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Abstract

Estimating the individual treatment effect (ITE) from observational datasets has important
applications in domains such as personalized medicine, economics, and recommendation
systems. The observational datasets often exhibit treatment-selection bias, resulting in a
distribution shift among populations of samples that received different treatments. While
deep representation learning has shown great promise in adjusting for covariate shifts when
the treatment is a binary variable, the more practical and challenging task of handling con-
tinuous treatments (e.g., dosage of a medication) remains relatively underexplored. In this
thesis, our aim is to address the associated challenges with continuous treatment. Specifi-
cally, we propose a deep model that mitigates the distribution shift through an adversarial
procedure and predicts the potential outcomes using an attention mechanism. The model’s
objective is grounded in a theoretical upper bound on counterfactual prediction error. Our
experimental evaluation on semi-synthetic datasets also demonstrates the method’s empir-
ical superiority over a range of state-of-the-art.

Keywords: Representation Learning; Causal Inference; Treatment Effect Estimation; Dose
Response Estimation
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Chapter 1

Introduction

Causal Inference, the question of how a response would change when its causal effect changes,
plays a pivotal role in various domains, such as healthcare [37, 11], economics [45], or rec-
ommendation systems [31]. For example, in medicine, it aids in the decision-making process
regarding which medication yields better outcomes for patients, and in economics, it helps
estimate the impact of minimum wages on the employment rate of the population. Treat-
ment effect estimation is a problem in causal inference with the goal of measuring the effect
of a treatment (intervention) on an outcome of interest [25, 36]. Randomized control trials
(RCTs) are the most effective way of estimating treatment effects since they randomly assign
the population to different treatment groups. However, conducting RCTs can be expensive
or impractical [40]. Alternatively, observational datasets have been employed due to their
abundance. An observational dataset comprises samples with their covariates (features) de-
noted as X, their assigned treatment denoted as T , and their outcome under the treatment
assignment denoted as Y . The causal graph of the variables in observational datasets and
RCTs, along with a toy example of an observational dataset, are shown in Figure 1.1 and
Table 1.1, respectively.

The effect estimation problem is commonly studied within the potential outcome frame-
work, which aims to predict potential outcomes given the covariates and treatment, and
then compare them to estimate the effect [39]. Potential outcomes are the outcomes that
could occur under different treatments. For instance, in the case of binary treatment, where
T = 0 represents the control group and T = 1 represents the treated group, if Y (1) denotes
the outcome under treatment 1 and Y (0) denotes the outcome under treatment 0, the treat-
ment effect for a patient with covariates x can be defined as τ(x) = E[Y (1)− Y (0)|X = x].
However, in observational data, the patient only receives one of the treatments, and we
observe the outcome under that treatment (known as the factual outcome), while the out-
comes under the other treatments are unknown (referred to as counterfactual outcomes).
This means that in order to estimate the difference, we need to answer a counterfactual
question: ’What would be the outcome if a patient had received a different treatment?’
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Figure 1.1: The left figure demonstrates the causal graph in an observational dataset. The
covariates X have confounding effect on treatment T and outcome Y , and thus we need
to adjust for this shift. The ideal scenario is randomized control trial shown in the right
figure, where there is no causal edge between X and T and thus no confounding bias affect
the causal estimation. The core idea of representation learning is trying to find a lower-
dimensional representation similar to the covariates in randomized control trials.

Answering such counterfactual questions requires assumptions about the underlying data
generating process. The strong ignorability assumption, which ensures that there is no non-
causal association flow between treatment T and outcome Y in the causal graph except
through covariates X, is sufficient to make potential outcomes identifiable. In other words,
all the confounders are among the covariates X, and by adjusting for them (blocking the
association path between T and Y through X), we can estimate the causal effect.

Age Gender Salary T Y (1) Y (0)
24 M 50k 0 - 3
29 M 70k 1 2 -
35 F 100k 0 - 10
39 F 60k 1 3 -

Table 1.1: A toy example of an observational dataset with binary treatment. As shown
only one potential outcome is observed for each sample. Age, gender and salary are the
covariates.

Numerous statistical [27, 24] and machine learning [48, 43] methods have been proposed to
adjust for confounders. While the focus of the literature has mostly been on average-level
effects (the effect averaged over the entire population), in recent years, particularly in appli-
cations such as precision medicine and recommendation systems, there has been a need to
estimate heterogeneous (individual) treatment effects [29, 10]. The balanced representation
learning approach has recently shown remarkable success in the estimation of individual
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effects [28]. This approach is based on viewing the problem as a covariate shift problem in
domain adaptation [4, 33]. Since there exists a causal edge between T and X, the obser-
vational dataset exhibits treatment-selection bias, and the covariate distribution of groups
receiving different treatments is different. Therefore, we can predict the potential outcomes
using the treatment and balanced covariates (where the covariate distribution of groups is
the same) and link the difference between outcomes to the treatment effect. Instead of bal-
ancing the covariates themselves [14, 26], the authors of seminal work [28, 42] have shown
that we can learn a representation of covariates which has a small dependence on treat-
ment and (almost) contains the necessary information to predict the factual outcome. To
be more specific, [42] proposed the Treatment-Agnostic Representation Network (TARNet)
consisting of an encoder mapping the samples from the covariate space to the latent repre-
sentation space, and outcome prediction networks predicting the factual outcome from the
representation with respect to the given treatment. The architecture is shown in Figure 2.
The network has two objectives: predicting factual outcomes accurately with a supervised
learning loss function, and minimizing the distribution shift in the representation space be-
tween sub-populations using a distributional distance metric called the Integral Probability
Metric. Examples of IPM distance class are Wasserstein distance [47, 9], Hilbert Schmidt
Criterion Index [21], and Maximum Mean Discrepancy [20]. The objective is inspired by
their theoretical analysis demonstrating that factual outcome error plus the IPM term pro-
vides a bound on the counterfactual outcome error.

However, the proposed network and its theoretical analysis were limited to binary treat-
ments, with (T = 0) representing control groups and (T = 1) representing treated groups.
There have been a few attempts to extend the approach to more practical continuous-valued
treatments, such as dosage of a medicine, by modifying the architecture [35, 41] or the ob-
jective [3, 51]. The architecture needs to be modified because the prediction network cannot
have a separate head for each treatment arm. The objective also needs to be modified
because the distance between possible infinite sub-populations should be minimized.

