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Abstract

Gestational exposure to environmental chemicals presents an interesting challenge for 

epidemiological analysis of pregnancy outcomes and fetal development due to 

concurrent exposure of multiple chemicals. The analysis of chemical biomarkers 

presents several interesting challenges such as analysis of biomarkers below the limit 

of detection and handling repeated measures from the same chemical class. 

Additionally, the issue of co-linearity among the chemicals often results in unreliable 

effect estimates in traditional analysis approaches such as linear regression. Recent 

development in statistical methodology demonstrate promising opportunities for novel 

methods on mixture analysis. We explored the existing methods in the literature and 

propose to a novel method that combines Bayesian statistics and factor analysis for 

mixture analysis. We presented two different applications of this method in both 

regression and mediation analysis of birth weight. We demonstrated that both of the 

applications show strengths in precision of the estimate and interpretation of the 

results.

Keywords: Bayesian method; Mixture Analysis; Mediation Analysis; Prenatal
         outcomes; Environmental Biomarkers; HOME study
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Chapter 1. Introduction

1.1. Overview of methodological challenges in the analysis of environmental chemical
mixtures in perinatal epidemiology

Adverse pregnancy outcomes such as preterm birth and low birth weight are one of the
leading causes of child mortality and morbidity and important risk factors for developmental
disabilities among children [1,2]. According to Tanne [9], preterm birth is the leading cause of
newborn death in the US and the rate of preterm birth and low birth weight in the US are rising
again in 2016. Numerous risk factors are documented to be associated with preterm birth and
low birth weight in the literature [10,11]; among these risk factors, one of the most important
risk factors is the exposure to environmental chemicals and their mixtures during pregnancy
[3,4].

Environmental chemicals are defined as chemical compounds or chemical elements
present in the air, water, food, soil, dust or other environmental media such as consumer
products [12]. In the field of environmental and perinatal epidemiology, Exposure to persistent
chemicals during pregnancy such as polychlorinated biphenyls, pesticides, and heavy metals
are related to pregnancy outcomes such as birth weight reduction and preterm birth [3,4,12–
14].

This MSc thesis concerns the challenges of statistics and data analysis of chemical
mixtures. According to Braun et al. [15], there are four essential research questions pertaining
to the assessment and analysis of environmental chemicals and perinatal outcomes. The first
research question is the accurate assessment of environmental chemical exposure; the
second research question is the identification of real causal factors in the presences of
confounders; the third research question is the identification of periods of vulnerability during
the pregnancy; the fourth research question is the evaluation of environmental chemical
mixtures (i.e the effects of combined exposure to multiple chemicals). [15].

Among these research questions, the evaluation of environmental chemical mixtures is
particularly interesting and important since most of the current knowledge of the health effects
of environmental chemicals is informed by a single pollutant statistical model, particularly
linear regression and logistic regression models, while chemical mixture exposure profiles
resemble the real-life scenarios much closely [13]. Additionally, the real-life exposure profiles
of pregnant mothers typically involve low-level exposures of individual chemicals

https://paperpile.com/c/lkNFie/yNDU+83Wi
https://paperpile.com/c/lkNFie/yFjeq
https://paperpile.com/c/lkNFie/kK72u+lKG4
https://paperpile.com/c/lkNFie/LPgoP+pCbi3
https://paperpile.com/c/lkNFie/fs1B3
https://paperpile.com/c/lkNFie/fs1B3+kI04y+IOQvn+LPgoP+pCbi3
https://paperpile.com/c/lkNFie/fs1B3+kI04y+IOQvn+LPgoP+pCbi3
https://paperpile.com/c/lkNFie/ZE7w
https://paperpile.com/c/lkNFie/ZE7w
https://paperpile.com/c/lkNFie/kI04y


2

simultaneously. In particular, the combined effects of multiple chemicals may be large when
the effects of individual chemicals seem to be small. Therefore, there is a growing interest in
assessing synergistic effects and interactions between individual chemicals and mixture
components [16]. As a result, innovations in mixture specific statistical modelling methods are
widely supported in multiple articles [5,6].

For models that aim to evaluate the health impact of the environmental chemical
mixtures, several statistical challenges are present such as multicollinearity and non-linear
exposure-response relationship [5,6]. Among these challenges, multicollinearity present
among individual chemicals is the primary challenge because it is widely detected in any
environmental chemical mixtures [5,6]. One of the reasons for the presence of multicollinearity
is that individual chemicals within mixtures can be traced to a common exposure source. For
example, a mixture of PCB congeners is typically present in manufactured commercial
products and they are persistent in the environment and a common route of exposure is a diet
of fish exposed to such a mixture. According to Vittinghoff et al., [17], multicollinearity
between individual chemicals are characterized by the fact that one of the chemicals is almost
a linear combination of the other chemicals, resulting in substantial worse precisions of
regression coefficients if several chemicals are included in the same predictive model.
Therefore, developments of modern statistical methods address this problem by different ways
of accounting correlations among individual chemicals.

In order to motivate this MSc thesis, we outline three important areas of background
information. First, we review definition of a chemical mixture. Next, we illustrate the challenges
of using biomarkers for exposure assessment in perinatal epidemiology. Finally, we describe
the challenges of measurement scales in exposure modelling.

1.1.1. Background: What is a chemical mixture?

In order to assess the health effects of environmental mixtures, it is important to outline
reasonable definitions and characterizations of these mixtures. Currently, the definition of
environmental chemical mixtures can be characterized in three different ways: based on
chemical structures, based on exposure sources, or alternatively, based on common biological
pathways [18–20]. The chemical structure is an important aspect to consider when classifying
different environmental mixtures because the chemical structure is documented to be linked to
biological activity and biological persistence in the human body [19,21]. According to
Spurgeon et al. [19], chemical structures such as type of bonds between molecules and the
length of carbon chains significantly impact the cycle of uptaking, metabolization and excretion

https://paperpile.com/c/lkNFie/e18lU
https://paperpile.com/c/lkNFie/lQG7z+XRF0
https://paperpile.com/c/lkNFie/XRF0+lQG7z
https://paperpile.com/c/lkNFie/XRF0+lQG7z
https://paperpile.com/c/lkNFie/0V4T0
https://paperpile.com/c/lkNFie/SZ6y6+CAf1S+VlAli
https://paperpile.com/c/lkNFie/CAf1S+UqrG
https://paperpile.com/c/lkNFie/CAf1S


3

of chemicals. The uptaking of chemicals can be described as a two-stage process that
consists of the speciation and adsorption process [21]. Speciation refers to the binding and
transportation of chemical molecules in the exposure medium. Adsorption refers to the
exposure routes and human body destinations of the chemical molecules. The metabolization
of chemicals can also be separated into two stages. The first stage is the distribution of the
chemical molecules in the human body and the second stage is the participation of chemical
molecules in different metabolic pathways. The excretion can be characterized by the
accumulation and elimination of chemical molecules. The biochemistry and physiology of
environmental chemicals are extremely complex [19]; therefore, the toxicity of the chemicals at
the target biological site is closely related to the chemical structures. Taking Polychlorinated
Biphenyl compounds as an example, there is a wide abundance of different chemicals that
share similar chemical structures. As described by [20], PCB compounds are able to mimic
hormones because of their structural properties, namely the coplanarity of the phenyl rings
and the laterality of the chlorine atoms. Both of these two structures participate in specific
binding sites with proteins, hence induce toxic responses in biologic systems.

In addition to the chemical structures, the source-based definition of the environmental
chemical mixture is also employed in the epidemiological analysis [22,23]. In particular, policy-
based intervention studies typically utilize a source-based definition of environmental chemical
mixtures to evaluate the impact of the health effects of chemical mixtures specifically related
to the exposure source. For example, the total exposure of environmental chemicals for a
farmer near an incineration plant can be separated as the exposure from the incineration plant
and the exposure from the pesticide use. The Bayesian parametric g-formula method
developed by Keil et al., [22] and the multiple sources analysis of pesticides by Petit et al., [23]
both employed the source-based definition of environmental chemical mixtures.

Source-based classifications of environmental chemical mixtures have unique values
in terms of policy practices to address potential exposures because researchers are able to
characterize the health effect of these mixtures attributed to specific sources. It is, therefore,
reasonable to develop prevention and intervention strategies related to specific sources
identified to be associated with the exposures. Air pollution studies typically employ source-
based mixture classifications because the exposure route is predominantly inhalation. In the
case of environmental chemical mixtures for pregnancy outcomes, it is more difficult to employ
source-based mixture classification because it is difficult to pinpoint exactly the sources of the
exposures because of the complex exposure pathways including inhalation, ingestions and
dermal contact.

https://paperpile.com/c/lkNFie/UqrG
https://paperpile.com/c/lkNFie/CAf1S
https://paperpile.com/c/lkNFie/VlAli
https://paperpile.com/c/lkNFie/hzt5v+9daf
https://paperpile.com/c/lkNFie/hzt5v
https://paperpile.com/c/lkNFie/9daf


4

In addition to chemical structures and exposure sources, the biological pathways
environmental chemicals participate in can also be used to characterize mixtures. According
to Ferguson and Chin [18], inflammation, oxidative stress and endocrine disruption are three
major biological pathways that may explain how environmental chemicals induce pregnancy
outcomes.

For the inflammatory pathway, environmental chemicals tend to generate tissue-
specific inflammation via three different mechanisms [24]. The first pathway is through
phagocytosis of chemical molecules such as particulate matter, leading to activation of T
helper cells in the human immune system to release cytokines. The second pathway is by
binding of chemical molecules to specific cell receptors. In the case of phthalate monoesters,
it binds to peroxisome proliferator-activated receptors, which participate in cytokine
productions. The third pathway is through inducing epigenetic modification as a result of
exposure to environmental chemicals. In this pathway, DNA methylation, histone modification
and change in miRNA expressions can all lead to inflammatory responses [18,24]. Although
the detailed cellular reactions of the inflammation pathway are still not clear, the systemic
inflammatory responses can lead to certain events that are precursors of preterm birth such as
cervical ripening and rupture of the amniotic sac [18,24].

For the oxidative stress pathway, environmental chemicals induce oxidative stress by
inducing the overproduction of reactive oxygen species, inducing changes in mitochondrial
membrane permeability and disrupting antioxidant functions [25]. It is demonstrated that early
in gestation, oxidative stress can cause impaired invasion of the spiral arterioles into maternal
myometrium, hence resulting in poor placentation that precedes preeclampsia or IUGR.
During the pregnancy, an elevated level of oxidative stress could result in premature rupture,
resulting in signal changes in the cervix to shorten labour and reduce placental protein
synthesis and nutrient support, and eventually lead to a restriction in fetal growth [18,25].

For the endocrine disruption pathway, exposure of environmental chemicals
participates in the disruption of essential regulatory hormones during gestation and pregnancy
[12]. Hormones are signal molecules responsible for signalling the growth of the fetus as well
as the timing of parturition [20]. For example, thyroid and glucocorticoid hormones are two
hormones that are involved during pregnancy and polychlorinated biphenyls and
perfluorinated compounds can disrupt these two hormones by affecting receptor activity.

However, although these three particular biological pathways are different at the
cellular level, it is extremely difficult to attribute the physiological change to any particular

https://paperpile.com/c/lkNFie/SZ6y6
https://paperpile.com/c/lkNFie/19JA6
https://paperpile.com/c/lkNFie/SZ6y6+19JA6
https://paperpile.com/c/lkNFie/SZ6y6+19JA6
https://paperpile.com/c/lkNFie/VJXuV
https://paperpile.com/c/lkNFie/SZ6y6+VJXuV
https://paperpile.com/c/lkNFie/fs1B3
https://paperpile.com/c/lkNFie/VlAli
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pathways because inflammation is tied closely to hormone regulation as well as oxidation
stress may induce inflammation and vice versa [18]. Hence, the grouping of environmental
chemical mixtures based on biological pathways requires a further understanding of the
toxicological mechanisms.

1.1.2. Background: The challenges of using biomarkers for exposure assessment

For statistical analysis of chemical mixtures, the way researchers measure the
exposure of the mixture is as important as careful definitions of mixtures. Biomarkers are
widely used in the field of environmental epidemiology to quantify the amount of exposure to
toxicological environmental chemicals by measuring chemical concentration in bloodstream or
urine [26,27]. One key advantage of biomarkers is that they capture multiple sources of
exposure and multiple exposure routes [26]. Biomarkers are less susceptible to measurement
error of exposure compared to self-report interview data. In addition, since humans are
exposed to hundreds of different environmental chemicals simultaneously, biomarkers allow
the researcher to study the association between multiple exposures and the outcomes of
interest [26]. However, numerous challenges are present in the epidemiologic analysis of
biomarkers. As summarized in the review paper by Hu et al. [28], attributing the cause of a
particular health outcome to specific biomarkers is extremely difficult because of the
multicollinearity among the biomarkers. For example, in the analysis of the exposure to
polychlorinated biphenyls compounds and pregnancy outcomes, over 200 biomarkers are
measured in blood plasma and a significant degree of multicollinearity is present among these
biomarkers [27], resulting in an extremely complex exposure-response relationship that is
challenging to estimate. The curse of dimensionality is another major statistical challenge,
which refers to the fact that the human study cohort typically has a smaller sample size
compared to the number of biomarkers collected in each sample. The reference scale
associated with biomarker measurements is also a challenge in assessing the health effects of
chemical exposures because different chemicals may have different dose-response
relationships. For example, within a mixture, one chemical can display a linear association
with health outcomes while another chemical can display a non-linear association with health
outcomes.

Additionally, as noted by Hu et al.[28], chemical concentrations measured in
biospecimen are also influenced by multiple factors such as lipid and urine dilution, the
persistence of specific chemicals, detection limits of equipment, as well as physiology and
metabolic change during pregnancies. These are all important problems, but the focus of this
review is on the statistical challenges associated with the analysis of biomarkers.

https://paperpile.com/c/lkNFie/SZ6y6
https://paperpile.com/c/lkNFie/6GoC8+wpei
https://paperpile.com/c/lkNFie/6GoC8
https://paperpile.com/c/lkNFie/6GoC8
https://paperpile.com/c/lkNFie/Ta7i
https://paperpile.com/c/lkNFie/wpei
https://paperpile.com/c/lkNFie/Ta7i
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1.1.3. Background: Measurement scales for biomarkers of chemical exposure

The scale of measurement for biomarkers of chemical exposure is an important
challenge in the analysis of biomarkers. Typically, the types of data researchers encounter are
labelled as either nominal data or ordinal data [29]. Nominal data have the following features:1)
No ordering of the different categories; 2) No measure of the distance between values; 3)
Categories can be listed in any order without affecting the relationship between them.
Therefore, the causal inference with nominal data is usually straightforward and easy for
interpretation. On the other hand, when it comes to ordinal data, whether discrete or
continuous, the effect sizes of causal inference are dependent on the scale of measurement
[30]. For example, the magnitude of the odds ratio can be drastically different when using
different units of measurement on the exposure variables (e.g. consider multivariable
modelling of PCB concentrations measured in mg/L versus ng/L).

In the case of multiple biomarkers, conducting statistical tests without adjusting for the
scale of measurement in different biomarkers could lead to biased estimates. Therefore, when
conducting analysis with multiple exposures of different biomarkers, it is necessary to
standardize or account for the variance of the biomarker (i.e. population standard deviation of
the biomarker concentration) before inputting them into a statistical model. To account for
such a problem, researchers have come up with different techniques to address the scale of
measurements.

The most commonly used class of technique is feature scaling [31]. It is a
normalization technique to rescale the existing data onto some arbitrary range such as [0,1] to
ensure uniform comparison across data. An example of feature scaling adjustment is by
subtracting the mean of the biomarker from the particular measurement and dividing it by the
standard deviation of the biomarkers to create “Z-score” of exposure. For example, +2 would
imply that the exposure of a participant was 2 standard deviations above the mean of the
sample. However, the difficulty with this approach is that the biomarker concentrations are
typically right-skewed, and therefore, the standard deviation is not a meaningful measure of
exposure variation. The second class of technique is quantile approaches [32]. In this type of
adjustment, the data are grouped into multiple equal parts. An example of a quantile approach
would be quartile adjustment which the subject is divided into four different exposure
categories [32] (e.g 0-25th percentile, 25-50th percentile, 50-75th percentile, and 75-100th
percentile). Continuous quantile can also be used by calculating using the formula:
q=k(n+1)/100 [32]. The third approach, recommended by Greenland [8], is to calculate a
standard reference such as interquartile range and report the effect size in relation to the

https://paperpile.com/c/lkNFie/amm1f
https://paperpile.com/c/lkNFie/ry5Dt
https://paperpile.com/c/lkNFie/aJASM
https://paperpile.com/c/lkNFie/prnSU
https://paperpile.com/c/lkNFie/prnSU
https://paperpile.com/c/lkNFie/prnSU
https://paperpile.com/c/lkNFie/alxn
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standard reference point. This approach provides an easier interpretation of the results
compare to the previous two approaches since it is easier to talk about the health effects with
a point of comparison [11].

1.2. Study Objectives

In this MSc thesis, I set out to achieve three primary objectives. Firstly, I aimed to
utilize Bayesian factor analysis to examine the association between exposure to biomarkers of
multiple chemical mixtures and birth weight. My second objective involved investigating the
association between exposure to chemical mixtures and birth weight considering potential
mediation by thyroid hormones while employing a latent variable approach. My third objective
centered around comparison of the analysis results to other existing methods such as multiple
linear regression to provide insights and suggestions for mixture analysis.

The study population of all my analyses came from the HOME (Health Outcomes and
Measures of Environment) study, The HOME study is a prospective birth cohort of pregnant
mothers and their infants established in 2003 at the Cincinnati Children’s Environmental
Health Center, Ohio. To examine the impact of environmental chemicals on child health,
pregnant mothers who were >18 years old and at 13-19 weeks of gestation were recruited
from seven prenatal clinics and hospitals [15].

It is important to note that this thesis follows a manuscript-based format. Chapter 2 will
encompass the detailed literature review of existing methods on mixture analysis. Chapter 3 is
a manuscript already published: Zhuang LH, Chen A, Braun JM, Lanphear BP, Hu JMY,
Yolton K, McCandless LC. Effects of gestational exposures to chemical mixtures on birth
weight using Bayesian factor analysis in the Health Outcome and Measures of Environment
(HOME) Study. Environ Epidemiology. 2021 Jun 8;5(3):e159. Chapter 4 is a manuscript
planned for submission for publication to an epidemiology or biostatistics journal. Additionally,
Chapter 5 will include my overall conclusions, suggestions for future research, and the
implications of my findings for researchers and policymakers.
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Chapter 2. Literature review

Adverse pregnancy outcomes are one of the most important causes of child mortality,
morbidity, and developmental disabilities [1,2]. Among various risk factors associated with
these adverse pregnancy outcomes, environmental chemicals and their mixtures are deemed
to be one of the most important risk factors [3,4]. However, most of the current knowledge of
the health effects of environmental chemicals is informed by a single pollutant statistical model
due to specific challenges in multi-pollutant modelling. Therefore, a growing interest in mixture
specific modelling is well merited in the field of environmental and perinatal epidemiology.

Billionnet et al.[5] conducted a comprehensive review of statistical methods exploring
the health impact of air pollutant mixtures. Sun et al. [6] used simulation studies to simulate
different profiles of correlated exposures to evaluate the performances of five different
statistical methods. Taylor et al. [7] conducted a more comprehensive review of currently
available statistical methods for mixture assessment and categorized different methods based
on their functions. However, as argued by Greenland and Pearce [8], the discussion of
statistical methodologies cannot be independent of the contextual details of the epidemiologic
questions. Therefore, more comprehensive reviews of statistical methods in mixture
assessment of different epidemiological outcomes are well merited.

The aim of this literature review chapter is to review the current literature that employs
modern statistical methods for the assessment of mixtures effects to identify potential gaps
and hypothesize innovations to address them. Due to the extremely complex nature of the
mixture assessment, we aim to focus our review to specifically address the assessment of
environmental chemical mixture effects on perinatal outcomes using biomarkers. In Section
2.1 of this paper, the theoretical basis of statistical model selection pertaining to the
assessment of mixtures is discussed. In Section 2.2 of this paper, a detailed comprehensive
overview of existing methods that can be used for mixture modelling is included. In Section 2.3
of this paper, literature reviews of research focus on environmental chemical mixtures and
perinatal outcomes are provided. In section 2.4 of this paper, potential innovation and future
directions are hypothesized based on findings from previous sections.

2.1 Statistical method selection to estimate the health effects of environmental
chemical mixtures: how do researchers select one method instead of another?

Billionnet et al. [5] argue that the selection of statistical methods for evaluating the
effects of mixtures must be built upon an understanding of the exposure pathways of
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environmental chemicals. Taking polychlorinated biphenyl compounds as an example, within
this particular chemical group, there is a wide abundance of different chemicals that share
similar chemical structures. The major exposure pathways for this group of chemical is
through ingestion, inhalation and dermal contact. Within the ingestion pathway, bio-
accumulation of the chemical is possible because animals such as fish are also exposed to
these chemicals [13]. It is expected that humans accumulate more variety of PCB congeners
as well as higher concentrations of these chemicals in the bloodstreams. This results in the
presence of collinearity and interaction effects between individual chemicals within the
mixtures. Due to the presence of collinearity among chemical variables, traditional linear
regression methods which include all variables in a single model will generate extremely
unstable parameter estimates. In extreme cases, drastically different estimation of regression
coefficients can occur even with a single data point change in the available data. Hence,
handling multiple biomarkers in different chemical classes is an important and challenging task.
With recent developments in statistical methodologies and the advancement of machine
learning algorithms, there are more available statistical methods that aim to tackle the problem
[13]. However, the current consensus of the scientific community agrees that there is no
perfect method that performs consistently better than other methods [33]. Hence, it is essential
for researchers to understand how to select particular methods and why such selections work.
Three specific criteria (1. The research objectives 2. The data and variables 3. Causal
inference or prediction) for researchers to consider are provided when selecting statistical
procedures [33].

