses of M297∼b appear in this topic (around 75%) than do the overall uses of M297 (less
than 15%).

In our stability analysis, we find that M297 and M297∼b never occur together in any
stable cluster, although both signs appear individually across several stable clusters. This
may suggest that these signs exhibit some degree of polysemy, with multiple senses that are
recognized as belonging to different topics. This view is consistent with the fact that M297
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has been interpreted as both object and syllable in prior work. Though these signs evidently
share some commonalities which caused them to group together in this topic (and which
are evidenced by their similar appearances), the fact that their most stable groupings are
with other signs points to them being fundamentally distinct from one another, or at least
having senses which are clearly so.

4.4.3 Topics 4 and 7

The texts included in topics 4 and 7 successfully reproduce aspects of Dahl 2005a with
reference to the genres of proto-Elamite livestock husbandry and slaughter texts. Dahl was
able to decipher the logographic or ideographic meaning (if not the phonetic realization)
of signs for female, male, young, and mature sheep and goats and some of their products,
beginning with the key observation that proto-cuneiform UDU (“mixed sheep and goats”)

is graphically comparable to M346 . The most representative signs in topic 4 are M346
(“ewe”) and M367 (“billy-goat”). These signs or their variants also appear together

in stable clusters from our stability analysis.
While almost every instance of M346 is representative of topic 4, it is assigned to topic 5

in the atypical text P272825 (see 4.4.4). Several other typical livestock uses of M346 belong
to topic 7. Topic 7 corresponds to the cluster with the highest RBO in our stability analysis,
i.e. this is the most stable topic across 30 repeated runs. The most predictive features for
this topic are the sign M009 , which is also predictive of topic 4 (and appeared in Section

4.3.1), and the bigram M106 M009 . At least one variant of M106 is taken to represent

dry cheese or another animal product (M106∼a ) (Dahl 2005a: 113), which points to
this being a possible topic of animal byproducts as distinct from topic 4 which may refer
more specifically to the animals themselves. Although the model identifies this topic in
many texts which currently have no known association with livestock or animal products,
it is perhaps noteworthy that several of these (e.g. P009141 and P008407) do bear seal
impressions depicting livestock.

4.4.4 Topic 5

The reason that the LDA model groups these 144 texts is not immediately apparent to the
traditional PE specialist. An odd feature of the topic is that M388 (“person/man”) is
considered the most representative sign, but the most representative text is a simple tally
of equids that never uses M388, and in fact uses few non-digit signs overall. This may be
due simply to noise in the model: M388 may be a kind of “stopword” which crops up in
unrelated topics due to its high frequency (LDA models are typically trained on data that
has been stripped of such stopwords, but this is impossible for proto-Elamite where we do
not know which signs correspond to categories that ought to be removed). That said, an
intriguing feature is that a significantly larger proportion of the texts in this topic bear
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a seal impression than do texts in the other topics. The LDA model is not aware of the
presence or absence of seals at training time, and their increased presence suggests that it is
at least possible the model has identified similarities in tablet content that are not so easily
observed through traditional analysis. The atypical “elite redistributive account” (Kelley
2018: 163) P272825, which is also sealed, is associated with this topic. This text has around
116 entries using complex sign-strings, fifteen of which include M388. Other signs which are
highly predictive of this topic include M157 , the most ubiquitous “header” sign, and
M305, an “owner” sign which may parallel M388 (Section 5.2) and which also appears in
headers. These signs all occur, together with other signs that are predictive of topic 5, in
one of the clusters identified by our stability analysis, indicating that however obscure this
topic’s meaning may be, the signal that it captures is robust to changes in the model seed.

Given the relative prevalence of both header signs and seal impressions among the texts
in this topic, the most concrete interpretation that we can give is that there may be some as-
yet unobserved connection between these two phenomena. We will explore this connection
when we undertake a focused study of headers in Chapter 7, where we will demonstrate
that in fact there does appear to be some previously-unknown relationship between headers
and seals, which may possibly derive from geographical factors.

4.4.5 Topic 6

The ten most representative signs for topic 6 include the five of Meriggi’s possible syllabic
signs that grouped most stably in our sign clustering evaluation (see 4.3.1). These signs
also appear together in a stable cluster of topics in our LDA stability analysis. Nine of
the ten are also included in Meriggi’s syllabary, excluding only M388, the second most-
strongly predictive sign for this topic. M388 has been key to the identification of possible
personal names, since it tends to appear just before long sign strings and, through a series
of arguments drawing on cuneiform parallels, may function as a Personenkeil (a marker for
human names; Damerow and Englund 1989; Kelley 2018: 222 ff.; for discussion of how this
role relates to the role of other “owner” signs see also Section 5.2). The texts of topic 6 are
of diverse size and structure, but do tend to include many candidate names according to
traditional analyses.

4.4.6 Topic 10

This topic also confirms existing understandings of a proto-Elamite administrative genre,
namely that of “labor administration” (Damerow and Englund 1989; Nissen et al. 1993),
and appears to instantiate the second-most stable topic cluster in our stability analysis.
The most representative signs are the characteristic “worker category signs” described in
the very long ration texts discussed by Dahl et al. (2018: 24–23), and indeed all of those texts
appear in this topic, in addition to a variety of other identifiable labor texts of somewhat
overlapping content.
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4.4.7 Remaining Topics (2, 8, and 9)

Initial assessments also suggest promising avenues of analysis for topics 2, 8, and 9, all
of which appear to instantiate stable clusters in our stability analysis. Topic 2 is heavily
skewed towards M288 (“grain container”), the most common proto-Elamite sign;5 its

third most representative sign (M391 , possibly meaning “field”) may suggest an agri-
cultural management context for some texts in this topic. Topic 8 is strongly represented
by M195+M057 . This is an undeciphered complex grapheme, frequently occurring as
a text’s second sign after the “header” M157 (with which we argue it may form a single
logical unit: see Chapter 7, and note that the most predictive feature for this topic is actu-
ally the bigram M157 M195+M057 rather than the sign M195+M057 on its own). In topic
9, the two most representative signs are M387 and M036 (possibly associated with
rationing). Since the LDA model is not aware of the numeric notations between entries, it is
interesting that the bisexagesimal numeric systems B# and B appear prominently in texts
of this topic, whether or not M036 (associated with those systems) appears: see particularly
P009048 (the text most strongly associated with this topic) and P008619.

4.4.8 LDA Summary

The preceding sections confirm that there are abundant parallels between the associations
revealed by an LDA model and existing understandings of the corpus according to tradi-
tional proto-Elamite specialists. Our interpretations of the topics, though brief, serve to
highlight this fact, and in turn to demonstrate that models developed for the study of mod-
ern glottographic writing can in fact produce usable results on this corpus, despite concerns
that proto-Elamite may not be a true linguistic writing system. With this established, we
are able to proceed to more sophisticated analyses in the coming chapters, with the new-
found confidence that this data is sufficiently language-like to permit ourselves the use of
traditional NLP models and techniques. The coming chapters will also feature deeper dis-
cussions of some of the patterns identified above, and will demonstrate how lines of inquiry
first suggested by this model have lead to significant and novel discoveries in our later work.

4.5 Related Work

Meriggi (1971: 173–174) conducted manual graphotactic analysis of PE (and later linear
Elamite) texts, for example by noting the positions in which certain signs could appear in
sign-strings. Dahl (2002) was the first to use basic computer-assisted data sorting to present

5A remarkable 37.3% of the topic’s probability mass is allocated to this sign, compared to just 2.5% for
the second most predictive sign (M157, the “household” header sign). No other topic is so skewed: only topic
4 comes close, with 20.3% of its mass assigned to M346 (“sheep”).
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information on sign frequencies, and Englund (2004: 129–138) concluded his discussion of
“the state of decipherment” by suggesting that the newly transliterated corpus would benefit
from more intensive study of sign ordering phenomena (for which see our Chapter 5). Apart
from the use of Rapidminer6 to perform simple data sorting in Kelley 2018, no publications
other than our own have described a concerted effort to apply computational approaches
to this dataset.

Computational approaches to decipherment (see i.a. Knight and Yamada 1999; Knight
et al. 2006; Berg-Kirkpatrick and Klein 2013), which resemble the setup typically followed
by human archaeological decipherment experts (Robinson 2009), have been useful in sev-
eral real world tasks. Snyder et al. (2010) propose an automatic decipherment technique
that further improves existing methods by incorporating cognate identification and lexicon
induction. When applied to Ugaritic, the model is able to correctly map 29 of 30 letters
to their Hebrew counterparts. Reddy and Knight (2011) look for linguistic signals in the
Voynich manuscript, and show that the letter sequences are generally more predictable than
in natural languages, opposite to the trend which we identify for proto-Elamite where the
character sequences are not highly repetitious. Hierarchical clustering has previously been
used by Knight et al. (2011) to aid in the decipherment of the Copiale cipher, where it was
able to identify meaningful groups such as word boundary markers as well as signs which
correspond to the same plaintext symbol.

Homburg and Chiarcos (2016) report preliminary results on automatic word segmenta-
tion for Akkadian cuneiform using rule-based, dictionary based, and data-driven statistical
techniques. Pagé-Perron et al. (2017) furnish an analysis of Sumerian text including mor-
phology, parts-of-speech (POS) tagging, syntactic parsing, and machine translation using
a parallel corpus. Although Sumerian and Akkadian are both geographically and chrono-
logically close to proto-Elamite, these corpora are very large (e.g. ∼1.5 million lines for
Sumerian), and are presented in word level transliterations rather than sign-by-sign tran-
scriptions. This makes most of these techniques inapplicable to proto-Elamite. Our study is
more similar in spirit to Reddy and Knight (2011), as the Voynich manuscript and proto-
Elamite are both undeciphered and resource-poor, making the task of analysis especially
difficult.

4.6 Conclusions

We have shown that methods from computational linguistics and natural language process-
ing can offer valuable insights into the proto-Elamite script, and can substantially improve
the toolkit available to the proto-Elamite specialist. Hierarchical sign clusterings replicate
previous work by rediscovering groups of signs with related function, and reveal similarities

6https://www.rapidminer.com/
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between yet-undeciphered signs to give direction to the ongoing decipherment. Analysis of
n-gram frequencies highlights the level of repetition in sign strings across the corpus as
a point of further research interest, and helps to quantify expert intuitions that the cor-
pus is less repetitive than expected based on other ancient administrative corpora. LDA
topic modelling has replicated previous work in identifying known text genres, but has also
suggested new relationships between tablets which can be explored using more traditional
analysis or more focused computational efforts.

The methods we have used are by no means exhaustive, but they serve to demonstrate
the feasibility of computational analysis on this dataset, and also to legitimize computer-
assisted decipherment in the eyes of domain experts by showing that this process can repli-
cate past manual findings. Particularly in a field populated by such a small handful of
researchers, the faster data processing and ease of visualization offered by computational
methods may significantly aid progress towards understanding this ancient writing system.
It is our hope that computational techniques will at last provide the necessary impetus for
this script to be fully understood after more than a century of only partial decipherments.
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Part III

Main Results
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Chapter 5

Sign & Word Order

As noted in Chapter 2, proto-Elamite appears to have a number of signs in common with
another partially deciphered script called proto-cuneiform. Like proto-Elamite, the proto-
cuneiform corpus is primarily administrative, though unlike proto-Elamite a small number of
possible lexical texts have been identified (we assisted with data collection for an analysis of
one such tablet in Born and Kelley 2021). However, the structure of accounts differs greatly
between the two scripts. Where proto-Elamite text is organized into clear lines, proto-
cuneiform rather organizes signs into boxes (called “cases”) with no clear ordering to the
signs within each case (an arbitrary ordering is imposed when these texts are transliterated).
Thus it is difficult to conceive of these texts exhibiting anything we would recognize as word
ordering (though there may have been a conventional reading order which was more readily
apparent to the original scribes). If Elamite society adopted the technology of writing from
proto-cuneiform, it is possible that this script also lacks a consistent notion of word order.1

Establishing the presence or absence of word ordering is important for determining
whether this script could possibly represent a true writing system. It is difficult to imagine
a system like proto-cuneiform encoding language to any meaningful extent: even languages
with relatively free word order exhibit some level of syntactic structure, and linguistic
processes such as scrambling (Becker et al. 1991), which appear to freely reorder the parts
of a sentence, only apply to certain phrasal categories, and not to every individual word.
It is notable that later phases of cuneiform writing, which are demonstrably linguistic, do
away with the free ordering of signs and impose a linear order much like modern writing
systems. In sum, the less evidence we find for consistent character ordering principles in
proto-Elamite, the greater credence may be lent to claims that this system is non-linguistic.

1Throughout this chapter, we make reference to “word order” as an umbrella term for consistent ordering
relations between signs. This is purely to make the argumentation more concise: though the relations we
identify may correspond to true syntactic word ordering rules if the script is linguistic, it is equally possible
that individual signs do not correspond to complete words, or that the observed ordering encodes a different
kind of relationship altogether.
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Even if the system is non-linguistic, an awareness of underlying ordering principles may
be useful for determining the possible function of signs with unknown meanings. Experts
already assume that the final sign of an entry is generally the object being counted by
the adjacent numeral. A preceding sign is possibly a qualifier modifying the object, but
in the case where there are several preceding signs it is unclear whether these represent a
single multi-sign qualifier or several single-sign qualifiers; it is similarly unclear whether the
signs comprising a multi-sign qualifier would be ordered within that “word”, or whether
distinct qualifiers would be ordered relative to one another. If some signs consistently follow
a particular order relative to one another, it may be possible to group them according to their
preferred position and look for commonalities within each group. Some early analyses relied
on an assumption that such ordering principles were present between signs and were more-
or-less strict (Englund 2004: fn. 9 discussing Meriggi 1971), despite earlier observations that
such trends were in fact not strict (Brice 1963: 28). At the same time, consistent principles
have been demonstrated to govern the ordering of entries across entire tablets (Dahl et al.
2018; Hawkins 2015), and it is conceivable that similar principles also apply at some level
within entries. Lastly, Brice (1963: 25) remarks on the difficulty of labeling tablet headers,
“as there is no indication on the tablets of where the heading ends and the first item begins.”
Given that the header always precedes the first entry, any search for ordering principles
should reveal clear precedence relations between header signs and other sign types, and
thus provides a way to more concretely define this class of signs.

5.1 n-Gram Entropy

If the signs within an entry do not follow any consistent ordering principles, then we should
expect a smoother n-gram distribution than if signs are consistently ordered. In other words,
word ordering principles should be expected to reduce the entropy of a corpus’ n-gram dis-
tribution by removing some uncertainty about which sign comes next in any given context.
This implies that it may be possible to detect word order by randomly shuffling signs within
entries. If this shuffling increases the entropy of the n-gram distribution by a significant
amount, it suggests that there was some ordering which has now been destroyed. However,
if the n-gram distribution exhibits similar entropy before and after shuffling, this suggests
that the ordering of signs was already random enough for the shuffle to have no effect.

We measure the Shannon entropy of the character n-gram distribution P (wi, ..., wi+n) in
the proto-Elamite and proto-cuneiform corpora before and after shuffling the non-numeric
parts of each entry or case.2 We do not include n-grams from the numeric portions of
texts in either script. The proto-cuneiform corpus can be divided into two groups, reflecting

2We observe similar trends when applying the same technique to the conditional entropy distribution
P (wi+n|wi, ..., wi+n−1).
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administrative tablets (like those from proto-Elamite) and possible lexical tablets speculated
to represent simple word lists. We evaluate these subsets separately from one another.

For comparison, we measure the same quantities before and after shuffling each line in
the Late Babylonian, Old Babylonian, Neo-Assyrian, Standard Babylonian, and Sumerian
data from the 3rd VarDial language identification shared task (Zampieri et al. 2019). These
dialects are all written in a linear order using cuneiform-derived scripts, and together they
span multiple centuries and language families to provide a broad baseline for comparison.
We choose the VarDial data specifically because it has been detokenized and encoded us-
ing Unicode cuneiform characters. Other datasets for these languages typically convert the
original character strings into (possibly inflected) word-forms, in ways that obscure the orig-
inal characters (for example, by replacing the 4-character string AB2.NUN.ME.DU

with the atomic word token abrig2). This is a more abstract level of representation than
we find in the undeciphered proto-Elamite corpus, where we only have access to raw sign
names. By reverting to Unicode cuneiform character sequences, the VarDial data is unique
in representing these later languages at a level of abstraction that is actually comparable
to the available proto-Elamite data.

Figure 5.1 shows the average change in entropy after shuffling each script, averaged over
10 trials and broken down by n-gram length. As expected, all of the later cuneiform writing
systems exhibit increased entropy as a result of shuffling, reflecting the known presence of
syntactic word order relations in the original corpora. The change becomes less pronounced
as the value of n increases, since the original n-gram distributions become increasingly
uniform for large n, lessening the effects of shuffling.

The proto-cuneiform administrative corpus exhibits the smallest average changes in
entropy, reflecting the fact that there is no clear ordering to the signs in the original texts.
The proto-cuneiform lexical corpus exhibits somewhat larger changes, which is consistent
with the view that these texts may represent an incipient use of the script to represent
language. Moreover, during transliteration, lexical texts are intentionally linearized in such
a way as to produce known Sumerian words when possible, which likely further contributes
to the appearance of some consistent character ordering.

Proto-Elamite occupies a middle ground, exhibiting significantly greater increases than
the proto-cuneiform administrative corpus for n ≤ 3, and possibly falling in-between the
proto-cuneiform lexical and administrative corpora for larger n. Proto-Elamite also appears
to exhibit larger increases in entropy than the proto-cuneiform lexical texts for small n,
though there is enough variance in both traditions that we cannot claim significance. Proto-
Elamite exhibits smaller increases than later cuneiform traditions.

These results are consistent with the view that the proto-Elamite accounts have some-
what more in common with real writing than the proto-cuneiform accounts, perhaps roughly
on par with the proto-cuneiform lexical tradition. This may point towards proto-Elamite
having only incipient ordering conventions, which are followed inconsistently or only by cer-
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Figure 5.1: Percent change in entropy of the character n-gram distributions for cuneiform
and cuneiform-adjacent scripts after shuffling, averaged over 10 shuffles. Larger values sug-
gest stricter ordering principles in the original character distribution, and may reflect a
more consistent ordering of characters into words and of words into phrases.

tain scribes; or proto-Elamite may not exhibit any syntactic word order, but some scribes
may use conventional orderings which may differ from scribe to scribe; or perhaps order is
only meaningful for some of the signs in an entry, while others can be freely reordered (if,
for example, the counted object must be the final sign, but qualifiers may be listed before
it in any order). As we lack clear word boundaries in the proto-Elamite data, it is also
unclear whether this ordering should be taken obtain between words, or between characters
comprising a word, or between concepts which do not map cleanly onto linguistic categories
(i.e. ideograms).

Overall, while raw entropy scores are too blunt an instrument to give definite answers
to questions of “word” order in these texts, these results are nonetheless useful for position-
ing the proto-Elamite script more concretely relative to other systems whose relations to
language are more clearly understood.

5.2 χ2 Tests for Word Order

If the signs within an entry are unordered, then conditioned on the fact that two signs A

and B occur in the same entry, we should be equally likely to observe A before B as to
observe B before A. As a consequence, a simple way to check for consistent ordering rules
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Figure 5.2: Excerpt from Figure A.4 illustrating a partial order over signs occurring together
20 times or more.

is to use a χ2 test with two outcomes (A > B or B > A), each of which is expected in
50% of cases. If one case turns out to be significantly more likely than the other, there is
at least a possibility that some relationship obtains between the pair which causes them to
be written in the observed order more often.

We identify all pairs of characters where a χ2 test suggests that one ordering is more
likely than the other with p < 0.05. We only test pairs of signs which occur in the same entry
at least 10 times, following conventional recommendations that χ2 testing only be applied
when each of the expected values is at least 5. From this we derive a partial order, which
we represent as a graph with a directed edge from A to B whenever A is significantly more
likely to precede B than vice versa. The full graph is available in Appendix A. Figure 5.2
shows a more clearly readable excerpt featuring only those sign pairs which occur 20 times
or more.

Counted Objects as Infima It is immediately clear that this graph captures many
existing intuitions about the internal structure of proto-Elamite accounts. Of the seven
apparent infima in Figure 5.2, three are true infima in the full graph (M297 , M288 ,

and M346 ) and another is a variant of a true infimum (M263 ). These have all been
recognized as “object” signs, and are believed to represent containers (M263, M297, M288)
or sheep (M346). Object signs are understood to occur at the very end of an entry, and
to specify the object that is being counted by the numeral which immediately follows. The
position of these signs as infima demonstrates that our proposed approach has accurately
captured this aspect of their usage and the corresponding positional preference.

Considering the complete graph, a majority of the other infima are also already labeled
as likely object signs in the working sign list. Of those which are not (M262 , M314

, and M317 ), two (M262 and M314) only appear to be infima because all of the
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signs which could follow them were pruned for being too rare. With a larger dataset, these
signs would almost certainly be positioned nearer to the middle of the partial order. The one
remaining infimum (M317) is not labeled as a counted object by Dahl (Unpublished), though
it is acknowledged as one by Englund (2004). This sign is reasonably common, occurring
60 times with variants appearing an additional 13 times. Many of these appearances are
in entry-final positions that appear suggestive of a counted object, though the sign also
appears adjacent to some so-called “syllabic” signs (P008310), near the beginning of texts
alongside common header signs (P008291), and as both the inner and outer component
of some complex graphemes (P008365, P008499). This variety of uses may explain why
M317 is not explicitly labeled as an object sign in the working sign list: particularly its
presence next to “syllabic” signs warrants considering whether it may itself be syllabic.
This sign has been identified as a likely worker category (Dahl et al. 2018; Kelley 2018;
Dahl 2019), though it differs from some of the other putative signs for humans in that it
has no obvious proto-cuneiform parallel (Dahl et al. 2018). Dahl et al. 2018 also identify a
hierarchical ordering of entries within a tablet (distinct from the ordering of signs within
entries, considered in this section) whereby entries containing M317 regularly appear before
entries recording other categories of human; they suggest that this may reflect a practice
of placing the “most important” categories earlier in a text (Dahl 2005a), which would
point towards M317 being a particularly high-status human (consistent with similar claims
in Englund 2011: 46-47). Among these varied uses, it is nonetheless possible to find texts
which clearly position M317 as a counted object. Perhaps the clearest example comes from
the text P008759, where M317 and a variant appear four times. The final occurrence is on
the reverse of the tablet, in what appears to be a summary line3,4 recording the sum total
of the values on the text’s obverse. The use of a sign in a tablet summary is seen as strong
evidence that the sign in question represents a counted object, and on this basis we argue
that the grouping of M317 with the other object signs among the ordering’s infima is yet
another case where the inferred order captures and formalizes a known pattern of sign use.

Headers as Suprema The set of suprema in the full graph does not map onto any
category as cleanly as do the infima, though several (M305 , |M195+M057| , and

possibly M377 and complex graphemes containing it) are understood to be “header signs”
which provide some global context with which to interpret the following text. Dahl 2005c
and Kelley 2018 suggest that headers may represent the household or institution to whom

3The text is damaged so that some of the numerals are unreadable, but the visible numbers add up to
112 in the sexagesimal system, and the summary reads 119 in the same system. Most of the visible entries
record values of just 1 or 2, and there appear to be approximately 5 obscured entries, so the reading of the
final entry as a summary appears plausible.

4This text is another apparently unremarked example of an “implicit object” in proto-Elamite, a category
which we discuss further in Chapter 8.
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the ensuing account belongs, or may specify the type of account which follows. The position
of these signs as suprema is natural and expected given what is known of their prevalence
near the beginning of texts.

Owner Signs and Determinatives Having established with the preceding examples
that our inferred ordering accurately captures existing intuitions about this script, we turn
next to a case where a deep look at the placement of certain signs in the graph may prompt
a re-evaluation of certain signs.

Five different suprema have strong precedence relations with the sign M388 , which is
also notable for being the sign with the highest out-degree (i.e. M388 has a strong precedence
relationship with more signs than any other). M388 is one of the better-understood signs
in the proto-Elamite corpus (see throughout Dahl 2019; Kelley 2018), and is believed to
parallel proto-cuneiform KURa in representing a laborer (possibly a male in particular,
with the sign being an iconic depiction of the male genitalia, making this one of very few
depictions of humans or human body parts in the script). This sign can occur as a counted
object, in which case it apparently stands for a number of individuals being tallied. It
also occurs near the beginning of many long entries, where it is understood to introduce
the owner of the counted item which follows. In this usage it has been compared (Kelley
2018) to a Personenkeil, a type of so-called “determinative” known from later cuneiform
scripts that indicates that the following signs represent a name. In later cuneiform scripts we
find multiple such Personenkeile, for specifying masculine, feminine, and divine names, and
likewise proto-Elamite exhibits other signs whose usage appears to parallel that of M388,
most notably M124 . Signs which typically follow M388 are called “syllabic” signs on
the hypothesis that they may represent syllabically-written names, though phonetic values
have not been established for any of these signs at present.

The placement of M388 near the top of the inferred sign order reflects this usage at
the beginning of possible names, and its high out-degree reflects the variety of so-called
“syllabic” signs which consistently follow it. However, M388 is not a supremum, as it is very
frequently preceded by one of M305 , M139 , M111∼a , M001 , or |M195+M057|

, typically with no intervening signs. Prior work has discussed some of these as possible
owner signs (Dahl 2019; Kelley 2018), which qualify either the following individual or the
counted object as belonging to a particular household or institution. As a concrete example,
Kelley 2018: 233 breaks down the string M305∼j M388 M032 M066∼a from P272825 as

household (M305∼j) → Personenkeil (M388) → personal name (M032 M066∼a)

This presentation implies (perhaps unintentionally) a structure to the underlying text
which we can represent using bracketed notation as [M305∼j [M388 [M032 M066∼a]]].
Here M305 is taken to be a “head” which qualifies the entire following namelike string,
which is itself analyzed as a Personenkeil modifying a true name.
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An alternative analysis could instead read this string as [[M305∼j M388] [M032 M066∼a]],
where M305 no longer “scopes over” M388, but is rather part of a multi-sign expression mod-
ifying the name. We argue that this is the more natural reading when multiple owner signs
occur in sequence. P008012 offers support for this view, as this text attests the same tri-
gram M004 M218+M101 M371 after M388 in one entry, and after M139 in another.
The trigram in question is comprised of signs that are understood to belong to the putative
syllabary, and is therefore a candidate for a personal name. M388 and M139 clearly occupy
parallel positions in these two entries, and it stands to reason that they belong to the same
functional category by extension. (In essence, we are arguing that these signs are substi-
tutable for one another, and therefore belong to the same underlying category, in the same
way that syntactic substitutability gives evidence that two phrases are the same kind of
constituent in a natural language.) Another example where these signs appear to substitute
for one another can be found in P008310, where they alternate before the trigram M032

M387 M218 .
We can find similar examples where other suprema from our inferred order appear before

candidate names where an M388 may otherwise be expected:

• in P008004 we find M305 before the string of possible syllables M066∼a M219 M101

M101 M066∼a ;

• in P008979 we find M001 before the syllable sequence M263 M218 M263 ;

• in P008724 we find |M195+M057| separated by one sign from the syllable string M387

M263∼1 M110 M066∼a ; and finally

• in P009165 we find M111∼a before a broken string beginning with the reduplicated
syllable M066 M066 .

Thus all of these signs appear to be associated with the same category of name-like
strings as M388, and can stand in the same position as M388 at the beginning of such
strings. The simplest explanation is therefore that these signs all occupy the same structural
position.

Moreover, although our partial ordering suggests that these signs typically precede M388
when both are present, there are exceptions where M388 comes first, such as M388 M111∼a

in P009018 or M388 M001 in P008709. If M388 functioned like a true determinative, it should
occupy a lower structural position than owner signs which are not true determinatives, and
these alternative orderings should never be attested. Thus these exceptions to the usual
ordering give further evidence that M388 and the other signs in this section are really
interoperable members of the same underlying category, which are ordered by convention
rather than any strict structural constraint.

As additional evidence, we appeal to the state sequences learned by a Hidden Markov
Model trained on the proto-Elamite corpus. In Chapter 4, we trained a Hidden Markov
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Model as part of our initial explorations in sign clustering. That analysis did not make
explicit use of the model’s Viterbi state sequences, but for interest’s sake we nevertheless
computed these sequences in case they could reveal patterns of interest. Indeed, when con-
sidering these sequences, we observe that the model very consistently enters the same state
when producing both M388 and M124 (the other candidate Personenkeil known from prior
work). When producing bigrams involving M388 and the other signs discussed in this sec-
tion, a majority of cases see the model staying in this same state when emitting both signs.
On average the model also prefers this state when emitting these signs in the absence of
M388, as in the bulleted examples above.5 This suggests that any differences in function
between these signs are minor enough that they can be effectively modeled as belonging to
the same category.