Recently, the authors of [3] extended the theoretical analysis of [42] and demonstrated
that minimizing the IPM between P (Z, T ) and P (Z)P (T ) results in a similar bound on
counterfactual error for continuous treatments. Given that the marginal distribution P (Z)
is unknown, they approximated it with the IPM distance between P (Z, T = t) and P (Z, T =
¬t), where t denotes a treatment value assigned to a patient in the observational data, and
¬t denotes all existing treatments in the data except t. Similarly, [51] suggested discretizing
the treatment range into intervals and minimizing the maximum IPM distance between the
distributions of the two intervals. Both methods involve non-parametric approximations of
several IPM distances, which may be inaccurate for high-dimensional representation and
small training data [32]. Furthermore, IPMs are by definition worst-case distances, and
obtaining a treatment-invariant representation through IPM might be overly restrictive,
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Figure 1.2: Covariate Adjustment (conditioning on X) ensures that the remaining asso-
caition between two variables T and Y is causal.

potentially excluding important confounding factors for outcome prediction [56]. There are
also non-IPM representation learning methods. For instance, [12, 5] proposed an adversarial
game between a discriminator and the encoder to minimize the distance of different (non-
continuous) treatment group representations, [54] proposed preserving the local similarity
in the representation space, [22, 52] learn a disentangled representation to distinguish dif-
ferent latent factors, [56] enforce invertibility of the encoder function to prevent the loss
of covariate information, and [1] introduced a regularization scheme to generalize to coun-
terfactual outcomes. However, these methods lack theoretical justification [12, 22, 54] or
their guarantees are limited to binary treatments [56]. To address this, we propose a novel
generalization bound that uses Kullback-Leibler divergence instead of IPM to minimize the
distance between the distribution corresponding to the observational dataset P (Z, T ) and
the distribution corresponding to the RCT, P (Z)P (T ). We use an adversarial procedure
to estimate and minimize the KL divergence and demonstrate its superiority compared to
IPMs in our experiments.

The other challenge is that the network predicting the potential outcome from the rep-
resentation must incorporate the treatment value. Having a distinct prediction head for
each treatment value (as in the case of binary treatments shown in Figure 2) is not practi-
cal. Additionally, considering the treatment variable as an input of the outcome prediction
network along with the representation leads to overfitting in the much higher-dimensional
representation and significantly limits the impact of the treatment value [42, 41, 35]. Instead,
[41] proposed the Dose Response Network (DRNet), which divides the treatment range into
intervals and considers a distinct network for the prediction corresponding to treatments in
that interval. [35] proposed a varying coefficient network (VCNet) that involves the treat-
ment value in the network parameters through spline functions of treatment. However,
both networks may not capture the dependency between representation and treatment ef-
fectively, as the choice of spline functions in VCNet or the intervals in DRNet are made
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Figure 1.3: The architecture of Treatment-Agnostic Representation network (TARNet) [42].
All the samples are encoded into latent space Z and based on their assigned treatment will
be given as input to the corresponding regression head. The objective is to minimize lbal the
IPM distance between representation distribution of two sub-populations, and to minimize
the factual outcome prediction loss lpred. If a sample received t = 1 (t = 0), only the top
(bottom) prediction head will be used to predict the factual outcome.

irrespective of the representation and much of the flexibility is lost [8, 57]. To address this,
we construct a treatment embedding using spline functions of treatment, and then employ
a cross-attention mechanism taking representation and treatment as inputs to understand
how relevant each treatment spline is to representation dimension for predicting potential
outcomes. Constructing an embedding for scalar inputs in natural language processing [46]
and tabular datasets [19]. Moreover, using spline functions of treatment has been shown to
be effective to approximate a function [35]. Also, unlike [41, 35], the architecture is capable
of incorporating many spline functions without introducing additional parameters

In this thesis, we aim to generalize the approach of learning a balanced representation
with suitable optimization objective and architecture tailored for continuous treatment.
Our proposed objective is based on a theoretical generalization bound, and can be esti-
mated parameterically using an adversarial approach. We leverage attention mechanism in
the outcome prediction network which substantially reduces the error compared to other
architectures. Our main contributions are as follows:

1. We prove that under certain assumptions the counterfactual error is bounded by the
factual error and the KL divergence between P (Z)P (T ) and P (Z, T ). Unlike the IPM
distance, the KL divergence can be estimated parametrically, leading to more reliable
bound.
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2. We propose Adversarial Balanced Counterfactual Regression (ACFR) network. ACFR
minimizes the KL divergence using an adversarial game extracting a balanced rep-
resentation for continuous treatments. ACFR also minimizes the factual prediction
error by a cross-attention network that captures the complex dependency between
treatment and the representation.

3. We conduct an experimental comparison of ACFR against state-of-the-art methods
on semi-synthetic datasets, News and TCGA, and analyze the robustness to varying-
levels of treatment-selection bias for the methods.

The rest of the thesis is organized as follows. We discuss related works in chapter 2, the prob-
lem formulation and analysis in chapter 3, our methodology in chapter 4, the experiments
in chapter 5 and finally the conclusion in chapter 6.
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Chapter 2

Related Works

Treatment effect estimation is a broad field with a literature spanning across various disci-
plines including statistics and machine learning. We discuss the most related works to ours
in the following three categories.

2.1 Average Treatment Effect Estimation

One prominent method is Inverse Propensity Weighting (IPW), which assigns weights
T
e(x) + 1−T

1−e(x) to units based on propensity score e(x) to reduce treatment-selection bias.
The IPW estimator of ATE balances covariates between treatment and control groups, but
its accuracy depends on the accuracy of the propensity score estimation. The DR estima-
tor [38] was proposed to provide consistent and unbiased results leveraging an outcome
regression model. Based on the sufficiency of propensity score theorem, DragonNet [43] has
shown that you can learn a representation predictive of propensity score and outcome. The
above methods has been generalized from binary to continuous treatments. [24] proposed
the generalized propensity score (GPS) that generalizes the notion of propensity score to
continuous treatments. [53, 16] proposed approaches to matching and covariate balancing,
respectively, according to the weights learned using GPS. [35] proposed the Varying Coef-
ficient network (VCNet) which extracts a representation sufficient for GPS prediction and
predicts the outcome using a network where the treatment value influences the outcome
indirectly through parameters instead of being given directly as input. The VCNet archi-
tecture is shown in right side of Figure 2.1. [2] proposes an entropy balancing method to
learn more stable weights compared to GPS based weights. Our approach is fundamentally
different since sufficiency of (generalized) propensity score theorem holds only for the aver-
age effect and we aim to estimate the individual effect.
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2.2 Individual Treatment Effect Estimation