2.1.1. Criteria #1 for choosing a statistical method: The research objectives

The first and most important criterion for choosing a statistical method is the scientific
question of the study. The selection of methods is dependent on the primary causal
relationship the researcher wishes to explore. If the researcher is interested in the health
effects of several individual biomarkers within a chemical class (e.g. the particular PCB
congeners that are most strongly associated with infant birth weight), then the primary goal of
the statistical procedure is to identify the most important biomarkers that are associated with
the health outcome [6]. Therefore, variable selection methods are more suitable for the task
(also known as “subset selection” or “feature selection” in the computer science literature).
Common variable selection methods include automatic model selection such as stepwise
selection [5], least absolute shrinkage and selection operator (LASSO) [34], and elastic net
[35]. LASSO and elastic net also do shrinkage regression which tends to improve the model
predictions (e.g. reduce prediction error when predicting a health outcome such as birth
weight). The above statistical methods will perform algorithms to detect dominating
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biomarkers associated with the health outcome and output the measure of this association.
Other machine learning methods such as Random forest [36] can also be used to determine
the relative importance of biomarkers within the data, however, the magnitude and direction of
the associations with the health outcome are not summarized like variable selection methods.

If the researcher is interested in the interactions and causal framework of biomarkers
within a chemical class associated with the health effects, the primary goal of the statistical
procedure is to either explore potential causal pathways or confirming a proposed causal
pathway. Therefore, a graph representation of the causal relationship is essential for
answering this question. Direct acyclic graph (DAG) [37] is often constructed during analysis.
The methods that tend to work well for this scientific question is called latent variable model or
structural equation modelling (SEM) [38]. SEM enables the researcher to perform exploratory
factor analysis [39,40] to identify the potential latent variable in the model from individual
biomarker data to construct a causal diagram. SEM also enables researchers to perform
confirmatory factor analysis [39] to estimate the health effects of both individual biomarker and
latent variable (mixture) given a specific causal diagram.

If the researcher is interested in the combined/synergistic health effects of all
biomarkers within a chemical class on a health outcome, then the primary goal of the
statistical procedure is to provide an estimation of health effects with respect to the total
mixture of biomarkers, or the total health effects pertaining to a specific chemical class. For
this type of analysis, the underlying assumption is that different biomarkers within a specific
class act similarly on the biological pathway [33], thus making it reasonable to use different
mixture approaches. This can include linear regression and extensions, LASSO based method
and extensions, Latent variable modelling approaches, Non-linear exposure-response surface
methods, Bayesian methods as well as modern machine learning approaches. Both variable
shrinkage method and latent variable modelling can be used to estimate the health effects of
the total mixtures; however, to determine which method works better will depend on the
intrinsic correlation and interaction of biomarkers within the data. This brings us to the second
criteria.

2.1.2. Criteria #2 for choosing a statistical method: The data and variables

The second criterion is the understanding of variables in the data. This refers to the
nature of the dataset. Important factors to consider for these criteria are types of the variable
(continuous or categorical), the sparsity of the dataset (the extent of how many biomarkers in
the data have strong effects on the outcome), colinearity of biomarkers (high or low correlation
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between biomarkers), and sample size of the data. Taking types of variable as an example, if
most variables in the dataset are categorical, clustering approaches such as k-means
clustering and recursive partitioning [41] performs better compared to a dataset with more
continuous variables. If the researcher employs these methods without considering the type of
variables, it could result in significant loss of data because the continuous variables are forced
to be categorized during the analysis [36]. The sparsity of the dataset refers to the number of
important biomarkers in a chemical class. If there are only a few biomarkers in the data that
are particularly associated with the health outcome, variable shrinkage methods such as
LASSO would perform very well because it can improve the precision of the estimates by
discarding biomarkers not associated with the health outcome [6]. If most of the biomarkers in
the data are associated with the health outcome and the magnitudes tend to be quite similar
among different biomarkers, then it is better to employ latent variable analysis for more
reliable estimates because it retains all variables within the data and produce effect estimates
of latent variables specified by the researchers while the variable selection method may
eliminate potential important biomarkers due to the collinearity in the data in this context [42].
Therefore, the domain expert knowledge such as the biological pathway and relative
importance of multiple biomarkers are very important in the selection of statistical methods.

Moreover, the assumptions needed for statistical methods also need to be taken in
consideration. Different statistical methods carry different assumptions and violations of one or
more assumptions could make the analysis results unreliable. The most common mistake is to
assume certain statistical distribution for variables when the variables do not meet the criteria.
Therefore, in order to prevent such mistakes, data transformation procedures such as
logarithm transformation are often performed before feeding the data into statistical models
[29]. Another example would be assuming a linear relationship among variables when
variables are actually related to each other non-linearly. In the case of the non-linear
relationships among biomarkers, exposure smooth surfacing techniques such as Bayesian
Kernel Machine Regression (BKMR) would perform much better compare to models that
assume linear operations between biomarkers such as SEM [36].

2.1.3. Criteria #3 for choosing a statistical method: Causal inference or prediction

In addition to the above criterions, statistical methods assessing the health effects of
environmental chemical mixtures can also be generally divided into two major categories
based on whether the model is designed to explain effects or predict outcomes [43]. The first
category entails parameter estimation, whereas the second category entails outcome
prediction. The first category focuses on addressing the following question: given the available
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data, how much of the change in the outcome can be attributed to the change in the exposure
[43]. The second category focuses on addressing the following question: given a potential new
candidate with specific observed variables, what outcome would the prediction model predicts.
However, it is noted by Savitz in the context of biomarkers and pregnancy outcomes [27] that
although outcome prediction studies involve a potential change in the exposure level of
biomarkers, it is not addressing whether the exposure of biomarker can be directly altered to
affect the outcome since biomarker levels cannot be artificially increased or decreased in this
context. Instead, it is addressing whether strategies such as environmental regulations or
behavioural change could potentially alter the exposure level of the biomarkers and whether
such strategies can alter the targeted health outcomes.

Regarding the first category (causal inference rather than prediction), parameter
estimation methods usually require detailed procedures of confounder selections and
adjustments. Traditionally, confounder selections were usually informed by expert opinions
and previous literature [44]. The Directed Acyclic Graph (DAG) approach is gaining more
popularity since it provides a specific graphic representation of the causal structures
hypothesized by the researchers [44]. This improves the dialogue between researchers by
establishing common grounds and identifying exactly what parameters the researchers are
estimating based on the proposed framework.

DAG is characterized by several factors or variables connected with arrows where the
arrows represent the direction of the causal relationship. The acyclic nature ensures that no
path in the diagram can form a closed loop because a factor cannot be the causal factor for
itself. Based on the causal framework, the researcher then selects potential variables believed
to be included in the statistical models and fits the observational data to estimate the
regression coefficients of the variables. Suttorp et al. [45] provided a detailed description of
the procedures for the identification of potential confounders in the model through the
identification of colliders and backdoor paths. Collider is defined as a common factor in which
two arrows collide. The backdoor path is defined as a path from exposure to an outcome that
has segments of arrows going towards the exposure and ends with an arrow to the outcome.
Confounders are identified on each open backdoor path of the DAG. [46] demonstrated that
the traditional approach of the selection of confounders can potentially introduce systematic
bias into the model; therefore, they developed a six-step process aiming to eliminate
systematic bias using a DAG framework. Traditional epidemiology relies heavily on
association studies that carefully address bias and confounding. With the introduction of DAG,
the procedures to select potential confounders and the procedures to eliminate bias can be
automated using computer software.
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However, the limitation of DAG are still apparent [47]. When constructing a DAG, there
are several ways to introduce potential bias and confounding into the model. The first one is
the decision to not draw an arrow between two factors. This indicates that absolute certainty
that the two factors are not causal. The second one is the direction of the arrow. Sometimes it
is extremely difficult to decide which arrow direction to put, especially when the number of
exposure variables and covariates is very large. Even in the case of a small number of
potential variables on the DAG, the possibility of arrow directions increases exponentially with
the increase of the number of variables. Although the construction of the DAG cannot solve
the potential of bias and confounding, it made the assumption explicit in the model framework.
The epidemiological analysis carried on DAG is based upon the assumption of a reasonable
causal framework and it offers space to test and debate assumptions on model explicitly.

The second category (outcome prediction rather than causal inference) is becoming
more and more prevalent in the literature recently inspired by modern machine learning
methods [48]. In this category of methods, the inherent structures of the model are
undetermined and data-driven. Therefore, it does not suffer from disadvantages pertaining to
parameter estimation methods discussed earlier. Outcome prediction methods usually employ
cross-validation techniques to create separate datasets for training models and performance
testings. The researcher then selects specific criteria to evaluate the outcome prediction
accuracy and precision of the models. One common criterion used for continuous outcomes is
the mean-squared prediction error (MSPE). Multiple statistical models are tested against each
other and compete for the best prediction performances.

Criticisms for both approaches are documented and it is usually guided by what is the
definition of causality and what types of questions the researchers are trying to answer [43]. In
particular, statistical analysis assessing human health effects is often critiqued more than
statistical analysis assessing market trends or movie preferences, especially for the category
of prediction methods. For example, the generalizability of the data-driven prediction model is
severely impacted by the sample sizes of the model. It is apparent that researchers have the
perception that the causality issue with human health effects need to be much more robust
because policymakers would implement interventions or treatment based on the assessment
of statistical models.

Hernan [49] stated that the concept of causality is argued to be impossible to prove
dated back in the 18th century by David Hume. Within the field of epidemiology, the concept of
causality is currently guided by quantitative counterfactual theory, also referred to as potential
outcomes approach. Hernan[49] explicitly stated that the quantitative counterfactual theory
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does not aim to determine whether a risk factor is a cause of the outcome but to predict what
would happen if an intervention is performed on the risk factor. This theory, therefore, is
consistent with the predictive modelling approach. However, Vandenbroucke [50] argues that
restricting the concept of causality by the quantitative theoretical framework is problematic
because it restricts the type of research questions and hypotheses one can take on. In
addition, the quantitative counterfactual theory cannot deal with the problem of unfeasible
human interventions. For example, the inferences about variable Sex and Race in such
analysis is meaningless since no feasible intervention is available. Vandenbroucke [50] argues
for a pragmatic pluralistic approach of causality in epidemiology and advocates for traditional
theoretical frameworks such as the Bradford Hill criteria of causality.

2.2 Modelling approaches for effects estimation or outcome prediction

Regardless of whether the model aims to explain effects or predict outcomes, the
statistical methods in the analysis of environmental chemical mixtures need to operate on the
principle of accounting correlations among variables in the analysis. As a result, There are
several strategies that can be used to account for these correlations: 1) variable selection
methods (also known as “feature selection” in the computer science literature, 2) non-linear
exposure-response methods, 3) Bayesian methods, and 4) machine learning techniques.

Variable selection methods such as LASSO (least absolute shrinkage and selection
operator) and ridge regression remove the collinearity in the data by selecting a subset of
variables from the total data. The criteria of the importance of these variables are usually
based on how much variability within the total data (e.g. variability in the birthweight outcome
variable) can be explained by the selected variables [6,34]. This approach has two major
limitations, one is it discards a significant amount of data because it needs to reduce the
dimensions to avoid collinearity. The other is that the variables selected are not guaranteed to
be the actual important variables that participated in the exposure-disease pathway (e.g.
variables that genuinely predict the outcome within the population of patients under
investigation).

In contrast, non-linear exposure-response methods such as BKMR (Bayesian Kernel
Machine Regression), GAM (Generative Additive Models) and MARS (Multivariate Adaptive
Regression Splines) are the second major group of the method for tackling high dimensional
correlated exposure variables [6,36,51]. For this group of methods, all variables are included
in the model. However, linear and non-linear transformations of original variables are
introduced to mitigate the effect of collinearity and interactions. This group of the method may
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suffer from the “curse of dimensionality” more often compared to variable selection methods in
the context of epidemiological studies which usually have relatively small sample sizes.
Therefore, the methods may suffer from not having enough data points to allow the non-linear
transformations and hence result in estimation with low precision due to the additional
variances introduced by the transformations [6,51]. Moreover, a further limitation is that the
final estimated parameters of the model lose interpretability because so many transformations
have been performed on the original variables. In other words, it is difficult to communicate the
analysis results to knowledge users in a simple way.

More generally, many methods involve the use of Bayesian statistics, which is a
modern brand of statistics that is constantly evolving. The fundamental conceptual differences
between Bayesian statistics and traditional frequentist statistics are commonly depicted as the
different interpretations of probability under both frameworks [52–54]. In Bayesian statistics,
the probability is defined as the degree of belief of a certain event while in frequentist statistics,
the probability is defined as the relative frequency of a certain event under a large number of
trials. This conceptual difference indicates that Bayesian statistical methods models the
uncertainty quantified by probability [54]. In terms of epidemiology, the conceptual differences
between Bayesian statistics and frequentist statistics can be illustrated by the different
underlying assumptions of the estimating parameters in the model. For Bayesian statistics, the
assumption is that the parameters estimated are probability distributions rather than a single
fixed value for frequentist statistics. This is very appealing to epidemiologists because it gives
a clearer understanding of the analysis results and uncertainty compared to frequentist
methods such as 95% confidence intervals and p-values [53]. This is particularly relevant in
environmental epidemiology where effect sizes are usually small and not statistically
significant. In this case, Bayesian methods can give a more nuanced quantification of
uncertainty.

A related collection of methods is machine learning techniques. Machine learning
approaches are becoming more and more prevalent in the field of epidemiology and focus
primarily on prediction tasks [55]. This approach typically splits available data on hand into
training data and testing data. Training data is used to build statistical models and testing data
is used to evaluate the built statistical models. By employing statistical techniques such as
cross-validation and bootstrap sampling, the built statistical model is evaluated by minimizing
the residual sum of squared errors of the predicted outcomes. Machine learning approaches
can be extremely powerful and produce very good prediction results when the available data
is rich and abundant[48].
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In the following sections, a detailed comprehensive overview of all statistical methods
in the analysis of the mixture is conducted to compare and contrast the strengths and
limitations of different approaches.

2.2.1 Linear regression and extensions

Before reviewing the numerous methodologies for multiple correlated exposures, we
give a brief overview of linear regression analysis and it’s extensions. Linear regression is the
most commonly used statistical tool for epidemiological assessment [56]. In the context of
environmental chemical mixture exposure and pregnancy outcomes, linear regression
approaches can be separated into single pollutant analysis and multiple pollutant analysis. For
example, in the study of gestational PCB exposure and infant birth weight, we consider
models that incorporate a single PCB, or alternatively, several PCBs simultaneously.

For both linear regression approaches, the statistical model presumes that the
outcome variable (e.g. birth weight) follows the following equation:

where is the Y-intercept, is the vector of regression coefficients of risk factors,

is the vector of risk factors such as environmental chemicals, is the vector of regression
coefficients of confounders, is the vector of confounders such as age and socioeconomic
status and is the random effect in the model.

For single pollutant analysis, the researcher usually performs variable selection to
select the most important variable before fitting the models. This can be done statistically by
using methods such as stepwise regression and LASSO or it can also be determined by
empirical evidence from the literature. Regression in parallel is also a popular approach where
single pollutant analysis is done for multiple chemical variables separately and the results are
aggregated together afterwards.

For multiple pollutant analysis, several approaches can be used to assess the effects
of environmental chemical mixtures. The first one is multiple linear regression with all

variables present which can be described by the equation: . The
second one is multiple linear regression using the sum-of-chemical approach. This method
models the mixture variable by summing up the individual chemicals within the mixtures. The
regression model fits using the following equation:
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where is the mixture-specific regression coefficients (in this approach, the mixture

is defined as the total amount of exposure of all individual chemicals) and are the jth
environmental chemicals. The third approach is multiple linear regression with averaging. This
method models the mixture variable by taking the average of the individual chemical
concentrations within the mixtures (e.g. the average of the PCB concentrations for a dozen+
PCB biomarkers, adjusted for lipid dilution). The regression model fits using the following
equation:

where is the mixture-specific regression coefficients (in this approach, the mixture

is defined as the average amount of exposure of individual chemicals within a mixture) and
are the jth environmental chemicals.

Stepwise regression also belongs to the group of linear regression methods [57]. It
modifies the multiple linear regression models by performing automatic
addition/substitution/deletion of variables using standards such as Akaike information criterion
or Bayesian information criterion [5]. However, stepwise selection has been criticized for the
analysis of correlated exposures because it tends to give analysis results that are highly
unstable and susceptible to random variations in the data. For example, in the analysis of
PCBs, We anticipate that stepwise regression will select PCB molecules in a way that is
random and haphazard depending on the quirks of the data.

2.2.2 LASSO and LASSO based extensions

Efron et al. [58] developed an improved version of a stepwise procedure known as
least angle regression which is proved to be mathematically equivalent to the LASSO method
that will be discussed in detail. As demonstrated by Tibshirani, et al. [59], the multiple linear
regression model can be modified with a penalty term λ for shrinkage of the regression
coefficient. This modification is known as ridge regression illustrated by the following formula
[59].
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As λ takes values from 0 to ∞, the coefficient takes an increasing amount of shrinkage
to regression coefficients from the original ordinary least square estimate to 0. Therefore,
ridge regression performs shrinkage of regression coefficients without a selection of variables
[59]. LASSO (Least Absolute Shrinkage and selection operator) is a modification of ridge
regression which estimates coefficients of the model that minimizes the following criterion
where λ is a tuning parameter for shrinkage [59]:

It is different from Ridge regression in the penalty term where L2-norm is replaced with
L1-norm. This favours shrinkage on parameters so that most of the regression coefficients
tend to 0, achieving the purpose of variable selections. Therefore, if there are predominant
chemicals within the chemical mixture, LASSO is able to select the chemical variables out of
the mixture that explains the greatest percentage of variation in the outcomes and produces
the estimates of the corresponding regression coefficients.

Although LASSO performs really well in many applications, Zou and Hastie [60]
demonstrated two key limitations of the LASSO algorithm. The first one is that when the
number of variables p is greater than the sample size n, LASSO can only select at most n
variables for the model. The second one is that when correlated variables are present in data,
LASSO tends to select one or only a few of them in a half-hazard manner while shrinking the
regression coefficients of other correlated variables to 0.

To address the first limitation, Zou and Hastie [60] proposed a combination approach
of ridge regression and LASSO, known as Elastic net to enable variable sections greater than
n when p >n, in which the penalty term can be described by the following criterion, where α is
a tuning parameter between 0 and 1 to dictate the proportion of L1-norm penalty versus L2-
norm penalty [60] :
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Due to the combining of L1-norm penalty and L2-norm penalty, correlated variables
are forced to be together, meaning that they are either all selected or all removed by the
model. However, this approach loses its ability to accurately estimate the effects of correlated
variables that have opposite effects on the outcome because of the ridge penalty forces
similar regression coefficients estimations (i.e same direction). For example, fish consumption
is usually correlated with both mercury concentration and omega-fatty acids concentration in
blood. While the true health effect of these two variables on child neurodevelopment (e.g IQ)
is anticipated to be positive for omega fatty acids and negative for mercury concentrations,
elastic net tends to generate unstable estimates of regression coefficients for these variables.

In order to achieve more accurate estimation of regression coefficients to better
characterize the true underlying relationships in the population, Zou [3] developed a procedure
called adaptive LASSO where he introduces a weighted penalty term in LASSO illustrated by
the following equation[60,61]]:

Essentially, adaptive LASSO is a two-step procedure where the first step is to identify
the importance of all variables by fitting an ordinary least square regression model or ridge
regression model and estimate regression coefficients for all variables. The variables with a
bigger magnitude of regression coefficients are considered to be more important. The second
step is applying LASSO with a weighted penalty where the more important variables identified
in the previous step receive less amount of shrinkage. Zou[61] has demonstrated
mathematically that adaptive LASSO is able to approximate the true underlying model
asymptotically. This property is known as the oracle property[3]. However, in actual practice,
we do not have an infinite amount of observations in our data. Therefore, the parameter
estimated by adaptive LASSO can still be inaccurate. As a matter of fact, when collinearity is
high among variables since the estimated regression coefficients in the first step becomes
more unstable, adaptive LASSO tends to generate poorer estimates compared to LASSO.
This echoes with the concept of bias-variance tradeoff. When the overall causal relationship is
high-dimensional and complex and when the amount of data is relatively low resulting in larger
variances, the precision of a more complex model is often worse than a simpler model.
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2.2.3 Latent variable methods

A quite different modelling approach to multiple correlated variables is to use latent
variable methods. The primary motivation to use latent variable methods is to reduce the
dimensions of exposure data [62]. Thus the approach is similar in spirit to variable selection,
which also seeks to discard predictor variables. The dimensions of exposure data are
characterized by the number of existing exposure variables in the data. In order to estimate
regression coefficients for all the exposure variables, the amount of data required increases
exponentially [62]. Mathematically, when performing regression analysis, the number of
exposure variables (p) and the number of data points (n) must satisfy criteria “n greater or
equal to p” to achieve a solvable solution. This phenomenon is known as “the curse of
dimensionality” [63]. However, only achieving a solvable solution is not sufficient to generate
reliable estimates (small standard errors) due to variations from different datasets. Therefore,
it is sufficient to say that for the purpose of estimating regression coefficients of multiple
exposure variables, the number of data points (n) should be much larger than the number of
exposure variables (p) and this is why dimensions reduction techniques are warranted in the
analysis of high-dimensional data [62].

In the field of epidemiology, latent variable methods have two predominant contexts
[62]. The first context is exploring available data to identify potential latent exposure variables,
typically much fewer than observed exposure variables, to capture the most amount of
variances in the outcome variable. The second context is performing parameter estimations of
hypothetical latent variables, usually calculated from regression coefficients, given a pre-
proposed hypothetical causal framework.

Underneath the first context, two statistical techniques are commonly used known as
exploratory factor analysis (EFA) and principal component analysis (PCA) [64]. Both of these
two techniques are data driven and are able to identify latent variables. In EFA, the latent
variables identified are called common factors; in PCA, the latent variables identified are
called principal components. Both EFA and PCA share similar statistical assumptions such as
the linear relationship between outcome variables (e.g birth weight) and latent variables,
normal distribution for each observed variables and bivariate normal distributions for each pair
of observed variables. However, EFA and PCA are different with respect to the correlation
matrix involved in the computation. In PCA, variance from each observed variable, variance
common among variables and error variances are all included in the matrix while in EFA, only
variances shared among observed variables are included. Mathematically, the PCA model can
be expressed as:
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theoretical meaning. They are strictly linear combinations of observed variables. Therefore,
the regression coefficients on the latent variable in PCA analysis is not exactly interpretable
[67]. It is a simple technique to reduce the amount of correlation and dimension within the data.
PCA analysis is also usually used in prediction modelling where the researcher is only
interested in predict outcome more accurately with available data, but not interested in the
specific causal structure and pathways between the observed variables and the outcome of
interest.

