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Abstract 

 

This dissertation investigates how visual analytics tools and techniques can address 

ambiguity in complex risk assessment, prediction, and monitoring, focusing on the 

domain of avalanche forecasting. Drawing on a broad set of methods and theory from 

complex cognitive systems engineering and visualization research, this dissertation 

delves into the cognitive work demanded by this domain and explores visual analytics 

solutions to enhance sensemaking. 

In a study using a variety of methods including interviews, observational 

research, and situated-recall, this research identifies and characterizes the issues of 

ambiguity in avalanche forecasting as they pertain to individual and collaborative 

sensemaking around data. It presents the results of a participatory design study that 

develops visualization tools to tackle these challenges and an evaluation study 

investigating the analytic affordances and sensemaking support provided by newly 

designed and existing tools used by forecasters. In addition, a preliminary study using 

participatory design and diary study methods investigates how knowledge construction 

and synthesis can be supported to better address challenges of shared sensemaking in 

asynchronous sequential collaboration. 

Findings from this dissertation reveal the shortcomings of conventional 

visualization guidelines in being able to tackle ambiguity in this complex domain. Instead 

of employing efficient and effective perceptual encodings and summary overviews, it 

highlights the significance of flatter visual hierarchies, visual difficulty, and rapid access 

to details for better support of sensemaking around ambiguity. In addition, it reveals new 

challenges and opportunities for improved knowledge synthesis support in visual 

analytics tools. The theoretical framing and methodological approach used in this 

dissertation is novel for the domain of visual analytics. 

Keywords:  Visual Analytics; Sensemaking; Complex Systems; Avalanche 

Forecasting; Cognitive Systems Engineering 
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Chapter 1.  
 
Introduction 

Complex analyses are characterized by constructive sensemaking processes. 

The inclination for humans to make connections between actors, events, or otherwise 

incomplete information is often framed in terms of the risks it poses for making errors in 

judgement (Tversky & Kahneman, 1974), particularly in context of data analysis. As 

much as this “magical” way of thinking might not align with standard models of rational 

decision making or statistically sound inferences, it is a natural part of scientific and 

analytic inquiry (Diaconis, 2006). Human observation is inherently limited (Grabowski & 

Strzalka, 2008), rendering comprehensive understanding from data alone intractable 

(Grabowski & Strzalka, 2008). Instead, complexity demands the constructive knowledge-

based process of selecting from known explanations, generating new ones and 

evaluating them based on the fragmented incomplete information or data available. This 

is what Klein et al. (2007) refer to as sensemaking. Sensemaking is therefore much 

more about resolving ambiguity than simply seeking more information to fill gaps. This 

ambiguity, the state where multiple interpretations are plausible, is a functional 

component of sensemaking producing both costs and benefits to analytic work. 

Ambiguity is particularly pronounced when analytic work is constrained, involves risk-

based decision-making, assessment, or prediction, and or involves collaboration (Heer & 

Agrawala, 2008). 

Visual analytics, defined as the “science of analytical reasoning facilitated by 

interactive visual interfaces” is well suited to address the challenges of ambiguity (Cook 

& Thomas, 2005). Understanding sensemaking is considered to be a foundational 

aspect of how to design visual analytics systems (D. Keim et al., 2008). However, the 

most prominent models of sensemaking used in visual analytics (Pirolli & Card, 2005; 

Shrinivasan & van Wijk, 2008), developed in the context of exploratory intelligence 

analysis, do not fully capture the nuances of ambiguity or the challenges of risk 

prediction and management domains. Cognitive models, in particular, are under-utilized 

in guiding visualization research and design (Padilla, 2018). Visualization researchers 

have produced a rich literature on how visualizations and the perceptual processes 

involved (Cleveland & McGill, 1984) do or do not facilitate sound inferences (Bertini et 
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al., 2020) and insights (North, 2006), particularly when dealing with data uncertainties 

(Kamal et al., 2021). These studies have been and will continue to be instrumental for 

understanding low-level cognitive and perceptual processes with great precision, control, 

and generalizability. As important as these considerations are in visualization design, 

they neglect the higher-level knowledge-based cognitive processes and richness of the 

real-world context in which visual analytics is applied. This is why some have argued 

that the goal of visual analytics is not the generation of insights but rather the iterative 

development and calibration of mental models to some end such as an assessment, 

prediction, or a decision (Andrienko et al., 2018). 

Prior knowledge can directly affect how visualizations are perceived and the 

inferences made (Xiong et al., 2019). Many visualization researchers acknowledge the 

role that interpretation plays in uncertainty more generally (Boukhelifa et al., 2017; 

MacEachren et al., 2005; MacEachren, 2015; Thomson et al., 2005; Zuk & Carpendale, 

2007).  For instance, Liu et al. (2020) describe ‘cognitive alternatives’ as alternative 

hypotheses, mental models, and interpretations in visual analysis. Meanwhile, Lin et al. 

(2021) define the idea of a ‘data hunch’ as “a person’s knowledge about how 

representative data is of a phenomenon of interest” and outline a design space for 

externalizing data hunches. Similarly, researchers identify ‘implicit errors’, errors inherent 

to a data set but not explicitly represented within it, as a challenge to be address with 

targeted visualization design (Panagiotidou et al., 2021) or targeted knowledge elicitation 

mechanisms (Mccurdy et al., 2019). 

Making the implicit or tacit knowledge-based processes involved in analysis 

explicit is a common solution employed in visual analytics. This is the motivation for 

more recent developments in visual analytics approaches for human-machine teaming 

where human knowledge is embedded and modeled using algorithms towards some 

targeted problem solving application (Federico et al., 2017; Green & Ribarsky, 2008; 

Rind et al., 2019), for instance in decision-support tools for clinical gait analysis (Wagner 

et al., 2019). Knowledge elicitation is also common in collaborative visual analytics as 

way to facilitate collaborative sensemaking through communication (Goyal et al., 2014; 

Heer & Agrawala, 2008; P. Isenberg et al., 2011; Mathisen et al., 2019; Prue et al., 2014; 

Shrinivasan & van Wijk, 2008; Zhao et al., 2018). 
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As ambiguity is often viewed as a problematic, rather than a functional 

component of sensemaking, this diagnosis naturally leads to solutions that aim to reduce 

ambiguity. Externalizing tacit knowledge to make it explicit is an example of this. While 

this may be appropriate under some circumstances, ambiguity can itself serve a 

productive role – particularly when conveying uncertainty (Sterner, 2022) or incomplete 

analysis. To date, there has been little investigation into how the design of visual 

analytics systems can support or mediate ambiguity and the specific related 

sensemaking processes as it pertains to the needs of a particular context of application. 

This thesis aims to fill this gap by identifying and diagnosing specific instances of 

ambiguity and exploring targeted visual analytics solutions to support the involved 

sensemaking process. 

Researchers have underscored that designing visual analytic tools to address 

high-level knowledge-based cognitive processes, such as those pertaining to ambiguity, 

requires understanding the reality, broader context, knowledge constructs (Andrienko et 

al., 2018), and cognitive processes (Hollnagel & Woods, 2005) involved within a 

particular domain of application. Ambiguity involves complex, context-dependant, and 

difficult-to-anticipate matters. It is therefore inappropriate to study in a synthetic lab-

based setting. Any investigation targeting ambiguity needs to preserve the naturalistic 

setting in which it arises. 

This dissertation is therefore conducted in collaboration with and applied to the 

complex collaborative sensemaking and risk-based domain of avalanche forecasting. It 

details a multi-year long-term collaboration with avalanche forecasters at Avalanche 

Canada, one of Canada’s primary public avalanche warning services, to develop visual 

analytics systems addressing the core challenges and needs of this domain.  Snow 

avalanches are natural disasters that pose significant risks to human life and 

infrastructure. They are caused by structural instabilities in the continuously evolving 

seasonal snowpack releasing destructive masses of snow (McClung, 2002a).  

Avalanche forecasters are responsible for analyzing the current state of the snowpack, 

relating it to numerous terrain and weather conditions, avalanche activity, and potential 

release triggers from natural and human interactions, to determine the likelihood and 

potential destructive size of potential avalanches. Due to the variability of the data, much 

of it human-generated, and the dynamic complexity of this natural phenomenon, 

avalanche forecasting comprises highly complex and uncertain analyses and prediction 
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tasks involving heavy use of expert knowledge and experience to make sense of 

heterogeneous, diverse, and incomplete data from multiple sources. Forecasters also 

typically work in distributed teams relying on continuous monitoring and analysis that 

builds on itself as the snowpack evolves. These characteristics make avalanche 

forecasting an ideal application domain to investigate visual analytics interventions 

aiming to address the challenges of complex analyses in risk-based contexts.  

The present dissertation aims to characterize domain problems and design, 

develop, and evaluate visual analytics solutions in risk assessment, risk prediction, and 

collaboration through application-driven research in avalanche forecasting. This 

dissertation is structured in the following way. In Chapter 2, I provide relevant 

background information on ambiguity, complex systems, sensemaking theory, and 

related work in visual analytics and visualization.  In Chapter 3, I describe the problem 

domain of avalanche forecasting discussing goals, relevant constructs, reasoning 

processes, available data and information systems, the related known domain 

challenges, and additional contextual information about Avalanche Canada and our 

research engagement. In Chapter 4, I outline my research approach and methodologies 

used. Chapter 5 presents findings from a two-part study involving foundational interview, 

observational, and situated-recall methods characterizing the problem domain of 

avalanche forecasting. This surfaced the issues of ambiguity as they pertain to data, 

analytic processes, and collaboration. This is followed by the description of a study that 

used participatory design methods to develop visualization tools addressing the 

challenges of ambiguity in Chapter 6. Chapter 7 is dedicated to an evaluation study 

investigating the analytic affordances and ambiguity support capacity of the prototype 

developed in Chapter 6 as well as some of the existing tools used by forecasters 

already. In Chapter 8, I report on a preliminary three-part participatory design study 

utilizing diary study methods to explore potential tools and techniques for knowledge 

capture during analysis to address further challenges of ambiguity identified in the 

Chapter 5 Study. In Chapter 9, I discuss key lessons learned, how this thesis addresses 

the stated research objectives, the primary contributions produced, design implications 

to address ambiguity informed by this research, future work, and limitations. 
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1.1. Contributions 

The results and understanding generated in this dissertation challenge traditional 

visualization and interaction design guidelines. Specifically, one of the key lessons 

drawn is that always starting with summary overviews with detailed information only 

available on demand, as per the information seeking mantra “Overview first, zoom and 

filter, then details on demand” (Shneiderman, 1996), may often be problematic and 

inappropriate in this application problem area. Findings challenge the convention of strict 

adherence to design decisions made purely based on strong visual hierarchies and the 

use of perceptual salience to direct attention. I instead argue for the use of flatter visual 

hierarchies, encouraging the viewer to gain more control of their attention and consider 

alternative perspectives in data.  

This dissertation contributes a formative exploration of the practical implications of 

treating ambiguity as a fundamental aspect of sensemaking processes rather than 

scourge to always and unilaterally reduce or remove. The research makes the following 

contributions to the field of visual analytics:  

a)  a case study of visual analytics applied in a real-world complex risk prediction 

and management domain;  

b) a characterization for how ambiguity arises in the domain of avalanche 

forecasting to inform the design of visual analytics solutions in risk assessment, 

prediction, monitoring, and collaboration;  

c) a preliminary set of explorations of interactive visualization design strategies and 

the resulting guidelines for tools to support ambiguity in sensemaking;  

d) A qualitative framework and method for evaluating visual analytics tools in 

complex systems derived from cognitive systems engineering; 

e) An evaluation of how different representations can serve to enhance or impede 

ambiguous sensemaking; and 

f) a visual analytics system designed to address ambiguity that has seen field 

deployment. 
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In addition, this doctoral research has also made several practical contributions 

to avalanche forecasting. These include: a) the results of cognitive task analyses 

detailing workflows and reasoning processes; b) publications applying visualization 

design principles to make snowpack simulation models more easily interpretable and 

more operationally viable (Horton et al., 2018, 2020); c) conference presentations on 

applying visual analytics to avalanche forecasting (Nowak, 2019a, 2021); d) a magazine 

article articulating the benefits of applying visual analytics to avalanche forecasting 

(Nowak, 2019b); and finally, e) a set of visual analytics tools and techniques that have 

been deployed for operational use and are providing value for avalanche safety 

organizations including but not limited to Avalanche Canada, Avalanche Quebec, Parks 

Canada, and the Colorado Avalanche Information Center. 
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Chapter 2.  
 
Background & Related Work 

My research is informed by relevant background information and related work, 

which I present in detail in this chapter. I first define ambiguity by distinguishing it from 

uncertainty and discussing the relevant sensemaking and cognitive processes involved, 

their relation to complexity. In addition, I draw on related information processing and 

cognitive theories on the use of representation for problem solving activities. Finally, I 

review literature related to the topic of ambiguity in visual analytics and collaborative 

visual analytics. 

2.1. Ambiguity and Uncertainty 

It is perhaps fitting that the term ambiguity carries different meanings in everyday 

speech and different communities of practice. Ambiguity is often described as a form of 

uncertainty associated with data or quantitative information. The concept of ambiguity 

aversion, for example, was famously popularized by the economist Daniel Ellsberg in 

thought-experiments where he conjectured people prefer choices for which probabilistic 

information was known rather than those in which the odds are unknown or ambiguous 

(also known as ‘knightian uncertainty’) (Ellsberg, 1961). Similarly, various taxonomies 

from fields such as statistics, psychology, or engineering classify ambiguity as a type of 

uncertainty involving multiplicities or vagaries (Ayyub, 2001; Smithson, 1989).  For a 

thorough review of different notions of ambiguity as well as an overview of relevant 

considerations from the perspective of risk assessment, see the review provided by 

Johansen and Rausand (2015) where ambiguity is defined as “the existence of multiple 

interpretations concerning the basis, content, and implications of risk information”. 

As uncertainty draws strong connotations of uncertainty dealing with data 

specifically, I treat ambiguity as a distinct issue. It is a product of the epistemological 

stance between a human observer and the world, rather than a property of data itself. In 

this sense, ambiguity is more a question of human interpretation and reasoning 

processes. While uncertainty can be a part of what instantiates ambiguity, they are 
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distinct concepts. In this sense, the notion of ambiguity used in this thesis is much more 

closely related to the semiotic or philosophical notions of ambiguity (Sennet, 2016).  

2.2. Sensemaking and Ambiguity 

Sensemaking, the everyday reasoning where meaning is constructed from 

information and experience, is brought on by uncertainty, ambiguity, and when 

expectations are violated (Maitlis & Christianson, 2014; Weick, 1995). It is a means to 

cope with the complexity of our world. Human observation is inherently limited 

(Grabowski & Strzalka, 2008), rendering comprehensive understanding of complex 

systems intractable (Kirsh, 2010). Rather than mechanistic reduction of component 

parts, sensemaking treats complexity holistically through the consideration of alternative 

explanations which cohere with observed information. Sensemaking is more than just 

summarizing or accounting for missing information, it is about resolving multiple potential 

meanings. 

Understanding sensemaking is a foundational pillar of visual analytics (D. A. 

Keim et al., 2008), but well-known models of sensemaking in analytics, notably (D. A. 

Keim et al., 2008; Pirolli & Card, 2005; Shrinivasan & Van Wijk, 2008) tend to be generic 

and do not fully capture the nuances of reasoning in risk-based domains. For instance, 

the sensemaking model by Pirolli and Card (2008), developed in the context of in the 

context of intelligence analysis, is well-suited to explain key aspects of exploratory visual 

analysis involving emerging insights and discovery. By contrast, risk prediction and 

safety management work face additional challenges of uncertainty, time or resource 

constraints, ill-defined goals, distributed work roles, and decision-making from 

incomplete and varied data (Hollnagel & Woods, 2005; Johansen & Rausand, 2015; 

Smith & Hoffman, 2017). These additional demands result in specific sensemaking 

processes that must be considered in the design of technology used. 

 I draw instead from cognitive research in complex systems, particularly crisis 

and risk management, (Klein et al., 2006) using the model of frames as explanatory 

structures to interpret, understand, and organize data into patterns (Klein et al., 2007). 

Frames might include causal relationships, chronologies, or procedures that may be 

involved in shaping data. They fill in the gaps left by fundamentally incomplete data. 

Frames set expectations for what counts as data and therefore guide the search for 
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more data. Data and frames mutually determine each other, in that, data are used as 

cues to identify relevant frames, and conversely, frames determine which data are 

noticed or sought. 

When data do not fit with the expectations of a given frame, ambiguity arises and 

sensemaking begins. It is an active process that involves seeking further relevant data 

and actively improving or replacing a given frame with one that is better matching. This 

involves iterative cycles of mapping frames and data to each other, augmenting these 

frames, questioning and comparing frames, and replacing frames through reframing. 

Thus, sensemaking relies heavily on abductive reasoning – inferences to the best 

available explanation. This model of sensemaking, developed through study of crisis 

situations, has proven robust in explaining human sensemaking processes in a variety of 

applications within risk-based contexts (Klein et al., 2006). 

Researchers studying sensemaking in risk prediction applications such as 

weather forecasting (Hoffman et al., 2017) have identified sensemaking processes with 

targeted functions. These are closely related to the data-frame theory of sensemaking in 

that they emphasize considering alternative explanations under different situational 

demands. Relevant to the forecasting of avalanches is anticipatory thinking  which 

involves mental preparation for potential risks, many of which might be highly unlikely 

but could result in severe consequences (Klein & Snowden, 2011). It involves directing 

attention to often subtle and contextually sensitive cues that could signal threats while at 

the same time maintaining sensitivity to cues that deviate from expectations and 

challenge understanding. ‘Problem detection’, when an observer becomes aware of a 

threat that might require a course of action, depends on the observers existing 

understanding to compare data against (Klein et al., 1999, 2005). Often, anticipatory 

thinking also involves extrapolating trends into alternative future scenarios and planning 

for them. This exploratory and imaginative planning activity is often referred to as ‘mental 

simulation’ (Klein & Crandall, 2018) and is mark of competence in avalanche forecasting 

(Adams, 2005) and weather forecasting (Pliske et al., 2004). 