In the individual effect category, methods are mostly based on learning a balanced repre-
sentation. [28] offers the capability to learn complex, nonlinear relationships and balancing
the representation of covariates. [42] further improves the network by considering separate
regression heads for each potential outcome since there is a risk of losing the influence of the
treatment variable on the outcome with the concatenation. This allows for shared statistical
power in the common representation layers, while retaining the influence of treatment in the
separate heads. [22] introduces context-aware weighting scheme based on importance sam-
pling in addition to representation learning, effectively mitigating treatment-selection bias
in (ITE) estimation. [54] argues the necessity of imprtance sampleing and propose Local
Similarity Preserved Individual Treatment Effect (SITE) estimation. The approach is rooted
in semi supervised learning objectives and aims to preserve local similarity while simulta-
neously balancing data distributions. [22] modeled the underlying factors in observational
datasets and they propose to identify the disentangled representations these factors. Lever-
aging the knowledge of underlying factors, help to effectively reduce the shift by balancing
only the confounders. DRNet [41] considers continuous treatment values and discretized
the treatment range into intervals, minimized the pair-wise shift between the populations
fall within these intervals in the representation, and to handle continuous treatments they
proposed a multi head network to predict outcomes for the intervals of treatment. The DR-
Net architecture is shown in the left side of Figure 2.1. [3] demonstrated that minimizing
IPM between P (Z, T ) and P (Z)P (T ) coupled with factual outcome error leads to an upper
bound of the counterfactual error in continuous treatment setup. Nonetheless, in practice
they minimized the IPM sample-wise since P (Z) is unknown. Similarly, [50] demonstrated
that discretizing the treatment range and minimizing the maximum pair-wise IPM bounds
the counterfactual error. Our method is different as we learn the balanced representation
by minimizing the KL divergence.

2.3 Adversarial approach in Causal Inference

GANITE [55] and SCIGAN [7] employs a generative adversarial network (GAN) [18] to
generate counterfactual outcomes, enabling estimation of individualized treatment effects
in binary and continuous treatment setup. Moreover, learning a balanced (invariant) rep-
resentation using an adversarial discriminator has been studied in the transfer learning
literature to align source domain(s) to target domain(s) [17, 44, 49]. Similarly, in causal
inference [12, 5] aimed to balance the distributions of two treatment groups adversarially.
[6] extended the approach to the multiple time-varying treatment setting. However, the
existing methods consider only scenarios with a finite number of treatment options and do
not provide theoretical guarantees of their generalization capability.
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Figure 2.1: The figure is from [35] to compare the architecture of DRNet and VCNet. The
left figure shows that DRNet handles continuous treatment by discretizing the treatment
range and considering distinct regression head for each interval. The right figure shows that
VCNet handles the treatment by incorporating it into the parameters θ(t).
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Chapter 3

Problem Formulation &
Theoretical Analysis

We assume a dataset of the form D = {xi, ti, yi}Ni=1, where xi ∈ X ⊆ Rd denotes the co-
variates of the ith unit, ti ∈ [0, 1] is the continuous treatment that unit i received, and
yi ∈ Y ⊆ R denotes the outcome of interest for unit i after receiving treatment ti. N is the
total number of units, and d is the dimension size of covariates. We are interested in learning
a machine learning model to predict the causal quantity µ(x, t) = EY [Y (t)|X = x], which is
the potential expected outcome under treatment t for the individual with covariates x. Note
that, unlike binary ITE, the goal is to predict all potential outcomes, not just the difference
between them. Similar to previous works, we rely on the following standard assumptions to
make treatment effects identifiable from an observational dataset. We note that the validity
of strong ignorability cannot be assessed from data, and must be determined by domain
knowledge and understanding of the causal relationships between the variables.

[ Assumption 1 - Unconfoundedness] {Y (t)}t∈[0,1] ⊥⊥ T |X. Given covariates, treat-
ment and the potential outcomes are independent. In other words, there is no hidden con-
founder, and observing X is sufficient to predict the potential outcomes Y (t).

[ Assumption 2 - Overlap] P (T = t|X = x) > 0, ∀t ∈ [0, 1], ∀x ∈ X. In words, ev-
ery unit receives treatment level t with a probability greater than zero.

With the Assumption 1, we can condition on T = t in the definition µ(x, t), and then
Y (t) would be equivalent to Y , the factual outcome seen in the observational dataset. It is
now possible to predict potential outcome µ(x, t) for unit with covariates x and treatment
t using a machine learning model. Assumption 2 is also needed since the machine learning
model will produce some predicted outcome for any pairs, and the propensity score for them

10



should not be zero.

µ(x, t) = EY [Y (t)|X = x] = EY [Y (t)|X = x, T = t] = EY [Y |X = x, T = t]

However, the model will be trained with p(x, t) distribution and need to perform well on
p(x)p(t) distribution. In other words, the model should be able to generalize to all counter-
factuals. We aim to encode the covariates into a balanced latent representation and then use
the representation and treatment to predict factual outcomes. We analyze the properties
of encoder function ϕ : X → Z, where Z is the representation space, outcome prediction
function h : Z × [0, 1]→ Y and loss function L : Y × Y → R+.

[Definition 1] Define ℓL,h,ϕ(x, t) = L(h(ϕ(x), t), y) : X × [0, 1] → R+ to be the unit-
loss for a unit with covariate x that is intervened with treatment t. Unit-loss ℓL,h,ϕ(x, t)
measures loss L between the predicted outcome ŷ = h(ϕ(x), t) and the ground-truth out-
come y = µ(x, t).

Using the definition of unit-loss, we can define the expected prediction error of some treat-
ment t by marginalizing over the covariate distribution. As a result of treatment-treatment-
selection bias, covariate distribution of samples having received treatment t (factual) and
samples not having received treatment t (counterfactual) are different. We define factual
error εℓf (t) by marginalizing over p(x|t) and counterfactual error εℓcf (t) by marginalizing
over p(x) as follows.

εℓf (t) =
∫

X
ℓL,h,ϕ(x, t) p(x|t) dx

εℓcf (t) =
∫

T ′=[0,1]−{t}

∫
X
ℓL,h,ϕ(x, t)p(x|t′) dx dt′

=
∫

X
ℓL,h,ϕ(x, t) p(x) dx

We also define the expected error of all treatments by marginalizing over their range [0, 1]
as follows: εℓf =

∫
[0,1]

∫
X ℓL,h,ϕ(x, t) p(x, t) dx dt and εℓcf =

∫
[0,1]

∫
X ℓL,h,ϕ(x, t) p(x) p(t) dx dt.