An extension of PCA known as sparse principal component analysis (SPCA) has
gained more attention in the study of the environmental chemical mixture because of its ability
to produce sparsity after identification of principal components [68]. Sparsity means that the
regression coefficients of most of the variables that are not identified to be included in the
principal components are reduced to zero. Using techniques originated from the LASSO-
based method, SPCA differs from PCA by introducing a specific criterion for the penalization
of each principal component determined [68]. The principal component that has minimal
influence on the residual sum of squared error is forced to be close to zero due to this
penalization introduced. Therefore, SPCA can further reduce the collinearity present in the
data by limiting the number of principal components compared to ordinary PCA. However,
when working with a large number of variables that all contribute small effects to the outcome,
SPCA tends to perform poorly due to the elimination of potentially important variables or
principal components specifically for the purpose of creating sparsity [68].

2.2.4 Nonlinear exposure-response surface methods

Due to the extremely complex interactions and unidentifiable causal structures among
chemicals in mixtures, researchers developed approaches that use non-linear exposure-
response surface estimation techniques [55,69,70]. It is built upon linear methods through
expansion and transformation. In a review of epidemiology analysis of endocrine disrupting
chemical mixtures conducted by Lazarevic et al. [71], the most notable non-linear methods
include the Generalized Additive Model (GAM), the Multivariate Adaptive Regression Splines
(MARS) and finally weighted quantile sum regression (WQSR). We describe each of these
three non-linear methods in detail.

Generalized Additive Model is developed through two-step modifications of the multiple
linear regression models[69,70]. Recall the equation for multiple linear regression is given by:
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where is the Y-intercept, is the vector of regression coefficients of risk factors, is the

vector of risk factors, is the vector of regression coefficients of confounders, is the vector
of confounders and is the random effect in the model. By performing different types of
transformation on the outcome variable Y, different generalized linear models (GLM) can be
expressed by the following equation:

where g(u(X)) is the transformed outcome variable. For example, if g() is the logit function,
then the generalized linear model after transformation is the logistic regression model.
Generalized Additive Models build upon the generalized linear model framework by expanding

the regression coefficient vector . It can be described by the following equation:

where f(x) are different possible mathematical functions instead of regression coefficients. The
typical f(x) includes, but is not limited to polynomial functions, logarithm-based functions, and
exponential functions [70]. The fitting of the model is by a back-fitting algorithm that iteratively
fits individual f(x) while calculating residuals based on the fit. Through numerous iterative
cycles, the minimized residual model converged is considered as the final model. Published
examples of epidemiology studies using GAMs include the work of Zanobetti et al., Ramsay et
al., and Dominici et al. which all focus on the assessment of air pollutants. [72–74]

Weighted quantile sum regression [75] is an interesting nonlinear method that
combines the concept of percentiles and mathematical transformations to estimate the effect
of a mixture of correlated variables on the outcome variable. In this model, correlated
variables are combined into an index where each variable is scored into quantiles. The basic
index model takes the following form [75]:

where g(u) denote any types of link functions in the generalized linear model (e.g. logit), w is

the unknown weight for the ith variable, is the regression coefficient for the weighted
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quantile sum, z is a vector of covariates and phi is a vector of regression coefficients for
covariates.

After the formulation of the above basic model, the total data is split into a training
dataset and validation dataset [75]. Using bootstrap sampling techniques, maximum likelihood
estimators are applied for each bootstrap sample to optimized the weights in the basic model.
The total sums of weights are constrained to one in order to potentially remove some variables
that is not as significant or influential on the data. The final estimated model is determined by
averaging over all bootstrap samples for the regression coefficients.

One unique advantage of WQSR is the use of quantile to remove extreme outliers in
the data, which is typical for environmental chemical mixtures (e.g. extreme levels of chemical
exposures). This procedure reduces the amount of variance since it transforms continuous
variables into categorical variables in the model. However, this procedure also produces a
disadvantage since chemical exposure is drastically different among individuals. By using
quantile approaches, it is impossible to distinguish between people at 90 percentile from
people at 76 percentile since they are both grouped into the same quantile [76]. In addition,
chemical exposures in the population are observed to have long-tail distributions, which result
in uneven differences across quantiles. For example, people at 80 percentile may have
exposure concentrations five times more than people at 70 percentile and twenty times more
than people at 60 percentiles. Therefore, the interpretation of the model needs to be carefully
articulated and it is difficult to interpret the regression coefficients since the weight assigned to
each variable is different and the quantile assigned to each variable has different distributions
as well.

Classification And Regression Trees (CART) are a unique method that operates under
the recursive partitioning algorithm [6]. Given a specific data sample, this algorithm selects a
single point in one variable to separate the whole data into two splits to reduce the residual
sum of squares for multiple cycles until it reaches some specific stopping criteria set by
researchers. Consider the following two equations:
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where RSS stands for the residual sum of squares, the algorithm aims to minimize the RSS of
each cycle by selecting a unique point in an exposure variable to split the outcome variable
into two sets.

The criteria of the stopping rule are decided by the researcher [55]; One common
criterion is the number of observations in the terminal node, another common criterion is when
the RSS is not improved by additional splits. After the classification/regression tree is
constructed, pruning is usually performed to reduce the unnecessary branches in the tree
structures. Sometimes, an additional node on the tree may improve RSS by a very little
amount, yet introducing a larger amount of variances. The pruning of the trees can be done by
limiting the size of the tree (the number of splits) or by cross-validation methods when the
sample size is relatively large.

Tree-based methods are usually very variable and unstable because they are
extremely discrete [77]. They usually have poor performances on smooth relationships
including linear relationships. By splitting the data, each time it is automatically assuming
interactions among the exposure variables. Consequently, a tree-based method on its own is
not a very good modelling method. However, when it is combined with other techniques, it is
able to produce much better prediction results [77]. Published epidemiology studies that
employ CART methods include the work of Stel et al. which aim to study recurrent falling of
the elderly in community-dwelling, the work of Mueser et al. which aim to study the risk factors
of substance use disorders in hospitalized psychiatric patients and Nishida et al. which aim to
study the association between smoking and obesity and the risk of developing periodontitis
[78–80].

Multivariate adaptive regression splines (MARS) is built upon the previously described
generalized additive model and tree-based model [81]. As demonstrated in the previous
section, the tree-based regression model handles the splitting of the data discontinuously.
Therefore, it lacks the ability to model smooth monotone patterns such as linearity. On the
other hand, the generalized additive model, when operating with high dimensional data, face
the problem with too many parameters and basis functions to select from [77]. MARS works
on the following regression models:

where h(x) represents the basis function selected by the model. Then the MARS model will
consider each single observation point as potential knots for splitting data into half, meaning
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that for each possible knots, a pair of basis function is available to select from represented by
the following equations:

,

where t is the knot selected for splitting the data. Then a linear combination of these paired
basis functions is constructed for the final model expressed in the following equation:

where is a different regression coefficient assigned for each paired basis functions. Similar
to the CART model, the MARS model also requires a stopping criterion selected by the
researcher [77]. The commonly used stopping criterion is the number of knots used for
building the models. Typically, the fully developed MARS model tend to overfit the data given
the numerous number of basis functions selected. Therefore, the pruning of the model works
in a similar manner to the CART model. For each knot identified by the model, the backward
elimination method is used to determine whether the elimination of the left side basis function
or the right side basis function is able to significantly improve the mean squared prediction
error (MSPE) by doing cross-validations. In general, MARS combines the advantages of GAM
and CART by using regression spline models to replace tree-based split to allow modelling of
linearity and other monotone relationship with the use of knots to avoid excessive
parameterization and interactions that can be potentially introduced by the GAM approach [82].

2.2.5. Bayesian methods

As discussed above, Bayesian statistics is a modern branch of statistics that is
constantly evolving. Different fields including epidemiology started to adopt the Bayesian
statistical framework [51]. Before going into details of different types of statistical models, a
brief introduction of Bayesian statistics is necessary to understand the importance and
motivation behind this type of approach.

The general procedure for any Bayesian methods follows the following equation known
as Bayes’ theorem:
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where P(prior) is defined as the prior probability distribution, P(data/parameter) is defined as
the likelihood given sampling data, P(data) is defined as the marginal likelihood given
sampling data and P(parameter/data) is defined as the posterior probability distribution [53].
Therefore, the typical Bayesian approaches can be summarized as combining information
obtained from sampled data with prior beliefs about data in order to generate a final estimate
which is depicted as the posterior probability distribution. For example, we can calculate the
posterior distribution of the odds ratio for epidemiologic studies.

As the sample sizes increase, the likelihood part of the Bayesian estimate (posterior
distribution) receives higher weight in the final estimation. In the field of epidemiology, since it
is costly and time-consuming to collect human data, the sample sizes of the study are typically
limited. Therefore, the selection of priors becomes very important. Typically, priors are
selected based either on a review of existing research in the literature or informed by expert
opinions [52]. However, according to a systematic review conducted by Rietbergen et al. [83],
the process of prior elicitation, specification and evaluation are often lacking in Bayesian
epidemiological analysis and a more transparent reporting of such process is critical.
Conducting sensitivity analysis with different priors including non-informative prior to illustrate
how much influences prior have on the final posterior probability estimation is encouraged [83].

With recent developments in computer algorithms (e.g. Markov chain Monte Carlo
computation), the uses of Bayesian methods have become more and more popular because
the flexibility of Bayesian methods is able to model complex relationships without introducing a
significant amount of computation time. The use of Bayesian methods also allows the
researcher to greatly reduce the amount of variability among the data by introducing prior
information. Published epidemiology studies using Bayesian methods include the work of
Papathomas et al. which aims to study the risk factors of lung cancer among non-smokers and
the work of Valeri et al. which aims to study the relationship between exposure to metal
mixtures and neurodevelopmental outcomes in children. [84,85].

With regard to the Bayesian analysis of multiple correlated exposures (chemical
mixtures), we now describe two different Bayesian methods: Bayesian Kernel Machine
Regression (BKMR), and Bayesian hierarchical linear models (BHLM).
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Bobb et al. [36] proposed the Bayesian approach to kernel machine regression. The
method is extremely popular and combines Bayesian inference with modern machine learning
methods. The kernel machine regression models independent variables (exposures) with
dependent variables (outcome) using the following mathematical formula:

where g is a monotonic function that denotes some form of the transformation of the outcome
variable, h is a flexible exposure-response function, z is the vector of predictors, x is the vector
of covariates and B is the coefficients for covariates. Since the kernel machine regression
allows a great degree of flexibility, the non-additive and non-linear relationships can be
modelled using the proposed framework. One of the common kernel function h used is the
Gaussian kernel, which can be represented by:

where z and z’ denote the predictor of two individuals in the sample, and rm denote the tuning
parameter that controls the smoothness of the kernel function. Essentially, the effect on the
outcome is shrunk for individuals with closer predictor values to smooth the exposure-
response curve.

Since BKMR combines the advantage of Bayesian approaches and kernel machine
regressions approaches, it allows the researchers the flexibility of the exposure-response
relationship while restricting the amount of variance. Therefore, it is possible to model multiple
pollutant mixture in addition to the modelling of individual pollutants. Bobb et al. also
published a statistical package in R for the implementation of BKMR in the epidemiological
analysis [86]. Some notable published work utilized BKMR in epidemiology include the work of
Buckley et al. which aims to study the window of susceptibility to environmental exposures [87]
and the work of Harley et al. which aims to study the associations between perinatal phthalate
exposures and childhood obesity [88].

The Bayesian hierarchical linear model [51,89–91] is a simpler form of Bayesian
methods originally proposed by Greenland to analyze multiple correlated exposures [92]. The
hierarchical component of the method is from the prior distributions introduced on the
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regression coefficients in the model. By allowing a different type of prior distributions
determined from available literature or existing evidence, Hamilton Monte Carlo sampling
method can be applied to generate a posterior credible interval of estimated regression
coefficients [51].

The main advantage of this method is that it can be implemented relatively easier than
BKMR as well as a significant amount of flexibility because of the number of different prior
distributions that can be chosen for any particular data. However, since this method assume a
linear relationship between exposure variables and outcome variables, the fit according to this
model is usually not as accurate as BKMR when a potential non-linear relationship is present
in the data [83]. Examples of published environmental epidemiology literature that utilizes
BHLM include the work of Braun et al. and Hamra et al. which both aim to study the
association between exposure to endocrine disrupting chemicals and autistic behaviour
[90,91].

2.2.6. Modern machine learning approaches

Machine learning approaches of model selection for epidemiology is based on the
quantitative counterfactual framework and focus on prediction tasks [70]. When building
models for prediction purposes, machine learning approaches typically distinguish between
training data and testing data where training data is used to build statistical models and testing
data is used to evaluate the built statistical models. In this type of approach, the available data
on hand dictate the modelling process and it is not uncommon to build different optimal
models when using different selection criteria of training data and test data. One general
approach of training data and test data selection is splitting by a certain percentage such as
80% training data with 20% test data. A more complicated approach includes general cross-
validation and bootstrap sampling. General cross-validation is accomplished by splitting data
multiple times by a certain percentage point and each split result in a different sub-sample of
training data and test data [70]. Bootstrap sampling uses the idea of resampling with
replacement from original data to construct test data. Both of these complicated approaches
aim to reduce the possibility of overfitting due to specific choices of training and test data [77].

Most machine learning methods generate the mean estimates of the outcome Y by
minimizing the residual sum of squared errors. The resulting mean estimates of Y have
variances associated with it in the following form:
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where Z is representing any outcome variables in data, B representing the sample size [77].
By transforming the above equation in terms of the pairwise correlation between individual Z,
the following equation is deduced:

where is the variance of the mean estimates and is the pairwise correlation between Z.

From this equation, if the pairwise correlation between Z is equal to zero, then

, whereas if the pairwise correlation between Z is equal to one, then

. By making B as large as possible, the total variances approach

. Therefore, this demonstrates that by effectively making sample size
bigger, it is possible to reduce variances associated with the mean estimates only to a certain
amount and it is highly dependent on the pairwise correlations. The idea of the ensemble
method is therefore proposed to construct individual weak predictors that are uncorrelated
with high individual variances to replace strong predictors that are more correlated with low
individual variances to achieve better prediction performances. Out of the ensemble method
family, the Random forest and Gradient Boosting Machine are the most well-known methods.

Random forest [55], as suggested by its name, is an advanced modification of the tree-
based methods. It also utilizes resampling techniques such as bootstrap to generate a test set
for evaluation of prediction performances. Similar to regression trees, the model randomly
selects split points for each independent variable to recursively partition data into splits to
predict the outcome variables. The unique feature of random forest is to create as many
regression trees as possible while selecting a random subset of the total independent
variables in the data. As a result, multiple regression trees will be created. This group of
regression trees would have high individual variances, but low correlation among each other,
generally refer to as weak learners. Afterwards, all these weak predictors are averaged across
different regression trees to produce the final ensemble random forest.

Random forest is a significant improvement in modern machine learning approaches,
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however, it requires specific criteria for it to perform well. As noted by [55], the two most
important criteria are the selection of hyperparameter m, which represents the number of
independent variables to select for each regression tree and the sample size of available data.

The selection of hyperparameter m is dependent on the available data and prediction
task. Ideally, the researcher wants to select m that is small enough to have a low correlation
among the individual independent variables, but not too small to result in extreme increases of
individual variances of each independent variable. For prediction tasks that deal with
continuous outcome variables, the recommended hyperparameter m is one-third of the total
amount of independent variables. For prediction tasks that deal with categorical outcome
variables, the recommended hyperparameter m is the square root of the total amount of
independent variables. Regarding the sample size for using Random forest for prediction
tasks, a minimum of 500 data points is needed and more data points would generate better
results because it yields greater reduction of variances by averaging the results.

Gradient boosting machine(GBM) [82] is another type of ensemble method that was
built upon the previously described LASSO method as well as tree-based method. It creates
ensemble predictors differently from the random forest by adding predictors iteratively instead
of generating large pools of weak predictors simultaneously.

The general approach of GBM is to approximate LASSO estimates by increments.
Consider the following equation:

where B represents the estimates of the regression coefficient and T(x) represents the tree
structures in the current iteration. Starting from the following condition:

The algorithm searches for a potential tree structure with regression estimates that are
most correlated with the current residual. Then the equation is updated as follows:
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where m represents the current iteration and v represents a small value in terms of change
updated for the tree structures. A new residual is calculated for the next cycle of boosting by
the following equation:

Similar to the random forest, the hyperparameter m, v and tree sizes are all tuning
parameters for the GBM model and for each unique sample data, it is selected by some
resampling techniques such as bootstrap or cross-validation. It is noted by Trevor et al. that
when m approaches infinity, the updated residual approaches zero, indicating the extreme
case of complete data overfitting [55]. The recommended tree sizes for GBM is 6 which
represent 5-way interactions of independent variables. The quantity v is the learning rate of
the boosting machine which indicates how fast each update of increment is computed. The
smaller v is, the more smooth the iteration residual is computed and the longer it takes to
converge to the final boosted model. Gradient boosting can be generalized by using other
arbitrary loss functions instead of the residual sum squared error [55]. This allows a more
flexible framework such as Poisson regression, logistic regression and quantile regression
model to use gradient boosting algorithm to approximate the final model.

GBM and random forest are the most commonly used machine learning approaches in
prediction tasks [70]. Both are extremely powerful in its ability to predict outcomes with
significant lower errors compared to traditional approaches. However, these methods
generally require a very large sample size to achieve greater performances since the model
complexity is high for these ensemble methods. In the case of epidemiology, these methods
are usually not ideal due to the limitation of the sample size bounded by the cost of recruiting
human subjects. In addition, the number of variables is typically high in the case of
environmental chemical mixtures, and the potential benefits gained by averaging weak
predictors may not outweigh the significant amount of individual variance associated with each
independent variable. Therefore, careful considerations need to be taken before employing an
ensemble method for causal inference of environmental and perinatal epidemiology.

2.3 Examples of epidemiology studies using innovative mixture methods in the analysis
of pregnancy outcomes

In this section, we review seven examples of papers that employ innovative methods
to examine the effects of environmental chemical mixtures in relation to pregnancy outcomes.
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In particular, birth weight (five papers) and preterm birth (two papers) are considered as the
outcome while any biomarkers of gestational environmental chemical exposure that are
potentially involved in any biological pathway in the earlier sections are considered. Papers
with traditional statistical approaches are excluded. We also excluded papers examining other
child health outcomes (e.g neurodevelopment), as well as papers examining environmental
pollutants other than toxic chemicals (e.g air pollution).

Crucially, the selected papers are by no means an attempt to be a comprehensive
review of the literature (e.g. a systematic review [5]). Instead, this Section is written in the spirit
of the biostatistics literature, where the hallmark is a selection of real-data examples, hand-
picked by the authors, which demonstrate opportunities and pitfalls in statistical science. By
examining the state of the art methods on the estimation of the effects of environmental
chemical mixtures on adverse pregnancy outcomes, it is possible to identify the strengths and
weaknesses of each method. In addition, a comparison of the effect estimates generated by
traditional methods and the effect estimates generated by modern methods provides potential
insights and challenges on the causal inferences of the relationship between environmental
chemical exposures and pregnancy outcomes.

2.3.1. Innovative mixture methods for birthweight outcome

Woods et al. [89]: Gestational exposure to endocrine disrupting chemicals in
relation to infant birth weight: a Bayesian analysis of the HOME study (2017)

Woods et al. [89] examined the relationship between environmental chemicals and
birth weight using the Bayesian hierarchical linear model (BHLM). 272 pregnant women
enrolled between 2003-2006 from Health Outcomes and Measures of Environment (HOME)
Study was used for the statistical analysis. The HOME study is a prospective birth cohort
study in Cincinnati, Ohio. Biomarkers in the blood and urine sample collected at 16 weeks and
26 weeks gestation were used to quantify the concentration of chemicals in each individual
human sample.

Woods et al. [89] utilized a direct acyclic graph to construct a causal diagram that
informed the selection of potential covariates in the models. A total of 53 exposure variables
span across five endocrine disrupting chemical classes, two heavy metals and two
organophosphate pesticides were included in the model for birth weight, along with 9 potential
confounders such as maternal age and household income. Gestation age was included in the
model for birth weight using spline techniques to account for the non-linear relationship. The

https://paperpile.com/c/lkNFie/XRF0
https://paperpile.com/c/lkNFie/BEEz
https://paperpile.com/c/lkNFie/BEEz


36

Bayesian hierarchical linear model (BHLM) takes the following form of the regression model:

For the BHLM approach, the author used uninformative prior distributions (mean=0,
variance=10^5) on the group based regression coefficients (e.g. for the collection of PCBs that
were included in the model) for the purpose of shrinkage. Because the chemicals within a
given class are highly correlated, the shrinkage prior served to bias the regression coefficients
towards the group mean. Hamilton Monte Carlo sampling with 20,000 iterations coupled with
500 burn-in iterations was used to generate the posterior credible interval estimates for model
parameters. The final estimates from BHLM were compared with LASSO and elastic net
method.

According to the results obtained by the BHLM model, a ten-fold increase in
gestational exposure towards bisphenol A (BPA), polychlorinated biphenyls (PCBs),
polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) had a small
or near-zero association with birth weight based on both 95% and 50% credible interval.
Whereas ten-fold increase in gestation exposure towards perfluoroalkyl substances (PFAS),
lead and organophosphate pesticides (OPPs) were shown to have an imprecise association
with lower birth weight based on 50% credible intervals. It is also documented that LASSO
and elastic net regression coefficient estimates were shown to have a larger magnitude with a
wider confidence interval.

The major strength of the BHLM employed in this paper is the ability to shrink the
variances of regression coefficients to generate more precise results as compared with
LASSO and elastic net [89]. However, the major limitation of BHLM is that it models each
exposure to individual chemicals such as PCB 128 and PCB 153 separately (single pollutant
assessment). Since environmental chemical mixtures such as endocrine disrupting chemicals
are consisting of numerous individual chemicals with similar structures, the effect estimates
(regression coefficients) produced by BHLM do not represent the effects of mixtures. Instead,
it produces individual chemical-specific regression coefficients. Since exposure towards
environmental chemicals is usually simultaneous and correlation among these individual
chemicals are observed, the individual chemical-specific regression coefficients estimates lose
meaning because they represent the effect of one individual chemical independent of the
other which is never the case for environmental chemical exposures.