2.2.1. Gisting 

I draw from more general research in information processing theory (Gamino et 

al., 2010; Ju & You, 2018) to identify a further sensemaking process that is often 
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overlooked in analysis but is considered an essential component of critical thinking and 

reasoning: gisting. Familiar to scholars of reading (Elfenbein, 2018), a gist is not simply 

an overview or a summary. Instead, gist-reasoning involves assimilating and interpreting 

incoming information to derive global meaning from explicit details, capturing the 

essence of a situation rather than a simple collection of facts (Elfenbein, 2018; Ju & You, 

2018).  Vision scientists describe the “gist of a scene” as the phenomenon where an 

observer can rapidly comprehend the meaning of a complex scene at a glance without 

conscious effort or attention (Rensink, 2000; Ware, 2022). The gist sets expectations for 

what objects might be found in a scene and in doing so facilitates the detection of 

distinct objects (Rensink, 2000). More recently, a study of how data workers use analytic 

tools found them returning to raw or base data tables (Bartram et al., 2021), using gisting 

to develop an understanding of the data and its meaning. These processes involved 

scanning or reading raw base data to see overall structure, detect problems and holes, 

find and validate data, and understand the types of questions the data afforded.  

It is important to acknowledge that the concept of gist, its role in visual 

sensemaking and memory, and the notion of dual-processes in cognition more 

generally, has roots in the Gestalt school of psychology (Reyna, 2012). Gestalt, which 

emerged as a reaction to ‘structuralist’ schools of psychology, emphasizes a perspective 

of holism where psychological phenomena are more than their atomic constituent parts 

and where the whole and its relation to constituent parts better describes these 

phenomena (Koffka, 1935). A ‘gestalt’, loosely translated from German as ‘pattern’ or 

‘configuration’, describes an experience that goes beyond the summation of constituent 

parts and is stable despite different configurations and presentations. Gestalt has been 

most influential in the study of perception, describing various organizing principles for 

how meaning is derived from the structure of sensory information like vision (Ware, 

2019). However, the ideas of holism, simplicity, and essential meaning in Gestalt 

psychology have extended to higher-level cognition such as the role of insight in 

problem-solving or memory (Sternberg & Stemberg, 2012). Gestalt psychology has laid 

the foundations for the contemporary understanding of higher-level cognitive processes 

and remains robust as a descriptive framework, but like many seminal or general 

theories, it has not predicted or accounted for many more specific processes. Notably, 

the idea of cued memory retrieval through learned associations and recognition, which 

gisting heavily relies on, is absent and or un-emphasized in Gestalt psychology (Reyna, 
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2012). Perhaps this is because the Gestalt school of thought rejected the structuralist 

idea that complex ideas arise from association of simpler ideas. Gisting and Gestalt 

provide complimentary perspectives describing cognitive processes involved in making 

sense of complex information.  

2.2.2. Narrative thinking 

This process of constructing and resolving meaning is also well captured by 

theories of narrative thinking. Bruner distinguishes two modes of thought (Bruner, 2009). 

The paradigmatic mode uses rule-based processes, involving the categorization of 

knowledge into hierarchies and classification systems. It attempts to formulate 

generalizations and in this sense is context-free. It is a procedural and rigid way of 

thinking which breaks down when ambiguity challenges neat or orderly classification. 

The narrative mode, by contrast, organizes knowledge holistically by considering the 

emergent meaning or “story” that results from the arrangement of events, actors, 

temporality, purpose, and causality. Rather than formulating generalizations, the 

narrative mode is context-sensitive and considers particularities that are incorporated 

into the story being constructed by the observer. This makes narrative thinking highly 

flexible and able to handle contingency, anomaly, and uncertainty (Hilligoss & Moffatt-

Bruce, 2014).  Narrative thinking is a theoretical explanation for how humans blend 

memories, actions, plans, and current sensory perception into the seamless conscious 

experience of life. Beach argues that narrative thinking is a foundational precedent to 

paradigmatic thinking and is the process by which meaning is made (Beach, 2009), 

drawing an analogy to a novel existing merely as ink and paper until it is read by 

someone. The reader constructs a narrative, an imaginary world, as they read the 

symbols in front of them. What is currently being read is most clear, but what has been 

read in the past, what the reader’s prior knowledge is, and what they anticipate may 

happen next are incorporated into a private narrative that unfolds as signs, symbols, 

their relationships and significance are interpreted. Just as novels feature subplots, 

cliffhangers, and non-chronological ordering, so too does narrative thinking involve 

hierarchical structures, branching, and unresolved ends. Such experiential sub-plots 

are micro-narratives that are evaluated and integrated into greater narratives according 

to how coherent they are. Often there may be multiple micro-narratives that could 

equally coherently integrate with the broader narrative. This defines ambiguity. 
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Analysis and interpretation of visual analytics systems involve similar processes. 

Visualizations present an ordered view of signs and symbols representing the world 

(Bertin, 1983). These are read to construct a coherent narrative and understanding. The 

notion of narrative is well-established in the visualization literature (Riche, 2018; Segel & 

Heer, 2010), however, the notion that visualization should carry any meaning beyond the 

data itself departs from traditionally held views of how visualizations should function. 

Guidelines often argue that visualization should be void of connotation, only denoting a 

one-to-one correspondence between data and a visual feature. In practice, however, 

visualizations are not purely denotative and unambiguous, they evoke associations and 

thus produce alternative potential meanings (Rod, 2001; Sultana et al., 2023). Just as 

novels unfold with subplots, loose ends, tangents, and new questions, these elements 

are present in the construction of personal analytical narratives when using 

visualizations. In work only tangentially related to this thesis, we observed how visual 

exploratory analyses evoke micro-narratives that tie together past experiences, 

knowledge, affect, and a temporal unfolding of the analysis at hand (Nowak et al., 2018). 

While not operationalized or further expanded upon in this research, narrative thinking 

provides an alternative framing to explain ambiguity in sensemaking. Whereas cognitive 

frames are a useful abstraction for describing sensemaking in risk-based applications, 

narrative thinking provides a more relatable description of sensemaking as it better 

matches with common every day reasoning. In addition, segmenting thinking into the 

narrative mode and paradigmatic mode sheds additional light on the challenges of 

describing complex phenomena such as avalanches in a rigorous and scientific manner. 

2.2.3. Thinking with Representations 

In the following section, I take a broad view of literature discussing how 

representations can support cognition and problem-solving activities. Here, 

representation goes beyond simply visual information such visual idioms and encodings. 

The value of visualization is often explained as reducing cognitive load and making 

problem solving tasks easier by leveraging human innate perceptual capabilities like 

“pre-attentive processing”, whereby search time to identify a target visual stimulus within 

a visual scene is reduced depending on the choice of visual feature used (Treisman & 

Gelade, 1980; Ware, 2010). While this certainly a critical component, the focus is on 

very low-level perceptual processes. Cognitive science discusses additional 
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considerations as to how representations can change the cognitive work involved in 

problem solving at higher levels of abstraction. These considerations extend beyond the 

speed or efficiency with which visual information is decoded.  

Researchers discuss a variety of ways that representations can support or 

impede thinking towards some end like a problem-solving task (Kirsh, 2010; Smith et al., 

2006; Stapleton et al., 2016; D. D. Woods, 2002). The ‘representation effect’, where the 

representation of a problem changes the cognitive work involved in solving a problem, 

applies to human-machine interactions and not just static visual representations (D. 

Woods, 2002). The cognitive systems engineering (CSE) scholar David Woods (2002) 

lists several mechanisms that may influence the problem solver in ways that advance or 

impede problem solving:  

1.) Problem structuring: the representation changes the nature of the problem 

and therefore the strategies that can be employed. 

2.) Overload/workload: representations can shift processing to more 

economical forms such as simple visual processing. 

3.) Control of attention: Representations can shift attention to what is important 

by taking advantage of attentional control. 

4.) Secondary tasks: representations can introduce new tasks that shift 

attention. 

5.) Effort: the effort required for a particular representation and the effort for the 

task at hand by proxy.  

He distinguishes between representations and visual forms, highlighting how 

different visual forms can structure a problem in the same way and in this sense 

maintain the same representational form. Woods points out that researchers often “lose 

the forest for the trees” by fixating on low-level components of visualizations rather than 

the broader context of the problem space and how cognitive work should be shared 

between a representation and an observer towards some end. In the CSE literature this 

is often discussed as the difference between coherence (how easily a visual encoding is 

read) and correspondence (whether the relevant information and problem structure, 

both which go beyond simply mapping data and visual encoding, is included and 
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supported by the interface) (Smith et al., 2006). The latter of these considers the 

knowledge of the observer and the problem domain, whereas the former focuses purely 

on data. 

The advantages of representation extend also beyond the representation of data 

to the externalization of knowledge. Kirsh describes several dimensions for how external 

representations can enhance cognition (Kirsh, 2010):  

1.) Changing cost structure of inference: The cost of sensemaking is reduced 

through externalization by making it more efficient and effective.  

2.) Sharing of referent: The materialization or externalization creates a shared 

referent for thought between people.  

3.) Persistence of referent: Where mental representations are seemingly more 

subject to alterations and harder to maintain stably, external representations 

are persistent and can therefore be used as a reliable structure for problem 

solving.  

4.) Re-representation: Representations can be re-arranged to reveal 

relationships and structures that are otherwise inaccessible. A simple 

example is a jigsaw puzzle. This property is present in many external 

representations including language or mathematics. Visualization researchers 

have describe “free rides” as the variety or volume of inferences that can be 

made from a single representation (Stapleton et al., 2016). I note that this 

stands in contrast to common visualization guidelines that value precision 

(Bertini et al., 2020) and as a by-product representations that support fewer 

or singular types of inferences (Rod, 2001). 

5.)  External representation is often closer to real structure than internal 
representation: Kirsh presents music as an example. The sound of music 

produced by an instrument is much more a natural representation than that 

produced internally through reading sheet music. If the plasticity and speed of 

an external medium match the speed of internal thought, that external 

medium affords to be “thought in”. This relates to why interactions support the 

flow of sensemaking in exploratory visual analysis (Card et al., 1999).  
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6.) Affordance of computing and constructing arbitrarily complex 
structures: Kirsh discusses many prominent thinkers who all have argued 

that the complexity of certain systems is irreducible in any coherent human 

(mental) way and that the best way to understand it is through modeling for 

approximation or using the phenomenon itself as the model.  

7.) Costs of coordinating and controlling thoughts are lowered: External 

representations serve as anchors, and the actions afforded by external media 

are often much more effective and efficient for navigating a problem space 

than those by internal processes.  

2.3. Ambiguity in Visual Analytics 

While most visualization research has focused on uncertainty in data, many 

acknowledge the role interpretation plays in uncertainty more generally (Boukhelifa et 

al., 2017; MacEachren et al., 2005; MacEachren, 2015; Thomson et al., 2005; Zuk & 

Carpendale, 2007). Ambiguity is often part of the discussion, but definitions vary. For 

instance, MacEachren defines ambiguity as a “lack of an appropriate frame of reference” 

(MacEachren, 2015). Others define it in terms of the multiplicities between entities and 

names in data (Boukhelifa et al., 2017) or differences in interpretation between 

collaborators  (Boukhelifa et al., 2017; Heer & Agrawala, 2008). Visualization research in 

natural language interfaces and mixed-initiative systems often discusses user intent 

disambiguation (Gao et al., 2015; Hoque et al., 2018).  

Research most closely related to our own often does not use the label 

‘ambiguity’. Liu et al. have a notion of cognitive alternatives describing alternative 

hypotheses, mental models, and interpretations in visual analysis (Liu et al., 2020). 

Implicit errors, errors inherent to a data set but not explicitly represented within it, are 

discussed in applied visualization research for infectious disease statistics (Mccurdy et 

al., 2019) and archaeology (Panagiotidou et al., 2021). In closely related research, Lin et 

al. define data hunches as “a person’s knowledge about how representative data is of a 

phenomenon of interest” and outline a design space for externalizing these data 

hunches (Lin et al., 2021). However, to date, there is little investigation into how to 

support and mediate ambiguity in the design of visual analytics systems. 
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2.3.1. The Problem of Ambiguity in Collaborative Sensemaking 

Ambiguity is at the heart of challenges in shared analysis. Collaboration relies on 

a shared context of how evidence, artifacts, findings, hypotheses, and knowledge relate 

(Soares et al., 2016) to establish common ground (Yusoff & Salim, 2015), a concept 

adapted from linguistic and social psychology describing shared understanding enabling 

communication (Heer & Agrawala, 2008). However, as communicating analysis 

demands effort beyond the task of analysis itself, collaborators follow the principle of 

least collaborative effort exerting the least possible effort for communicating a message 

(Heer & Agrawala, 2008).  This limits how much information is captured and as soon as 

analysis is shared, some context is lost. Communications will be ambiguous particularly 

when using spoken or written language, a symbolic system of representation which 

naturally invites multiple interpretations (Sennet, 2016). It may not be apparent how 

evidence relates to analytic findings, how prior knowledge was used, what work has 

been done as well as what remains. 

 These challenges are especially pronounced in asynchronous sequential hand-

off of analysis. Many domains involve shift-changes where analysis is shared across 

successive work shifts involving different collaborating analysis. As knowledge work like 

analysis involves emergent findings that can be difficult to articulate, hand-off is 

disruptive and can be a considerable challenge In many domains, but especially those 

with high consequences for failure (Patterson, 2008; Patterson et al., 2004, 2007, 2017; 

Patterson & Woods, 2001). Sharing analysis is often a final step when individuals are 

fatigued, which can further degrade the quality of communication (Sharma, 2008). In 

addition, it may be difficult to anticipate which information will be relevant to collaborators 

in the future (Patterson, 2008). Partial findings or formative sensemaking processes that 

may be relevant or critical to share are often omitted as they are difficult articulate, and 

without the context within which sensemaking was instantiated, the nature of the 

problem will appear ambiguous (Sharma, 2008).  

Researchers have suggested a set of solutions to ease the burdens of 

collaboration. Generally, these involve the capture of critical information during analysis 

rather than after, and ways to structure captured information for communication. Many 

have suggested the use of visual annotations (Andrienko et al., 2018; Patterson & 

Woods, 2001; Zhao et al., 2018) , which serve to point to important information in 
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context and externalize knowledge about its relevance to analysis. However, on their 

own, knowledge externalizations such as annotations lack structure and may become 

visually cluttered and difficult to make sense of. This presents design challenges for how 

to organize the meta-data embedded through annotations or markup to make it tractably 

retrievable and navigable.  

This is why schematization is often highlighted as a key support mechanism for 

collaboration (Chen et al., 2011; A. P. Fischer, 2011; Mahyar & Tory, 2014; Mathisen et 

al., 2019; Zhao et al., 2018). Domain knowledge may be used to structure and scaffold 

externalizations, providing direction to analysis, what is captured, and how easily it can 

be understood by collaborators (Andrienko et al., 2018). However, rigid standardized 

protocols for hand-off often fail to capture critical information that is difficult to articulate 

(Hilligoss & Moffatt-Bruce, 2014). This is why such schematization mechanisms should 

be flexible and editable to serve the needs of the situation (Andrienko et al., 2018; 

Federico et al., 2017; Wright et al., 2006). Researchers suggest the use of flexible 

templates, to represent a structural model of a problem space (Wright et al., 2006). By 

filling a template with thoughts, observations, notes and links to evidence, such 

unstructured media are schematized easing the burden of gathering and distilling such 

information. 

However, as a lot of expert analysis involves tacit knowledge (knowledge 

employed without being conscious of it), schematization demands additional 

introspection to make the tacit explicit (Shipman & Marshall, 1999). In doing so, it 

necessarily disrupts the task at hand. In such circumstances or when faced with 

situations of high uncertainty, ambiguity may actually serve a productive purpose as it 

does not demand additional effort in articulation and it can accurately convey the state of 

current understanding (Sterner, 2022). Such ambiguous information within the context of 

shared work environment can help collaborators cue-in on information in ways that rigid 

hand-off protocols do not (Mueller et al., 2006). Such information can help collaborators 

become aware of each other’s activities and coordinate work (Heer & Agrawala, 2008). 

Whereas collaborators in a shared physical environment can see movement, gestures or 

how physical objects have been manipulated, virtual collaborative environments must 

represent such explicitly to support awareness (Marriott et al., 2018). Various 

mechanisms such as color coding the work of collaborators according to their identity 

(Drouhard et al., 2017; Wu et al., 2013; Zhao et al., 2018) or reconstruction and 
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exploration of past analysis activities (Malik et al., 2011; Wu et al., 2013; Zhao et al., 

2018) have been employed towards this end. 

Existing Work in Collaborative Visual Analytics 

Supporting collaborative data analysis is a key research challenge in visual 

analytics (Heer & Agrawala, 2008; P. Isenberg et al., 2011; Mahyar & Tory, 2014). 

Researchers in Collaborative Visual Analytics (CVA) have long recognized that 

visualizations have the advantage of making “deictic” references relevant materials 

providing shared context and disambiguating meaning (Heer & Agrawala, 2008). In the 

CVA literature, these types of knowledge visualizations have traditionally taken the form 

of concept maps with hypermedia as deictic pointers to reference material such as 

evidence (Chung et al., 2010; Goyal et al., 2014; Mahyar & Tory, 2014; Shrinivasan & 

Van Wijk, 2009; Zhao et al., 2018). These have been used to support both synchronous 

and asynchronous collaboration, coordinating work by highlighting the work that has 

already been done as well as providing references to relevant materials. 