Note that the expected factual error εℓf integrates over joint distribution p(x, t), and ex-
pected counterfactual error εℓcf integrates over p(x) p(t). We aim to reduce the distributional
distance in representation space Z to ensure that minimizing εℓf results in minimizing εℓcf .
We need the following two assumptions on encoder ϕ and unit-loss ℓ respectively to en-
sure that minimizing the distributional distance leads to minimizing the difference between
counterfactual and factual errors, and the loss value is not arbitrary large.

[Assumption 3] The encoder function ϕ is a one-to-one mapping and representation
space Z is the image of X under ϕ with the induced distribution pϕ(z).
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[Assumption 4] Let G be a class of functions with infinity norm less than 1, G = {g :
Z × [0, 1] → R+ | ||g||∞ ≤ 1}. Then, there exist a constant C > 0 such that ℓL,h,ϕ(x,t)

C ∈ G.
This means for any (x, t) we have ℓL,h,ϕ(x,t)

C ≤ 1.

Note that Assumptions 3 is common in balanced representation learning works [42, 3, 22],
and instantiating any distributional distance from IPMG(p, q) = supg∈G

∫
S g(s)

(
p(s) −

q(s)
)
ds where p and q are two probability distributions, requires specifying G class of func-

tions. Now we present our main theoretical results which demonstrates a bound on the
expected counterfactual error εℓcf consisting of the expected factual error εℓf and the KL
divergence between distributions pϕ(z) p(t) and pϕ(z, t). Note that the KL divergence is
non-negative and becomes zero if and only if two distributions are the same. Therefore,

DKL

(
pϕ(z)p(t)||pϕ(z, t)

)
= 0 implies pϕ(z, t) = pϕ(z) p(t) and εℓf = εℓcf . In other words,

in an randomized controlled trial setting, where tx, the KL divergence term is 0, and our
bound naturally reduces to a standard learning problem of learning a function to minizie
factual outcomes.

[Proposition 1 - Counterfactual Generalization Bound] Given the one-to-one en-
coder function ϕ : X → Z, the outcome prediction function h : Z × [0, 1] → Y, and the
unit-loss function ℓL,h,ϕ(x, t) that satisfies Assumption 4,

εℓcf ≤ εℓf + C

√
2DKL

(
pϕ(z)pt)

∣∣∣∣ pϕ(z, t)
)

Proof.

εℓcf − εℓf =
∫

[0,1]

∫
X
ℓL,h,ϕ(x, t)

[
p(x)p(t)− p(x, t)

]
dxdt (3.1)

=
∫

[0,1]

∫
Z
ℓL,h,ϕ(ψ(z), t)

[
p(ψ(z))p(t)− p(ψ(z), t)

]
JψJ

−1
ψ dψ(z)dt (3.2)

=
∫

[0,1]

∫
Z
ℓL,h,ϕ(ψ(z), t)

[
pϕ(z)p(t)− pϕ(z, t)

]
dzdt (3.3)

≤
∫

[0,1]

∫
Z
C

∣∣pϕ(z)p(t)− pϕ(z, t)
∣∣dzdt (3.4)

≤ C
√

2
∫

[0,1]

∫
Z
pϕ(z)p(t) log

(
pϕ(z)p(t)
pϕ(z, t)

)
dzdt (3.5)

= C

√
2DKL

(
pϕ(z)p(t)||pϕ(z, t)

)
(3.6)
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where in equality (3.2) J is the Jacobiant of ψ(z) which cancels with the inverse Jacobian
that appears after the change of variables in the differential term, the equality (3.3) holds
by the reparameterization x = ψ(z), inequality (3.4) holds by Assumption 4 constraining
the function ℓ, and the last two inequalities are based on Pinkser’s inequality

∫
|p − q| =

2TV D(p, q) ≤
√

2DKL(p, q).

For some applications, one might be interested in the treatment effect between two
different treatments rather than predicting all counterfactual outcomes. For instance, in bi-
nary treatment setting it is standard to report the model performance in terms of precision
of estimating heterogeneous effect (PEHE) [23] which measures the squared difference be-
tween ground-truth treatment effect τ(x) = µ(x, 1)−µ(x, 0) and predicted treatment effect
τ̂(x) = h(ϕ(x), 1) − h(ϕ(x), 0). We define the continuous counterpart εpehe(t1, t2) between
two treatment levels t1 and t2 and present an upper bound on it in Proposition 2.

[Definition 2] Define εpehe(t1, t2) =
∫

X
[(
µ(x, t1)−µ(x, t2)

)
−

(
h(ϕ(x), t1)−h(ϕ(x), t2)

)]2
p(x)dx

to be expected precision of estimating heterogeneous effect between treatments t1 and t2.

[Proposition 2 - Precision of Estimating Heterogeneous Effect Bound] Given the
one-to-one encoder function ϕ and outcome prediction function h as in Proposition 1, and
a unit-loss function ℓL,h,ϕ(x, t) that satisfies Assumption 4 and its associated L is squared
error ||.||2,

εpehe(t1, t2) ≤ εℓf (t1) + εℓf (t2) +

C

[√
2DKL

(
pϕ(z)

∣∣∣∣ pϕ(z|t1)
)

+
√

2DKL

(
pϕ(z)||pϕ(z|t2)

) ]

Proof. In order to prove Proposition 2, we first prove εℓcf (t) ≤ εℓf (t)+C
√

2DKL

(
pϕ(z)||pϕ(z|t)

)
.

Let ψ : Z → X be the inverse of ϕ.

εℓcf (t)− εℓf (t) =
∫

X
ℓL,h,ϕ(x, t)

[
p(x)− p(x|t)

]
dx (3.1)

=
∫

Z
ℓL,h,ϕ(ψ(z), t)

[
pϕ(z)− pϕ(z|t)

]
dz (3.2)

≤
∫

Z
C

∣∣pϕ(z)− pϕ(z|t)
∣∣ (3.3)

≤ C
√

2
∫

Z
pϕ(z) log

(
pϕ(z)
pϕ(z|t)

)
(3.4)

= C

√
2DKL

(
pϕ(z)||pϕ(z|t)

)
(3.5)
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Observe the difference between above bound and Proposition 1. Here the counterfactual
error is restricted to a treatment value, and thus it is bounded by the factual error of that
specific treatment, and the resulting shift from it. The proofs are similar.