Petit et al.[23]: Association of environmental insecticide exposure and fetal
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growth with a Bayesian model including multiple exposure sources: the PELAGIE
mother-child cohort (2012)

Petit et al. [23] examined the relationship between environmental insecticide exposure
and birth weight as well as head circumferences using an integrated Bayesian latent variable
model. The Bayesian latent variable model is an extension to the confirmatory factor analysis
model described earlier in section 4.2. It adds the Bayesian component by introducing prior
information on the regression coefficients. Using data from the PELAGIE mother and child
prospective cohort located in France established in 2002, a total of 1,213 samples were
included for the statistical analysis. The environmental insecticide exposures were classified
by four different potential sources: 1. Insecticide exposure from the non-organic diet, 2.
Insecticide exposure from the household use of products applied to plants, 3. Insecticide
exposure from the household use of products against insects, 4. Insecticide exposure from
agricultural activities. The exposure data were characterized by a survey questionnaire with
categorical ordinal responses span across two years.

The Bayesian latent variable model characterized four different sources as mixtures of
different possible routes of exposure to insecticides. Different prior distributions were
implemented for regression coefficients associated with different sources defined according to
existing evidence about the impact on birth weight. The multinomial distribution was used to
model non-organic diets; Bernoulli distribution was used for household use and agricultural
activities. The link between the outcome and the latent variable was characterized by
multinomial linear models.

The major results generated by the Bayesian latent variable model indicated that
insecticide exposure from agricultural activities was associated with a 0.10cm decrease in
head circumference with a 95% credible interval [-0.22cm, 0.01cm] and the exposure from
household insecticide use to treat plants were associated with a 27g decrease in average birth
weight with a 95% credible interval [-59.2g, 6.4g] and 0.12cm decrease in head circumference
with a 95% credible interval [-0.26cm, 0.01cm].

The major strength of the Bayesian latent variable model is its ability to allow
researchers to characterize mixture exposures by sources and generate effect estimates
associated with each source [23]. Therefore, potential interventions can be implemented
according to the sources to mitigate the health effects. However, the limitation of this particular
study resides in the survey questionnaire design of the study. Potential bias associated with
survey questionnaires such as recall bias when answer questions and selection bias resulted
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from non-response to questionnaire due to specific confounders can be potentially magnified
when using a Bayesian framework, especially when the researchers employed informative
prior on the source-specific regression coefficients. In addition, the definition of insecticide
exposure strictly by the source is potentially problematic since different insecticides have
different chemical structures and may participate in different biological pathways. The
response from one individual regarding insecticide can be non-analogous to the response
from another individual. In conjunction with different perceptions on the ordinal scale in the
questionnaire, additional sources of bias can be introduced into the modelling process.

Chiu et al. [93] : Evaluating effects of prenatal exposure to phthalate mixtures on
birth weight: A comparison of three statistical approaches (2018)

Chiu et al. [93] examined three different statistical approaches to evaluate the
association between phthalates mixture exposure during pregnancy and birth weight. They
were interested to see whether different statistical approaches can lead to different estimates
of the effects. Using data from the Environmental and Reproductive Health Study (EARTH)
that consists about 300 mother-infant pairs located in Massachusetts, Boston from 2005 to
2016. Urine samples were used to quantify the chemical exposures and birth weight outcomes
were collected from hospital medical records.

Regarding the statistical approaches, Chiu et al. [93] first identified potential covariates
and confounders using the direct acyclic graph (DAG) conceptualized by prior knowledge
informed by literature. Additional covariates such as parity and infant sex were also included in
some models for the purpose of reducing random variability. Afterwards, single pollutant linear
regression, latent variable methods including principal component analysis (PCA) and
structural equation modelling (SEM), and Bayesian kernel machine regression (BKMR) were
all used to compare and contrast the effect estimates. For single pollutant linear regression,
each phthalate metabolite was analyzed separately. Two-way interactions were also
incorporated in a linear regression approach to account for correlation among phthalate
metabolites. For PCA, the varimax rotation method was used to produce the principal
components from all phthalate metabolites based on the correlation matrix among these
metabolites independent of outcome variables. Exploratory factor analysis was used to reduce
the metabolites mixtures into two latent constructs for the fitting of SEM. For BKMR, the
Gaussian kernel was used for each phthalate metabolite to allow non-linear smoothing of
exposure-response surfaces.

The results obtained from the single pollutant linear regression model generated a
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negative association between phthalate metabolite exposure and birth weight. However, all
effect estimates had wide confidence intervals representing imprecise estimates. When
potential metabolite interaction terms were included in the model, the effect estimates became
unstable with some metabolite showing positive effects and some showing negative effects.
This result effectively demonstrated the inability to model complex mixtures using simple linear
regression models. The results obtained from both PCA and SEM indicate that phthalates
metabolites mixtures can be characterized into two significant latent variables labelled as the
DEHP component and non-DEHP component. The mixture specific regression coefficients for
PCA and SEM also demonstrated a negative association between phthalates exposure and
birth weight with non-statistical significances. It is noted that the effect estimates from latent
variable model is smaller in magnitude compared to linear regression models and the
confidence intervals associated with the estimates are much narrower compared to linear
regression models. BKMR produced similar results to the latent variable method except for the
fact that it identified two individual metabolites (MEP and MEHP) instead of latent mixture
constructs.

Although all methods employed in this study generated imprecise estimates with very
wide confidence intervals, latent variable model and BKMR effectively demonstrate their ability
to model complex mixture exposure better than multiple linear regression models because of
their ability to effectively reduce correlations and collinearity among individual phthalates
metabolites by either reducing the number of variables using latent constructs (i.e. dimension
reduction) or allowing non-linear exposure-response curve using kernel functions. In addition,
latent variable models and BKMR were able to distinguish within the phthalates metabolites
between major contributors and minor contributors. Therefore, although the overall effect
estimates are statistically non-significant, the relative importance of the individual phthalate
metabolites can be evaluated. On the other hand, the limitation of using latent variable models
and BKMR is related to how collinearity is reduced in each approach. For latent variable
models, the latent constructs were determined by correlation within the chemical mixtures
independent of the outcome variable. Hence it is difficult to determine whether the latent
constructs selected are actually important constructs associated with the outcome. Therefore,
such constructs should be informed by external evidence for validation. For BKMR, since
nonlinear smoothing techniques are being used, it should be noted that with limiting sample
sizes, the number of variances introduced by more complex kernel functions might outweigh
the benefit of collinearity reduced by the approach. Therefore, careful selection of priors and
hyperparameters are needed to optimize the effect estimations.

Lenters et al.[94]: Prenatal Phthalate, Perfluoroalkyl Acid, and Organochlorine
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Exposure and Term Birth Weight in Three birth cohorts: Multi-pollutant models Based
on Elastic Net Regression (2016)

Lenters et al. [94] examined the association between exposure to individual chemicals
within complex mixtures and birth weight reduction. The study cohort consists of 1,321
mother-infant pairs span from 19 different municipalities in Greenland, Ukraine and Poland.
The chemical exposures were measured using biomarkers in blood and the birth weight
outcome was collected from hospital records. Covariates were established according to the
literature and ascertained by interviews and self-reported survey data. A total of 16 biomarkers
span across perfluoroalkyl substances, phthalates metabolites and organochlorine pesticides
were analyzed using elastic-net regression.

As described by Zou & Hastie [60], elastic-net is an extension of the LASSO-based
method that combines the benefit of LASSO and ridge regression. The major benefit achieved
by such a method is to effectively reduce correlation and collinearity among chemicals by the
selection of a subset of variables. In this study, Lenters et al. [94] used 10-fold cross-validation
techniques to determine the optimal hyper-parameter selected for the penalization term in the
elastic-net models. 8 biomarkers were selected out of the 16 biomarkers for the unadjusted
model. Upon the further adjustment of different sets of covariates and confounders, different
numbers of biomarkers were selected. However, four biomarkers were consistently selected
regardless of covariates adjusted. They are MEHHP, p,p-DDE, PFOA and MOiNP. The
regression coefficients estimated for these four biomarkers were characterized by three
different levels: 1. negative with statistical significance across all adjusted models (MEHHP,
p,p-DDE); 2. negative with statistical significance across some adjusted models (PFOA). 3.
positive with no statistical significance across all adjusted models (MOiNP). p,p-DDE and
MEHHP were identified to be the most significant variables within the mixtures that associate
with birth weight reduction. Interestingly, the magnitude of effect estimates generally
decreases with more adjustments applied to the covariates. This indicates that a certain
degree of unmeasured confounding or mediation effect is present.

The strength of employing the elastic-net regression model in this study is that it
effectively reduced collinearity among the individual chemical variables by identifying four
primary chemicals out of 16 individual chemicals. However, the limitation is apparent since the
statistical interpretation of regression coefficients for these primary chemicals becomes
ambiguous. It is difficult to state whether the effect estimates obtained is from the identified
primary chemicals or a mixture of correlated individual chemicals because the regression
coefficients produced to represent the hypothetical effects when all chemical variables not
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selected are assumed to be absent. In addition, if several chemicals within a mixture actually
have a health effect, but it is relatively smaller compared to other chemicals in the analysis.
These chemicals would then be very likely removed from the model. Therefore, the selection
of variables will be dependent on the comprehensiveness of biomarkers being measured in
the study.

Additionally, for this particular study, three different cohorts from three different
countries were combined together. Therefore, the amount of exposure within one community
might be quite different from the amount of exposure within another community. By employing
the elastic-net approach, the particular community with the highest amount of exposure might
influence more on the final selection of variables in the model. Therefore, normalization
techniques might be important in data preparation to ensure the scale of measurement is
comparable across different population groups being selected by the study.

Govarts et al. [95] : Combined effects of Prenatal Exposures to Environmental
Chemicals on Birth Weight (2016)

Govarts et al. [95] explored the association between birth weight and environmental
chemical mixtures in a total of 16 individual chemicals spanning across heavy metals,
polychlorinated biphenyls (PCBs), phthalates and perfluorinated compounds. Using data from
the Flemish environmental and health studies (FLEHS II) mother-child cohort, a total of 248
samples were included in the statistical analysis. Principal component regression was
performed on a subset of the total sample (n=157) due to missing data issues. Chemical
concentrations were measured using biomarkers obtained from blood serum and birth
outcomes were collected from medical records. Exposure measurements below the limit of
detection were imputed with half of the LOD value. All biomarkers concentrations were log
transformed and Z-scores were calculated to ensure the normalized comparison between
different individual chemicals. Covariates were selected based on existing evidence from the
literature.

For the single pollutant model, only arsenic was found to have a statistically significant
association with lower birth weight. For one interquartile range increase in arsenic
concentration in blood was associated with a 91g decrease of birth weight. For the principal
component analysis, four and six principal components were identified using different samples
consist of different numbers of individual chemicals. For the 16 individual chemicals sample
population, 157 individual data points were included in the analysis and six principal
components were identified. For the 12 individual chemicals sample population, 217
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individual data points were included in the analysis and four principal components were
identified. None of the principal components identified in the 16 individual chemicals sample
population were associated with a significant change in birth weight and only one principal
component (mainly consist of cadmium and arsenic) was identified with a significant
association with birth weight reduction.

The strength of this study was that it used normalization techniques to deal with the
scale of measurements combined with principal component analysis to assess the effect of
mixtures. This ensured a meaningful comparison between different individual chemicals that
may display drastically different scales in terms of blood chemical concentrations. This is
crucial when comparing effect estimates across different chemicals since chemical
concentrations without normalization can artificially inflate or deflate the estimates based on
the scale used [28]. However, not all individual chemicals share the same exposure-response
curves. For example, an IQR increase in heavy metal such as arsenic and cadmium are not
necessarily comparable to an IQR increase in endocrine disrupting chemicals such as
polychlorinated biphenyls [95]. Therefore, this study employed an assumption that all
individual chemicals share the same exposure-response relationship. Additionally, due to the
limitation of the sample sizes in this study, the statistical power of the model was greatly
reduced as more chemicals are included in the model. With significant missing data issues,
when more chemicals are included in the analysis model, sample sizes become smaller and
smaller. This resulted in high variances associated with effect estimates in principal
component analysis and yield confidence interval wide enough to conclude non-statistical
significances.

2.3.2. Innovative mixture methods for preterm birth outcomes

The preterm birth outcome is another important pregnancy outcome in perinatal
epidemiology, and that is possibly affected by environmental chemical exposures during
pregnancy. Preterm birth is typically categorically defined by using cutoff points such as 37
weeks, or alternatively, the investigation can model the length of gestational duration directly.
Typically, this birth outcome is not exclusively researched independent of birth weight and
there are far fewer articles focus only on preterm birth compared to articles focus only on birth
weight [96].

Chen et al.[96] Statistical methods for modelling repeated measures of maternal
environmental exposure biomarkers during pregnancy in association with preterm birth
(2015)
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Chen et al. [96] examined nine different statistical approaches concerning the
association of phthalates metabolites mixtures and preterm birth. In this study, preterm birth is
defined as binary non-time varying the categorical outcome. All live birth with gestational age
less than 37 weeks were considered as cases of preterm birth. The data were from a nested
case-control study that consists of a prospective cohort recruited at Brigham and Women’s
Hospital in Boston. A total of 130 cases of preterm birth mothers with 352 random controls
were included in the statistical analysis. Phthalate exposures were measured at four different
time points during pregnancy using urine samples. Therefore, these measurements display
two types of collinearity. The first type of collinearity is from collinearity among different
individual phthalate metabolites and the second type of collinearity is from collinearity among
different timed-measurements of the same individual phthalate metabolites.

For the statistical analysis, multiple logistic regression models, parallel cross-section
logistic regression models, models using mean exposure as a summary, models using
maximum exposure as a summary, hierarchical mixed effects models, Gaussian mixture
clustering methods, functional clustering model, and function logistic regression models were
compared and contrasted. To further elaborate on the methods employed, the models can be
described as logistic regression with increasing complexities in terms of exposure
characterizations.

For the multiple logistic regression models, all exposure measurements of phthalate
metabolites at different time-points were included in the same model. For a parallel cross-
section logistic regression model, only exposure measurements of phthalate metabolites at
the same time-point were included in the model and different models were generated for
different time-points. For models using mean exposure and models using maximum exposure,
the phthalate metabolite concentrations either averaged across different time-points and the
maximum phthalate metabolite concentrations of all different time-points were included in the
model respectively. For hierarchical mixed effects model, time is included as an additional
weighted term for determination of the mean values of exposures. Gaussian mixture clustering
utilizes a splitting algorithm similar to tree-based recursive partitioning to separate the sample
population into different clusters with Gaussian distribution. Functional clustering further
removes the assumption of Gaussian distribution and employs non-parametric criteria such as
K-means clustering which cluster the sample population based on the Euclidean distances.
The functional logistic regression model takes time as an additional predictor for exposure
measurements of individual phthalate metabolites.

Although the results generated from all different models display statistically non-
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significant odds ratios between phthalates metabolites and preterm birth, the magnitude of
these odds ratios were really different. This is expected because the exposure variables are
characterized differently in different models. The use of these models should be determined
by the research questions as noted by the author. In particular, for examining sensitive
windows of exposure in association with an outcome, parallel cross-sectional logistic
regression is recommended. For summarizing repeated measures to estimate the association,
logistic regression with mean exposure or hierarchical mixed effects model are recommended.
For identifying acute exposures and contribution of temporal patterns in exposure levels,
functional clustering and functional logistic regression are recommended.

Kalloo et al. [97]: Chemical mixture Exposures during pregnancy and the Birth
Outcomes (2018)

Kalloo et al. [97] examined the associations between exposure to 35 organic pollutants,
cotinine and four metals and preterm birth defined by gestational duration. Birth weight, birth
length and head circumferences were also examined. Using data from Health Outcomes and
Measurement of Environment study (HOME) which is a prospective birth cohort study in
Cincinnati, Ohio, 380 pregnant mother-infant pairs were included in the prospective cohort.
Urine and blood biomarkers collected at 16 weeks and 26 weeks gestation were used to
quantify the concentrations of chemicals.

The goals of the Kalloo et al. were to identify potential clusters within the study
population representing different degrees of exposure towards different types of environmental
chemicals. The statistical model used is selected to specifically model mixture effects of
environmental chemical exposures instead of single pollutant analysis.

K-means clustering and non-negative principal component analysis were used to
identify latent clusters and principal components representing chemical mixtures. Three
clusters were generated representing three different levels of exposure to all chemicals in
general. Six principal components were then identified within each cluster to further remove
the collinearity present in the data space. Multivariate linear regression was then employed to
evaluate the associations between gestational duration, birth weight, birth length and head
circumferences and the produced principal component.

Although Kalloo et al. and Woods et al. (discussed in Section 5.1.1) used the same
dataset, the research goals were different and the effect estimates obtained were different.
Kalloo et al. aim to study the impact of mixtures while Woods et al. aim to assess the effects of
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individual chemicals independently within a mixture. The results generated from this study
showed that chemical biomarkers that share similar chemical structures tend to load onto the
same principal components. Birth length reduction was associated with exposure to two
principal components. One principal component was loaded by organochlorine pesticides,
cadmium, and lead while the other principal component was loaded by mercury and
monoethyl phthalate. It is also found that clusters representing higher general chemical
concentrations had higher loadings on these two principal components, indicating that the
majority difference of exposures among the study population is from the individual chemicals
loaded on these two principal components. However, all of the associations observed for the
gestational duration, birth weight and head circumferences had a wider confidence interval
representing imprecise estimates. This is consistent with the results obtained by Woods et
al.[89], which indicates that even after using different statistical techniques to account for
correlations present in the data (Bayesian statistics in Woods et al. and PCA/clustering in
Kalloo et al.), the obtained estimates remain imprecise. Potential innovation combining both
approaches can be implemented to further account for the correlations present in the study.

The strength of this study is the flexibility in the modelling approaches. K-means
clustering is a non-parametric statistical method and does not require any assumptions of
probability distributions in the model. Therefore, it is extreme flexibility in terms of the number
of clusters and the degree of differences among the clusters. The principal component
analysis can reduce a significant amount of collinearity by combining multiple individual
chemical biomarkers into latent constructs known as a principal component. However, due to
the fact that the clustering procedure is extremely flexible and can change drastically from
different sample populations, it is difficult to evaluate the effect estimates horizontally across
different populations. Additionally, after clustering and principal component analysis, the
interpretability of the model becomes more difficult for general audiences since different types
of transformation have been performed on the variables in the model. If the researcher is able
to identify the clusters in specific contexts, then the results generated might be more useful.
For example, one cluster represents exposures of individual chemicals from an agricultural
farm while another cluster represents exposures of individual chemicals near a mining site.
Then the effect estimates can be attributed to these sources, giving exclusive meaning to
these latent clusters or principal components.

2.4 Potential innovations and future directions

Through a careful review of the available statistical tools and a careful review of
existing literature exploring the relationship between environmental chemical mixtures and
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pregnancy outcomes, it is apparent that different methods have unique advantages and
limitations. However, two common limitations are identified among multiple statistical methods.
The first limitation is how to provide meaningful parameter estimation in the public health
context, and the second limitation is addressing two specific forms of trade-offs during
modelling procedures, particularly the bias-variance tradeoff and the flexibility-interpretability
tradeoff. This section aims to address these limitations and propose potential innovations
addressing the identified issues.

2.4.1. Meaningful parameter estimation in the public health context

The first commonly identified problem in methods is how to provide meaningful
parameter estimation in the public health context. According to Greenland [8], one limitation of
current modern methods in the field of epidemiology is that the methods do not adequately
select confounders and interactions among exposure variables in a meaningful and
interpretable manner. Currently, modern statistical methods often use data pre-processing
techniques to transform exposure variables based on assumptions from specific statistical
models. Greenland argued that meaningful centring and scaling of the exposure variables
should be considered before the selection of specific modelling strategies because this is
essential for generating parameter estimation that is meaningful and interpretable within the
public health context [8].

It is also important to document specific confounders and interactions identified in the
causal pathway of the exposure-response relationship. Particularly, clinical explanations of the
relationship between exposure variables and the outcome variables are ideal for providing
information on the selection of modelling strategies. For example, if we have clinical evidences
on how PCB congeners induce inflammation biologically, this piece of information needs to be
incorporated in our modelling procedures. This shifts the focus of passive prediction tasks
towards outcome-based prediction tasks that are meaningful from a public health perspective
rather than exclusively meaningful from a statistical perspective. The interpretation of the
model selected using this strategy becomes more transparent and understandable. This
indicates that the biological pathway of chemicals in human bodies should be carefully
examined. Meaningful biological pathways generated from toxicology studies and
biochemistry research can be extremely helpful for epidemiological assessment since it allows
clearer explanations of the estimated effects measures.

2.4.2. Trade-off: bias vs variances and flexibility vs interpretability
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The second commonly identified limitation in all methods concerns the concept of
trade-off. Most statistical models illustrated in the previous sections face two forms of trade-off
during the modelling process. The first one is the bias-variance trade-off and the second one
is the flexibility-interpretability trade-off. The first form of trade-off can be quantified and
researchers have developed specific mathematical techniques to evaluate the trade-off. The
second form of trade-off is more tricky since there is no quantifiable definition of model
interpretability. We will examine these two forms of trade-off more closely in the following
paragraphs.

The bias-variance tradeoff as entailed by the name is the tradeoff between statistical
bias and variance. Statistical bias is defined as the difference between the average predicted
value of the parameter in the model and the true value of the parameter. Variance is defined
as the variability of predicted values depending on the sampling data supplied for the
modelling process. In the field of epidemiology, bias is usually associated with the term
accuracy and variance is usually associated with the term precision and both of these two
concepts are used to describe errors. Typically, in a given data set, the more complex the
statistical model is, the more errors associated with variances there are. Therefore, to deal
with the bias-variance tradeoff problem, the researcher wants to minimize the sum of errors for
both the bias and variance. For example, in variable selection methods such as LASSO [59],
some variables are removed based on the relative importance determined by the method. By
doing this, we are purposefully introducing statistical bias into the modelling procedure since
we assume the regression coefficients of the removed variables are zero. This reduces the
variances associated with the regression coefficients of these variables simultaneously since
they are constantly estimated as zero. This is a bias-variance tradeoff where we introduce
statistical bias to reduce variance. On the other hand, when we use non-linear methods such
as GAM [77], we are allowing the model to become more complex by allowing more
transformation of the variables. This procedure then increases the error associated with
variances but reduces the amount of bias by allowing more flexibility in the model.