Such knowledge visualizations are also helpful in collaboration by clarifying 

where understanding is in conflict – highlighting areas where the representations does 

not match the viewers mental model. This is a particularly useful property as it can direct 

attention to discrepancies and elicit knowledge that is relevant to resolve the 

discrepancy (Hoffman et al., 2006). This use of concept maps has proven useful in 

negotiation (Swaab et al., 2002), problem solving (F. Fischer et al., 2002), and eliciting 

explicit mental models of weather forecasting procedures (Hoffman et al., 2006). 

The CVA literature provides several examples of strategies employed to make 

the capture, communication, and retrieval of knowledge findings less burdensome and 

more effective. Strategies employed have ranged from automatically importing 

annotations from individual workspaces into a shared workspace (Goyal et al., 2014), 

representations of planned courses of action in relation to the analysis environment 

(Prue et al., 2014), representing interaction logs of navigation paths alongside data 

visualizations and knowledge produced during analysis (Shrinivasan & Van Wijk, 2009), 

hierarchically-structured annotations describing analytic questions linked to application 

states (Mathisen et al., 2019), and combining automated analysis capture through 

interaction logging combined tags categorizing and structurally relating different tacit 

components of analysis such as unresolved, uncertainties, perceived relationships and 
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hypotheses (Zhao et al., 2018). Such approaches, fusing the analytic process with 

reporting of analysis, reflect the logic behind literate approaches to computing (Mathisen 

et al., 2019; Rädle et al., 2017; Wood et al., 2019), which leverages the understanding 

that narrative structure is inherent part of cognitive work such analysis which can 

naturally be repurposed for communication. It should be noted that many of these tool’s 

focus on exploratory visual analysis, often grounded in intelligence analysis, with 

emergent findings. There is comparatively less research of how CVA tools can be 

tailored to address needs of monitoring in critical and resource constrained applications 

(Malik et al., 2011; Wu et al., 2013). 

Moreover, visual analytics systems have been heavily focused on supporting 

bottom-up data-driven analyses and have neglected the broader picture that includes 

explicit support for knowledge-based top-down processes (Andrienko et al., 2018; Choi, 

Childers, et al., 2019). Researchers have argued that visual analytics should consider 

the reality of the domain of application as well as knowledge constructs of the domain of 

application to guide the design of visual analytics systems (Andrienko et al., 2018). 

Furthermore, scholars have argued that the goal of visual analysis is not the generation 

of insights, but rather the process of iterative development and calibration of mental 

models to some end, including assessment, prediction, or a decision (Andrienko et al., 

2018). 

2.4. Summary 

There has been little investigation into how to support and mediate ambiguity in 

the design of visual analytics systems (Lin et al., 2021; Liu et al., 2020; Mccurdy et al., 

2019; Panagiotidou et al., 2021). There is a need to better support knowledge-based 

processes in such systems (Andrienko et al., 2018; Choi, Childers, et al., 2019) both as 

they pertain to individual and shared sensemaking around data. This is especially 

important in applications involving risk because sensemaking then involves constraints, 

conflicting or ill-defined goals, distributed work, and decision-making that extend beyond 

the analysis of data in isolation (Hollnagel & Woods, 2005; Johansen & Rausand, 2015; 

Smith & Hoffman, 2017). To the best of my knowledge, no visual analytics research has 

specifically focused on ways to support and mediate ambiguity in sensemaking within 

complex risk prediction and management applications. 
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Chapter 3. Problem Domain 

In the following section, I provide relevant background information about the 

problem domain of avalanche forecasting. I discuss the formal definition and purpose of 

avalanche forecasting and its role in broader risk management practices, review existing 

literature describing how forecasters reason and use evidence, describe the specific and 

distinct context of public avalanche forecasting, and discuss existing literature related to 

ambiguity in this domain. My research is applied within Canada and consequently I 

describe the practices and theoretical concepts from within this industrial context. While 

different practices exist internationally, the differences are minute and the general 

concepts, practices, and challenges faced are similar. I provide additional background 

information about Avalanche Canada, contextual information about the organization and 

our engagement, and a discussion of the sample of participants involved throughout this 

research. 

3.1. Overview, Definition and Purpose 

Avalanche forecasting is a collaborative hazard and risk analysis, prediction 
and communication activity relying on continuous monitoring and review distributed 

across individuals and organizations. Forecasters are responsible for communicating 

their assessments of avalanche hazards as part of broader risk management 

procedures. Forecasting occurs in a variety of operational avalanche safety contexts 

such as ski resorts, commercial helicopter skiing operations, operations overseeing 

avalanche safety in transportation corridors, or remote office-based public avalanche 

forecasting among others. Depending on the context, these assessments may be 

communicated to the public, professional avalanche safety operators, or used in 

personal risk management. 

 Snow avalanches are natural disaster phenomena where structural weaknesses 

in the layered seasonal snowpack in layers of snow are triggered releasing destructive 

masses of snow that endanger human life and infrastructure (McClung, 2002a). Triggers 

may be environmental factors, such as the weight of new snow, or human triggers, such 

as the weight of a skier or snowmobile. Avalanche forecasting is formally defined as “the 
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prediction of current and future snow instability in space and time relative to a given 

triggering level” (McClung, 2002a). 

Avalanches are a highly dynamic and complex natural phenomenon. Weather 

systems interact with mountainous terrain producing variation in atmospheric conditions 

often at a very localized spatial scale (Ahrens & Henson, 2018). A multitude of physical 

processes affect the formation, evolution, and stability of snowpack over the course of a 

season (McClung & Schaerer, 2006). As avalanches can be triggered by and impact 

humans and human infrastructure, human behaviour is also an important element that 

interacts with avalanche conditions and further contributes the complexity of avalanches. 

This complexity results in considerable uncertainty such that the goal of 

avalanche forecasting is to “minimize uncertainty about instability” (McClung, 2002a), 

where uncertainty is defined as the “state (even partial) of deficiency of information 

related to understanding or knowledge of an event, its consequences or likelihood” 

(Campbell et al., 2016).  

3.1.1. The Role of Avalanche Forecasting in Avalanche Risk 
Management 

The Canadian Avalanche Association (henceforth CAA) uses the ISO 31000 Risk 

Management Principles and Guidelines (International Organization for Standardization, 

2009), a general risk management guideline setting standards across any risk 

management application, as a framework for risk management (Campbell et al., 2016). 

Avalanche risk management is composed of three stages including establishing the 

context which determines the scope (objectives, hazard/risk criteria, and relevant factors 

of activities undertaken) and situation (elements at risk such as people or infrastructure, 

potential risk scenarios, and the spatial and temporal scales), hazard and risk 

assessment which involves the identification, analysis and evaluation of the present 

hazard and risks, and risk treatment which involves risk control and mitigation strategies. 

Depending on the context and the risk management needs, this is either implemented 

using long-term planning (e.g., construction of critical infrastructure) or employing short-

term operational avalanche management activities (e.g., commercial backcountry 

mountain guiding). Avalanche forecasting falls into the risk assessment stage of 

operations, but as the process of avalanche risk management is an iterative process 



 22 

involving continuous monitoring and review, all components of the avalanche risk 

management process may bear relevance to avalanche forecasting. 

Risk assessment begins with hazard assessment which treats the potential of 

any hazard (such as an avalanche) as independent from the risk it poses to people, 

organizations, or infrastructure, technically referred to as an “element at risk”. Hazard 

assessment typically concludes with an avalanche hazard forecast that characterizes 

avalanche hazards according to various dimensions which I describe below. This is then 

applied to a given element-at-risk by considering its exposure and vulnerability to the 

identified avalanche hazard. Risk management decisions (e.g., deliberately triggering 

avalanches in a controlled manner using explosives) are based on that assessment. 

Avalanche forecasting may often just involve hazard assessment but is often tied 

together with broader risk assessment processes in different operational settings. The 

operational context determines the types of observations available for avalanche 

forecasting, the ways in which such information is processed, the tools available, and 

how such information and activities fit in the broader risk management process. As will 

be expanded in a later section, public avalanche forecasting is concerned with 

communicating hazard assessments to the public and does not formally consider 

elements at risk and risk management.  

3.2. Hazard Assessment 

The Conceptual Model of Avalanche Hazard (henceforth CMAH) formally defines 

the essential components of avalanche hazard and streamlines them into a procedural 

guideline and workflow for hazard assessments independent of the element at risk (for 

example people or infrastructure) (Statham, Haegeli, et al., 2018). This separation 

ensures a common standard for assessments despite the differences in the context 

within which forecasting is applied. For instance, managing avalanche risks will be 

different for guests at a ski resort than for traffic along a mountain highway corridor. The 

CMAH has become a formalized and explicit part of the forecasting workflow in 

information and technology systems around North America (Haegeli et al., 2014; 

Statham et al., 2012), and is an important component of how avalanche hazards are 

communicated to the public. While the CMAH is primarily used in North America, it is a 

useful model to describe how observations are analyzed to arrive at hazard 

assessments in any country/setting.  
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The CMAH is built upon the concept of an avalanche problem and avalanche 
problem types, which describe identifiable, recurring patterns in avalanche hazard with 

respect to the meteorological conditions that lead to their formation, the nature of the 

commonly associated avalanche activity, the typical evolution of conditions, and effective 

mitigation strategies (Statham, Haegeli, et al., 2018). Avalanche problems are instances 

of avalanche problem types presenting operational threats which avalanche forecasters 

describe with respect to their avalanche character/type, location, likelihood, and size. 

The model prescribes a sequence of questions for analyzing this information: (1) What 

type of avalanche problem(s) exist? (2) Where are these problems located? (3) How 

likely is it that an avalanche will occur? (4) How big will the avalanche be? The 

avalanche problem type sets expectations about what information may be relevant and 

directs the information-seeking process. As terrain influences how snowpack and 

resulting instabilities form, forecasters then identify the terrain locations (described using 

common terminology such as elevation, aspect, vegetative cover, or geomorphology) 

where this hazard may be found. Next the forecaster determines how likely an 

avalanche is to take place by considering both how sensitive an instability is to triggering 

(derived from observations such as past avalanches and field tests) and it’s spatial 

distribution (considering how easily evidence is found within the set of identified terrain 

locations). The forecaster then considers the potential destructive size of the avalanche. 

The questions in the CMAH are answered using qualitative ordinal categories that are at 

the discretion of the subjective judgement and interpretation of the avalanche forecaster 

to determine. There is a formal and prescriptive method of how ordinal categories are 

combined to higher levels (such as how spatial distribution and sensitivity combine to 

determine likelihood). The output of this process describes the avalanche hazard by 

combining the ordinal values of likelihood and size into a matrix visualization (Fig. 1). 

Uncertainties are expressed and shown as ranges spanning the possible values of each 

ordinal dimension. When plotted, this results in a rectangular shape that provides a 

common visual representation for characterizing an avalanche hazard and its identified 

uncertainties.  
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Figure 1  Matrix visualization showing the size and likelihood ranges of a 

given avalanche problem. 

These formalisms provide a common language for forecasters to express their 

mental models and understanding of avalanche conditions more consistently. However, 

inconsistency remains a challenge as the uncertainty of forecasting and the nature of 

evidence demand the use of personal knowledge and experience to subjectively judge 

hazards along these scales and dimensions. I expand on this in the following sections.  

3.2.1. Uncertainty in Avalanche Forecasting 

The “goal of avalanche forecasting is to minimize uncertainty about instability” 

(McClung, 2002a). In the avalanche context, uncertainty is the “state (even partial) of 

deficiency of information related to understanding or knowledge of an event, its 

consequences or likelihood”  (Campbell et al., 2016). The avalanche safety literature 

commonly distinguishes between two primary types of uncertainty: Aleatoric 

uncertainties refer to the inherent random and natural variability of complex systems 

which cannot be reduced (rather it can only be described probabilistically), and epistemic 

uncertainties refer to a lack of knowledge that could be known in practice but is not 

(Campbell et al., 2016; Jamieson et al., 2015). This distinction is relevant as it describes 

how forecasters incorporate probabilistic assessment to address aleatoric uncertainties 

or seek further information to reduce epistemic uncertainties. 
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McClung describes three primary sources of uncertainty in avalanche 

forecasting: (1) The spatiotemporal variability of snow cover and the influences of 

terrain; (2) Incremental changes from snow or weather conditions; (3) Human factors 

stemming from variations in human perception and estimation (McClung, 2002a). As 

human forecasters conduct the assessment process, their perception of reality underlies 

all these sources of uncertainty. McClung explains that the only way to reduce 

uncertainty in avalanche forecasting is to seek new information of the right kind or to 

take actions that deal with variations or resolution in human reasoning. What is meant by 

information of the right kind is information that can reveal something new about 

instabilities in the snow. Due to the complexity of the phenomenon and a dearth of data 

for statistical-style analyses (random sampling) in any realistic operational setting, 

information about stability holds considerably less diagnostic value than novel 

information about instabilities. However, as there are identifiable patterns in conditions 

that create a particular avalanche hazard, one can form expectations about where and 

how to seek information (targeted sampling). Moreover, the cost of a false negative 

(predicting no avalanche when or where one does occur) is much higher than the cost of 

a false positive (predicting an avalanche when none occurs) further steering 

investigation and sampling of evidence in a targeted direction towards signs of instability. 

This describes how observations and data are gathered for avalanche hazard 

assessment. 

3.2.2. Observation Types, Information Sources and Systems 

Avalanche forecasting relies on a variety of information sources and data 

streams. As this research addresses public avalanche forecasting in Canada, I will 

describe the types of data and systems forecasters have available in this context. These 

sources are not exclusive to public forecasters but are the primary data and systems of 

concern for this research. Again, while the specifics of how such data are defined and 

disseminated may vary internationally, the general approach is very similar.  

Forecasters rely heavily on point observations sourced at specific spatial 

locations by humans or sensors such as those on weather stations. These observations 

are used to understand current and historic avalanche conditions and form a significant 

portion of data used in hazard analysis. These point observations are integrated with the 

prior day’s forecast and assessments (LaChapelle, 1980) using expert subjective 
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judgment and knowledge to create a ‘nowcast’, an assessment of current instabilities 

and avalanche conditions (McClung, 2002a). This is then integrated with numerical 

weather forecast models to predict how future atmospheric conditions will affect the 

snowpack and in turn avalanche conditions (McClung & Schaerer, 2006). 

In the following sections, I describe the data streams available for avalanche 

forecasting in the Canadian context. I describe the type of data available, how they are 

gathered, the system it is presented within, and any specific challenges this presents. 

These include observations made in the field by professionals or recreationists, 

observations about meteorological conditions from weather stations, and various 

products for viewing numerical weather prediction models. 

Industry Information Exchange (InfoEx) 

The Industry Information Exchange (InfoEx) is a web platform and database 

where Canadian professional avalanche safety operations share daily reports relevant to 

avalanche safety with each other (Haegeli et al., 2014). Subscribers to this system 

include ski resorts, backcountry guiding operations, highway and railway avalanche 

safety operations, avalanche safety consultancies, individual mountain guides among 

many others. These subscribers report “observations” gathered from the field areas 

within which they work as well as formal hazard assessments. Hazard assessment 

include various components of avalanche problems as described in the CMAH and 

higher-level avalanche danger ratings (B. Lazar et al., 2016). Reported observations 

data are entered using web entry forms organized according to different types of 

observations and presented corresponding data tables1. Observations are reported 

following the Observation Guidelines and Recording Standards (OGRS) set by the 

Canadian Avalanche Association (1995). These include technical information about 

weather such as “Field Summaries” providing a general summary overview of weather 

conditions in the subscribers operating tenure or “Weather Observations” which provide 

specific weather conditions at a permanent weather site at regular time intervals. “Snow 

Profiles” provide technical information about snowpack structure and stability gathered 

by professionals by digging ‘pits’ in the snow. Finally, “Avalanche Observations” provide 

records of observed specific avalanche occurrences and details about their 

 
1 http://infoexhelp.avalancheassociation.ca/wiki/Documentation_overview 
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characteristics, while “Avalanche Summaries” provide free-text summaries of avalanche 

activity across an entire area that an operator made observations in for a particular day. 

As “Avalanche Observations” and “Avalanche Summaries” are an essential part of this 

research, I will expand on these below. 

Individual “Avalanche Observations” records or data entities correspond to 

observed avalanche of the same type. The is “character” (avalanche type) field to 

specify this. There are a number of other fields describing the dimensions and 

characteristics of the observed avalanche(s) such as the destructive size of the 

avalanche or what triggered the avalanche(s). Many of these data are presented as 

ranges of numerical values based on the observing operators estimates. When more 

than one avalanche is being reported, the number of avalanches observed is specified 

using either a numerical value (e.g., 1-50) or a qualitative ordinal value (e.g., “several”, 

“numerous”). Photographs of the observed avalanches are included. In addition, there is 

associated location data which may include one or more spatial vector polygons or point 

locations corresponding to where avalanche observations were made. Note that these 

present varying levels of spatial resolution for reporting one or more avalanche 

observations. A final noteworthy field is the observation date. As avalanches may be 

observed in motion or as avalanche debris after the fact, avalanche observations often 

include estimates of how old the debris is which can then be used to infer an estimated 

time at which the avalanche occurred. 

InfoEx subscribers vary widely in operating procedures and needs. In addition, 

they are under considerable time pressure from existing work leaving less time for data 

entry. The InfoEx system was design to be adaptable and flexible to address these 

issues (Haegeli et al., 2014). Consequently, the way data are reported and how they 

may be interpreted will depend on the specific operational context from which they are 

sourced. Again, as these observations are gathered using a targeted sampling 

approach, interpreting how observations come to represent conditions more broadly 

requires integrating an understanding numerous contextual factors contained in multiple 

attributes such as terrain characteristics or locations where avalanches were observed. 