εpehe(t1, t2) =
∫

X

[(
µ(x, t1)− µ(x, t2)

)
−

(
h(ϕ(x), t1)− h(ϕ(x), t2)

)]2
p(x)dx (3.6)

≤
∫
X

(
µ(x, t1)− h(ϕ(x), t1)

)2
p(x)dx+

∫
X

(
µ(x, t2)− h(ϕ(x), t2)

)2
p(x)dx

(3.7)

= εℓcf (t1) + εℓcf (t2) (3.8)

≤ εℓf (t1) + εℓf (t2) + C

[√
2DKL

(
pϕ(z)||pϕ(z|t1)

)
+

√
2DKL

(
pϕ(z)||pϕ(z|t2)

) ]
(3.9)

where the inequality (3.7) is by triangle inequality, and the last two lines hold by the
definition of counterfactual error and the above result respectively.
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Chapter 4

Methodology

Based on Proposition 1, we can reduce the counterfactual error by learning an encoder
function ϕ and an outcome prediction function h that jointly minimize distribution shift
and factual outcome error. We propose our method that implements functions ϕ and h using
neural networks and is trained with an objective function inspired by Proposition 1. We
note that although our theoretical analysis is based on encoder invertibility assumption,
we achieved better results with a more complex non-linear network compared to linear
invertible encoders. We note that this is a gap between theory and practice. Figure 4.1
illustrates the architecture of the ACFR network, consisting of an encoder network ϕ, an
outcome prediction network h, and a treatment prediction network π. The key aspects of
ACFR, distribution shift minimization and minimization of outcome prediction error, are
presented in the following.

4.1 Distribution Shift Minimization

As discussed earlier, in order to minimize distribution shift we aim to minimize the KL
divergence term with respect to encoder ϕ. The KL divergence can be rewritten as H(T )−
H(T |Z;ϕ) where H(T |Z;ϕ) is the conditional entropy. Marginal entropy H(T ) does not
depend on ϕ, thus minimizing KL divergence is equivalent to maximizing the conditional
entropy H(T |Z;ϕ) = E[log pϕ(t|z)]. However, as pϕ(t|z) is intractable we introduce varia-
tional distribution qπ(t|z) parameterized with π defined over the same space to approximate
it. For any variational distribution qπ(t|z) the following holds [15].

max
ϕ

H(T |Z;ϕ) = max
ϕ

inf
π

Epϕ(t,z)[− log qπ(t|z)]

We assume the distribution qπ(t|z) is a normal distribution with a fixed variance. We can
estimate the mean of qπ(t|z) by a neural network called treatment-prediction network π. By
approximating pϕ(z, t) with empirical data, we derive the following mean squared adversarial
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Figure 4.1: The architecture of Adversarial CoutnerFactual Regression Network consisting
of three sub-networks encoder ϕ, outcome predictor h, and treatment predictor π. Networks
ϕ and h are trained to minimize the outcome prediction loss lpred, and networks ϕ and π are
trained to maximize / minimize adversarial loss ladv. The encoder and treatment predictor
are implemented using linear layers, and the outcome predictor network consists of a cross-
attention module followed by a linear layer.

loss term from the above negative log likelihood.

ladv = max
ϕ

min
π

N∑
i=1

1
N

(ti − π(ϕ(xi)))2

Specifically, the treatment-predictor network π (The green network in Figure 4.1) is trained
to minimize ladv by predicting treatment t from representation z = ϕ(x). The encoder
network ϕ (The blue network in Figure 4.1) is trained to maximize ladv by extracting z in
such a way that the assigned treatment t is not distinguishable. Therefore KL divergence can
be estimated and minimized using two networks and an adversarial loss. Through alternating
optimization with respect to ϕ and π, and assuming that the treatment predictor π reaches
the optimum in each iteration, the resulting representation z has a desired property: E[t|z] =
E[t] [49]. This implies that knowing latent representation z does not provide additional
information for predicting the expected treatment.
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4.2 Factual Outcome Error Minimization

In this section, we discuss the minimization of the factual prediction error ϵℓf . Recall that:

ϵℓf =
∫

[0,1]

∫
X
ℓϕ,h(x, t) p(x, t) dx dt

=
∫

[0,1]

∫
X
L(h(ϕ(x), t), y) p(x, t) dx dt

Here, outcome y is a continuous variable, and we consider L to be the squared loss. By ap-
proximating p(x, t) with empirical distribution, we derive the following outcome prediction
loss that needs to be minimized with respect to ϕ and h:

lpred = min
ϕ,h

N∑
i=1

1
N

(
yi − h(ϕ(xi), ti)

)2

The encoder network ϕ is as defined in the previous section. The outcome prediction net-
work h, however, needs to be particularly designed to maintain the treatment impact on the
outcome. We aim to obtain an informative embedding for treatment value, and similar to
[57] predict the outcome from the embedding and representation using an attention-based
network. [57] proposed to learn the embedding by a neural network. While neural networks
are universal function approximators, it has been shown that they can not extract an ex-
pressive embedding from a scalar value due to optimization difficulties [19]. We construct
the treatment embedding applying a set of predefined spline functions to the treatment t
shown as S(t) = [s1(t), s2(t), . . . , sm(t)] in Figure 1. Spline functions have been shown to be
able to approximate a function in a piece-wise manner [13]

The treatment embedding and the representation are then passed to the cross attention
layer (red module in Figure 1) to learn the dependency between treatment and representa-
tion. A cross-attention layer has three matrices query Q, key K, and value V , where Q is
learned from treatment embedding using hq parameter and K and V are learned from the
representation using hk and hv parameters respectively. The output of the cross-attention
layer is σ(Q

TK√
dk

)V where dk is the dimension of the Q and K matrices. We then predict the
outcome ŷ by a linear layer after the cross attention module.

Unlike ad-hoc architectures VCNet [35] and DRNet [41], our outcome prediction network
is flexible in terms of the number of spline functions. We can incorporate as many splines
as needed without increasing the number of model parameters. This is particularly im-
portant in individual effect estimation, because each individual responds differently to a
given treatment, and hence different spline functions might be necessary to approximate
the treatment-response function for different patients. The proposed architecture can incor-
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porate a large number of spline functions, and the attention layer learns how relevant each
spline is for estimating each patient treatment-response function. It is also worth mentioning
that by setting hq to the identity, hk to the unity and parameterizing hv with a neural net-
work (which are sub-optimal choices) we recover VCNet and DRNet with a cross-attention
layer.