In sum, we argue that M388 should not be treated as a true determinative, unlike the
Personenkeile to which it is sometimes compared. Rather it is just another member of
the set of “owner” signs, which alternates with other members of this class across parallel
contexts and which can be (but by apparent convention, rarely is) freely reordered relative
to other members of this category when they are present. The proposed readings of “man”
or “person” are relatively generic, and this genericity is likely reflected in its overwhelming
frequency (it is the second most common sign in the corpus). This genericity may also
account for its typical placement after other owner signs, as seen in the partial order inferred
above, if for example scribes chose to order these qualifiers from most to least specific.

Syllabic Signs Among the signs which have not been discussed so far, three stand out
for having a very high in-degree in Figure 5.2, namely M218 , M096 , and M371 .
All three belong to the putative syllabary (Dahl 2019), and their high in-degrees come in
large part from other syllabic signs. These signs have very low out-degree, being followed
only by the object signs M288 or M297 on a consistent basis.

This points towards the presence of some internal structure in the “names” which follow
M388 and the other owner signs discussed above, whereby these three signs commonly end
up at or near the end of a name. If the “syllabic” signs truly do encode phonetic values,
then these three may represent common suffixes, or variant forms of the same suffix (for
example, with different vowels or onsets depending on the preceding context). Alternatively,

5With the notable exception of |M195+M057|, which already appears exceptional as it does not imme-

diately adjoin syllable sequences but is typically separated from them by another sign, often M147 .
|M195+M057| was already discussed above as a header sign, and we will argue in Chapter 7 that it is likely
part of a multi-sign header in most texts where it occurs. However, since multi-sign headers are rarely an-
notated as such in the current version of the corpus, many attestations of this sign end up looking like part
of the following entry, causing it to be erroneously mixed in with these other owner signs with which it does
not actually form a natural class.
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if the syllabary is more heraldic in nature, these may be the most or least specific identifiers,
which occupy a place of (dis)prominence near the end of the syllabic string.

We emphasize, however, that the partial order inferred in this section only represents
the most common ordering of signs relative to one another: these three signs do not always
occur at the end of strings, but they do so most often. For a more robust view of how
these signs are distributed, Figure 5.3 shows a heatmap of sign positions averaged across
all entries that are 6 signs in length.6 Each row represents one sign, and the brightness of
the nth cell (reading left to right) indicates how frequent that sign is in the nth position.
Brighter cells in the leftmost columns imply that a sign is more common at the beginning
of the entry, and brighter cells to the right indicate higher frequency in later positions. A
uniform color across the whole row implies that the sign is equally common in all positions.
For context, the figure includes additional signs of interest and signs discussed in previous
sections. Rows are ordered according to their median position, so that signs at the top of
the plot are more common at the beginning of entries, and those at the bottom are more
common at the end.

We see that M218, M096, and M371 exhibit very similar distributions in this figure,
with all three showing a spike in occurrence frequency in penultimate position (which we
may tentatively call “name-final” position, at the end of a syllable string and immediately
preceding a counted object in the ultimate position). Recall that these signs also formed
a stable cluster in our initial exploratory analysis (Chapter 4): this “affixal” behaviour is
presumably the feature which leads them to cluster together. Other signs that exhibit a
preference for the penultimate position include M066 and M004 , also belonging to the
putative syllabary. These signs are not uncommon in earlier positions, however, and their
preference for name-final positions should be taken as a trend and not a rule.

Although there exist signs, like M219 , which are most common as the antepenult,
these signs tend to be rarer than signs occurring as penult, and their frequency distributions
appear to be smoother. If this smoothness is a legitimate signal, and not a consequence of
sampling bias arising from these signs’ rarity, it may suggest that signs in the “root” or
“stem” of a syllabic sequence are not subject to strict ordering requirements, and that
only “suffixal” signs like M218 consistently select for a particular location. This would be
consistent with the observation that most nodes in the precedence graph in Figure A.4
have relatively low degree: the median in- and out-degrees are both just 1, and the median
total degree is 2, meaning that most signs are only consistently ordered relative to two

6We limit the figure to entries of a fixed length to ensure we are comparing like with like; similar trends
hold across entries of all lengths. We include a complete breakdown by entry length and sign name for every
sign in Appendix A.4. We highlight 6-sign entries in particular because these are long enough for different
patterns of sign positioning to be clearly distinguishable. For example, in 3-sign entries, there will be no
apparent difference between signs which select for the middle of an entry, those which select for the second
position, or those which select for penultimate position, but in longer entries all of these behaviours would
be clearly distinct.
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Figure 5.3: Heatmap showing average positions of select signs in entries of length 6. For
each sign, the brightness of the nth-leftmost cell indicates the frequency with which that
sign occurs in the nth position across all 6-sign entries.
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other signs. Thus, while we can argue that many signs are likely to follow M388 or precede
M288, we can only rarely order those signs relative to one another. On the basis of these
results, we advance the suggestion that the anthroponyms or putative syllable sequences in
proto-Elamite may be broken down into at least two parts, a “stem” for which we observe
relatively weak constraints on the relative ordering of signs, and a following “suffix” which
prototypically consists of a sign from the set M218, M096, M371, M066, or M004 which
empirically prefer penultimate position. We will return to this claim in Section 11.2 where we
consider a technique for identifying affix-like behaviour. Although we couch this argument
in the familiar terms of stem-plus-affix morphology, we remain agnostic as to whether these
strings are truly inflected word forms as opposed to any other kind of structured object.
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Chapter 6

Complex Graphemes

This chapter sets out to understand a category of signs called complex graphemes, and
reproduces results which we have originally published in Born et al. 2021. We propose an
architecture for image-aware language modeling, which permits sharing of information be-
tween visually similar signs in much the same way that sub-word units share information
between words in a traditional language model. We contrast the sign embeddings learned by
this and other models to argue that certain complex graphemes are not merely orthograph-
ically compositional, but also exhibit signs of semantic compositionality, a fact which has
noteworthy implications to the possible readings of the signs in question. We also demon-
strate for the first time the existence of a grammar governing the construction of these
signs.

6.1 Methodology

Recall from our introductory survey of the script that complex graphemes (Dahl 2005c)
consist of two or more signs inscribed within one another, ligatured, or otherwise juxtaposed
in such a way as to look like a single unit rather than a sequence of disjoint tokens. Generally,
in a complex of type “A+B” (e.g. M131+M388 ), the B sign is written within the A

sign, and in a complex of type “A+B+A” (e.g. M153+M320+M153 ) it is written
between (possibly mirrored) copies of A. For this reason, we refer to the first component of
a two- or three-sign complex as the outer part, and the second as the inner part. However,
there exist more marginal varieties of complex grapheme for which we acknowledge that this
terminology is not quite appropriate (e.g. M296+M296 or M059+M038∼a ). Most
of the signs which occur as part of a complex grapheme can also occur as standalone signs.
Exceptions to this are rare, such as M600 which only ever occurs in the hapax M362+M600.

Although these signs are orthographically compositional, it is not known whether they
are also semantically compositional. Similar constructions exist in proto-cuneiform, includ-
ing containers with signs inscribed to indicate specific products (Wagensonner 2015). Some
proto-cuneiform compounds survive into later cuneiform, where they sometimes obtain id-
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iomatic meanings, e.g. cuneiform GU7 “eat”, a combination of “head” and “bowl”. Chinese
characters likewise exhibit varying degrees of both visual and semantic compositionality
(Sproat 2006).

If it can be shown that any of the proto-Elamite signs are semantically compositional,
this will open new avenues for decipherment by showing that these signs can be understood
from the meanings of their components. If the meaning of the complex can be determined,
it would become possible to work backwards to establish the meanings of the parts, and
vice versa. Moreover, if these complexes have compositional meanings, then identifying the
function of a sign in one complex immediately reveals its function in any other complexes
where that sign occurs. This kind of analogical reasoning cannot be applied if the complexes
are idiomatic, as in that case the meaning of the inner or outer part may not be consistent
across different idioms.

Past work (Mikolov et al. 2013b; Salehi et al. 2015; Cordeiro et al. 2016) suggests that
word and phrase embedding models learn embeddings which capture semantic composi-
tionality in noun compounds and multiword expressions in modern languages. Concretely,
these models assign to such compounds a representation which is similar to the sum of the
representations for the words within the compound, or to some other function of the com-
ponents depending on the precise embedding technique in question. We hypothesize that, if
complex graphemes are semantically compositional in proto-Elamite, it should be similarly
possible to identify additive or other arithmetic relations between their component parts at
a higher rate than expected by chance. The embeddings learned for these signs may also
exhibit other signs of internal structure, such as an ability to model proportional analogy
between graphemes with shared components:

|M136+M365| : M136 :: |M327+M365| : M327

: :: :

If this analogy holds in the embedding space (which is to say that the “3CosAdd”
formula (Mikolov et al. 2013b) M136+M365 - M136 + M327 ≈ M327+M365 holds between
the signs’ embeddings) this would give further evidence that the graphemes involved exhibit
some degree of semantic compositionality.

Unfortunately, most proto-Elamite signs are rare, which impedes models’ ability to learn
meaningful information about their distributions. Yet many signs with distinct names have
striking visual resemblances, and it is usually not known whether these have different mean-
ings. Visual information may therefore improve representation learning by allowing a model
to share distributional information across graphically similar signs, and therefore to learn
more robust representations for signs which are individually rare but belong to a more
common graphical archetype. To this end, we propose an initial approach to multimodal
language modeling for proto-Elamite in Figure 6.1. This architecture uses two separate
embedding components. On the left of Figure 6.1, in red, is a standard embedding layer
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which performs a lookup from one-hot inputs to small, learnable, dense representations.
On the right, in blue, a separate lookup function retrieves an image of the corresponding
sign. A CNN extracts a feature vector from this image, which is max-pooled, flattened, and
passed through a dense layer to produce a low-dimensional embedding. Both embeddings
are concatenated and passed to a BiLSTM (Hochreiter and Schmidhuber 1997; Schuster
and Paliwal 1997) which attempts to predict the label of the next (resp. previous) sign in
the text at each time step. All timesteps share the same weights for the CNN and em-
bedding layers. By omitting the blue image-embedding component we can obtain a normal
(text-only) BiLSTM language model. By omitting the red text-based component, we can
obtain an image-only model which never directly sees the labels assigned to the signs in its
input.

one-hot
encoding

sign image

CNN

maxpool

flatten

......

M066

BiLSTM

output token

dense

......

word
embedding

layer

Figure 6.1: Architecture for image-aware, multimodal language modeling.

This model will learn representations which incorporate aspects of visual and contextual
information. To more clearly establish how each of these modalities impact the geometry
of the learned embedding space, we train a separate image recognition model to predict a
sign’s label given only its image. This model uses the blue image embedding component from
Figure 6.1 to produce a dense representation of an input image, with an additional fully-
connected layer on top to predict the label for that input sign from this embedding. This
model only sees signs in isolation, meaning it will not learn from distributional information.
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Model Input Type Embedding Sizes1 Other Parameters Description

Text-Only Models

glove seq. of sign names 16, 32, 64, 128, 256 window size: 15 Pennington et al. 2014
fasttext.cbow seq. of sign names 16, 32, 64, 128, 256 window size: 15 Bojanowski et al. 2017
fasttext.skip seq. of sign names 16, 32, 64, 128, 256 window size: 15 Bojanowski et al. 2017
word2vec.cbow seq. of sign names 16, 32, 64, 128, 256 window size: 15 Mikolov et al. 2013a
word2vec.skip seq. of sign names 16, 32, 64, 128, 256 window size: 15 Mikolov et al. 2013a
lm.text seq. of sign names 64 hidden dimension: 64 Figure 6.1, blue omitted.

Image-plus-Context Models

lm.image+text seq. of sign names and images 64 hidden dimension: 64 Figure 6.1.
image size: 64×64

lm.image seq. of sign images 64 hidden dimension: 64 Figure 6.1, red omitted.
image size: 64×64

Image-Only Models

image recognition individual sign image 64 image size: 64×64 Figure 6.1, blue only.

Table 6.1: List of models considered in this work.

This gives us a contextless baseline to compare against: if a result holds for the multimodal
LM in Figure 6.1 but not for this image recognition model, this suggests that the result
depends on contextual signals, and not simply on visual resemblances between signs.

We also train continuous bag-of-words (CBoW) and skipgram models with FastText2

(Bojanowski et al. 2017) and word2vec (Mikolov et al. 2013a), as well as GloVe embeddings
(Pennington et al. 2014). Table 6.1 summarizes all of these models and important hyperpa-
rameters. We train each of these models on our proto-Elamite corpus, treating each entry
of a tablet as a distinct sequence, and setting aside 500 entries as a validation set for the
language models.

Prior to training, we replace all signs occurring 3 or fewer times3 with UNK. We replace
rare signs wherever they occur, including inside of CGs. The tokens X and ... represent
broken or unreadable signs, so we also replace these with UNK. When training language
models, we do not backpropagate losses from samples where the target word is UNK, since
it so often represents broken material. To make the data less sparse, we remove annotations
marking sign variants, so that for example M157 and M157∼a are considered the
same sign. (This is a hackish approach to distance our analysis from potential label bias
arising from the working sign names, which must unfortunately be used as target classes for
the language modeling tasks even when the model uses sign images as input. In Chapter 9

1For a more robust comparison, we train these simpler models with multiple embedding sizes (including
some larger than those used for the more powerful language models), and report results from whichever
dimensionality performs best on each task.

2Sign names are largely arbitrary, so we disable sub-words in FastText by setting the maximum sub-word
length to 0.

3To determine frequency, we count how often a sign occurs both independently and as part of a complex
grapheme.
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we will consider an improved approach that lets our models fully divest from the working
sign names.)

6.2 Experimental Results

6.2.1 Additive Composition

We predict that if a complex grapheme is semantically compositional, its embedding will
approximately equal the sum of the embeddings of the signs it comprises.

Given a sign s, let es denote the embedding of s. If s is a complex grapheme let σ(s)
denote the list of signs which make up s. For every complex grapheme s in the signary,
we check whether ∑︁t∈σ(s) et ≈ es. If ∑︁t∈σ(s) et is within the k nearest neighbors of es for
some threshold k, we say that s appears to have a compositional representation. For different
thresholds k, we measure how many complex graphemes have compositional representations
and report these values in Table 6.2. We also compute how many complex graphemes s fall
within the k nearest neighbors of the sum of |σ(s)| randomly-sampled sign embeddings; bold
cells in the table represent cases where the observed number of compositional graphemes is
significantly higher than expected based on this random baseline.

k
Model 1 3 5 10 15

glove.256 0 0 1 3 13
word2vec.cbow.16 0 0 1 9 12
word2vec.skip.32 0 0 5 13 16
fasttext.cbow.128 0 2 3 5 9
fasttext.skip.128 0 3 10 15 20
lm.text.64 0 0 0 0 1
lm.image+text.64 1 14 21 40 51
lm.image.64 11 16 27 48 61

image recognition.64 3 7 15 28 38

Table 6.2: Number of compositional graphemes for different similarity cutoffs k. Bold num-
bers represent cases where the number of compositional graphemes is significantly larger
than expected by chance.

In text-only models, when k is small the number of complex graphemes with composi-
tional representations is never higher than expected by chance. However, for image-aware
models, and for text-only models with large enough k, the number of complex graphemes
which are close to the sum of their components is significant. We note that even for k = 15,
the signs identified as compositional by the lm.image.64 model average >0.97 cosine sim-
ilarity to the sum of their parts, suggesting this is not too generous a threshold.
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Most notably, the number of compositional graphemes in lm.image.64 is always larger
than the number in any of the other models, including the image recognition model.4 This
has the important implication that compositionality in the learned embeddings is not solely
a consequence of visual compositionality. If these models were purely learning patterns of
visual composition, the contextual information available to the LMs would not be useful
for this task, and the image-based LM would not be expected to discover any more compo-
sitional graphemes than the contextless image recognition model. Moreover, we would not
expect to find a significant amount of compositionality in any of the text-only models for
any k, as we intentionally avoid the use of subword units which would reveal the internal
structure of a sign to these models.

Thus there is at least tentative reason to believe that proto-Elamite includes some
complex graphemes with meanings that are semantically compositional, where this compo-
sitionality is reflected in models’ learned representations through additive relations similar
to those found for compositional phrases in modern languages (Mikolov et al. 2013b; Salehi
et al. 2015; Cordeiro et al. 2016). Table 6.3 provides examples of signs which appear to
be compositional in the image LM but not the image recognition model. These are signs
for which contextual information appears to play the deciding role in making them receive
compositional embeddings, and therefore these are the signs which we can most confidently
point to as examples of possible semantic compositionality in the proto-Elamite signary.
Implications for these and other signs will be discussed in Section 6.3.

M153 + M106 ≈ M153+M106
M175 + M286 ≈ M175+M286
M327 + M348 ≈ M327+M348
M362 + M244 ≈ M362+M244
M157 + M288 ≈ M157+M288
M175 + M153 ≈ M175+M153
M218 + M388 ≈ M218+M388

Table 6.3: Sample of signs which appear to be compositional in the image LM but not the
image recognition model.

6.2.2 Pairing Consistency

Fournier et al. (2020) introduces a metric called the pairing consistency score (PCS), which
is intended to measure whether the offsets between pairs of embeddings are more parallel
than expected by chance. We suggest that this metric may provide initial intuitions about
whether any given sign contributes the same or similar meanings to all of the complex
graphemes where it occurs. If the sign s always contributes the same meaning whenever it
occurs in a complex, then the offset between the embeddings for the signs (t, t+s) should be

4The image recognition model has fewer parameters than the LMs, but it attains >99% accuracy on its
original task, suggesting that it is not underparameterized.
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expected to be roughly parallel to the offset between the pair (u, u+s) for most choices of t

and u, assuming that embeddings are organized into semantically-coherent neighborhoods
as has been generally observed for representations learned through language modeling. By
contrast, if complexes containing s have idiomatic meanings (so the contribution of s is not
consistent), we expect that the offsets between such pairs will be parallel with much lower
probability. Thus PCS can serve as a proxy for compositionality, and allows us to investigate
the impact of an individual sign on the representations of complex graphemes in which it
occurs.

To apply PCS to our data, we will construct two relations for each sign s. Given a
complex grapheme c containing s, let δ(c, s) denote the unique element of c which is not
s.5 For example, δ(M153 + M320 + M153, M320) = M153. Further, let I(s) be the set of
all complex graphemes with s as the inner element and O(s) be the set of all complex
graphemes with s as the outer element. Then define

Rs,in = {(δ(c, s), c) | c ∈ I(s)}

Rs,out = {(δ(c, s), c) | c ∈ O(s)}

Informally, the relation Rs,in contains every complex grapheme where s is the inner
part, paired up with whatever sign makes up the outer part. Rs,out contains every complex
grapheme where s is the outer part, paired up with whatever sign comprises the inner part.

Table 6.4 reports the average PCS of the relations Rs,in and Rs,out for each model, av-
eraged across all signs s.6 On average, we find that Rs,in has higher PCS than Rs,out; a
Mann-Whitney U test (Mann and Whitney 1947) suggests that the difference is statisti-
cally significant with p < 0.05 for the image-aware LMs, the image recognition model, and
FastText.

This implies that, relative to outer signs, inner signs have a more consistent and pre-
dictable impact on the representations of compounds in which they occur. In other words,
supposing we know the positions of signs A, A+B, and C in the embedding space, we can
roughly predict the position of C+B by starting from the position of C and adding the same
offset that maps A to A+B. In the other direction, if we know the positions of A, B+A, and
C, it is on average harder to predict the location of B+C through the same process. The
fact that this holds for some text-only models as well as for the image-aware LMs implies
that it is due to distributional properties of signs and not simply their appearance.

Fournier et al. (2020) note that different categories of relations in English have differ-
ent average PCS. They find that relations involving inflectional morphology (for example,

5We limit the analysis to complex graphemes of type A+B or A+B+A, which account for the majority
of cases in the corpus.

6We compute PCS using the original code published by Fournier et al. (2020), but we adjust their
permutation-finding function to avoid infinite loops when a relation contains few items.
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Mean PCS
Model Rs,in Rs,out

glove.64 0.542 0.544
word2vec.cbow.64 0.525 0.492
word2vec.skip.64 0.521 0.495
fasttext.cbow.64 0.562 0.484
fasttext.skip.64 0.539 0.500
lm.text.64 0.465 0.529
lm.image+text.64 0.719 0.482
lm.image.64 0.760 0.536

image recognition.64 0.929 0.493

Table 6.4: Comparison of pairing consistency for the inner and outer parts of compound
signs in 64-dimensional models. Bolded rows represent pairs where the difference between
columns is significant.

between a verb and its gerund) have high PCS, relations involving derivational morphology
(as between heat and reheat) have lower PCS, and other semantic relations (as between hot
and cold) have the lowest PCS of the relations they examine.

We expect that absolute PCS values will not be comparable between proto-Elamite
and English, owing to the very different nature of the two writing systems. However, it
may be possible to draw broad comparisons between different categories. As the category
with the highest PCS, inner signs appear to pattern with inflectional morphology, while
outer signs pattern more closely with regular lexical items. This does not imply that inner
signs actually encode inflectional morphology: most proto-Elamite signs likely correspond to
objects or logograms, and most types of morphological marking were absent in the earliest
phases of Near Eastern writing (Nissen et al. 1993). Rather, we interpret these results as
suggesting that inner signs offer a minor refinement to the meaning of an outer sign without
fundamentally changing its value, parallel to the way that inflecting a verb refines its role
in a sentence but does not change its basic meaning.

6.2.3 Analogy

Our PCS results measure sign behaviour in aggregate, but do not provide specific examples
of relations between signs. We augment these results by searching for concrete analogies
which hold in the embedding models.

Given two complex graphemes s and t with embeddings es and et, let s− t denote the
signs that are in s but not t, and let s ∩ t denote the signs both complex graphemes have
in common. Consider the vector

A(s, t) = es −
∑︂

u∈s−t

eu +
∑︂

v∈t−s

ev
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This vector represents the analogical formula s : (s− t) :: t : (t− s). If A(s, t) ≈ et in
a particular embedding model, then this analogy appears to hold true according to that
model.

We compute how often A(s, t) is within the k nearest neighbors of et for different thresh-
olds k when s ∩ t ̸= ∅. We also compute how often A(s, t) is close to et when s and t are
complex graphemes sampled from the sign list uniformly at random. We predict that com-
plex graphemes which have signs in common will also have some meaning in common,
and consequently that the former value will be significantly larger than the latter random
baseline.

Table 6.5 shows the results of this evaluation. As in the compositionality task, more
analogies hold between complex graphemes with shared components in image-aware models
than in text-only models, and the largest number by far occur in the image LM. Once again,
in lm.image.64 the target vector averages >0.97 similarity to the computed vector even
when k = 15. Bold numbers in the table represent cases where analogies are significantly
more likely to hold between complex graphemes with shared components than between
random pairs of complex graphemes. We see that the number of analogies is larger than
expected by chance even in some text-only models, suggesting that there is a meaningful re-
lationship between some complex graphemes which have elements in common. The fact that
the image LM outperforms the image recognition model further implies that these analogies
reflect legitimate distributional properties and are not purely due to visual resemblance.

k
Model 1 3 5 10 15

glove.256 0 8 11 25 48
word2vec.cbow.256 0 17 36 65 90
word2vec.skip.128 0 8 29 97 140
fasttext.cbow.128 0 9 22 64 98
fasttext.skip.256 0 11 30 91 145
lm.text.64 0 2 7 16 21
lm.image+text.64 27 82 134 233 320
lm.image.64 69 172 258 393 521

image recognition.64 29 67 92 133 174

Table 6.5: Number of analogies which hold between complex graphemes with signs in com-
mon, for different similarity cutoffs k. Bold numbers represent values which are significantly
larger than expected by chance.

Taken altogether, the results throughout this section suggest that many complex graphemes
have compositional meanings which can be understood by comparison to the meanings of
their component parts and the other complex graphemes with which they share components.
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Figure 6.2: Containment hierarchy for a subset of the signs which can occur in CGs. Di-
rected edges point from outer signs to the inner signs they can contain. Note that (excluding
self-loops) the graph is acyclic and all edges point from higher nodes to lower ones. Thicker
edges represent complex graphemes which are more strongly compositional. Nodes are col-
ored according to modularity class (Blondel et al. 2008) such that nodes are most strongly
connected to like-colored nodes. Full hierarchy, showing all signs which occur in complex
graphemes, is available in Appendix A.6.

6.2.4 Complex Grapheme Containment Hierarchy

Some signs which occur as the inner part of one complex grapheme may also occur as the

outer part of another, as with M348 in M327+M348 and M348+M004 .
In principle, one may therefore expect to find pairs of signs A and B where A can contain B
in some complex graphemes, while B contains A in others. In truth, no such pairs actually
exist. In fact, if we draw a directed arc from every outer sign to each inner sign it can occur
with, we observe that the resulting graph of containment relations is acyclic (excluding self-
loops)—in other words, it appears as though complex graphemes are constructed according
to a kind of hierarchy, whereby any given sign is only permitted to enclose itself or another
sign which is lower on the hierarchy. This is visualized in Figure 6.2, excerpted from the full
hierarchy available in Appendix A.6.

We quantify the compositionality of a complex grapheme as the cosine similarity be-
tween its embedding and the sum of the embeddings of its components according to the
lm.image+text.64 model, and we adjust the thickness of each edge in the graph to reflect
this quantity. This reveals an apparent relation between a sign’s compositionality and its
position in the graph. The signs on the left half of Figure 6.2 have low compositionality
on average (seen as thinner edges in the figure) while the nodes to the right have higher
compositionality (seen here as thicker edges). This suggests that there may exist different
subtypes of complex grapheme, of which some are more idiomatic than others, and that
these types have sufficiently little overlap to appear as separate modules when graphed.

This “grammar” governing complex grapheme construction has not been noted in pre-
vious scholarship. The ordering of signs within this hierarchy deserves attention in future
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work, as it may reflect different levels of administrative units in proto-Elamite society, de-
grees of specificity in qualifying commodities, or other information which can be exploited
to understand the meaning of these complex signs and the content of texts where they
occur.

6.3 Analysis

Little is known about the role of complex graphemes in proto-Elamite, although these signs
make up a significant portion of the corpus. Some occur in “headers” appearing at the
beginning of a text. In headers, outer signs (such as M157 ) are hypothesized to indicate
the type of household or institution to which the entire account relates. The outer sign
may be further specified by an inner sign, but many (including M157) can also appear
without another sign inscribed within. Inner signs are hypothesized to specify a particular
kind of item being recorded, a person, profession, or administrative department related to
an account, and more.

Our results appear to be consistent with these hypotheses. The PCS results point to inner
signs playing a specializing role; this is corroborated by visual inspection of the embedding
space, which reveals that complex graphemes cluster according to their outer sign rather
than their inner sign (cf. Figure 6.3 below).

According to Table 6.2, our text-only models detect additive composition in at most
one of every 10 complex graphemes; the image LM detects it in one of every 4 complex
graphemes. The image LM suggests that a meaningful analogical relation obtains between
slightly less than one-third of all pairs of complex graphemes with signs in common. These
values depend on the threshold k, but even in the worst case they suggest that a non-
trivial number of complex graphemes exhibit some degree of compositional behaviour. For
graphemes where our models do not detect any kind of compositionality, it is not clear
whether this should be taken to mean that the signs in question are truly non-compositional,
or that our model has simply failed to capture compositionality which is really present. How-
ever, the fact that compositional and non-compositional graphemes appear to be separated
from one another in certain parts of the containment hierarchy in Figure 6.2 lends some
credence to the view that these signs may be legitimately non-compositional.

Based on the knowledge of other early writing and proto-writing systems, we can make
some inferences about the complex graphemes which are compositional. They are not likely
to represent either combinations of ideograms with an emergent lexical value (like the Sume-
rian cuneiform sign for nan “drink” combining the signs for human head and water) or
ideograms with phonetic complements (signs indicating the proper reading of the complex),
as both cases should be expected to produce non-compositional meanings. Our results may
also counter-indicate a “heraldic” usage whereby abstract “charges” are combined to create
an emblem identifying a group or individual, since we show that the components of com-
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plex graphemes can often be understood in relation to their use elsewhere in texts, and
since complex grapheme elements on their own often seem to reference products (including
foodstuffs and livestock) and their distribution. Future work may train embedding models
on proto-cuneiform, a structurally-similar writing system containing compound signs with
occasionally known meanings that could act as useful points of comparison.

