
Inference of gene-environment interaction
from heterogeneous case-parent trios

by

Pulindu Ratnasekera

M.Sc., Simon Fraser University, 2014
B.Sc., University of Sri Jayewardenepura, 2010

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

© Pulindu Ratnasekera 2023
SIMON FRASER UNIVERSITY

Fall 2023

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Pulindu Ratnasekera

Degree: Doctor of Philosophy

Thesis title: Inference of gene-environment interaction from
heterogeneous case-parent trios

Committee: Chair: Tim Swartz
Professor, Statistics and Actuarial Science

Brad McNeney
Supervisor
Associate Professor, Statistics and Actuarial Science

Jinko Graham
Committee Member
Professor, Statistics and Actuarial Science

Lloyd Elliot
Examiner
Assistant Professor, Statistics and Actuarial Science

Shelley Bull
External Examiner
Professor, Dalla Lana School of Public Health
University of Toronto

ii



Abstract

Population stratification is a  major source of confounding in gene-by-environment (G × E) 
interaction studies of case-parent trios when the study sample consists of individuals with 
distinct ancestral backgrounds. This dissertation discusses different ways of controlling for 
population stratification in order to reduce the chance of false positive signals in G ×E infer-
ences. This work is organized in three parts. First, we investigate the impact of confounding 
on the results of a genome-wide association analysis by Beaty et al., which identified multiple 
single nucleotide polymorphisms that appeared to modify the effect o f m aternal smoking, 
alcohol consumption, or multivitamin supplementation on risk of cleft palate. The study 
sample of case-parent trios was primarily of European and East Asian ancestry, and the 
distribution of all three exposures differed b y a ncestral g roup. S uch d ifferences ra ise the 
possibility that confounders, rather than the exposures, are the risk modifiers a nd hence 
that the inference of G × E interaction may be spurious. Our analyses generally confirmed 
the result of Beaty et al. and suggest the interaction G × E is driven by the European trios, 
whereas the East Asian trios were less informative. Next, we show that current methods to 
reduce the bias in estimated G×E interactions from case-parent trio data can only account 
for simple population structure involving two strata and propose methods to overcome this 
limitation. Through simulations, we show that our proposed method maintains the nominal 
type-1 error rate and higher statistical power. The proposed approach was then applied to 
case-parent trios which consists of cleft-palate-affected children. C onsistent w ith B eaty et 
al., our results suggest that the gene-environment interaction signal in these data is due 
to the self-reported European trios. Finally, we discuss methods to infer local ancestry of 
cleft-palate-affected children a nd p ropose m ethods t o c ontrol f or p opulation stratification 
via local ancestry. Again, we apply our methods to the case-parent trio data of cleft-palate-
affected children t o i nvestigate w hether l ocal a ncestry r ather t han t he g enotype a t a  test 
locus modifies the association between disease and exposure.

Keywords: gene-environment interaction; case-parent trios; genotype relative risk; popula-
tion stratification; genome-wide association study; cleft palate; principal components; local 
ancestry; fastPHASE
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Chapter 1

Introduction

1.1 Overview

Gene and environment factors contribute to etiology of structural birth defects such as oral
clefts. Such diseases are thought to result from an interplay between gene and environment
factors. It is believed that the study of gene-environment interactions will lead to better
understanding of the contribution of genetic and non-genetic factors to the development of
complex birth defects.

The case-parent trio design is often used for estimation and testing genetic effects and
gene-by-environment interactions for such early onset diseases. The case-parent trio data
consist of genotypes (G) of unrelated children affected with a disease and genotypes from
their parents. Information may also be collected on non-genetic environmental (E) factors.

The contribution of genetic effects on diseases can be measured by genotype relative risk
(GRR) in individuals with an alternate genotype compared to those with some reference
genotype. The contribution of statistical interaction between gene-environment (G × E)
interaction can be measured by observing variation in GRRs for different values of E.

G × E inference from case-parent trio data can be subject to bias when trios are pooled
from multiple different sites. The pooling of trios from multiple different sites leads to
population stratification, which is a major source of confounding bias.

In this thesis, we propose methods to reduce bias in inference of G×E from case-parent
trio data and apply our proposed methods to both simulated and real data from GENEVA
Oral Cleft Study. The thesis consists of three projects. The work in Chapters 2 and 3 have
been published. As a result, some introductory material are repeated in more than one
chapter.

1.2 Organization of this Thesis

In genetic epidemiology, log-linear models of population risk may be used to study the
effect of genotypes and exposures on the relative risk of a disease. Such models may also

1



include gene-environment interaction terms that allow the genotypes to modify the effect
of the exposure, or equivalently, the exposure to modify the effect of genotypes on the
relative risk. When a measured test locus is in linkage disequilibrium with an unmeasured
causal locus, exposure-related genetic structure in the population can lead to spurious gene-
environment interaction; that is, to apparent gene-environment interaction at the test locus
in the absence of true gene-environment interaction at the causal locus. Exposure-related
genetic structure occurs when the distributions of exposures and of haplotypes at the test
and causal locus both differ across population strata. A case-parent trio design can protect
inference of genetic main effects from confounding bias due to genetic structure in the
population. Unfortunately, when the genetic structure is exposure-related, the protection
against confounding bias for the genetic main effect does not extend to the gene-environment
interaction term.

Beaty et al. [3] identified multiple single nucleotide polymorphisms that appeared to
modify the effect of maternal smoking, alcohol consumption, or multivitamin supplementa-
tion on risk of cleft palate. The study sample of case-parent trios was primarily of European
and East Asian ancestry, and the distribution of all three exposures differed by ancestral
group. Such differences raise the possibility that confounders, rather than the exposures, are
the risk modifiers and hence that the inference of gene-environment (G×E) interaction may
be spurious. In Chapter 2, we re-analysed the G×E inferences reported in [3] by introducing
the bias-reduced methods proposed by Shin et al. [27] for inference of G × E interaction
from case-parent trio data in the presence of exposure-related population structure. This
work has been published in Ratnasekera and McNeney (2020) [19].

The method of [27] can only account for simple population structure involving two
strata. To allow for more than two strata, in Chapter 3 we propose to directly accommodate
multiple population strata by adjusting for genetic principal components. We evaluate our
approach through simulation and illustrate it on data from a study of genetic modifiers of
cleft palate. This work has been published in Ratnasekera et al. (2022) [18].

Both Shin et. al. [27] and Ratnasekera et al. [18] look at the global ancestry of affected
individuals when making bias-reduced inferences of G × E. However, global ancestry could
be less relevant when individuals in the study sample are pooled from multiple different
geographic location due to possible admixture. In such circumstances, the global ancestry
of a particular individual could be different from the local ancestry at a given haplotype
of interest. In chapter 4, we discuss methods to infer local ancestry of individuals and we
apply the proposed methods to cleft palate data to infer the local ancestry of individuals at
a given haplotype. The inferred local ancestry was used to modify the bias-reduced methods
proposed by [18]. The modified bias-reduced methods were then applied to cleft palate data
for inference of G × E.

In the last chapter, we make concluding remarks. Some theoretical details and supporting
results for Chapters 2, 3 and 4 are provided in Appendices A, B and C, respectively.
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Chapter 2

Re-analysis of a genome-wide
gene-by-environment interaction
study of case parent trios, adjusted
for population stratification

2.1 Introduction

In a case-parent trio study we collect genotypes, G, from affected children and their parents.
We may also collect environmental exposures or non-genetic attributes, E, from the children.
Gene-environment interaction (G × E) is a statistical interaction term in the standard log-
linear model of association between covariates and disease status. G × E interaction can
be interpreted as genotypes that modify the effect of an exposure, or as an exposure that
modifies the effect of genotypes.

Beaty et al. [3] conducted an analysis of the GENEVA Oral Cleft Study data, a genome-
wide association study to identify genetic and environmental factors associated with cleft
palate (CP). They found multiple single nucleotide polymorphisms (SNPs) appeared to
modify the effect of maternal smoking, maternal alcohol consumption or maternal mul-
tivitamin supplementation on the risk of CP. The study sample of case-parent trios was
primarily of European and East Asian ancestry, and the distribution of all three exposures
differ by ancestral group, which raises the possibility of spurious G × E.

When the test locus, G′, is not causal, disease risk at G′ can appear to be modified by
E without G × E interaction when there is exposure-related population structure [24, 34].
Exposure-related population structure may be thought of as a form of confounding that
occurs when both GG′ haplotype frequencies and E distributions differ by ancestral group.
Differences in GG′ haplotypes can lead to differences in G′ risk that may be tagged by E,
suggesting G′ × E even in the absence of true G × E interaction.

One of the requirements for exposure-related population structure is different E dis-
tributions in the different ancestral groups. Such is the case in the GENEVA Oral Cleft
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Study where maternal smoking, maternal alcohol consumption and maternal multivitamin
supplementation were all more common in self-reported Europeans than in self-reported
East Asian populations (see Table 3.5). If, in addition, haplotype frequencies for markers
in the vicinity of a causal SNP also vary by ancestral groups, any inference of G × E in-
teraction could be spurious. Shin et al. [27] proposed bias-reduced methods for inference of
G × E interaction from case-parent trio data in the presence of exposure-related population
structure. In this article we use these methods to adjust the analyses of [3] for potential
confounding effects of population stratification.

2.2 The GENEVA Oral Cleft Study

The GENEVA Oral Cleft study [1] was comprised of 550 case-parent trios from 13 different
sites across the United States, Europe, Southeast and East Asia. For our analyses, data were
obtained through dbGAP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000094.v1.p1 with accession number phs000094.v1.p1. Of the
550 trios included in the GENEVA Oral Cleft study, 462 were available for our analyses.
Summaries of the trios by ancestry and sex of the affected child are shown in Table 2.1.

Ancestry Group Males Females Total %

European 103 111 214 46%
Asian 93 141 234 51%

Other/African 3 11 14 3%
Total 199 263 462 100%

Table 2.1: Sex of 462 CP cases in the international consortium study by ancestral group

The objective of the GENEVA Oral Clefts study was to discover genetic contributions to
orofacial clefts, the most common type of craniofacial birth defect in humans, and to assess
whether these genes modify the effect of exposures known to be associated with cleft palate.
Maternal exposure to multivitamins, alcohol and smoking were assessed through maternal
interviews focused on the peri-conceptual period (3 months prior to conception through the
first trimester), which includes the first 8-9 weeks of gestation when palatal development is
completed. Exposure status is summarized in Table 2.2. From this table we see the ancestry
of the sample is predominantly European (46%) and East Asian (51%), and these three
exposures are all more common in Europeans.
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Exposure (%) to Maternal

Alcohol Vitamin
Ancestry Group Consumption Smoking Supplementation Affected children

European 41% 28% 57% 214
East Asian 4% 3% 21% 234
Other/Afr 14% 7% 71% 14

Total 21% 14% 39% 462

Table 2.2: Exposure rates for maternal alcohol consumption, maternal smoking and maternal
vitamin supplementation for the total CP group and for three ancestral groups

Beaty et al. found evidence for G × E interaction for maternal alcohol consumption and
SNPs in the genes MLLT3 and SMC2, for maternal smoking and SNPs in the genes TBK1
and ZNF236, and for maternal multivitamin use and SNPs in the BAALC gene.

2.3 Models and Methods

G × E interaction is defined as the statistical interaction term βGE in a log-linear model for
the probability of disease:

log[P (D = 1|G = g, E = e)] = β0 + gβG + eβE + geβGE , (2.1)

where D = 1 indicates the child is affected with cleft palate, G is the child’s genotype, coded
as 0, 1 or 2 copies of the minor allele, E is an exposure variable and βE is the environmental
main effect, which cannot be directly estimated in the case-parent trio design. To simplify the
presentation we assume throughout E is a binary variable with value 1 indicating exposure
and 0 indicating no exposure. A non-zero interaction effect, βGE , suggests G modifies the
effect of E on disease risk.

Assuming G and E are independent given parental genotypes Gp, and the risk model
in equation (2.1), one can derive the conditional distribution of G given D = 1, E and Gp,
which can be stated in terms of the genotypic odds

P (G = g | D = 1, E = e, Gp = gp)
P (G = g − 1 | D = 1, E = e, Gp = gp) = exp (kp + βG + eβGE)

for a constant kp that depends on gp (Appendix A.1). The environmental main effect does
not appear in this genotypic odds and cannot be estimated from case-parent trio data. In
general, any regression effect that does not involve G cannot be estimated from case-parent
trio data.
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To reduce bias from population stratification, robust methods are required. Robust
methods may be classified as design- or data-based. For a binary environmental exposure,
the design-based approach of Shi et al. [24] augments the basic case-parent trio with expo-
sure information on an unaffected sibling. Shi et al. showed including the sibship-averaged
exposure over two sibs (affected/unaffected) in the linear model controls this potential bias.
Weinberg et al. [34] showed all information about interaction in the tetrad design of [24]
comes from the siblings, not the parents, which lead them to propose a sibling-augmented
case-only design and analysis. Shin et al. [27] took a data-based approach and replaced the
sibship-averaged exposure of [24] with the predicted exposure given ancestry, as reflected by
principal components (PCs) computed from independent genetic markers. Their data-based
approach is applicable for arbitrary exposures, including continuous measures, and does not
require additional siblings. In this report we consider this data-based approach of [27] to
explore whether the G × E interaction effects reported by [3] could be spurious.
Let XE be a categorical variable indicating ancestral groups with different E distributions.
Shin et al. introduce a separate genetic effect for each level of XE into the risk model
Equation 2.1. When XE is binary, this modified risk model becomes:

log[P (D = 1|G = g, E = e, XE = x)] = β0 + gβG + eβE + xβXE
+ geβGE + gxβGXE

+exβEXE
+ gexβGEXE

In the above model, βGXE
controls bias by allowing different genetic effects in the two

XE-groups (exposed and unexposed). The term βGEXE
allows for different G × E effects in

the two groups, which can improve power to detect G × E interaction ([27]).
As XE is not known, it must be replaced by some surrogate, X̂E . We consider two

surrogates, (i) the expectation of E given genetic markers (EEGM) and (ii) self-reported
ancestry (SRA). The idea behind the EEGM approach is to distinguish exposure distribu-
tions by their mean, which may vary across ancestry groups, S.Though S is not known, it is
reflected in the principal components, M , computed from genetic marker data available on
all ancestry groups in these data. The expectation of E given M can be estimated by linear
regression of E on M when E is continuous, or by logistic regression when E is binary, as in
the current study. Thus, for EEGM adjustment, we estimate the expected exposure within
ancestral groups with X̂E = ̂E(E|M) in the risk model shown in Equation 2.2 below. We
consider EEGM adjustment to be the gold-standard, because, for the case of two ancestral
groups, [27] showed the resulting tests of G×E interaction achieve the nominal type I error
rates. To align this EEGM adjustment results with those based on SRA adjustment, we
transform EEGM to the the unit interval by subtracting the minimum value and dividing
by the range. The use of SRA as a surrogate for XE is straightforward and leads to more
interpretable models (see below), but is subject to some bias, because self-reported ancestry
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may not accurately reflect genetic ancestry [32]. To simplify notation we assume only two
self-reported ancestry groups, encoded in X̂E as as zero or one.