4.3 Adversarial Counterfactual Regression

In order to minimize the distribution shift, we derived the adversarial loss ladv and intro-
duced the networks encoder ϕ and treatment-prediction network π to optimize the loss.
Similarly, in order to predict factual outcome we derived outcome prediction loss lpred and
introduced its associated attention based prediction network h to minimize it. Now, we aim
to train the entire network to optimize the following objective function as Proposition 1
suggests:

LACFR = max
π

min
ϕ,h

lpred − γladv

where γ is a tunable parameter. Algorithm 1 presents pseudo-code for the training of the
ACFR network. At each iteration a batch of samples is given as input to the network (line
3). At the first stage ACFR predicts the treatment using encoder and treatment-prediction
networks, computes ladv and only updates parameters of π for M iterations (line 5-10). At
the second stage, ACFR predicts the outcome from the encoded representation of the batch
using outcome prediction network h , computes lpred and updates h and ϕ with respect to
lpred and lpred − γ ladv losses (line 11-14). Finally, the parameters of the encoder and the
prediction networks are returned for the inference phase (line 15).
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Algorithm 1: Adversarial Counterfactual Regression
1 Input: Factual samples (xi, ti, yi)N

i=1, encoder network with initial parameter ϕ0,
treatment-predictor network with initial parameters π0, hypothesis network with initial
parameters h0, batch size b, iteration number T , inner loop size M , trade-off parameter γ,
and the step sizes η1 and η2.

2 for t← 0 to T − 1 do
3 Sample a mini-batch: B = {i1, i2, ..., ib} ⊂ {1, 2, ..., N}
4 Encode into latent representation: zB = ϕt(xB)
5 Initialize ω0 = πt

6 for m← 0 to M − 1 do
7 Compute ladv and update ωm

8 t̂B = ωm(zB) ladv = 1
b

∑
i∈B(ti − t̂i)2

9 ωm+1 = ωm − η2∇ωladv(ωm)
10 πt+1 = ωm

11 Compute lpred and update ϕt and ht:
12 ŷ = ht(zB) lpred = 1

b

∑
i∈B(yi − ŷi)2

13 ϕt+1 = ϕt − η1
(
γ ∗ ∇ϕladv(ϕt)−∇ϕlpred(ϕt)

)
14 ht+1 = ht − η1∇hlpred(ht)
15 Return ϕT and hT
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Chapter 5

Experiments

Treatment effect estimation methods have to be evaluated for predicting potential out-
comes including counterfactuals which are unavailable in real-world observational datasets.
Therefore, synthetic or semi-synthetic datasets are commonly used since their treatment as-
signment mechanism and outcome function are known and hence counterfactual outcomes
can be generated. Note that this does not change the fact that only factual outcomes are
accessible during training and the methods need to mitigate the covariate shift. In this sec-
tion, we first describe the data generation process and the implementation of the baselines,
and then present our results.

5.1 Setup

5.1.1 Observational data generation

We used TCGA [34] and News [28] semi-synthetic datasets. TCGA dataset consists of gene
expression measurements of the 4000 most variable genes for 9659 cancer patients. The
News dataset which was introduced as a benchmark in [28] consists of 3477 word counts for
5000 randomly sampled news items from the NY times corpus. For each dataset, we first
normalized each covariate and then scaled every sample to have a norm 1. We then split the
datasets with 68/12/20 ratio into training, validation, and test sets. We followed treatment
and outcome generating process of [7] to ensure results are not affected by our own data
generation. The distribution for treatment assignment and function for outcome generation
are summarized in Table 5.1. The parameter α in Beta distribution of treatment assignment
determines the treatment-selection bias level (α is set 2 in all experiments unless otherwise
stated) and v1, v2 and v3 are vectors whose entries are sampled from the standard normal
distributionN (0, 1), and then are normalized. Based on Table 5.1, we assigned the treatment
and factual outcome for all samples in the training and validation sets. All methods are
then trained on the training set, and the validation set has been used for hyperparameter
selection. Same as [7], counterfactual outcomes for a unit are generated using the outcome
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function given the unit’s covariates and 65 grids in the range [0, 1] as an approximation of
the treatment range since we want our model to generalize uniformly well.

Dataset #Samples #Covariates Outcome function Treatment
assignment

TCGA 9659 4000 y = 10(vT1 x+ 12vT2 xt− 12vT3 xt2) t = Beta(α, β)

News 5000 3477 y = 10(vT1 x+ sin( v
T
2 x

vT
3 x
πt)) β = 2(α−1)vT

2 x

vT
3 x

+2−α

Table 5.1: Datasets and data generating functions. The treatment t ∈ [0, 1] comes from a
Beta distribution which depends on the covariates x, and potential outcome y is determined
with x and t. The parameter α controls both parameters of treatment assignment distribu-
tion and the shape of the distribution, and big α leads to high selection bias.

5.1.2 Baselines

We consider two state-of-the-art architectures for the outcome prediction network proposed
in DRNet [41] and VCNet [35], which are able to handle continuous treatments. We also
consider two metrics of the IPM class, Hilbert-Schmidt independence criterion (HSIC) and
Waaserstein (Wass) [47] distances for minimizing the distribution shift. This results in 4
methods DRNet-HSIC, DRNet-Wass, VCNet-HSIC, and VCNet-Wass. We then consider
SCIGAN [7] as a state-of-the-art generative model for continuous treatments. Moreover, we
compare against ADMIT [50] network with their own proposed algorithm to estimate the
IPM distance, resulting in ADMIT-Wass and ADMIT-HSIC methods. Finally we include a
Generalized Proposensity Score (GPS) method and a MLP network as baselines.

IPM Minimization

We discuss two IPM minimization techniques proposed in [3] and [50] respectively.
1) We approximate the IPM distance between P (Z, T ) and P (Z, T ) as follows. For each
sample in a batch, we minimize the distance of the joint distribution of that sample p(zi, ti)
and the joint distribution of all other samples p(zj , tj) in that batch. This involves computing
the IPM term once for each sample as follows:

1
N

N∑
i=1

IPM
(
p{zi, ti}, p{zi, tj}j:j ̸=i

)

2) We first divide the treatment range into l equal intervals. For the distribution of each
interval p∆i, we compute the IPM distance of that distribution and the distribution of all
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other intervals. We then minimize the maximum distance among all as follows

1
N

N∑
i=1

l∑
k=1

max
(
IPM

(
p∆k, p∆j:j ̸=k

))

where p∆k is the distribution of kth interval, and p∆j is the distribution of the interval
with maximum distance from ∆k. We use two classes of IPM families called Hilbert Schmidt
Independence Criterion (HSIC) and Wasserstein distances.

5.1.3 Implementation

We discuss the implementation of ACFR and baselines as well as the set of hyperparameters
used for each method.