The two components of a complex grapheme can occur independently, within the same
text or even side-by-side. A dramatic example comes from M218+M288 , the components
of which appear 37 times as the bigram M218 M288. M288 (“grain container”) is the most
frequent sign in proto-Elamite, appearing in diverse contexts but often before numerical
measures of capacity. M218 is among the signs speculated to function “syllabically”
to write personal names, though it may also have other uses. It is not clear yet whether
M218+M288 and M218 M288 operate identically, particularly since M218+M288
is not strongly additively compositional in any of our embedding models. The possible
polyvalence of M218 and broad distribution of M288 may impact models’ ability to detect
compositionality in M218+M288. Despite this difficulty, the image LM identifies analogies
between M218+M288, M175+M288, and M305+M288 (the analogy vector has >0.99 cosine
similarity to the target in both cases) implying that we should at least consider M218, M175,
and M305 as parallel categories each with relation to grain capacities.

Some signs rarely occur outside of complex graphemes, such as the productive inner sign
M342 , about which practically nothing is known. Our data show that it has moder-
ately high PCS (0.69 in lm.image.64) and that analogies hold between all but one of the
complex graphemes which contain M342 (M157+M342 [no image available], M304+M342

, M305+M342 , M325+M342 [no image available], M327+M342 , and M351+M342

, excluding M153+M342 ). These analogies hold strongly for the image LM but not
the image recognition model, meaning they reflect primarily distributional properties. Many
of these signs are also additively compositional. We believe that these signs may be suitable
starting points for future analysis, as our results imply that they are probably not idiomatic
and are likely to have related meanings to one another.

M157+M342 : M157 :: M304+M342 : M304
M157+M377+M377 : M157 :: M175+M377+M377 : M175
M370+M046+M370 : M046 :: M370+M072+M370 : M072
M175+M377+M377 : M175 :: M201+M377+M377 : M201
M351+1(N14) : 1(N14) :: M351+M380 : M380
M036+1(N39C) : 1(N39C) :: M036+M035 : M035
M136+M365 : M136 :: M327+M365 : M327
M157+M057 : M157 :: M327+M057 : M327

Table 6.6: Sample of analogies which hold in the lm.image+text.64 model.

Table 6.6 gives additional examples of analogies which hold in lm.image+text.64. We
see that inner and outer signs both participate in analogical relations, as do both A+B-
type and A+B+A-type complexes. Some analogies hold between a complex grapheme with
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Figure 6.3: Detail from t-SNE decompositions of the GloVe embeddings (left), the image
LM (centre) and the image recognition model (right).

a numeric inner sign and one with a non-numeric inner sign, as between M036+1(N39C)
and M036+M035 . Such cases may have implications to the meaning of the signs

involved; if 1(N39C) and M035 truly have parallel functions in these two complexes,
this may imply a kind of quantifying role for M035, or alternatively that 1(N39C) is used
for its pronunciation or possible syllabic value rather than as a true numeral. The existence
of other M036 compounds containing numerals (e.g. M036+1(N30D) and M036+1(N14)

) would seem to favor the former interpretation.

Sign Names The image-only LM found stronger signals for compositionality and ana-
logical relations than the image+text LM, suggesting that sign names may have acted as
distractors for those tasks. This has significant implications for the ongoing process of re-
vising the proto-Elamite sign list. Our work relies on the sign names assigned through an
exhaustive manual transliteration process; since it is easy to automate mergers between
signs should an equivalence ever be proven, this process assumes that most signs are unique
from one another until shown otherwise. However, we believe this choice may obscure sig-
nals in the transliterated data by making many signs very rare. Moreover, some signs which
appear graphically compositional are not currently labeled as complex graphemes, usually
when the inner part is never attested as a standalone sign, which makes it hard to include
these signs in our analysis despite their likely relevance. For these reasons, future work may
benefit from relabeling signs based on a combination of context and sign shape, and from
pursuing models which operate on visual data alone. We will pursue these lines of inquiry
in Chapter 9.

We caution that some apparently minor visual differences (consider M263 and M262
) may record distinctions which are meaningful, but very fine-grained, such as (hypo-

thetically) “jug of red beer” versus “jug of dark beer”. Such similarly functioning signs might
obtain similar embeddings, but retaining a distinction in the published transliterations still
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improves our understanding of the texts. Thus any revisions to the sign list will need to be
informed by evidence from multiple sources, and a level of detail which is appropriate for
one analysis may not be suitable for another. This observation was a contributing factor in
the design of CLEE (Chapter 3), which replaces the monolithic ATF transliterations with
richer and more structured representations for individual tokens, among which we can select
the desired level of representation as needed.

To conclude this analysis, Figure 6.3 shows details from the embedding spaces learned by
GloVe, the image LM, and the image recognition model.7 GloVe produces small clusters of
visually similar signs even though it does not have access to sign images: note the proximity

of M353 , M354 , and 2(N30C) , as well as the variants of M036 . These
clusters occur in sufficient number that we have confidence the model is detecting meaningful
similarities in the usage of visually similar signs. The image recognition model produces
much clearer groupings of visually related signs, as would be expected. The image LM
replicates some clusters from the image recognition model: a cluster of lozenge-shaped signs
is visible in both the image LM figure and the image recognition figure. However, contextual
information causes the image LM to relocate other lozenge-shaped signs like M218 to a
different part of the embedding space, implying a functional difference between it and the
signs in the figure. Overall, these observations confirm that our multimodal architecture is
finding a balance between contextual and visual features as intended.

6.4 Related Work

Sun et al. (2019) introduce “character-enhanced” embeddings of Chinese words. Their archi-
tecture roughly parallels our own, but requires a deeper CNN due to the visual complexity of
Chinese characters. We train with a full context language modeling objective whereas they
use a sampling scheme similar to word2vec. They use character-level information to improve
word embeddings, where we exclusively learn character embeddings. Our application of this
architecture to decipherment is novel.

Liu et al. (2017) explicitly learn compositional embeddings for Chinese characters. They
use supervised data to help identify when two visually-distinct signs use the same radical
(as in 水 and 池). In our data, it is not known which signs are truly related to one another,
thus we refrain from giving the model explicit information about compositionality.

Yin et al. (2019) segment and transcribe undeciphered scripts based on visual similarities
between glyphs. Although their transcription error rate is high, they still achieve partial
decipherments with no human intervention.

8Full figures are available in Appendix A.5.
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Dencker et al. (2020) perform OCR-style sign detection on images of Sumerian cuneiform
tablets, recognizing signs which may be written very differently across the corpus. Their
task benefits from the existence of supervised Sumerian training data.

Luo et al. (2019) perform automated decipherment of Ugaritic. Their technique finds
alignments between orthographic representations of phonetic information, and thus is not
easily applicable to a script which may have a strong ideographic or logographic component.
Their approach also requires multilingual data, and cannot extract information from a script
with no known surviving relatives.

Our work exploits the embedding space learned by a neural language model, but the
actual task of language modeling is otherwise irrelevant to our results. By contrast, Kamb-
hatla et al. (2018) actually sample text from a neural language model to help estimate the
quality of a proposed decipherment. Future work could similarly sample from a language
model as a means of counteracting the small size of the proto-Elamite corpus; this should
be done with caution, however, given the difficulty of evaluating whether the sampled text
is fluent.

Salehi et al. (2015) and Cordeiro et al. (2016) demonstrate that English word embed-
dings tend to be additively compositional and can capture human intuitions about semantic
compositionality. Hartung et al. (2017) investigate other methods for decomposing word em-
beddings.

Sproat (2006) discusses a variety of writing systems and the degrees to which they
employ phonetic versus semantic information. The discussion is largely taxonomic and ad-
dresses subtle nuances between scripts which are already well-understood. In this way it
demonstrates the wide range of variation observed between scripts, and by extension the
range of possibilities which should be considered when analyzing an undeciphered script
such as proto-Elamite.

6.5 Conclusion

Interpreting what a word embedding model has learned typically involves a comparison to
native speaker intuitions. In contrast, this chapter has shown how carefully controlling the
amount of visual and contextual information available to a model can lead to new insights
in a setting where native speaker intuitions are unavailable. Abstracting away from human
annotations, we introduced a novel architecture for multimodal or image-based language
modeling, which shares information between visually similar signs to better model con-
textual patterns. This provides a new toolkit for decipherment of an unknown language,
distinct from translation-based approaches.

As one of the world’s earliest experiments in writing, employing 774 signs and variants
by current estimates, reasonable concerns have existed over proto-Elamite’s level of stan-
dardisation and the impact this may have on decipherment (Dahl 2019: 71, 82). The corpus
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is small and filled with lacunae, and prior work has done little to understand how NLP
techniques function on early writing systems which may reflect linguistic content differently
from modern writing systems. Despite these challenges, this chapter has shown that em-
bedding models can indeed identify patterns in proto-Elamite that appear to capture both
new and existing intuitions about this script.

We have presented evidence that a subset of complex graphemes are semantically com-
positional rather than idiomatic, and we have discovered the existence of a simple grammar
or hierarchy which appears to govern the construction of complex graphemes. Our results
shed new light on this class of signs and suggest new avenues by which aspects of this script
can come to be better understood.
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Chapter 7

Headers

Specialists have hypothesized that proto-Elamite texts frequently begin with a “header”,
that is, a sign (or string of signs) which “qualifies all transactions recorded in a text”
by specifying an institution or owner in charge of the associated account (Damerow and
Englund 1989: 14–16). This understanding of headers depends in part on the claim that
they correspond to visually demarcated “colophons” in proto-cuneiform accounts (Englund
2004: 144; Damerow and Englund 1989: 15); however, these are also largely undeciphered
and so it is not certain that they consistently convey ownership information.

Some (but not all) of the signs that occur at the beginning of texts have been tentatively
labeled as headers by domain specialists. This labeling is recorded using comments in the
CDLI transliteration of the texts; no explicit list of header signs has been published. The
clearest example of this category is the ubiquitous sign M157 , which occurs at the start
of fully one-fifth of all proto-Elamite accounts. Most header signs, including M157, may also
appear elsewhere in texts, where they have an uncertain function.

In light of modern scholarship’s very partial understanding of the proto-Elamite corpus,
there does not seem to be proof beyond reasonable doubt that headers record ownership,
much less that all headers do so. Moreover, headers have thus far been identified through
manual analysis which has not been fully documented in any publication, and some of the
experts who originally identified this category are no longer alive. Thus the criteria for
identifying headers are opaque and the question of their existence is a matter of qualitative
judgement in some texts.

In this chapter, we combine computer-aided analysis with domain expertise to undertake
the first focused study of headers in proto-Elamite. We first use statistical and neural se-
quence models to show that headers are a genuine structural phenomenon in proto-Elamite.
We demonstrate that it is possible to independently replicate manual annotations from past
work with high accuracy using features from our models, and our models also identify and
allow us to correct a number of annotation mistakes. Based on our results, we argue against
the conventional understanding that most headers span a single sign, suggesting rather that
two- and possibly even three-sign headers are a much more prevalent phenomenon than cur-
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rent transliterations would suggest. In conjunction with this, we show that signs in the first
and second positions of a text predict distinct information, suggesting that signs in these
positions have disparate functions.

This chapter reproduces material originally published in Born et al. 2022.

7.1 Methodology

The transliterated proto-Elamite corpus includes rich annotations, such as notes about
which signs (if any) are understood to comprise a text’s header. We propose to train two
unsupervised sequence models on the proto-Elamite corpus and assess whether these models
suggest any internal structure at the beginning of texts, and whether and to what extent
the structures so identified correspond with the existing header annotations. We aim to
arrive at a richer understanding of the meaning and purpose of headers by (i) examining
which features are useful for predicting whether a text has a header; (ii) finding correlations
between these features and other document properties; and (iii) identifying why unsuper-
vised models may disagree with (or fail to recover) the human labeling if such disagreements
occur. We hope to provide new and quantifiable evidence that headers are a real structural
phenomenon in proto-Elamite, and to be able to more concretely justify why any given text
may have or not have a header. Our goal is not to indiscriminately replicate the human la-
beling using automated tools: rather, we seek to assess and understand the received wisdom
in the human labeling through comparisons to interpretable models.

7.1.1 Hidden Markov Model

Hidden Markov models (HMMs; Cave and Neuwirth 1980) have become a standard tool
for unsupervised analysis of undeciphered text corpora in previous literature. We fit a 15-
state HMM to our corpus; this number of states was chosen to slightly exceed the number
of different sign categories which can be informally speculated to occur in proto-Elamite
(most saliently, headers, counted objects, syllables, owners, other kinds of qualifier, numer-
als, and subscripts, with some overlap between these). We train ten models from random
initializations, using complete tablets including numerals as input sequences; we keep the
model which assigns the highest likelihood to the corpus. For each tablet, we compute the
optimal state sequence according to this model using Viterbi decoding (Rabiner 1989). We
hypothesize that, if headers exist, their existence will be reflected in the HMM by a state
which only occurs at the very beginning of texts, and only in select texts. If such a state
does not exist, it may mean that headers are not a salient structural feature of the corpus;
if such a state exists, but is not associated with texts where human annotators believe there
to be a header, it may imply that current understandings of headers somehow fail to reflect
the true distribution of this structure.
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7.1.2 Transformer

We also train an autoregressive Transformer (Vaswani et al. 2017) language model from
a random initialization using the vanilla fairseq recipe.1 Neural architectures such as
the Transformer offer significantly greater inferential power than statistical models like the
HMM, though the large amounts of data required for training can make them unsuitable for
extremely low-resource archaeological data. For the present work, we are purely interested
in using our models as analytic devices (i.e. feature extractors), and we neither require nor
expect them to generalize. For this reason, we proceed with training a Transformer language
model as a more powerful alternative to the HMM, with full knowledge that it will overfit
to our low-resource corpus.

Under the hypothesis that headers convey information which is relevant to the inter-
pretation of a tablet as a whole, we predict that the language model will attend to the
beginning of a tablet on all or most time steps if that tablet has a header. In texts without
a header, the beginning of the document will contain no such special information, and thus
should not be expected to receive stronger attention than any other part of the text. Thus,
if headers are a legitimate structural phenomenon, we should observe two classes of text
which are differentiated by the average amount of attention paid to their initial signs.

Formally, let zi,j denote the self-attention score for token ti at time step j, and for a
sequence of length L let ni = L − i − 1 denote the number of tokens following ti. Then
z̃i = 1

ni

∑︁
j>i

zi,j

maxk zk,j
is the average self-attention paid to ti by the rest of the document.

This is essentially the mean of the self-attention scores for ti across all following time steps(︂
which would be 1

ni

∑︁
j>i zi,j

)︂
, except that we have normalized the scores at each time step

so that the largest is always 1 (this controls for text length, as the true mean tends to zero as
text length increases). For a given text and indices m and n, let z̃m,n = [z̃m, z̃m+1, ..., z̃n−1]
denote the average attention paid to tokens tm through tn−1

The first numeral of a text gives an upper bound on the length of that text’s header, if it
has one. Hereinafter, let n stand for the number of signs which precede the first numeral of
a given text (each tablet thus has its own value of n). We hypothesize that each text’s z̃0,n

will capture information about whether that text has a header, and therefore (if headers
are a real structural phenomenon) that a logistic regression over z̃0,n should be able to
accurately predict which texts human experts have annotated as having a header. Later
sections of the text should be less predictive; thus, as a baseline, a logistic regression over
z̃10,20 (or, equivalently, any other arbitrary span of signs believed to lie outside the putative
header) should not be able to predict the expert annotations.

1github.com/facebookresearch/fairseq
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7.1.3 Training

We train the HMM and Transformer LM on sequences of sign names, where each sequence
spans a single document. We omit all annotations, such as those marking damaged signs:
this reduces the vocabulary size and makes the distribution for most signs less sparse. We
set aside 200 complete tablets for the Transformer to use as a validation set for the language
modeling task.

As we are interested in tablet headers, we only evaluate our models on texts where the
beginning is substantially intact. If a text’s transliteration contains the comment “beginning
broken”, if there is a prime ′ in the first line number of the transliteration, or if the first
sign is X or [...], we omit that tablet from our analysis. After this pruning we are left
with 795 documents.

We construct the mean attention vectors z̃0,n and z̃10,20 for each text in the pruned
corpus (where n differs for each text, according to how many signs that text has before
its first numeral). We zero-pad the z̃0,n vectors to the length of the longest, and train two
logistic regressions to predict whether human experts annotated a text as having a header:
the first is trained on the set of (padded) text-initial vectors and the second on the set of
text-internal vectors. In both settings, the most accurate model is selected using 10-fold
cross validation.

7.2 Experimental Results

7.2.1 Hidden Markov Model

Encouragingly, the Viterbi sequences from our HMM exhibit a heavily skewed state dis-
tribution at the beginning of tablets. Specifically, 55% of all texts begin in state 7, and a
significant majority of these cases (76%, or 42% of texts overall) only exhibit state 7 on the
very first sign. A mere 7 tablets (0.8% of the total) exhibit this state on or after the 4th
sign. Thus state 7 is strongly localized to the beginning of tablets.

The fact that the model learns such a strongly localized state suggests that some doc-
uments do have a discernible internal structure and that the beginning of these texts is
measurably distinct from what follows. This is fully consistent with the hypothesis that
headers exist as a structural phenomenon within proto-Elamite.

The contingency table in Table 7.1 allows us to assess whether HMM state 7 captures
the same information as the headers identified by human annotators. We observe that state
7 recovers the human labels with high precision (0.93) but low recall (0.67), for an overall
accuracy of 0.70. This could imply that the HMM has failed to recover some crucial feature
that human annotators used to identify headers; that human annotators have proposed
headers in some contexts where no header truly exists; or that HMM state 7 captures some
finer-grained category than is encompassed by the specialist’s monolithic header annotation.
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Expert Annotation
Initial HMM State Header No Header Σ

State 7 410 30 440
Other 205 150 355

Σ 615 180 795

Table 7.1: Contingency table comparing the initial state of a tablet’s Viterbi sequence
against the presence of a header annotation in the tablet metadata.

Examining the state sequences from some sample texts (Figure 7.1) helps in comparing
these possibilities. In sequence (i), human annotators identified M388 as a header,
whereas the HMM places this sign in state 3 rather than the putative “header” state 7.
M388 is a very common sign in the body of tablets, and we have already discussed its
unique distribution in Section 5.2. The HMM clearly recognizes this uniqueness, and learns
a state which is almost exclusively used for M388 and the other “owner” signs discussed
in Section 5.2. Most instances of M388 are followed by the so-called “syllabic” signs, which
the model also appears to identify using a consistent state (14, as seen in both sequences
of Figure 7.1). The M388 in sequence (i) is followed by syllabic signs and looks like other
typical examples of this sign, making it unclear why a header was identified here by human
annotators (especially given that other tablet-initial M388s are not labeled as headers in the
expert annotations). This tablet also contains some unreadable signs (denoted by X), which
appear to confound the HMM in most texts where they occur. The model typically predicts
state 0 whenever it observes an X, and continues to predict state 0 for every subsequent sign,
even when that sign is common and receives a more interpretable state in other contexts.
We see this behaviour in sequence (i), where the model remains in state 0 even when seeing
the intact numeral sign 2(N48). Thus, although the presence of a header in this text may in
fact be questionable, the fact that the model falls into this failure state calls into question
the validity of the Viterbi sequence, and suggests that an HMM may lack the power to
completely and accurately model this corpus.

Figure 7.1: Illustration of state sequences learned by the HMM. The observed sequence of
sign names is shown on the x-axis (truncated to at most 10 signs); the numbers in the
cells report the states in the Viterbi sequence. Each color represents a distinct state. (i)
HMM state 3 does not suggest the presence of a header, though one is present in the expert
annotations; (ii) HMM state 7 suggests the presence of a header, which is present in the
expert annotations.
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7.2.2 Transformer

The logistic regression trained on z̃0,n is able to predict whether human annotators identified
a header in a text with 92% accuracy. By contrast, the model trained on z̃10,20 only achieves
77% accuracy, which is the same score achieved by simply predicting the majority class.

Thus the Transformer’s behaviour at the beginning of a text, as expressed through
self-attention scores, is predictive of expert opinions about the presence of a header in
that text, but these behaviours do not persist into later parts of the document. As we
had hypothesized, the model attends much more strongly to the beginning of texts where
experts believe there to be a header: Figure 7.2 illustrates this using heatmaps of z̃0,6 from
two texts, one of which is annotated as having a header and the other of which is not.

Figure 7.2: Heatmap of z̃0,n (mean attention over signs before the first numeral, truncated
to length 6) for two tablets, one with a human-labeled header (left) and one without (right).
Darker cells indicate stronger attention.

Table 7.2 compares the predictions from the regression over z̃0,n against the expert
annotations and the initial HMM states. The regression achieves significantly better recall
(0.97) than the initial state of the HMM, which suggests that the HMM may have failed to
identify a header in many texts where one does in fact exist.

Expert Annotation Initial HMM State
Header No Header Σ State 7 Other Σ

LR Predicts Header 596 44 640 421 219 640
LR Predicts No Header 19 136 155 19 136 155

Σ 615 180 795 440 355 795

Table 7.2: Contingency table comparing predictions from a logistic regression over z̃0,n

against (left) the presence of a header in the tablet metadata, and (right) the initial state
of the Viterbi sequence.

7.3 Analysis

Our results are fully consistent with the prevailing assumption that the beginnings of certain
proto-Elamite tablets exhibit some degree of internal structure. This is suggested by the
existence of an HMM state which is strongly localized to the beginning of tablets, but which
does not occur at the beginning of every text as a generic “start” state. Further evidence
is seen in the behaviour of the Transformer, where in certain texts the model pays more
attention than usual to early tokens. On their own, these features merely confirm that
some internal structure is present, but do not tell us what that structure may represent.
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In this section we interpret our models’ predictions in order to understand what factors
may have motivated the original human annotations, and what features may be exploited
to understand headers’ meanings.

7.3.1 Inter-Annotator Agreement

Table 7.3 reports inter-annotator agreement between our three approaches to labeling head-
ers (expert annotations [Expert], initial HMM state [HMM], and logistic regression over
Transformer self-attention scores [LR]). We report Cohen’s κ (Cohen 1960), where 1 (resp.
-1) implies perfect agreement (resp. disagreement) and 0 implies no more agreement than
expected if labels were assigned at random. The purpose of this comparison is not to eval-
uate the models’ accuracy (since it is not known that the expert labels reflect the ground
truth) but rather to assess whether all three techniques recover similar information.

Expert HMM LR

Expert 1.0 0.372 0.766
HMM 0.372 1.0 0.362
LR 0.766 0.362 1.0

Table 7.3: Agreement (Cohen’s κ) between human and model annotations.

All techniques agree more than expected by chance. The most common disagreement
comes from the HMM, which in 205 cases does not assign state 7 to a sign labeled as
a header by human annotators. In 188 of these cases, the regression over Transformer
attention does recover the human annotation, suggesting that these disagreements simply
reflect the limited power of the HMM and its aforementioned susceptibility to noise from
damaged contexts. Supporting this interpretation, most of these texts offer comparatively
little context on which the HMM can base its decision: the majority contain unreadable
signs, rare or hapax signs, or are very short. In fact, it is possible to predict whether the
HMM will agree with the human annotation with better than chance accuracy simply by
knowing whether the second sign of a tablet is intact, which suggests that the HMM is
severely hampered by the fragmentary nature of the corpus.

Tablets that are damaged also impact the Transformer’s ability to recognize headers.
There are 19 texts where the logistic regression fails to predict the presence of a header in
the expert annotations, 17 of which are also disputed by the HMM. In all of these texts,
either the document contains only a single readable sign, or some early signs are damaged
to the point of being unreadable.
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Much more interesting are the cases where the regression proposes a novel header. This
occurs in 44 texts, 13 of which also begin in state 7 according to the HMM.2 Encouragingly,
we find among this collection 25 texts3 where the manner of transliteration indicates that
experts have recognised a header but did not mark this according to the usual convention.4

If we correct the annotation of these texts, we find that the regression’s accuracy rises to
95% and κ to 0.849.

This leaves 18 cases where the regression proposes headers which are truly novel. Several
of these texts are substantially intact and contain signs which are generally common and
well-understood. M393∼g (hapax, no image available) in P008621 appears to the specialist a

plausible header, since some other variants of M393 are so labeled, although other vari-
ants in second position are not marked as headers either by experts or the models (P009486;

P009209). However, M362 (P009075), typically understood as a “counted object” sign

(perhaps a nanny-goat; Dahl 2005a) and the related M362+M005 (P008294) chal-
lenge the conventional expectation that headers are distinct from counted objects. M489
is unique to P009526: Damerow and Englund (1989) keep open the possibility that M489
could be a header, but express some skepticism given that it also marks the summary line on
the reverse (signs in the summary are usually expected to be counted objects). Specialists
have not thoroughly fleshed out the distinction between “counted object” and “institution”
signs, but believe that headers typically comprise the latter. The predictions from our mod-
els suggest that it may be worth considering whether “counted object” signs can also occur
in some headers by examining these particular texts in greater detail.

7.3.2 Multi-Sign Headers

Two-sign headers are a very marginal category in the expert annotations, occurring only
five times.5 By contrast, in 119 texts the Viterbi sequence stays in state 7 until the second
sign of a text, and in 33 texts it stays in state 7 until the third sign. The prevalence of long
headers is one of the most significant points of divergence between the human labels and
HMM states.

2One of these texts, P008329, must be omitted as it has a damaged first sign. This was not removed
during our data cleaning as the damage was not transliterated following the usual convention.

3Listed in Appendix A.9

4The usual convention for annotating headers is to transliterate the header signs on their own numbered
line, followed on a new line by a comment that reads # header. In these texts, the first signs were given
their own numbered line in the transliteration, setting them apart from the rest of the first entry, but there
was no comment explicitly labeling this as a header as opposed to some other kind of logical division.

5Listed in Appendix A.9
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To predict the presence of a header with the Transformer, we perform a regression
over all of z̃0,n and therefore do not identify an explicit boundary where the header ends.
However, based on the magnitudes of the coefficients in this regression, it appears that
the outcome depends mainly on the attention paid to the second through fourth signs of a
tablet, with mean attention to the second sign being most predictive overall. This suggests
that the Transformer, like the HMM, has identified relevant structural information beyond
the first sign of a tablet.

In fact, z̃1 (the mean attention paid to the second sign of a tablet) is, by itself, sufficient to
predict the presence of a header with the same accuracy as the entire z̃0,n. Mean attention to
the first sign (z̃0) gives the same accuracy as predicting the majority class (77%), suggesting
that the first sign may be less relevant than the second to the rest of the document, despite
having been the near-exclusive focus of past examinations of PE headers. We return to this
discussion in Section 7.3.3, where we further explore the possible roles of the first two signs
of a tablet.

In the expert annotations, most two-sign headers involve compounds of M327 ,
generally followed by another sign which can also occur as a header on its own. This pattern
recurs in the multi-sign headers identified by the HMM, and is expanded to cover more
combinations of M327 compounds with a following sign. Notably, the HMM also introduces
a new kind of multi-sign header not found in the human-labeled data, comprising M157
plus a following sign. An example of this is found in the right-hand sequence in Figure 7.1,
where the HMM replicates the manually-identified header but expands it to also include
the second sign of the text.

7.3.3 Cramér’s V

Cramér’s V (Cramér and Goldstine 1946) measures relationships between pairs of categorical
variables; it ranges from 0 to 1, where 0 signifies that the variables are unassociated and
1 denotes that they are perfectly associated. This section uses Cramér’s V (with the bias
correction due to Bergsma 2013) to look for correlations which may have implications for
the interpretation of headers. Our interpretation of V values follows the guidelines given by
Cohen (1988).

We begin by assessing whether and to what extent header information determines the
content of a tablet. Let Hn be a categorical variable denoting the name of the nth sign in
a tablet, and let topic denote the topic with which a tablet is most strongly associated
according to the topic model introduced in Section 4.4. Figure 7.3 depicts Cramér’s V
between all of Hn and topic for 1 ≤ n ≤ 5.

topic has a strong to moderate association with all of the Hn features; its strongest
relation is V = 0.39 with H1, implying that the first sign of a tablet strongly predicts the
genre of the following text. V drops monotonically for later signs, implying that genre-
defining information is primarily localized to the beginning of a text.
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Figure 7.3: Heatmap showing the strength of the association (measured with Cramér’s V)
between the first five signs of a tablet and that tablet’s main topic according to an LDA
model.