Distributions of EEGM by SRA for maternal exposure to alcohol, smoking and vitamin
supplemements, are shown in Figure 2.1. As expected, there is a clear separation of EEGM
between self-reported Europeans and East Asians for all three exposures considered here.
In our analyses we would therefore expect similar results with adjustment by either EEGM
or SRA.

Figure 2.1: EEGM by SRA for each of the three maternal exposures of interest.

For either surrogate X̂E , let βGX̂E
denote its coefficient so we can write the risk model

as

log[P (D = 1|G = g, E = e, X̂E = x)] = β0 + gβG + eβE + xβX̂E
+ geβGE + gxβGX̂E

+exβEX̂E
+ gexβGEX̂E

,
(2.2)

leading to genotypic odds

P (G = g | D = 1, E = e, X̂E = x, Gp = gp)
P (G = g − 1 | D = 1, E = e, X̂E = x, Gp = gp)

= exp
(
kp + βG + eβGE + xβGX̂E

+ exβGEX̂E

)
.

(2.3)
Interpretation of the model in equation 2.2 is simplest when X̂E is the SRA. If X̂E = 0

for East Asians and 1 for Europeans, then the relative risk of cleft palate due to exposure
in self-reported East Asians with G = g is eβE+gβGE . Thus, eβGE is the multiplicative
increase in the relative-risk due to exposure for each additional copy of G in self-reported
East Asians. Similarly, the relative risk of cleft palate due to exposure in self-reported
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Europeans is e
βE+βEX̂E

+g(βGE+βGEX̂E
), so this latter term e

βGE+βGEX̂E is the muliplicative
increase in the relative-risk due to exposure for each copy of G in self-reported Europeans.
To summarize, eβGE reflects G × E in self-reported East Asians and e

βGE+βGEX̂E reflects
G × E in self-reported Europeans.

Inference can be made from the conditional likelihood based on P (G|D = 1, E, Gp),
which can be obtained from the genotypic odds shown in equation 2.3. Parameter estimates
are obtained by maximizing the conditional likelihood, and hypothesis tests are obtained
from likelihood ratio statistics. In particular, the hypothesis HO (i.e. not GxE interaction):
βGX̂E

= βGEX̂E
= 0, is tested first by fitting models with and without the interaction terms

and comparing the resulting likelihood ratio statistic to the χ2 distribution with 2 degrees
of freedom.

2.4 Results

Inference was obtained under the unadjusted risk model in equation (2.1) and the adjusted
risk model in equation (2.2) with either SRA or EEGM adjustment. The first analysis was
restricted to the six SNPs in the MLLT3 gene reported by Beaty et al. to have significant
G × E with maternal alcohol consumption. P-values for the 1 df (no adjustment) and 2 df
tests (with X̂E adjustment) are shown in Table 2.3. We see the results with adjustment
roughly agree, and are only slightly attenuated compared to the results without adjustment
for population stratification of exposures.

Model 1: 1df LRT Model 2: 2df LRT Model 2: 2df LRT
SNP No adj SRA adj. EEGM adj.

rs4621895 0.0010 0.0043 0.0060
rs4977433 0.0006 0.0035 0.0046
rs6475464 0.0159 0.0128 0.0161
rs668703 0.0014 0.0029 0.0039
rs623828 0.0432 0.1105 0.1358
rs2780841 0.0475 0.1311 0.1683

Table 2.3: P-values of 1 df likelihood ratio test from Model (1), and 2 df likelihood ratio
tests from models with SRA and EEGM adjustment for the six SNPs in the MLLT3 gene on
chromosome 9 show significant evidence of interaction with Maternal Alcohol Consumption

Figure 2.2 shows the estimated interaction terms β̂GX̂E
and β̂GX̂E

+ β̂GEX̂E
and their cor-

responding confidence intervals while Table 2.4 shows exponentiated parameter estimates
and their confidence intervals, as well as p-values from inference based on the risk model
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adjusted by SRA only. The overlap of the confidence intervals for β̂GE with zero and the
non-overlap of the confidence intervals for β̂GE + β̂GEX̂E

suggest no evidence of G × E

interaction in self-reported East Asians, but evidence of G × E interaction in self-reported
Europeans. The table of exponentiated parameter estimates quantifies this apparent G × E

in self-reported Europeans. For example, the estimate e
β̂GE+β̂GEX̂E = 2.2918 suggests each

copy of the minor allele at SNP rs4621895 more than doubles the relative risk of CP due to
maternal alcohol exposure.

SNP eβ̂GE 95% CI e
β̂GE+β̂GEX̂E 95% CI P-value

rs4621895 0.6732 (0.1845, 2.4563) 2.2918 (1.3771, 3.8143) 0.0043
rs4977433 0.8078 (0.2109, 3.0943) 2.3484 (1.4121, 3.9054) 0.0035
rs6475464 0.7507 (0.2228, 2.5296) 2.1621 (1.2792, 3.6545) 0.0128
rs668703 0.5243 (0.1532, 1.7943) 2.2913 (1.3786, 3.8082) 0.0029
rs623828 0.7475 (0.2285, 2.4449) 1.7385 (1.0194, 2.9649) 0.1105
rs2780841 0.5946 (0.1941, 1.8215) 1.6388 (0.9510, 2.8241) 0.1311

Table 2.4: Exponentiated G × E parameter estimates with corresponding exponentiated
95% Confidence Intervals with SRA adjustment at 6 the SNPs on MLLT3 (Chr 9) showing
significant interaction with Maternal Alcohol Consumption.
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Figure 2.2: SNPs in MLLT3 gene show significant interaction with Maternal Alcohol Con-
sumption among European CP trios, but not among East Asian CP trios

Beaty et al. report that CP-affected European trios were gathered from multiple sites. Given
that the G × E signal for SNPs in MLLT3 appears to be driven by these trios of European
ancestry only, we also investigated whether stratification within Europeans could explain
the apparent G×E interaction. To do this, we computed principal components from genetic
markers in all self-reported European trios and performed logistic regression of exposure
on PCs computed from 6,231,573 SNPs. However, the PCs were not predictive of exposure,
and so there was no evidence of ancestral sub-groups with different E distributions within
self-reported Europeans.

We performed similar analyses to the other four genes implicated in the Beaty study
with mixed success. In some instances, the SNPs and exposures were so rare in the self-
reported East Asian trios the βGEX̂E

coefficient in the model (2.2) could not be estimated.
In such situations, we must assume a common G × E effect in both East Asians and Eu-
ropeans. However, in this extended analysis of the other 4 genes we were still able to find
some evidence of G × E interaction, though, as in Table 2.3, the results were attenuated
compared to those when there is no adjustment for confounding. Tables of results are shown
in Appendix A.2.
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2.5 Discussion and Conclusions

Case-parent trio studies allow robust inference of genetic main effects, but inference of
G × E interaction is susceptible to bias from a particular form of confounding known as
exposure-related population structure. In the GENEVA Oral Cleft Study, such confounding
would arise from heterogeneity of haplotype and exposure distributions across component
sub-populations of the study. This is a concern because of the observed heterogeneity in
exposure to maternal tobacco, alcohol and multivitamin use among European and East
Asian populations. We emphasize that differences in exposure need not be genetic in nature;
indeed, the differences in exposure distributions in the GENEVA Study are presumably
cultural. However, if these non-genetic differences coincide with genetic differences in genes
such as MLLT3, SMC2, TBK1, ZNF236 and BAALC, they can result in spurious inference
of G × E interaction. We applied the bias-reduced methods of Shin et al. to the GENEVA
Oral Cleft Study and generally obtained the same conclusions regarding G × E interaction
as an earlier analysis by Beaty et al.. However, we found the data only supported genetic
modifiers of the exposure effects in self-reported Europeans. By contrast, all three exposures
are too rare in self-reported East Asians to draw any conclusions about the presence of such
modifiers in that population.

We further investigated whether confounding within the self-reported Europeans could
explain these suggestions of G × E interaction. However, the genetic marker data from the
genome-wide marker panel was not predictive of exposure within this population and so the
adjustment of Shin et al. was not possible. Along the same lines, we investigated whether
confounding in self-reported East Asians could explain the G × E findings of Wu et al.,
who found evidence of genetic modifiers of the effect of environmental tobacco exposure
on CP. The study sample was comprised of trios from Korea, China (Hubei, Sichaun and
Shandong provinces), Taiwan and Singapore. Differences in exposure rates and haplotype
distributions among these populations could lead to spurious evidence of G×E interaction.
Again, we found genetic markers were not predictive of exposure, so the methods of Shin
et al. could not be applied directly. Both of these scenarios suggest the need for alternative
methods for adjusting for exposure-related stratification among sub-populations.
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Figure 2.3: Dependence between E and GG′ is through latent sub-population S. Latent
factors XE and XGG′ indicate different distributions of E and GG′, respectively. E and
GG′ are conditionally independent given any of the three variables on the path between
them.

We conclude with a discussion of areas for future work. Exposure-related population
structure is illustrated in Figure 2.3. The link between GG′ haplotype frequencies and E

distributions can be broken by adding any of S, XE or X ′
GGto the risk model. The approach

of Shin et al. is to estimate a surrogate for XE . As noted above, this approach may not be
sensitive enough to adjust for subtle heterogeneity in genetic and exposure distributions.
The diagram suggests alternatives, namely conditioning on S or on XGG′ . The advantage of
conditioning on S, or on principal components that reflect S, is its simplicity and familiarity
to researchers who study unrelated subjects. The potential advantage of an approach based
on inferring XGG′ is that it aims to characterize local structure in the genome of study
subjects that could be responsible for apparent differences in risk at the test locus caused
by differences in Linkage Disequilibrium (LD) with a nearby causal locus. Efforts to develop
such methods are ongoing.

Another possible avenue for future research is to develop an approach that is a hybrid
of case-parent-trio and case-only designs. The case-only design [16] shares key features with
the case-parent trio design. Starting with a log-linear model of disease probabilities, and
assuming G and E are independent, G × E is inferred from an association between G and
E in cases. By conditioning on parental genotypes, inference from case-parent trio data is
under the weaker assumption that G and E are independent within families, rather than in
the general population, as in the case-only design. However, the number of cases available for
analysis may be increased by dropping the requirement of parental genotype data. Thus,
robust methods for inference of G × E that make use of cases with or without parental
genotypes become of interest.
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Chapter 3

Inference of gene-environment
interaction from heterogeneous
case-parent trios

3.1 Introduction

We start by considering a log-linear model of population disease risk that includes main
effects for genotypes G, environmental exposures E, and a gene-environment interaction
term G × E. The G × E term allows genotypes to modify the effect of the exposure or,
equivalently, the exposure to modify the effect of genotypes on the relative risk of developing
the disease. Including a G×E term can improve model accuracy and provide a more detailed
picture of disease etiology compared to models with just G and E main effects [11]. G × E

is also useful for identifying environmental exposures with greater disease-association in
individuals who carry particular alleles at susceptibility loci [30]. For example, dietary fat
intake is more highly associated with obesity in carriers than in non-carriers of the Pro12Ala
allele in the PPAR-γ gene [7].

We suppose throughout that G is an unmeasured causal locus in linkage disequilibrium
with a measured non-causal test locus G′, and that the distribution of GG′ haplotypes differs
across population strata (i.e. genetic structure). Stratum-specific differences in the GG′

haplotype frequencies can lead to differences in G′ risk across the population strata where
none exist for G [38]. Exposure-related genetic structure occurs when the distribution of E

also differs across the population strata [34]. Without some adjustment for the population
strata, E will tag the stratum-specific differences in G′ risk (Figure 3.1), suggesting that E

modifies G′ risk, even in the absence of G × E [24, 34]; we refer to this as spurious G′ × E.
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Figure 3.1: Schematic of log-GRRs for a non-causal test locus versus exposure in a structured
population with two strata, S=0 and S=1. Dashed lines represent log-GRRs within each
stratum. Horizontal positioning of these dashed lines indicates the support of the respective
E distributions. High values of E are associated with S=1, in which one of the alleles at
the test locus is associated with increased disease risk. Low values of E are associated with
S=0 in which this same allele at the test locus is associated with low disease risk. Ignoring
S yields the linear log-GRR curve indicated by the solid line, which erroneously suggests
that E modifies the disease risk at the test locus.

A case-parent trio design can protect inference of genetic main effects from confounding
bias due to genetic structure in the population [33]. In this design, investigators collect infor-
mation on G′ and E in children affected with a disease of interest as well as the genotypes,
G′

p, of their parents. To increase sample size, investigators may pool trios from multiple an-
cestral groups into one study; e.g., the GENEVA Oral Cleft Study [1] combined case-parent
trios from recruitment sites in the United States, Europe and East Asia. Assuming G′ and
E are independent within families, a log-linear model of disease risk leads to a conditional
likelihood for the G′ and G′ × E effects, based on the child’s genotype given their exposure,
affection status and parental genotypes [27]. Unfortunately, when the genetic structure is
exposure related, the protection against confounding bias for the genetic main effect does
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not extend to the gene-environment interaction term [24, 34]. Thus, spurious G′ × E may
be inferred from heterogeneous case-parent trio data in the absence of true G × E.