It is important to note that the term bias described in this section is referring to the
statistical definition of bias, not bias usually described in the context of epidemiology such as
selection bias, recall bias, or confounding bias. Although the statistical term bias can be
influenced by the epidemiological biases (e.g. confounding), it is necessary to point out that
bias in the epidemiology context usually deals with problems involving sample representation
and model generalization, but not problems involving bias-variance trade-off.

According to Fortmann-Roe [98], one common misconception is that researchers
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should always favour approaches that minimize bias at the expense of variances because the
accuracy of the model is usually valued higher than the precision of the model. This
misconception is rooted in the assumption that by doing multiple studies and averaging results,
it is possible to mitigate the error due to variances, but not error due to biases. Although
statistically, this is true, in practice, each individual data set can only be analyzed once and
the repetition of analysis is meaningless when confounding and interaction variables in each
dataset are not defined universally. Therefore, always favouring approaches that minimize
bias at the expense of variances is problematic. Kaufman [99] also discussed the
phenomenon of epidemiologists being biased against statistical bias over variances that can
be potentially resulted from confusion between statistical bias and epidemiological bias
discussed earlier. Kaufman [99] argues that researchers should treat both bias and variances
as sources of errors and both are equally bad.

The flexibility-interpretability trade-off is another interesting trade-off that is not
discussed as often as the bias-variance trade-off [43]. It is particularly relevant in
epidemiological analyses of biomarkers where the interpretation of results can be challenging.
In any statistical model concerning human epidemiological investigations, the interpretation of
the results is extremely important since it can be used to inform policy and practices. For
example, PCB exposures are typically measured via a biomarker of concentration. The dose-
response curve to a particular health outcome can be extremely complex. Nonetheless,
policy-makers require results that are easily understood. Therefore, the interpretability of the
model is an important aspect. Interestingly, through a review of the current methods, models
that typically have good interpretability usually have less amount of flexibility. This is
understandable since it is difficult to provide clear interpretation statements when the
exposure-response relationship is more complex, especially when additional mathematical
transformation including linear and non-linear transformation is performed during the data
cleaning processes before analysis. As a result, potential innovations that increase
interpretability while retaining model flexibility are merited.

2.4.3. Future directions

With two essential forms of trade-off in mind, future innovations in statistical methods
should not only focus on improving the accuracy and precision associated with parameter
estimations, but also improving model interpretability [43]. As discussed in the previous
sections, Bayesian statistics is a branch of statistics that conceptualize probability as a degree
of belief which allows modelling of both the parameter estimates and the uncertainty as
probability distributions [54]. Through the incorporation of existing knowledge into the data
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analysis, the precision of estimation can be improved due to specific forms of shrinkage on
parameters. This is an important advantage over ensemble-based methods since it has the
ability to perform well even when the sample size is relatively small. The latent variable model
discussed in previous sections is used to measure latent variables that are associated with
observable variables to estimate the overall effect [66]. This type of modelling procedure has
unique benefits in model interpretability because it can be used to conceptualize an actual
causal framework. Therefore, the use of latent variables can provide contextual details in
analysis to improve model interpretations. In the context of environmental chemical mixtures
analysis, simply doing latent variable analysis may suffer from poor estimates due to the
nature of high correlations among different chemical variables [66]. However, combining
Bayesian statistics and latent variable analysis is a promising way to mitigate the problem of
high collinearity among chemicals in chemical mixtures while retaining good model
interpretability.

The advantages of combined approaches using both Bayesian statistics and latent
variable analysis can be further demonstrated in the analysis of environmental chemical
mixtures. The first advantage is its ability to use latent variables to model complex chemical
mixtures and return mixture specific regression coefficients as the estimation of the overall
effect of the mixtures on a health outcome (e.g. birth weight). The second advantage is its
ability to identify the individual chemical contribution to the overall mixtures to display a
relative array of important chemicals within particular chemical mixtures. The third advantage
is it retains the interpretability of the model without discarding any observation from the data.
These advantages of this model make it a model that compromise between the advantages
and disadvantages of variable selection methods and high dimensional non-linear estimation
methods.

However, the novel Bayesian latent variable analysis also has some potential
limitations. The limitation mainly lies in the assumptions made in the model which are the prior
distribution of the parameters and the hypothetical causal diagram. If these assumptions are
deviated from the actual scenario by a significant degree, the estimation generated can be
unreliable. Therefore, sensitivity analysis with different causal diagram and prior assumptions
need to be explored in to validate how reliable the assumptions are during the modelling
process.

2.5. Conclusion

Environmental chemicals exposures in pregnant women may have an impact on
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pregnancy outcomes through multiple biological mechanisms [1,2]. The epidemiological
assessment of the health effects of environmental chemical mixtures is an important and
difficult problem to solve [21]. The challenges of such assessment result mainly from
multicollinearity present among different individual chemicals [5,15,28,71]

A comprehensive review of statistical methods was conducted on mixtures problems.
These statistical methods deal with collinearity differently. Dimensional reduction methods
[39,62,66] which consist of variable selection methods and latent variable modelling remove
correlation by using a smaller number of predictor variables in the final models for health
outcome (e.g. birth weight). The non-linear exposure-response method [55,70,77] allows the
non-linear transformation of variables to remove correlation among individual variables.
Ensemble methods utilize random sampling techniques to select a subset of variables to
produce multiple weak learning models, then average across all weak learners to generate the
final models. Finally, Bayesian-based methods [51,53,54] use specific priors for the purpose of
variable shrinkage to reduce the total amount of variances in the model. All these methods
have their own strengths and limitations, and innovative approaches that combine two or more
of these methods may be promising in the assessment of pregnancy health impacts of
environmental chemical mixtures.

Literature reviews of epidemiological studies employing modern statistical methods in
exploring associations between environmental chemical mixtures and pregnancy outcomes
were conducted. The strengths and limitations of each study are discussed. Common gaps
were identified from these studies, particularly the difficulties in balancing model interpretability
and model complexity as well as the difficulties in balancing bias and variances associated
with parameter estimates in complex models. Potential innovation approaches can be
developed by taking up strengths from multiple types of different statistical models to optimize
the challenges depicted.
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Chapter 3. Effects of gestational exposures to chemical
mixtures on birth weight using Bayesian Factor Analysis
in the Health Outcome and Measures of Environment
(HOME) Study

Published: Zhuang LH, Chen A, Braun JM, Lanphear BP, Hu JMY, Yolton K, McCandless LC.
Effects of gestational exposures to chemical mixtures on birth weight using Bayesian factor
analysis in the Health Outcome and Measures of Environment (HOME) Study. Environ
Epidemiology. 2021 Jun 8;5(3):e159. doi: 10.1097/EE9.0000000000000159. PMID: 34131620;
PMCID: PMC8196215.

3.1. Abstract

Background: Studying the effects of gestational exposures to chemical mixtures on infant
birth weight is inconclusive due to several challenges. One of the challenges is which statistical

methods to rely on. Bayesian Factor Analysis (BFA), which has not been utilized for chemical

mixtures, has advantages in variance reduction and model interpretation.

Methods:We analyzed data from a cohort of 384 pregnant women and their newborns using

urinary biomarkers of phthalates, phenols, and organophosphate pesticides (OPs) and serum

biomarkers of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs),

perfluoroalkyl substances (PFAS) and organochlorine pesticides (OCPs). We examined the

association between exposure to chemical mixtures and birth weight using BFA and compared with

multiple linear regression (MLR), and Bayesian kernel regression models (BKMR).

Results: For BFA, a 10-fold increase in the concentrations of PCB and PFAS mixtures was

associated with an 81g (95%CI -132g, -31g) and 57 g (95%CI -105g, -10g) reduction in birth weight,

respectively. BKMR results confirmed the direction of effect. However, the 95% credible intervals all

contained the null. For single-pollutant MLR, a 10-fold increases in the concentrations of multiple

chemicals were associated with reduced birth weight, yet the 95% CI all contained the null. Variance

inflation from MLR was apparent for models that adjusted for co-pollutants, resulting in less precise

confidence intervals.

Conclusion:We demonstrated the merits of BFA on mixture analysis in terms of precision

and interpretation compared to MLR and BKMR. We also identified the association between

exposure to PCBs and PFAS and lower birth weight.



59

3.2. Introduction

Exposure to chemicals mixtures during pregnancy has been associated with perinatal
complications and adverse fetal development, such as preterm birth and low birth weight.1-14

Most epidemiological studies, however, are informed by single-pollutant statistical models,
particularly linear and logistic regression models, that do not capture the complex exposure
profiles in real-life scenarios among pregnant mothers.2,15 As researchers move beyond the
“one chemical at a time” analysis to evaluate mixture effects,2,16-18 several challenges related
to collinearity among individual chemicals and providing easily interpretable analysis results
have arisen.16,19,20

To combat the challenge of collinearity, several frequentist approaches such as least
absolute shrinkage and selection operator and principal component analysis were developed
to reduce collinearity by discarding correlated variables that are less impactful.16,19 In the
context of environmental epidemiology, it is difficult to justify the discarding of chemical
variables because variables within a class of chemical mixture often share similar biological
pathways. Bayesian methods21, on the other hand, are gaining attention in the field of
environmental epidemiology as an approach to address the challenges without discarding
variables. They provide a more explicit quantification of uncertainty than conventional
measures, such as p-values by modelling parameters as probability distributions.22 Moreover,
Bayesian methods have the ability to improve the precision of parameter estimates in the
presence of collinearity among variables in mixtures compared to traditional methods.10,15,23,24

This is typically achieved by combining Bayesian techniques with regularization, shrinkage
and prior information about model parameters. However, Bayesian procedures tend to
increase the computation time and complexity of the analysis.

Factor analysis modelling, also known as latent variable modelling, is widely used in
the field of psychology to manage collinearity for characteristics that are difficult to directly
measure25-27 and can be extended to a Bayesian framework. Using latent constructs to linearly
quantify the combined effects of an unmeasured variable, like a chemical mixture, is an
appealing way to address collinearity challenge while providing interpretable estimates.
However, apart from a publication by Ferrari and Dunson, Bayesian factor analysis has not
been used in this context57. Accordingly, we aimed to illustrate the potential benefits of
Bayesian factor analysis (BFA) to estimate the association between chemical mixtures and
birth weight using data from the Health Outcomes and Measure of the Environment (HOME)
Study, a birth cohort from Cincinnati, Ohio established to study the health impact of various
chemical and their mixtures.28 We also compared our BFA results with two established
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methods, multiple linear regression (MLR) and Bayesian Kernel Machine Regression (BKMR)
to assess collinearity reductions and interpretability.

3.3. Methods

3.3.1. Health Outcomes and Measures of the Environment (HOME) study

The HOME Study is a prospective birth cohort of pregnant mothers and their infants
established in 2003 at the Cincinnati Children’s Environmental Health Center, Ohio.28 The
primary goal of the HOME Study is to examine the impact of environmental toxicants on child
health. Pregnant mothers who were >18 years old and at 16±3 weeks of gestation and living in
a residence built before 1978 were recruited from seven prenatal clinics and hospitals.28Out of
the 468 women initially enrolled in the study, we excluded 67 women who dropped out before
delivery, three stillbirths, nine sets of twins, and five participants missing covariate data.
Therefore, 384 mothers who delivered singleton live births, provided biological samples, and
had complete sociodemographic information were included in our analysis.

3.3.2. Biomarkers of environmental chemical mixtures

We collected blood and urine samples from participants at approximately 16- and 26-
weeks gestation.28 The Centers for Disease Control and Prevention Environmental Health
Laboratories used gas and liquid chromatography-mass spectrometry to measure the
concentrations of environmental chemical biomarkers in serum and urine samples as
previously described.28

With the specific goal of estimating the effect of exposure to environmental chemical
mixtures on infant birth weight, we consulted existing literature on birth outcomes to identify
potential environmental chemical mixtures to investigate.10,13,14,29-31 A total of seven classes of
chemical mixtures were identified: polychlorinated biphenyls (PCBs), polybrominated diphenyl
ethers (PBDEs), phthalates, organochlorine pesticides (OCPs), organophosphate pesticides
(OPs), phenols, and Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS). PCBs, PBDEs,
and OCPs are lipophilic and were lipid standardized. Phthalate metabolites, phenols, and OPs
were creatinine standardized to account for urine dilution. In addition, to preserve the sample
size of our analysis, we further restricted our analysis to biomarkers that are widely detected in
the population (>80% detected above the limit of detection). Furthermore, to keep the
modelling approaches consistent between all chemical classes and mitigate issues with the
excessive dimensionality32 in regression analysis, we selected a total of 35 biomarkers to be
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included in our final analysis (Table 3.1). For PCBs, PBDEs, OCPs and PFAS, we used
samples measured at 16 weeks to maintain consistency across measures. For phthalates,
OPs, and phenol biomarkers, we averaged concentrations in samples collected at 16 weeks
and 26 weeks to represent the overall concentrations. For all biomarkers, measurements
below the limit of detection were replaced using single imputation according to Lubin et al.33

The imputed values were sampled from a truncated lognormal distribution with the mean and
standard deviation of the concentration of the chemical variables. The detection limit of each
specific chemical was set as the upper bound value for imputation. The concentrations of
these biomarkers were log10 transformed to reduce the effects of right skewness in the
distribution and to assist with the interpretation of the results. The regression coefficients are
interpreted as the change in birth weight for every ten-fold increase in the chemical
concentrations.

3.3.3. Outcome variable

Infant birth weight, measured in grams (g), was abstracted from the medical records
and examined as a continuous variable. To examine fetal growth, we adjusted for gestational
age, measured in weeks.14 An alternate way would be to use gestational age-specific birth
weight z-scores. However, its interpretation is not straightforward as it reports effect measures
in the unit of standard deviation, which results in different absolute amounts of weight across
the gestational age spectrum.34

3.3.4. Covariates

A direct acyclic graph was drawn to select confounders based on the relationship
among potential covariates, the selected five classes of environmental chemical mixtures and
birth weight (Supplementary Figure 1). Exposures to lead and tobacco smoke have been
documented to have effects on infant birth weight.29,35 Therefore, we included the biomarker
measurements of lead and cotinine as covariates. Additional covariates in the statistical
models included maternal age at delivery, infant sex, race, marital status, maternal education,
maternal BMI and annual household income. We excluded maternal BMI from the covariates
in the analysis of lipophilic chemicals to avoid duplicate adjustment since the concentrations
were already lipid-adjusted, which is directly related to BMI.36 The effect of gestational
duration on birth weight has been documented to be nonlinear,14 therefore, we used the cubic
spline approach for the adjustment of gestational age using the “splines” package in R.37

3.3.5. Analytic approach
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employing Gaussian kernel functions non-parametrically based on the available data
structure.23 Since the exposure-response functions were determined based on the data, the
priors for the parameters of each individual chemical were also specified differently according
to the exposure-response functions with details explained by Bobb et al.45 Similar to BFA,
Markov Chain Monte Carlo (MCMC) sampling was also used in BKMR to generate samples
from posterior distributions for the estimation of the parameters as well as the dose-response
curves illustrated by the cross-section views of the exposure-surface functions. The posterior
samples were sampled from a total of 20,000 iterations, which is determined experimentally to
achieve convergence assessed by the measure of the potential scale reduction factor. The
variable selection feature of “bkmr” R package45 was not used in our primary analysis since
we intended to retain all chemicals in the class in the BKMR model to compare with other
methods. A separate analysis of BKMR using the variable selection feature was also used to
assess the impact of such feature on the analysis results.

3.3.9. Sensitivity analyses – MLR

We used MLR as our sensitivity analyses to assess the association between each
individual chemical and birth weight while adjusted for covariates. We also used MLR to
assess the association between each individual chemical and birth weight while adjusted for
both covariates and co-pollutants within that class of chemicals.

3.4. Results

3.4.1. Descriptive Statistics

The study participants consisted of 384 mother-singleton newborn pairs. Due to
various degrees of the missingness that could not be imputed (missingness due to incomplete
biospecimen collection or insufficient volumes for chemical assays instead of measurements
below limit of detection), the sample sizes for our analysis were 360 for OPs mixture, 366 for
phthalates mixture, 284 for PBDEs mixtures, 237 for OCPs mixtures, 310 for PCBs mixtures,
296 for phenols mixtures and 307 for PFAS mixtures. Mothers who participated in the study
were mostly white (62.5%), married (65.6%) and had at least a bachelor’s degree (60.1%).
The mean infant birth weight was 3,352 grams with a standard deviation of 632 grams. The
infant sex ratio was roughly 1.18 to 1 (54.2% female to 45.8% male). Sociodemographic
characteristics that were associated with birth weight included maternal age, household
income and maternal BMI (Table 3.2). Infant birth weight tended to decrease with increasing
maternal age and increased with increasing household income and maternal BMI
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(Supplementary Table 3.1).

A high degree of correlation was detected among chemicals within the same class (Figure 3.1).
For example, all PCB congeners displayed correlation coefficients in the range of 0.51 (PCB
118 & PCB 180) to 0.99 (PCB 170 & PCB 180) with each other.

3.4.2. BFA analysis results

We ran seven BFA models for the seven different classes of chemical mixtures. The
class-specific regression coefficients of each class of the mixture and loading of the individual
congeners on the mixture were evaluated by BFA. PCBs and PFAS displayed associations
with birth weight reduction and every ten-fold increase in the concentration of the mixture
(Figure 3.2). Specifically, the regression coefficients were -81g (95%CI: -132g, -31g) for PCBs
and -57g (95%CI: -105g, -10g) for PFAS.

In addition to the mixture-specific effect estimates, we also estimated the loading
coefficient of individual chemicals within the class of chemical mixtures, denoted by the
quantity from Equation 2 (Figure 3.2). This provides a relative measure of importance for
these individual chemicals because it measures how much influence each individual chemical
variable contributes to the overall latent mixture variable.42 For the PCB mixture, we observed
that PCB 170 and PCB 180 had a stronger impact on the overall latent mixture than PCB 153,
PCB 118 and PCB 138. For the PFAS mixture, we observed that PFHXS and PFOS had a
stronger impact on the overall latent variable compared to PFNA and PFOA. The BFA results
of the other chemicals are represented in Supplementary Figure 2.

We also observed a slight decrease in birth weight with every ten-fold increase in the
concentration of OCPs mixture at -16g (95%CI: -66g, 34g) and phenols mixture at -21g
(95%CI: -71g, 28g). A slight increase in birth weight was associated with every ten-fold
increase in the concentration of PBDEs mixture at 25g (-18g, 69g), phthalates mixture at 49g
(95%CI: -3g, 99g), and OPs mixture at 8g (95%CI: -40g, 54g). However, all the credible
intervals of OCPs, phenols, PBDEs, phthalates and OPs were imprecise and contained the
null value of zero.

3.4.3. Bridging methods results comparing BFA with MLR

We provide detailed comparisons of regression estimates for PCBs and PFAS and
their 95% confidence interval across different methods (Figure 3.3). We observed that when
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collinearity between the individual chemicals is present, co-pollutant adjustments in MLR
results in less reliable parameter estimates and poorer precision for both PCBs and PFAS.
Small sample size also played an important role. For PCB 153, for example, we observed that
for single pollutant MLR, the precision interval of the estimators was -99g (95%CI: -
143g,147g). After co-pollutant adjustments, the precision interval of the estimators inflated to -
418g (95%CI: -1645g, 808g). When using the bridging methods for PCBs, the precision
interval obtained from MLR with extracted factor score was -24g (95%CI: -89g, 42g), which
represents a range of 131g for 95%CI. The precision interval obtained from FA was -43g
(95%CI: -110g, 10g), which represents an absolute range of 120g for 95%CI. And finally, the
precision interval obtained from BFA was -81g (95%CI: -132g, -31g), which represents an
absolute range of 101g. For PFAS, the precision interval obtained from MLR with extracted
factor score was -58g (95%CI: -117g, -13g), which represents a range of 104g for 95%CI. The
precision interval obtained from FA was -57g (95%CI: -115g, -16g), which represents an
absolute range of 99g for 95%CI. And finally, the precision interval obtained from BFA was -
57g (95%CI: -105g, -10g), which represents an absolute range of 95g.

Therefore, Figure 3.3 illustrates that the precision of the regression estimates
increased when more conceptual steps of BFA were performed. This demonstrates BFA can
provide a more precise measure of mixture effects when multiple correlated co-pollutants are
in the model.

3.4.4. BKMR analysis results

The dose-response function between individual PCBs and PFAS chemicals and the
change in birth weight using BKMR are shown (Figure 3.4), as is the overall association
between the chemical mixtures and birth weight (Figure 3.5). Exposure to PCB congeners and
PFAS congeners both displayed inverse associations with birth weight. It is apparent that as
the concentration quantile of PCB congeners and PFAS congeners increases, then the mean
estimate of birth weight decreases. The confidence intervals of the estimates at the extreme
ends were the widest due to the smaller sample sizes. The BKMR results for the rest of the
chemicals are in Supplementary Figures 3.3-4. All regression estimates obtained from BKMR
had 95% interval estimates that were imprecise and contained the null. A separate BKMR
analysis using the variable selection feature was also conducted to examine the influence of
different variables in the model (Supplementary Table 3.2). According to the results, all
individual variables from the seven different classes of chemicals were included in each
BKMR model, giving the same results as the BKMR when variable selection is not used. This
is reasonable because each class of chemical mixture is selected based on its similar
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chemical structures. All individual chemicals within the mixtures have high correlation with one
other. Therefore, the model selection did not drop any variables to improve the parameter
estimates. The posterior inclusion probability for each chemicals are given in Supplementary
Table 3.2.

3.4.5. Sensitivity analysis results

When the biomarkers were analyzed one at a time in MLR while controlling for
covariates, then PCB 170, PCB 180, and PCB 153 from the PCBs mixture, PBDE 153 from
the PBDE mixture, DDE from the OCPs mixture, MEP from the phthalate mixture, DEP, DMP
and DEDTP from the OPs mixture, BPA, MPB and TCS from the phenol mixture and all
biomarkers from the PFAS mixture displayed negative associations with birth weight (Table
3.3). All the associations, however, contained the null value of zero.

The regression coefficients and the variances associated with the regression
coefficients were both inflated in magnitude after adjusting for co-pollutants within the same
mixture class (Table 3.3). Some individual chemicals even showed a reversal in the direction
of effect estimates. For example, in the single pollutant model, a ten-fold increase in the
concentrations of PCB 170 was associated with a change in birth weight of -118g (95%CI: -
348g, 111g). In the model adjusted for co-pollutants, a ten-fold in the concentrations of PCB
170 is associated with a change in birth weight of 1267g (95%CI: 97g, 2437g). These results
show that with the presence of collinearity, MLR is inadequate for mixture analysis because
variances associated with parameter estimates would inflate to extreme values, resulting in
unreliable and imprecise estimates.