Most of the Hn features exhibit moderate to weak associations with one another, however
there is no association at all (V = 0) between H1 and Hn for n > 1. This would suggest that
the first sign of a tablet is somehow disjoint from the rest of the text, and though this sign
may predict the overall topic of the following text, it does not predict exactly which signs
will immediately follow. This has implications for the interpretation of multi-sign headers,
as it suggests that they may not comprise a unified whole (such as a two-sign-long word)
so much as a concatenation of distinct signs with complementary roles.

To assess further, we introduce a variable long_header which is True for a text just
in case the HMM proposes the existence of a multi-sign header in that text. H1 has no
association (V = 0) with long_header, meaning the first sign of a text does not predict
whether the HMM will identify the presence of a multi-sign header. By contrast, H2 and H3

have a very strong association to long_header (V = 0.54 and 0.61), and H4 is only slightly
weaker (V = 0.43). H5 also has no association. The lack of association with H1 further
suggests that multi-sign headers are not variants or refinements of whatever sign occurs in
the first position, and are rather concatenations of disjoint pieces of information.

Some texts bear one or more seal impressions, pressed or rolled against the clay in the
manner of a signet ring; proto-Elamite seals depict objects and animals, and their presence
is an extra-textual feature reflecting some aspect of ancient administrative practices. A
subscript is a string of signs which occurs at the very end of some tablets, after the final
numeral. Subscripts are unique in proto-Elamite in that they are not directly followed by a
numeral, unlike all other spans of text.

We introduce a categorical variable representing whether a text has a seal (resp. sub-
script), and another representing which seal (resp. subscript) is present (each known seal is
assigned a number in the transliterations, so that it can be identified when two texts share
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the same impression). H1 does not determine whether a text is sealed (V = 0); however, it
does predict which particular seal was used (V = 0.39). Intriguingly, H2 shows the opposite
pattern, and weakly determines whether a text is sealed (V = 0.14) but not which seal was
used (V = 0). A similar pattern holds for subscripts, where H2 predicts the presence of a
subscript (V = 0.27) and H1 does not (V = 0), though in this case both H1 and H2 predict
the text of the subscript (V = 0.30, 0.33 resp.).

H1 is strongly predictive of a text’s provenience (V = 0.56), which could support the-
ories that headers relate to activities undertaken at particular locales. Given that H1 also
correlates with seal impressions, it is possible that the first sign of a tablet may convey
information about where the tablet was sealed (and thus, likely, where it was written).

In sum, we have seen that the first sign of a tablet predicts extra-textual information
such as provenience and choice of seal impression, but fails to predict textual information
such as the signs that occur near to itself or the presence of a subscript. By contrast, the
second sign of a tablet predicts textual content such as adjacent signs and the presence and
content of a subscript, as well as some extra-textual content such as the presence of a seal.
The first sign thus appears to look “outward” at the administrative context surrounding a
text, whereas the second looks “inward” at the text itself.

In Section 4.4, we struggled to interpret one of the topics from our LDA model, which
seemed to exhibit a large number of tablets with a header, seal impression, or both, and
we speculated that the LDA model may have picked up on some latent connection between
these features which was unknown to experts. The results in this section show that those
speculations were accurate, and that there are in fact measurable associations between these
features which had previously gone unnoticed.

7.3.4 Compositionality in Header Signs

Complex graphemes are common near the beginning of tablets, and many of the human-
annotated headers are complex graphemes themselves or participate in the construction of
complex graphemes in other contexts.

We have shown in Chapter 6 and Born et al. 2021 that, in various embedding models,
certain complex graphemes tend to receive additively compositional embeddings which are
close to the sum of the embeddings of the signs used in their construction. Similar patterns
have been observed (Mikolov et al. 2013b; Salehi et al. 2015; Cordeiro et al. 2016) in modern
languages where phrasal representations are often close to the sum of their parts, but only
when the phrase is semantically compositional. Embeddings for idiomatic phrases are less
likely to receive compositional embeddings.

We hypothesize that there may be some relation between a complex grapheme’s degree
of compositionality and its tendency to occur in headers (for instance, signs representing
institutions could be essentially heraldic, like Japanese mon, with no breakdown into simpler
semantic units). To test this, for every complex grapheme A+B, we measure the cosine
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similarity between the embedding for A+B and the sum of the embeddings for A and
B using the embeddings from our best performing model in Chapter 6. Table 7.4 shows
the average similarity for complex graphemes occurring in headers (as identified by any
of our three approaches), versus complex graphemes in non-initial position.6 We perform
the averaging both over tokens (so that a complex grapheme occurring at the beginning of
multiple tablets is included in the average multiple times) and over types (so that each type
of complex grapheme is included in the average at most once).

Tablet-Initial CGs Non-Initial CGs
Expert HMM LR

Avg. cos over tokens 0.682 0.693 0.683 0.565
Avg. cos over types 0.608 0.648 0.616 0.593

Table 7.4: Mean compositionality of complex graphemes found in expert-annotated headers
(Expert), in headers identified using HMM state 7 (HMM), in headers predicted by logistic
regression over Transformer self-attention (LR), and in non-initial positions. Bolded values
differ significantly from the rightmost column.

Complex graphemes occurring in headers (according to any of the three possible label-
ings) are on average more compositional than those occurring in the body of a text. The
difference is not significant when averaged over types, but is highly significant when aver-
aged over tokens (p ≪ 0.01, Mann-Whitney U). This likely reflects the fact that (i) the
more frequent a CG is in tablet-initial position, the more compositional it is,7 and (ii) there
are many fewer types than tokens, so those samples are too small to show significance.

Mean compositionality is lower for signs drawn from the expert annotations than for
the other approaches, but the difference is not significant. This difference is mainly a con-
sequence of the broken and fragmentary tablets where our models have failed to identify
a header that is present in the human annotations. Many of these broken tablets begin
with a complex grapheme, and many of these graphemes are non-compositional, possibly
because they occur in short and fragmented contexts and therefore receive poor quality
representations.

The apparent overlap between headers and more compositional complex graphemes on
the one hand, and non-headers and less compositional graphemes on the other, increases
our confidence that complex graphemes can be partitioned into measurably distinct groups,
and should not necessarily be conceived of or analyzed as a monolithic category.

6Since the Transformer does not identify an explicit boundary to the header, we only count a complex
grapheme as being part of the header when it is the first sign of the tablet. If long headers really exist, it is
possible that some complex graphemes which are not the first sign of the tablet should still be counted as
part of a header.

7There is no significant correlation between sign frequency and compositionality in general; this trend
only (weakly) applies to tablet-initial signs.
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7.4 Related Work

HMMs have a storied pedigree in the field of decipherment, being first used (under codename
PTAH) by members of the NSA to analyze the Voynich manuscript (D’Imperio 1979). As
this work was originally classified, most HMM-based approaches to decipherment instead
trace back to Knight et al. (2006) who demonstrate the effectiveness of HMMs on a range
of unsupervised decipherment tasks, and whose framework is adopted or used as a baseline
in a significant volume of later work (Ravi and Knight 2009; Snyder et al. 2010; Knight
et al. 2011; Reddy and Knight 2011; Berg-Kirkpatrick and Klein 2013; Kim and Snyder
2013 inter alios). We are not aware of any work which has employed Transformers as feature
extractors for a comparable unsupervised analysis of undeciphered text, though applications
to supervised decipherment include Aldarrab and May 2021 and Kambhatla et al. 2023.

7.5 Conclusion

This chapter offers the most exhaustive assessment of proto-Elamite headers to date in an
attempt to inform the ongoing decipherment of this ancient script.

We have demonstrated that two distinct unsupervised sequence modeling techniques
exhibit unique behaviours at the beginning of some proto-Elamite texts. These behaviours
are consistent with, and offer independent evidence in support of, the prevailing hypothesis
that these documents begin with a header.

The features recovered by these models predict with up to 95% accuracy whether experts
understand a text to contain a header. This inspires confidence that the expert labels have
been applied according to a consistent logic and following salient structural features of the
texts. Our error analysis has also allowed us to identify and emend 25 mistakes in the
expert annotations, expanding the total number of headers in the corpus by nearly 4% and
reducing the amount of noise in a low-resource dataset where small errors may have an
outsize effect.

We have demonstrated that there are measurable differences between the contextual
embeddings learned for complex graphemes labeled as headers versus those in other contexts,
reaffirming that these signs are somehow functionally distinct from other complex signs and
from the rest of the script.

Using self-attention scores from a Transformer language model, we have demonstrated
that the second sign of a text predicts the presence of a header more accurately than the
first sign; we have also shown that state sequences from an HMM suggest that many more
multi-sign headers exist than were previously assumed. On the basis of these results we
have argued against the conventional understanding that header information is localized to
a single sign, and suggest that headers may commonly span two or even three signs in some
texts.
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Finally, we have identified correlations between sign usage at the beginning of a text
and other features such as genre, seal impressions, and the presence of a subscript. These
correlations suggest that the first sign of a text captures more extra-textual information
than later signs, and that if multi-sign headers exist, their two (or more) constituent signs
likely convey distinct kinds of information.
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Chapter 8

Numerals

As alluded to in Part I of this work, proto-Elamite employs multiple distinct number sys-
tems, which use partially-overlapping sets of digits that occasionally assign distinct values
to identical-looking sign shapes (Figure 8.1). Many numerals can be read according to two
or more of these systems, and may represent units of measure or have different absolute
values depending on the system used.

Based on prior work (Dahl 2005a; Kelley 2018), there appear to be some regular rela-
tionships between the kind of object recorded in an entry and the number system used to
count it. This is not entirely dissimilar to the way measure words are used in East Asian
languages, where for example Japanese qualifies counts of small animals with匹, flat objects
with枚, people with人, etc, and the pronunciation of the associated numeral can vary with
the counter that is used (e.g. six is broadly /RokW/ in 六枚 “six pages” but /mW/ in 六つ
“six things”). In proto-Elamite, knowing which system is in use for a given numeral increases
the possibility of understanding what category of object is recorded in the adjoining text,
and thus opens new avenues for decipherment.

In this chapter, we consider the task of disambiguating which systems are used in
ambiguous proto-Elamite numeral notations in order that the values of these numerals
may be determined. We describe an automated conversion from PE notation to modern
Hindu-Arabic notation, which allows us to give the first large-scale survey of PE numer-
als since Friberg 1978 (whose manual analysis occurred at a time when fewer texts were
known). We then propose two disambiguation techniques, one based on the subset-sum
problem and another which uses a bootstrap classifier (Yarowsky 1995). We describe the
construction of a test set for evaluating PE numeral disambiguation models, and propose a
novel approach to cautious rule selection which significantly improves the performance of a
bootstrap classifier on our data. Our analysis shows how these techniques lead to a deeper
understanding of many signs and texts, and reveals transliterations in need of correction to
produce a cleaner dataset for future work. This chapter reproduces and expands on results
which were originally published in Born et al. 2023a.
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Sexagesimal
6←− 10←− 6←− 10←− 2←−

Decimal
6←− 10←− 6←− 10←−

Bisexagesimal
10←− 2←− 6←− 10←−

Capacity
6←− 10←− 3←− 10←− 6←− 5←− 2←− 3←− 2←− 2←−

Figure 8.1: Relative values of digits in the main proto-Elamite number systems. X
n←− Y

means that one X has the same value as n Y s. Adapted from Englund (2004)

8.1 Background

Most proto-Elamite numerals are written using one of four1 number systems, which are
called decimal (D), sexagesimal (S), bisexagesimal (B), and capacity (C). In spite of their
names, all of these systems use mixed radices. Figure 8.1 shows the relative values of the
digits in each of these systems, as derived through prior manual analyses (Friberg 1978;
Damerow and Englund 1989; Dahl 2019). Unlike Hindu-Arabic notation, where the value
of a digit depends on its position, the values of proto-Elamite digits are fixed, and larger
values are denoted by repeating a digit multiple times.

Note that some digits can be used with distinct values in multiple systems (e.g. N14

equals 10×N01 in S, but only 6×N01 in C): this means that it can sometimes be
impossible to determine the absolute value of a numeral unless context makes clear which
system it employs.

Since N01 occurs as part of every number system, we use this sign as a standard unit
and report values as the equivalent multiple of N01 whenever we convert to Arabic notation.
Note, however, that the S, D, and B systems are understood to represent unitless cardinal
numbers, while C apparently records unitful measures of volume. When it is necessary to
emphasize that these systems are not commensurable, we add a superscript to denote the
system in use: e.g. 12× N01C is a measure of volume which is not equivalent to 12× N01D,
despite having identical magnitude.

1Additionally, there are marginal systems (labeled B#, C#, and C”) which appear to be derived from one
of the four main systems by the addition of hatch marks or boxes drawn around the digits. These systems are
rare, and the extra hatching or boxing makes them trivial to identify, so we ignore them for the remainder
of this chapter.
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We summarize the above points with an illustrative example. The following notation
(read from right-to-left)

would be transliterated as 1(N45) 2(N14) 7(N01). This numeral must use either the S or
C system, as the large circle N45 only occurs in these systems (Figure 8.1). Using the
readings from the S system, this notation encodes a value of

3627× N01S = 1× N45 +2× N14 +7× N01

= 1× 3600× N01S +2× 10× N01S +7× 1× N01S

Using the C system, it instead encodes

79× N01C = 1× N45 +2× N14 +7× N01

= 1× 60× N01C +2× 6× N01C +7× 1× N01C

Of these, we know that the S reading must be the correct one, since 7(N01) should never
occur in the C system (every 6 N01 would be bundled into an N14, so the actual notation
for 79× N01C would be 1(N45) 3(N14) 1(N01)).

A numeral has an ambiguous system when it admits a valid reading according to more
than one number system, and we say that it is X-ambiguous (for some X ∈ 2{S,D,B,C})
if it can be read using any of the systems in X. For example, 1(N14) 1(N01) is SDBC-
ambiguous, 1(N34) is SBC-ambiguous, and 3(N34) is SC-ambiguous.

A numeral has an ambiguous value if it equals a different multiple of N01 when read in
different systems. For example, 1(N14) 1(N01) may equal either 7× N01C or 11× N01D. A
numeral can have an ambiguous system without having an ambiguous value: for instance,
2(N01) = 2× N01S = 2× N01D = 2× N01B = 2× N01C .

8.2 Automated Conversion

We extract all of the numeral notations from the transliterated corpus by using a regular
expression to find every contiguous sequence of N-signs; we discard sequences which are
damaged, which we identify as being immediately adjacent to a transliterated X or .... We
also discard sequences containing the N sign (which denotes a broken character which must
be a digit based on the context where it occurs, but it is not known which digit) and those
where the number of digits is unknown (where the transliteration records n(N01) instead
of a concrete count like 5(N01)). Algorithm 1 uses the relative values from Figure 8.1 to
automatically convert each of these numerals to a dictionary of possible readings in modern
Arabic notation.
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Algorithm 1 PE-to-Arabic Conversion
Input: digits = [(n1, sign1), ..., (nk, signk)] ▷ List of (# times digit occurs, digit name).
Returns: A map from number systems to possible readings for this digit list.
for sys ∈ {S, D, B, C} do

valuesys ← 0
for (n, sign) ∈ digits do

for sys ∈ {S, D, B, C} do
if sign /∈ signs_used_by(sys) then

valuesys ← ⊥
▷ ⊥ means there is no valid reading in this system.
continue

if n > max_count(sign, sys) then
▷ max_count returns the max num. of times this digit can occur before it

would carry over to a higher value digit.
valuesys ← ⊥

v ← value of sign in sys
valuesys ← valuesys + n× v
▷ ⊥ plus anything equals ⊥

return {sys ↦→ valuesys∀sys ∈ {S, D, B, C}}

Of the 8011 intact numerals which we have extracted, there are 7954 for which this
conversion returns at least one reading. Of these, only 1919 unambiguously belong to a
particular number system: the remainder are ambiguous between two, three, or even all
four systems (Table 8.1). The following sections outline two proposals for disambiguating
the ambiguous cases. Section 8.4.1 discusses the 57 cases for which there is no valid reading
in any system.

8.3 Disambiguation

8.3.1 Tablet Summaries

Our first approach to disambiguating these notations relies on the fact that some PE docu-
ments end in a summary line, which records the total sum of the preceding entries. Although
the entries themselves may be ambiguous, the sums naturally record larger amounts and
are therefore more likely to use high-magnitude digits that unambiguously belong to a par-
ticular system. When a tablet records values from multiple number systems, they appear
to be summarized separately; thus if we can identify unambiguous summaries, we can infer
that all of the entries which they sum must belong to the same system.
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Possible Readings Number of Numerals

none 57
B 19
C 1727
D 66
S 107
B or D 21
B or S 5
C or S 143
B, C, or S 185
B, D, or S 292
B, C, D, or S 5389

Table 8.1: Distribution of readings produced by our automated conversion. A majority of
numerals in the corpus can be read using any one of the four number systems.

To achieve this, we filter the corpus to find texts with one or two entries on the reverse,
as current understandings of the corpus suggest that these are likely to be summaries.2 For
each of these texts, we solve an instance of the subset-sum problem to identify whether any
combination of readings from the obverse adds up to the same value as any reading of the
reverse.

If an accurate summation is found, and any of the component terms has an unambiguous
number system, we use this as evidence to disambiguate the entire text to that system. We
manually evaluate this approach by confirming with domain experts whether the resulting
disambiguations are correct.

The subset-sum problem is NP-hard, so for long texts it is necessary to increase the
efficiency of the search by merging readings which share the same magnitude. For example,
if a numeral can be read as 10×N01S , 10×N01D, 10×N01B, or 6×N01C , we collapse these
into two readings 10× N01SDB and 6× N01C . We attempt to solve the subset-sum problem
using these merged readings; every solution to the merged subset-sum problem corresponds
to a family of solutions to the original problem, which can be recovered by un-merging the
combined readings.

8.3.2 Bootstrapping

Some of the PE numeral notations are inherently unambiguous, either because they use a
digit which only occurs in a single system, or because they contain more instances of a digit

2Some transliterations include an annotation which explicitly labels a particular entry as a summary.
However, not all summaries are labeled in this way, so we rely on automatic detection of summaries to
expand the number of texts available for this analysis.
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than would be allowed by some systems. We propose to use these cases as seed rules to
train a bootstrap classifier (Yarowsky 1995) for disambiguation.

We choose bootstrapping because it requires only a small number of seed labels, and as
seen in Table 8.1, some systems have few unambiguous attestations. Moreover, bootstrap-
ping yields interpretable results which can be understood by examining the label distribu-
tion associated with each input feature. This helps to legitimize model outputs to domain
experts, and to situate model predictions relative to prior manual analyses.

Feature Description of Value(s)

TABLET The tablet where this numeral occurs.
FIRST_SIGN The first sign of the tablet where this numeral occurs (where we may expect

to find a header).
SAME_ENTRY Bag of signs which occur in the entry preceding this numeral.
SAME_TABLET Bag of signs which occur anywhere on the same tablet as this numeral.
OBJECT The sign immediately preceding this numeral (where we may expect to find

a counted object).
IMPLICIT_OBJECT The last sign in the first entry of the text where this numeral occurs (where

we may expect to find an implicit object).

Table 8.2: Each numeral is associated with a set of features from this list, which we use to
train our bootstrap classifiers.

Table 8.2 lists the features used by our classifier. Each numeral is associated with a set
of these features which together describe the context where it occurs. A numeral’s initial
label distribution is uniform over every system for which our automated conversion returns
a valid reading, and zero elsewhere. We train this bootstrap classifier using the DL-2-ML
algorithm (Haffari and Sarkar 2007; Abney 2002), which models πx(j) (the likelihood that
sample x belongs to class j) as

πx(j) ∝
∏︂

f∈Fx

θfj

where Fx is the set of features associated with sample x, and θfj is a learnable parameter
which measures the association between feature f and class j. We apply the “cautious”
approach from Collins and Singer 1999, which limits the number of rules that can be added
to the decision list at each iteration of training. Specifically, candidate rules are sorted
according to the number of labeled examples that support them, and only the n with the
largest support are added to the decision list.3 n starts at 5 and increases by 5 each iteration.

The cautious algorithm was motivated by the observation that “the highest frequency
rules [are] much ‘safer’ [than low-frequency rules], as they tend to be very accurate” (Collins

3Whitney and Sarkar 2012 note that many details are omitted from the description of the cautious
algorithm in Collins and Singer 1999. We follow Whitney and Sarkar in assuming that confidence thresholding
is performed using unsmoothed label counts. However, we differ from their approach by selecting the top n
rules overall (not the top n for each label) as this yields stronger results on our data.
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and Singer 1999). This observation does not seem to hold for our data, where many of the
most frequent features are barely predictive of any class, and impressionistically, do not
appear to be any more accurate than those with lower frequency. We therefore propose a
novel approach to cautious rule selection whereby θf is only updated if the update increases
maxj θfj , i.e. if it increases the confidence of the label distribution associated with feature f .
In this setting we visit the features in a random order each iteration, to prevent a degenerate
outcome whereby endless incremental updates are made only to the first rules visited.

System Number of
Test Items

B 3
C 18
D 14
S 13

Table 8.3: Distribution of target classes in our numeral disambiguation test set. This set
contains every instance of the B class which we were able to manually disambiguate with
the help of domain experts; the other classes are kept small to maintain as balanced a
distribution as possible.

Prior to training, we upsample seeds with rare labels to obtain an equal number for each
class. We evaluate our classifiers on a test set which we construct by manually disambiguat-
ing some of the ambiguous notations in the corpus. We endeavoured to keep this set as
balanced as possible, but some systems (particularly B) can only be confidently identified
in a few texts. This means the test set cannot contain every numeral for which we know the
target label, as doing so would yield too great an imbalance between classes. Appendix C
describes what evidence was used to disambiguate each numeral in the set, and Table 8.3
summarizes the overall class distribution. All of the labels in the test set have been verified
by domain experts.

8.4 Results

8.4.1 Automated Conversion

Invalid Notations

There are 57 intact numerals for which our automated conversion does not return a valid
reading according to any number system. The vast majority of these violate the bundling
principles established in prior work and shown in Figure 8.1. For example, the notation
11(N01) in P008043 should not be attested in any system, as every system carries over to
a higher digit after at most ten N01s.

Some of these illegal notations may reflect errors on the part of the original scribes.
For example, in P008844, the sum of the D values on the obverse equals 9(N23) 3(N14)
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Systems Used Number of Tablets

C and S 12
C and D 15
C and B 4
S and D 1

Table 8.4: Number of tablets which unambiguously use more than one number system.

3(N01), or 573; the scribe has actually written 9(N23) 7(N14) 3(N01), which violates the
usual principle that 6 N14s carry over to one N23. This suggests that the scribe may have
conceived of the D system as a truly decimal notation (in which case the least significant
digits would be written as 7 tens and 3 ones, exactly as we find on the tablet), forgetting
that N23 uses a different radix. Several of the other aberrant notations lend credence to this
view, such as P008788 which apparently records 88 M367s (likely goats, usually counted
with D) as 8(N14) 8(N01). These cases suggest a lack of standardisation across scribes or
across documents, which is consistent with the longstanding view that the writing system
never achieved a significant degree of standardisation (Dahl 2019).

Mixed Systems

Our automated conversion reveals numerous accounts (Table 8.4) which unambiguously use
two different number systems (no tablets unambiguously use more than two systems). In all
but one of these, the C system occurs alongside one of the “integer” systems S, D, or B. This
suggests a general pattern of accounts which record capacities of goods received/disbursed
from/to individual people, animals, households, or other entities counted in whole numbers.
The text P009383 is unique in that it unambiguously uses two of the “integer” systems
S and D. On close inspection, however, the original tablet is heavily abraded where the
putative S notation occurs, and the sign which forces this notation to be read as S (N08)
is almost entirely unreadable. Given the otherwise total absence of texts which mix integer
systems, we posit that this text may contain a transliteration error and that the broken
sign is not in fact an N08.

Several texts which mix the S and C systems also have other features in common.
P008796, P008798, and P008805 are exemplary of this group, which are all two-entry texts
where the first entry is an S-denominated amount of M056∼f (possibly a plow), and
the second is a C-denominated amount of M288. In all of these texts, there are exactly
2.5 × N01S per N01C : this ratio was previously identified as likely to represent amounts of
seed grain by Damerow and Englund (1989); Englund (2004). P008791 appears to belong
to this same class of texts, and given that the first entry records 128 × N01S M056∼f we
should expect 51.2 × N01C in the final entry (or 8(N14) 3(N01) 1(N39B)). We actually
find 52 × N01C , or 8(N14) 4(N01). Close inspection of the tablet, however, reveals that
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there has been a transliteration error, and that the final sign, although mostly broken, is
recognizably an N39B. The text yields the expected ratio when this mistake is corrected.
Errors such as these are much easier to identify when dealing in converted Arabic numerals,
which modern readers can understand and manipulate more quickly and intuitively than
the original proto-Elamite notations.

Out of 244 signs which precede at least two unambiguous notations, only 11 occur next
to notations from distinct systems. These 11 (M001, M056∼f, M059, M096, M124, M218,
M305, M327, M371, M387, M388) include signs which have been speculated (Dahl 2019)
to represent human laborers or overseers (M388, M124), signs with possible syllabic values
(M001, M096, M218, M387, M371), and headers or account owners (M059, M305, M327).
In other words, these are signs which we expect to qualify or describe an object being
counted, and not to be counted themselves. It therefore appears that, while counted objects
are consistently recorded using one particular number system, these qualifying signs can
potentially be used to qualify objects from several different systems. This suggests a novel
approach to distinguish qualifiers from object signs by looking at the variety of number
systems a sign can occur beside.

8.4.2 Subset-Sum Analysis

Our subset-sum analysis identifies 24 texts which, upon manual inspection, can be fully
or partially disambiguated based on their summary line(s). We highlight one which is of
particular interest. In P008014, all entries must use the C system in order to equal the same
value as the unambiguous C summary on the reverse. The text of the summary contains
only the “grain container” sign M288, implying that the entire tablet should record amounts
of M288. However, on the obverse of the tablet, M288 only occurs as the final sign of the
very first entry. This suggests that the scribe has only explicitly marked the counted object
in the first entry, and left it implicit in the following entries (this is in keeping with known
practices from other ancient Mesopotamian accounting corpora; Nissen et al. 1993: 37–38,
Englund 2001). This means that there exist long-distance dependencies between the entries
in some texts, which need to be accounted for if these texts are to be fully understood.

8.4.3 Bootstrapping

Figure 8.2 and Table 8.5 compare results from our two approaches to bootstrapping. The
baseline, vanilla bootstrapping algorithm achieves a mediocre 0.60 F1. Recall of the B and
S classes is perfect, but only half of the instances of the C class are correctly labeled. This
classifier does not seem to have uncovered any clear signals to identify the D system: 3
instances of this class remain unlabeled (their associated features simply predicted uniform
distributions over all systems), and those which are labeled are distributed uniformly across
all of the possible classes.
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Figure 8.2: Confusion matrices from classifiers trained using the vanilla bootstrap algorithm
(left) and our proposed variant (right).

4-way 2-way
Model prec. rec. F1 prec. rec. F1

Baseline 0.64 0.56 0.60 0.74 0.65 0.69
Ours 0.88 0.88 0.88 0.90 0.90 0.90

Table 8.5: Numeral disambiguation results. In the 4-way setting, we seek to identify exactly
which number system is in use for each numeral. In the 2-way setting, we only seek to
distinguish C notations from everything else.

By contrast, our proposed approach to cautious rule selection yields 0.88 F1, with sig-
nificantly better recall of both the C and D classes than the baseline. This suggests that
frequency-based caution may be ill-suited for bootstrapping on some datasets, and that, in
settings where bootstrap classifiers remain viable, it may be worthwhile to explore alterna-
tive approaches to cautious rule selection.

Note from Figure 8.1 that ambiguities between the S, D, and B systems primarily come
from the digits N01 and N14 , which have the same relative values across all three
systems. S and B further overlap in the sign N34 , which also maintains the same value
across both systems. Thus many numerals which are technically ambiguous between these
systems nonetheless have unambiguous values.4 In settings where the absolute value of a
numeral is all that matters, it is therefore usually sufficient to distinguish these systems
from C without distinguishing them from one another. In this two-way setting, our model
achieves 0.90 F1, versus 0.69 F1 from the vanilla baseline (Figure 8.3).