Methods to mitigate this bias may be classified as design- or data-based. For a binary
environmental exposure, the design-based tetrad approach of [24] augments the case-parent
trio by adding the exposure of an unaffected sibling. These authors control the bias by
including the sibship-averaged exposure in the log-linear model. They show that all infor-
mation about the interaction in the tetrad design comes from the siblings, not the parents
[34]. Accordingly, they propose a sibling-augmented case-only design and analysis. By con-
trast, [27] takes a data-based approach, replacing the sibship-averaged exposure of [24] with
the predicted exposure given ancestry. Predictions are obtained from a regression of expo-
sure on principal components (PCs) computed from genetic markers that are unlinked to
the test locus. This data-based approach may be applied to arbitrary exposures, including
continuous exposures, and does not require siblings. However, its properties have not been
evaluated in the case of more than two population strata.

We use the GENEVA Oral Cleft Study to motivate a new approach to unbiased in-
ference of G′ × E in case-parent trios. The analysis of [3] found multiple single nucleotide
polymorphisms (SNPs) that appeared to modify the effect of maternal smoking, maternal
alcohol consumption or maternal multivitamin supplementation on the risk of cleft palate
(CP). The self-reported ancestry of the study sample is primarily European or East Asian,
and all three exposures are more common in self-reported Europeans than in self-reported
East Asians [3, Table 2]. If the frequencies of haplotypes spanning causal SNPs also vary by
ancestral groups, exposure-related genetic structure may lead to spurious gene-environment
interaction. [19] focused on the self-reported Europeans and East Asians in the GENEVA
Oral Cleft Study data. Applying the approach of [27], they confirmed the gene-environment
interaction found by [3], and concluded that the evidence for gene-environment interaction
is predominantly from the data of self-reported Europeans. These authors also considered
whether exposure-related genetic structure within self-reported Europeans could explain the
apparent G′ × E. Their results were inconclusive, however, possibly owing to the method-
ology’s limitation to just two ancestry groups. In modern datasets, the possibility of both
inter- and intra-continental genetic structure necessitates methods that can more flexibly
accommodate multiple ancestries. In this work we propose such an approach which relies
on direct use of the genetic PCs to adjust for population structure.

The manuscript is structured as follows. In Section 2 we develop our direct PC-adjustment
method and compare it to the indirect PC-based approach of [27]. In Section 3 we present
simulations to evaluate the statistical properties of both approaches. In Section 4 we re-
analyze the GENEVA data. Section 5 includes a discussion and areas for future work.
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3.2 Models and Methods

3.2.1 Overview

We start with a log-linear model of disease risk parametrized in terms of genotype relative
risks (GRRs) at a causal locus G. Under this model, G × E is equivalent to GRRs that
depend on the exposure E. We then derive the GRRs at a non-causal test locus G′ in linkage
disequilibrium with G and show that, in the absence of G × E, the G′-GRRs can depend
on E when there is dependence between E and GG′ haplotypes in the population. Such
dependence can lead to spurious inference of G′ × E in the absence of G × E. However,
valid inference is obtained if we adjust the risk model for any variable X for which E

and GG′ haplotypes are conditionally independent given X [27]. We review the rationale
for the adjustment used by [27] in this context, and propose an alternative adjustment
based on inferred population structure. In particular, we use the method of [8] to select a
parsimonious set of PCs with which to adjust the risk model. A key question is whether the
PC-selection method yields a set of PCs that provide enough adjustment to maintain type
1 error in the absence of G×E, but not so much that we compromise power in the presence
of G × E. The Models and Methods section concludes with a discussion of the simulation
methods used to answer this question.

3.2.2 Risk model and likelihood

Let G = 0, 1 or 2 denote the number of copies of the variant allele at the causal locus
and E denote the exposure variable. The disease-risk model of [27] can be obtained from a
log-linear model of the GRRs

log GRRg(e) = log P (D = 1|G = g, E = e)
P (D = 1|G = g − 1, E = e) = βg + fg(e) for g = 1, 2, (3.1)

and the log-disease risk for carriers of the baseline genotype G = 0

log P (D = 1|G = 0, E = e) ≡ η(e).

The parameters βg and fg(·) are, respectively, genotype-specific main effects and functions
that allow for G × E interaction. We can also write disease risk in terms of the baseline risk
η(e) and the GRRs as follows. First define GRR0(e) ≡ 1. Next, note that

P (D = 1|G = 1, E = e)
P (D = 1|G = 0, E = e) = GRR1(e) = GRR1(e)GRR0(e)
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and

P (D = 1|G = 2, E = e)
P (D = 1|G = 0, E = e) = P (D = 1|G = 2, E = e)

P (D = 1|G = 1, E = e)
P (D = 1|G = 1, E = e)
P (D = 1|G = 0, E = e)

= GRR2(e)GRR1(e)GRR0(e).

It follows that

P (D = 1|G = g, E = e) = η(e)
g∏

i=0
GRRi(e) for g=0, 1 or 2. (3.2)

A likelihood for estimation of the GRR parameters βg and fg(·), g = 1, 2, from case-
parent trio data can be derived under the assumption that G and E are conditionally
independent given parental genotypes Gp. As shown in Appendix B.1, the likelihood is based
on the conditional probability of the child’s genotype given their exposure and parental
genotypes. The function η(·) that parametrizes the environmental main effect drops out of
the likelihood and cannot be estimated from case-parent trio data.

3.2.3 GRRs at a non-causal test locus

Let G′ denote genotypes at a non-causal test locus in linkage disequilibrium with the causal
locus G. We assume D and G′ are conditionally independent given G and E, so that

P (D = 1|G = g, G′ = g′, E = e) = P (D = 1|G = g, E = e).

Therefore, the risk of disease given G′ and E can be written as

P (D = 1|G′ = g′, E = e) =
2∑

g=0
P (D = 1|G = g, E = e)P (G = g|G′ = g′, E = e). (3.3)

Equation (3.3) is a latent-class model [36] with the unobserved causal locus G as the latent
class having probabilities P (G = g|G′ = g′, E = e). Equations (3.3) and (3.2) enable the
log-GRRs at G′ to be written in terms of the latent-class probabilities and the GRRs at G

as follows:

log GRRg′(e) ≡ log P (D = 1|G′ = g′, E = e)
P (D = 1|G′ = g′ − 1, E = e)

= log
∑2

g=0 P (D = 1|G = g, E = e)P (G = g|G′ = g′, E = e)∑2
g=0 P (D = 1|G = g, E = e)P (G = g|G′ = g′ − 1, E = e)

= log
∑2

g=0(
∏g

i=0 GRRi(e))P (G = g|G′ = g′, E = e)∑2
g=0(

∏g
i=0 GRRi(e))P (G = g|G′ = g′ − 1, E = e)

. (3.4)

Without G × E, GRRs at G do not depend on E. Importantly, though, the log-GRRs
at G′ can depend on E through the latent-class probabilities P (G = g|G′ = g′, E = e). In
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fact, as shown in Appendix B.2, these latent-class probabilities will depend on E whenever
GG′ haplotypes and E are associated, as happens when the population has exposure-related
genetic structure. Since G′ × E is equivalent to GRRg′ varying with E, equation (3.4) gives
insight into how exposure-related genetic structure creates spurious G′ × E.

3.2.4 Augmented risk model

The development so far has considered a disease-risk model that depends only on E and a
causal locus G. We now consider an augmented disease-risk model that depends on E, G

and a third variable X:

log GRRg(e, x) ≡ log P (D = 1|G = g, E = e, X = x)
P (D = 1|G = g − 1, E = e, X = x) = βg + fg(e, x) for g=1,2,

where βg and fg(·, x) are, respectively, genotype-specific main effects and functions that
allow for G × E × X interaction. Defining

GRR0(e, x) ≡ 1,

an analogous development to Section 3.2.3 leads to the following X-adjusted log-GRRs at
G′:

log GRRg′(e, x) ≡ log P (D = 1|G′ = g′, E = e, X = x)
P (D = 1|G′ = g′ − 1, E = e, X = x) (3.5)

= log
∑2

g=0(
∏g

i=0 GRRi(e, x))P (G = g|G′ = g′, E = e, X = x)∑2
g=0(

∏g
i=0 GRRi(e, x))P (G = g|G′ = g′ − 1, E = e, X = x)

.

In the next section we discuss choices for X that eliminate E from the latent-class prob-
abilities for G, and hence eliminate spurious G′ × E arising from exposure-related genetic
structure.

3.2.5 Removing dependence of the latent-class probabilities on E

The diagram in Figure 3.2 depicts the dependence between GG′ haplotypes and E from
exposure-related genetic structure in the population. In the figure, S is a categorical variable
that indicates population strata. The categorical variable XE is a “coarsening” of S such
that different levels of XE correspond to different E distributions, and, similarly, XGG′ is
a coarsening of S such that different levels of XGG′ correspond to different GG′ haplotype
distributions.

The path connecting E and GG′ in Figure 3.2 is said to be blocked by each of the variables
XE , S and XGG′ [15, Definition 1]. Therefore, E and GG′ are conditionally independent
given any of the blocking variables XE , S or XGG′ [14]. As shown in Appendix B.2, a
consequence is that conditioning on any of these variables removes the dependence of the
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Figure 3.2: Diagram depicting exposure-related genetic structure. The latent population
strata S induce dependence beetween E and GG′. Latent factors XE and XGG′ encode
different distributions of E and GG′, respectively. E and GG′ are conditionally independent
given any of the three variables that lie on the path between them.

latent-class probabilities on E. That is, letting X denote any of XE , S or XGG′ , P (G =
g|G′ = g′, E = e, X = x) = P (G = g|G′ = g′, X = x). Consequently, from equation (3.6),

log GRRg′(e, x) ≡ log P (D = 1|G′ = g′, E = e, X = x)
P (D = 1|G′ = g′ − 1, E = e, X = x)

= log
∑2

g=0(
∏g

i=0 GRRi(e, x))P (G = g|G′ = g′, X = x)∑2
g=0(

∏g
i=0 GRRi(e, x))P (G = g|G′ = g′ − 1, X = x)

. (3.6)

GRRs at G′ will thus depend on E if and only if GRRs at G do.

3.2.6 Linear model for the log GRRs

From equation (3.6) we see that, for fixed g′ and x, log GRRg′(e, x) varies with e if and only
if the GRRg(e, x) do. We can therefore test for G×E by fitting a model for log GRRg′(e, x)
that allows separate curves in e for each combination of g′ and x [26]. We take these curves
to be straight lines, and test whether any of them have non-zero slope. For a fixed value
x of the adjustment variable X and a fixed value e of the environmental exposure E, the
log-GRR is:

log GRRg′(e, x) = βg′ + βg′Xx + βg′E × e + βg′EXx × e; g′ = 1, 2. (3.7)

The generalization of the above model to a vector X is to replace βg′Xx with βT
g′Xx and

βg′EX with βT
g′EXx for coefficient vectors βg′X and βg′EX . The intercepts of the log-GRR

curves, βg′ + βg′Xx, are the genetic main effects in stratum x (i.e. when e = 0). The slopes,
βg′E + βg′EXx, are the G′ × E interaction terms in stratum x. We use a likelihood-ratio test
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of the null hypothesis that βg′E = βg′EX = 0 for g′ = 1, 2, versus the alternative hypothesis
that at least one of these slope parameters is non-zero to detect G × E. We emphasize
that the simplified log-GRR curves in e characterize G × E rather than environmental
main effects, which are not estimable from case-parent trio data. Genetic main effects are
estimable however and flexibly parametrized by the intercept terms of the log-GRR curves.
The flexibility in the intercept terms avoids mis-specification of the genetic main effects
which can lead to biased inference of interaction effects [37].

3.2.7 Choice of X

Following [24], [27] set X to be the categorical variable XE that distinguishes E distributions
among the genetic strata of the population. Since XE is unobserved, [27] consider the
expectation of E given genetic markers (EEGM) as a surrogate X̂E . The idea behind their
EEGM approach is to distinguish exposure distributions by their mean, which may vary
across genetic strata, S. Though S is not known, it is reflected in principal components
(PCs), Ŝ, computed from a set of genetic markers that are unlinked to G′. The expectation
of E given Ŝ can be estimated by linear regression of E on Ŝ when E is continuous, or by
logistic regression when E is binary. For EEGM adjustment, the expected exposure within
genetic strata is estimated by X̂E = Ê(E|Ŝ). [27] showed that EEGM adjustment works
well where there are two population strata, but our simulation results (Section 3.3) indicate
that it works poorly for more than two strata. We therefore propose to adjust for population
strata directly; i.e., to take X = S. In particular, if the population has K +1 genetic strata,
indexed 0, . . . , K, we let S denote a vector of K dummy variables that distinguish these
strata such that that the kth element Sk = 1 for trios in stratum k > 0 and 0 otherwise,
for k = 1, . . . , K.

3.2.8 Inferred population strata

The population stratum variable S reflects genetic ancestry and is not generally known.
Since adjustment for self-reported ancestry can lead to bias [31] we use marker-based PCs,
Ŝ. An advantage of PC-adjustment is that it does not enforce discrete strata, and individuals
whose PC values lie between those of clusters on the PC plot (e.g. admixed individuals)
will have intermediate values of the slope and intercept of their log-GRR curve.