Multi-Layer Perceptron

We construct an MLP network using feedforward layers. We vary the number of nodes in
each layer ∈ {50, 100, 200} and the number of hidden layers ∈ {1, 2, 3}. The network takes
the concatenation of covariates and treatment as input and predicts the factual outcome
without any attempt to reduce the covariate shift. The objective is minimizing the mean
squared error between the ground truth and the predicted outcome.

Dose-Response Network + IPM

The original implementation of DRNet considered the treatment variable as a pair of a
medication and a dosage, where the medication is categorical and the dosage is a continuous
variable. We adjusted the architecture and algorithm for continuous treatment. To minimize
the distribution distance in the representation space, we minimize the IPM distance using
the first procedure described above. We also use 5 distinct regression heads for the samples in
5 equal intervals: [0, 0.2], [0.2, 0.4], . . . , [0.8, 1]. Each regression head and the representation
network consist of feedforward layers, and similar to the MLP architecture, the treatment
value is given to each regression head as input. For the representation network, we vary the
number of nodes ∈ {50, 100, 200} and layers ∈ {1, 2, 3}, and for regression heads we vary
nodes {50, 100} and layers {0, 1}. The weight of the IPM loss term is {10−3, 10−2, 10−1, 1}
for News and {10−2, 10−1, 1, 10} for the TCGA dataset.

Varying Coefficient Network + IPM

We adjusted the implementation of VCNet, which was originally proposed for average treat-
ment effect and learned the representation based on propensity score. The adjusted VCNet
has two sub-networks. The representation network consists of feedforward layers, and the
outcome prediction network is constructed by involving the treatment value into the net-
work parameters. Specifically, we consider a set of spline functions with degree 2 and knots
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[1/3, 2/3] and use 5 heads, each associated with one spline function. The output of the
dynamic network is the linear combination of spline functions where the weights are the
output of the regression heads. To minimize the distribution distance in the representation
space, we minimize the IPM distance using the first technique explained above. The hyper-
parameters used for representation network and regression heads in dynamic network is
same as DRNet method. The weight of the IPM loss term is {10−2, 10−1, 1} for News and
{10−2, 10−1, 1, 10} for the TCGA dataset.

ADMIT

The IPM minimization procedure in ADMIT is based on the second technique. ADMIT has
three sub-networks: representation network, re-weighting network, and hypothesis network.
For the representation network, we use feedforward layers, and for the last two, we use
the dynamic network proposed by [35] as described above, in order to maintain treatment
impact as they suggested. The hyper-parameter range for layers, nodes and spline functions
are same as VCNet. The weight of the IPM loss term is {10−2, 10−1, 1} for both datasets.
Also, we vary the number of intervals: {3, 4, 5}.

Adversarial Counterfactual Regression

For the representation and treatment-predictor networks, we use feedforward layers. For
both networks we vary the number of nodes ∈ {50, 100, 200} and the number of hidden lay-
ers ∈ {0, 1, 2}. We also vary the knots ∈ {{1/3, 2/3}, {1/4, 2/4, 3/4}, {1/5, 2/5, 3/5, 4/5}}
and the degree ∈ {2, 3, 4} in order to obtain spline functions of treatment and construct
the treatment embedding. In principle any parameterization can be used to construct the
matrices of attention block, but we used the common linear parameterization with dimen-
sion {32, 64}. We vary the dimension of the last layer {16, 32}. The trade-off parameter in
ACFR objective function, γ ∈ {10−2, 10−1, 1, 10}, and we vary the number of inner loops,
M ∈ {1, 10, 100}, for optimizing the treatment predictor.

The step size ∈ {10−5, 10−4, 10−3} and the batch size ∈ {32, 64} are shared between all
methods. For the Generalized Propensity Score (GPS), we employ the implementation in
[30] for continuous outcomes, and adjust the implementation of SCIGAN [7] to support
single continuous treatment. Also, in order to select the best set of hyperparameters, we
use a baysian approach, tree-structured parzen estimator (TPE) from the Optuna package
in Python.

5.1.4 Metrics

Having µ(x, t) as the ground-truth outcome of the unit with covariate x under treatment
t and f(x, t) as the predicted outcome, we report the performance of methods in terms of
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the two following metrics defined in [41]. The Mean Integrated Squared Error (MISE) is
the squared error of the predicted outcome averaged over all treatment values and all units.
MISE is useful when we have no preference for some specific treatment (or some patient)
and performance on all potential outcomes are equally important for us. We assumed the
marginal distribution of the treatment to be uniform, p(t) ∼ U(0, 1).

MISE = 1
N

ΣN
i=1

∫ 1

0
[µ(xi, t)− f(xi, t)]2dt

In some applications such as precision medicine, one might only be interested in having
a predictive model that has a policy close to optimal since we want to prescribe the best
treatment. In order to compare different predictive models in terms of their predicted policy,
Policy Error (PE) metric can be used. The Policy Error (PE) measures the average squared
error of estimated optimal treatment, where t∗i and t̂∗i denote ground-truth and predicted
best treatments respectively.

PE = 1
N

ΣN
i=1[µ(xi, t∗i )− µ(xi, t̂∗i )]2

5.2 Results

We performed two sets of experiments for potential outcome prediction, called out-of-sample
prediction and within-sample prediction. The out-of-sample experiment shows the ability
of models in predicting the potential outcomes for units in the held-out test set, and the
within-sample experiment shows the ability for units in the training set.

5.2.1 Prediction error

For all methods, we reported the mean and the standard deviation of MISE and PE in
the format of mean±std over 20 realizations of each dataset. Table 1 shows that on TCGA
dataset, ACFR outperformed the baselines in both metrics on average, and on News dataset,
ACFR acheived the best and second best average result in terms of MISE and PE metrics
respectively. We achieved similar results in with-in-sample experiments. We can also see
the substantial gain of cross-attention layer in the performance of ACFR by comparing it
with ACFR w/o attention, demonstrating the effectiveness of proposed outcome prediction
network. Comparably, DRNet and VCNet methods have more parameters while ACFR and
ADMIT methods are more time-consuming because of their corresponding inner loop to
minimize the distribution shift.