We emphasize that our test set only contains numerals which domain experts were able
to disambiguate based on manual inspection. Easy cases may therefore be over-represented,
and we expect our results to be an upper bound on the classifier’s accuracy across the
whole corpus. Despite this, the results are strong enough to suggest that a majority of the
ambiguous numerals in the corpus can be disambiguated with some certainty.

4Here we assume that the absolute value of N01 is the same across all three systems, and not just its
value relative to the other digits. Current understandings suggest that this is the case, but the undeciphered
nature of the script means this is technically not certain.
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Figure 8.3: 2-way disambiguation results. Confusion matrices from vanilla bootstrapping
(left) and our proposed variant (right).

8.5 Analysis

In this section, we investigate how the features from our bootstrap classifier relate to known
or hypothesized properties of the script.

A number of signs have been suggested to indicate types of livestock (sheep, goats, etc.);

these include M346 , M362 , M367 , and M417 (Dahl 2005a; Kelley 2018).
In our analysis, all of these signs also predict the decimal system, which suggests that they
were typically used to denote flocks.

M376 has been suggested as either a “high-status human” (Dahl 2005a: 95) or
livestock (Kelley 2018: 165); it is strongly predicative of the sexagesimal system in our
analysis. Other objects associated with this system include M056∼f (a plow, which also

patterned with M376 in Section 4.4); M219 , M371 and M296 (very speculatively,

syllables used to write personal names); M059 , M145 , and M365 (“owners”,

possibly persons or institutions to whom these accounts belonged); and M269∼c (a
vessel?). This may cast some doubt on the livestock reading for M376, in favor of the high-
status human reading, which is a more natural fit among the owner signs and possible
personal names in this collection.

We note one text, P008212, which may exhibit a consistent ratio related to M376.
P008212 alternates between entries ending in M288 and entries ending in M376 or

M367∼i . The magnitude of the numeral in an M288 entry is always exactly 4 times
as large as the magnitude of an adjacent M376 entry, or 2 times as large as an adjacent
M367∼i entry. This pattern is very unlikely to be due to chance, as it holds across 44 total
entries. Whatever the meaning of M376, on the basis of this text we can assert that it is
associated with amounts of M288 that are exactly twice as large as those associated with
M367∼i. To our knowledge this ratio has not yet been noted in previous publications.

After disambiguating every numeral in the corpus to the most likely system according to
our bootstrap classifier, we measure the average magnitude of counts associated with each
feature. We observe that certain features accompany significantly higher or lower counts
than others. Entries ending in M288 have the largest capacity magnitudes on average,

while those ending in M263 are among the smallest. Both signs have been speculated to

88



represent containers; from our results one might further speculate that M263 is a container
of smaller dimension, or one that was never dealt with in bulk quantities. Entries ending
in M297∼b also accompany unusually large capacity measures, though the visually-
similar M297 does not stand out as unusually large or small. We will see additional
evidence in Section 8.8 that these signs exhibit distinct patterns of use despite sharing a
visual resemblance.

The numerical systems of proto-Elamite have been proposed to have functional uses
relating to cultural practices in 3rd millennium south-western Iran. For instance, the ca-
pacity system (C) is suggested to be used for counting rations disbursed to households or
workers (Kelley 2018: 153–155). Among the recipients of these rations are M388 and
M124 , parallel “worker categories” which may represent the heads of work teams. We
find that entries beginning in M388 accompany significantly larger capacity measures on
average than those beginning in M124, which may point towards M388 individuals heading
teams of larger sizes or comprising workers of higher status.

8.6 Related Work

Naik et al. (2019) demonstrate that word embedding models fail to capture magnitude
and numeration (i.e. the equivalence between 3 and three), and suggest the need for ded-
icated representations of numerals in NLP models. Sundararaman et al. (2020) follow up
with DICE embeddings designed to explicitly capture both magnitude and numeration,
and demonstrate improved results on numeracy tests introduced by Wallace et al. (2019).
Spithourakis and Riedel (2018) describe a GMM-based approach to numeral embedding
for language models, which also incorporates explicit representations of magnitude. These
models assume that the magnitudes in question are known and must simply be encoded;
they do not consider the task of determining magnitude from ambiguous notations.

While introducing a benchmark to test LM numeracy, Shi et al. (2022) note that numeral
representations can vary across scripts; however, they assume a setting where the conversion
to Arabic notation is straightforward, and do not discuss ambiguities which may result from
this conversion.

One approach to handling numeric values in word problems is to replace them with
variables v1, v2, ..., generate the solution as an equation in terms of these variables, and
substitute the original values back to obtain a concrete solution. Wu et al. (2021) note
that the choice of equation can sometimes depend on whether the original quantities were
absolute values or percentages, and therefore this replacement can introduce ambiguities
which make some problems unsolvable. They introduce a magnitude-aware encoding for
digit sequences, and describe a numerical properties prediction mechanism which estimates
whether a numeral is an integer, fraction, percentage, etc. This mirrors our attempt to
predict an underlying number system.
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Berg-Kirkpatrick and Spokoyny (2020) investigate the task of predicting a numeric value
given surrounding text as context. They find that models which implicitly separate a value’s
mantissa from its exponent achieve better results than those which predict the value directly,
and that context from large pretrained text encoders is useful even when the pretraining
task was not focused on promoting numeracy. As we are dealing with an undeciphered
corpus, our models are unfortunately unable to exploit large pretrained model embeddings
for context.

Friberg (1978) is responsible for early analyses of proto-Elamite and proto-cuneiform,
which helped to establish the relative values of the digits in these corpora and the existence
of distinct numeration systems. Nissen et al. (1993) perform what is possibly the earliest
computer-assisted analysis of bookkeeping practices in proto-cuneiform, while Damerow and
Englund (1989) and Englund (2011) discuss accounting practices in proto-cuneiform and
proto-Elamite and the relationships between the two.

8.7 Interim Conclusions

We have described an automated conversion from ancient proto-Elamite numeral notations
to modern Hindu-Arabic notation, and have described ambiguities in the original script
which make this conversion challenging. We have presented two approaches for disambiguat-
ing these ambiguous notations: one exploits a common structural property of proto-Elamite
accounts to look for unambiguous summations, and the other exploits the few unambiguous
notations to train a bootstrap classifier. We have created a test set for the disambiguation
task by manually disambiguating a subset of the corpus, and have described a novel variant
of cautious rule selection which significantly improves bootstrapping performance on this
test set. As a result of this work, we are able to assign confident values to a majority of
the numeral notations in proto-Elamite, to identify and correct a number of transliteration
errors in the proto-Elamite corpus, and to shed new light on existing hypotheses about the
meanings of some signs in this partially-deciphered script. As the proto-Elamite script was
fundamentally an accounting technology, we believe that this work represents a crucial step
towards deepening our understanding of this ancient corpus.

8.8 Parallel Coordinates Visualizations

Parallel coordinate plots (Inselberg 1985) offer a way to simultaneously visualize all possible
readings of an ambiguous numeral. In these plots, each vertical axis represents one of the
number systems, and each colored line represents one numeral. The line for a numeral
touches each axis at a point corresponding to its value in the corresponding system; if a
numeral cannot be read in a given system, it will not touch that axis at all. A numeral with
an unambiguous system will therefore be represented by a single point on one axis; numerals
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Figure 8.4: Parallel coordinate plots showing all possible readings of every numeral associ-
ated with the object sign M001 .

with ambiguous systems will appear as line segments spanning multiple axes. Lines which
are parallel to the x-axis represent numerals with unambiguous values.

From these plots, we are able to ascertain qualitative differences between the distri-
butions of some objects even without knowing which system(s) they are counted in. For
example, when we plot the ambiguous numerals which occur next to M001 (Figure 8.4),
we observe that three of them (P008155:8, P008044:6, and P009027:12) appear to follow
a unique distribution compared to the others. These notations must encode larger values
than usual, regardless of how they are disambiguated.

This visualization also gives a quick and intuitive way to identify whether a sign is
associated with any one number system in particular, and to identify outlying notations
which do not belong to this habitual system. For example, in the plots for M296 ,
M297 , and M297∼b (Figure 8.5), we find that a significant proportion of the counts
associated with these signs unambiguously use the C system, being represented by single
points on the central C axis. However, in all three we also observe notations which cannot
be read with the C system, as their lines do not touch the C axis. This suggests that all
three signs, which share a visual resemblance, may also share two distinct modes of use,
beside capacity and non-capacity measures respectively. Recall from Section 4.4 that the
relationship between M297 and M297∼b remains unclear, and our interpretation of the LDA
topic model suggested that these signs may have polysemous uses: this polysemy appears
to be on clear display in the two modes attested by these figures.

Parallel coordinate visualizations therefore offer a straightforward way to identify the
broad trends in how a particular object is counted, and to identify nonstandard uses that
warrant close attention from domain experts. These plots provide a holistic view of the
numeral distributions, as opposed to the point sample predicted by the bootstrap model,
which makes them a useful point of comparison as we continue to qualitatively evaluate
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Figure 8.5: Parallel coordinate plot showing all possible readings of every numeral associated
with the signs M296 , M297 , and M297∼b .
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the model predictions in collaboration with domain experts. The interested reader can find
similar plots for other common signs in Appendix A.8.

8.9 Implications to Polysemy and Word Order

Consider the text P008808, which begins with the entry

M417∼f M056∼f 3(N23) 3(N14) 1(N01) = 211× N01D

M056∼f is known to be counted sexagesimally in the genre of seed texts mentioned
in Section 8.4.1, where it refers to a plow, and this sign can also occur next to unambiguous
capacity measures. The above text is unique in that it is the only place where M056∼f
unambiguously occurs beside the decimal system.

M417∼f (and other variants of M417) appears to depict an equid from the neck up, im-
plying that this sign represents a live animal. The use of decimal notations to count animals
and low-status humans has been well-established (Dahl 2019; Englund 2004), and in other
texts (P008893) the variant M417∼h is unambiguously counted with the decimal system.
Given the otherwise total absence of M056∼f next to unambiguous decimal notations, the
most parsimonious reading of this text seems to be that M417∼f is the decimally-counted
object, and M056∼f is a qualifier which clarifies that the animal was used for plowing. We
represent this reading schematically using the following dependency tree:

M417∼f M056∼f 211× N01D

qualifies

counts

Note, however, that this reading violates two conventions that have been established in
prior work. First, experts have annotated the M417∼f in this text as being a header, and
both of our models from Chapter 7 agree with this labeling. Headers are generally taken to
represent a distinct class from counted objects, and it would be unprecedented for a single
token to be simultaneously both a counted object and a header. Second, counted objects
are generally taken to occur at the very end of entries, as the final sign before a numeral.
Signs which qualify the object, such as those identifying a possible owner, are taken to
occur before the counted object. Reading M417∼f as the counted object would violate both
of these understandings.

Therefore, the more conservative reading is that M056∼f is the counted object, in which
case we must accept that this sign can be counted decimally in addition to its use with the
other number systems. The following dependency tree clarifies how the underlying structure
of the text would differ according to this reading:
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M417∼f M056∼f 211× N01D

headed_by counts

In this case, M056∼f would presumably stand for the animal used to pull a plow, and
not the plow itself, in the same way that tools stand in for human laborers in other con-
texts (Dahl 2019: 79). By extension, this would mean that M056∼f must be polysemous, as
its use with the sexagesimal system in other texts implies that it was there used to refer to
higher-status animals or laborers, or to inanimate plows, or to areas of land to be plowed
(implied by the use of fractional counts in some texts, which presumably did not denote
fractional people or animals). This is one of the most concrete examples of polysemy in
the script, which cannot be easily explained as a possible example of an implied object (as
implied objects are usually explicitly written in the first entry, and only implied in later
parts of a text).

Both possible readings of this text are interesting, and have implications either to estab-
lished notions of “word” order or to the existence of distinct “senses” for some signs. This
case study highlights how even apparently simple contributions, like extracting the set of
unambiguous numerals associated with a given sign, can lead to deeper understandings of
signs which would otherwise require exhaustive manual effort to fully document.
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Chapter 9

Signlist Revisions

A crucial step in deciphering a text is to identify what set of characters were used to write
it. This requires grouping character tokens according to visual and contextual features,
which can be challenging for human analysts when the number of tokens or underlying
types is large. Prior work has shown that this process can be automated by clustering
dense representations of character images, in a task which we call “script clustering”. In
this chapter, we present novel architectures which exploit varying degrees of contextual and
visual information to learn representations for use in script clustering. We evaluate on a
range of modern and ancient scripts, and find that our models produce representations which
are more effective for script recovery than the current state-of-the-art, despite using just
2% as many parameters. Our analysis fruitfully applies these models to assess hypotheses
about the character inventory of the partially-deciphered proto-Elamite script. This chapter
reproduces results which were originally published in Born et al. 2023b

9.1 Introduction

One of the first tasks in decipherment is to solve an instance of the token-to-type problem by
recognizing which tokens represent the same underlying character, and thereby to construct
a list of every character used in the script (cf. Gelb and Whiting 1975). Accurate character
inventories are important for decipherment, as they indicate patterns of frequency and
adjacency which can reveal information about the underlying message. However, it can be
challenging for human annotators to determine which characters are truly distinct: tokens
with different appearances can represent the same underlying character (such as English
and ), while visually-similar tokens can represent distinct characters (such as and
or ß and B).

This work introduces novel, VAE-based techniques for learning the character inventory
of an unknown script by clustering images of character tokens. We show, through a range
of experiments on deciphered and undeciphered scripts from modern and ancient corpora,
how the complexity and number of characters in a script impact our models’ ability to learn
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the underlying character inventory. On the ancient Cypro-Greek syllabary, our models out-
perform the recent Sign2Vec architecture (Corazza et al. 2022a) despite using just ∼2% as
many parameters. We also apply these models to proto-Elamite, and find that they inde-
pendently replicate expert intuitions about the underlying character inventory and suggest
new relationships between signs which have not yet been noted in prior work.

9.2 Methodology

Corazza et al. 2022a and Corazza et al. 2022b outline a two-step procedure for learning the
character inventory of an unknown script by clustering images of character tokens. They
first train an unsupervised neural encoder to learn vector representations for images of
the characters in question. After training, they cluster these representations: the resulting
clusters serve as an estimate for the script’s underlying character inventory. The authors
demonstrate good performance on the ancient Cypro-Greek script, and fruitfully apply this
technique to the study of a related, undeciphered script called Cypro-Minoan.

Our work follows the same overall approach, and investigates how changes to the encoder
architecture, data quality, and training process can affect the final clustering.

9.2.1 Motivation

Sign2Vec (Corazza et al. 2022a) uses the ResNet18 encoder (He et al. 2016), which is an
18-layer convolutional stack with residual connections. ResNet was originally developed for
object detection and segmentation on the ImageNet (Deng et al. 2009) and COCO (Lin et al.
2014) datasets, which include photorealistic depictions of complex scenes. In this setting,
very deep networks are necessary to capture the full range of visual information present
in the input images (He et al. 2016). By contrast, images of written characters tend to be
visually simple: they often read clearly in greyscale or black-and-white, and can generally
be broken down into simple lines, curves, or wedges against a uniform background. In light
of this, we hypothesize that the ResNet encoder may be significantly over-parameterized for
the task of script clustering. This may lead to longer training times than necessary, more
expensive compute costs, and reduced accessibility to experts outside of computer science
who may lack access to hardware for training.

Additionally, one of the tasks used to train the Sign2Vec encoder is a masked prediction
task, where information about a character must be recovered given the representations of
the characters to its immediate left and right. This provides the model with a very narrow
context window, which is sufficient for the experiments in the original work (Corazza et al.
2022a), but which we hypothesize may hamper the model’s performance in settings where
wider context is available.
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9.2.2 Model Architectures

In light of these limitations, we propose to compare four architectures which reduce the size
of the encoder relative to Sign2Vec and incorporate varying degrees of context.

VAE All of our models are built around a variational autoencoder (VAE; Kingma and
Welling 2014) with a convolutional encoder and a deconvolutional decoder (Figure 9.1).
This architecture uses three stacked convolutional layers to learn vector representations
µ, σ ∈ Rd from an input image x ∈ Rn×n. These are used to sample a “code” z ∼ N (µ, σ).
A stack of transposed convolutional layers decodes z to an image x̃ ∈ Rn×n. This model is
trained to minimize the reconstruction error of x̃ with respect to the input x:

L = BCE(x̃, x) (9.1)

where BCE is binary cross-entropy.
We use an autoencoder as a way to avoid potential label bias in this work. The working

sign names implicitly encode information about the relationships that experts see between
tokens: this is reflected by shared “subwords” in the working sign names, which can reflect
broad visual similarities (as between M218 and M219 ) or a part-whole relationship

(as between M218 and M218+M101 ). Using an autoencoder allows for fully open
input and output vocabularies, which minimizes the likelihood of these inferred relationships
biasing the model to reproduce the same divisions as experts.

μ

x x~

σ

z Deconv.
Decoder

Conv.
Encoder

Figure 9.1: VAE architecture. This model reconstructs its input from a dense vector encod-
ing.

VAE+Neighbors Our second model adds an auxiliary masked prediction task (Fig-
ure 9.2). Let zi−1 and zi+1 be the encodings of the images to the direct left and right of
a token xi. We learn a projection M ∈ R2d×d and decode M(zi−1 ⊕ zi+1) to produce an
image x̃′

i. We add a new loss term to Equation (9.1) to minimize the reconstruction error
of x̃′

i with respect to xi:

LNeighbor = BCE(x̃′
i, xi)

This is similar to the auxiliary task in Sign2Vec (Corazza et al. 2022a), with the difference
that our model draws the masked sign, whereas Sign2Vec was trained to predict a property
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Figure 9.2: VAE+Neighbor architecture. This model adds the auxiliary task of reconstruct-
ing a character image given the encodings of the adjacent characters.

called its “pseudolabel” (see Section 9.2.3). By drawing the output instead of predicting a
sign name from a fixed list, this model manages to fully divest itself from pre-existing sign
names, as our results in Chapter 6 indicated may be necessary.

VAE+LSTM To include wider context, we propose a third architecture incorporating
an autoregressive LSTM (Hochreiter and Schmidhuber 1997) language model. The input
to this model is a sequence of character images {x1, ..., xn}. We encode each image using
convolutional encoders with tied parameters to produce a sequence of codes {z1, ..., zn}, and
decode these using tied decoders to produce a sequence of images {x̃1, ..., x̃n}. Up to this
point, the model is equivalent to a batched version of the basic VAE model. To incorporate
context, we pass {z1, ..., zn} to a unidirectional LSTM, and use our VAE decoder to decode
the LSTM outputs to a second image sequence {x̃′

1, ..., x̃′
n}.
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σ
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... ...
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Figure 9.3: VAE+LSTM architecture. This model adds the auxiliary task of drawing the
next token given a sequence of encodings for the preceding tokens.
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We add the following loss term to Equation (9.1) to minimize the reconstruction error
of this image sequence:

LLSTM =
n−1∑︂
i=1

BCE(x̃′
i, xi+1)

This can be viewed as an autoregressive character-level language modeling objective,
where we wish to draw the image of the next character xi+1 given all of the preceding
characters x1, ..., xi.

VAE+Transformer Our final model replaces the LSTM component from the previous
model with a Transformer encoder stack (Vaswani et al. 2017); we obtain the output image
sequence {x̃′

1, ..., x̃′
n} by decoding the top layer of this Transformer. We train this model

on a masked language modeling task: we mask input tokens at random by replacing their
images with standard Gaussian noise, and train the model to recover the unmasked image
sequence by adding the following term to Equation (9.1):

LTransformer =
n∑︂

i=1
BCE(x̃′

i, xi)

~

~

~

xi-1

MASK

xi+1

x'i-1

x'i

x'i+1

Conv.
Encoder

Conv.
Encoder

Conv.
Encoder

Transformer
Encoder

Figure 9.4: VAE+Transformer architecture. This model adds the auxiliary task of recon-
structing characters which have been masked by random Gaussian noise.

9.2.3 Training Details

At training time, we use a denoising technique (Vincent et al. 2008, 2010) to regularize our
models: we apply a random transformation (rotation of up to 45 degrees, shear of up to 25
degrees, and a random scale factor between 0.4 and 1) to each input image, while keeping
the target of the reconstruction loss unchanged.
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All of our models are trained using stochastic gradient descent (SGD) to minimize Eq.
(9.1), plus the appropriate model-specific auxiliary loss (LNeighbor, LLSTM, or LTransformer),
plus a pseudolabel loss term LΨ which we describe below. We jointly minimize the sum of
all of the relevant loss terms in a single pass, with no pretraining and no warmup steps.

Pseudolabels We follow Corazza et al. 2022a in using a soft, unsupervised technique to
organize our models’ encodings into loose clusters. This technique, inspired by the neural
clustering algorithm DeepCluster-v2 (Caron et al. 2018), begins by clustering the encodings
using K-Means with an arbitrary number of clusters k. Let C be a matrix with columns
corresponding to the K-Means centroids (normalized to unit length). Let zi be an arbitrary
encoding, let Cj be the centroid which is closest to zi, and let yi be a one-hot vector with
a one in the jth position. The pseudolabel loss is then given by:

LΨ =
n∑︂

i=1
CCE( zi

||zi||
C, yi) (9.2)

where CCE is categorical cross-entropy. For each zi, this constructs a probability distri-
bution zi

||zi||C over k categories, where the mass in each category is proportional to the
similarity between zi and the corresponding centroid. Minimizing this loss concentrates the
mass of the distribution into a single term; in other words, this performs a soft clustering
by pulling each zi towards the nearest centroid in the embedding space.

We follow Corazza et al. 2022a in using a pseudolabel loss with 100 centroids, which we
recompute using K-Means at the beginning of each training epoch.

9.3 Data

We ultimately aim to apply these models to the study of proto-Elamite, where for each
transliterated sign name there exists an accompanying digital image, produced by J. Dahl,
depicting that sign’s “archetypal” form. (These are the same images which have been used
throughout this work to provide inline examples of sign shapes.) These images smooth
over many of the irregularities of the original shapes drawn on clay, while still preserving
slight visual differences between tokens which may actually represent the same underlying
character (such as and ). They therefore represent an intermediate level of detail that
is cleaner than segmented images of the original texts, yet still faithful to the original hand.
We convert the entire transliterated proto-Elamite corpus into a set of image sequences by
replacing each transliterated sign name with the corresponding sign image (Figure 9.5).

We evaluate our models on their ability to recover three scripts whose character inven-
tories are already known (English, Japanese, and Cypro-Greek). We construct an English
dataset by extracting the first 33k alphanumeric tokens (approximating the number of to-
kens that are attested in proto-Elamite) from the WikiText-2 corpus (Merity et al. 2016).
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Language # Characters #Tokens # Images

EN 62 33k 3410
JP 938 33k 1607
CG 55 3k 3005
PE — 35k 1319

Table 9.1: Size and character inventories of scripts used for training. PE is undeciphered,
and the size of its character inventory remains unknown.

We convert this text into image sequences by replacing each character token with a hand-
written image of that character. We use images from de Campos et al. (2009), who provide
55 handwritten instances of all 62 upper- and lowercase English letters and digits: one of
these 55 images is chosen at random each time a character occurs. The resulting sequences
(Figure 9.5) imitate the level of detail in our proto-Elamite data, in that each letter is
attested by multiple distinct images, and the same image can be used for multiple tokens.

We construct a Japanese dataset according to the same procedure, using the first 33k
tokens from the Japanese Tatoeba corpus (Artetxe and Schwenk 2018; Tiedemann 2012).
As we do not have handwritten character images for Japanese, we instead extract the glyphs
from two Japanese fonts (Yuji Boku and Zen Old Mincho). The Japanese writing system uses
three scripts: kanji which are highly logographic, and two syllabaries called hiragana and
katakana. Similarly, proto-Elamite has been speculated to contain a set of possibly-syllabic
signs, together with a large number of logograms (Dahl 2019). Syllabic signs convey phonetic
information that can provide crucial insights for decipherment, and are therefore a major
focus of decipherment efforts on this script. In our Japanese experiments (see Section 9.4),
we therefore train on the entire script, but only evaluate the model’s ability to recover the
two syllabaries.

Figure 9.5: Samples of image sequences from our PE (top), En (middle) and Jp (bottom)
datasets.

We use the same Cypro-Greek data as Corazza et al. 2022a. Unlike the other datasets,
this uses manually-segmented images from hand-drawn copies of artifacts bearing the Cypro-
Greek script. There is therefore a greater degree of variation between the character shapes in
this data, and no two tokens ever have identical images. This means that our three datasets
fall along a cline from fully naturalistic, handwritten sequences (Cypro-Greek), to synthetic
sequences derived from handwritten images (English), to synthetic sequences derived from
digital fonts (Japanese).
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Table 9.1 summarizes the token count for these datasets. We trim extraneous whitespace
from all character images and resize them to 64 × 64 pixels with a single grayscale color
channel before training.1

9.4 Experiments

We train each of the models from Section 9.2.2 on the four corpora detailed above (see Ap-
pendix B.1 for hyperparameters and additional training details). After training, we encode
each image using the trained encoder and cluster the resulting encodings using (i) agglomer-
ative clustering with varying numbers of clusters (English, Japanese, proto-Elamite) or (ii)
DBSCAN (Ester et al. 1996) with varying ε (Cypro-Greek). We use DBSCAN for Cypro-
Greek to enable a fair comparison against the results in Corazza et al. 2022a; however,
we find that DBSCAN is generally not effective when clustering the other scripts. When
clustering with DBSCAN, we follow Corazza et al. 2022a in using a minimum cluster size
of 2, to imitate a decipherment setting where the true number and frequency of characters
is unknown; for the other scripts we vary the number of clusters for the same reason.2

For English, Japanese, and Cypro-Greek, we report homogeneity, completeness, and V-
measure (Rosenberg and Hirschberg 2007) relative to the gold labels. Homogeneity ranges
from 0 to 1, where 1 means that each cluster contains instances from just one of the un-
derlying characters, and smaller values imply that some clusters combine instances of two
or more distinct characters. Similarly, a completeness of 1 means that each of the under-
lying characters is represented by a single cluster, while smaller values mean that some
characters have been divided across multiple clusters. Intuitively, low homogeneity scores
mean that a clustering merges together characters which are actually distinct, while low
completeness means that it splits some characters into subgroups that are not underlyingly
distinct. V-Measure is the harmonic mean of homogeneity and completeness.

DBSCAN can label samples as outliers (and thus, not part of any cluster): we only
evaluate on tokens which it assigns to a cluster.

In our Japanese experiments, we only evaluate on hiragana and katakana, in imitation of
the proto-Elamite setting where we eventually aim to understand the divisions of a putative
syllabary comprising only a subset of the overall script.

1Rescaling the images to a fixed size obscures the height of the original character (see Fig. 9.5, where
って is indistinguishable from つて). For this reason, our Japanese evaluation only tests the model’s ability
to recover the gojūon, dakuon, and handakuon, ignoring the yōon, sokuon, and small vowels which are
distinguished only by size.

2The present work will otherwise ignore the problem of selecting the correct number of clusters, for which
a variety of heuristics have been proposed in prior work (Rousseeuw 1987; Thorndike 1953; Sugar and James
2003; Honarkhah and Caers 2010; Tibshirani et al. 2002 i.a.).
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In our Cypro-Greek experiments, we compare against the Sign2Vec and DeepCluster-
v2 results reported in Corazza et al. 2022a. For the other scripts, we compare against
agglomerative clusterings over the input images.

In proto-Elamite, where the ground truth is not known, we perform a qualitative eval-
uation in collaboration with domain experts. We look for sets of tokens which are assigned
to the same cluster by our VAE+Neighbor, VAE+LSTM, or VAE+Transformer model, but
belong to different clusters in the vanilla VAE model. The vanilla VAE differs from the
other models in that it lacks contextual information; therefore, any groupings which are
absent from this model’s output likely reflect primarily contextual similarities. Contextual
resemblances are harder for human annotators to notice than visual resemblances, and so
we expect these groupings to reflect similarities which may have been overlooked in prior
work. We collaborate with domain experts to assess how these token groupings relate to
their intuitions about this script.

9.5 Results

9.5.1 Modern Scripts

Figure 9.6 plots V-Measure from agglomerative clusterings over our models’ representations
of handwritten English letters (Appendix A.7 shows the breakdown into homogeneity and
completeness scores). The curve for the baseline is obtained by clustering the raw character
images, rather than their encodings.
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Figure 9.6: V-Measure on handwritten English. The true character inventory comprises 52
upper- and lowercase letters plus 10 digits.