Standard PC adjustment in genetic association analyses relies on a relatively large set
of PCs. For K PCs the degrees of freedom of the test for G′ × E is equal to 2(K + 1). Thus,
using more PCs than are necessary reduces the power of the test for G′×E. We seek methods
to select a parsimonious set of PCs that provides enough adjustment to control type 1 error
rate, without sacrificing power. We consider three PC-selection methods. The first [39] is an
automated version of the graphical approach of looking for an “elbow" in the scree plot of
variance explained by the PCs as a function of their number. The second [8] is an estimator
of the rank of a matrix under a model in which the data matrix is a noisy version of a
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low-rank matrix. The third [13] is to select PCs corresponding to eigenvalues that exceed
a significance threshold determined from the distribution of the largest eigenvalue of an
unstructured random matrix.

3.2.9 Simulation methods

Simulating G, G′ and E on case-parent trios

To study the statistical properties of our proposed approach and compare it to the method
of [27], we generated 5000 data sets of 3000 informative case-parent trios. Trios were sampled
from one of four population strata labelled S = 0, 1, 2 or 3. We assumed random mating
within and no mixing between strata. We performed some simulations using equal-sized
strata and others using unequal-sized strata. In the case of unequal stratum sizes, the split
was 60%, 40% for two strata; 50%, 30% and 20% for three strata; and 40%, 30%, 20% and
10% for four strata.

For a given stratum, informative trios were simulated following the methods proposed
by [28, 26]. Briefly, GG′ haplotypes are first simulated on parents in a random-mating
population according to the stratum-specific GG′ haplotype distributions in Table 3.1. Child
haplotypes are then simulated following Mendel’s laws and assuming no recombination
between G and G′. The child’s exposure E is also simulated according to the stratum-
specific distributions described below. Finally, the child’s disease status is simulated based
on the disease-risk model (3.1). Trios with an affected child and at least one heterozygous
parent at the test locus are retained. The data recorded on each trio are G′

p, G′, and E,
where G′

p is the pair of parental genotypes at the test locus.
Spurious G′ ×E is induced by specifying different distributions of E and GG′ haplotypes

in the four strata of Table 3.1. The GG′ distributions for strata S = 0 and S = 1 are as in
[27]. Alleles at G are denoted R (risk) and N (non-risk), while alleles at G′ are denoted 1
and 0. We summarize the haplotype distributions by the implied allelic correlations between
the index alleles R and 1. Under the GG′ haplotype frequencies given in Table 3.1, these
correlations are r0 = −1 in stratum S = 0, r1 = 1 in stratum S = 1, r2 = 0.5 in stratum
S = 2 and r3 = −0.5 in stratum S = 3.
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Table 3.1: GG′ haplotype frequencies in four population strata.

Stratum

GG′ S = 0 S = 1 S = 2 S = 3

R1 0.0 0.5 0.375 0.125
R0 0.5 0.0 0.125 0.375
N1 0.5 0.0 0.125 0.375
N0 0.0 0.5 0.375 0.125

The stratum-specific distributions of E are chosen to be normal with common variance
σ2 = 0.36, and means µ0 = −0.8, µ1 = 0.8, µ2 = 2.4 and µ3 = 4.0 in strata 0, 1, 2 and 3,
respectively. The E distributions for strata S = 0 and S = 1 are as in [27].

The disease-risk model is specified as follows. The genetic main effect is βg = log(3)/2
for g = 1, 2, corresponding to a

√
3-fold increase in relative risk for each copy of the risk

allele (R) in the absence of G × E. To evaluate the type 1 error rate of the G × E test we
set fg(e) = 0 in our simulations. To investigate power we choose a linear interaction model
for the G × E term, setting fg(e) = βgEe with βgE = −0.10, −0.15, −0.20 or −0.25.

Simulating markers for PC adjustment

A standard method of PC adjustment is to calculate PCs from a genomic region that is
unlinked to the test locus. It is recommended that markers in this region be thinned, or LD
pruned, to have pairwise correlations of r2 ≤ 0.1 [9]. We simulated such panels of markers
based on data from the 1000 genomes project [5] using two East Asian (Chinese Dai in
Xishuangbanna, China [CDX] and Han Chinese in Bejing China [CHB]) and two European
(Iberian population in Spain [IBS] and Finnish in Finland [FIN]) populations. From the
initial download of the genome-wide data, we retained 6,929,035 diallelic, autosomal markers
with minor allele frequency (MAF) 0.05 or greater in all four of the population groups.

Our initial approach to simulating markers for a given population stratum was to fit
a hidden Markov model (HMM) to the haplotypes in that stratum, chromosome by chro-
mosome, using fastPHASE [22], and use this fitted model to simulate individual multilocus
genotypes using SNPknock [23]. The simulated data are then LD pruned and principal
components are computed from the thinned panel of markers. However, the computation
involved in this approach proved to be prohibitive. For example, fitting the HMMs took
up to 5 hours per chromosome. We therefore considered two computationally cheaper al-
ternatives. In the first alternative, we started from an LD-pruned set of markers in the
original data and fit HMMs to this set. In the second alternative, we used the same panel
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of pruned markers, but simulated genotypes independently based on the MAFs in the pop-
ulation strata. In what follows we refer to the first and second alternatives as LD-based and
independent marker simulation, respectively.

Independent markers could contain more information about the population strata than
markers in LD. As a result, PC adjustment with independent markers might control type
1 error more effectively than adjustment with markers in LD. To assess this possibility, we
completed 100 preliminary simulation replicates using LD-based marker simulation and 5000
replicates using independent marker simulation. We simulated trios from four population
strata under the null hypothesis of no G × E, used the PC selection method of [8] to
adjust the risk model and estimated the resulting type 1 error rates. Estimated type 1 error
rates and their 95% confidence intervals under the LD-based and independent simulation
methods were 0.04 (0.002, 0.078) and 0.0496 (0.044, 0.056), respectively, and consistent with
similar type 1 error rates for the two approaches. We therefore used the faster simulation
of independent markers for the simulation study.

In Sections 3.3.2 and 3.3.3 we present type I error and power results for two, three or
four population strata. For two strata (S = 0 and S = 1), marker simulations were based
on the CHB and IBS population groups. For three strata (S = 0, S = 1 and S = 2),
simulations were based on the CHB, IBS and CDX population groups.

3.3 Results

3.3.1 Selection of Principal Components

All PC selection methods performed well when the sizes of the population strata were equal
(results not shown), but not when the sizes were unequal. We illustrate with simulation
results involving datasets of 3000 trios sampled from four unequal-sized strata. For K+1 = 4
populations we require K = 3 PCs. In 5000 simulation replicates, the method of [8] always
selected three, the method of [39] always selected one, and the method of [13] selected three
PCs 4942 times and four PCs 58 times. Other simulation results with unequal-sized strata
(not shown) yielded similar results. Therefore, in what follows we use the method of [8] to
select PCs.

3.3.2 Type I Error Rate

We compared the type I error rates of the test for G′ × E using (i) adjustment with the
true stratum membership S, (ii) the EEGM adjustment of [27], and (iii) PC adjustment.
Results for simulated datasets with equal or unequal stratum sizes are shown in Table 3.2.
For both equal and unequal stratum sizes, adjustment by S or direct PCs maintains the
nominal 5% error rate regardless of the number of strata. By contrast, EEGM adjustment
leads to an inflated type I error rate when there are more than two strata. In light of the
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inflated size of the test, we do not consider EEGM adjustment in the following section on
power.

Table 3.2: Estimated type 1 error rates (top entry) and corresponding 95% confidence
intervals (bottom entry) when data are simulated from 2, 3 or 4 strata with equal (top
three rows) or unequal (bottom three rows) stratum sizes

Equal stratum sizes

Number of strata

Adjustment 2 3 4

S 0.0556 0.0524 0.0498
(0.049, 0.062) (0.046, 0.0586) (0.044, 0.056)

EEGM 0.0538 1.0000 1.0000
(0.048, 0.060) NA NA

PC 0.0546 0.0534 0.0496
(0.048, 0.061) (0.047, 0.060) (0.044, 0.056)

Unequal stratum sizes

2 3 4

S 0.0524 0.0482 0.0536
(0.046, 0.058) (0.042 0.054) (0.047,0.059)

EEGM 0.0536 1.0000 1.0000
(0.047, 0.060) NA NA

PC 0.0540 0.0508 0.0527
(0.048, 0.060) (0.045, 0.057) (0.046, 0.059)

3.3.3 Power

Table 3.3 provides a comparison of estimated power when data are simulated from two, three
or four strata. Results are shown for simulations using both equal and unequal stratum sizes
and for different values of the G × E effect. From these results we see that power increases
with effect size, decreases with number of strata and tends to be slightly larger for unequal
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strata than equal strata. Importantly, the estimated power under PC adjustment is always
within simulation error of that under adjustment for true stratum membership.
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Table 3.3: Estimated power (top entry) and corresponding 95% confidence intervals (bottom
entry) of different adjustment schemes for different G × E interaction effects βgE , number
of strata and stratum-size distributions.

Equal stratum sizes
βgE

Num. Strata Adjustment -0.10 -0.15 -0.20 -0.25

2 S 0.2602 0.5660 0.8420 0.9558
(0.248, 0.272) (0.552, 0.580) (0.832, 0.852) (0.950, 0.961)

PC 0.2580 0.5660 0.8404 0.9564
(0.246, 0.270) (0.552, 0.580) (0.830, 0.850) (0.951, 0.962)

3 S 0.1742 0.3844 0.6498 0.8288
(0.164, 0.185) (0.371, 0.398) (0.636, 0.663) (0.818, 0.839)

PC 0.1788 0.3920 0.6616 0.8316
(0.168, 0.189) (0.378, 0.406) (0.648, 0.675) (0.821, 0.842)

4 S 0.1306 0.2766 0.5010 0.6970
(0.121, 0.140) (0.264, 0.289) (0.487, 0.515) (0.684, 0.710)

PC 0.1396 0.2936 0.5088 0.6918
(0.130, 0.149) (0.281, 0.306) (0.495, 0.523) (0.679, 0.704)

Unequal stratum sizes
βgE

-0.10 -0.15 -0.20 -0.25

2 S 0.2636 0.5724 0.8328 0.9518
(0.251, 0.276) (0.559, 0.586) (0.822, 0.843) (0.946, 0.958)

PC 0.2648 0.5722 0.8322 0.9514
(0.252, 0.277) (0.558, 0.586) (0.822, 0.842) (0.945, 0.957)

3 S 0.1950 0.4322 0.7082 0.8640
(0.184, 0.206) (0.418, 0.446) (0.696, 0.721) (0.854, 0.874)

PC 0.1936 0.4334 0.7054 0.8632
(0.183, 0.204) (0.420, 0.447) (0.693, 0.718) (0.854, 0.873)

4 S 0.1614 0.3470 0.6028 0.7894
(0.151, 0.172) (0.334, 0.360) (0.589, 0.616) (0.778, 0.801)

PC 0.1598 0.3380 0.5872 0.7820
(0.150, 0.170) (0.325, 0.351) (0.574, 0.601) (0.770, 0.794)26



3.4 The GENEVA Oral Cleft study

3.4.1 Data and objectives

The GENEVA Oral Cleft study [1] is comprised of 550 case-parent trios from 13 different
sites across the United States, Europe, Southeast and East Asia. Data were obtained through
dbGAP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_

id=phs000094.v1.p1 with accession number phs000094.v1.p1. Of the 550 trios, only 462
were available for analysis. Summaries of the trios by ancestry and gender of the affected
child are shown in Table 3.4. From this table we see the ancestry of the sample is predomi-
nantly European (46%) and East Asian (51%).

Table 3.4: Gender of 462 affected children by self-reported ancestry

Ancestry Males Females Total %

European 103 111 214 46%
Asian 93 141 234 51%

Other/Afr 3 11 14 3%
Total 199 263 462 100%

The objective of the GENEVA study is to discover genetic contributions to orofacial
clefts, the most common type of craniofacial birth defect in humans, and to assess whether
these genes modify the effect of exposures known to be associated with cleft palate. Ma-
ternal exposure to multivitamins, alcohol and smoking were assessed through maternal
interviews focused on the peri-conceptual period (3 months prior to conception through the
first trimester), which includes the first 8-9 weeks of gestation when palatal development
is completed. Exposure status is summarized in Table 3.5. From this table we see that the
three dichotomous exposures are all more common in Europeans. In contrast to the contin-
uous exposures of the simulation study, the exposures we consider in the GENEVA study
are all dichotomous.
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Table 3.5: Exposure rates for maternal alcohol consumption, maternal smoking and maternal
vitamin supplementation by self-reported ancestry in affected trios.

Percent exposed to Maternal

Ancestry Alcohol Smoking Vitamin Supp. Affected children

European 41% 28% 57% 214
East Asian 4% 3% 21% 234
Other/Afr 14% 7% 71% 14

Total 21% 14% 39% 462

3.4.2 GENEVA data analysis

PC selection

LD pruning of the genome-wide panel of SNPs at an r2 threshold of 0.1 yielded 63,694
markers. In a principal component analysis of these markers, the first PC explains 6.3% of
the total variance and all others explain less than 0.4%. Not surprisingly, the method of
[8] selects one PC. A plot of the projections of the data onto the first two PCs is shown
in Figure 3.3, with points colored by self-reported ancestry. Each PC has been shifted by
subtracting the minimum value and scaled by the range so that the values are between zero
and one. The first PC distinguishes those with self-reported East Asian ancestry from those
with self-reported European ancestry; hence, a value near zero corresponds to a hypothetical
East Asian and a value near one corresponds to a hypothetical European. The second PC
separates the single self-reported African child from all others.