The InfoEx system also allows subscribers to view and analyze through a variety 

of views including data tables, maps, and visualizations (Fig. 2). 
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Figure 2  The data table, map, and visualization views available in the InfoEx 

system used for sharing reports amongs avalanche professionals. 

Mountain Information Network (MIN) 

Recreationists also share trip reports using the Mountain Information Network2 

provided by Avalanche Canada, a public avalanche forecasting agency. Similar to the 

InfoEx, a variety of information corresponding to observations made in the field are 

submitted through structured web forms. These include information about weather 

 
2 https://avalanche.ca/mountain-information-network 
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conditions, snowpack structure, observed avalanches, incidents involving avalanches, or 

“quick” summary information about conditions. As with the InfoEx, these data are 

composed of structured fields, free-text fields, and images. 

These reports are publicly available on Avalanche Canada’s website and can be 

accessed alongside other information such as the daily avalanche bulletin (Fig. 3). The 

two ways these reports are navigated are through a map showing the spatial locations of 

each observation report and a list of reports. Clicking a report on the map opens a 

sidebar with report details that can be further expanded to a fullscreen view. Similarly, a 

fullscreen view of report details is accessed by navigating from the list view. 

 

 
Figure 3  The primary map and list view used to access crowdsourced reports 

from recreationists on Avalanche Canada’s Mountain Information 
Network (MIN) system. 
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Weather Stations 

Weather stations provide a critical data source for understanding mountain 

weather. They are placed at various elevations and in locations that are representative 

of broader spatial areas. They provide sensory telemetry readings for snow depth, the 

mass of snow measured as a snow water equivalent, liquid precipitation, wind speeds 

and directions, and temperature among others. Forecasters use weather stations as a 

source of “ground-truth” to compare weather model predictions against. In Canada, there 

are a variety of weather station network providers accessed through a variety of 

websites and portals. ARFI, the Avalanche Research Forecasting Interface3, gathered 

links to access individual weather station data as well as other forecasting resources in a 

map-based interface (Fig. 4). Clicking weather station icons navigates to other 

webpages where real-time, near-real time, and historical telemetry readings may be 

found in a variety of formats. Primarily, these are available in text tables, but charts for 

individual stations or sometimes available as well. 

 

Figure 4  The Avalanche Research Forecasting Interface (ARFI) used to 
access weather station telemetry data among other relevant 
resources. 

 
3 ARFI.avalanche.ca 
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Weather stations are sparsely distributed relative to the spatial areas they are 

used to represent (Lundquist et al., 2019) leaving forecasters to use personal knowledge 

of how local terrain and weather systems interact to extrapolate from these point data. In 

addition, weather stations are subject to a variety of sensor and transmission errors 

caused by environmental factors. Presently, there is no comprehensive automated 

quality assurance procedure that accounts for all possible errors in these data (Mekis et 

al., 2018). Diagnosing errors and how individual weather stations come to represent 

broader weather patterns is a matter handled through the forecaster’s judgment and 

interpretation. 

Numerical Weather Prediction Models 

Meteorological weather models form a significant part of the information 

avalanche forecasters investigate. After assessing current avalanche conditions using 

observations made from a variety of sources such as those discussed above, predictions 

about future conditions can be made by considering weather forecasts. Technical 

considerations and the variety of products used in avalanche forecasting are beyond the 

scope of this research. However, it should be noted that mountain weather is highly 

complex and that the Meteorological Service of Canada (MSC) provides a dedicated 

mountain weather product which is disseminated through Avalanche Canada’s website4.  

3.2.3. Reasoning About and Weighing Evidence 

To describe how avalanche forecasters reason using evidence, it is useful to 

differentiate between inductive, deductive, and abductive reasoning (Douven, 2017). 

Deduction involves deriving a conclusion about a set of particulars that is necessarily 

true based on general or universal premises. For instance, if it takes 15 minutes to get to 

11:00 AM appointment, one can deduce that one needs to leave prior to 10:45 AM. 

Induction, by contrast, involves generalizing based on particulars in a way that involves 

probability or uncertainty. For instance, one may expect that the most popular ice cream 

flavour at an ice cream shop probably tastes good and would likely be a good purchase. 

Abduction is a specific form of inductive reasoning where one makes an inference to the 

best possible explanation from among a set of potential alternatives. For instance, if one 

 
4 Avalanche.ca/weather/forecast 
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observes scratching and squeaking noises coming walls and droppings on the floor, one 

can infer that their house probably has a mouse or rat infestation. 

The continuous act of seeking new and relevant information to address 

uncertainties characterizes the predominant inductive reasoning processes in avalanche 

forecasting (LaChapelle, 1980; McClung, 2002a). While not widely discussed in the 

literature, inductive reasoning is most often of the abductive variety because forecasters 

explain observations using a set of common constructs and probabilistic considerations 

while making inferences to the best possible explanation. Due to the complex and 

dynamic nature of avalanche phenomena, new information must continuously be sought 

to update understanding of the state of potential hazards and risks. This probabilistic 

style of thinking is frequently compared to Bayes Theorem. Deductive reasoning is also 

involved when considering physical deterministic processes, computational modeling, or 

decision aids. 

LaChapelle and McClung describe the process of how different types of 

observations are ranked or weighed according to “informational entropy”, a concept 

adapted from information theory (LaChapelle, 1980; McClung, 2002a).  Low entropy 

Information is the most valued as it is subject to lowest uncertainty, is most easily 

interpreted by humans, and is most closely related to the phenomenon in question. In 

spite of this, relatively higher entropy information may outweigh lower entropy 

information if it reveals new information about instability (McClung, 2002b). This is 

related to the concepts of strength (inverse of entropy) and weight of information 

described by Vick (Vick, 2002). Vick cautions against overconfidence from overuse of 

strong information sources with little weight or predictive value, and conversely, warns 

against underconfidence from lack of consideration of less strong but more weighty 

evidence. Based on this logic, observations used in avalanche forecasting are grouped 

into three classes ranked by their levels of informational entropy (McClung, 2002b). 

Class III data (high entropy) are meteorological data such as weather forecasts or 

reports about atmospheric conditions. Class II data (intermediate entropy) are related to 

snow structure such as stratigraphy, snow temperature, and characteristics of snow 

crystals. Class I data (low entropy) are data that relate directly to the mechanical 

properties of or evidence about instabilities in the snow. Evidence that may belong to a 

higher entropy class may outweigh evidence in a low entropy class if it reveals positive 

information about an instability. 
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3.2.4. Public avalanche forecasting 

The objective of a public avalanche forecasting operation is to produce a daily 

public avalanche bulletin for a particular area communicating hazard assessments 

(McClung, 2002a). This bulletin serves as the starting point from which recreationists 

base their personal risk management procedures when traveling in the backcountry. 

This means that public avalanche forecasters conduct hazard assessments independent 

of any risk analysis which would consider a specific element at risk. 

 Public avalanche bulletins generally present information in a tiered structure 

ordered in increasing levels of complexity and decreasing level of abstraction5. The 

starting point is the ordinal five-level danger scale (Statham et al., 2010). Danger ratings 

are assigned to different elevation bands for several days in the future. Next, the day’s 

avalanche problems and their characteristics, as described in the CMAH, are presented. 

A combination of Icons and text is used to present danger ratings and elements of 

avalanche problems. Following these, summary text of weather conditions, snowpack 

structure, and recent avalanche observations is presented. This structure ensures that 

information is accessible, concise, yet allows investigation of more detailed information 

depending on the level of expertise a reader might have. 

Evidence in Public Avalanche Forecasting 

The operating context of avalanche forecasting determines the types of 

observations available and how they are used. Three relevant spatial scales are adapted 

from meteorology for avalanche forecasting: synoptic (forecasting for region or mountain 

range); meso (forecasting for highway avalanche area or ski area); micro (forecasting for 

an avalanche path or specific terrain feature) (LaChapelle, 1980; McClung, 2002a). 

Public avalanche forecasters operate at meso to synoptic spatial scales with the 

objective of producing daily public avalanche bulletins often providing information about 

avalanche hazards several days into the future (McClung, 2002b). This low resolution 

spatial and temporal scale results in significant variability and leaves public avalanche 

forecasters to rely relatively more heavily on meteorological class III data than other 

 
5 https://www.avalanches.org/standards/information-pyramid/ 
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avalanche safety operating contexts. However, class II and class I data are a critical part 

of avalanche hazard assessment in public avalanche forecasting. 

3.3. Ambiguity in Public Avalanche Forecasting 

The avalanche safety literature discusses several issues that are related to 

ambiguity and the complexity of the domain. 

As all avalanche forecasting relies on the expert judgment and knowledge of 

individuals, it is subject to variations in perception (McClung, 2002a). In the context of 

public avalanche forecasting, these variations have become apparent through research 

investigating varying consistency in public bulletins (Clark, 2019; Hordowick, 2022; B. 

Lazar et al., 2016; Statham, Holeczi, et al., 2018; Techel et al., 2018). Avalanche 

problem types are not mutually exclusive or independent and how observations are used 

to determine specific avalanche hazard assessments is not well defined. Consequently, 

choices involved in which to report or how to transition between them is a source of 

uncertainty and confusion (Hordowick, 2022; Klassen, 2013; Klassen et al., 2013). 

Among other factors such as physical differences between different regions forecasters 

operate in, inconsistencies are attributed to cultural and procedural differences in 

forecasting organizations, unique perspectives/biases of any individual forecaster, and 

varying perceptions on risk communication priorities, and varying approaches of how 

deal with uncertainty. Unique and varying perspectives at the levels of individuals, 

organizations, and target audience are a source of ambiguity and manifest into issues of 

inconsistent hazard assessments in public bulletins. 

Ambiguity is a pervasive aspect of forecasters work constituted by the complexity 

of the phenomenon, the nature of available data, and the challenges of characterizing 

and communicating this complexity. These issues of ambiguity are common in risk 

assessment (Johansen & Rausand, 2015) and applications such as the prediction of 

other natural disasters and extreme weather events (Beven et al., 2018). 

According to Maguire & Percival (2018), existing tools and procedures in the 

avalanche domain do not capture all the cognitive work done by forecasters. This 

suggests that visual analytics solutions could be of benefit and demonstrates how this 

domain is an ideal application in which to investigate visual analytics solutions targeting 
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knowledge-based processes and ambiguity in sensemaking. In addition, the forecaster’s 

heavy reliance on prior knowledge to interpret data sampled in a targeted manner has 

many parallels to the challenges described in visualization research on alternatives (Liu 

et al., 2020), data hunches (Lin et al., 2021), and implicit errors (Mccurdy et al., 2019; 

Panagiotidou et al., 2021). The similarities of these challenges and distinctions in the 

characteristics of the application domain suggest that visual analytics research on 

ambiguity in public avalanche forecasting may extend this literature by offering novel 

insights offering novel insights and alternative solutions. 

3.4. Avalanche Canada 

This research is conducted in collaboration with Avalanche Canada6, a non-

government and non-profit public forecasting organization. This research began as part 

of a broader engagement to help develop Avalanche Canada’s visualization and 

analytics infrastructure. Avalanche Canada issues daily public bulletins throughout the 

winter season for most of western Canada. This organization is also involved in a variety 

of avalanche research projects and coordinates, develops, and delivers avalanche 

awareness and education programs. As this study ran over the period between 2019-

2023, the exact size of the organization has fluctuated. However, there are roughly 12-

18 forecasters, 12-18 operations staff, and 12-18 field technicians. These avalanche 

professionals are from various backgrounds and varying levels of expertise. I note that 

the organization and avalanche industry is heavily skewed toward self-identifying males. 

The participant sample gathered in this study, with 4 out of 18 participants self-

identifying as female, is therefore representative of the organization and broader 

domain. I provide further relevant details about participants in each study and provide a 

unified participant table below for reference (Table 1). Meta-data for each participant are 

presented if they were gathered within the respective studies, they participated in. 

 
6 Avalanche.ca/about 
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Figure 5  A process diagram of information sources, tools and products at 

Avalanche Canada. Forecasters draw on point observations from 
remote weather stations and human field-reports. These are 
analyzed using disparate tools to summarize regional conditions. 

As compared to other public forecasting organizations in Canada such as Parks 

Canada7, a government agency overseeing various functions in Canadian national parks 

including avalanche safety, Avalanche Canada’s forecasters work in a remote, office-

based setting. The land area Avalanche Canada is responsible for forecasting is much 

larger than any other in the world, and while field teams have increasingly been 

deployed in areas where reports from professionals and recreationists are scant, this 

remote setting dictates much of this organization’s approach (Fig. 5). This influences the 

available data and how it is used. As professionals and recreationists generally submit 

reports at the end of the workday, Avalanche Forecasters use the prior day’s reports to 

predict current and future conditions. 

 
7 https://parks.canada.ca/pn-np/mtn/securiteenmontagne-mountainsafety/avalanche/prevision-
forecasting 
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Table 1  List of participants, background information about them, and the 
studies they took part in. Participation is indicated with an “X” 

ID Public 
Avalanche 
Forecasting 
Experience 

Background Public Forecasting 
Organization 

Study 
1 

Study 
2 

Study 
3 

Study 
4 

1 N/A Natural Science Avalanche Canada X    

2 N/A Marketing, 
Communications 

Avalanche Canada X X  X 

3 4+ Geological 
Engineer 

Avalanche Canada X X X X 

4 10+ Mountain 
Guiding, Ski 

Patrol 

Avalanche Canada X X X  

5 5+ Mountain Guide, 
Educator 

Avalanche Canada X X X  

6 19+ Mountain 
Guiding 

Avalanche Canada X X X  

7 6+ Ski Patrol, 
Mountain 
Guiding 

Avalanche Canada X  X  

8 N/A N/A Avalanche Canada X    

9 N/A N/A Avalanche Canada X X   

10 N/A N/A Avalanche Canada  X   

11 N/A Engineering, 
Natural Science 

Avalanche Canada  X  X 

12 N/A Mountain Guide, 
Communications 

Avalanche Canada  X   

13 1+ Avalanche Field 
Technician 

Avalanche Canada   X  

14 11+ Mountain 
Guiding, 

Engineering 

Colorado Avalanche 
Information Center 

  X  

15 12+ Mountain 
Guiding, 
Geologist 

Parks Canada   X  

16 19+ Geographer Colorado Avalanche 
Information Center 

  X  

17 5+ Engineer Avalanche Canada / DAC   X  

18 N/A Educator Avalanche Canada    X 
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Chapter 4. Research Approach and Methodology 

4.1. Research Objectives and Questions 

This work had several high-level research goals: 

1. Understand and characterize the work and information processing practices, 

challenges, and needs in the domain of avalanche forecasting to identify tractable 

problems for visual analytics solutions. 

2. Design and develop targeted visual analytics solutions. 

3. Evaluate how designs support identified problems to inform further design. 

These goals translated to the following research questions: 

1. What are the work challenges, practices and needs in the domain of avalanche 

forecasting? 

2. What representational and visual analytics design strategies might address the 

identified needs and challenges? 

3. Finally, how do these approaches serve to address or impede the identified 

needs and challenges? 

a. Do current design principles in visual analytics apply well to these 

complex sensemaking domains? 

4.2. Research Approach 

The methodological approach to address these challenges is grounded in the 

tradition of problem-driven visualization research: the canonical visualization design 

study. Sedlmeir et al. (2012) provide a definition of a visualization design study: 

A design study is a project in which visualization researchers analyze a 
specific real-world problem faced by domain experts, design a visualization 
system that supports solving this problem, validate the design, and reflect 
about lessons learned in order to refine visualization design guidelines. 

Given the multi-disciplinary nature of visualization as a field and the nature of 

designing visualizations for real-world problems, design studies draw on a variety of 

methodologies from other domains. These are qualitative studies aiming to develop 
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understanding that may be transferred into other contexts with similar characteristics. To 

clarify the methods and aims in design studies, it is important distinguish between 

summative and formative research (Lam et al., 2012). Summative approaches aim to 

test the effectiveness of an interface, for example using laboratory-based studies for 

benchmark comparisons with metrics like completion time. Formative approaches aim to 

progressively and iteratively develop understanding to inform future design. Summative 

methods may sometimes be used in design studies, but the aims of such studies align 

more with formative methods. This is because summative studies require precise control 

of variables and factors which will not be known and will be difficult to anticipate in new 

problem areas. While the goal of summative research is generalizability and 

reproducibility, this is not the case in design studies. Here, the goal is transferability 

(Sedlmair et al., 2012) whereby the characterization of a problem space or solution 

space is sufficiently abstracted so that it may be potentially transferred to other contexts. 

I now turn to a set of methodologies drawn on in this research and discuss their 

relevance to the aims of visualization studies and the present dissertation. 

4.2.1. Quasi-ethnographic Methodologies 

Design studies draw heavily on ethnographically-inspired methods to understand 

and characterize work practices (Carpendale, 2008; Lam et al., 2012; Munzner, 2009; 

Sedlmair et al., 2012). Traditional ethnography in anthropologies focuses on the study of 

culture. In engineering and visualization design, the focus is on technology and how it 

can best serve humans. It usually involves a long-term engagement to progressively 

develop a rich understanding of the target population, the data involved, analytic 

problems, and to abstract this into generic terms that lead to actionable design solutions. 

Ethnographic methods typically involve a mix of field observation and interviews, 

studying a target population in a naturalistic setting. As is well-known in the field of 

psychology (Nisbett & Wilson, 1977), introspection into past decision-making activities is 

unreliable and can only provide an incomplete picture. This is why the combination of 

observational methods and interviews yields far richer, more reliable, more useful 

insights than methods solely relying on retrospective introspection. 