All four of our proposed models are able to recover the underlying script more accurately
than the baseline. When the number of clusters is close to the true size of the alphabet, our
LSTM and Transformer-based models achieve the highest performance, which supports our
hypothesis that wider context windows allow for more accurate script recovery.
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Figure 9.7: V-Measure on a synthetic mixture of Japanese fonts. The target character in-
ventory comprises 142 hiragana and katakana (46 gojūon, 20 dakuon, and 5 handakuon
each).

Figure 9.7 plots the same metrics for our synthetic Japanese dataset. In this setting,
the differences between models are much less pronounced: the context-aware models do
not exhibit the same advantage as in English, and in fact the VAE+LSTM model fails to
outperform the naive baseline when the number of clusters exactly matches the true number
of underlying characters. When the number of clusters is much larger than the true number
of signs, our models do outperform the baseline, however, the contextual models continue to
slightly underperform the contextless VAE on average. Regardless of the number of clusters
chosen, the V-Measure for Japanese is always much higher than for English.

These differences between English and Japanese are likely due, in part, to the fact that
there are only two distinct images per character in the Japanese data, compared to 55 in
English. The Japanese data are also fully synthetic, whereas the English is handwritten.
This may make the Japanese task too easy (despite covering a much larger number of unique
characters) to the point that contextual models are not needed. This is nevertheless a useful
result, as it suggests that the difficulty of script clustering depends less on the number of
graphemes than on the degree of variation between allographs.

9.5.2 Cypro-Greek

Table 9.2 compares the best result from each of our models against the best results re-
ported in Corazza et al. 2022a; Figure 9.8 shows our full results for different values of
DBSCAN’s ε parameter. Our best models (VAE+LSTM and VAE+Transformer) outper-
form the Sign2Vec baseline, and all of our models outperform DeepCluster-v2 (Caron et al.
2018) which was the inspiration for Sign2Vec. Although our V-measure gains are modest,
we emphasize that our models use ∼98% fewer parameters than Sign2Vec, and ∼99%
fewer than DeepCluster-v2. This supports our hypothesis that the ResNet encoder is
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Figure 9.8: V-measure versus number of clusters for DBSCAN clusterings on Cypro-Greek.
We evaluate over the interval 0.1 ≤ ε < 8 in steps of 0.1. The dotted line represents the
true number of signs in the script.

over-parameterized for the task of script clustering, and demonstrates that accurate script
recovery is clearly possible even with much more lightweight architectures.
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Figure 9.9: Completeness (left) and homogeneity (right) versus number of clusters for DB-
SCAN clusterings on Cypro-Greek. We evaluate over the interval 0.1 ≤ ε < 8 in steps of
0.1. The dotted line represents the true number of signs in the script.

Figure 9.9 plots homogeneity and completeness versus number of clusters for each of our
Cypro-Greek models. Each model exhibits a unique trend: the VAE+Transformer exhibits
less variation in its completeness scores across a range of clustering sizes, while the other
models exhibit a more pronounced fall and rise as the number of clusters increases. All
models are capable of achieving comparable homogeneity in the neighborhood surrounding
the true number of clusters, but the VAE+Transformer maintains high homogeneity up to a
much higher number of clusters than the other models. Geshkovski et al. (2023) have argued
that self-attention mechanisms cause tokens to cluster around certain attracting states in
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V ↑ Parameters↓
DeepCluster-v2 (Corazza et al. 2022a) 0.73 > 23M
Sign2Vec (Corazza et al. 2022a) 0.75 > 11M
VAE (Ours) 0.75 0.215M
VAE+Neighbor (Ours) 0.74 0.215M
VAE+LSTM (Ours) 0.76 0.218M
VAE+Transformer (Ours) 0.76 0.227M

Table 9.2: V-measure (V ) and parameter counts for Cypro-Greek. Best results for each
model from Figure 9.8 and Corazza et al. 2022a.

the representation space; pseudolabeling (Caron et al. 2018) is intended to have the same
effect. We speculate that the VAE+Transformer’s strong performance may result in part
from these behaviours reinforcing one another to perform a more effective soft clustering at
training time.

9.5.3 Proto-Elamite

Table 9.3 shows pairs and triplets of proto-Elamite characters which have distinct labels in
the working signlist and VAE clustering, yet occupy the same cluster in the VAE+Neighbor,
VAE+LSTM, or VAE+Transformer clusterings.3

VAE+Neighbor VAE+LSTM VAE+Transformer

Table 9.3: Pairs/triplets of character images which have distinct labels in the working sign-
list, but which our models merge into single clusters.

The VAE+Neighbor model differs from the working signlist and VAE clustering in only
two places, merging M332∼g with M297∼b and M356∼b with M327∼n .
Neither merger appears to reflect any known similarities in how these signs are used.

By contrast, the 6 mergers proposed by the VAE+LSTM model appear much more plau-

sible. One cluster combines tokens which are currently labeled as M362 and M362∼a

, which adds hatching to the central circle in a manner resembling “gunuification”
in early cuneiform. The ∼ notation in the working sign name explicitly acknowledges that

3For the VAE model, we use 1306 clusters, which equals the number of unique sign images available at
the time we created our training data. We cluster the other models using 3.5× this many clusters; using
such a large number helps to guarantee that the observed groupings reflect legitimate similarities and are
not simply a side effect of compressing too many tokens into too few groups.
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experts believe M362∼a may4 be a graphic variant of M362; both signs have been glossed
as “nanny goat” (Dahl 2005a), and previous scholarship has already acknowledged a likely
equivalence between M362∼a and another hatched variant called M362∼b (Dahl 2005a)

.
The output from our VAE+Transformer differs the most from the working signlist, sug-

gesting 13 sets of shapes which may represent the same underlying character. A significant
number of these are complex graphemes. We have previously suggested that the mean-
ing of a complex grapheme is principally determined by its outer component (Chapter 6),
and indeed most of the merges proposed by the VAE+Transformer occur between complex
graphemes with the same outer part. This suggests that the model has rediscovered the
same pattern identified in earlier chapters, and that these particular merges do reflect plau-
sible groupings on the part of our model. Many of the other mergers occur between signs
which are already labeled as possible variants in the working signlist (such as M029∼a
and M029∼b , or the possible syllables M387∼h and M387∼ca ) and thus appear
similarly plausible.

Of greater interest are cases such as M209∼a , M210∼f , and M195+M057 .
The working signlist labels these as wholly distinct characters, and no explicit relationship
between these signs has been proposed in prior work. However, the visual resemblance
between M209∼a and M210∼f is undeniable; both signs occur in texts which contain the
“yoke” character M054 , and both occur in texts which appear to record amounts of

grain (M209∼a appears with the speculative grain capacity sign M354 , while M210∼f
occurs with the more common container sign M288). Moreover, in one text M209∼a is
attested alongside a related variant of M210, labeled M210∼d . Given these signs’ shared
visual resemblance to a plant sprouting from a field, and their association with yokes and
grain accounts, we believe it is reasonable for the model to have grouped these characters
under the same umbrella. M195+M057 is also attested in texts alongside both M288 and
M354; although it does not occur next to the yoke sign M054, it often occurs near the
sign M003∼b , which is speculated to be another field utensil and which experts note is
“related to M054” (Dahl Unpublished). Both M195+M057 and M209∼a are also attested
as headers. While we are skeptical that M195+M057 is truly the same underlying character
as M209∼a and M210∼f, they clearly share contextual similarities and are attested in
comparable, apparently agricultural, contexts. The inner part of the complex grapheme has

been compared to proto-cuneiform A , referring to water, on the basis of which this

sign could denote an irrigated field. Then this group of signs may refer to distinct types of

4Specifically, ∼ followed by a number marks one sign as a graphic variant of another; ∼ followed by a
letter means that the sign may be a variant of another, but experts remain agnostic in the absence of further
evidence.
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field (irrigated and non-irrigated), or to the same field at different points in time (before
and after sprouting, perhaps seeding and harvest time respectively). This example clearly
demonstrates our proposed model’s ability to detect contextual parallels which are helpful
for understanding the possible relationships between signs in this script and which have not
been remarked on previously.

By reducing the number of clusters to force additional merges, we can obtain yet more
groupings of the sort reported in Table 9.3. For example, when we reduce the number of
clusters in the VAE+Transformer model by a factor of 1

7 , a new merger appears between
M175+M131∼d and M157+M131∼d . The outer components M157 and M175

differ only in the shape of the protrusion at the top of the box, and a merger between
these signs is tentatively expected based on current understandings of the corpus. Other
mergers which appear, and which are also expected based on current understandings of
the corpus, include M056∼f with M056∼e , both signs being understood to depict a
plow; M075∼ff , M075∼g , M075∼h , and M075∼o apparently depicting minor

variations on a sprouting plant; and M111∼c , M111∼d , and M111∼e which
differ only in the direction of the internal hatching. Such cases serve as useful confirmations
of experts’ current understanding of sign use in this script, as they show that there are no
unremarked-on patterns of use which cause the model to keep these signs separate in its
representation space.

The cases reported so far represent only a small fraction of the candidate mergers which
can be extracted from our models, and we are optimistic that this work will continue to
give rise to useful insights as we take the opportunity to investigate this space more fully
together with domain experts.

9.6 Related Work

Scribal hand identification (Popović et al. 2021; Srivatsan et al. 2021) is a related task which
seeks to cluster instances of characters from a known script according to the hand which
wrote them. Like our work, the latter authors propose to learn sign representations using an
autoencoder; they then factor these representations into disjoint character and scribal hand
embeddings. Unlike our work, they consider signs in isolation, ignoring the surrounding text
content which we found to be beneficial to our models.

Yin et al. (2019) describe a system for segmenting, transliterating, and deciphering
images of historical manuscripts. In the transliteration step, their model implicitly learns
an underlying script by clustering character representations obtained from a Siamese neural
network trained to discriminate between characters from known scripts. This network learns
character representations without access to context, similarly to our vanilla VAE and the
DeepCluster-v2 baseline in Corazza et al. 2022a.
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In a setting where the underlying script is already known, Dencker et al. (2020) and
Gordin et al. (2020) also describe systems for automated transliteration from images of
cuneiform text.

Kelley et al. 2022a describes our own initial attempts to bridge the gap between the
models described in this chapter and those from Chapter 6. In that work, we did not
use a variational model; rather we used softmax decoding over a fixed vocabulary, which
introduced label bias and made it challenging to assess the efficacy of the proposed model.
Our models in this chapter use a deconvolutional decoder, which sidesteps this bias by
allowing an open vocabulary.

9.7 Conclusion

We have described four models which add varying degrees of contextual information to a
VAE, and have shown how these can be used to cluster token images to recover a script’s
character inventory. On the ancient Cypro-Greek script, our best models meet or outperform
the state-of-the-art Sign2Vec baseline using just ∼2% as many parameters, which supports
our claim that written text lacks the visual complexity to warrant models of the depth
used in other image processing applications. Our English and Cypro-Greek experiments
also demonstrate that contextual models are more effective for script recovery than con-
textless models. On synthetic Japanese data, which contains many distinct graphemes but
little variation between allographs, our models achieve extremely high V-Measure (>0.91),
suggesting that they handle large character inventories more easily than they handle allog-
raphy.

We have applied our models to study the undeciphered proto-Elamite script, and have
shown that they capture existing intuitions about this script as well as suggest new parallels
between signs which have never been noted in prior work. Our best insights for proto-Elamite
come from the LSTM and Transformer models, while for Cypro-Greek our VAE+Neighbor
model is the only one which produces a clustering with precisely the same number of clusters
as there are signs in the underlying script. This indicates that it is useful to consider models
with varying access to contextual information according to the number of long-distance
contextual dependencies the input script is expected to exhibit.
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Part IV

Additional Results
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Chapter 10

Fast Cognate Alignment on
Imbalanced Data

10.1 Background

Cognate alignment models seek to align monolingual word lists from related languages, in
order to identify pairs of cognate lexemes. If one of the word lists comes from an undeci-
phered language, this process will yield a decipherment for whichever words are correctly
mapped to their cognates.

As of this publication, the current state-of-the art for cognate detection comes from
Tamburini 2023, which uses coupled simulated annealing (Xavier-de-Souza et al. 2010) to
solve a search problem over the set of all k-permutations mapping n lost-language words
into k known-language buckets. Prior to this, the state-of-the-art came from Luo et al.
2019 which alternated between searching for character-level and word-level pairings using
an iterative, expectation-maximization-style training procedure.

Both of these models achieve strong results (upwards of 95% accuracy in the best case)
on existing cognate detection datasets. However, these results come from settings where
every word in the dataset has at least one valid cognate in the language it has been paired
with. This is artificially clean compared to true decipherment settings, where not only are
there likely to be unpaired words in both languages, but there may also be uncertainties
about underlying word boundaries or character inventories which introduce further kinds of
noise. Luo et al. (2019) acknowledge this limitation and include an evaluation on less-clean
Ugaritic-Old Hebrew data; in this setting their alignment accuracy drops to just 65.9%, from
93.5% in the clean setting. Tamburini (2023) does not include any evaluations in a noisy
setting, likely because their technique involves a computationally intensive search process
that we do not anticipate to scale effectively to a setting with many unpaired words.

Although the search process underlying Luo et al. 2019 is less intensive than that behind
Tamburini 2023, it nonetheless involves multiple iterations of EM-style optimization which
are both time and parameter intensive. We hypothesize that it may be possible to make
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this process faster and more parameter-efficient by shifting to a language modeling based
approach. This is motivated by our recent observation (Kambhatla et al. 2023) that it is
possible to eliminate brute-force search from sentence-level decipherment tasks by training
a language model to “translate” from a script- and language-agnostic input representation
back to plain Latin characters. At inference time, our approach proposed in that work
required only straightforward beam-search decoding, making it both fast and effective com-
pared to the then-state-of-the-art. More efficient alignment techniques would be useful for
real decipherment settings where the correct target language is not known beforehand. In
such a setting, it may be necessary to align to multiple languages before a true solution can
be found, and this scattershot approach is most feasible when each individual language pair
can be aligned efficiently.

Moreover, we note that in the noisy setting Luo et al. (2019: 3152) “found it beneficial
to train [their] model only on a randomly selected subset (10%) of the entire corpus with
the same percentage of noncognates, and test it on the full dataset”, but observe that this
kind of data filtering is impossible in a realistic setting, where it is not known which words
have cognates and thus the relative proportion cannot be maintained. In a realistic setting,
the word-lists from both languages would need to be sampled independently, meaning that
a 10% subset of the corpus should be expected to contain a mere 1% of the original cognate
pairs, destroying most of the signal that the model would learn from. It is not clear whether
Luo et al.’s filtering was “beneficial” for reasons of efficiency, or of accuracy. If the former,
this emphasizes all the more clearly the need for faster solutions to this task. If the latter,
then the reported numbers are actually unfair from the perspective of de novo decipherment,
and more robust methods will be required to deal with large, unfiltered word lists.

In this chapter we will demonstrate a fast and simple approach to learning the character-
level mapping between two scripts by adapting a monolingual language model; the proposed
technique is robust against noisy data and is significantly more efficient than the state-of-
the-art in Luo et al. 2019. We leave it to future work to extend this to word-level cognate
identification, but we demonstrate promising preliminary results using edit distances derived
from the learned character-level mapping.

While there is good reason to doubt that proto-Elamite is glottographic, it is nonetheless
worth exploring the possibility that the “syllabary” signs may truly be syllabic, as estab-
lishing phonetic values for these signs would be the most significant breakthrough in the
decipherment of this script to date. Our results in this chapter set the groundwork for such
an exploration, by providing a model that is demonstrably robust against realistic noisy
data and that can be rapidly applied to a wide battery of candidate languages in future
work.
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10.2 Character-Level Alignment

10.2.1 Motivation

Tran (2020) considers the problem of transferring a pretrained English model to another
language assuming a limited computational budget. Given a matrix of pretrained English
(sub)word embeddings Ee, they propose to model the embeddings of foreign-language words
Ef as linear combinations of the English vectors:

Ef [i] =
|Ve|∑︂
j=1

αijEe[j] = αiEe

where αi is a sparse weight vector satisfying ∑︁|Ve|
j αij = 1 (i.e. it can be interpreted as a

probability distribution over English words). The authors describe two offline approaches for
estimating the weights in α by using existing word alignment techniques (Dyer et al. 2013;
Conneau et al. 2017). Otherwise, the authors do not devote much focus to this mapping, as
it is only used to initialize the embeddings of unseen words before fine-tuning.

Cognate detection datasets are simple word lists with no surrounding context, meaning
the proposed techniques for estimating α are not directly applicable in this setting. However,
we propose that a similar approach could be applied at the character level. Concretely, we
propose to first train a monolingual character-level language model on the known-language
word list, and then to model each lost-language character as a weighted sum over the known-
language character embeddings. Next, rather than estimating the weights for this mapping
in an offline step, as in Tran 2020, we propose a novel training technique that allows us
to directly fine-tune the known-language model on lost-language data. By performing this
fine-tuning with the mapping α as the only tunable parameter, we will show that the model
comes to learn the correct character-level alignment between the two scripts. After this fine-
tuning step, we can use the inferred mapping to estimate word-level alignment probabilities
as part of a separate process outlined in Section 10.3.1

10.2.2 Methodology

Concretely, the first stage of our proposed character alignment process entails training
a character-level language model on the known language. The inputs to the model are
individual words from the known-language wordlist, with no additional context; words are
tokenized at the character level (we do not use subwords). Given the small size of cognate

1To some extent, the approaches explored in this chapter can be viewed as a continuous relaxation of
the Matcher system from Berg-Kirkpatrick and Klein 2011, which uses a similar approach of learning
character-level mappings and then aligning words based on edit distance. In that work, word- and character-
level mappings are learned jointly, and the character-level mapping was discrete. In this work, we learn a
continuous character-level mapping in the form of a weighted sum, and we show that this mapping can be
effectively learned independent of any word-level alignments.
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detection datasets, we use a shallow Transformer with a small feature dimension (2 layers,
4 heads, and 32 dimensions) as larger models fail to converge. We use positional encodings
(Vaswani et al. 2017) and apply dropout at a rate of 0.5. This model is trained with SGD
to minimize categorical cross-entropy on an autoregressive language modeling task using a
causal attention mask.

Let E ∈ Rk×32 be the embedding layer from the now fully-trained known-language
model, where k is the number of known-language characters. Let M : Rn×32 → Rn×k be a
black-box representation for the remainder of the language model, which maps a sequence of
n 32-dimensional character embeddings onto a sequence of log-probabilities over k known-
language characters.

To allow this model to accept lost-language inputs, we introduce a mapping α ∈ Rl×k

following Tran 2020. The product αE ∈ Rl×32 can be seen as an embedding matrix for l

distinct lost-language characters, and M ◦αE can be seen as a hybrid language model which
accepts lost-language inputs and predicts known-language outputs.

To convert the outputs from M ◦ αE into a distribution over lost-language characters,
we introduce the following conditional probability distribution inspired by t-SNE (Hinton
and Roweis 2002; van der Maaten and Hinton 2008):

log pj|i = −|xi − αEj |2/2σi∑︁
h̸=i−|xi − αEh|2/2σi

(10.1)

where 1 ≤ i ≤ k, 1 ≤ j ≤ l, xi is the embedding for the ith known character, αEj is the
embedding for the jth lost character, and σi is a per-character density estimate. Given a
known-language character i, suppose we sample neighboring characters in the embedding
space based on their distance from xi, with Gaussian falloff. Assuming we are only allowed to
sample neighbors from the lost language, pj|i models the probability that the lost-language
character j will be the one sampled. This is equivalent to the sampling procedure used in
t-SNE (van der Maaten and Hinton 2008) with the modification that points are divided
into two classes, and each class can only sample points from the other class.

Given a distribution p = [p1, ..., pk] over known-language characters returned as out-
put by M ◦ αE, we model the corresponding distribution p̃ = [p̃1, ..., p̃l] over lost-language
characters as p̃j = ∑︁k

i=1 pipj|i. With this transformation in hand, we have now success-
fully converted the original known-language model to both accept lost-language inputs and
predict lost-language outputs, using nothing but the character-level mapping α.

We now proceed with fine-tuning the adapted model on the lost-language word list, fol-
lowing exactly the same procedure that was used to train the underlying known-language
model. During this fine-tuning step, however, we make α the only tunable parameter, mean-
ing that the only way for the model to improve the language modeling loss at this stage is
by learning the correct mappings between characters in the two scripts.
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We emphasize that this procedure makes the mapping α trainable, whereas the mapping
from Tran 2020 was static and estimated offline.

Permutation Loss It is generally assumed that the mapping from characters in one
script to characters in another will be sparse: it may be almost one-to-one when aligning
two alphabets, and it is unlikely to exceed two- or three-to-one when aligning a syllabary to
an alphabet. In light of this, we hypothesize that our model may learn the mapping more
effectively if we constrain α to be approximately one-to-one.

To achieve this, we generalize the continuous matrix penalty function introduced by Lyu
et al. (2020) to the case of non-square k × l matrices:

Lsparse =
k∑︂

i=1

⎡⎢⎣ l∑︂
j=1
|αij | −

⎛⎝ l∑︂
j=1

α2
ij

⎞⎠1/2
⎤⎥⎦+

l∑︂
j=1

⎡⎣ k∑︂
i=1
|αij | −

(︄
k∑︂

i=1
α2

ij

)︄1/2⎤⎦
When applied to a square matrix α, this quantity approaches zero as the matrix ap-

proaches a permutation; by extension, in the non-square setting it approaches zero as α

approaches some non-square projection of a permutation. We hypothesize that fine-tuning
to jointly minimize the sum of the cross-entropy language modeling loss with this sparsity
loss will yield more accurate character-level alignments, and by extension, more accurate
cognate identifications, than fine-tuning on the language modeling loss by itself.

10.2.3 Experimental Results

We train the proposed model on the complete Ugaritic-Old Hebrew dataset from Luo et al.
2019, without pruning any of the distractor vocabulary items. We consider two settings,
one where we learn a model on the known language and fine-tune the alignment on the lost
language, and the reverse where we learn a model on the lost language and tune on the
known. In each setting, we compare the outcome of training without the permutation loss
Lsparse, with the permutation loss for just the first 50 iterations as a kind of warm-up, and
with the permutation loss for the entire duration of training.

The mapping α captures a nuanced view of the relationship between characters in the
two scripts in the form of a weighted sum. We can attempt to convert α to a more concrete,
one-to-one mapping for evaluation purposes, but we note that this process will necessarily
lose some of the information inherent in the full set of weights. For example, Table 10.1
reports top-1 and top-5 precision for mappings derived by aligning each character in the
known script to the character(s) with the highest likelihood pj|i according to Eq. (10.1).

From these results it is clear that the most effective way to learn the mapping α is by
pretraining on known language data, then fine-tuning on the lost language. In this setting,
α appears to perfectly capture the mapping between the two scripts, achieving 100% top-
5 precision in the best case. In the opposite direction, the best result is just 74% top-5
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Pretraining Language Permutation Loss
None Warm-Up Always

top 1 top 5 top 1 top 5 top 1 top 5

Old Hebrew (Known) 26% 57% 83% 100% 13% 30%
Ugaritic (Lost) 48% 74% 48% 70% 0% 17%

Table 10.1: Top-1 and top-5 precision of character-level mappings derived from α.

precision. We speculate that this asymmetry derives from the fact that there is much more
known-language data than lost-language data, meaning that the initial model will learn
higher-quality character representations when trained on the known language.

Our proposed permutation loss does appear to improve the character-level alignment,
but only in certain settings. Specifically, when we pretrain on the known language, and
apply the permutation loss for just the first 50 iterations of the alignment step, we see
significant improvements in the quality of the learned alignment. In other settings, we find
that this term has no effect or is actively detrimental to the quality of the learned mapping.
This suggests that it is useful to “prime” the model to expect a roughly one-to-one mapping
at the start of training, but that this requirement must eventually be relaxed. This makes
sense given that the true mapping between these scripts is not bijective, and some many-
to-one or one-to-many relationships do exist (as between Ugaritic a, u, i and Old Hebrew
a in most contexts).

10.3 Towards Word-Level Alignment

10.3.1 Methodology

After fine-tuning on the lost language data, α contains a representation for each lost-
language character as a linear combination of known-language characters. We now wish
to use these combinations to infer likely pairings between cognates at the word level.

Edit Distances To do this, we first compute the Levenshtein edit distance (Levenshtein
1966) from every lost word to every known word, where the cost of substituting lost character
j with known character i is

C(j, i) = 1−
pi|j

maxi pi|j

where pi|j is the conditional probability that known character i would be sampled by lost
character j paralleling Eq. (10.1). Note that C(j, i) = 0 whenever known character i is the
nearest neighbor to lost character j in the embedding space, while for all other pairings
the cost rises proportionally to the distance between i and j. Thus there is no penalty
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for replacing a lost-language character with its most likely known-language correspondent,
while there is increasing cost for less likely substitutions.

Alignment Likelihoods Now, for lost- and known-language vocabularies Vl and Vk, let
∆ ∈ R|Vl|×|Vk| be a matrix where ∆mn is the weighted edit distance between lost word m and
known word n as computed using the weights described above. Let Dm = softmax(−∆m)
be a probability distribution where Dmn is the probability that lost word m aligns to known
word n, and note that the resulting probabilities are inversely proportional to the original
edit distances.

To obtain a more sophisticated model for the word-level alignments, we can incorporate a
prior estimate for the likelihood that known word n is cognate to some lost word, as opposed
to being a distractor that has no mapping into the other language. Existing approaches to
cognate detection excel in clean settings where there are few or no such distractors, so the
ability to identify and prune these words would be a useful result in itself.

To this end, we propose to learn a language model on the lost word list, then fine-
tune on the known word list following the same procedure outlined in Section 10.2. In the
resulting model, the average perplexity when producing known word n should be low if n

is cognate to a lost word, as in this case the underlying lost-language model will have seen
that cognate during pretraining and the corresponding known word will look “in-domain”.
By contrast, if known word n is not cognate to any lost words, it should be “out-of-domain”
and therefore incur a higher average perplexity. We construct a vector Π ∈ Rk where Πn is
the average perplexity when producing the characters in known word n. We convert this to
a probability distribution P = softmax(−Π), and estimate the probability that lost word
m aligns to known word n as P r

nDmn where r is a smoothing term.

10.4 Results

Identifying Candidate Cognate Pairs The Ugaritic-Old Hebrew dataset contains
38898 total Hebrew words, meaning that a priori each Ugaritic word could be aligned
to any of 38898 possible targets. We wish to narrow this to a small pool of candidate cog-
nates for each word: ideally, we want just the most likely cognate in each case, but even tens
of candidates per word is a manageable amount for reranking or to allow human analysts
to evaluate whether a proposed alignment has been successful.

To this end, for each lost word, we select the k known words with the highest probability
according to the distribution P r

nDmn described above. We call these candidate cognate pairs,
and consider the alignment successful if the true cognate is among the k chosen terms.
Figure 10.1 plots the top-k precision for different values of k and the smoothing parameter
r.
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Figure 10.1: Top-k precision on Ugaritic-Old Hebrew cognate detection for various thresh-
olds k and values of the smoothing parameter r.

The best results overall come from values of the smoothing parameter r around 0.25. In
this setting, nearly half (46%) of true cognates are either the most likely or the second-most
likely candidate according to P r

nDmn, and 66% fall within the top 10 most likely candidates.
66% is the same accuracy reported by Luo et al. (2019) for their noisy evaluation. These
results suggest an avenue for future work whereby the top-k candidates are reranked to
promote the true cognates to the top of the ranking. Under this approach, the correct
cognate would only need to be selected from a few tens or hundreds of candidates, rather
than the full set of many thousands.

We also note that top-k precision is highest when we exploit P as a prior estimate for
whether a word has a cognate or not. In other words, the distribution P provides a usable
signal to help assess whether or not a given word is a distractor. This is encouraging, as it is
otherwise difficult to tell which words are “out-of-domain” when dealing with undeciphered
data.

10.5 Conclusion

In this chapter, we have demonstrated a novel technique for learning the character-level map-
ping between two related languages by training a monolingual language model on one, then
fine-tuning on the other. We show that this technique appears to perform best when there
is a large amount of known-language data available, which makes it particularly suitable
for large, imbalanced cognate detection datasets where existing models currently struggle.
The proposed technique uses a novel t-SNE-inspired approach to derive predictions over
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lost-language characters from the original known-language model outputs; we suggest that
this technique may also be applicable at the word level, where it would serve as a fully
trainable generalization of Tran 2020.