Inference of G × E

The conditional-likelihood methods outlined in Appendix B.1 were applied to the data. We
focused on inference of G×E between maternal alcohol consumption and the six SNPs in the
MLLT3 gene that had significant G×E at the 5% level in the analysis of [3]. Displays of the
LD between these SNPs and others nearby [25] are shown in Figure B.1, Appendix B.2.1, for
self-reported European subjects and self-reported East Asian subjects. Table 3.6 shows the
results of fitting three different log-linear models of G′ × E. Following [3], each is based on
an additive genetic model that specifies equal log-GRRs for genotypes g′ = 1 or 2. Results
based on fitting a more general co-dominant model (3.1) were similar (results not shown).
The first model, as in [3], makes no adjustment for exposure-related genetic structure in the
population, the second uses EEGM adjustment and the third uses PC adjustment. From
the table we see that, for each test SNP, p-values for the tests of G′ × E are smallest when
we make no adjustment. Comparing the EEGM and PC adjustment approaches we find
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Figure 3.3: Projections of each affected child onto the first two PCs by self-reported ancestry:
red=East Asian (234 trios), blue=European (214 trios), orange=African (one trio) and
green=multiple ancestry/other (13 trios). Each PC has been shifted and scaled so that a
PC1 value near zero corresponds to a hypothetical East Asian and a PC1 value near one
corresponds to a hypothetical European.

that p-values from PC adjustment are similar to, but tend to be slightly smaller than, those
from the EEGM adjustment. Of the six test SNPs show in the table, four retain significance
at the 5% level after adjustment for exposure-related genetic structure.

The estimates shown in Table 3.6 are of the multiplicative factors by which maternal
alcohol consumption modifies the GRRs at the six test SNPs. For a binary exposure such as
maternal alcohol consumption, these modifying effects can be obtained by exponentiating
the interaction term in the log-GRR model. With no adjustment for genetic structure there
is a single interaction term and hence a single estimated modifying effect for all trios. For
example, maternal alcohol consumption is estimated to increase the GRR at SNP rs4621895
by a factor of about 2.1 for all trios.
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By contrast, with EEGM or PC adjustment the interaction term depends on the value
of the adjustment variable and we have reported estimates for hypothetical East Asian and
European subjects in our sample. For example, maternal alcohol consumption is estimated
to decrease the GRR at SNP rs4621895 by a factor of about 0.73 for East Asian trios and
to increase the same GRR by a factor of about 2.4 for European trios. For these data,
the adjustment variables used in the EEGM- and PC-adjustment approaches are highly
correlated (Pearson correlation 0.996), and so the estimates for the two approaches are
very similar. These estimates are also similar to those obtained from an analysis using self-
reported ancestry (results not shown). The 95% confidence intervals for hypothetical East
Asians cover one for each SNP but do not cover one for hypothetical Europeans, with the
exception of SNP rs2780841. These results suggest that any G × E signal is from trios of
European ancestry, where maternal alcohol consumption is more common.

3.5 Discussion

We consider a log-linear model of GRRs at a causal locus G. Under this model, G × E is
equivalent to GRRs that vary with the exposure E. We show that exposure-related genetic
structure in the population can lead to spurious G′ × E at a non-causal test locus G′ in LD
with G. However, valid inference of G′ × E can be obtained by augmenting the GRR model
with a blocking variable X, such that GG′ haplotypes and E are conditionally independent
given X. We discuss the choice of X for inference of G′ × E when data are collected from
a study of case-parent trios. The population strata S would be an ideal choice for X but
may not be known definitively. We propose to use principal components (PCs) instead. In
particular, we calculate PCs from a genomic region unlinked to the test locus and select a
parsimonious subset using the method of [8]. We then specify a linear model for the log-
GRRs whose intercept and slope depend on PC values. Slopes that vary with PC values
allow the modifying effect of the exposure to vary with population strata, which can be
important for maintaining power [27, Section 3.3]. Through simulations, we show that our
PC adjustment maintains the nominal type-1 error rate and has nearly identical power
to detect G × E as an oracle approach based directly on S. We illustrate our approach
by applying it to an analysis of real data from case-parent trios in the GENEVA Oral
Cleft Study. In our analysis of the GENEVA data, we focussed on SNPs and exposures
identified by [3]. In a discussion of their results, these authors noted that the SNPs they
identified are not in known cleft-palate susceptibility genes and are either intronic or are
upstream/downstream of coding regions. This lack of compelling biological plausibility,
coupled with the striking differences in exposure distributions between the self-reported
European and East Asian strata, motivated our G × E analysis that adjusts for population
structure. However, our results (Table 3.6) and those of [19] do not contradict the hypothesis
of G × E, but rather suggest that any G × E signal is due to the self-reported European
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trios. Further data collection aimed at self-reported European trios may provide stronger
conclusions regarding the presence of G × E.

To reduce bias from exposure-related genetic structure, direct PC adjustment has ad-
vantages over the EEGM approach and design-based strategies such as the tetrad approach
of [24] and the sibling-augmented case-only approach of [34]. Unlike the EEGM approach,
PC adjustment controls the type 1 error when there are more than two population strata.
Unlike the design-based strategies, PC adjustment does not require siblings nor assume
binary exposures.

Development of alternative approaches based on propensity scores is an area for future
work. The EEGM approach is attractive in that it reduces the genetic principal components
to a single score, E(E|Ŝ). For binary exposures, such as those in the GENEVA study, the
EEGM is a propensity score [21]. For continuous exposures, such as those in the simula-
tion study, the analog to the EEGM is a continuous-treatment propensity score [4]. With
continuous exposures, we could predict E given the genetic markers and then convert the
predictions to a Normal density score that takes low values for predictions far from their
observed value. These density scores could be used either as predictors [10] or weights [20] in
subsequent analyses. It would be interesting to explore the use of propensity-score methods
in inference of G′ × E from case-parent trios with continuous exposures, particularly when
there are more than two population strata.
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Chapter 4

Adjustment for population
stratification by local ancestry in
gene-by-environment interaction
studies of case-parent trios

4.1 Introduction

In a case-parent trio study we collect genotypes, G, on affected children and their parents.
We may also collect environmental exposures or non-genetic attributes, E, on the children.
G × E which can be interpreted as genes that modify the effect of exposure or exposures
that modify the effect of genes.

Population stratification (PS) is a source of confounding in gene-by-environment inter-
action (G × E) studies of case-parent trios when the study sample is pooled from distinct
geographic locations. Specifically, when the test locus, G′, is not causal, disease risk at G′

can appear to be modified by E without G × E interaction when there is exposure-related
population structure [24, 34]. Exposure-related population structure may be thought of as a
form of confounding that occurs when both GG′ haplotype frequencies and E distributions
differ by ancestral group. Differences in GG′ haplotypes can lead to differences in G′ risk
that may be tagged by E, suggesting G′ × E even in the absence of true G × E interaction.

The diagram in Figure 4.1 depicts the dependence between GG′ haplotypes and E from
exposure-related genetic structure in the population. In the figure, S is a categorical variable
that indicates population strata. The categorical variable XE is a variable that depends on
S with different levels of XE corresponding to different E distributions, and XGG′ is a
variable that depends on S with different levels of XGG′ corresponding to different GG′

haplotype distributions. In [18] both XE and XGG′ were described as “coarsenings” of S,
but this need not be true in general. In this project, following [22], we take XGG′ to be
haplotype cluster membership. Informally, haplotype clusters are ancestral haplotypes that
arose in the past with mutation superposed to allow variation in marker allele and GG′
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haplotype frequencies within clusters. The idea is that the frequencies of these haplotype
clusters vary by population strata, and hence the dependence of XGG′ on S.

Figure 4.1: Diagram depicting exposure-related genetic structure. The latent population
strata S induce dependence between E and GG′. Latent factors XE and XGG′ encode
different distributions of E and GG′, respectively. E and GG′ are conditionally independent
given any of the three variables that lie on the path between them.

Shin et al. [27] propose methods to reduce bias in G × E inference due to PS in case-
parent trio data when individuals are sampled from two distinct populations. In their work,
they make bias-reduced inference of G × E by conditioning on XE . They estimate XE by
regressing E on important genetic principal components (PCs). However, their method is
limited to two subpopulation strata.

Ratnasekera et al. [18] overcomes this limitation and proposes methods to reduce bias in
G × E inference from case-parent trio data when individuals have been recruited from more
than two population strata. In their work, they make bias-reduced inference of G × E by
conditioning on S. They infer the global ancestry (S) of each affected individual via genetic
principal components (PCs).

The use of global ancestry or self reported ancestry for the adjustment on G×E interac-
tion of case-parent trios has it own limitations. Both global and self-reported ancestry may
be less relevant than local ancestry when the individuals in the study sample are pooled
from multiple different geographic locations due to possible admixture. In terms of the dia-
gram in Figure 4.1, local ancestry is reflected in the variable XGG′ that identifies different
GG′ haplotype distributions. In this project we make bias-reduced inference of G × E by
conditioning on XGG′ . We infer local ancestry using a haplotype model proposed by [22].
We apply these ideas to data from the GENEVA Oral Cleft study and compare our results
to those of [18].
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4.2 GENEVA Oral Cleft Study

The GENEVA Oral Cleft study [1] is comprised of 550 case-parent trios from 13 different
sites across the United States, Europe, Southeast and East Asia. Data were obtained through
dbGAP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_

id=phs000094.v1.p1 with accession number phs000094.v1.p1. Of the 550 trios, we studied
the 462 trios that were investigated by [18]. Summaries of the trios by ancestry and gender of
the affected child are provided in [18, Table 4]. From this table we can see the self-reported
ancestry of the sample is predominantly European (46%) and East Asian (51%). In addition
to that there are 14 (3%) affected children whose self-reported ancestry is Other or African.

The objective of the GENEVA study is to discover genetic contributions to orofacial
clefts, the most common type of craniofacial birth defect in humans, and to assess whether
these genes modify the effect of exposures known to be associated with cleft palate. Ma-
ternal exposure to multivitamins, alcohol and smoking were assessed through maternal
interviews focused on the peri-conceptual period (3 months prior to conception through the
first trimester), which includes the first 8-9 weeks of gestation when palatal development is
completed. Exposure status is summarized in [18, Table 5]. From this table we see that the
three dichotomous exposures are all more common in Europeans.

Beaty et al. [3] found evidence for G × E interaction for maternal alcohol consumption
and SNPs in the genes MLLT3 and SMC2, for maternal smoking and SNPs in the genes
TBK1 and ZNF236, and for maternal multivitamin use and SNPs in the BAALC gene.

Figure 4.2 [18, Figure 3] presents a plot of the projections of the genome-wide genetic
data of of 462 trios in GENEVA study onto the first two PCs, with points colored by self-
reported ancestry. The genetic PCs haven been obtained after performing LD pruning of
the genome-wide panel of SNPs at an r2 threshold of 0.1, which yielded 63, 694 markers.
Furthermore, each PC has been shifted by subtracting the minimum value and scaled by
the range so that the values are between zero and one. The first PC distinguishes those with
self-reported East Asian ancestry from those with self-reported European ancestry; hence, a
value near zero corresponds to a hypothetical East Asian and a value near one corresponds
to a hypothetical European. The second PC separates the single self-reported African child
from all others.
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Figure 4.2: Projections of each affected child onto the first two PCs by self-reported ancestry:
red=East Asian (234 trios), blue=European (214 trios), orange=African (one trio) and
green=multiple ancestry/other (13 trios). Each PC has been shifted and scaled so that a
PC1 value near zero corresponds to a hypothetical East Asian and a PC1 value near one
corresponds to a hypothetical European.

Figure 4.2 suggests the presence of admixed individuals, whose points on the PC plot lie
between the clusters identified as hypothetical East Asian (red) and European (blue). This
includes self-reported East Asians, self-reported Europeans, and individuals that identify
as being from more than one ancestral group (green). These observations suggest that it
is important look at the local ancestry of individuals in addition to self-reported and/or
global ancestry to better understand the true population structure of the study sample.

4.3 Methods to Infer Local Ancestry

Inference of local ancestry is challenging. We considered two approaches. The first, due
to [6], is a Bayesian model-based clustering algorithm to infer local and global ancestry
of individuals based on genome-wide data. Their method identifies the differences in the
distribution of genetic variants amongst populations and place samples into groups whose
members share similar patterns of variation. However, their methods can only be applied
on unlinked or loosely linked panel of genome-wide markers.
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The second method we considered is that of [22]. These authors propose a model in
which haplotypes are drawn from one of K clusters and cluster membership is allowed to
change along the genome. Their method can be applied to tightly-linked markers and is
capable of capturing the complex patterns of correlation that exists among such markers.
In this study we apply the methods proposed by [22] to infer the local ancestry of a panel
of markers from 462 affected children in GENEVA Oral Cleft study.

4.3.1 Inferring local ancestry with fastPHASE

Scheet and Stephens [22] propose a Hidden Markov Model (HMM) to cluster haplotypes of
diallelic SNPs. Their starting point is a global-ancestry model that assumes haplotypes are
drawn from one of K clusters with cluster-specific allele distributions at each marker. They
then incorporate local ancestry by allowing for cluster switching, according to a HMM
that captures that idea that alleles at nearby markers are likely to arise from the same
cluster [22, Model 3 and 4]. The authors use an expectation-maximization (EM) algorithm
to estimate the cluster-specific allele frequencies and the parameters of the HMM, including
the transition probabilities which determine whether the adjacent alleles are in the same
cluster or in a different cluster.

In our study we are particularly interested in Model 4 of [22], which estimates the
cluster memberships of each haplotype. In other words, Model 4 returns estimates of a
variable XGG′ (Figure 4.1) that tags different GG′ haplotype distributions. In this study,
our primary goal is to infer XGG′ for a given haplotype and make inferences of G × E for
each subpopulation by conditioning on XGG′ .

The methods described in [22] have been implemented in the software package fast-
PHASE. In this study we use fastPHASE to infer the XGG′ haplotype clusters of 462 cleft
palate affected children of GENEVA Oral Cleft study. The fastPHASE software was used
with the recommended settings of 20 starts of EM algorithm, with up to 25 iterations per
start. We obtained the parameter estimates of HMM based on the parameter values which
maximize the likelihood. Furthermore, we fixed the number of clusters K to be 8 as proposed
in Sheet et al..