Problem characterizations produced through ethnographic methods are 

important contributions because they ensure shared understanding between researchers 
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and domain experts, set design criteria, and establish the basis for evaluating 

visualizations and transferability (Munzner, 2009; Sedlmair et al., 2012). However, they 

remain relatively rare in visualization literature. This is not the case in more mature 

domains studying the use of technology in complex systems. Cognitive Systems 

Engineering (CSE) provides a robust methodological grounding for understanding 

“complex cognitive systems”, which are real-world work settings involving risk, 

uncertainty, ill-defined or competing goals, individual knowledge and reasoning, 

cognitive processes of groups and organizations, and interactions with computers and 

via computers (Hollnagel & Woods, 2005). As the avalanche industry apparatus and 

avalanche forecasting itself may described as a “complex cognitive system”, I draw on 

additional, ethnographically inspired methodologies from CSE in the following section. 

Macrocognition and Cognitive Task Analysis 

CSE researchers also argue for studies in naturalistic settings to understand the 

rich and contextual needs of domains where technologies are deployed (G. Klein et al., 

2003). They typically distinguish between “microcognition”, addressing low-level 

cognition and perception studied through generalizable lab studies, and 

“macrocognition”, addressing higher-level cognitive processes that can only be studied 

in the real-world settings where they emerge and are used. This is similar to the 

conventional methodological framing of design studies in visualization, however, 

“macrocognition” is broader in scope because it considers all cognitive processes 

including those that might not directly relate to low-level visualization tasks but could and 

often do inform design. 

This methodological lens is foundational to the field of cognitive systems 

engineering and has been applied in a variety of applied settings such as aviation, space 

shuttle mission control, healthcare, business, and control rooms among many others 

(Hollnagel & Woods, 2005). A common facet of this work is the use of cognitive task 

analyses (CTA) and cognitive process models to characterize a domain and guide 

design (Hollnagel & Woods, 2005). Cognitive task analysis provides a rich set of 

methods for studying cognition in real-world settings (Crandall et al., 2006). A range of 

methods varying in realism, task difficulty, generality, and temporal proximity (e.g., 

retrospective, current, or prospective) are applied in this work as needed. 
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4.2.2. Design Methodologies 

After a foundational understanding of a problem domain has been established, 

iterative design and rapid prototyping begins (Munzner, 2009; Sedlmair et al., 2012). 

This involves cycles of design and feedback or evaluation with real users where each 

cycle further refines understanding of both the problem space, design strategies, or 

more technical system details. The “research through design” paradigm describes how 

the process of design and the artifacts produced through it may reflexively embody and 

provide knowledge about how it functions in a given problem domain (Zimmerman & 

Forlizzi, 2014). 

Evaluation also plays a role throughout the iterative design process and may also 

be more summative or formative (Carpendale, 2008; Lam et al., 2012). For instance, 

long-term case studies of deployed systems employing multiple methods (Shneiderman 

& Plaisant, 2006) provide a rich multi-dimensional view of an artifact as it functions in the 

real-world, ensuring ecological validity. Again, ethnographically-inspired methods such 

as interviews and field observations are often used. Given the costs of developing fully 

functional prototypes, low-fidelity prototypes such as paper sketches or approaches that 

mimic the functionality of a system without implementing it, such as diary studies (J. 

Lazar et al., 2017) and wizard of oz studies (Dow et al., 2005), offer opportunities to 

evaluate alternative or successive design strategies and advance understanding. Other 

methods like think-aloud protocols (Cooke, 2010), involving participants vocalizing 

thoughts and reasoning during a task, or situated-recall methods (Bentley et al., 2005), 

where participants are probed using a video recording of their completing a task, can 

provide rich insights into thought processes associated with the use of technology 

without suffering the limitations of retrospective interviews.  

Participatory Design 

Often, stakeholders like domain experts are materially involved in the design 

process (Hartson & Pyla, 2019). This is often referred to as ‘participatory design’, ‘co-

design’, or ‘co-operative design’. Having domain experts participate in design is 

advantageous in several ways. Through the creation of an artefact, participants may use 

and make apparent tacit knowledge that they are not aware of or cannot easily 

articulate. In addition, they may develop unique and creative solutions that designers or 

researchers might not have considered (Schuler & Namioka, 1993). This approach helps 
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elicit core challenges, needs, and opportunities and ensures that visualization research 

leads to mutual benefits for researchers and collaborators (Jänicke et al., 2020). In doing 

so, it ensures the ecological validity and applicability of design artefacts. The co-creation 

of a shared artefact ensures that all parties are invested, relevant knowledge about the 

problems faced is elicited, and that solutions are more likely to successfully address the 

challenges faced. 

4.3. Research Structure 

This dissertation presents several studies addressing the stated objectives and 

research question and draws on the above methodologies. Study 1 (Chapter 5) uses 

quasi-ethnographic methods to understand and characterize problems in avalanche 

forecasting tractable for visual analytics. Study 2 (Chapter 6) progressively explores and 

refines visual analytics solutions to address the challenges of this problem domain and 

further refines the problem characterization through participatory design and interview 

methods. Study 3 (Chapter 7) employs a novel evaluation approach derived from CSE 

methodologies to provide a formative understanding of how existing and newly designed 

systems serve to meet the demands of this domain to inform future designs and to 

further advance problem understanding. Study 4 (Chapter 8) describes preliminary 

explorations of potential design solutions to address aspects of the problem domain 

identified in Study 1 but not further explored in other studies. 
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Chapter 5. Study 1: Understanding What 
Forecasters Do 

It is the power of expectation rather than the power of conceptual 
knowledge that molds what we see in life not less than in art. 

(E.H. Gombrich, Art and Illusion) 

The goal of this preliminary investigation was to characterize the work and 

challenges and data practices of avalanche forecasters to inform potential visual 

analytics interventions and derive high-level design requirements. As is common when 

conducting visualization studies aimed at understanding work practices (Lam et al., 

2012), I employed interview and observational methods as they provide rich data from 

which to gain a holistic understanding appropriate for this stage. I began with semi-

structured interviews to understand how forecasters perceive and describe the 

challenges of their work (Part A). This broad view from the perspective of the forecasters 

helps identify the key issues forecasters face in their work and work practices. In Part B, 

I conducted field observations of forecasters on site, and, concurrently, video-recorded 

forecasters' workstations using these recordings as probes to more deeply explore the 

analytical reasoning involving the use of existing analytic tools. The understanding 

gleaned in Part A provided context for my investigation in Part B particularly during 

debrief interviews. 

5.1. Part A. Forecaster Perspectives 

The objective of this interview investigation was to understand how forecasters 

think about the challenges of their own work. Prior to the study, I understood that 

uncertainty and prior knowledge play an important role in avalanche forecasting, but 

wanted to understand how forecasters think about these issues and their relationship to 

data analysis. 

5.1.1.  Research Questions 

1. How do forecasters use and think about the data available to them? 

2. What are the key challenges forecasters face in their work? 

3. What role do knowledge and experience play in analysis? 

https://www.goodreads.com/work/quotes/59820
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4. How do forecasters think and reason about uncertainty? 

5.1.2. Method 

Semi-structured interviews with 5 professional avalanche forecasters were 

conducted on Avalanche Canada premises in Revelstoke, British Columbia during the 

forecasting season. Participants were asked about common work practices and 

challenges in avalanche forecasting, the role of data and evidence, the role of prior and 

tacit knowledge, issues of collaboration, and issues of uncertainty. Interview questions 

began open-ended to avoid leading participants: "Can you walk me through a typical 

forecasting day?", "What are the biggest challenges in your work?", or "What are some 

common uncertainties you deal with?". Follow-up questions about topics of interest were 

asked to refine understanding. The interviews were audio-recorded and then 

transcribed. 

5.1.3. Participants 

Table 2  Participant table for Part A of Study 1 

ID Public Avalanche Forecasting Experience Background 

1 N/A Natural Science 

2 N/A Marketing, Communications 

3 4+ Geological Engineer 

4 10+ Mountain Guiding, Ski Patrol 

5 5+ Mountain Guide, Educator 

 

5.1.4. Analysis 

Data were analyzed using thematic analysis (Braun & Clarke, 2012). Transcripts 

were concurrently segmented (Geisler & Swarts, 2019) and coded according to 

emergent themes by one coder. The codes were then refined in two passes. These 

themes were then grouped into thematic categories (Table 3). Inter-rater reliability was 

measured with one other coder who had a background in avalanche research and 

limited experience in qualitative research methods using a transcript sample 

representing 10 percent of all data (Geisler & Swarts, 2019). Simple agreement for high-

level themes was 0.89, Cohen’s Kappa was 0.81, and Krippendorff’s Alpha was 0.82. 
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For the sub-themes, simple agreement was 0.75, Cohen’s Kappa was 0.70, and 

Krippendorff’s Alpha was 0.71. All analysis was conducted using Microsoft Excel8.  

Table 3  Table of main themes, sub-themes, their definitions and their 
relation to the broader topics of data, analytic process, and 
collaboration & communication in ambiguity. 

 
8 https://www.microsoft.com/en-ca/microsoft-365/excel 

 Main Theme Sub-Theme Definition 

D
at

a 

Missing Information Explicit Missing information is explicitly represented 
in data. 

Implicit Missing information must be inferred from 
the situational context. 

Data 
Representativeness 

Classification Overlap Classifications are often not independent or 
mutually exclusive. 

Conservative Bias Avalanche professionals are conservative 
when faced with uncertainty in the field or in 
data. 

Circumstantial 
Definitions 

Official definitions and unofficial practices for 
reporting and interpretating data depend on 
the situational context. 

A
na

ly
tic

 P
ro

ce
ss

 

Analytic Practices Subjective Hunches Considering the behaviour, concerns, and 
hunches of others to inform and guide 
analysis and interpretation. 

Immersion Forecasters spend several days forming a 
mental model through an undirected review 
of contextual information. 

Context-seeking Directed information search for 
supplementary contextual information. 

Mental Projection Forecasters assimilate information by 
imagining and mentally visualizing the 
interactions of the snowpack, weather, 
terrain, and people. 

Updating Forecasters iterate over knowledge artifacts 
like their forecasts as they conduct their 
analysis and update their own mental 
models. 

Deliberate Omission Forecasters manage information overload by 
deliberately ignoring some information. 

Analytic Challenges Lack of Good 
Representations 

Forecasters lament a lack of good visual 
representations to alleviate some cognitive 
effort. 

Lowering Danger 
Ratings 

It is challenging for forecasters to lower 
danger ratings as data reveal instability 
rather than stability 
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5.1.5. Findings 

In the following section, I present findings from the interview studies using 

bolding to highlight key themes that emerged. Findings are organized by topics related 

to data, analytic process, and collaboration & communication. A comprehensive set of 

themes and definitions may be found in Table 3 at the end of this section.   

Data Challenges and Practices  

Forecasters informed me that the data used in avalanche forecasting are 

uncertain, have ambiguous expressions or meanings, and have biases. These 

characteristics lead to ambiguity and a need to consider alternative interpretations 

beyond what is explicit in data. 

Forecasters said one of their key challenges is the uncertainty involved in data 

sparsity or missingness. Data are often explicitly missing as is the case when remote 

sensors malfunction or fail to transmit.  

[Weather stations] that have good weather or wind information are even 

less, and then that’s if they’re even reporting… (P4) 

Missingness might also be implicit, having to be inferred from the given situational 

context.  

 Main Theme Sub-Theme Definition 

C
ol

la
bo

ra
tio

n 
&

 C
om

m
un

ic
at

io
n

 
Continuity Forecasting relies on the continuity of 

analysis and monitoring. Shift changes 
disrupt this continuity. 

Translating Analysis Forecasters struggle with communicating 
complex conditions with simple clarity. 

Collaborative 
Sensemaking 
Strategies 

Data Production Forecasters facilitate collaborative work by 
producing hand-off notes and other internal 
documentation. 

Regular Discussion Forecasters draw on each other’s diverse 
knowledge through daily discussions. 

Reaching out Directly Forecasters call or email field operators for 
further information when faced with critical 
information gaps. 

Professional 
Exchanges 

Forecasters work on-site at other agencies 
to gain a deeper understanding of how data 
are produced and what they mean. 
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In a large storm that closes highways and grounds helicopters, it's very 
common the next day to not get any avalanche observations... but the 

weather and your personal experience very much suggests that there 

was going to be an avalanche cycle... (P1) 

Forecasters rely on contextual information to understand how to appropriately 

interpret data following circumstantial definitions. Some of these contingencies are 

officially documented or ingrained within formal procedures, while others are only 

learned through extensive experience and knowledge.  

The… courses do quite a good job of standardizing those kinds of 
threshold amounts [but] people who have spent a lot of time on the 

coast [...] may think a 30 centimeter storm doesn't really do very 

much... (P1) 

Common to many classifications of the complex natural world, avalanche 

classifications overlap and are not mutually exclusive. Technically accurate hazard 

assessments might include several overlapping avalanche types resulting in overly 

complex public communications. Instead, forecasters try to choose a subset of 

avalanche types based on what may inform optimal risk mitigation strategies by the 

public. 

When you're modeling the natural world, you take shortcuts and there's 

simplifications... they don't occupy fully independent places... we 

sometimes have to have discussions about whether we want to be 
technically accurate, or whether we want to retain clarity... that starts 

to get quite complicated... we look for ways to simplify... (P1) 

The nuances of evidential reasoning and interpretation of data in avalanche 

forecasting also extend to the risk-based conservative bias some operators may have. 

This has particular bearing when interpreting other’s hazard assessments such as those 

provided in the InfoEx. Some may be more or less conservative, and forecasters have to 

factor in such considerations when weighing evidence.  

[Discussing varying risk tolerance] Another forecaster would have said 

something like: ‘... they always call that a little more than what it 
actually is.’ ...that may influence me to say: ‘Okay, well, maybe I should 

not necessarily discredit it, but I put less weight into it...’ (P3) 
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Analytic Processes and Reasoning  

Forecasters employ a variety of sensemaking strategies involving speculation 

and imagination. They integrate their prior knowledge, experiences, and contextual clues 

in data to synthesize understanding and explore risk implications. 

Forecasters synthesize, evaluate, and integrate information using a mental 

simulation technique they call mental projection. It is a process of imagining oneself in 

the field to understand conditions and their risk implications.  

[T]hat’s a technique that a lot of people use to help forecast... kind of 

projecting yourself mentally, whether you close your eyes or you just 
have some kind of image of the kind of slopes, the kind of areas where 

the people are moving around... I think that experiential part there is 

really relevant to the process... (P1) 

This might involve mentally converting biases such as wind data from weather stations 

in windy locations.  

[T]here can actually not be that much wind in the park and you can have 

60 kilometers an hour winds at that station... taking an input and then 

adjusting it for myself... (P2) 

It might also involve simulating alternative future scenarios and their risk implications.  

If things are a little bit unusual, I... try and strip it down and build some 
kind of synthetic profile either in my mind, or sometimes even do it on 

the whiteboard... and then figure out the most likely, it's usually a set 

of scenarios... (P1) 

Forecasters describe their work as Bayesian-like because they are constantly 

updating their mental models with new information and deliberately omitting weak or 

redundant evidence. They reported having to immerse themselves in data over several 

days of their shift to build confidence in their sense of understanding. This often involves 

undirected explorations of general background information.  

...a day, you know, more likely two days to become fully sort of 
understanding of what’s going on in your region... even if you can read 

it all in a day, it takes a little time for it to sort of percolate and for you 

to understand what that means... (P1) 

 To address identified gaps in understanding, forecasters actively seek contextual 
sources of information.  
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I'll... look for keywords like 'oh ya... skiing, like, steep terrain in the 
Alpine, up to 40 degrees and just exposed features. No problem.' That 

tells me that not much is going on. Yeah, people are confident... (P2) 

 As they conduct their assessments, they iteratively update knowledge artifacts like the 

public bulletin to match their current understanding.  

I’m pretty iteratively making small changes in the forecast... I'll just 

move that right into the forecasts, put it there, save, and I go back to 

what I was doing... (P2) 

Collaborative Challenges and Practices  

Collaboration helps individual forecasters overcome the limitations of their own 

knowledge by drawing on the collective knowledge and experiences of their peers. At 

the same time, communicating the complexity of their assessments in simple terms is a 

constant challenge that creates ambiguities. 

Forecasters vary in knowledge and experience which likely contributes to some 

variations in interpretation. However, this diversity is seen as an advantage as, 

collectively, it addresses the gaps in understanding any single forecaster may have. 

My experience may be different from you know... another forecaster’s 
experience and I can learn from that person... there's those kinds of 

exchanges that happen... (P1) 

Forecasters share knowledge and solicit their peers' perspectives in daily discussions. 

At two o'clock, we have our pow-wow where we all kind of go through 

our hazards and our problems... it's kind of like a peer review session... 

(P3) 

Professional exchanges with partnering operations help avalanche forecasters enrich 

their understanding of how data are produced in a variety of operational contexts. 

Whether that's highways or ski hill, snowcat skiing, heli-skiing... there's 

variability between the individual operators... And the only way to really 
fully understand is to go and spend a bit of time with that operator... 

We have professional exchanges go on... (P1) 

Forecasters also phone operators and reach out directly for clarification or if they are 

uncertain about how they should be thinking about conditions. 
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If I am potentially missing something or I just don't feel comfortable... 
I'll start picking the phone up and trying to find people in the area that 

can provide more, more insight... (P3) 

Collaboration allows forecasters to account for each other’s knowledge gaps, at 

the same time, it presents challenges such as communication of analysis. Forecasting 

relies on the continuity of analysis. Shift changes can disrupt this continuity and 

forecasters struggle with communicating relevant details as part of the hand-off process. 