We also describe a first attempt at extrapolating to word level alignments from these
character-level results. We find that using the learned character alignment scores to compute
weighted edit distances provides a very strong signal for aligning between two word lists,
with nearly half of all cognate pairs having the smallest or second-smallest edit distance to
their cognate, and 95% falling within the top 400. We therefore propose to reframe cognate
alignment in noisy settings as a reranking task, where an initial set of words numbering in
the thousands or tens of thousands is pruned, using our technique, to a set of candidate
cognate pairs numbering in the dozens or hundreds. These can then be rescored to find
the best overall match, potentially using an existing approach to cognate detection (which
could be applied much more efficiently than usual in this setting, as the model would no
longer need to search over the full space of possible pairings). Model speed is useful in true
decipherment contexts where it can be necessary to align to multiple candidate languages
before finding a true match, and this is precisely the setting where we intend to apply our
proposed approach in upcoming experiments.

We have also shown that perplexity scores from a model trained on one language can
provide an effective signal for identifying words that have no cognate in the other language.
This is significant as it enables a kind of data cleaning or pruning which would otherwise
be impossible for undeciphered data. We believe that this signal could be incorporated into
any new or existing cognate detection model to improve its performance in noisy settings.
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Chapter 11

Additional Results

11.1 Linear Elamite Sound Values

This section reproduces parts of Kelley et al. (2022b), where we have provided an initial
response to the possible proto-Elamite sound values suggested in Desset et al. 2022. In that
work, Desset et al. propose sound values for Linear Elamite signs which yield a candidate
decipherment of that script into the Elamite language, and suggest that it may be possible
to “proceed in a regressive way, starting from the [sound] values established for the LE
signs [...] and trying to apply these “readings” to their graphic counterparts in the earlier
PE writing [...] The same signs may have been used with similar or identical phonemic
values [...] in the late 4th millennium BCE PE tablets” (Desset et al. 2022: 53).

We have already highlighted (Chapter 2) some of the difficulties surrounding this line of
argument, but we expand on these now to better frame the following discussion. At present
there is understood to be a wide gap in time between the proto-Elamite texts and the
appearance of Linear Elamite, on the order of eight centuries (Englund 2004: 104), with
no evidence for the continual transmission of proto-Elamite writing traditions across this
period. Thus the appearance of Linear Elamite does not look like a natural temporal devel-
opment of proto-Elamite, so much as it looks like the revival of a dead technology by users
centuries removed from any scribe who could have known the original readings of the signs.
There is therefore scant reason to expect those readings to have been maintained, particu-
larly when we consider that the signs in question are predominantly abstract geometrical
shapes, and not iconic representations of objects that users may be expected to call by the
name of the thing they depict. The only clear connection between the two scripts is a visual
resemblance between the shapes of some signs, but Englund (2004: 143-144) notes that such
“seeming graphic correspondences are notoriously inaccurate and can only be pursued as
an avenue of decipherment within the framework of a continuous writing tradition
such as that of Babylonia, but even then must be considered highly tentative” (emphasis
added).
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In the interest of exploring every possible avenue, we nonetheless consider the implica-
tions should the sound values from Desset et al. (2022) actually reflect some part of the
proto-Elamite reality. This exploration rests on the following assumptions:

1. that the sound values proposed in Desset et al. 2022 are substantially correct for
reading the Linear Elamite texts; and

2. that the mapping between Linear Elamite and proto-Elamite sign shapes, outlined in
Table 7 of Desset et al. 2022, is sufficiently complete and correct to allow these sound
values to be mapped back to proto-Elamite.

The second assumption in particular remains unproven. The proposed mapping occa-
sionally assigns several proto-Elamite signs to the same Linear Elamite correlate, and some
of these mergers appear unlikely when we consider the proto-Elamite contexts where those
signs occur. For example, M002 and M387 are both equated with Linear Elamite na.
As we argue in Kelley et al. 2022b: 6, the former consistently appears as an object sign
introducing capacity measures, while the latter has more varied uses as a possible syllabic
sign and as an owner sign (Dahl 2019: 77, 84). There is little evidence in the proto-Elamite
corpus that these should be treated as graphical variants of the same underlying sign, so the
implication that they should both map to the same Linear Elamite sign appears suspect.
We also note that 18 of the proposed correlates are hapax legomena in the proto-Elamite
corpus: we reiterate our claim (Kelley et al. 2022b: 6) that “It would be quite remarkable
if a sign with a single attestation across 26 thousand tokens in the currently known corpus
[...] were to prove resilient enough to be transferred with a similar value into a much later
writing system.” Overall, we believe the mapping in Desset et al. 2022 is meant only as a
general suggestion based on visual cues, but these cases highlight that more work must be
done to obtain a properly nuanced mapping if a connection between these scripts is to be
explored.

We have also considered the result of replacing each proto-Elamite sign in the corpus with
the corresponding Linear Elamite sound value based on the proposed mapping, to assess
the frequencies of individual sounds and of syllable n-grams in the resulting phoneticised
data. The resulting sequences include some, like m-t and m-la-a, that appear phonetically
implausible unless we assume additional vocalic segments that are not reflected in the
proposed sound values.

We refer the reader to our original publication of these results in Kelley et al. 2022b for
additional details, including discussion of the resulting word forms from a more Assyriolog-
ical point of view. We omit that discussion from this work, as it is both out of scope from
a technical perspective and is not wholly original to the author of this thesis.
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11.2 Kober’s Triplets

In Section 5.2 we raised the possibility that the proposed anthroponyms or strings of so-
called syllabic signs may have some internal structure, as certain signs exhibit an apparent
preference for what resemble word-final positions. That discussion brings to mind the work
of Alice Kober in the decipherment of Linear B (Kober 1945), whose discovery of affixal
morphology ultimately proved crucial to the later identification of that script as encoding
a form of Greek (Chadwick 1958). Kober identified words which differed only in their last
character or characters; by then grouping words which exhibit similar sets of endings, it
became possible to derive tables of the sort depicted in Chadwick 1958: 35. Such tables
resemble inflectional paradigms as may be found in any language textbook, and indeed the
alternations involved would later prove to encode aspects of Greek inflectional morphology.

We may automate Kober’s technique by compiling, for every n-gram in a corpus, a list of
candidate suffixes up to some maximum length, and looking for sets of n-grams whose suffix
sets share some non-empty intersection. Applying this technique to proto-Elamite indeed
reveals alternations which are at least superficially similar to those identified in Linear B,
for example:

Care must be taken, however: in Kober’s own words, “in any language [...] a certain
number of words can be found that have many signs in common and still are not related–
e.g., in English, the pairs “heavy” and “heaven” [...] are not related, although a careless
alien might conclude that they showed suffixal [...] inflection” (Kober 1945: 144). In proto-
Elamite the alien faces the additional confound that word boundaries are not marked, so
candidate affixes must be distinguished from the beginnings of freestanding words. This is
precisely the pattern exhibited in the above “paradigm” from proto-Elamite, which actually
shows an alternation between different object signs in parallel contexts.

There exist other candidate paradigms which appear more promising, however. We il-
lustrate a number of these below:

(A)

(B)

(C)
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(D)

(E)

(F)

In these examples, the suffixes are formed exclusively from signs in the proposed syl-
labary, and the same is true for nearly all of the signs in the stems (with the possible
exception of M131 and M146 , though the former is understood to be syllabic in

the complex grapheme M131+M388 ). More than this, there is significant overlap be-
tween the candidate suffixes identified here by Alice Kober’s method, and those proposed
in Section 5.2 based on our partial ordering of signs and analysis of median positions within
entries. Given that Kober’s method has already been vindicated in the decipherment of
Linear B, this increases our confidence that this represents a legitimate signal for some kind
of internal structure to the so-called syllable sequences in proto-Elamite, whether that be
true inflection or another superficially similar process. It is noteworthy that most of these
alternations involve relatively few distinct stems and suffixes, given that true affixal mor-
phology should be expected to be productive and therefore to produce larger paradigms
than we observe here. This supports the view that these paradigms may reflect internal
structure within proto-Elamite syllable sequences without representing true morphology.

Even if these paradigms do not represent morphology, the parallels which they highlight
remain useful as evidence of a functional equivalence between certain sign variants. For
example, in paradigm (B), the first and third columns differ in that the first sign of one
is a tilde-variant of the first sign in the other. The fact that both signs occur in identical
contexts in this paradigm suggests that they are underlyingly the same character, despite
minor graphical differences in these surface forms. On a more tentative note, the visual
similarity between M096 in paradigm (A) and M101 in paradigm (B) may suggest

a similar equivalence, given that both appear to alternate with M218 , though in this
case the preceding stems are not shared and so the equivalence is less certain. In paradigm
(D), the equivalence between M263 and M263∼1 is already acknowledged by the
use of a numbered, rather than lettered, variant label.
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Kober applied her method to the discovery of suffixes, but in an age where the search
process can be trivially automated it is straightforward to extend her technique to identify
alternations involving possible prefixes, for example:

(G)

(H)

In paradigm (H), Kober’s technique has recovered the same pairs of strings used to argue
against the treatment of M388 as a true determinative in Section 5.2.

The construction of these paradigms is computationally intensive, involving pairwise
comparisons between affix sets for all candidate n-grams. For this reason the examples in
this work are limited to stems and affixes of length at most 3. We publish other common
alternations within these length bounds in Appendix A.10, and will release the code by
which these paradigms were derived to enable future explorations with different stem and
affix lengths by interested parties. We leave further interpretation of these paradigms to
future work, which can incorporate linguistic insights beyond the scope of a computer
science thesis.
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Part V

Summary
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Chapter 12

Conclusion

By now it will no doubt be evident to the reader how uniquely complex a dataset is proto-
Elamite, and how diverse the challenges it presents. A relatively small corpus by computer
science standards, exhibiting many hundreds of often vanishingly rare sign shapes, multi-
way ambiguous notations, and uncertain word and phrase boundaries, without even the
guarantee of underlying linguistic content: such are the hurdles which must be overcome
if this corpus is to be understood in depth. And yet, with tools furnished by natural lan-
guage processing and computational linguistics, we have managed to undertake the first
ever large-scale computational analyses of this data, and have demonstrated how eminently
surmountable these hurdles can be when they are approached from the correct angle.

We began by taking a critical eye to questions of glottography versus semasiography,
and sought to clarify just how language-like this data really is. By measuring the entropy of
n-gram distributions (Section 5.1), we demonstrated that the ordering of character tokens
is less random than in the proto-cuneiform accounts, but more random than later cuneiform
prose. When we subsequently sought for a “grammar” governing entry construction (Sec-
tion 5.2), we found clear evidence for signs preferring to occupy the beginning or end of
an entry, with weaker trends governing the middle. Together these results paint the picture
of a script with weak or incipient word or character ordering rules, which seems to occupy
a transitional space between the more obviously non-linguistic proto-cuneiform script and
the more obviously linguistic cuneiform.

We have also identified other areas where the script is more similar to later writing
systems. Zipf’s Law provides a weak test which could help to rule out linguistic content,
but when we examined the proto-Elamite character frequencies we found that they fell
within the expected bounds for representations of language (Section 4.1). When we applied
an LDA topic model to this corpus (Section 4.4), we found that it produced interpretable
results, and even inspired hypotheses about headers and seal impressions which proved
fruitful in followup studies. These results suggest that the script is sufficiently language-like
to be studied through the lens of natural language processing and computational linguistics,
even if it is not a glottographic writing system in the strictest sense. Moreover, these and
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other exploratory methods (Section 4.3) successfully and independently replicated numerous
observations from prior manual work, allaying fears that computer models might be hindered
by a lack of historical or other domain knowledge.

With these results in hand, we proceeded to more focused studies of interesting and
unique features of the script, beginning with the class of signs known as complex graphemes
(Chapter 6). We developed an approach for multimodal, image-in-context language mod-
eling which partially overcomes the rare word problem by adding sign images as a model
input, in addition to or in replacement of a typical embedding lookup table. Using the
representations learned by this and other models, we argued that some complex graphemes
appear to have semantically compositional meanings, so that the decipherment of these
signs will be incidental to decipherment of their components. We also used pairing con-
sistency scores and four-part analogy to argue that these signs share the general meaning
of their outermost component, with the inner part(s) playing a specificatory role. Finally,
we demonstrated for the first time the existence of an apparently inviolable grammar or
hierarchy governing the construction of these signs, which must somehow be accounted for
as meanings are proposed or refined.

We next replicated the discovery of headers (Chapter 7) by demonstrating that this
structure is salient to unsupervised sequence models. We also argued from two separate
angles (HMM state sequences and transformer self-attention) that two- or three-sign headers
are much more common than previously believed. Building on an intuition from our earlier
LDA explorations, we investigated the link between headers, seals, and other features of a
document to reveal a variety of previously undetected correlations. Taken together, these
correlations suggest that the first sign of a document looks outward, conveying extra-textual
information about the surrounding administrative context, while the second looks inward
and correlates with features of the text itself.

Our study of numeral notations (Chapter 8) contributed two techniques for disam-
biguating the oft-opaque numeration conventions employed by this script. The first of these
techniques allowed us to curate a test set for a new numeral disambiguation task, while the
second solved this task with high accuracy using a highly interpretable bootstrap model and
a novel approach to cautious rule selection. This allowed us to update the corpus with new
annotations recording the known or predicted magnitude of each numeral in a format that
is understandable to modern readers. These annotations, in turn, enabled focused studies
of particular signs and texts, as well as new visualizations which convey clear qualitative
information about numeral distributions without assuming any particular disambiguation.
Given that every known text is an administrative “spreadsheet” with extensive numeral
notations, we believe that these results, and future work which expands on them, will prove
to be among the most significant contributions of our efforts in the long run.

The true size of the sign list remains one of the murkiest aspects of the proto-Elamite
script, as does the nature of the relationship between signs with similar, but not identical,
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shapes. To advance our understanding in these areas, we revisited our earlier attempts at
multimodal language modeling and developed a family of VAE-inspired, image-only lan-
guage models (Chapter 9). With these models, we were at last able to completely distance
our analyses from the working sign names, and could thus explore results which were less
prone to potential label bias. On a script-recovery task, we demonstrated that our mod-
els were competitive with existing architectures that required on the order of 50 times as
many parameters. In cases where experts remain agnostic about the relationship between
visually-similar signs, the output from our models supported the hypothesis that some of
those sign pairs represent the same underlying character. In another case, we showed how
the output from this model highlighted an uncommented-on parallel between signs which
spurred new hypotheses about their possible meanings and deepened our understanding of
the signs in question.

If proto-Elamite should prove to have a truly linguistic component, cognate alignment
models are one way by which this fact could be discovered and exploited. However, existing
approaches to cognate detection are either very slow or rely on clean data, making them
difficult to apply directly to proto-Elamite. We outlined (Chapter 10) a new approach to
cognate detection which learns a character level alignment between two scripts by adapting
a monolingual language model, and uses edit distances derived from these alignments to
identify candidate cognate word pairs. This technique offered strong top-k performance on
a noisy Ugaritic-Old Hebrew dataset while also requiring just a fraction as much training
time as the current state-of-the-art.

We concluded with a brief discussion of results that were less technologically novel than
our main results, but which nonetheless contributed useful context or gave further support
to our earlier results. Perhaps the most intriguing of these was the application of Alice
Kober’s test for inflectional morphology to this dataset (Section 11.2), and our extension
of this technique to look for prefixes rather than merely suffixes. Here we found additional
support for the novel suggestion that some name-like strings possess affix-like appendages
(but despite this terminology we repeat the caution that these may not represent true
morphosyntactic affixation).

We have provided additional descriptive statistics throughout this work, to provide a
rather general survey of the corpus from a more quantitative perspective than is typical of
existing references. We have also demonstrated how the same or similar patterns recur across
different types of analysis, which gives us confidence that our results reflect genuine signals
from the corpus. This is crucially important as the script remains only partially deciphered
(though hopefully less so as a result of this work), and the consequent lack of a ground truth
makes much of this work challenging to evaluate except by way of internal consistency or
manual assessment by domain experts. On the latter point, we reiterate that every step of
this work was performed in direct collaboration, or following extensive consultation, with
leading domain experts. Our contributions reflect attempts to directly answer questions
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of interest to those stakeholders using the tools afforded by natural language processing,
attempts which we understand to have been generally successful based on their feedback.
This collaboration has been equally fruitful from a technological perspective, having led to
the development of novel models and analytic techniques published at major NLP venues.

We look forward to continued work on this corpus, both that which builds on our re-
sults and that which tackles new questions which we have not yet considered. As the first
authors to have applied computational techniques to this corpus, we have only been able to
scratch the surface of possible inquiries, and there remain desperately many topics worthy
of eventual focus. These include studies of individual number systems, particularly marginal
systems like B#, and of the distributions associated with specific object signs; an extension
of our sequence modeling analysis to look for “subheaders”, which may delimit subsections in
very large tablets; extensions of our techniques to proto-cuneiform, which remains opaque
despite having known descendant scripts (this will be an interesting technical challenge
owing to the lack of linear sign order, and may require the adaptation of more techniques
from computer vision); comparisons between parallel categories in proto-Elamite and proto-
cuneiform, for instance to establish whether equivalent counted objects are associated with
equivalent numeral distributions, or to determine whether colophons exhibit correlations
with extra-textual features similarly to headers; direct alignments between proto-Elamite
sign sequences and character, word, or sound sequences from other languages using tech-
niques like the cognate alignment model which we have proposed; comparisons with glyptic
traditions to further clarify the connection between seal imagery and tablet headers; and
undoubtedly many more besides.

Our image-only, VAE-inspired language models also have potential applications to the
study of other scripts, such as the evolution of character shapes in early Chinese bronze
inscriptions (Anonymous, pers. comm.). We are also aware of potential interest in apply-
ing a similar model to the study of stamp impressions in Han Dynasty funerary bricks
(Anonymous, pers. comm.). These bricks are stamped with decorative patterns, and subtle
differences between the shapes on different bricks suggest that they were prepared using
distinct stamps showing the same general image. Clustering images of stamp impressions to
create a “stamplist” roughly parallels the task of clustering tokens to infer a sign list, and
may help historians to more easily determine when two bricks come from the same work-
shop. Thus the models considered in our work promise to generalize to distinct contexts,
and are not limited to the decipherment applications which have thus far been our focus.

To conclude, this work has served to deepen modern understandings of an important
piece of humanity’s shared cultural heritage, and has shed new light on one of the earliest
known forms of writing or proto-writing. We earnestly hope that this work will inspire
renewed study of this uniquely interesting and challenging corpus, and will spur greater
collaboration between computer scientists and experts from other domains by demonstrating
how such collaborations serve to advance both fields.
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Appendix A

Additional Figures

A.1 Dendrograms
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Figure A.1: Complete dendrogram for neighbor-based hierarchical clustering (Chapter 4),
showing signs attested 50 times or more.
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Figure A.2: Complete dendrogram for HMM-based hierarchical clustering (Chapter 4),
showing signs attested 50 times or more.
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Figure A.3: Complete dendrogram for Brown clustering (Chapter 4), showing signs attested
50 times or more.
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A.2 LDA Topic Stability

This section reports the raw results from our topic stability analysis in Section 4.4. We
cluster the topics from 30 random restarts of a 30-topic LDA model on the proto-Elamite
corpus with numerals stripped out. For each cluster, we report the mean pairwise rank-
biased overlap (Mäntylä et al. 2018) between topics in the cluster. We also count how
frequently each sign occurs among the ten most predictive signs for the topics in the cluster;
we list those which are most frequent, alongside the proportion of topics in the cluster in
which that sign appears.
Mean Pairwise RBO: 0.845746
Term Proportion

M106_M009 1.000
M009 1.000
M009_M206∼G 1.000
M309∼A 1.000
M106∼A 1.000
M206∼G 1.000
M102∼E_M309∼A 1.000
M102∼E 0.967
M106 0.967
M260 0.567

Mean Pairwise RBO: 0.650776
Term Proportion

M124 0.971
M370 0.941
M054 0.912
M072 0.853
M373 0.824
M376 0.794
M371 0.735
M288 0.559
M388 0.559
M003∼B 0.559

Mean Pairwise RBO: 0.615730
Term Proportion

M297 1.000
M263∼A 1.000
M157 1.000
M157∼A 0.667
M388 0.333
M341 0.333
M131∼E 0.333
M175+M288 0.333
M265 0.333
M243∼EE 0.333

Mean Pairwise RBO: 0.576265
Term Proportion

M036 1.000
M387∼EF 0.964
M266∼B 0.929
M387∼A 0.857
M263 0.786
M002 0.786
M387 0.429
M010∼2 0.286
M263∼B1 0.214
M297 0.179
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Mean Pairwise RBO: 0.500974
Term Proportion

M297 1.000
M388 0.938
M157 0.688
M380 0.500
M218 0.375
M218+M320 0.312
M226∼C 0.250
M051∼B 0.188
M323∼I 0.125
M146∼D 0.062

Mean Pairwise RBO: 0.500370
Term Proportion

M297 1.000
M388 0.900
M157 0.900
M218 0.600
M305 0.400
M066 0.400
M036+1(N30D) 0.300
M111∼A 0.300
M380 0.300
M004 0.100

Mean Pairwise RBO: 0.485851
Term Proportion

M054 1.000
M003∼B 0.722
M072 0.722
M317 0.722
M373 0.722
M059 0.389
M388 0.278
M033 0.167
M269∼B 0.056
M367∼C 0.056

Mean Pairwise RBO: 0.474232
Term Proportion

M288 1.000
M157 0.867
M203∼C 0.467
M005∼A 0.400
M391 0.400
M124 0.333
M106∼2+M288 0.333
M136∼B 0.300
M010∼2 0.100
M217 0.100

Mean Pairwise RBO: 0.465029
Term Proportion

M218 0.936
M388 0.897
M371 0.859
M066 0.769
M096 0.718
M004 0.564
M057 0.385
M347 0.269
M377∼E_M347 0.218
M387 0.218

Mean Pairwise RBO: 0.415863
Term Proportion

M376 1.000
M149∼A 0.633
M032 0.600
M157 0.600
M005 0.367
M136+X 0.300
M311∼B 0.233
M149∼A2 0.100
M383 0.033
M061 0.033
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Mean Pairwise RBO: 0.406916
Term Proportion

M367 0.962
M362 0.808
M362_M367 0.692
M006 0.462
M362_M367_M269∼A_M269∼2 0.385
M341∼Q 0.385
M269∼A_M269∼2 0.346
M056 0.269
M106∼2+M288 0.038
M377+M377 0.038

Mean Pairwise RBO: 0.359433
Term Proportion

M346 1.000
M006 0.400
M346∼A 0.200
M362∼A 0.200
M362 0.133
M367∼A 0.133
M006@G 0.133
M367∼G 0.067
M346∼D 0.067
M112 0.067

Mean Pairwise RBO: 0.354349
Term Proportion

M354 1.000
M054 0.464
M265∼F 0.179
M384∼D 0.179
M157∼A 0.179
M111∼A 0.143
M346∼A 0.071
M362∼A 0.071
M323 0.071
M228∼GA 0.036

Mean Pairwise RBO: 0.353889
Term Proportion

M056∼F 1.000
M288 0.727
M305 0.636
M075∼G 0.545
M352∼C 0.182
M222 0.091
M112 0.091
M038∼B1 0.091
M206∼FA 0.091
M080∼B 0.091

Mean Pairwise RBO: 0.348825
Term Proportion

M305 1.000
M038∼BX 0.739
M388 0.609
M387∼C 0.435
M131 0.348
M387∼CA 0.348
M001 0.304
M387 0.261
M136+X 0.174
M203∼C 0.043

Mean Pairwise RBO: 0.347237
Term Proportion

M387 1.000
M081 0.522
M157 0.348
M263∼B1 0.304
M297∼B 0.217
M305 0.174
M038∼A 0.087
M157∼A 0.087
M136∼C 0.043
M252∼Q 0.043
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Mean Pairwise RBO: 0.320113
Term Proportion

M365 0.885
M054∼I 0.769
M105∼A 0.731
M003 0.692
M367 0.577
M006 0.538
M328∼B 0.423
M136∼I 0.308
M210 0.231
M080∼A 0.038

Mean Pairwise RBO: 0.314599
Term Proportion

M297∼B 1.000
M157 0.708
M176 0.292
M044 0.083
M195 0.042
M069∼A 0.042
M387_M069∼A 0.042
M311∼B 0.042
M146∼D 0.042
M361∼A 0.042

Mean Pairwise RBO: 0.302056
Term Proportion

M009 1.000
M371 0.200
M005∼A 0.200
M384∼AB 0.133
M125 0.133
M208 0.133
M380∼B 0.067
M048∼C 0.067
M036+1(N14) 0.067
M195+M038∼A 0.067

Mean Pairwise RBO: 0.286764
Term Proportion

M157∼A 1.000
M260∼1 0.312
M327+M342 0.312
M005∼A 0.188
M292 0.125
M305+M342 0.125
M038∼A 0.062
M111∼A 0.062
M264∼A 0.062
M228∼GA 0.062

Mean Pairwise RBO: 0.283433
Term Proportion

M206∼D 0.950
M157 0.700
M388 0.550
M223 0.300
M367∼I 0.100
M351+X 0.100
M158∼H 0.050
M112 0.050
M260∼1+1(N24) 0.050
M103∼2 0.050

Mean Pairwise RBO: 0.278930
Term Proportion

M059 1.000
M325 0.200
M069∼A 0.150
M387_M069∼A 0.150
M288+1(N01) 0.050
M126 0.050
M367∼E 0.050
M054+M365+M054∼I 0.050
M054∼C 0.050
M417∼F 0.050
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Mean Pairwise RBO: 0.278817
Term Proportion

M032 1.000
M005 0.474
M391 0.316
M157 0.263
M376 0.211
M009 0.105
M327+X 0.105
M327+M059 0.053
M311∼B 0.053
M180 0.053

Mean Pairwise RBO: 0.276212
Term Proportion

M263∼A 0.714
M263 0.619
M263∼B1 0.524
M387∼A 0.476
M002 0.333
M048∼D 0.286
M387∼EF 0.238
M010∼2 0.190
M057∼B 0.143
M384∼D 0.048

Mean Pairwise RBO: 0.267829
Term Proportion

M388 0.873
M157 0.618
M157_M195+M057 0.455
M195+M057 0.455
M009 0.418
M218 0.364
M314 0.200
M288 0.164
M122 0.055
M260∼1 0.055

Mean Pairwise RBO: 0.214407
Term Proportion

M242∼B 0.857
M242∼B_M096 0.857
M096 0.571
M066 0.429
M288+1(N01) 0.286
M387∼I 0.143
M057∼A 0.143
M387∼I_M387∼I 0.143
M218∼D+M288 0.143
M003∼B 0.143

Mean Pairwise RBO: 0.209874
Term Proportion

M327 1.000
M351+X 0.500
M365 0.333
M057 0.167
M009 0.167
M374∼C 0.167
M247∼G 0.167
M136 0.167
M153+X 0.167
M158 0.167

Mean Pairwise RBO: 0.101756
Term Proportion

M145 0.542
M264∼D 0.500
M367∼C 0.333
M317∼A 0.292
M081 0.250
M038∼E 0.208
M002 0.167
M036+1(N24) 0.083
M210∼D 0.042
M064∼A 0.042
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Mean Pairwise RBO: 0.098027
Term Proportion

M036+1(N30D) 0.392
M243∼J 0.275
M305+M342 0.255
M033 0.176
M305+X 0.176
M149∼A2 0.176
M051∼B 0.157
M222 0.098
M384 0.098
M146∼D 0.098

Mean Pairwise RBO: 0.031085
Term Proportion

M124 0.096
M263∼B 0.056
M073∼B 0.051
M051∼C 0.034
M260∼1+1(N24) 0.034
M230∼A 0.028
M010∼6 0.028
M006@G 0.022
M312 0.017
M097∼H_M004 0.011
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A.3 Precedence Relations

M
31
8~
A
1

M
37
1

M
25
9

M
21
8

M
28
8

M
24
0

M
09
6

M
09
7~
H

M
00
4

M
06
9~
A

M
30
5

M
38
8

M
26
3

M
13
9

M
34
6

M
26
2

M
09
9

M
11
1~
A

M
38
7

M
26
3~
B
1

M
12
8

M
05
4

M
37
6

M
31
4

M
39
0

M
35
2~
N

M
29
7

M
26
2~
1

|M
19
5+
M
05
7|

M
31
7

M
21
9

M
10
1

M
14
6

M
05
7

M
05
6~
E

M
35
2~
O

M
00
1

M
05
6~
F

M
03
2

M
24
2~
B

M
37
7

M
06
6

M
38
6~
A

M
12
4

M
00
9

|M
21
8+
M
28
8|

M
00
3~
B

M
02
4

M
34
0

M
37
7~
E

M
34
7

M
37
0

M
06
6~
A

M
26
3~
1

M
33
2~
D

|M
13
1+
M
38
8|

Figure A.4: Partial order over signs occurring together 10 times or more, inferred from χ2

tests (Section 5.2). A directed arc from A to B implies that A is significantly more likely to
occur before B than after, when both signs are present in an entry.
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A.4 Sign Position Heatmaps

In the following heatmaps, each row represents a fixed entry length, and the intensity of the
cells show how frequent a sign is at each position in entries of that length. Object signs can
be recognized by a strong trend along the main diagonal, representing frequent occurrences
at the very end of entries of all lengths (e.g. M288). The class of “suffixal” signs, which we
identified as preferring penultimate position, can be similarly recognized by the presence of
dark cells directly below the main diagonal (cf. M066).