4.3.2 Disease risk model with XGG′ adjustment

We apply the disease risk model proposed by Ratnasekera et al. [18, Model 7] with a
modification in order to make inferences of G × E adjusted for XGG′ haplotype clusters. In
particular, we replace the latent variable S of model 7 of [18], estimated by important genetic
principal components, with the latent cluster memberships, estimated by fastPHASE. Since
the risk model at the test locus is for an individual, and individuals have two chromosomes,
we include the combination of inferred clusters at the test locus for each child in the study.
In what follows we suppose that there are K such combinations.

37



The modified log-linear genotype relative risk (GRR) model for G′ is,

log GRRg′(e, x∗) = βg′ + βg′E × e +
K−1∑
k=1

βg′k × x∗
k +

K−1∑
k=1

βg′Ek × x∗
k × e; g′ = 1, 2, (4.1)

where x∗
k, is an indicator variable of membership in cluster combination k, for k = 2, ..., K

and x∗ is the vector of K −1 indicator variables. The GRR model for G′ for a trio in cluster
combination k = 1 is then

log GRRg′(e, x∗) = βg′ + βg′E × e

and for cluster k > 1 is

log GRRg′(e, x∗) = βg′ + βg′k + (βg′E + βg′Ek) × e

This model may be interpreted as follow. For trios with G′ = g′ in cluster combination
k = 1, the log-GRR curve is linear with intercept βg′ and slope βg′E . For trios with G′ = g′

in cluster combination k, k = 2, . . . , K, the log-GRR curve is linear with intercept βg′ +βg′k

and slope βg′E + βg′Ek.
To test for G′ × E based on the model (4.1) we use a likelihood-ratio test of the null

hypothesis that all curves have zero slope,

H0 : βg′E = βg′E2 = · · · = βg′EK = 0; g′ = 1, 2, (4.2)

versus the alternative hypothesis that at least one of the slope parameters is non-zero.

4.4 Data Analysis

An analysis was performed with data on 462 children affected with cleft palate (CP) in
two phases. Phase one was inference of the local ancestry of affected individuals at given
loci with the use of fastPHASE. In phase two, we use the inferred local ancestry to make
inference of G × E. Here, we focused on the MLLT3 gene and inference of G × E between
maternal alcohol consumption and the six SNPs in the MLLT3 gene that had significant
G × E at the 5% level in the analysis of [3].

4.4.1 Local Ancestry of CP-Affected Children in MLLT3

We inferred the local ancestry of tightly linked loci in MLLT3 with fastPHASE. First we
filtered SNPs to those with MAF ≥ 0.05 and with less than 5% missing data. The resulting
364 SNPs were then analysed with fastPHASE using the recommended settings mentioned in
section 4.3.1. Figure 4.3 depicts cluster memberships of haplotypes from a selection of nine
CP-affected children (18 haplotypes): three of self-reported European ancestry (denoted
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EU1 to EU3), one of self-reported African ancestry (denoted AF1), one of self-reported
Other ancestry (OT1) and four of self-reported East Asian ancestry (EA1 to EA4). Figure
4.3 is focussed on the 95 markers (out of 364) that span the six SNPs of interest in MLLT3.
Figure 4.4 shows the nine CP-affected children of Figure 4.3 on the PC plot obtained
from a genome-wide panel of markers. On the PC plot, AF1, EA1 and OT1 stand apart
from the hypothetical EA and EU individuals based on genome-wide data, represented
by {EA2,EA3,EA4} and {EU1,EU2,EU3}, respectively. However, we see some similarities
between AF1, EA1, OT1 and the others based on inferred haplotype clusters from MLLT3.
For example, the inferred clusters of the first (top-most) haplotype from AF1 are like the
two haplotypes of EU2, while the inferred cluster of the second (bottom-most) haplotype of
AF1 is like haplotypes seen in EU3, EA1, EA3 and EA4. As another example, we see that
the inferred clusters of EA1 and OT1 are fairly similar to those of EA3, even though EA1
and OT1 stand apart from {EA2,EA3,EA4} on the PC plot. To summarize, for these data
on MLLT3, inferred local ancestry is different than global anestry, and we argue that local
ancestry is more relevant for inference of G × E.

Figure 4.3: Graphical display of cluster memberships of haplotypes from a selection of nine
CP-affected children (18 haplotypes). Rows of the plot represents haplotypes and columns
represents SNPs. The eight different colors represent estimated cluster membership, which
changes as one moves along each haplotype. The locations of the six SNPs of interest in
MLLT3 are shown on the X-axis.
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Figure 4.4: Projections of 9 affected children of figure 4.3 onto the first two PCs by self-
reported ancestry: red=East Asian (4 trios), blue=European (3 trios), orange=African (one
trio) and green=multiple ancestry/other (one trio). Each PC has been shifted and scaled
so that a PC1 value near zero corresponds to a hypothetical East Asian and a PC1 value
near one corresponds to a hypothetical European.
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Figure 4.5: The distribution of cluster memberships (K = 8) at each of the six SNPs of
interest on MLLT3 gene. The distribution shows the cluster membership of each of the 924
haplotypes at each SNP, with colors indicating self-reported ancestry.

Another way to summarize inferred local ancestry is to look at the distributions of
cluster memberships at specific SNPs by self-reported ancestry. Figure 4.5 shows the dis-
tributions of cluster membership at each of the six SNPs which were found to significantly
modify exposure to maternal alcohol consumption. These distributions of are similar for
SNPs rs4621895, rs4977433, rs6475464 and rs668703, with a majority of alleles assigned to
clusters 3, 4, 7 or 8. Clusters 3 and 8 have more self-reported Europeans, while clusters 4 and
7 have more self-reported East Asians. By contrast, at SNPs rs623828 and rs2780841 most
self-reported Europeans have been assigned clusters 6 and 8 and most self-reported East
Asians to clusters 3, 4, 7 and 8. These observations reinforce the idea that local ancestry
changes as we move along a particular gene.
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4.4.2 G × E results for CP-affected children at six SNPs from MLLT3

We have argued that adjusting for local ancestry is important, but we now show that, in
its current form, such adjustment is not useful for inference of G′ × E. Table 4.1 shows
the p-values from likelihood-ratio test of fitting three different log-linear models of G′ × E.
Following [3], each is based on an additive genetic model that specifies equal log-GRRs for
genotypes g′ = 1 or 2. The first model, as in [3], makes no adjustment for exposure-related
genetic structure in the population, the second uses S adjustment and the third uses XGG′

adjustment. From the table we see that, for each test SNP, p-values for the tests of G′ × E

are smallest when we make no adjustment. In comparison, the p-values from S adjustments
are slightly higher and only four of the six SNPs retain significance at the 5% level. The
most striking feature of Table 4.1 is the p-values from XGG′ adjustment, which are all
approximately one, suggesting that G′ does not modify the association between exposure to
maternal alcohol consumption. These large p-values are a symptom of failed model fitting,
with too little data given the large number of cluster combinations. In particular, the model
of equation (4.1) specifies separate log-GRR curves in the exposure E for each pair of
haplotype clusters, and we observe pairs of haplotype clusters with few or no exposed
individuals. This lack of data leads to a failure of the iterative model-fitting procedure to
converge. The lack of convergence is also evident in the estimates and confidence intervals
for the interaction terms in model 4.1, shown in Tables C.1 through C.6 in Appendix C.

SNP No adj. S adj. XGG′ adj.

rs4621895 0.0006 0.0037 ≈ 1
rs4977433 0.0003 0.0028 ≈ 1
rs6475464 0.0104 0.0139 ≈ 1
rs668703 0.0008 0.0025 ≈ 1
rs623828 0.0481 0.1384 ≈ 1
rs2780841 0.0417 0.1471 ≈ 1

Table 4.1: The P-values of likelihood ratio test from the model with no adjustment, with S
adjustment and XGG′ adjustment

4.5 Discussion

This study attempts to address the problem of biased inference of G × E in studies of case-
parent trios when trios are recruited from multiple different geographic locations. Exposure-
related genetic structure in the study sample can lead to spurious G′ × E at a non-causal
test locus G′ in linkage-disequilibrium with casual locus G. We obtain inference of G′ × E
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by introducing two different adjustments to the G′ × E interaction effect along with the
no-adjustment model used by Beaty et al. Out of the two adjustments, the PC adjustment
works well for multiple ancestral groups as long as there is no admixture in the study
sample. Here, we introduce the second adjustment by XGG′ , which captures local ancestry
and should be useful when the study sample includes admixed individuals.

We use fastPHASE to estimate the local ancestry of individuals. FastPHASE infers local
ancestry based on a HMM to cluster haplotypes and can be used to capture patterns of
variation in a panel of tightly linked markers. We applied fastPHASE to genetic data on
462 Cleft-Palate-affected children from the GENEVA Oral Cleft study. The study sample
was collected from multiple different location around the world and the data includes self-
reported ancestry in the categories Europeans, East Asians, Africans or Other/more than
one ancestry. We applied fastPHASE to 364 diallelic tightly linked markers spanning the
MLLT3 gene and obtained cluster memberships under recommended settings. These cluster
memberships were used as the estimates of XGG′ . We then tried to use estimates of XGG′

to fit the model of equation 4.1, but model fitting failed. The model fits separate G′ × E

curves for different pairs of haplotype clusters. By assuming eight latent haplotype clusters,
as recommended, there are potentially 8 × (8 + 1)/2 = 36 pairs of clusters. Of the 36 we
observed 14 pairs at rs4621895, 15 at rs4977433, 16 at rs6475464, 17 at rs668703, and 28
at rs623828 and rs2780841. In addition, the model requires two log-GRR curves, one for
g′ = 1 and one for g′ = 2, for each pair of haplotype clusters. There are simply too many
log-GRR curves to fit with the 462 trios in the GENEVA dataset.

Similar to how the PC-adjustment method required a parsimonious set of PCs, local
ancestry adjustment requires a parsimonious set of haplotype clusters. We considered using
two or four, rather than eight haplotype clusters, but these more parsimonious latent hap-
lotype cluster models yielded lower likelihoods and are therefore not recommended by [22].
In addition, the classification of self-reported ancestry looks much better when using eight
rather than two or four haplotype clusters. A potential problem with fastPHASE (Lloyd
Elliot, personal communication, August 16, 2023) is that inference of clusters may not be
reversible; that is, inferred clusters could be different depending on whether the algorithm
is run forwards or backwards along the chromosome. One area of future work is to re-run
fastPHASE backwards on the GENEVA data to see if it changes the cluster memberships.
An alternative to fastPHASE for local ancestry inference is RFmix [12], which is used by the
Tractor method for GWAS with admixed samples [2]. One direction for future research is to
apply RFmix to the GENEVA data to see if it gives a more parsimonious characterization of
local ancestry. Another area of future work is to investigate the use of penalized likelihood
methods to stabilize parameter estimation.

Another direction for future work is to use inferred pairs of haplotype clusters as multi-
allele genotypes. We observed very little variation in SNP genotypes, G′, at the test loci
once haplotype clusters are considered (results not shown), suggesting that we use haplotype
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cluster pairs instead of G′ genotypes in the risk model. This requires that we re-work the
risk model in terms of a multi-allelic model and then derive the likelihood for trio data,
in which the genotype (cluster pair) is the response variable. We could further reduce the
number of parameters by specifying an “additive” model in the haplotype clusters, rather
than a “co-dominant” model in terms of all haplotype pairs.
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Chapter 5

Conclusion

The three projects in this thesis discuss statistical methods to reduce bias in G×E inference
from case-parent trios due to exposure-related genetic population structure. In chapter 2, we
re-analysed the G×E results of case-parent trios in GENEVA Oral Cleft study reported by
[3]. Beaty et al. reports statistically significant G × E interaction effects on the risk of cleft
palate between exposure to maternal alcohol consumption and SNPs in the MLLT3 and
SMC2 genes, exposure to maternal smoking and SNPs in the TBK1 and ZNF236 genes, and
exposure to multivitamin supplementation and SNPs in the BAALC gene. The GENEVA
study consists primarily of case-parent trios categorised as either self-reported European or
self-reported East Asian and the exposure distributions all differ by self-reported ancestry
group. If, in addition, haplotype distributions vary with self-reported ancestry we would
have exposure-related population structure that could result in biased G × E inference.
We applied the biased-reduced methods of Shin et al. to the GENEVA data to investigate
potential bias in G × E results reported by Beaty et at. due to exposure-related population
structure. Our results generally confirm the results reported in Beaty et al. However, the
evidence of G×E was primarily from self-reported European trios, with the exposures being
too rare among self-reported East Asians to make any conclusions. A secondary analysis
was also performed to investigate whether the evidence for G×E could be due to population
structure within the self-reported Europeans. However, the genetic marker data from the
genome-wide marker panel was not predictive of exposure within the European population
and so the adjustment of Shin et al. was not possible. Furthermore, we also conducted a
secondary analysis of the East Asian trios to investigate the potential bias in the G × E

results reported in Wu et al. [35]. Wu et. al. found evidence of genetic modifiers of the effect
of environmental tobacco exposure on CP among East Asian trios. Again, we found genetic
markers were not predictive of exposure, so the methods of Shin et al. could not be applied.