There's a lot of variability in different people and... what sort of 

information they leave... that's the first place I'll look... hoping that 
the... previous forecaster has left enough information to start that 

picture... (P3) 

To facilitate the hand-off process, forecasters produce knowledge artifacts like 

dedicated hand-off notes or detailed descriptions of snowpack stratigraphy. 

Talking about hand-off notes, I am trying to take that ease and control 

that I have at day four or five... and I give that to the next person, so 
they don't feel like they have to do their process of discovery from 

ground zero essentially... (P2) 

Forecasters told me that this is seen as a separate and additional task often completed 

at the end of the day when forecasters are fatigued. This is why documentation used in 

support of hand-off and collaboration is often incomplete. Whether communicating to 

fellow forecasters or the public, capturing complexity and nuance in simple and 

understandable terms is a challenge. 

To simplify it... that's when you are kind of having to use your own best 

judgment... (P2) 

Forecasters face additional challenges when communicating their understanding 

to the public. Forecasters must translate their understanding and cater it to an audience 

that varies in understanding and expertise. This often involves exploring alternative 

future scenarios, their implications, how an audience may interpret what the forecaster is 

saying, and subsequently choosing a simple communication strategy that 

comprehensively accounts for these alternatives. 

So instead of trying to write my forecasts like: ‘oh, if we get 10 
centimeters it will probably be okay, but if we get 20, then it'll probably 

come unglued’. It's like ‘just watch for conditions to change as you 

increase with elevation... if it starts to feel stiff or slabby underneath 

your feet... use that terrain feature to go around it.’ (P2) 
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5.2. Part B. Observing Foresting Analytics  

Several weeks after having conducted interviews and analyzed the interview 

data, I returned to observe forecasters in the workplace and use this as a basis for more 

targeted inquiry and discussion. The purpose of this portion of the study was to refine my 

understanding of forecaster’s work practices and observe how tools and data are used in 

practice. In addition, this provided an opportunity to compare what forecasters say and 

what they do. 

5.2.1. Research Questions 

1. What types of tools do forecasters use? How do they use them? 

2. How do forecasters think about and use data? 

3. What is the role of prior knowledge and experience? 

4. How do forecasters collaborate? 

5.2.2. Method 

Part B focused more on understanding how current tools are used. I conducted 

field observations on Avalanche Canada premises for a week, collecting field notes and 

audio recordings of daily discussions. Observations are an important method for 

evaluating work practices (Lam et al., 2012) as they preserve realism and the broader 

working context. Thus, they address the limitations presented by prior interviews where 

data only reflect the perspectives and accounts of forecasters. 

 At the same time, I employed a method called cued-recall debrief (CRD), a 

situated recall method developed for use in complex decision-making contexts (Omodei 

& McLennan, 1994) and adapted for human-computer interaction (Bentley et al., 2005). 

This method was chosen because it improves reliability and recall of prior decision-

making behaviour without being disruptive. While methods like think-aloud protocols 

offer similar benefits, vocalizing thoughts and completing a task concurrently introduces 

additional cognitive load and changes the nature of the task. Moreover, this would be 

disruptive to others in a shared office environment. Debriefing forecasters using screen 

recordings of their workday provides a contextualized shared point of reference from 
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which to make inquiries about how data and analytics tools are used, the reasoning 

processes involved, and how they fit in the broader context of work. 

 Seven forecasters were observed in the field and 4 were debriefed using CRD. 

Camcorders positioned behind workstations in view of monitors and the desk surface 

captured recordings of forecaster’s workday and their use of technology as well as 

artifacts such as hand-written notes (Fig. 6). Throughout the workday at convenient time 

intervals like lunch breaks, I removed memory cards from camcorders and reviewed 

recordings at another location. I noted timestamps in video recordings when I observed 

a behaviour that I did not understand or was of interest. For instance, when forecasters 

were viewing charts, switching between tools, scrolling or mousing over data tables, and 

other similar behaviours involving tool use, data, and analytic reasoning. Debrief 

interviews occurred on average one hour after the end of the workday to allow for a 

break. During the debrief interviews, recordings were played back to forecasters at 

marked timestamps, and forecasters were asked to explain their thought processes and 

actions. I asked questions like: “Can you explain what you were doing and thinking 

here?” These debrief interviews were video recorded and transcribed. 

 
Figure 6  A sample screenshot of a forecaster workstation recording. 
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5.2.3. Participants 

Table 4  Participant table for Part B of Study 1 

ID Public 
Avalanche 
Forecasting 
Experience 

Background Data Gathered  

(O = Field Observation, 
CRD = Cued-Recall 
Debrief) 

2 N/A Marketing, Communications O 

3 4+ Geological Engineer CRD / O 

4 10+ Mountain Guiding, Ski Patrol CRD / O 

5 5+ Mountain Guide, Educator CRD / O 

6 19+ Mountain Guiding CRD / O 

7 6+ Ski Patrol, Mountain Guiding O 

8 N/A N/A O 

 

5.2.4. Analysis 

I applied the thematic coding scheme developed in Part A (Table 3) to notes and 

transcripts in Part B (Table 5). Thematic coding was applied by one coder in two passes. 

5.2.5. Findings 

In the following section, I present findings from the interview studies using 

bolding to highlight key themes that emerged. Findings are organized by topics related 

to data, analytic process, and collaboration & communication. A comprehensive table 

with evidence gathered as well as the method it was sourced with is available in Table 5 
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at the end of this section.

 

Figure 7  The existing fragmented analytics systems used in forecasting. A) 
The Avalanche Research Forecasting Interface (ARFI) organizes 
various forecasting resources such as weather stations in a 
geospatial format. B) The professional Information Exchange 
(InfoEx) where avalanche professionals share field observations. C) 
The Mountain Information Network (MIN) where recreationists share 
reports.  

Analytic Workflows and Tooling 

I found that forecasters work individually and collaborate synchronously as well 

as asynchronously and sequentially on their daily bulletins. Forecasters generally start 

the day reviewing forecasted weather using numerical weather prediction models, 

covering large continuous spatial areas, and then analyzing point data of weather, 

snowpack structure, and avalanche conditions reported by avalanche safety operations 

contributing to the InfoEx and automated weather stations among several other data 

sources. A large portion of the morning is spent investigating numerical weather 

prediction models as well as meeting with professional meteorologists who provide 

additional guidance on model interpretation. The tools and workflows used for 

meteorological models were well-integrated and smooth. However, I found the tools 

used to investigate human and weather station observations were visually and 



 55 

procedurally fragmented creating friction in accessing and synthesizing these data (Fig. 

7). In one instance, a forecaster opened several browser windows of data tables to 

investigate temporal trends while in several others, forecasters were navigating between 

several windows to while make comparisons about data or switch between spatial, 

temporal, or informational views of the same data.  This fragmentation is one of the 

motivating factors behind this research collaboration with Avalanche Canada. The aim is 

to develop visualizations that aggregate these disparate data in a centralized platform. 

Previous efforts to consolidate these resources led to the creation of a map-

based portal (Fig. 7.A), which spatially organizes hyperlinks to access primarily 

meteorological data from remote sensing weather stations and cameras. Using this tool, 

forecasters must open multiple browsers for different websites to view weather station 

telemetry from individual weather stations and primarily in a data table format. 

Data tables also played an important role in the investigation of human field 

observations. Forecasters used two platforms for investigating these reports: the 

Canadian Avalanche Association's Industry Information Exchange (InfoEx) (Fig. 7.B) for 

avalanche professionals and the Mountain Information Network (MIN) (Fig. 7.C) for 

recreationists. Throughout these tools, we observed forecasters making extensive use of 

data tables. They would visually scan these tables, noting trends, central tendencies, 

and other patterns while at the same time, reading unstructured text from report authors 

to glean enough context so as to understand their significance. Although simple 

visualizations were available in the professional InfoEx system, we were surprised to find 

that they were rarely used.     

Talking About Data 

I found several examples showing how organizational knowledge relevant to the 

nuanced interpretation of data is in large part oral tradition exchanged through the 

shared practice and environment of work. 

I observed several discussions that dealt with the topic of how to interpret 

reports from the field. For instance, one discussion dealt with the interpretation of a 

report authored by an operator who was known to have a conservative bias and what 

the implications of this were for hazard assessments. In another discussion observed in 

the field, a junior forecaster with a guiding background described how they are coming to 
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understand the challenges of their new remote work environment, noting the nature of 

what types of information may be missing. 

After having worked this job [Avalanche Canada] ... I sort of realize the 

big holes the operators leave in their writeups [...] because they are 

having face-to-face conversations... and maybe not putting that 
information into their writeup... saying this layer [of snow] does not 

exist in our area may not be helpful to them, but it really helps us here 

in this office... (P8) 

How classifications and circumstantial definitions are applied in hazard 

assessment and risk communication was also a frequent topic of conversation. 

I like [X’s] point yesterday, wind slabs in the alpine are kind of like 
cornices that you find always... it is just a winter mountain hazard... it 

goes on the bulletin when it is elevated to more than normal caution... 

(P2) 

Tacit Sensemaking and Analytic Processes 

 Early sensemaking processes, particularly those involving personal experiences 

or trust, may be difficult to articulate out of context and consequently, share with others. 

When debriefing forecasters about their workday I found they relied on the 

subjective hunches of operators that they personally trusted and were more familiar 

with. This factored into how evidence was weighed, and the confidence forecasters had 

in it. 

I feel good about who was about in the operation. So, I felt that the test 

was valid and valid information that I should be thinking about... (P3) 

I also found forecasters exploring general contextual information to immerse 

themselves. They found it difficult to articulate how they were using the information, 

reflecting characteristics of early sensemaking processes. 

It was just to give me an orientation to get my mental picture for 
forecasting... just a little bit of context... I don’t know what that does 

for me exactly... (P4) 

Collaboration and Knowledge Artifacts 

 The bulletin serves as a knowledge artifact representing a forecaster’s current 

understanding of avalanche conditions. The bulletin scaffolds analysis and guides 

information search, particularly during hand-off at shift changes. However, the reasons 
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behind specific changes to the bulletin are not always explicitly captured leaving future 

collaborating forecasters to speculate about the reasoning that might have been 

involved. 

Forecasters do not just iterate over their own bulletin over the course of the day, 

they often carry forward the previous day’s bulletin even if another forecaster wrote it. I 

observed how forecasters update it as they formulate their own new understanding. 

I import yesterday’s forecast... and I tweak my forecast so it matches 

my nowcast... (P6) 

The specific reasons behind these updates are not made explicit, leaving the 

forecasters coming on shift to seek contextual information to speculatively reconstruct 

their coworker's evidential reasoning process. 

So I reviewed a few avalanches to understand what was driving those 

avalanches and why [X] added that persistent slab problem again... (P6) 

 

Table 5  Table of evidence gathered in Part B corresponding to themes 
identified in Part A. 

 Part A Main 
Theme 

Part A Sub-Theme Part B Evidence (O = Observation, CRD = 
Cued Recall Debrief) 

D
at

a 

Missing Information Explicit  

Implicit O 

Data 
Representativeness 

Classification Overlap O 

Conservative Bias O 

Circumstantial 
Definitions 

O 

A
na

ly
tic

 P
ro

ce
ss

 

Analytic Practices Subjective Hunches CRD 

Immersion CRD 

Context-seeking CRD 

Mental Projection  

Updating CRD 

Deliberate Omission CRD 

Analytic Challenges Lack of Good 
Representations 

CRD 

Lowering Danger 
Ratings 

 

C o l l a b o r a t i o n &
 

C o m m u n i c a t i o n Continuity O 
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5.3. Discussion 

The described findings demonstrate how avalanche forecasting involves 

knowledge and interpretation that goes beyond a face-value read of data. Considering 

and evaluating alternative interpretations based on prior knowledge is a pervasive facet 

of their work. This study surfaced such issues which I characterize and abstract as 

dealing with ambiguity. I consider three areas where ambiguity arises: data, analytic 

process, and collaboration and communication. I draw this distinction to abstract and 

direct attention toward general issues of ambiguity. At the same time, I acknowledge 

these are categories are not entirely independent.  

5.3.1. Data 

Ambiguity emerges from data because they are incomplete simplifications of the 

complex phenomena they represent. Ambiguity may be present in the expression of data 

or in how representative data are of the phenomena of interest. Forecasters use their 

knowledge, experience, and cues within the data to explore plausible explanations that 

account for what they see. This might involve speculating about causal factors 

explaining the shape of data, imagining how all the known information can be 

synthesized into a coherent understanding, or extrapolating point data across space and 

time.  The challenges of data render the consideration of alternative perspectives a core 

and functional aspect of forecasters’ work. This suggests that visualization and 

representational design approaches should carefully consider when and where this form 

of sensemaking is relevant and ensure that it is not impeded.  

5.3.2. Analytic Process 

Ambiguity plays a productive role in the analytic process but also presents 

challenges in managing and navigating analyses. This involves distinct cognitive and 

Translating Analysis O 

Collaborative 
Sensemaking 
Strategies 

Data Production O 

Regular Discussion O 

Reaching out Directly O 

Professional Exchanges  
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analytic processes that consider alternative interpretations and involve the active 

manipulation and construction of knowledge. For instance, forecasters extrapolate 

alternative future scenarios in risk analysis and risk prediction. Through mental 

visualization or explicit sketches, forecasters explore and evaluate alternative future 

scenarios to make predictions, explain data, identify risk implications, and choose ways 

to best communicate this understanding to others. In one example, forecasters 

described drawing diagrams of snowpack structure to explore how it may evolve and 

react to different potential future weather scenarios. These processes could more 

explicitly be supported in visual analytics systems. For instance, physical snowpack 

simulation, which are increasingly being used to supplement understanding of existing 

snowpack conditions (Morin et al., 2020), could be extended in interactive visualizations 

that allow forecasters to explore alternative future conditions and how the snowpack 

could react. 

These analytic processes also present challenges for navigating one’s own 

analysis. The judgments and analytic choices made present alternative potential analytic 

paths through data. As forecasters weigh evidence and update their understanding of 

avalanche conditions, they iteratively adjust knowledge artifacts to match their 

understanding. However, how specific evidence was treated and led to certain 

assessments is not explicit, is often forgotten, and may be difficult for forecasters to 

reconstruct. I conjecture that this can make it difficult for forecasters to coordinate their 

own work as well as articulate their own analyses to others. This suggests mechanisms 

that can make past analytic steps and reasoning processes apparent could help 

forecasters manage and coordinate their own analyses. By externalizing the relevant 

elements to consider in assessments and making their relations apparent, an external 

representation can reduce the cognitive costs of reasoning about evidence, coordinating 

or planning work, and navigating a problem space (Kirsh, 2010). Visual analytics 

methods for analytic provenance (K. Xu et al., 2015) and interaction traces (Vuillemot et 

al., 2016) be of benefit here.  

5.3.3. Collaboration and Communication 

Ambiguity also arises from the complexities of collaboration and communication. 

Each forecaster holds a unique perspective and interpretive lens, presenting a form of 

ambiguity. Forecasters use strategies such as regular discussions or hand-off notes to 
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exchange knowledge and clarify contextual evidence, explain reasoning, and to provide 

context that served as the basis for assessment decisions. This serves to enrich the set 

of potential interpretations to consider and can help disambiguate meaning by clarifying 

the most plausible explanations and interpretations of data. However, due to the effort 

required for this task and the difficulty in anticipating what may be relevant, such 

information is often incomplete, leaving forecasters to speculate about their colleagues’ 

reasoning processes. In addition, the forecasters' organizational knowledge is 

predominantly oral tradition exchanged in application to the immediate demands of work, 

making it vulnerable to being lost and leading to redundant discussions when training 

new staff. This suggests that lightweight mechanisms, integrating with existing workflows 

and practices, that allow key evidence and relevant knowledge to be captured during 

analysis could be helpful here. 

Forecasters simplify their complex understanding of avalanche conditions to 

ensure that members of the public, whether novice or expert, can apply appropriate risk-

management strategies. In doing so, forecasters mitigate the risks of potential scenarios 

the public might encounter or the confusion that might result from overly technical 

communications. Often, this involves reconciling alternatives based on risk. For instance, 

when two avalanche problem types require the same risk mitigation strategies, 

forecasters will use one of them and supplement any further guidance using plain and 

actionable language. The myriad ways to communicate hazards presents its own form of 

ambiguity. The contextual factors involved in these decisions are not explicitly captured 

making it difficult for the organization to a.) describe how and why these factors lead to 

certain assessment decisions and b.) define how these factors should be used in 

assessment decisions. Tools to capture the use of knowledge and how it relates to 

evidence stake to not only benefit day-to-day operational collaborations but also provide 

the basis for developing further organizational knowledge and procedures. A corpus of 

meta-data pertaining to how evidence is used in assessments could serve to highlight 

the contextual factors involved, how they are used, and set the basis for investigations of 

how such factors should be used in assessment decisions.  

5.4. Limitations 

It is important to note that while Part A of this study involved additional coders to 

assess reliability, the data from subsequent parts were analyzed solely by me. The use 
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of multiple methods including interviews, observations, and situated recall in this study 

strengthens the validity and reliability of the findings. However, analyzing data only by 

myself presents limitations in reliability and validity. This serves as a motivation for 

further research, which is necessary to refine the understanding of the avalanche 

forecasting domain, particularly in relation to data, and to explore the potential of visual 

analytics as a supportive tool.  
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Chapter 6. Study 2: Designing Visual Analytics 
Solutions 

I present a participatory design study with Avalanche Canada forecasters to 

develop two visualization prototypes, WxObs and AvObs, addressing the challenges of 

ambiguity dealing with data. This study begins the stage of iterative design and rapid 

prototyping through which understanding of data and tasks is further refined and 

abstracted in more general terms to support targeted design solutions. By designing 

artefacts in collaboration with experts and studying its application in operations, lessons 

about the nuances of data, their use in analysis, and the potential for visualization to 

support these data and analytic processes is better understood. While the interviews, 

observations, and situated recall in the prior study offer some insight into this, 

understanding remains coarse. The objective of the present study is to refine this 

problem characterization of the data and task within the avalanche forecasting problem 

domain and to begin the investigation of how visualizations may serve to offer support 

for the associated demands.  