152



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
44

13 23

4 14 7

5 5 6 2

3 1 1 1

2 2 1 1

1 2 1

1

1

M001 n=141

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 3

1 1

1

1 1

1

M001~B n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

24

2 5

1 3

1

2

M002 n=38

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

1

1

M002~B n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

2 1

1

M003 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

20

3 32

2 4 9

1 1 1 10

2 2 4

4

2

M003~B n=97

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

4

M003~C n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 1

8 18 3

6 15 9 1

2 4 1 7 1

2 5 3 6 1

3 6 3

1 1 3 1

M004 n=115

153



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
12

3

1 1

1

M005 n=18

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

18

7 2

7 5 1

2 2

3

1 1

1 1

M005~A n=51

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

31

3 5

3 1

1

1

1

1

M006 n=47

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

M006@G n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

82

27 20

9 16 8

4 11 14

1 5 7 4 1

1 1 4 3 1

2

1

1

M009 n=223

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

1 1

1

1

M009~A n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

1

2

1

M010 n=13

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

2 1

1

M010~1 n=7

154



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
22

1 10

1 5

3

1

M010~2 n=43

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

1

M010~6 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

2

1

M016 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2 1

8 7

4 5 3

4 3

1 1 2 2

1 1

1 1

M024 n=47

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

3 1

1 1

1

1

M024~1 n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

2 1

1

M024~A1 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

2 1

2 2

1

1

1

1

1

M029~A n=14

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 1

4 2

2

2 1

1 1 1

M029~B n=17

155



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
26

4 26

6 6 11

3 7 6 2

1 1 7 1 1

3 3

4 2

1

M032 n=121

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

2

3 4

2 3 4

1 2 1 1

2

1

2

1

M033 n=38

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 1

1 2

1

1 1 1

M035 n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

72

4 23

3 5 6

1 3

2 4 1

3

1

M036 n=128

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 1

1

M037 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

3

1 1

1 1

3 1

M038~A n=13

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

2

1

M038~A2 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2

1

M038~B n=5

156



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
5

2

M038~B1 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1 4

4 1

2 2

1

1

M038~BX n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

5

6 2

1

1

M038~E n=18

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1 1

1

M038~I n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

2

M039~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 1

1

M039~C n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

5 4

2 2

1

1

M041 n=17

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

3

3

M041~G n=10

157



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

1

1

1

M041~J n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

6

1

M044 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

24

1 3

1 6

1

M046 n=36

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

3 3

1

1

M047 n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

3 4

1 3

3 1

1 2 3

1

2 1

M048~C n=28

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 3

1 3 1

3 1

1

1 1 1 2

1 1

M048~D n=23

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 1

1

1

1

M048~E n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 1

1

1

M048~I n=6

158



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

1

2 2

1 3

1 1

1 1

1

1

M048~K n=16

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1 1

1 1

1

M049~D n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

4

M050~K n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

3

2

1

2

M051~A n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

1 2

1 1

1

1

M051~B n=13

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

1 2

1

M051~C n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

M052~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

2

1

M053~A n=11

159



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
92

19 54

12 28 10

3 3 9 8

1 2 4 2 5

1

1 1

1 1 1

M054 n=258

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2

1

M054~C n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

13

5 7

1 2

1

M054~I n=29

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

2

1

M056 n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

1

1

M056~E n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

20

12 7

8 6

4 2

2 1

3

M056~F n=65

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

7 6

7 6 12

7 3 9 6

1 3 3

4 1 3 2

1 1

1 1 1 1

1

M057 n=95

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 2

3 1 7

1 1 3 2

2 2 5

1 1 1

1 1 2

1

1

M057~A n=41

160



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

2

3

1

1

M057~A2 n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1

1

1

1 1

M057~A4 n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

5 1

3 3 1

1 1

1 2

1 1

2 1

1

M057~B n=25

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2

1

1

2 2

1

1

M057~B1 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 4

1 1

1 1

M058 n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

36

15 4

7 1 1

1

2

1

M059 n=68

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 2

1

M059~D n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

2 1

M061 n=10

161



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
4

1

M064~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6 8

8 19 33

11 14 29 10

13 2 2 16 9

2 4 5 5 13 6

5 2 1 7 1

1 1 1 3 3

1

1

M066 n=243

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 2

2 4 6

2 3 4 6

1 1 1

2 1 1 1 1

1

1

M066~A n=42

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

11

M069~A n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

47

21

2 1 15

1 6

1 1

M072 n=95

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1 1

M073~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 3

1 2 1

1 1

1

M073~B n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

3

1 1

M075~G n=9

162



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
5

1

M075~K n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 4

1

1

M075~M n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

M075~O n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 1

1 1

1 1

1

M080~A n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

1

1

M080~B n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

13 3

1 5 1

1 1 2

3

M081 n=41

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1 1

1

M086 n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

3 13

2 14 31

2 2 27 32

4 1 18 7

1 2 1 15 4

1 2 1 5 1

1 1 3 1

2 2

1 1 2

1

M096 n=212

163



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2 1

M096~1 n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 3

1

1

M096~D n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1 1

1

M097~F n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 2

2 3 3

4 3 3

1 1 4 2

1 1 4 3

3 3

1 1

M097~H n=46

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 2

4 7 1

1 5 3 1

4 1

2 2

1 1

1 1

1

M099 n=39

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

2 5

2 4

1 1 4

1 4 4

1 3 1

1 1 2 2

1

1

M101 n=52

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

16

1 1

1

1

1

M102~D n=21

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 1

1 1

1

M102~DA n=5

164



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
29

1

1

M102~E n=31

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1 1

3 2

M103 n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

2

1

M103~2 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

2

2

1

M103~3 n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

1

M105 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

1 7

1 2 1

M105~A n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

27

3 1

1

1

1

M106 n=34

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

32

2

M106~A n=34

165



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

1 5

1 4

1 1 1

1 1 1

M109 n=18

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 1

2

1

2

1

1

M110 n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 1

1 1

2 1

M110~A n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 1

2

2

1

M110~B n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

1 1

1

M111 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

3 3

1 1 1

3 1 1 1

2 1 1

3 1

2

M111~A n=26

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 2

1 1

M112 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2

1 2

1

M115~A n=8

166



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
13

3 1

2

1

1

1

1

M122 n=23

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 2

1

M123~B n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

35

39 35

32 10 14

42 11 2 3

25 11 3 2

7 4 1 1 1 1

1 3 3 1 1

2

1 1 1

1

M124 n=294

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

6 1

2 3

2

1

1

M125 n=17

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

2

M125~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

1 1 1

M126 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

3 5

1

1 1 1 1

1

1

1

M128 n=19

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 1

3 2

M128~D n=7

167



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

2 1

2 2

2 3 3

2 2

1

1

M131 n=22

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

5

2

2

1

M131~E n=15

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2 3

1

M131~K n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

3

3

1 1

1

M136 n=13

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

1

M136~A n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

5

1 2

1

M136~B n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

2 3

1

1 1

1

1

1

M136~C n=15

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

1

M136~I n=10

168



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
6

M136~Q n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

M136~R n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 1

2 3 1

7 1

2 1 3 2

1 1

3 1

1 4 1

1

M139 n=38

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1 1

1

M143 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4 2

1 1

3

1

M144 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

3 4

2 2 1

1

1

M145 n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 5

1 3

1 2

1

M145~A n=16

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

3

1

M145~BB n=5

169



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
4 1

7 1

4 3 2

1 3 1

1 1 5

3 2 1

1

M146 n=41

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1 1

1

1

1

M146~D n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1

1 2

3

1 1

3

M147 n=15

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

M147~D n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

2

1 1

1

1 1

M147~E n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

13

3 5

3 2 1

1 1 1

1 1

1

1

1

M149~A n=35

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 1

1 2

1

1

M149~A1 n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

1

1

2 1

1

M149~A2 n=12

170



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

3

1

M150~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

18

8 4

6 4 1

1 3

4 1 2

2

1

1

M153 n=56

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

207

5 2

6 1

4 2

2

1

3

M157 n=234

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

72

10 1

6 3

2

1

1

M157~A n=96

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2 1

1

M158 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

3

1 2

M158~H n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

8 4

2 3

3 3

2

1

1

1

M175 n=34

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2 1

1

M176 n=6

171



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
3

3

1

M180 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1

1

M180~B n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 2

1

1

M193 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

3

1 1

2 1 1

1

1

M195 n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

2 1

1

1

1

M195~D n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

5 6

4 3

1

1

M203~A n=31

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

11 1

6 1 1

2 1

1 1

2

1

M203~C n=36

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

2

2

M205~C n=9

172



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

2 1

2 1

M206~B n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

3 11

2 3

4

1 1

1

1

M206~D n=35

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

M206~F n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

2

M206~FA n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

35

M206~G n=35

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

2

1

1

1 1

1

M207 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

1

M207~M n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

5 1

M208 n=9

173



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

1 2 1

M209~D n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

2

1 1

M210 n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

2

1

1

M210~D n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

1

1

1 1

M210~G n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

6

3 2 1

1 1 1

1 3 1 1

1 1 1 1

1

1

M217 n=29

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

25

18 32

27 19 73

14 18 54 38

9 11 18 24 28

2 5 8 6 29 6

1 6 2 2 11 7

1 1 2 3 2 3 7 1

1 1 2

2 1

2

1

M218 n=525

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 1

1 4 1

2 2

1

1

1

M218~B n=17

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

3 9

6 9 3

4 6 8 1

4 4 4

2 2 4

2 1 1

2 1 2

1

1 1

M219 n=88

174



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
4

3

1 2 1

1 1

1 1 3 1

1

M220 n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

1 4

2

1

1

M221 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 1

2 1

2

1 1

M222 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

1 4

1 2 2 3

1 1 2

1 1

2 1

1

M223 n=30

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

2 2

1 1

1

1

M223~B n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1

1

M224 n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 1

1 1 1

1

1

1

M226~C n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

3

1 2 1

1

1

1

1

M228~GA n=12

175



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

1

1 1 2

1 1

1 3 1

M230 n=14

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1 1

2 1

1

1

1

M230~A n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

4 4 1

1 4 7 3

4 3 6

1

2 3

1

1 1 1

M240 n=49

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 1 1

1 2

1

1

1

2 1

M240~E n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1

3

1

M242~AB n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 5

2 5

2 1

1 1 3 2

1 1

M242~B n=26

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1

1

M242~D n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1

1

M243 n=7

176



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

2

1

1

M243~E n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

4 9

M243~J n=22

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

2 1

M244 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

1

1

M246 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

2

1

1

M246~B n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 1

1

M247~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1

1 1

1

1

M247~G n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 2

1

M248 n=5

177



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

1 2

1

M248~A n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 3

2 1 1

1 2 1

1

1

1

M250~BA n=18

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1

1

M251 n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2 1

1 2 1

1

1

M251~C n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

1

M252~Q n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3 1

7

5 1 1

1 1 5

1 1

1

1

M254~A n=29

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

5

2

1

M254~C n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2 1

9 10

1 11 5

8 7

2 1

2 2 3 1

1 1

1

M259 n=69

178



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
29

4

2

1 2

1

M260 n=39

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

6 7

1 2

1 1

1 1

1

1

2

M260~1 n=28

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

5

2

1

M261~B1 n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

3 1

5 7

2 6 5

4 2

1 1 2 1

1

M262 n=44

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

4 2

1 1 1

1 3 2

1 1 1

1 1

1 1

1

M262~1 n=26

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

30

4 27

8 4 12

6 5 8 11

2 6 6 1 5

4 3 2 7

1 3 3 2

1 1 1 2 5

2

1

1

M263 n=174

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

10 4

3 4 4

2 1 5

1 2

1 2 1 1

2

M263~1 n=47

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

12

15

1 2 7

1 1

1 4

1 1 1 6

1

1

1

1 1 1

M263~A n=59

179



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

1 3

4

1 1

M263~B n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1 14

1 2 3

5

2

1 3

M263~B1 n=37

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 2

2

2

1

M263~E n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

6

1 9

1

1

M264~A n=24

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

2

1

M264~A1 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 3

4

M264~B n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1 3

M264~D n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

9

1

M265 n=10

180



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
4

4

2 2 5

M265~F n=17

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

3

2 8 1

2 2

1 2 2

1

1

M266~B n=30

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

1

M269 n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

M269~2 n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

17

1 2

M269~A n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

4

M269~A1 n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

17

5

2

1

1

M269~B n=26

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

2

M271~CA n=5

181



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
4

2

M277 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

M278 n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

2 1

1

1

1

M281~C n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1 1

1 3

1

1

1 1

M281~F n=13

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1 1

1 1

1

M285~C n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

7

1 1

1

1

M286 n=17

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

319

10 170

2 4 111

1 1 1 89

2 1 1 59

1 33

16

3

1 2

3

1

M288 n=831

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 1

1

M288~D n=6

182



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

1

3

1

1

M288~I n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2 1

6

1 1

1

1

1 1

M291 n=16

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 1

2

1

1 1 1

2 1

2 1

M292 n=16

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1

2

M292~C n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

16

1

1

1

1

M292~F n=20

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 1

1

3

M292~I n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

M293~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

3

M293~B n=5

183



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
6

1

M294~A n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 2

2 1 1

2

1

M295 n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

M295~E n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

10

1 6

1 4 2

3 1

1 1 1

1

M296 n=32

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

99

6 57

1 15 27

1 4 6 16

2 7 6

2 2 3 3

1 1 4

1

M297 n=265

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

41

4 20

1 7

1 3

1

1

1

M297~B n=80

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

7

1 3

1

M297~D n=12

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1

1

M298 n=7

184



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

1 1

2 5

1 1 4

4

1 1 1

1

1

1

M301 n=26

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

2

1

M301~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

17

12 6

1 2 2

3 1 1

2 1

1 1

M304 n=50

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

27

12 5

19 4 4

6 2 4

7 3 2

13 3 1

4 4

3 1 1 1

1

M305 n=127

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

1 1

M309 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

37

1

M309~A n=38

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1

1

1

M309~D n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

5 1

3 1

M310 n=11

185



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
6

2

1

M311~B n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

5

1

1 1

1

M312 n=9

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 2

1 5 1

3 4 4 1

1 3

1 1 1

1 1

1 1

1

M314 n=36

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 2

1 2

3

2

1 1

M315 n=14

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

3 1

1

1

M316~E2 n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

3 5

1 5 7

7

1 1 1 2

1 6

2

1

M317 n=49

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

2

2

1

M317~A n=8

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

2 1

1

1

1

M318 n=9

186



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

1

2

1 1

1

2

M318~A n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 3

2 3 4

2

1

M318~A1 n=17

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2 1

1

1

M318~A3 n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1 2

2 3

1

1

1

1

M319 n=15

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

1

1

1

M319~C n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

10

3 3

2 7 8

2 3 2

1 2 1

1 1

1 1

1

M320 n=49

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

1

M321 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1

M321~B n=5

187



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2

2

1

1 1 1

2

M323 n=10

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1

1

M323~I n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

1

1

1

M324~D n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

14

5 2

2 1 1

1

1 1

1

M325 n=29

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

3

2

1

2

1

1

1

M325~D n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

1

1

1

M325~E n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

19

7

1

2 1

1

M327 n=31

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

2 1

1

M327~P n=15

188



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
4

3

2 3

1

1

1

M328~B n=15

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

5 3

2 1 2

1 5 4

1 2 1

2 1

2

1 1

1 1

M329 n=38

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

3 4 2

1 4 1 1

1 1

1 1

1

M332~D n=23

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1 4 1

3 2

1

1

1 1

1

M338 n=16

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1 2

3 3 2

1 2 4

2 1

1 1

1 1

1

M338~B n=27

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

8 1

9 2 1

1

1 1

1

M340 n=27

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

14

8 4

1 1 1

1

1

1

M341 n=32

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

11

M341~Q n=11

189



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
1

1 1

3

M342 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

125

6 37

2 7 15

2 3 5 23

1 1 14

1 3

3

1

M346 n=249

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

12

1

M346~A n=13

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

6

1

2

1

1

M346~B n=11

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

4

1 1

1

M346~D n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

1

3 7

4 12 12

2 3 7 3

4 3 2

1 1 2 4 1

1 1 1 1 1

1 1 2 1

1

M347 n=84

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

8

6 9

1 1

1 3 3

1 2 5

1 3

1

M348 n=45

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2 1

1

M352~C n=6

190



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
2 1

2 3

3 7 4

8

1 2 4 1

1 1

M352~N n=40

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1 1

1 5 1

1 9 1

4 4

4 2

3 1

1

M352~O n=41

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

3

1

1

M352~S n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

74

1 27

4

3

1

2

M354 n=112

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

1

2

1 1 1

1

M356 n=7

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

1

1

1

1

M359 n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

2

2

1

M361~A n=5

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

10

3 18

2

M362 n=33

191



1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th
5

1

M362+X n=6

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

15

M362~A n=15

1 2 3 4 5 6 7 8 9 10 11 12
position

1
2
3
4
5
6
7
8
9

10
11
12

en
try

 le
ng

th

30

6 7

2 1
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A.5 Complex Grapheme Embedding Spaces

Figure A.5: t-SNE projection for the complete embedding space from the glove.64 model
from Chapter 6. Figure 6.3 excerpt shown in red.
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Figure A.6: t-SNE projection for the complete embedding space from the
image_recognition.64 model from Chapter 6. Figure 6.3 excerpt shown in red.
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Figure A.7: t-SNE projection for the complete embedding space from the lm.image.64
model from Chapter 6. Figure 6.3 excerpt shown in red.

207



A.6 Complex Grapheme Containment Hierarchy
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Figure A.8: Complete containment hierarchy which appears to govern the construction of
complex graphemes (Chapter 6). (Figure is zoomable in digital editions of this work.)
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A.7 Sign Clustering
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Figure A.9: Completeness and homogeneity for different clustering sizes using English mod-
els from Chapter 9
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Figure A.10: Completeness and homogeneity for different clustering sizes using Japanese
models from Chapter 9

A.8 Parallel Coordinates

This section provides parallel coordinate plots for all counts with an ambiguous system,
grouped according to which sign(s) occur in the preceding entry. For reasons of space, we
only show signs that occur next to at least 10 ambiguous numerals, and for especially dense
plots we leave some lines unlabeled to maintain readability. We will release the code to
reproduce these figures separately, for parties interested in other signs or in other views of
these signs.
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A.9 Headers

This section summarizes which texts belong to certain categories identified in the body of
the paper. Texts are identified by the P-number assigned by the CDLI.

I. Texts with an implicit header, for which we have corrected the transliteration:

P008020, P008251, P008255, P008311, P008365, P008463, P008641, P008845, P008850,
P008853, P008878, P008880, P009051, P009053, P009055, P009060, P009094, P009126,
P009320, P009422, P009441, P009461, P009469, P393079, P393080

II. Human-labeled two-sign headers:

P009524, P008220, P008258, P008281, P008702

A.10 Kober Triplets

This section prints all of the alternations identified by Kober’s method (Chapter 11.2)
involving strings that occur at least 20 times across the corpus.
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Appendix B

Reproducibility Details

B.1 Signlist Revision

The code for our signlist revision models will be published at https://github.com/MrLogarithm/
cawl-clustering. All of these models are implemented with PyTorch. All settings use an
encoder with the following structure:

Sequential(
Dropout(0.5)
Conv2d(1 input channel, 3 output

channels, kernel size 8)
ReLU()
Conv2d(3 input channels, 6 output

channels, kernel size 8)
ReLU()
MaxPool2d(kernel size 3, stride

length 3)
Conv2d(6 input channels, 8 output

channels, kernel size 8)
ReLU()
MaxPool2d(kernel size 3, stride

length 3)
Flatten()
Dense(72 input dims, 16 output

dims)
)

A pair of Dense(16, 16) layers project the encoded output to µ and σ.

All settings use a decoder with the following structure:

Sequential(
ConvTranspose2d(16 input channels,

229

https://github.com/MrLogarithm/cawl-clustering
https://github.com/MrLogarithm/cawl-clustering


60 output channels, kernel size
8)

BatchNorm2d(60 channels)
ReLU()
ConvTranspose2d(60 input channels,

30 output channels, kernel size
8, stride length 2)

BatchNorm2d(30 channels)
ReLU()
ConvTranspose2d(30 input channels,

15 output channels, kernel size
8, stride length 2)

BatchNorm2d(15 channels)
ReLU()
ConvTranspose2d(15 input channels,

1 output channel, kernel size
15, stride length 1)

Sigmoid()
)

The VAE+LSTM model uses a single-layer unidirectional LSTM with a hidden dimension of
size 16. The VAE+Transformer uses a 6-layer TransformerEncoder with 8 heads per layer,
input and output dimensions of size 16, and 0.5 dropout. We apply a standard sinusoidal
positional encoding to the Transformer inputs following Vaswani et al. (2017).

In the VAE+LSTM and VAE+Transformer models, we re-apply the reparameterization
trick from Kingma and Welling 2014 to the LM outputs before decoding the image sequence.
We add new Dense(16,16) layers to compute µ and σ at this stage, separate from those
used to compute µ and σ within the VAE itself. When computing the overall KL divergence
loss for these models, we sum the KL divergence from these projections with that of the
VAE projections.

We train on sequences of length 50 using the Adam optimizer (Kingma and Ba 2015) with
learning rate 0.001. When computing the loss, we scale the KL divergence loss term by 0.45.
The LR and loss scaling hyperparameters were tuned via a small manual grid search. We
recompute pseudolabel assignments at the start of every 600th training iteration.

B.2 Headers

We implement our HMM using the hmmlearn package for Python. We train our Transformer
LM following the instructions at https://github.com/facebookresearch/fairseq/blob/
main/examples/language_model/README.md. Our corpus is small, and this model trains
on a single GTX 1070 for approximately one hour.

Our revisions to the corpus from Born et al. 2019 are available at https://github.com/
sfu-natlang/pe-headers. We also include a csv listing the expert labels and the predic-
tions from our models.
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We preprocess the data by removing all comments and annotations (lines beginning in $,
&, or #) and deleting the , character which marks entry boundaries (entries are logical
units delimited by explicit numeral notations). We remove annotations marking damage
and corrected signs (characters matching the regular expression [\[\]<>#?!]). We delete
newlines from each text and compile the corpus into a file with one complete tablet per line.
We shuffle the lines of this file and set aside 200 tablets as a validation set. The Transformer
LM is trained directly on the data at this stage, tokenized on spaces only (we do not use a
subword tokenizer). Before training the HMM, we circumfix beginning- and end-of-sequence
tokens <bos> and <eos> to each line.

The embeddings which we use to evaluate compositionality are available upon request to
the authors of Born et al. 2021.
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Appendix C

Constructing a Validation Set for
Numeral Disambiguation

This chapter describes a set of ambiguous numerals which we believe can be confidently
disambiguated. Together, these numerals comprise the validation set used in Chapter 8 to
evaluate approaches to automated disambiguation via bootstrapping.

C.1 Capacity Measures

P008014 Our subset-sum analysis (Section 8.3.1) reveals that the sole entry on the reverse
of this tablet (P008014:18) exactly equals the sum of the entries on the obverse, provided
the whole tablet is read in the capacity system. This is consistent with the fact that four
of the entries on the text are unambiguously capacity measures (P008014:11, P008014:14,
P008014:15, and P008014:18; the other entries are SDBC ambiguous). Moreover, the ap-
parent summary line has an M288 object, and the first entry on the obverse ends in M288.
This suggests that the entire text may record amounts of M288 (which is strongly associated
with the capacity system), but that this object has been left implicit in all but the first and
last entries.

On the basis of this evidence, we disambiguate the seven ambiguous entries in this text
(P008014:6, P008014:7, P008014:8, P008014:9, P008014:10, P008014:12, P008014:15) to the
capacity system.

C.2 Sexagesimal Measures

P008173 Our subset-sum analysis reveals that the first entry on the reverse (P008173:13),
which is an unambiguous sexagesimal notation counting 7.5× N01S instances of M376, ex-
actly equals the sum of the M376 entries on the obverse (P008173:5, P008173:7, P008173:8)
if these entries are read in the sexagesimal system. On the basis of this evidence we disam-
biguate these entries to the sexagesimal system.
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M056∼f/M288 Texts P008798 is exemplary of a set of two-entry texts of comparable
physical dimensions (approx. 43mm x 31mm x 18mm) which count M056∼f in the first entry
and M288 in the second. In many of these texts, the first entry is unambiguously sexagesimal
and the second is unambiguously capacity; in these cases the amount of M056∼f is always
exactly 2.5 times the amount of M288.

If P008797:6 is read as a sexagesimal notation, then this text follows the same pattern as
these other texts, and exhibits the expected 2.5:1 ratio of M056∼f to M288. On the basis
of this evidence we disambiguate this entry to the sexagesimal system.

By the same argument, we also disambiguate P008791:6, P008799:6, P008800:6, P008801:6,
P008802:6, P008804:4 and P008810:7 to the sexagesimal system.

C.3 Decimal Measures

P008179 This tablet is broken: a fracture on the obverse renders one digit partially un-
readable. The broken digit has been restored as 2(N23), but we propose that the correct
reading should in fact be 1(N23).

To see that this should be the case, notice that the first entry on the reverse (P008179:14)
unambiguously equals 852× N01D; this is exactly the same sum obtained by reading the
obverse entries in the decimal system, provided one uses our restoration instead of the
current transliteration.

This reading is consistent with the fact that some entries (P008179:8, P008179:9, P008179:14)
are already unambiguous decimal counts. Moreover, all but one of the entries on the ob-
verse count the same object (M388), which further points towards their likely using the same
number system. On the basis of this evidence, we disambiguate P008179:10 and P008179:11
to the decimal system.

The original restoration (2(N23)) presumably arose from the observation that the lacuna is
wide enough to span two signs. The last visible sign before the lacuna is M388, which only
occurs at the very end of entries elsewhere in this text, implying that all of the missing signs
are likely digits. Our proposed reading requires that the N23 in the lacuna occupy a slightly
wider space than would be typical, or perhaps that some of the lacuna be occupied by an
erasure. If the original restoration is correct, there must instead be an arithmetic error in
the summary line (which in this case differs from the true sum by 1(N23)).

P008012 Following the claim that sheep and goats are counted decimally in proto-
Elamite (Englund 2011), the entirety of this text should be expected to use the decimal
system. Our subset-sum analysis confirms that the entry on the reverse (P008012:16) equals
the sum of the entries on the obverse when read in this system, though in this case that
would also be true for sexagesimal and bisexagesimal readings. Notably, the summation does
not work out if the summary is read as a capacity measure. Thus, while we may confidently
say that this text does not contain capacity measures, we can only tentatively assign it to
the decimal system in particular.
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P008243 Kelley (2018) observes that this is a decimally-counted roster. We follow this
author in disambiguating all ambiguous numerals in this text to the decimal system.

C.4 Bisexagesimal Measures

P009048 This text contains a large number of unambiguous bisexagesimal notations. Of
these, P009048:16 counts the same object (M352∼h) as P009048:19, on the basis of which we
propose that P009048:19 is also a bisexagesimal notation. Similarly, the unambiguous entries
P009048:10 and P009048:15 count the same objects (M351+X and M354, respectively) as
P009048:13 and P009048:7, respectively, on the basis of which we also disambiguate these
entries to B.
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