Exposure-related population structure is illustrated in Figure 5.1. The link between GG′

haplotype frequencies and E distributions can be broken by conditioning on any of S, XE

or XGG′ to the risk model. The approach of Shin et al. is to estimate a surrogate for XE .
Simulation results in chapter 3 show that this method works well when the underlying
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Figure 5.1: Diagram depicting exposure-related genetic structure. The latent population
strata S induce dependence between E and GG′. Latent factors XE and XGG′ encode
different distributions of E and GG′, respectively. E and GG′ are conditionally independent
given any of the three variables that lie on the path between them.

population structure consists of two strata but not for more than two. In chapter 3, we
replace XE adjustment with S adjustment. The advantage of conditioning on S, or on
principal components that reflect S, is its simplicity and familiarity to researchers who
study unrelated subjects. We obtained PCs from a genome-wide panel of unlinked markers
and select a parsimonious subset of PCs based on the methods proposed by [8]. The subset
of PCs were used as the surrogate for S. Our simulations suggest that PC adjustment
maintains the nominal type-1 error rate and has nearly identical power to detect G × E

as adjustment with true stratum membership. An analysis of the GENEVA data with S

adjustment gave similar results to those with XE adjustment.
The surrogates for XE adjustment and S adjustment via genetic PCs rely on the global

ancestry of individuals. In chapter 4, we introduce the third adjustment using local ancestry
in the form of inferred haplotype clusters, XGG′ . The potential advantage of an approach
based on inferring XGG′ is that it aims to characterize local structure in the genome of study
subjects that could be responsible for apparent differences in risk at the test locus caused by
differences in linkage disequilibrium with a nearby causal locus. We used fastPHASE [22]
to infer the local ancestry of individuals based on a tightly linked set of 364 genetic markers
in the MLLT3 gene. The inferred local ancestry was then used as the adjustment for G × E

interaction between six SNPs in MLLT3 and exposure to maternal alcohol consumption.
The XGG′ adjustment is to fit separate log-GRR curves in the exposure for each observed
pair of haplotype clusters. This results in trying to fit a large number of curves with too
little data and model fitting failed. Directions for future work are to reduce the number of
haplotype clusters used in the adjustment, and re-formulating the risk model in terms of
pairs of haplotype clusters instead of genotypes at test loci.
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Appendix A

Supplementary Material for
Chapter 2: Re-analysis of a
genome-wide gene-by-environment
interaction study of case parent
trios, adjusted for population
stratification

This appendix includes the published supplementary material for the manuscript entitled
Re-analysis of a genome-wide gene-by-environment interaction study of case parent trios,
adjusted for population stratification.

A.1 Genotypic Odds

Assuming G and E are conditionally independent given parental genotypes Gp, and condi-
tioning on Gp and E we can obtain a likelihood ([27]),

P (G = g | D = 1, E = e, Gp = gp) = P (D = 1 | G = g, E = e)P (G = g | Gp = gp)∑
g∗ P (D = 1 | G = g∗, E = e)P (G = g∗ | Gp = gp)

We could use this likelihood to define Genotypic Odds,

GOg(e) = P (G = g | D = 1, E = e, Gp = gp)
P (G = g − 1 | D = 1, E = e, Gp = gp)
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GOg(e) = P (D = 1 | G = g, E = e)
P (D = 1 | G = g − 1, E = e) × P (G = g | Gp = gp)

P (G = g − 1 | Gp = gp)

GOg(e) = exp{βG + eβGE} × exp{κp}

where κp = ln(2) if g = 1 and κp = −ln(2) if g = 2 given that parental genotypes, Gp, are
both heterozygous.

A.1.1 G × E parameter estimates and its 95% confidence intervals

We have listed the sub-population specific G × E interaction parameter estimates and their
corresponding 95% confidence intervals with the EEGM adjustment in Tables A.1 to A.5.
These five tables correspond to the five genes which Beaty et al. found evidence for G × E
for maternal alcohol consumption and SNPs in the genes MLLT3 and SMC2, for maternal
smoking and SNPs in the genes TBK1 and ZNF236, and for maternal multivitamin use
and SNPs in the BAALC gene respectively. At four SNPs shown in Table A.2 and at a
one SNP of Table A.3, the exposures were so rare in the self-reported East Asian trios the
βGEX̂E

coefficient in the model (2.2) could not be estimated. In such situations, we assumed
a common G × E effect in both East Asians and Europeans.

SNP eβ̂GE 95% CI e
β̂GE+β̂GEX̂E 95% CI P-value

rs4621895 0.7430 (0.2038, 2.7084) 2.4089 (1.3935, 4.1640) 0.0060
rs4977433 0.9004 (0.2339, 3.4659) 2.4451 (1.4156, 4.2234) 0.0046
rs6475464 0.8351 (0.2468, 2.8256) 2.2750 (1.2893, 4.0141) 0.0161
rs668703 0.5679 (0.1674, 1.9268) 2.4667 (1.4288, 4.2587) 0.0039
rs623828 0.7785 (0.2367, 2.5608) 1.7828 (1.0062, 3.1589) 0.1358
rs2780841 0.6244 (0.2044, 1.9072) 1.6936 (0.9451, 3.0348) 0.1683

Table A.1: G × E parameter estimates and its 95% Confidence Intervals obtained with
EEGM adjustment of CP children at six SNPs on MLLT3 gene (Chr 9) which showed
evidence significant interaction with Maternal Alcohol Consumption.
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SNP eβ̂GE 95% CI e
β̂GE+β̂GEX̂E 95% CI P-value

rs10125685 4.2540 (1.4359, 12.6025) - - 0.0056
rs628345 2.1111 (0.9776, 4.5590) - - 0.0533
rs630103 1.6991 (0.4002, 7.2138) 0.9415 (0.5505, 1.6100) 0.7645
rs868619 6.0936 (0.2122, 174.9883) 1.1553 (0.6562, 2.0342) 0.3139
rs1536895 5.0690 (1.6175, 15.8859) - - 0.0026
rs10217601 2.1076 (0.9758, 4.5523) - - 0.0538

Table A.2: G×E parameter estimates and its 95% Confidence Intervals obtained with EEGM
adjustment of CP children at six SNPs on SMC2 gene (Chr 9) which showed evidence of
significant interaction with Maternal Alcohol Consumption.

SNP eβ̂GE 95% CI e
β̂GE+β̂GEX̂E 95% CI P-value

rs1317532 1.3652 (0.2971, 6.2738) 1.5768 (0.8682, 2.8636) 0.2522
rs1317535 1.9270 (0.3337, 11.1292) 1.4510 (0.7517, 2.8011) 0.3361
rs2141765 1.7960 (0.3326, 9.6983) 1.7137 (0.9524, 3.0836) 0.1071
rs7969932 2.1652 (0.2249, 20.8446) 2.0355 (1.0992, 3.7693) 0.0294
rs6581575 2.2341 (0.2336, 21.3651) 2.0304 (1.0964, 3.7598) 0.0289
rs4964110 1.7773 (0.1444, 21.8819) 1.3237 (0.4052, 4.3244) 0.7707
rs10506538 1.8945 (0.6335, 5.6655) - - 0.2470
rs4964090 1.8842 (0.4499, 7.8906) 2.0321 (1.0955, 3.7696) 0.0322
rs7963840 1.2831 (0.2771, 5.9417) 1.7063 (0.9226, 3.1556) 0.1867

Table A.3: G×E parameter estimates and its 95% Confidence Intervals obtained with EEGM
adjustment of CP children at 9 SNPs on TBK1 gene (Chr 12) which showed evidence of
significant interaction with Maternal Smoking.
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SNP eβ̂GE 95% CI e
β̂GE+β̂GEX̂E 95% CI P-value

rs8091823 0.6904 (0.1239, 3.8469) 2.2546 (1.1529, 4.4088) 0.0540
rs3752075 2.0202 (0.3139, 13.0032) 2.2164 (1.2009, 4.0906) 0.0144
rs9960774 0.5322 (0.1020, 2.7769) 2.3881 (1.2061, 4.7284) 0.0365
rs486131 0.7675 (0.0480, 12.2659) 1.6425 (0.8236, 3.2756) 0.3583

rs10469070 1.3173 (0.0804, 21.5748) 2.2320 (0.6725, 7.4082) 0.3704
rs470385 0.1785 (0.0217, 1.4702) 1.6756 (0.6281, 4.4697) 0.1191
rs470560 0.5898 (0.1141, 3.0499) 2.7249 (1.4292, 5.1950) 0.0075
rs470563 0.5861 (0.1133, 3.0307) 2.9330 (1.5288, 5.6270) 0.0037
rs470337 1.3210 (0.1235, 14.1317) 0.7956 (0.3298, 1.9195) 0.8692
rs8095808 0.5681 (0.1027, 3.1413) 2.3192 (1.2088, 4.4493) 0.0350

Table A.4: G × E parameter estimates and its 95% Confidence Intervals obtained with
EEGM adjustment of CP children at 10 SNPs on ZNF236 gene (Chr 18) which showed
evidence of significant interaction with Maternal Smoking.

SNP eβ̂GE 95% CI e
β̂GE+β̂GEX̂E 95% CI P-value

rs963599 1.5394 (0.7968, 2.9741) 1.6378 (0.9228, 2.9068) 0.0891
rs10955309 2.3263 (1.0711, 5.0523) 2.8767 (1.3475, 6.1415) 0.0013
rs1473541 1.3775 (0.7534, 2.5187) 1.2450 (0.6712, 2.3091) 0.4343
rs7814399 1.8379 (0.9504, 3.5543) 1.1470 (0.6365, 2.0669) 0.1590
rs3736042 1.8110 (0.9221, 3.5569) 2.1372 (1.0169, 4.4917) 0.0222
rs2454013 1.2588 (0.6985, 2.2685) 1.7823 (1.0409, 3.0520) 0.0710
rs2935579 1.2062 (0.6617, 2.1986) 1.2443 (0.6398, 2.4201) 0.6568
rs1874091 1.1328 (0.4507, 2.8471) 0.8685 (0.4553, 1.6566) 0.8874
rs1845430 1.3354 (0.7365, 2.4213) 1.7155 (0.9658, 3.0470) 0.1021
rs6468861 1.2080 (0.6531, 2.2345) 1.6268 (0.9390, 2.8185) 0.1699
rs6468862 1.6857 (0.2667, 10.6563) 1.6463 (0.9364, 2.8941) 0.1636

Table A.5: G × E parameter estimates and its 95% Confidence Intervals obtained with
EEGM adjustment of CP children at 11 SNPs on BAALC gene (Chr 8) which showed
evidence of significant interaction with Maternal Vitamin Supplementation.
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Appendix B

Supplementary Material for
Chapter 3: Inference of
gene-environment interaction
from heterogeneous case-parent
trios

This appendix includes the published supplementary material for the manuscript entitled
Inference of gene-environment interaction from heterogeneous case-parent trios.

B.1 Conditional likelihood and analysis

Assuming G and E are independent within families, one can write the conditional probabil-
ity of the affected child’s genotype given E and Gp in terms of the GRRs of equation (3.1),
GRRg(e) = exp(βg + fg(e)). For example, when both parents are heterozygous, denoted
below as Gp = 3 [26], one can show that the child’s genotype probabilities are:

P (G = 0 | D = 1, E = e, Gp = 3) = 1
1 + 2 exp(β1 + f1(e)) + exp(β1 + f1(e) + β2 + f2(e)) ,

P (G = 1 | D = 1, E = e, Gp = 3) = 2 exp(β1 + f1(e))
1 + 2 exp(β1 + f1(e)) + exp(β1 + f1(e) + β2 + f2(e)) , and

P (G = 2 | D = 1, E = e, Gp = 3) = exp(β1 + f1(e) + β2 + f2(e))
1 + 2 exp(β1 + f1(e)) + exp(β1 + f1(e) + β2 + f2(e)) .

A complete list of conditional genotype probabilities for the affected child is given in Table
1 of [26]. For an additive model, in which β1 = β2 ≡ β and f1(e) = f2(e) ≡ f(e), the model
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simplifies considerably; e.g.,

P (G = g | D = 1, E = e, Gp = 3) = exp(Og + g(β + f(e)))∑2
i=0 exp(Oi + i(β + f(e))

,

where Og is an “offset" term that equals log 2 for g = 1 and 0 otherwise.

The likelihood is a product of conditional probabilities over all trios in the study, viewed as
a function of the parameters β1, β2, f1(e) and f2(e). Each trio’s contribution to the likeli-
hood can be viewed as the contribution of a matched set to a likelihood for a conditional
logistic regression, in which the matched set comprises the affected child and other possible
offspring of the parents, referred to here as the affected child’s pseudo-siblings. After con-
structing appropriate matched sets, software for conditional logistic regression may be used
to maximize the likelihood from a case-parent trio study.

Code in the R environment for statistical computing [17] is available to perform such analy-
ses and may be obtained from the first author upon request. The code sets up a data frame
with rows for each affected child and pseudo-sibling, and columns specifying the ID for each
trio (ID), affection status coded as 1 for the affected child and 0 for pseudo-siblings, an offset
variable (O) coded as log 2 for a heterozygous offspring of doubly-heterozygous parents and
0 otherwise, and the G, E and PC variables. We then call clogit() from the survival
package [29] to perform the conditional logistic regression. The argument to clogit() is a
formula that specifies affection status as the response, trio IDs as strata(ID), offsets as
offset(O) and the other model terms. For an additive model, the other model terms are
a main effect for G, two-way interactions between G and E and between G and the PCs,
and, finally, a three-way interaction between G, E and the PCs.

B.2 Dependence of latent-class probabilities on E

Write the probabilities in terms of the conditional distribution of GG′ given E as

P (G = g|G′ = g′, E = e) = P (G = g, G′ = g′|E = e)∑2
i=0 P (G = i, G′ = g′|E = e)

.

Supposing that the numerator and denominator both depend on E, so may their ratio.
However, if we condition on the blocking variable X

P (G = g|G′ = g′, E = e, X = x) = P (G = g, G′ = g′|E = e, X = x)∑2
i=0 P (G = i, G′ = g′|E = e, X = x)

= P (G = g, G′ = g′|X = x)∑2
i=0 P (G = i, G′ = g′|X = x)

= P (G = g, G′ = g′|X = x)
P (G′ = g′|X = x)

= P (G = g|G′ = g′, X = x).

Thus, latent-class probabilities in the model adjusted for X do not depend on E.
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B.2.1 LDheatmaps of SNPs in MLLT3

LDheatmaps of pairwise R2 values in and around the six SNPs in the MLLT3 gene that
showed significant G × E with maternal alcohol consumption in [3] are shown in Figure
B.1 for self-reported Europeans and self-reported East Asians. There is generally stronger
pairwise LD between SNPs that showed significant G × E in the self-reported Europeans
than in the self-reported East Asians. The − log10 p-values from the PC-adjusted analysis
are shown above the self-reported Europeans, who appear to be the drivers of the G × E
signal.