The two prototypes and their respective data sources were chosen as they are of 

a relatively higher priority to avalanche forecasters than others. WxObs aggregates 

weather station telemetry for weather forecast validation and real-time monitoring as 

weather systems evolve. Meanwhile, AvObs concentrates on human field-reported 

avalanche observations, which are the strongest form of observation (Class 1) as they 

are the most direct evidence of structural instabilities in the snow. The design process, 

design features, and findings from forecasters and my own reflections are discussed for 

each prototype. 

6.1. Research Questions 

1. How can visual analytics tools be designed to address the challenges of 

ambiguity in avalanche forecasting, particularly when dealing with weather 

observations or avalanche observations? How can visualization designs provoke 
or otherwise facilitate ambiguous sensemaking? 

2. How do the developed visualization prototypes (WxObs and AvObs) support or 

impede the forecaster’s ability to interpret and analyze data and how can these 
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insights inform the further design iterations pursuant towards supporting 

ambiguity? 

6.2. Method 

As is common practice at this stage of a visualization design study (Munzner, 

2009; Sedlmair et al., 2012), prototypes were iteratively refined from a broad set of 

alternative designs in the form of paper mockups to interactive visualizations with live 

operational data over the course of a summer (off-season) and winter forecasting 

season (Fig. 8). During design, I informally employed a variety of evaluation methods 

such as think-aloud protocols and unstructured interviews to better understand how tools 

are used. In addition, forecasters themselves provided visual sketches and contributed 

design ideas. Data collected include design artefacts such as prototype sketches and 

the prototypes themselves, written documentation, and email exchanges, as well as 

video and audio recordings from discussions and think-aloud sessions. 

 
Figure 8  Process diagram describing iterative participatory design approach 

for both WxObs and AvObs prototypes. 

During the study period, WxObs was used operationally for the latter part of the 

winter season. A retrospective interview was used to solicit feedback from forecasters 

and understand how the tool was being used in practice. At the same time, AvObs was 

still being designed and developed. Due to these differences, findings for each prototype 

tool are presented in a different format. The design and findings of WxObs are separated 

because I report on lessons learned from retrospective interviews about a real-world 

field deployment of the tool. By contrast, as AvObs involved an iterative design process, 

involving key findings at intermediary stages informing the design of subsequent 

iterations, a description of the design artefact and design process is included as part of 
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the findings. This aligns with reporting practices in “research through design” (Gaver, 

2012) 

6.3. Participants 

Seven forecasters participated in the design of both prototypes (P2-P6 ; P11, 

P12) while two others (P9, P10) only provided feedback after having used WxObs in 

practice. In addition, my supervisor and I were directly involved in the design process. 

Table 6  Participant table for Study 2 

ID Public 
Avalanche 
Forecasting 
Experience 

Background 

2 N/A Marketing, Communications 

3 4+ Geological Engineer 

4 10+ Mountain Guiding, Ski Patrol 

5 5+ Mountain Guide, Educator 

6 19+ Mountain Guiding 

7 6+ Ski Patrol, Mountain Guiding 

10 N/A N/A 

11 N/A Engineering, Natural Science 

12 N/A Mountain Guide, Communications 

 

6.4. Analysis 

Analysis followed a combination of thematic analysis (Braun & Clarke, 2012) and  

my reflections of the design process (Zimmerman & Forlizzi, 2014). My analysis is 

informed by my direct involvement in the design process and is therefore a reflection of 

the understanding I formed engaging in this participatory design study. I reviewed data 

and artefacts collected throughout this period and drew on my first-hand experience to 

identify themes, quotes, and evidence that aligned with the key insights we had 

throughout the design process. I organized evidence according to a set of themes that 

best reflected my understanding of the important aspects of the design process. This 

process was iterative, involving several passes to extract themes as well as discussions 

with all participants to confirm common understanding. 
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6.5. WxObs 

 
Figure 9 The WxObs prototype for analyzing weather station telemetry. 

6.5.1. Design 

The involved forecasters and I employed a conventional design approach for a 

multi-view coordinated visualization (Fig. 9). Our design intent was to address the 

fragmentation of navigating disparate resources through a unified representation offering 

visual summaries and explorability. Our design approach follows the information-seeking 

mantra “Overview first, zoom and filter, then details on demand" (Shneiderman, 1996). 

Numerical aggregations for each telemetry type (wind, temperature, and various 

measures of precipitation such snow water equivalent, snow height, or liquid 

precipitation), offer an initial summary “overview". “Multiple levels of detail" are shown in 

various visualizations which are linked and coordinated with “brushing", “zooming", and 

“filtering". A tooltip for individual weather stations shown as points on the map show all 

telemetry at that location for “details-on-demand". 
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6.5.2. Findings 

The ambiguity of uncertainty 

The operational use of the WxObs prototype highlighted how analysis of weather 

station telemetry presents issues of data uncertainty that give rise to ambiguity. There 

are too few weather stations to capture the variability of weather conditions in the 

mountains (Lundquist et al., 2019) and the weather stations that do exist, produce data 

that is often affected by multiple potential sensor and transmission errors (Mekis et al., 

2018). Discerning potential transmission errors and how individual weather stations 

come to represent broader weather patterns is a matter handled through the forecaster’s 

judgment and interpretation. Forecasters normally use text tables to view each weather 

station’s telemetry individually and progressively build up an understanding of weather 

patterns.  

This bottom-up approach stands in contrast to our top-down and overview-first 

visualization designs. Aggregate and visual summary measures and linked interactions 

introduced a new and unfamiliar approach that challenged forecasters. 

I’ve always looked at the data in a pretty disaggregated way... What I’m 

having to learn is to kind of let go of that, needing to see the 
disaggregated view first so that I can aggregate the data in my brain so 

to speak... (P12) 

The need for raw data 

Forecasters kept returning to the tabular format to see raw data. This went 

beyond simply being about path dependence and familiarity with this visual format. 

Forecasters could not trust numerically aggregated results. They have developed visual 

scanning strategies to detect errors in the data. 

It largely stems from the trustworthiness of the data… I like things in 

their raw format just for my own sake… my own stamp of approval… I 

guess it's easy for my eyes to decode differences or irregularities. (P3) 

Forecasters also returned to this raw data table form as a way to better understand how 

visualizations were manipulating data and to scaffold the learning of the analytic 

affordances of these new tools. 

having [raw data table] side by side with the visualization helped me to 

interpret: Okay, what's the visualization trying to tell me here? (P4) 
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Forecaster reflections 

Forecasters who adopted the WxObs visualizations more readily in their work 

found the tool provided them with a richer and deeper understanding of meteorological 

phenomena than traditional data tables alone. Drawing a historical comparison to the 

role of computers in meteorology, forecasters view visualizations as a steppingstone in a 

transitional phase towards more data-driven and modeling-based approaches. 

There was a transitional phase there where the computer was more an 

aid to help the forecaster make some initial assumptions... then the 

forecaster would tweak the forecast and actually write the forecast 
manually still... and now we're to the point where that really isn't the 

case... (P12) 

6.6. AvObs 

6.6.1. Findings 

As I am reporting on a process of collaboratively designing the AvObs product, 

the design and the feedback and processes that led to this design are interleaved and 

presented in such a way that the design artifact, the design choices involved, and what 

led to those choices are treated as research findings. 
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Initial Design 

 
Figure 10  An early prototype of the AvObs system utilizing precise visual 

encodings and numerical aggregates in the form of bar charts. 

Using the same conventional visualization design principles, our preliminary 

designs relied on numerical summaries such as counts and averages to provide an 

overview of avalanche activity (Fig. 10). We used simple bar charts to show summary 

counts of observed avalanches, but forecasters found this representation confusing, and 

they found it to be an impediment to their analysis. It did not support the demands of the 

task and forecasters found aggregates methodologically flawed. 

I like seeing the individual events more than the aggregate... It seems 
like full of flaws and limitations to kind of summarize all the [avalanche] 

activity with one number... (P11)  
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Moreover, forecasters expressed concern that very precise visualizations like bar charts 

would impart a false sense of precision in the data and have forecasters forfeit the 

scrutiny that such data require. 

We learned of several reasons why forecasters find the disaggregated 

representations to be important. The first challenge stems from how avalanches are 

assessed. While assessing avalanche type and size using avalanche observation data is 

relatively easy as these are distinct data fields, judging the likelihood of avalanches is 

more difficult because it relies more heavily on expert judgment. Likelihood is formally 

defined as a combination of how sensitive instabilities in the snow are to triggering and 

the spatial distribution of the instability. However, as avalanche observations follow a 

targeted sampling approach, it is much more difficult to assess the representativeness of 

data. Spatial distribution, for instance, formally requires judging the "ease with which 

evidence is found" and specific terrain features or locations where the problem is 

expected to exist. This requires forecasters to assess the context within which 

observations were made, the areas traveled to, factors such as the mode in which 

observations were made, and the opportunities for observation. For instance, observing 

mountainous terrain on a clear day with good visibility while flying in a helicopter allows 

one to see much more terrain and avalanche debris than when flying on a cloudy day or 

if travelling on skis or a snowmobile. This contextual information can only be discerned 

by reading details of multiple attributes in each report. Moreover, more explicit and well-

structured attributes of individual reports have to be viewed simultaneously to 

contextualize the meaning of any broader patterns in avalanche activity and thus how 

avalanche problems can be conceptualized. As a result, reports should be represented 

in a disaggregated form allowing forecasters to see multiple dimensions as they pertain 

to individual reports and allow more detailed information to be easily accessible. 

The second challenge deals with ambiguous expressions of avalanche data 

where the application and interpretation of even structured data may be situationally 

contingent and potentially equivocal. While varying practices in how to classify certain 

avalanche problem types (Hordowick, 2022; Klassen, 2013) are one example of this. 

Another that emerged dealt with the number of observed avalanches field. This field may 

be reported using numbers corresponding to a count of observed avalanches or a 

qualitative ordinal field such as ‘several’ or ‘numerous’ that corresponds to specific 

ranges of how many avalanches were observed (Canadian Avalanche Association, 
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1995). However, the choice of which to was used and in which context leads to 

interpretations beyond a literal reading of the data. For instance, using the qualitative 

ordinal field could express uncertainty or simply be a time-saving shorthand. In addition, 

the number of observed avalanches has to be compared against the spatial scale in 

which observations were made. This is why forecasters were concerned about a false 
sense of precision or a face-value reading of data. 

Glyph-based Design 

We instead chose a glyph-based design to address the forecasters’ concerns 

about false precision and trust (Fig. 11). Glyphs, composed of circle marks representing 

individual avalanche observation reports in a circle packing layout, are a central feature 

of our visualization design. Circle colour corresponds to the avalanche problem type. We 

chose this encoding because identifying avalanche problem types is generally thought of 

as the start of the hazard assessment process (Statham, Haegeli, et al., 2018) and 

colour is the most salient visual feature in glyphs (Borgo et al., 2013). Meanwhile, 

avalanche size is encoded as circle size. Avalanche type and size provide two essential 

elements for hazard assessment; to address the third - likelihood - we provide tooltip 

interactions (Fig. 11 & 12.I) showing many other detailed data attributes and 

unstructured data such as comments or images that allow forecasters to better 

understand the broader context within which to interpret observations. Finally, the data 

source is encoded as border stroke blurriness where recreationist reports (MIN) have a 

blurred border while professional reports (InfoEx) have a solid border.  
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Figure 11  Glyph design using circle packing layout. Reports are shown as 

distinct circles allowing tooltip interactions that provide access to 
distinguishing information. Multiple encodings support visual 
aggregations.  

Glyphs are embedded in a variety of visualization contexts. They are shown in a 

map (Fig. 12.B) where each avalanche observation may be associated with the tenure 

within which an operator travels (vector polygon) or specific locations, individual 

avalanche paths for instance, within the tenure (also vector polygons). Selections of 

circles show underlying spatial data color coded whether it is a tenure (green) or a 

location (yellow). Region boundaries for which target public forecast bulletins are issues 

are shown as contextual reference structure in purple. The circle packing algorithm 

prevents occlusion while zooming resolves reports to the associated spatial locations. 

They are also shown in a matrix grid (Fig. 12.C) organizing avalanches by avalanche 

type and various trigger types. This provides insight into subsets of different avalanches 

and their common triggers. In the design process, we invented new high-level trigger 

type categories departing from operational standards and better aligning with the 

analytic questions forecasters have. Namely, whether avalanches were triggered by 

natural causes, by humans in a deliberate controlled manner, by humans by accident, by 

explosive charges, or through some other means. They are also shown in a timeline 

(Fig. 12.E) that separates avalanche reports based on whether the avalanche was seen 
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in motion (Direct Obs) or if only avalanche debris was observed (Age Range). For 

avalanches with an age range estimate, an estimated day in which the avalanche 

occurred is derived and the corresponding circle is aligned with that date. Selecting and 

highlighting observations reveals lines corresponding to the potential time interval in 

which avalanches could have happened. This helps forecasters understand temporal 

uncertainties and trends in avalanche activity. 

A radial heatmap (Fig. 12.F), the only aggregate visualization showing numerical 

summaries, shows the number of reported avalanche observations by the aspect, the 

cardinal direction of a mountain face, and the elevation (in 200m bins) of where an 

avalanche was observed. This provides insight into the localization of an avalanche 

problem informing judgments of spatial distribution and in turn likelihood. 

Finally, unstructured text fields called avalanche summaries that operators use to 

summarize avalanche conditions at a high level, are available in a scrolling list pullout 

(Fig. 12.D). 

All views are linked and coordinated. Clicking axis labels, individual reports, or 

using the highlight lasso (Fig. 12.A) cross-highlights reports of interest in all displays. A 

lasso can also be used to filter data using the map and the colour encoding for glyphs 

can be changed between avalanche type (avalanche character) and the number of 

observed avalanches in each report. A separate pullout menu sets query parameters 

such as the date range, regions of interest, or avalanche problem types (Fig. 12.A). 
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Figure 12  The AvObs prototype. A) Query parameters and global configuration such as a filter lasso. B) Map showing 

reports at their respective locations. C) A matrix showing subsets of reports by avalanche problem type and 
trigger type. D) Avalanche summaries are shown in a scolling list of text cards. E) A timeline showing reports 
by day and whether they were observed in motion or as debris. F) A radial heatmap showing avalanches by 
elevation and aspect. G) A legend for circle-packed glyphs. I) tooltip interactions to show report details.
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Desirable Difficulty 

We chose this glyph-based design to ensure forecasters had access to individual 

disaggregated reports while at the same time analyzing broader patterns and trends. 

Glyphs support visual aggregations such as summarizing data, detecting outliers, 

detecting trends, or segmenting data into clusters (Szafir et al., 2016). However, layering 

multiple encodings in a variety of contexts makes reading patterns in such visualizations 

more difficult (Healey & Enns, 2012). This was a deliberate design decision. 

Forecasters expressed concerns about visualizations giving them a false sense 
of precision so we chose a visual design that would instead inspire scrutiny by making 

the reading of visualizations more difficult and effortful than our initial designs focusing 

on precision and salience. While size and colour are salient in glyphs, in the broader 

space of visual encodings they are not decoded as accurately (Cleveland & McGill, 

1984) or perceived as saliently as position (Szafir et al., 2016). 

The use of cognitive difficulties is often discussed in studies of learning (Chi, 

2013; Yue et al., 2013) and is also present in visualization research (Hullman et al., 

2011). It has been shown to improve risk-based decision-making in geovisualization 

applications (Cheong et al., 2020). Hullman frames "desirable difficulty" as involving a 

tradeoff between the cognitive efficiency derived from pre-attentive processing and 

improved learning through more active processing of information. By reducing the ease 

and fluency of decoding, more active attention is devoted to the task allowing inferences 

about missing information or inconsistencies that might otherwise be ignored. While 

desirable difficulty has commonly been applied to improved learning outcomes, we find it 

appropriate when dealing with ambiguity. Instead of relying on pre-attentive processing, 

where patterns in data may be taken at face value and processed in a more automatic 

fashion, difficulties require more effortful consideration and in doing so ensure that 

alternative interpretations are considered, and the data is appropriately scrutinized.  

While our goal was to introduce some form of visual disfluency, forecasters felt 

comfortable with this representation as they felt it matched well to the analytic demands 

of their work.  

[The visualization] helps to smooth the data... and just at a glance... 
but it’s not smoothing where I can’t then... tease out nuances... I feel 
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like it’s really true to the data, which is a collection of individual points, 

kind of disparate points from across a forecasting region... (P2) 

Forecasters also commented on how the visual metaphor of disorderliness matched the 

constraints of the data, especially when compared to prior designs (see appendix A). 

[The packed circle glyph design] really resonates… how it appears to put 
a lack of order to the observations. The previous one [referring to 

prototype using a dot plot] we saw [the data] seems way more 
structured than it actually is. [The glyphs] capture kind of randomness 

of that [data] (P11) 

6.7. Discussion 

Through our collaboration, I learned how important disaggregated views and 

access to raw details are for these data. Whether the data are sourced from automated 

remote weather stations or human field reports, forecasters need to see the details of 

individual reports to consider what factors are influencing the data and how to interpret 

them. Whether they are sensor errors or understanding the broader context of how data 

were sampled, these details are critical for interpreting the meaning and broader 

implications of these data. Forecasters must extrapolate from points across space and 

time, but to do so, they have to first understand the relationships between data and the 

phenomena or influence on avalanche hazard they represent. This relies heavily on 

knowledge, experience, judgment, and imagination. 