3.5. Discussion

Most of the previous mixture analysis of the HOME Study on perinatal outcomes
focused on reducing collinearity among individual chemicals. For example, Woods et al. used
a hierarchical Bayesian approach to reduce collinearity in the data and generated
comprehensive estimates of multiple individual chemical congeners.10 Kalloo et al. employed
both nonparametric (k-means clustering) and parametric approaches (principal component
analysis) to generate effect estimates associated with mixtures in conjunction with collinearity
reduction.31 Additionally, numerous papers on the effects of mixtures on other childhood
outcomes utilized innovative statistical methods to reduce collinearity..40,46-52 Yet, few paid
attentions to the challenge of interpretability.
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We evaluated whether BFA improves precision and interpretability when estimating the
health effects of prenatal exposure to chemical mixtures, compared to established methods
MLR and BKMR. Among the three methods, BFA produced the most precise effect estimates
for the mixture models (Figure 3). The improvement in the precision of the estimate were
apparent for both PCBs mixture and PFAS mixtures. Furthermore, the magnitude of the
precision improvement was directly related to the degree of correlation among the chemicals.
PCBs had higher correlation among each other compared to PFAS and hence had more
improvement in precision of the estimates. The improvement of precision is achieved by a
combination of latent variable modelling and Bayesian techniques.26,27 Latent variable
modelling alone decreases variance greatly while Bayesian procedures and prior distributions
further stabilize the parameter estimates. Meanwhile, BKMR uses non-linear smoothing
techniques,23 which resulted in less precise effect estimates compared with BFA. This is due
to the additional amount of variance introduced by allowing non-linearity in the kernel
approximating functions. However, both BFA and BKMR performed better than the co-
pollutant adjusted MLR models.

MLR showed poor estimate precision and is, therefore, inadequate for mixture
analysis.15-17 The precision of the MLR regression coefficients is drastically reduced after co-
pollutant adjustment is made (Table 3). This inflation of variances in the regression estimates
is directly related to the degree of collinearity present among the exposures.20 While the single
pollutant regression models could generate more precise estimation, it provided biased
estimates because it assumed the absence of the co-pollutant confounding. Additionally, the
effect estimates generated in parallel by single pollutant model cannot be simply added
arithmetically for mixture effects.20

Among the three methods, BFA had the clearest interpretation of the mixture effect
estimates. It achieved this by simultaneously modelling the parameter estimates and error
terms as depicted in Equations 1 and 2. The regression coefficients generated by BFA can be
directly interpreted as the mixture-specific regression coefficients. For example, a change in
birth weight for every ten-fold increase in PCB mixture concentration (consists of PCB 118,
138, 153, 170 and 180) is associated with a birth weight change of -81g (95%CI: -132g, -31g),
While a change in birth weight for every ten-fold increase in PFAS mixture concentration
(consists of PFHXS, PFNA, PFOA and PFOS) is associated with a birth weight change of -57g
(95%CI -105g, -10g). Additionally, the BFA modelling framework can be explicitly defined by
researchers, making replications and comparisons of results across studies possible. BFA
can also be used flexibly for different types of research questions including source-specific
mixture studies where the latent construct is defined as the exposure source instead of the
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chemical structure, as was in this study.53

The latent variable in BFA is a form of dimensional reduction method that can capture
information of all the individual chemicals and produce a single index representing the overall
exposure of the mixtures.39,53 The Bayesian framework applied further restrictions to the
parameter estimates to reduce variance. In this study, an uninformative gaussian prior with
mean zero and variance 1000 were employed for the parameter estimates in the BKMR and
BFA. This means that minimal prior information was introduced in our model to influence the
final estimates and the information of our data dictate our analysis results. Therefore, the
assumptions made in our Bayesian analysis was the same as the non-Bayesian analysis, with
the exception that BKMR assumes non-linear relationship while BFA assumes linear
relationship. Mathematically, the amount of variance is reduced because only one exposure is
modelled instead of all five within the mixture. This simplifies the interpretation and provides a
more explicit and specific definition of mixture exposure by capturing all information of the
individual chemicals instead of other dimensional reduction methods where a subset of the
chemicals is selected.15,20,54,55

BKMR provided graphical outputs clearly depicting the dose-response curve. However,
the interpretation is challenging because BKMR is an extremely flexible model. During the
modelling procedure, different non-linear transformations were used for each exposure. This is
advantageous for detection and characterization of non-linear effect in the dose-response
curves of the chemical mixtures. However, when the actual relationship of the dose-response
is linear, it could introduce additional complexities in the model through the flexible
approximation functions. Furthermore, these approximation functions are dependent on the
specific data structures of the cohort. This makes direct comparisons of analysis results from
different cohorts challenging unless the characteristics of the cohorts are generally
comparable, and the same assumption of the biological mechanism are made.

In terms of the interpretation of health effects in our analysis, our BFA results were
coherent with our BKMR results. Both methods found that prenatal exposure to PCBs and
PFAS were associated with reduced birth weight. Our findings are consistent with previous
birth weight studies using the HOME Study data, although the magnitude of the effects may
vary slightly due to a combination of reasons such as different data transformation or
standardization techniques.30,31 For example, in a single pollutant study, Rauch et al. found
that every 10-fold increase in the concentration of selected OPs (∑DAP, ∑DEP, ∑DMP) was
associated with slight negative, but less precise associations with birth weight.30 In a mixture
study, Kalloo et al. used principal component and clustering techniques and found that the
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principal component and cluster with mostly OCPs and phenol compounds were associated
with a reduction of birth weight, although the 95% CI contained the null.30 Although the effect
estimate computed by Kalloo et al. can be attributed to certain mixtures such as principal
components and clusters,30 it is difficult to interpret the results since the mixture generated
were dependent solely on the available data. The mixtures identified can be very different
given different make-up of the study population, making direct comparisons of the results
difficult.

While the strength of BFA in estimation precision and interpretability is apparent, BFA
has several limitations. BFA assumes a linear relationship among the latent mixture which is
informed by specific hypothetical causal diagrams and prior distributions of the parameters. If
the actual relationship among these variables deviates significantly from the assumptions,
BFA results may be biased. Another disadvantage of BFA is the relatively longer computation
time needed for achieving model convergences when more variables and more sample sizes
are supplied. It should also be noted that depending on the internal variance-covariance
relationship present in the data, researchers may need to try different priors and tuning
parameters such as the number of burn-in iterations and the ratio of adaptive and posterior
sample size for the model to converge successfully. Additionally, our study contained
limitations that could not be addressed by simply employing different methods. For example,
some of the chemicals analyzed, such as phthalates, may vary during pregnancy.
Measurement errors may exist in these non-persistent chemicals because of their short half-
lives and that measurements taken at a specific time may not reflect the actual amount of
exposure.56

In terms of the generalizability for our analysis, the sample size of the HOME Study is
relatively modest to examine multiple classes of environmental chemical mixtures. However,
the concentrations of environmental chemicals in the HOME Study are similar to those in
pregnant women in the U.S. National Health and Nutrition Examination Survey at similar time
of enrollment.58 The estimation of mixture-specific regression coefficients without considering
accompanying classes of chemical mixture is a limitation of the study. Ideally, a mixture
analysis method includes all classes of chemical exposures, but computational burden is a
hinderance. In the future, it is possible to combine different variable selection methods in
multiple stages to enhance the estimation of regression coefficients for chemicals from
different classes with an increasing sample size.

3.6. Conclusion
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We examined three different statistical approaches to characterize and quantify the
association between birth weight and prenatal exposures to seven classes of environmental
chemical mixtures. We found that PCBs and PFAS displayed strong associations with reduced
birth weight. We demonstrated the advantages of BFA in estimate precision and
interpretability, while BKMR excels at visualizing dose-response relationships. Therefore,
BFA and BKMR can complement each other to provide a more comprehensive interpretation
of the mixture-specific effect. We also demonstrated the inadequacy of MLR for mixture
assessment, especially in the presence of collinearity.
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3.8. Table and figures

Table 3.1 Names and abbreviation of environmental chemical mixtures and the associated
individual chemical biomarkers from pregnant women for HOME study, 2003-2006, Cincinnati,
OH, n=384

Mixture group Individual chemical biomarkers

Polychlorinated Biphenyls (PCBs) PCB 118

PCB 138

PCB 153

PCB 170

PCB 180

Polybrominated Diphenyl Ethers
(PBDEs)

PBDE 28

PBDE 47

PBDE 99

PBDE 100

PBDE 153

Organochlorine Pesticides (OCPs) Dichlorodiphenyldichloroethylene (DDE)

Dichlorodiphenyltrichloroethane (DDT)

Trans-nonachlor (T_NONA)

Oxychlordane (OXYCHLOR)

Hexachlorobenzene (HCB)

Organophosphate Pesticides (OPs) Dimethyldithiophosphate (DMDTP)

Diethylthiophosphate (DETP)

Diethyl phosphate (DEP)
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Dimethyl thiophosphate (DMTP)

Dimethyl phosphate (DMP)

Diethyldithiophosphate (DEDTP)

Phthalates Molar sum of di-2-ethylhexyl phthalate (ΣDEHP)*

Mono-benzyl phthalate (MBzP)

Mono-n-butyl phthalate (MnBP)

Mono-iso-butyl phthalate (MiBP)

Mono-ethyl phthalate (MEP)

Phenols Bisphenol A (BPA)

Methyl Paraben (MPB)

Benzophenone-3 (BP3)

Propyl Paraben (PPB)

Triclosan (TCS)

Perfluoroalkyl and Polyfluoroalkyl
Substances (PFAS)

Perfluorohexanesulfonic acid (PFHXS)

Perfluorononanoic acid (PFNA)

Perfluorooctanoic acid (PFOA)

Perfluorooctanesulfonic acid (PFOS)

*Weighted molar sum of the DEHP metabolites calculated from:

Mono-(2-ethylhexyl) phthalate (MEHP), Mono(2-ethyl-5-oxohexyl) phthalate (MEHHP)

Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP),Mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP),

expressed in units of ng/mL of MECPP (308 g/mol).

https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorohexanesulfonic-acid
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Table 3.2 Distribution of birth weight in relation to participant characteristics among women
in the HOME study, 2003-2006, Cincinnati, OH.

n (%) Birth weight (g)

mean ± SD

All Participants 384 (100%) 3352 ± 632

Maternal Age

<25 89 (23.2%) 3066 ± 608

25-29 109 (28.0%) 3447 ± 623

30-34 123 (32.0%) 3454 ± 579

35+ 63 (16.4%) 3391 ± 674

Education

Bachelor’s Degree or higher 233 (60.1%) 3403 ± 664

Some college or 2-y degree 94 (24.5%) 3272 ± 573

High school diploma or Some high
school

57 (14.8%) 3270 ± 577

Race

White 240 (62.5%) 3484 ± 635
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Black 117 (30.5%) 3128 ± 538

Other 27 (7.0%) 3148 ± 680

Marital Status

Married, Living with partner 252 (65.6%) 3454 ± 637

Not Married, Living with partner 53 (13.8%) 3200 ± 551

Not Living with Partner 79 (20.6%) 3128 ± 596

Household Income

<$25,000 98 (25.5%) 3123 ± 515

>$25,000 & <$50,000 83 (21.6%) 3392 ± 685

>$50,000 & <$100,000 139 (36.2%) 3472 ± 670

>$100,000 64 (16.7%) 3390 ± 559

Infant Sex

Male 176 (45.8%) 3473 ± 686

Female 208 (54.2%) 3249 ± 565

Maternal BMI
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Underweight or Normal 161 (41.9%) 3309 ± 582

Overweight 130 (33.9%) 3381 ± 629

Obese 93 (24.2%) 3385 ± 718
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Table 3.3 Regression coefficients for the association between individual environmental
chemical biomarkers (10-fold increases) and mean birth weight among women in the HOME
study, 2003-2006, Cincinnati, OH, using MLR.

ẞ adjusted for
covariates (95% CI)

ẞ adjusted for covariates and
other chemicals within the
mixture class (95% CI)

PCBs (n= 310)

PCB 118 78g

(-143g, 286g)

3g

(-330g, 336g)

PCB 138 37g

(-202g, 263g)

505g

(-235g, 1245g)

PCB 153 -99g

(-344g, 147g)

-418g

(-1645g, 808g)

PCB 170 -118g

(-348g, 111g)

1267g

(97g, 2437g)

PCB 180 -194g

(-423g, 35g)

-1461g

(-2696g, -227g)

PBDEs (n= 284)

PBDE 28 45g

(-101g, 191g)

-11g

(-381g, 360g)

PBDE 47 65g

(-66g, 195g)

-32g

(-703g, 638g)

PBDE 99 86g

(-38g, 210g)

180g

(-186g, 547g)

PBDE 100 17g

(-105g, 138g)

24g

(-497g, 545g)
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PBDE 153 -74g

(-189g, 42g)

-153g

(-392g, 86g)

OCPs (n= 237)

DDE -111g

(-358g, 137g)

-312g

(-627g, 3g)

DDT 102g

(-66g, 271g)

179g

(-20g, 377g)

OXYCHLOR 64g

(-233g, 361g)

183g

(-522g, 889g)

HCB 101g

(-284g, 487g)

132g

(-358g, 622g)

T_NONA 37g

(-208g, 282g)

-96g

(-640g, 448g)

Phthalates (n=366)

ΣDEHP 65g

(-26g, 157g)

48g

(-55g, 150g)

MEP -4g

(-94g, 86g)

-36g

(-134g, 62g)

MiBP 66g

(-47g, 181g)

22g

(-140g, 184g)

MnBP 73g

(-41g, 187g)

29g

(-134g, 192g)

MBZP 62g

(-38g, 162g)

29g

(-107g, 165g)
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OPs (n=360)

DMDTP 20g

(-26g, 66g)

34g

(-25g, 94g)

DETP 38g

(-23g, 98g)

34g

(-34g, 102g)

DEP -29g

(-81g, 24g)

-19g

(-81g, 43g)

DMTP 17g

(-58g, 89g)

35g

(-69g, 140g)

DMP -50g

(-106g, 7g)

-81g

(-157g, -5g)

DEDTP -5g

(-54g, 44g)

8g

(-43g, 59g)

Phenols (n=296)

BPA -35g

(-177g, 108g)

-32g

(-177g, 113g)

MPB -29g

(-136g, 78g)

-69g

(-222g, 84g)

BP3 40g

(-32g, 111g)

49g

(-26g, 123g)

PPB 0g

(-86g, 86g)

36g

(-86g, 156g)

TCS -11g

(-103g, 82g)

-14g

(-110g, 83g)
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PFAS (n=307)

PFHXS -109g

(-282g, 63g)

-41g

(-261g, 179g)

PFNA -251g

(-564g, 63g)

-160g

(-557g, 237g)

PFOA -114g

(-339g, 112g)

22g

(-265g, 310g)

PFOS -194g

(-429g, 42g)

-103g

(-469g, 264g)

1Total sample size for this analysis was reduced to exclude samples with missing values in one or
more of the chemical concentrations after the imputation process. The regression coefficients refer to
the association with every two-fold increase in the chemical concentration.

2 Adjusted for all covariates including cubic-spline gestational age, maternal age, maternal education,
race, marital status, household income, infant sex)
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Figure 3.1: Pearson correlation coefficients between environmental chemical biomarkers. The color
intensity of shaded circles indicates the magnitude of the correlation. Blue indicates a positive
correlation while red indicates a negative correlation.
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A.

B.

Figure 3.2: The associations between every ten-fold increase of the latent mixture of PCBs (A), the
latent mixture of PFAS (B) and birth weight (represented by coefficient β) and the factor loadings of
the individual congeners onto the latent mixture (represented by coefficient γ) among mother-child
birth pairs in the HOME Study estimated by Bayesian factor analysis (BFA) adjusted for covariates
including cubic-spline gestational age, maternal age, maternal education, race, marital status,
household income, infant sex
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A.

B.

Figure 3.3: Comparisons of the association between PCBs (A), PFAS (B) and change in birth weight
(g) according to different methods: The red bars represent the regression estimates β with 95% CI
for the single pollutant MLR model adjusted for covariates and co-pollutants. The green bars
represent the regression estimates β with 95% CI for the single pollutant model adjusted for
covariates, but not co-pollutants. The blue bars represent regression estimates β with 95% CI for
three different mixture-specific models related to the factor analysis model outlined (1. MLR with the
extracted latent variable. 2. FA. 3. BFA.)



89

A.

B.

Figure 3.4: Dose-response function (95% credible intervals) between every ten-fold increase in
concentrations of selected PCB congeners(A) and birth weight while fixing other PCB congener
concentrations at median values and PFAS congeners (B) and birth weight while fixing other PFAS
congener concentrations at median values estimated by Bayesian Kernel Machine Regression
(BKMR) adjusted for covariates including cubic-spline gestational age, maternal age, maternal
education, race, marital status, household income, infant sex.
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A.

B.

Figure 3.5: Difference in birth weight (95% credible intervals) for different percentiles of the
concentrations of all PCB congeners (A) and all PFAS congeners (B) while centering the effect at
median concentrations at zero estimated by Bayesian Kernel Machine Regression (BKMR) adjusted
for covariates including cubic-spline gestational age, maternal age, maternal education, race, marital
status, household income, infant sex.
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3.9. Supplementary materials

Supplementary Table 3.1. Regression coefficients for the relation between participant
covariates and mean birth weight among women in the HOME study, 2003-2006, Cincinnati,
OH. using Multiple Linear Regression (n=384).

n (%) Birth Weight
Unadjusted mean

(95% CI)

Birth Weight
Adjusted* mean

(95% CI)

Maternal Age

Intercept 3079g
(2955g, 3204g)

759g
(-110g, 1629g)

<25 89 (23.2%) 0.0(referent) 0.0(referent)

25-29 109 (28.0%) 369g
(201g, 538g)

131g
(-14g, 275g)

30-34 123 (32.0%) 377g
(212g, 542)

77g
(-84g, 239g)

35+ 63 (16.4%) 311g
(115g, 507g)

74g
(-98g, 247g)

Education

Intercept 3403g
(3323g, 3484g)

759g
(-110g, 1629g)

Bachelor’s Degree or higher 233 (60.1%) 0.0(referent) 0.0(referent)

Some college or 2 year degree 94 (24.5%) -111g
(-259g, 36g)

-39g
(-152g, 73g)

High school diploma or Some high
school

57 (14.8%) -114g
(-300g, 72g)

-41g
(-193g, 112g)

Race

Intercept 3485g
(3408g, 3561g)

759g
(-110g, 1629g)

White 240 (62.5%) 0.0(referent) 0.0(referent)
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Black 117 (30.5%) -347g
(-480g, -214g)

-124g
(-264g, 15g)

Other 27 (7.0%) -336g
(-579g, -95g)

-164g
(-354g, 18g)

Marital Status

Intercept 3455g
(3380g, 3531g)

759g
(-110g, 1629g)

Married, Living with partner 252 (65.6%) 0.0(referent) 0.0(referent)

Not Married, Living with partner 53 (13.8%) -254g
(-433g, -76g)

-51g
(-223g, 120g)

Not Living with Partner 79 (20.6%) -315g
(-470g, -161g)

19g
(-159g, 198g)

Household Income

Intercept 3134g
(3014g, 3254g)

759g
(-110g, 1629g)

<$25,000 98 (25.5%) 0.0(referent) 0.0(referent)

>$25,000 & <$50,000 83 (21.6%) 297g
(158g, 436g)

168g
(23g, 313g)

>$50,000 & <$100,000 139 (36.2%) 320g
(171g, 470g)

175g
(33g, 283g)

>$100,000 64 (16.7%) 290g
(151g, 426g)

162g
(20g, 305g)

Infant Sex

Intercept 3473g
(3382g, 3563g)

759g
(-110g, 1629g)

Male 176 (45.8%) 0.0(referent) 0.0(referent)

Female 208 (54.2%) -218g
(-342g, -95g)

-194g
(-284g, -105g)

Maternal BMI
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Intercept 3310g
(3213g, 3406g)

759g
(-110g, 1629g)

Underweight or Normal 161 (41.9%) 0.0(referent) 0.0(referent)

Overweight 130 (33.9%) 70g
(-75g, 214g)

125g
(22g, 228g)

Obese 93 (24.2%) 88g
(-70g, 247g)

273g
(154g, 393g)

*Adjusted for all other covariates except the covariate being analyzed (cubic-spline gestational age, maternal
age, maternal education, race, marital status, household income, infant sex, and maternal BMI)

Supplementary Table 3.2. Extracted Posterior Inclusion Probability (PIP) for individual
chemicals within different chemical mixtures according to BKMR analysis with
application of variable selection

Extracted Posterior Inclusion Probability (PIP)

PCBs

PCB 118 0.437

PCB 153 0.447

PCB 138 0.468

PCB 180 0.611

PCB 170 0.540

PBDEs

PBDE 28 0.496
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PBDE 47 0.412

PBDE 99 0.545

PBDE 100 0.393

PBDE 153 0.623

OCPs

HCB 0.448

OXYCHLOR 0.441

DDE 0.551

DDT 0.484

T_NONA 0.461

OPs

DEDTP 0.435

DEP 0.533

DETP 0.637

DMDTP 0.756

DMP 0.660

DMTP 0.592

Phthalates

MEP 0.134
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MIBP 0.175

MnBP 0.268

MBZP 0.290

ΣDEHP 0.299

Phenols

BPA 0.221

MPB 0.207

BP3 0.519

PPB 0.241

TCS 0.190

PFAS

PFHXS 0.437

PFNA 0.447

PFOA 0.468

PFOS 0.611
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Supplementary Figure 3.1: Directed Acyclic Graph (DAG) for the relationship between
exposure to environmental chemical mixtures during pregnancy, birth weight, and covariates.
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Supplementary Figure 3.2: The associations between every ten-fold increase of the latent mixture
of polybrominated diphenyl ethers (PBDEs), phthalates, organochlorine pesticides (OCPs),
organophosphate pesticides (OPs), phenols and birth weight (represented by coefficient β) and the
factor loadings of the individual PBDE congeners onto the latent mixture (represented by coefficient γ)
among mother-child birth pairs in the HOME Study estimated by Bayesian factor analysis (BFA)
adjusted for covariates including cubic-spline gestational age, maternal age, maternal education,
race, marital status, household income, infant sex
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Supplementary Figure 3.3: Dose-response function (95% credible intervals) between every ten-fold
increase in concentrations of selected PBDE, Phthalates, OCPs, OPs and phenols congeners and
birth weight while fixing other congener concentrations at median values estimated by Bayesian
Kernel Machine Regression (BKMR) adjusted for covariates including cubic-spline gestational age,
maternal age, maternal education, race, marital status, household income, infant sex.
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Supplementary Figure 3.4: Differences in birth weight (95% credible intervals) for different
percentiles of the concentrations of all PBDE, Phthalates, OCPs, OPs and phenols congeners while
centring the effect at median concentrations at zero estimated by Bayesian Kernel Machine
Regression (BKMR) adjusted for covariates including cubic-spline gestational age, maternal age,
maternal education, race, marital status, household income, infant sex.
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Chapter 4. Mediation analysis of thyroid hormones for the
associations between environment chemical mixtures and
birth weight: The Health Outcome and Measures of
Environment (HOME) Study

4.1. Abstract

Background: Thyroid hormones are important for fetal development during pregnancy.
However, the combined effect of the exposure to chemical mixtures and thyroid hormones on fetal

growth have not been investigated. We examined the mediation effect of thyroid hormones on the

association between exposure to environmental chemicals and birth weight in order to provide

insights on the potential pathway thyroid hormone participates during fetal development.