57



Figure B.1: LDheatmap of pairwise R2 values in and around the six SNPs in the MLLT3
gene that showed significant G × E with maternal alcohol consumption in [3]. Left panel:
self-reported Europeans, with p-values from the PC-adjusted analysis shown above. Right
panel: self-reported East Asians, with the names of the six SNPs shown above.
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Appendix C

Supplementary Material for
Chapter 4: Adjustment for
population stratification by local
ancestry in gene-by-environment
interaction studies of case-parent
trios

Tables C.1 through C.6 show the estimated interaction terms and corresponding 95% con-
fidence intervals based on the risk model adjusted by XGG′ for each of the six SNPs of
interest from MLLT3. The estimate of βg′E represent the interaction effect in cluster 1, and
βg′E + βg′E(k−1) represent the interaction effects in cluster combinations k = 2, ..., K. In
the first column we have listed the cluster memberships at a given locus along with the
respective G′ × E estimates. The sparse data and large number of parameters in the model
lead to non-convergence of the estimation procedure, which precludes interpretation of the
coefficient estimates and confidence intervals. More work on simplifying the model and the
use of penalized likelihood methods for estimation is required. However, in what follows we
provide example interpretations to illustrate the meaning of the coefficients.

As an example, the first row of table C.1 show the G′ ×E interaction of effect of trios whose
allele have been assigned to clusters 1 and 3 at rs4621895. The corresponding interaction
effect is βg′E = 3.3095 × 10−7. In other words, the estimate of eβg′E ≈ 1 suggest each copy
of the minor allele at SNP rs4621895 do not elevate the relative risk of CP due to maternal
alcohol exposure. Furthermore, corresponding 95% confidence interval of [−0.4508, 0.4508],
confirm that there is no significant interaction between G′ × E among trios whose alleles at
rs4621895 were assigned to clusters 1 and 3. We can observe a similar interpretation among
all the trios who have been assigned to different clusters at SNPs rs4621895, rs4977433,
rs6475464 and rs668703.
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The results of tables C.5 and C.6 show that there is a significant G′ × E interaction ef-
fect among trios whose allele have been assigned to clusters 1 and 3. The corresponding
estimates of eβg′E = 3.01 and eβg′E = 2.84 suggest that each copy of the minor allele at
SNPs rs62382 and rs2780841 more than trebles and doubles the relative risk of CP due
to maternal alcohol exposure respectively. The corresponding 95% confidence intervals of
[0.63, 1.57] and [0.54, 1.56] too confirm that G′ ×E interaction effect is significantly different
from zero. However, the 95% confidence intervals of rest of the trios with different cluster
assignments do not show significant G′ × E interaction effect at both SNPs. As a result,
overall G′ × E interaction effect between rs62382 / rs2780841 with exposure to maternal
alcohol consumption was found to be insignificant as shown in table 4.1.

Clusters G′ × E Estimate 95% CI
(1,3) βg′E 3.3095 × 10−7 (-0.45, 0.45)
(3,3) βg′E + βg′E1 −2.5036 × 10−7 -
(3,4) βg′E + βg′E2 0.1335 (-2.30, 2.56)
(3,5) βg′E + βg′E3 3.3095 × 10−7 (-0.45, 0.45)
(3,7) βg′E + βg′E4 0.0335 (-0.95, 1.01)
(3,8) βg′E + βg′E5 0.0985 (-0.59, 0.78)
(4,4) βg′E + βg′E6 3.3095 × 10−7 (-0.45, 0.45)
(4,5) βg′E + βg′E7 3.3095 × 10−7 (-0.45, 0.45)
(4,7) βg′E + βg′E8 3.3095 × 10−7 (-0.45, 0.45)
(4,8) βg′E + βg′E9 3.3095 × 10−7 (-0.45, 0.45)
(5,7) βg′E + βg′E10 3.3095 × 10−7 (-0.45, 0.45)
(7,7) βg′E + βg′E11 7.2822 × 10−7 -
(7,8) βg′E + βg′E12 7.3221 × 10−7 -
(8,8) βg′E + βg′E13 −4.0081 × 10−7 -

Table C.1: G × E parameter estimates and corresponding 95% Confidence Intervals of the
interaction effect between rs4621895 on MLLT3 (Chr 9) gene and exposure to Maternal
Alcohol Consumption at the presence of XGG′ adjustment.
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Clusters G′ × E Estimate 95% CI
(1,3) βg′E −2.0107 × 10−6 (-0.45, 0.45)
(2,3) βg′E + βg′E1 −2.0107 × 10−6 (-0.45, 0.45)
(3,3) βg′E + βg′E2 −6.9191 × 10−8 -
(3,4) βg′E + βg′E3 0.1335 (-2.32, 2.58)
(3,5) βg′E + βg′E4 −2.0107 × 10−6 (-0.45, 0.45)
(3,7) βg′E + βg′E5 0.0335 (-0.95, 1.01)
(3,8) βg′E + βg′E6 0.1131 (-0.59, 0.82)
(4,4) βg′E + βg′E7 −2.0107 × 10−6 (-0.45, 0.45)
(4,5) βg′E + βg′E8 −2.0107 × 10−6 (-0.45, 0.45)
(4,7) βg′E + βg′E9 −2.0107 × 10−6 (-0.45, 0.45)
(4,8) βg′E + βg′E10 −2.0107 × 10−6 (-0.45, 0.45)
(5,7) βg′E + βg′E11 −2.0107 × 10−6 (-0.45, 0.45)
(7,7) βg′E + βg′E12 −2.0107 × 10−6 -
(7,8) βg′E + βg′E13 −2.0107 × 10−6 -
(8,8) βg′E + βg′E14 1.5722 × 10−7 -

Table C.2: G × E parameter estimates and corresponding 95% Confidence Intervals of the
interaction effect between rs4977433 on MLLT3 (Chr 9) gene and exposure to Maternal
Alcohol Consumption at the presence of XGG′ adjustment.

Clusters G′ × E Estimate 95% CI
(2,3) βg′E 1.3862 × 10−7 (-0.49, 0.49)
(2,8) βg′E + βg′E1 1.3862 × 10−7 (-0.49, 0.49)
(3,3) βg′E + βg′E2 −8.6897 × 10−8 -
(3,4) βg′E + βg′E3 2.9109 × 10−8 -
(3,5) βg′E + βg′E4 1.3862 × 10−7 (-0.49, 0.49)
(3,7) βg′E + βg′E5 −2.7573 × 10−8 -
(3,8) βg′E + βg′E6 −0.1194 (-0.82, 0.59)
(4,4) βg′E + βg′E7 1.3862 × 10−7 (-0.49, 0.49)
(4,5) βg′E + βg′E8 1.3862 × 10−7 (-0.49, 0.49)
(4,7) βg′E + βg′E9 1.3862 × 10−7 (-0.49, 0.49)
(4,8) βg′E + βg′E10 1.3862 × 10−7 (-0.49, 0.49)
(5,7) βg′E + βg′E11 1.3862 × 10−7 (-0.49, 0.49)
(5,8) βg′E + βg′E12 1.3862 × 10−7 (-0.49, 0.49)
(6,8) βg′E + βg′E13 1.3862 × 10−7 (-0.49, 0.49)
(7,7) βg′E + βg′E14 1.3862 × 10−7 -
(7,8) βg′E + βg′E15 −1.4110 (-3.12, 0.29)
(8,8) βg′E + βg′E16 1.3862 × 10−7 -

Table C.3: G × E parameter estimates and corresponding 95% Confidence Intervals of the
interaction effect between rs6475464 on MLLT3 (Chr 9) gene and exposure to Maternal
Alcohol Consumption at the presence of XGG′ adjustment.
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Clusters G′ × E Estimate 95% CI
(1,8) βg′E 2.4822 × 10−6 (-0.43, 0.43)
(2,3) βg′E + βg′E1 2.4822 × 10−6 (-0.43, 0.43)
(2,8) βg′E + βg′E1 2.4822 × 10−6 (-0.43, 0.43)
(3,3) βg′E + βg′E2 −6.9468 × 10−8 -
(3,4) βg′E + βg′E3 0.0870 (-2.34, 2.52)
(3,5) βg′E + βg′E4 2.4822 × 10−6 (-0.43, 0.43)
(3,7) βg′E + βg′E5 0.1844 (-0.80, 1.16)
(3,8) βg′E + βg′E6 0.1215 (-0.56, 0.81)
(4,4) βg′E + βg′E7 2.4822 × 10−6 (-0.43, 0.43)
(4,5) βg′E + βg′E8 2.4822 × 10−6 (-0.43, 0.43)
(4,7) βg′E + βg′E9 2.4822 × 10−6 (-0.43, 0.43)
(4,8) βg′E + βg′E10 2.4822 × 10−6 (-0.43, 0.43)
(5,7) βg′E + βg′E11 2.4822 × 10−6 (-0.43, 0.43)
(5,8) βg′E + βg′E12 2.4822 × 10−6 (-0.43, 0.43)
(7,7) βg′E + βg′E14 2.4822 × 10−6 -
(7,8) βg′E + βg′E15 2.4822 × 10−6 -
(8,8) βg′E + βg′E16 −6.0946 × 10−8 -

Table C.4: G × E parameter estimates and corresponding 95% Confidence Intervals of the
interaction effect between rs668703 on MLLT3 (Chr 9) gene and exposure to Maternal
Alcohol Consumption at the presence of XGG′ adjustment.
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Clusters G′ × E Estimate 95% CI
(1,3) βg′E 1.1032 (0.63, 1.57)
(1,6) βg′E + βg′E1 −42.4057 -
(1,8) βg′E + βg′E2 −18.7826 -
(2,2) βg′E + βg′E3 1.1032 -
(2,3) βg′E + βg′E4 18.2075 -
(2,4) βg′E + βg′E5 1.1032 (0.63, 1.57)
(2,6) βg′E + βg′E6 1.1032 -
(2,7) βg′E + βg′E7 18.9007 -
(2,8) βg′E + βg′E8 −0.5108 (-1.90, 0.88)
(3,3) βg′E + βg′E9 −5.3862 × 10−8 -
(3,4) βg′E + βg′E10 18.7759 -
(3,5) βg′E + βg′E11 1.1032 (0.63, 1.57)
(3,6) βg′E + βg′E12 −19.1234 (-21.26, -16.99)
(3,7) βg′E + βg′E13 −0.4748 (-1.83, 0.88)
(3,8) βg′E + βg′E14 0.5968 (-0.52, 1.71)
(4,4) βg′E + βg′E15 1.1032 (0.63, 1.57)
(4,5) βg′E + βg′E16 1.1032 (0.63, 1.57)
(4,6) βg′E + βg′E17 1.1032 (0.63, 1.57)
(4,7) βg′E + βg′E18 1.1032 (0.63, 1.57)
(4,8) βg′E + βg′E19 1.1032 (0.63, 1.57)
(5,7) βg′E + βg′E20 1.1032 (0.63, 1.57)
(5,8) βg′E + βg′E21 1.1032 (0.63, 1.57)
(6,6) βg′E + βg′E22 −20.5098 (-22.96, -18.06)
(6,7) βg′E + βg′E23 0.5108 (-1.19, 2.22)
(6,8) βg′E + βg′E24 0.1625 (-0.78, 1.10)
(7,7) βg′E + βg′E25 1.1032 -
(7,8) βg′E + βg′E26 5.1782 × 10−9 -
(8,8) βg′E + βg′E27 −7.4294 × 10−8 -

Table C.5: G × E parameter estimates and corresponding 95% Confidence Intervals of the
interaction effect between rs623828 on MLLT3 (Chr 9) gene and exposure to Maternal
Alcohol Consumption at the presence of XGG′ adjustment.
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Clusters G′ × E Estimate 95% CI
(1,3) βg′E 1.0454 (0.54, 1.56)
(1,4) βg′E + βg′E1 1.0454 (0.54, 1.56)
(1,6) βg′E + βg′E2 −21.2029 (-24.02, -18.38)
(1,8) βg′E + βg′E3 1.0454 -
(2,3) βg′E + βg′E4 19.2483 -
(2,4) βg′E + βg′E5 1.0454 (0.54, 1.56)
(2,6) βg′E + βg′E6 1.0454 -
(2,7) βg′E + βg′E7 1.0454 (0.54, 1.56)
(2,8) βg′E + βg′E8 1.0454 -
(3,3) βg′E + βg′E9 7.8389 × 10−8 -
(3,4) βg′E + βg′E10 3.2214 × 10−7 -
(3,5) βg′E + βg′E11 1.0454 (0.54, 1.56)
(3,6) βg′E + βg′E12 −2.0784 × 10−7 -
(3,7) βg′E + βg′E13 0.1082 (-1.26, 1.48)
(3,8) βg′E + βg′E14 0.2877 (-0.69, 1.27)
(4,4) βg′E + βg′E15 1.0454 (0.54, 1.56)
(4,5) βg′E + βg′E16 1.0454 (0.54, 1.56)
(4,6) βg′E + βg′E17 1.0454 -
(4,7) βg′E + βg′E18 1.0454 (0.54, 1.56)
(4,8) βg′E + βg′E19 1.0454 (0.54, 1.56)
(5,7) βg′E + βg′E20 1.0454 (0.54, 1.56)
(5,8) βg′E + βg′E21 1.0454 (0.54, 1.56)
(6,6) βg′E + βg′E22 2.8119 × 10−8 -
(6,7) βg′E + βg′E23 1.0498 (-1.16, 3.26)
(6,8) βg′E + βg′E24 0.1660 (-0.81, 1.15)
(7,7) βg′E + βg′E25 1.0454 -
(7,8) βg′E + βg′E26 −5.7947 × 10−9 -
(8,8) βg′E + βg′E27 4.1481 × 10−9 -

Table C.6: G × E parameter estimates and corresponding 95% Confidence Intervals of the
interaction effect between rs2780841 on MLLT3 (Chr 9) gene and exposure to Maternal
Alcohol Consumption at the presence of XGG′ adjustment.
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