5.2.2 treatment-selection bias robustness

We also investigate the robustness of 4 methods (ACFR, VCNet-HSIC, DRNet-HSIC, and
ADMIT-HSIC) against varying level of treatment-selection bias. As mentioned earlier, the
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News TCGA
Method MISE PE MISE PE

GPS 3.21± 0.34 0.39± 0.03 6.50± 1.21 2.30± 0.27
MLP 2.91± 0.33 0.31± 0.02 4.81± 0.54 1.15± 0.23

DRNet-HSIC 1.59± 0.20 0.21± 0.01 2.03± 0.27 1.24± 0.23
DRNet-Wass 1.64± 0.21 0.21± 0.01 2.01± 0.20 1.29± 0.21
VCNet-HISC 1.28± 0.10 0.16± 0.01 1.99± 0.11 0.94± 0.14
VCNet-Wass 1.43± 0.11 0.17± 0.01 1.76± 0.12 0.92± 0.14

ADMIT-HSIC 1.25± 0.12 0.18± 0.01 1.81± 0.23 0.86± 0.15
ADMIT-Wass 1.35± 0.20 0.18± 0.01 1.67± 0.23 0.81± 0.14

SCIGAN 1.21± 0.15 0.20± 0.01 1.85± 0.14 0.97± 0.14
CFR-Wass 1.43± 0.15 0.20± 0.01 1.85± 0.17 0.96± 0.17
CFR-HSIC 1.49± 0.15 0.19± 0.01 1.76± 0.20 0.85± 0.16

ACFR w/o attention 1.58± 0.15 0.19± 0.01 1.86± 0.21 1.01± 0.15
ACFR 1.12± 0.12 0.18± 0.01 1.60± 0.20 0.76± 0.12

Table 5.2: Results on News and TCGA datasets for the out-of-sample setting.

α parameter of Beta distribution in the treatment generating function controls the amount
of treatment-selection bias. As α increases the treatment-selection bias and covariate shift
of the observational dataset increase and consequently, we expect the error of methods to
increase as well. As shown in Figure 5.1, ACFR performs consistently and has a notable
gap with the baselines at the strong treatment-selection bias level (α = 6) in terms of MISE
for the out-of-sample setting.

5.2.3 Adversarial loss effect

Figure 5.2 demonstrates that the representation learned through KL divergence minimiza-
tion is less predictive of the treatment value compared to representations obtained from two
classes of IPM, HSIC [21] and Wasserstein [47], thereby showing more effective reduction of
the shift. Also ss mentioned before, we tuned the hyper-parameter controlling the adversar-
ial loss. Figure 5.3 shows the effect of adversarial loss where (γ = 8) performs better than
no adversarial loss γ = 0.
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News TCGA
Method MISE PE MISE PE

GPS 3.08± 0.33 0.36± 0.02 6.25± 0.97 1.95± 0.29
MLP 2.79± 0.32 0.31± 0.02 4.72± 0.65 1.27± 0.23

DRNet-HSIC 1.32± 0.20 0.20± 0.01 1.91± 0.25 1.04± 0.19
DRNet-Wass 1.34± 0.21 0.19± 0.01 1.88± 0.20 1.04± 0.21
VCNet-HISC 1.18± 0.11 0.16± 0.01 1.59± 0.12 0.87± 0.14
VCNet-Wass 1.23± 0.10 0.13± 0.01 1.39± 0.11 0.82± 0.14

ADMIT-HSIC 1.12± 0.12 0.12± 0.01 1.71± 0.23 0.76± 0.15
ADMIT-Wass 1.20± 0.10 0.13± 0.01 1.46± 0.21 0.79± 0.13

SCIGAN 1.15± 0.11 0.16± 0.01 1.58± 0.21 0.86± 0.10
CFR-Wass 1.20± 0.11 0.18± 0.01 1.57± 0.19 0.89± 0.10
CFR-HSIC 1.25± 0.14 0.18± 0.01 1.61± 0.18 0.71± 0.07

ACFR w/o attention 1.34± 0.13 0.17± 0.01 1.66± 0.20 0.92± 0.13
ACFR 0.95± 0.12 0.15± 0.01 1.42± 0.22 0.62± 0.11

Table 5.3: Results on News and TCGA datasets for the within-sample setting.
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Figure 5.1: Robustness of ACFR against varying level of treatment-selection bias deter-
mined by α parameter of treatment assignment distribution. ACFR demonstrates a robust
performance in terms of MISE and PE compared to baselines.
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Figure 5.1: Robustness of ACFR against varying level of treatment-selection bias in within-
sample setting determined by α parameter of treatment assignment distribution. ACFR
demonstrates a robust performance in terms of MISE and PE compared to baselines.

KL Divergence HSICKL divergence HSIC (Admit) Wasserstein(Admit) HSIC Wasserstein

Figure 5.2: Tsne plot of latent representation Z learned using different distributional dis-
tances. After training each method on News dataset, we mapped validation samples into
latent representation and plotted them using 2d tsne. We categorized the samples into 4
intervals with respect to their assigned treatment value and each interval corresponds to
a color. We consider two important classes of IPM metrics, HSIC and Wasserstein. The
treatment value is less distinguishable in the KL divergence representation followed by
IPM-ADMIT (minimization with the algorithm proposed in [50]), and IPM (minimization
with the procedure proposed in [3])
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Figure 5.3: The performance of Adversarial Counterfactual Regression with varying level of
γ, the hyper-parameter controlling the adversarial loss.
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Chapter 6

Conclusion

Deep learning has shown great promise for the treatment effect estimation problem because
it can extract a balanced representation of covariates. In this thesis, we investigated the
problem of treatment effect estimation for a continuous treatment setting. We discussed the
challenges of using existing methods and introduced Adversarial Counter-Factual Regres-
sion (ACFR). We proved a new bound on the counterfactual prediction error using the KL
divergence instead of an IPM distance, which has the benefit that the KL divergence can be
estimated parametrically and results in a more reliable bound. Based on the error bound,
ACFR uses an adversarial neural network architecture to minimize the KL divergence of
the representations and a cross-attention network to minimize the factual prediction error.
Our experimental evaluation on semi-synthetic datasets has demonstrated the superiority
of ACFR over several state-of-the-art methods.

It is worth mentioning that the theoretical analysis is not restricted to continuous treat-
ments, and in future work, we plan to extend and evaluate the ACFR framework for struc-
tured and time series treatments. Moreover, we can enhance the invertibility property of
the encoder, using techniques like normalizing flows or a decoder to encourage better recon-
struction. Additionally, we can provide a more accurate estimation of conditional entropy
and minimize it more effectively by estimating other moments of the conditional distribu-
tion, such as variance, in future works when the number of samples is sufficient. Our work
also relies on the unconfoundedness assumption which might be untenable in practice. In
future works, we aim to use generative models such as variational autoencoders (VAEs)
to infer the non-linear relationships between the observed confounders, latent confounders,
treatment assignment, and outcomes.
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