Methods:We analyzed data from a cohort of 214 pregnant women and their newborns using

serum biomarkers of polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFAS). Serum

samples of thyroid hormones (TSH,TT3,FT3,TT4,FT4) were collected during the pregnancy and

delivery (maternal: 16 weeks, cord:delivery). We examined the association between exposure to

chemical mixtures and birth weight potentially mediated by thyroid hormones using both regression

models and latent variable models.

Results:We found little evidence of any mediation effect from thyroid hormones on the

association between exposure to PCBs, PFAS and infant birth weight. However, we found that the

relative impact of mediation by thyroid hormones TT4 and FT4 was greater than the impact of TSH,

TT3 and FT3. The use of latent modelling for mediation analysis with chemical mixtures was

advantageous in generating more precise confidence intervals compared to regression models.

Conclusion:We assessed the mediation effect of thyroid hormones on the association

between exposure to PCBs or PFAS and birth weight. Our results demonstrated little evidence of

mediation effects while we found that certain thyroid hormones may have a relatively larger impact

than other thyroid hormones.
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4.2. Introduction

Thyroid hormones are important for fetal development [1]. Specifically, sufficient
amounts of thyroid hormone T3, T4 are crucial for central nervous system development [1].
The fetus relies on the maternal supply of thyroid hormones until approximately 18–22 weeks
gestation [2]. The fetus continues to depend on maternal inputs for thyroid hormone
stabilization even after endogenous fetal production of thyroid hormones begins [3]. The
amount of T3, T4 are regulated by a specific pituitary gland hormone TSH[1]. The imbalance
of thyroid hormones during pregnancy can lead to growth delays and impairment in
neurological functions and lowered IQ scores as shown by previous studies [4]. Low thyroid
hormone during pregnancy may also cause neurological impairment [3] and diminished IQ in
children.

Laboratory studies have shown that exposure to polychlorinated biphenyls (PCBs) can
disrupt thyroid hormone homeostasis in cats and dogs [5]. Prenatal exposure to PCBs were
also shown to impact fetal development through thyroid hormone production in rats [33].
Dietary exposures to PCBs were reported to affect circulating levels of thyroid hormones and
thyrotropin (TSH) in humans [6]. Exposure to Perfluroalkyl substances (PFAS) can alter
circulating levels of thyroid hormones in animal studies [5]. Multiple epidemiological studies
have assessed the relationship between various PFAS and thyroid hormones of mothers,
neonates, and children, yet the findings were not conclusive [7–9].

The effect of PCBs/PFAS and the effect of thyroid hormones on birth weight have
rarely been explored simultaneously. Several studies examined the association between
PCBs/PFAS and birth weight [13, 14, 21, 22] while others examined the association between
thyroid hormones and birth weight [11,12]. PFAS mixtures were shown to have negligeable
association with elevated levels of thyroid hormones [11]. Exposure to environmental chemical
mixtures such as PCBs and PFAS were shown to have negative associations with fetal growth
indicator such as birth weight [13,14]. Therefore, investigations of the effect of environmental
chemicals on fetal growth through the potential mediation of thyroid hormones pathway could
be beneficial because it explores the thyroid hormone mechanism involved during fetal growth.
The objective of this study was to examine the mediating effect of thyroid hormones on the
associations between the exposure to PCBs/PFAS and birth weight. We used multiple linear
regression to estimate the effects of each chemical individually, and we used latent variable
model to estimate the effects of the mixtures.

https://paperpile.com/c/NxtL7h/ylaG
https://paperpile.com/c/NxtL7h/ylaG
https://paperpile.com/c/NxtL7h/c9Hv
https://paperpile.com/c/NxtL7h/GMMQ
https://paperpile.com/c/NxtL7h/ylaG
https://paperpile.com/c/NxtL7h/dtUU
https://paperpile.com/c/NxtL7h/GMMQ
https://paperpile.com/c/NxtL7h/0XAv
https://paperpile.com/c/NxtL7h/ssM6
https://paperpile.com/c/NxtL7h/0XAv
https://paperpile.com/c/NxtL7h/pGRE+F8T6+A9PJ
https://paperpile.com/c/NxtL7h/rShg
https://paperpile.com/c/NxtL7h/TRuyj+5vjoi
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4.3. Methods

4.3.1. Health Outcomes and Measures of the Environment (HOME) study

A detailed description of the characteristics of the HOME study is outlined elsewhere
[15]. The HOME Study is a prospective birth cohort of pregnant mothers and their infants
established in 2003 at the Cincinnati Children’s Environmental Health Center, Ohio. To
examine the impact of environmental chemicals on child health, pregnant mothers who
were >18 years old and at 13-19 weeks of gestation were recruited from seven prenatal clinics
and hospitals [15]. The Initial enrollment of the study was 468 women. After adjusting for 67
women dropping out before delivery, nine set of twins and three stillbirths, a total of 384
mothers who delivered singleton live birth were considered for the mediation analysis. We
further excluded mothers with missing information on any one of the thyroid hormones,
environmental chemicals and sociodemographic variables. The resulted study population
consist of 214 mothers for venous cord serum group and 159 mothers for maternal serum
group.

4.3.2. Biomarkers of environmental chemical mixtures

We collected blood samples from participants at approximately 16- and 26-weeks
gestation [15]. The Centers for Disease Control and Prevention Environmental Health
Laboratories used gas and liquid chromatography-mass spectrometry to measure the
concentrations of environmental chemical biomarkers in serum samples as previously
described [15]. The primary focus of this study is to investigate the impact of mediation from
thyroid hormones on the association between environmental mixtures and birth weight, and
we built upon the previous study [13] to select two classes of chemicals of interest:
polychorinated biphenyls (PCBs) and per/polyfluoroalykyl substances (PFAS). We used
samples measured at 16 weeks to maintain consistency across measures. For all biomarkers,
measurements below the limit of detection were replaced using single imputation based on a
truncated lognormal distribution [16]. The concentrations of these biomarkers were log2
transformed to reduce the effects of right skewness in the distribution and to assist with the
interpretation of the results. In regression analysis, the coefficients are interpreted as the
change in birth weight for every two-fold increase in the chemical concentrations.

4.3.3 Biomarkers of thyroid hormones

The maternal serum samples were provided by mothers at approximately 16 weeks

https://paperpile.com/c/NxtL7h/n2wH
https://paperpile.com/c/NxtL7h/n2wH
https://paperpile.com/c/NxtL7h/n2wH
https://paperpile.com/c/NxtL7h/n2wH
https://paperpile.com/c/NxtL7h/TRuyj
https://paperpile.com/c/NxtL7h/UVJa
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gestation and the cord serum samples were collected immediately after delivery [17]. The
collected specimens were stored at -70 degree Celsius and later analyzed by the Department
of Laboratory Medicine of the University of Washington [11]. Thyroid hormones and antibodies
were quantified using a clinical immunoassay analyzer. A total of five thyroid function related
biomarkers are included in our analysis: thyroid-stimulating hormone (TSH), free thyroxine
(FT4), total thyroxine (TT4), total triiodothyronine (TT3), and free triiodothyronine (FT3) [6].
The concentrations of these hormone biomarkers were also log2 transformed to reduce the
effects of right skewness in the distribution and to assist with the interpretation of the results.

4.3.4. Outcome variable

Infant birth weight, measured in grams (g), was abstracted from the medical records
and examined as a continuous variable. To examine fetal growth, we adjusted for gestational
age, measured in weeks. An alternative measure of the outcome is to use birth weight Z-score
standardized by gestational age percentiles [31]. This alternative measure of the outcome
statistically avoids the potential complications of modelling the relation between the exposure,
the gestational age and the birth weight. However the interpretation of the birth weight Z-score
by gestational age percentile is harder to understand, therefore we decided to keep our
outcome variable as infant birth weight in grams adjusted by gestational age.

4.3.5. Covariates

A direct acyclic graph was drawn based on the relationship among potential covariates
(Figure 4.1). According to Vanderweele [30,32], the potential variables on the exposure-
outcome pathway that are associated with the proposed mediator should not be controlled
since controlling such variables could induce bias in effect estimates. Therefore, we excluded
maternal BMI since it could potentially have an impact on the thyroid hormone pathway [28,
29]. Maternal age at delivery, infant sex, race (white, black, other), marital status (married &
living with partner, not married & living with partner, Not living with partner), maternal
education (Bachlor’s degree or higher, Some college or 2 year degree, High school diploma or
some high school), annual household income(x<$25,000, $25,000<x<$50000,
$50000<x<$100,000, x>$100,000), tobacco and lead exposure (measured in repeated blood
biomarkers concentrations), and gestational age were selected as covariates that should be
adjusted in our models. The effect of gestational duration on birth weight has been
documented to be nonlinear [18], therefore, we used the cubic spline approach for adjustment
for gestational age using the “splines” package in R [19].
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the maternal serum group (Table 4.3-6). The confidence interval of the regression coefficients
of the total effect between individual PCBs, PFAS and birthweight all contained the null except
PCB170 and PCB180 in the maternal serum group (Table 4.5). The regression coefficient of
the total effect of PCB170 on birth weight was -108g (95%CI: -321g, -14g) while the
regression coefficient of the total effect of PCB180 on birth weight was -120g (95%CI: -306g, -
53g). The confidence interval of the regression coefficients of the indirect effect of individual
PCBs and PFAS mediated by different thyroid hormones on birth weight all contained the null
value for both the cord serum group and the maternal serum group.

Although all of the indirect effects estimated by our model contained the null, we were
able to compare the magnitude of the mediation relatively between each individual PCBs,
PFAS and thyroid hormones by the mean percentage of mediation. For the cord serum group
(Table 4.3), the relative impact of mediation by the thyroid hormones on the effect between
PCBs and birth weight are slightly different. The indirect effects for FT4 and TT4 were
generally greater in magnitude than the effects in other thyroid hormones. Furthermore, this
larger FT4 and TT4 effect were apparent on the effect between PFAS and birth weight as well.
For the maternal serum group (Table 4.5), the relative impact of mediation by the thyroid
hormones of the effect between PCBs and birth weight also displayed greater relative impact
among FT4 and TT4 compared to the others. In summary, by the measure of the mediation
impact on a relative scale, TT4 and FT4 displayed higher degrees of mediation compared to
TSH, TT3 and FT3 for both individual PCBs and PFAS.

4.4.3. Mixture analysis results

Our latent variable model (Table 4.4, Table 4.6) involving PCBs and PFAs mixture
demonstrated similar results in both the cord serum group and maternal serum group
compared to our individual chemical analysis. While the effect estimate obtained by the latent
model still contained the null, the confidence interval was reduced by using latent variables to
represent the whole mixture compared to the individual chemical approach. For example, the
individual model of PFOA with FT4 as the mediator gave a total effect estimate of -169g
(95%CI: -494g,130g) with an indirect effect estimate of -4g (95%CI: -40g, 31g) while the latent
model of PFAs mixture with FT4 as the mediator gave an total estimate of -62g (-141g, 18g)
with an indirect effect estimate of 3g (95%CI: -5g, 10g). The relative mediation impact of the
thyroid hormones agreed with our individual chemical analysis where TT4, FT4 show greater
impact compared to TT3, FT3 and TSH in both cord serum and maternal serum group. The
maternal serum group had higher percentage of mediation (FT4: -27.8%, TT4: -15.8%)
compared with the cord serum group (FT4:-4.8%, TT4: -3.1%). This may be because the
maternal serum group have a different thyroid hormone concentration distribution compared to
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cord serum group as well as the fact that maternal serum group had a smaller sample size
compared to the cord serum group.

4.4.4. Correlation analysis on thyroid hormones, PCBs & PFAS

FT3 and TT3 had a correlation coefficient of 0.72 while TT4 and FT4 had a correlation
coefficient of 0.54 (Table 4.7). The correlations among PCBs were higher than PFAs (Table
4.8). Specifically, PCB153, PCB170 and PCB180 had extreme correlation with coefficients of
0.9 while the highest correlation between PFAs was 0.63 between PFHXS and PFOS. This
demonstrate that the latent modelling approaches can handle multiple degrees of correlations
when doing mixture analysis.

4.5. Discussion

We have found limited evidence for the mediation of thyroid hormones on the
associations between exposure to PCBs/PFAs and infant birth weight. By selecting individuals
with complete thyroid hormone data, however, the sample size of the study population
decreased from 468 to 214 (cord-serum) and 147 (maternal-serum). Another indicator of loss
of statistical power was that most of the chemical effect on birth weight also contained the null
when previous studies have shown more precise estimate that didn’t contain the null with a
larger sample size [13]. Although the indirect effects measured all contained the null value, we
were nonetheless able to extract some insights by comparing the magnitude of the mean
mediation effect estimates across different models. We have found that TT4 and FT4
contributed more to the mediation impact of change in birth weight than TT3, FT3 and TSH for
both PCBs and PFAs exposure. These findings were consistent between the individual
chemical models and the mixture model.

Thyroid hormones have been documented to be associated with levels of multiple
environmental chemicals such as PFAs in the general population [33, 34]. However, Few
studies have examined the indirect effect of thyroid hormone on the association between
chemical exposure and birth weight, but several have examined on the associations along the
exposure-mediation pathways[6,7,9,11,20]. Specifically, numerous published studies looked
into the association between PCBs/PFAs and birth weight [13,14,21,22], the association
between PCBs/PFAs and thyroid hormones [11,12], and the association between thyroid
hormones and fetal growth [23,24]. There is a general consensus in publication for the
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negative association between elevated level of PCBs/PFAs concentration in blood and birth
weight [13,21,22] as well as the negative association between elevated levels of specfic
thyroid hormones (FT4, TSH) and fetal growth [23]. Mixed results were documented for the
association between PFAs measured in maternal blood and maternal/neonatal thyroid
hormones [9,11]. For example, Lebeaux et al. found that elevated level of PFAS had no
association with level of thyroid hormones [11] while Xiao et al. found that every doubling of
PFAS was postively associated with TSH level [9]. Our findings were mostly consistent with
previous studies of the associations identified along the exposure-mediation pathway,
although discrepancies can be found due to distinct sample sizes, sample population and
different covariates selected in the modelling process.

Some studies found non-linear relationship between environmental chemicals, thyroid
hormones, and fetal growth indicator [25,26]. The impact of thyroid hormones on fetal growth
is complicated because the level of TSH, T4 and T3 require delicate balance with each other
during the pregnancy term [27]. Specifically, hormone levels needed for healthy fetal growth
may differ at times of pregnancy [27]. According to Pirahanchi [27], a healthy thyroid hormone
cycle typically has low levels of TSH and high level of FT4/FT3 during the first trimester. As
pregnancy continues, TSH increases and peak around the third trimester while FT4/FT3
continue to decrease and plateau, resulting in a consistent level of TT4/TT3 [27]. We
collected most of the maternal thyroid hormone and chemical biomarker data around 16
weeks (the beginning of the second trimester). Therefore, we may not capture the impact of
thyroid hormone on fetal growth as we were only using data at one particular time. To improve
characterizations of the thyroid hormones, future studies should aim to record more data at
different time points of the pregnancy to capture the flow and fluctuation of thyroid hormone
concentrations. Exposure measures such as change in hormone level in specific time-frames
with reference to a healthy thyroid hormone cycle could potentially be a better indicator than
hormone concentration level at any given time to explore the impact of the hormones on fetal
growth as well as how exposure to various chemical compounds disrupt the normal thyroid
hormone cycles.

Additionally, there are several other potential challenges with thyroid hormone
mediation analysis. Particularly, potential unmeasured effect modifiers and unmeasured
confounding variables in either exposure-mediator pathway or mediator-outcome pathways
[35] can impact the effect estimates of the mediation analysis. Although in this particular
studies, thyroid diseases were in the exclusion criteria of the study participants [15], individual
participants could still be taking supplements such as vitamin pills during the pregnancy that
could impact the level of thyroid hormones. Future studies should assess the impact of
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potential effect modifiers such as thyroid treatment and supplements when such data is
available. For potential confounders along the mediation pathway, there are potential variables
that were not measured in the study that can impact the effect estimates. One particular
example is the paternal factors such as paternal education. Future studies should also include
these factors in modelling if such data is available.

There are several strengths and limitations for this study. The first strength is that this
is the first study that comprehensively evaluate chemical exposure, thyroid hormone variation
and fetal growth indicator altogether for the HOME study. All previous studies either focused
on chemical and fetal growth [13,21], chemical and hormone variation [10] or hormone
variation and fetal growth [17]. The second strength is that we demonstrated that with limited
amount of data, we can effectively improve our precision estimates by the use of the latent
variable analysis to combine multiple individual chemical variables into one latent mixture
variable to improve statistical power in our analysis as illustrated in our mixture model.

A major limitation of our study is we assumed a linear relationship between the
exposure, mediator and the outcome. While the mechanism of thyroid hormone could be
potentially non-linear due to the feedback loop of TSH and TT4,TT3 hormones, future
mediation analysis could look into the non-linear relationship. Additionally, the modest sample
size of our study which only consists of a sub-population of the HOME study, might resulted in
limited external validity when extrapolating to the target population. Certain chemicals had
relatively low percentages of Limit of Detection (LODs) and the imputation method we
employed in our analysis may have underestimated the variance associated with these
chemicals. Lastly, it is essential to consider that exposure misclassification may have
influenced the analysis results since we were only using measurements taken at specific time
point during pregnancy.

4.6. Conclusion

We assessed the mediation effect of thyroid hormones on the association between
exposure to PCBs/PFAs and birth weight using both cord serum and maternal serum. We
found limited evidence of mediation effect by thyroid hormones on the association between
exposure to PCBs/PFAs and birth weight. Among all thyroid hormones, TT4/FT4 were
determined to have more impact on the mediation between chemical exposure and birth
weight. We also demonstrated by using latent variable modelling, we can improve statistical
power in the case of a relatively small sample size.
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4.8. Tables and figures

Table 4.1 Demographic characteristics of study participants with cord and maternal
serum data in the HOME study, 2003-2006, Cincinnati, OH.

Participants with Cord

Serum n (%)

Participants with

Maternal Serum n (%)

All Participants 214 (100%) 147 (100%)

Maternal Age

<25 50 (23%) 29 (20%)

25-35 60 (60%) 91 (62%)

35+ 35 (17%) 37 (18%)

Education

Bachelor’s Degree or higher 128 (60%) 82 (56%)

Some college or 2-y degree 54 (25%) 31 (21%)

High school diploma or Some high

school

32 (15%) 33 (23%)

Race
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White 135 (63%) 93 (63%)

Black 64 (30%) 41 (28%)

Other 15 (7%) 13 (9%)

Marital Status

Married, Living with partner 141 (66%) 101 (69%)

Not Married, Living with partner 30 (14%) 16 (11%)

Not Living with Partner 45 (21%) 29 (20%)

Household Income

<$25,000 56 (26%) 35 (24%)

>$25,000 & <$50,000 47 (22%) 29 (20%)

>$50,000 & <$100,000 75 (35%) 57 (39%)

>$100,000 36 (17%) 25 (17%)

Newborn Sex
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Male 98 (46%) 66 (45%)

Female 116 (54%) 81 (55%)

Maternal BMI

Underweight or Normal 90 (42%) 65 (44%)

Overweight 73 (34%) 51 (35%)

Obese 51 (24%) 31 (21%)
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Table 4.2 Distribution of Thyroid hormones, PCBs, and PFAS across study
participants in cord and maternal serum analysis in the HOME study, 2003-
2006, Cincinnati, OH.

Cord Serum Analysis Maternal Serum Analysis

Thyroid hormones
(mediator)

n Median(IQR) n Median(IQR)

TSH (uIU/L) 214 8.9 (6.3) 147 1.6 (1.0)

TT4 (ug/dL) 214 9.6 (1.8) 147 10.2 (1.9)

TT3 (ng/dL) 214 50.8 (16.0) 147 161.7 (23.4)

FT4 (ng/dL) 214 1.0 (0.1) 147 0.7 (0.1)

FT3 (pg/mL) 214 1.7 (0.3) 147 3.2 (0.3)

PCBS (Exposure) n Median(IQR) n Median(IQR)

PCB 118 (ng/g lipid) 214 6.0 (1.7) 147 6.0 (1.6)

PCB 138 (ng/g lipid) 214 10.2 (2.8) 147 10.0 (2.7)

PCB 153 (ng/g lipid) 214 14.4 (3.7) 147 14.2 (3.7)



118

PCB 170 (ng/g lipid) 214 3.5 (0.3) 147 3.5 (0.3)

PCB 180 (ng/g lipid) 214 8.7 (1.1) 147 8.6 (1.2)

PFAS (Exposure) n Median(IQR) n Median(IQR)

PFHXS (ng/ml) 214 1.6 (1.5) 147 1.6 (1.5)

PFNA (ng/ml) 214 1.0 (0.5) 147 0.9 (0.4)

PFOA (ng/ml) 214 5.6 (4.1) 147 5.6 (4.5)

PFOS (ng/ml) 214 14.5 (8.0) 147 14.3 (9.0)
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Table 4.3 Mediation effects of the specific thyroid hormones on birth weight when individual PCBs and PFAS
are treated as exposure variables (effect per two-fold increase in biomarker concentration) across study

participants in cord serum analysis in the HOME study, 2003-2006, Cincinnati, OH.
Cord
serum
analysis

Mediator Direct effect β (95%
CI)

Indirect Effect β
(95% CI)

Total Effect β (95%
CI)

%Mediated

PCB118 TSH 231g (-9, 544) 2g (-25, 25) 232g (0, 542) 0.7%
PCB138 TSH 118g (-260, 568) -3g (-41, 20) 116g (-252, 566) -2.3%
PCB153 TSH 33g (-402, 498) -1g (-34, 22) 32g (-412, 495) -3.9%
PCB170 TSH -20g (-426, 422) -1g (-40, 25) -21g (-429, 413) 4.9%
PCB180 TSH -67g (-450, 393) -1g (-39, 26) -68g (-451, 391) 2.0%

PCB118 TT3 229g (-35, 514) 3g (-17, 55) 232g (-10, 552) 1.3%
PCB138 TT3 110g (-263, 577) 6g (-28, 76) 116g (-254, 568) 5.2%
PCB153 TT3 29g (-393, 518) 3g (-34, 48) 32g (-411, 497) 9.4%
PCB170 TT3 -26g (-384, 503) 5g (-46, 104) -21g (-433, 421) -23.8%
PCB180 TT3 -78g (-448, 461) 10g (-46, 106) -68g (-441, 361) -14.5%

PCB118 FT3 238g (-56, 471) -6g (-45, 21) 232g (-15, 562) 2.6%
PCB138 FT3 101g (-295, 467) -5g (-48, 19) 116g (-232, 586) -4.3%
PCB153 FT3 37g (-452, 453) -5g (-52, 23) 32g (-400, 498) -15.6%
PCB170 FT3 -18g (-487, 308) -3g (-43, 25) -21g (-435, 420) 14.3%
PCB180 FT3 -64g (-469, 307) -4g (-49, 22) -68g (-431, 381) 5.9%

PCB118 TT4 238g (-22, 524) -6g (-53, 31) 232g (10, 572) -2.6%
PCB138 TT4 116g (-280, 551) 0g (-4, 27) 116g (-212, 528) 0.2%
PCB153 TT4 -26g (-469, 423) -6g (-72, 23) 32g (-391, 487) 18.8%
PCB170 TT4 -27g (-424, 430) 6g (-48, 66) -21g (-439, 423) -28.6%
PCB180 TT4 -75g (-510, 373) 7g (-47, 69) -68g (-501, 311) -10.2%

PCB118 FT4 229g (-113, 427) 3g (-24, 35) 232g (-30, 517) 1.3%
PCB138 FT4 119g (-358, 433) -3g (-45, 19) 116g (-222, 593) -2.6%
PCB153 FT4 23g (-421, 515) 9g (-42, 96) 32g (-409, 497) 28.1%
PCB170 FT4 -13g (-463, 412) -8g (-67, 37) -21g (-409, 392) 38.1%
PCB180 FT4 -61g (-513, 347) -7g (-74, 34) -68g (-482, 367) 10.3%

PFOA TSH -178g (-506, 123) 9g (-21, 57) -169g (-489, 129) -5.5%
PFNA TSH -4g (-439, 413) 0g (-27, 66) -4g (-415, 414) -0.2%
PFOS TSH -298g (-670, 26) 8g (-34, 73) -290g (-658, 53) -2.8%
PFHXS TSH -151g (-438, 101) 0g (-3, 21) -150g (-444, 104) -0.3%

PFOA TT3 -167g (-507, 135) -1g (-45, 33) -169g (-512, 130) 0.8%
PFNA TT3 -4g (-450, 420) 0g (-60, 60) -4g (-439, 419) -3.8%
PFOS TT3 -305g (-688, 58) 15g (-39, 74) -290g (-672, 74) -5.1%
PFHXS TT3 -162g (-421, 92) 12g (-30, 52) -150g(-407, 95) -7.7%

PFOA FT3 -170g (-474, 106) 1g (-198, 34) -169g (-470, 110) -0.8%
PFNA FT3 -10g (-453, 413) 0g (-43, 72) -9g (-457, 415) -5.2%
PFOS FT3 -292g (-648, 53) 2g (-3, 39) -290g (-648, 55) -0.7%
PFHXS FT3 -152g (-397, 97) 2g (-16, 33) -150g (-393, 98) -1.3%

PFOA TT4 -166g (-488, 124) -3g (-31, 22) -169g (-485, 116) 1.6%
PFNA TT4 -5g (-450, 421) 0g (-52, 21) -4g (-455, 417) -11.1%
PFOS TT4 -289g (-652, 91) 2g (-38, 17) -290g (-640, 80) 0.6%
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PFHXS TT4 -147g (-411, 104) -4g (-45, 30) -150g (-414, 106) 2.5%

PFOA FT4 -165g (-496, 134) -4g (-40, 31) -169g (-494, 130) 2.4%
PFNA FT4 -2g (-435, 412) -2g(-55, 31) -4g (-443, 390) 53%
PFOS FT4 -285g (-621, 70) -5g (-62, 35) -290g (-652, 74) 1.7%
PFHX FT4 -145g (-414, 110) -5g (-58, 41) -150g (-412, 87) 3.4%

Table 4.4 Mediation effects of the specific thyroid hormones on birth weight when PCBs mixtures, and PFAS
mixtures are treated as exposure variables (effect per two-fold increase in latent mixture variable) across study

participants in cord serum analysis in the HOME study, 2003-2006, Cincinnati, OH.
Cord
serum
analysis

Mediator Direct effect β
(95% CI)

Indirect Effect β
(95% CI)

Total Effect β (95%
CI)

%Mediated

PCBs
mixture

TSH 8g (-111, 123) 0g (-9, 7) 8g (-113, 125) 0.1%

TT3 8g (-103, 132) 0g (-7, 9) 8g (-105, 136) 1.6%
FT3 8g (-104, 130) -1g (-13,6) 8g (-103, 127) -1.0%
TT4 6g (-107, 132) 2g (-12, 25) 8g (-107, 133) 23.6%
FT4 8g (-105, 130) 0g (-9, 7) 8g (-105, 130) -4.0%

PFAS
mixture

TSH -61g (-144, 17) -1g (-7, 6) -62g (-146, 15) 1.5%

TT3 -62g (-143, 19) 0g (-6, 5) -62g (-145, 20) 0.6%
FT3 -63g (-147, 18) 1g (-3, 6) -62g (-141, 18) -1.3%
TT4 -65g (-148, 20) 2g (-6, 10) -64g (-143, 15) -3.1%
FT4 -64g (-146, 17) 3g (-5, 10) -62g (-141, 18) -4.8%
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Table 4.5 Mediation effects of the specific thyroid hormones on birth weight when individual PCBs and PFAS
are treated as exposure variables (effect per two-fold increase in biomarker concentration) across study

participants in maternal serum analysis in the HOME study, 2003-2006, Cincinnati, OH.
Cord
serum
analysis

Mediator Direct effect β (95%
CI)

Indirect Effect β
(95% CI)

Total Effect β (95%
CI)

%Mediated

PCB118 TSH 56g (-333, 376) 8g (-62, 106) 64g (-325, 395) 12%
PCB138 TSH -84g (-350, 129) -4g (-67, 115) 80g (-231, 242) -5.4%
PCB153 TSH -71g (-269, 78) 2g (-60, 106) -69g (-236, 87) -3.5%
PCB170 TSH -110g (-326, 22) 2g (-61, 79) -108g (-321, -14) -2.2%
PCB180 TSH -123g (-313, -59) 3g (-57, 81) -120g (-306, -53) -2.5%

PCB118 TT3 66g (-326, 414) -2g (-50, 112) 64g (-306, 431) -3.1%
PCB138 TT3 78g (-314, 205) 2g (-79, 85) 80g (-201, 312) 3.0%
PCB153 TT3 -68g (-287, 40) -1g (-65, 70) -69g (-216, 73) 1.4%
PCB170 TT3 -107g (-276, -20) -1g (-52, 46) -108g (-211, -24) 0.7%
PCB180 TT3 -119g (-379, -34) -1g (-59, 54) -120g (-386, -45) 0.7%

PCB118 FT3 62g (-337, 461) 1g (-88, 110) 64g (-298, 454) 1.8%
PCB138 FT3 84g (-179, 245) -4g (-50, 68) 80g (-187, 355) -4.9%
PCB153 FT3 -71g (-263, 59) 2g (-47, 72) -69g (-242, 68) -3.1%
PCB170 FT3 -109g (-382, -22) 1g (-41, 48) -108g (-383, -22) -0.9%
PCB180 FT3 -121g (-373, -43) 1g (-34, 47) -120g (-378, -39) -0.8%

PCB118 TT4 54g (-312, 432) 10g (-38, 45) 64g (-304, 431) 15.6%
PCB138 TT4 81g (-152, 255) -1g (-41, 71) 80g (-181, 151) -1.1%
PCB153 TT4 -70g (-239, 32) 1g (-65, 90) -69g (-246, 21) -1.9%
PCB170 TT4 -112g (-384, -43) 4g (-97, 102) -108g (-391, -22) -3.6%
PCB180 TT4 -125g (-307, -38) 5g (-99, 103) -120g (-303, -28) -4.4%

PCB118 FT4 57g (-368, 408) 6g (-52, 59) 64g (-356, 397) 10.1%
PCB138 FT4 85g (-122, 146) -5g (-144, 102) 80g (-131, 142) -6.8%
PCB153 FT4 -74g (-253, 41) 5g (-160, 141) -69g (-236, 37) -7.5%
PCB170 FT4 -117g (-342, -24) 9g (-145, 158) -108g (-351, -14) -8.0%
PCB180 FT4 -130g (-406, -41) 10g (-150, 150) -120g (-396, -33) -8.3%

PFOA TSH -132g (-510, 198) -1g (-57, 30) -133g (-512, 183) 0.7%
PFNA TSH 139g (-364, 537) -5g (-93, 75) 134g (-375, 550) -3.5%
PFOS TSH -93g (-563, 267) 0g (-47, 28) -94g (-563, 260) -0.1%
PFHXS TSH -57g (-340, 239) -1g (-37, 26) -58g (-342, 236) 1.1%

PFOA TT3 -134g (-549, 234) 1g (-57, 57) -133g (-543, 204) -0.7%
PFNA TT3 135g (-382, 586) 0g (-71, 53) 134g (-381, 578) -0.3%
PFOS TT3 -94g (-601, 234) 0g (-47, 27) -94g (-601, 223) -0.2%
PFHXS TT3 -59g (-348, 214) 0g (-25, 43) -58g (-344, 212) -0.4%

PFOA FT3 -131g (-571, 207) -2g (-49, 35) -133g (-568, 189) 1.2%
PFNA FT3 138g (-383, 556) -3g (-87, 49) 134g (-384, 543) -2.5%
PFOS FT3 -95g (-544, 232) 1g (-49, 45) -94g (-546, 244) -0.6%
PFHXS FT3 -59g (-357, 203) 1g (-37, 45) -58g (-339, 200) -1.7%

PFOA TT4 -134g (-552, 172) 1g (-39, 40) -133g (-485, 116) -0.9%
PFNA TT4 122g (-378, 586) 12g (-42, 142) 134g (-382, 605) 9.3%
PFOS TT4 -99g (-588, 238) 5g (-35, 78) -94g (-558, 247) -5.8%
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PFHXS TT4 -65g (-359, 176) 7g (-25, 61) -58g (-345, 185) -11.7%

PFOA FT4 -128g (-555, 190) -5g (-56, 43) -133g (-546, 180) 3.4%
PFNA FT4 139g (-422, 623) -4g(-71, 94) 134g (-420, 612) -3.1%
PFOS FT4 -94g (-635, 270) 0g (-54, 100) -94g (-603, 260) 0.2%
PFHX FT4 -64g (-348, 203) 5g (-26, 65) -58g (-341, 204) -8.8%

Table 4.6 Mediation effects of the specific thyroid hormones on birth weight when individual PCBs mixtures and
PFAS mixtures are treated as exposure variables (effect per two-fold increase in latent mixture variable) across study

participants in maternal serum analysis in the HOME study, 2003-2006, Cincinnati, OH.
Maternal
serum
analysis

Mediator Direct effect β
(95% CI)

Indirect Effect β
(95% CI)

Total Effect β (95%
CI)

%Mediated

PCBs
mixture

TSH -101g (-219, 12) 2g(-12,18) -99g (-215, 15) -2.2%

TT4 -101g (-224, 20) 2g (-17, 15) -99g (-224, 20) -7.3%
TT3 -101g (-219, 19) 2g (-18,27) -99g (-219, 14) -1.6%
FT3 -107g (-237,8) 7g (-15,40) -99g (-227,11) -2.0%
FT4 -103g (-213, 5) 4g (-14, 22) -99g (-211, 6) -3.6%

Mediator Direct effect β
(95% CI)

Indirect Effect β
(95% CI)

Total Effect β (95%
CI)

%Mediated

PFAS
mixture

TSH -21g (-126, 86) -1g (-4, 2) -22g (-124, 85) 4.5%

TT4 -24g (-128, 80) 5g (-9, 21) -18g (-122, 86) -27.8%
TT3 -22g (-126, 83) 0g (-4, 3) -22g (-125, 84) 1.8%
FT3 -22g (-127, 80) 1g (-5, 7) -21g (-121, 84) -4.8%
FT4 -22g (-126, 82) 3g ( -7, 12) -19g (-123 ,85) -15.8%
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Table 4.7 Correlation among the specific Thyroid hormones across study
participants in cord/maternal serum analysis in the HOME study, 2003-2006,
Cincinnati, OH.

TSH TT4 TT3 FT4 FT3
TSH 1 -0.08 0.14 -0.08 0.07
TT4 -0.08 1 0.30 0.54* 0.27
TT3 0.14 0.30 1 0.16 0.72*
FT4 -0.08 0.54* 0.16 1 0.27
FT3 0.07 0.27 0.72* 0.27 1
* : Correlation significantly different at α=0.05

Table 4.8 Correlation among the specific environmental chemicals within
mixture across study participants in cord/maternal serum analysis in the
HOME study, 2003-2006, Cincinnati, OH.

PFOA PFNA PFOS PFHXS
PFOA 1 0.48 0.51 0.37
PFNA 0.48 1 0.58* 0.44
PFOS 0.51 0.58* 1 0.63*
PFHXS 0.37 0.44 0.63* 1

PCB118 PCB138 PCB153 PCB170 PCB180
PCB118 1 0.73* 0.67* 0.54* 0.50
PCB138 0.73* 1 0.94* 0.84* 0.81*
PCB153 0.67* 0.94* 1 0.95* 0.94*
PCB170 0.54* 0.84* 0.95* 1 0.99*
PCB180 0.50 0.81* 0.94* 0.99* 1
* : Correlation significantly different at α=0.05
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Figure 4.1: Directed Acyclic Graph (DAG) for the relationship between exposure to
environmental chemical mixtures during pregnancy, thyroid hormones, birth weight, and
covariates. (Green:Exposure of interest, Blue: Mediator, Red: Outcome, Purple: Collider,
White: Confounder)
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Chapter 5. Conclusion

In summary, this MSc thesis has demonstrated the potential of using novel latent
variable approaches for estimating the health effects of chemical mixtures, showcasing their
favorable comparison to traditional approaches. We explored the association between
environmental chemical exposures during pregnancy and infant birth weight as well as the
association between environmental chemical exposures and infant birth weight considering
potential mediation of thyroid hormones. With the presence of co-linearity among the different
chemical biomarkers and thyroid hormone biomarkers, we examined a novel analysis
approach that utilize Bayesian methods and latent variable methods to achieve more reliable
estimates compared to traditional approaches.

5.1. Contribution

For our first objective, we utilized three distinct statistical methods to examine the
relationship between prenatal exposures to seven classes of environmental chemical mixtures
and birth weight. Our findings revealed directional associations between PCBs, PFAS, and
reduced birth weight. A 10-fold increase in the concentrations of PCB and PFAS mixtures was
associated with an 81g (95%CI -132g, -31g) and 57 g (95%CI -105g, -10g) reduction in birth
weight, respectively. For single-pollutant models, a 10-fold increases in the concentrations of
multiple chemicals were associated with reduced birth weight, yet the 95% CI all contained the
null. Variance inflation from MLR was apparent for models that adjusted for co-pollutants,
resulting in less precise confidence intervals.

For our second objective, we investigated the mediation effect of thyroid hormones on
the relationship between exposure to PCBs/PFAs and birth weight, considering both cord
serum and maternal serum samples. Our results provided limited evidence of a mediation
effect by thyroid hormones on the association between PCBs/PFAs exposure and birth weight.
Notably, among all the thyroid hormones examined, TT4/FT4 were found to have a greater
impact on mediating the relationship between chemical exposure and birth weight. However
caution is warrated in interpreting these results because the 95% confidence intervals from the
analysis were vary wide and imprecise.

For our third objective, through comparison of other existing methods, we
demonstrated the benefits of Bayesian Factor Analysis (BFA) and latent variable modelling in
terms of precise estimation and model interpretability. Specifically, for the first project,
Bayesian Kernel Machine Regression (BKMR) proved to be useful in visualizing dose-



126

response relationships. Therefore, combining BFA and BKMR allows for a more
comprehensive interpretation of the mixture-specific effect. Furthermore, we demonstrated the
limitations of Multiple Linear Regression (MLR) in both of our projects. When assessing
complex mixtures with the presence of colinearity either among exposure chemicals or
potential mediating thyroid hormones, variance inflation from MLR was apparent, resulting in
less precise confidence intervals.

5.2. Relevance for environmental health researchers and/or policy makers

For environmental health researchers and policy makers, this thesis would be relevant
in the result findings of our analysis as well as the methodology we employed. Our findings in
this thesis helped identify specific chemical mixtures and thyroid hormones that warrant more
attentions. In particular, exposure to PCBs and PFAs were found to be associated with
reduction in birth weight. Among different thyroid hormones, TT4/FT4 were found to have a
greater impact compared to other thyroid hormones for potential mediation on the association
between the PCBs, PFAs and infant birth weight. Environmental epidemiologists should
communicate the importance of the chemical mixtures to policymakers. Policymakers often
focus on single chemical exposures and rely on "safe" dose extrapolations on high-level
exposures. However, low-dose mixture exposures of multiple chemicals are significantly more
difficult to quantify and extrapolate, especially during vulnerable periods like gestation. It is
crucial for policymakers to understand that exposure to multiple low-dose chemicals can be
just as hazardous as high-level exposure to a single chemical. A deeper understanding of this
complex mixture relation is necessary for informed policy decisions.

From a methodological perspective, this study is relevant to epidemiologists as it
introduces new techniques that can be applied to study complex chemical mixtures. The
approaches addresses some of the common issues in mixture modelling such as poor
precision and difficulty in interpretation. These new approaches allow the examination of
mixture effects as a whole, while mitigating problems with interactions and collinearity. To aid
with using Bayesian factor analysis, we have supplied our codes (Appendix A), which shows
the LAVAAN package in R. Epidemiologists can consider implementing Bayesian techniques
and latent variable modelling for studies beyond the scope of this thesis. One of the commonly
identified problems in statistical methods is the challenge of providing meaningful parameter
estimation within the public health context. The interpretability of results is crucial as they
inform policies and practices. Models that offer good interpretability often tend to have less
flexibility, as it is difficult to provide clear interpretations when the exposure-response
relationship becomes more complex. Our approaches show promises in generating a
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framework that can be used for modelling complex mixture modelling and provide easy to
follow interpretation of the analysis results.

5.3. Limitations and Future work

For both of our applications, we utilized the structures of latent variable method, which
assumes the linear relationship between the variables involved. Although this assumption is
informed by specific hypothetical causal diagrams, if the true relationship among these
variables significantly deviates from these assumptions, then the resulting estimates may be
biased [1-3]. Therefore, for future studies, innovation in non-linear modelling can be beneficial
for comparison of analysis results and offer different interpretation of the effect of multiple
chemicals. Another limitation for our studies was the modest sample size, especially when we
are investigating multiple classes of environmental chemical mixtures and thyroid hormones.
Future studies should investigate the relationship between the variables with different cohorts,
preferably with a larger sample size that is more accommodating. For example, recently Hu et
al. [4] applied Bayesian kernel machine regression to model the health effects of chemical
mixtures on infant birthweight using data from the Maternal-Infant Research on Environmental
Chemicals (MIREC) study. This study uses a sample size of nearly 2000 pregnant women and
their infants. Future work could apply the Bayesian factor analysis method to the MIREC data.

Other limitations of our study concern the challenges of measurement of chemical
exposure using biomarkers [3]. Certain chemicals had relatively low percentages of Limit of
Detection (LODs) and the imputation method we employed in our analysis may have
underestimated the variance of parameter estimates in the birthweight models. It is also
important to note that we were only using measurements taken at one specific time point
during pregnancy for quantification of the chemical exposure and hormone levels during
pregnancy, exposure misclassification could potentially influenced the analysis results [5].
Future research should examine different ways of exposure classification such as repeated
measurements of chemicals during pregnancy [6-9].

For both of our projects, we picked infant birth weight as the outcome for evaluation.
This allows easier interpretation of the results and gives conveniences in modelling as infant
birth weight is a continuous measurable variable. However, fetal growth is a complicated
phenomenon that should not be characterized just by birth weight. Alternative measure such
as birth weight Z-scores that incorporates gestational age in fetal growth characterization can
be helpful and future research should examine these alternative approaches. Another major
prenatal health outcome is preterm birth. Future studies may investigate further into survival



128

analysis approaches that incorporate Bayesian and latent variable approaches to generate
more insight on the complicated relationship between environmental chemicals and duration
of gestation. For example, a Cox proportional hazards model [10] can be used to examine the
relationship between the individual chemicals with respect to time to delivery before 37 weeks
(preterm birth). For example, Hu et al. modelled preterm birth and chemical exposures in the
MIREC data [11]. Hazard ratios (HRs) can be computed to compare the hazard of preterm
birth relative to increase in exposure to chemical during pregnancy. The results of such
studies could provide a more comprehensive picture of the relationship between duration of
gestation, preterm birth and environmental chemical exposures.
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Appendix. Example Analysis Code


	Figure 3.1: Pearson correlation coefficients betwe
	Table 3.3 Regression coefficients for the associat
	Figure 3.1: Pearson correlation coefficients betwe
	Blank Page
	Blank Page