Our design of AvObs breaks away from classic visualization conventions that 

value minimalism and precision. In doing so, it departs from the effectiveness principle. 

Precise, easy-to-read, and minimalist designs can impart a sense of authority or 

objectivity (Kennedy et al., 2016), and we felt this was inappropriate.  

Rather than focus purely on abstracting data and mapping it to optimal visual 

variables, our design attempts to visually and metaphorically capture the imprecision and 

ambiguity of these data. One example of this is using a force-directed layout in the map 

view. It not only deals with the problem of occlusion when reports are spatially clustered  

but also alludes metaphorically to the fact that the precise location of the observation 

may not be known. At the same time, this level of precision might not be relevant at the 

broad spatial scale public forecasters work at. Zooming in on the map can resolve what 

the exact underlying spatial data is, but at lower-zoom levels, this spatial ambiguity is 
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captured metaphorically through the jittering motion and repositioning that result from the 

constraints of the layout algorithm.  

In addition, every time a selection is made, each glyph visualization is spatially 

re-organized in a random manner creating the impression of disorderliness and 

imprecision. The visual complexity and perceptual interactions between multiple layered 

visual variables could create different impressions of patterns between successive 

interaction states of the visualization. This unstable percept, which even in a static form, 

forces the viewer to strain to see the patterns, encourages scrutiny and skepticism about 

the patterns and relationships they believe to be perceiving. In this way, encoding is not 

just about mapping literal and explicit dimensions of data to visual features to extract 

summary statistics and patterns. It is also about aligning the analytic demands and 

affordances of a data set with a particular mindset or set of mental operations within a 

specific context. Rather than offload cognitive work and reduce effort, as is commonly 

thought of as the primary role and benefit of visualization, we are altering cognitive work. 

By making some aspects easier and automatic and others harder and more deliberate, 

our visualization aims to better meet the demands of the task at hand.  

6.8. Limitations 

Interviews with forecasters on the use of WxObs in real-world applications 

provide an ecologically valid perspective on the value it provides and its shortcomings. 

However, retrospective interviews are inherently limited due to issues of post-hoc 

rationalization, limited memory or understanding of the procedural aspects of cognitive 

work and how it relates to visualizations, and potential experimenter expectancy biases. 

In addition, while AvObs was designed through an iterative approach involving domain 

experts and continuous evaluation, a more rigorous and thorough evaluation of how 

design features do or do not address the challenges of ambiguity is needed. Moreover, 

this tool was not validated through operational use in this study leaving it in need of real-

world validation. 
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Chapter 7. Study 3: Evaluating Visual Analytics in 
Practice 

A map is not the territory it represents, but, if correct, it has a similar 
structure to the territory, which accounts for its usefulness. 

(Alfred Korzybski, Science and Sanity) 

 

I carried out a qualitative simulation study evaluating AvObs and the tools 

forecasters conventionally rely on: the InfoEx and MIN. Given that AvObs was designed 

in collaboration with expert users, this offered some indication that the new system 

would function as intended to provide a comprehensive multidimensional view of the 

data, showing trends and patterns without imparting a false sense of precision, and 

allowing forecasters to access details to better understand the broader context and 

implications of reports. However, a more thorough evaluation of how AvObs and existing 

tools work in practice was needed. 

Evaluation of sensemaking visual analytics has traditionally focused on ‘insight-

based’ methods (North, 2006; Saraiya et al., 2006). Most often, such evaluations involve 

simulations of real-world tasks in a lab-based setting. This methodology treats the goal 

of visualization as producing emergent ‘insights’ and discoveries which are categorized, 

counted, and used as a benchmark for comparing the performance of different 

visualizations in terms of the quality, type, and volume of insights they support in a given 

amount of time. In addition, it is heavily influenced by models of sensemaking developed 

for exploratory analysis. This methodology, its summative evaluation aims, and 

theoretical framing do not align with the goals and sensemaking context of avalanche 

forecasting nor the research objectives of this dissertation. In this research, I adopt the 

stance of Andrienko et al. (2018) treating the goal of visual analysis to be some 

assessment, prediction, or decision, supported by a process of iterative mental model 

calibration and development. The aim of this evaluation study is to understand how 

visualizations serve these goals, not to measure how well or how much better. 

To the best of my knowledge, there are no existing sensemaking evaluation 

methods that treat the goal of visual analysis in such a way. Moreover, the 

operationalization of insights in evaluation studies often tends to focus on the information 
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that is decoded from visualizations. Instead, as outlined in cognitive psychology on the 

‘representation effect’  (Smith et al., 2006), my focus is on evaluating how visualizations 

come to aid the cognitive work demanded by the problem domain of avalanche 

forecasting. More specifically, the objective of this study was to evaluate how these tools 

support or impede ambiguity-related sensemaking and avalanche hazard assessment 

more generally. This is a formative evaluation and is not concerned with comparing the 

performance of AvObs against existing systems. Given the complex and contextual 

nature of ambiguous sensemaking such an approach would be an oversimplification as it 

is not clear what would be measured. Moreover, the specific analytic affordances of both 

tools as they pertain to ambiguous sensemaking are not known as they have not been 

studied in detail. As I could not rely on an existing methodological approach, I had to 

develop one to address this research objective. 

7.1. Research Questions 

1. How do AvObs and existing tools come to support or impede ambiguous 

sensemaking? 

1. What types of ambiguous sensemaking does each toolset support and how do 
they compare? 

2. How are features in AvObs and existing tools interacted with and how do they 
compare? 

3. What analytic support do AvObs and existing tools offer and how do they 
compare? 
 

2. Do hazard assessments produced by forecasters using AvObs deviate from those 

produced using existing tools in a meaningful way? 

7.2. Method 

I carried out a qualitative simulation study in which we examined how forecasters 

used both their existing InfoEx toolset (Fig. 13) and the AvObs prototype (Fig. 12) in the 

same representative practice conditions. 
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Figure 13  Existing sytems used by forecasters in the analysis of observed 

avalanches. These include the professional InfoEx reporting system 
including unlinked A) data tables, B) maps, and C) information 
visualizations as well as the recreationist MIN reporting system 
including D) a map view with an interactive sidebar for accessing 
reports and E) a list view of reports. 

 
I asked our forecaster participants to conduct formal hazard assessments using 

either AvObs or InfoEx tools in two avalanche risk scenarios using historical data. 

Forecasters were asked to produce a ‘nowcast’, an assessment of conditions of the day 

in question, rather than a forecast because this relies more on human field observations 

and less on weather forecasts which would introduce additional complexity in our study. 

Hazard assessments included all formal measures that are conventionally used in North 

America including danger ratings, avalanche types, sizes, likelihoods (including 

sensitivity and spatial distribution), and a headline statement to address the public. Prior 

to the study, forecasters completed a guided walkthrough to gain familiarity with AvObs 

features. A think-aloud protocol was employed to capture vocalizations of thought 

processes and reasoning and to offer insight and explanation of actions taken using 
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tools. The study was run remotely and online. The study was open to participants for one 

month, allowing forecasters to conduct the study at their own convenience and take as 

much time as they need. 

7.2.1. Simulation Environment 

In consultation with P2, who did not participate in this study, I designed two 

distinct scenarios constructed using historical data from prior seasons. I chose two 

Canadian forecast regions where there are relatively more professional operations and 

thus more data. This was to ensure that assessments were more based on the data 

featured in the study toolset rather than other factors. In addition, as avalanche 

conditions and the associated complexities and challenges of hazard assessment 

change over the course of the season, an early and a mid-to-late season day was 

chosen to capture a representative but varied set of typical forecasting situations. None 

of the participating forecasters had issued the forecast bulletin for the day and region I 

selected ensuring they would not be familiar. Even if they had seen the data previously, 

it is highly unlikely that they recalled or recognized it as both scenarios present very 

common situations and P2 checked the data for any reports that would be memorable. 

As the data used in these scenarios are proprietary, they cannot be published and 

disclosed. However, Figure 12, which shows an image of the AvObs prototype, provides 

a representative view of data from a typical forecasting scenario. 

In keeping with resources forecasters conventionally have available, I provided 

forecasters with the bulletin and forecast issued on the day previous to each scenario. 

Participants were also given synthesized weather data from weather stations for current 

conditions in the scenario region. 

7.2.2. Conditions 

I divided forecasters into two groups, such that each scenario (S1 & S2) was 

used in both InfoEx (using both MIN and InfoEx systems) and AvObs (integrating MIN 

and InfoEx data in a single system) conditions to control for any difference arising from 

the scenario rather than the tool. While presentation order was not a major concern, 

InfoEx was always presented first in case AvObs inspired any alternative uses of InfoEx 

that deviated from those conventionally used: 
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•     Group A:  InfoEx + S1 → AvObs + S2 
•     Group B:  InfoEx + S2 → AvObs + S1 

7.2.3. Participants 

10 forecasters participated in the study (Table 7). Six were forecasters at 

Avalanche Canada and four were forecasters at various other organizations throughout 

North America. They varied in experience from 1-24 or more years and professional 

backgrounds as engineers, scientists, mountain guides, and educators.  

Table 7  Participant table for Study 3 

ID Public 
Avalanche 
Forecasting 
Experience 

Background Public Forecasting Organization 

3 4+ Geological Engineer Avalanche Canada 

4 10+ Mountain Guiding, Ski Patrol Avalanche Canada 

5 5+ Mountain Guide, Educator Avalanche Canada 

6 19+ Mountain Guiding Avalanche Canada 

7 6+ Ski Patrol, Mountain Guiding Avalanche Canada 

13 1+ Avalanche Field Technician Avalanche Canada 

14 11+ Mountain Guiding, Engineering Colorado Avalanche Information Center 

15 12+ Mountain Guiding, Geologist Parks Canada 

16 19+ Geographer Colorado Avalanche Information Center 

17 5+ Engineer Avalanche Canada / DAC 

7.2.4. Data Capture 

Participants video-recorded their screens and vocalizations of their thoughts 

while completing the task.  Additional study materials were disseminated remotely using 

SurveyMonkey9. Materials were presented in sequence. First, forecasters were 

presented with a participant consent form and a questionnaire asking about their 

professional background, years of experience as a public forecaster and as a forecaster 

in other contexts, and the public forecasting organization where they work. Next, each 

study condition was presented in order. Each condition provided instructions on how to 

 
9 https://www.surveymonkey.com/ 
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record their screen, vocalize thoughts and explain actions, which tools to use and the 

span of allowed data to query, and general context for the task and scenario. In addition, 

the prior day’s bulletin and current weather data were made available followed by 

questions in which to enter formal hazard assessments. Finally, a questionnaire 

soliciting feedback about the AvObs tool was presented. Questions asked about features 

forecasters found most and least useful, any functionality that is present in InfoEx and 

missing in AvObs, and specific feedback about how spatial, temporal, and informational 

aspects of the data were represented (More details in Appendix A.) 

7.2.5. Analysis 

We conducted video analysis by thematically coding videos for sensemaking 

processes, interaction logs, and analytic actions. As will be expanded on in detail below. 

a mix of inductive open coding, theory-driven deductive coding, and coding involving 

provisional starting codes was used at various stages. 

Sensemaking Processes 

We coded sensemaking according to two features: the process and the context. 

We adapted a coding structure using sensemaking processes from the data-frame 

sensemaking theory (Klein et al., 2007) and operationalized ambiguity-related 

sensemaking as instances where frames were either questioned, compared, or reframed 

(distinguishing it from conventional sensemaking involving mapping frames and data as 

well as augmenting existing frames). Frames included any explanations or expectations 

about conditions, data, or any other topic matter the forecaster discussed. For instance, 

explanations for assessments made in the prior bulletin or expectations about the shape 

and characteristics of data given the forecasters’ current understanding. This was then 

used to identify distinct types of ambiguous sensemaking which emerged from study 

data, but also aligned with findings from Study 1.  

In addition, the context within which these sensemaking processes were applied 

was captured. These fell into two types: hazard analysis, in which forecasters are 

analyzing the observations and data, and hazard assessment, in which they are refining 

their assessments in the bulletin by integrating information from the prior day's bulletin 

along with their own hazard analysis. The context was determined not only based on 

which window the forecaster was viewing but the content of what they were talking 
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about. For instance, if they were planning how to characterize assessments while 

viewing an analytic tool, this was considered to be hazard assessment and not hazard 

analysis. 

The codes pertaining to data-frame sensemaking processes and contexts were 

applied and refined in two passes by one coder. Lower-level ambiguity-related 

sensemaking processes were developed in one pass and refined in two passes by one 

coder. Reliability for all codes was assessed concurrently by two coders applying the 

code structure to three videos. Areas of disagreement were discussed and the coding 

guide was adjusted to alignment. Codes were applied using MAXQDA10. 

Interaction and Analytic Action Codes 

To capture how tools were used in analysis, we coded for low-level interactions. 

As proprietary tools used by avalanche forecasters could not be instrumented and much 

of how these tools are used relies relatively more on visual information than mechanical 

actions, we treat interactions as any form of tool-use, including the manner in which 

visual information is viewed, and focus on information that can be inferred in video 

recordings from participant vocalizations and visible behaviours, such as cursor 

movement. We were interested not only in what was clicked but also which views and 

charts were used and how. This included the tool being used; the chart or view being 

used; explicit interactions such as filters, selections, or zooming and panning; 

information-seeking behaviours such as scanning across or down columns; or the 

investigation of trends and patterns in available charts. Three coders each independently 

developed a coding structure for one video in two passes. Two coders were each 

allotted five of ten participant videos for coding. Reliability was assessed by comparing 

codes for four videos, two from each allotment. Areas of disagreement were used to 

adjust coding guidance. Codes were applied using Elan11, a commonly used video 

analysis tool. 

I then used interaction codes to infer higher-level generic analytic actions, 

drawing from research on analytic tasks in visualization (Brehmer & Munzner, 2013; 

Rind et al., 2016; Shneiderman, 2003) and cognitive theories of reading (Elfenbein, 

 
10 https://www.maxqda.com/ 
11 https://archive.mpi.nl/tla/elan 
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2018). Analytic actions are defined as domain-agnostic steps using visualization to 

address analytic objectives (Rind et al., 2016). My intent was to use these abstractions 

to enable comparisons, if only qualitatively, about how tools might support the 

forecaster's analytic needs. This yielded five analytic actions (described in Table 8) from 

observed behaviours, vocalizations, and interaction codes. 

Table 8  Observed analytic actions, their definition, and the evidence used in 
identification. 

Action Definition InfoEx Interactions AvObs Interactions 

Drill-down Identifying data items of 
interest using visual 
information about data 
attributes to access details 

Grouping data by attributes 
using table sorting and 
mouse cursor to identify 
subsets of reports of 
interest and access details 
by reading. 

Using chart layout, visual 
encodings, or cross-
highlighting to identify reports 
of interest and access through 
tooltip interactions 

Serial Identifying data items of 
interest purely through 
presentation order or 
sequence and then 
accessing details. 

Reading each row in the 
table in the order it is 
presented in. 

Opening tooltips for reports in 
the exact order they are 
presented in or reading each 
text block in the conditions text 
synopsis list in sequence. 

Pattern Investigating high-level 
patterns like trends, 
distributions, or 
proportions. 

Scanning down table 
columns using mouse 
cursor and talking about 
distributions, trends, 
minimums, maximums, or 
central tendencies. 

Mousing over charts and 
talking about trends, 
distributions, spatial 
distributions etc. 

Focus Spending a 
disproportionate amount of 
time investigating a single 
data item of interest. 

Spending a 
disproportionate amount of 
time reading or re-reading 
a single table row. 

Keeping tooltip open for an 
extended period or expanding 
tooltip for further details. 

Gisting Rapid and automatic 
processes for 
apprehending the core 
meaning from complex 
visual information. 

Cursor jumping across 
table with no discernible 
pattern and no indication of 
how information search is 
being conducted. 
Participants often 
murmuring under breath. 

No observed examples. 

One researcher applied the codes to all videos in two passes using video 

playback for context and to ensure the abstracted interpretation presented by an analytic 

action was coherent and made sense independent of codes captured in interaction logs. 

Codes were applied using MAXQDA. 
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Result Metrics 

I used two dependent measures to assess the results. First, the formal hazard 

assessments forecasters produced served as a measure of analytic outcome. This could 

provide an indication if AvObs biased forecasters’ judgment in any way. Given the small 

sample size, and the considerable variability of forecaster's hazard assessments under 

normal conditions (e.g., Statham, Holeczi, et al., 2018), I looked for meaningfully large 

differences with plausible explanations.  

Second, simple descriptive measures were used to summarize the thematic 

codes (e.g., observed actions): median counts of a thematic code showed the typical 

number of times a participant demonstrated a particular behaviour, the number of 

participants exemplifying the coded behaviour provided an indication of how common 

behaviours were across the sample, and the average duration of each coded activity 

gave an indication of the relative time spent on different activities. Together, these 

simple measures provide some insight into the relative effort devoted to certain activities 

and thus can serve as an indication of the relative importance of different tasks, 

information, and tool features and the propensity for either toolset to support different 

ambiguous sensemaking tasks and analytic actions.  Similarly, as these measures 

represent a qualitative coding approach and are thus subject to errors, only meaningfully 

large differences with plausible explanations were considered.  

7.3. Findings 

When comparing toolsets, I did not find meaningful differences in the hazard 

assessments forecasters produced (Fig. 14). All measures of hazard assessments were 

similarly variable and similarly distributed in both scenarios for both tools. However, I did 

find differences in how often forecasters engaged in the different sensemaking activities 

and analytic actions.  
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Figure 14  A comparison of hazard assessments between conditions in both 
scenarios does not show meaningful differences. A) The distribution 
of danger ratings according to vegetative bands (BTL= below 
treeline, TL = at treeline, ALP = Alpine). B) The order and perceived 
importance of avalanche problems by participant. C) The primary 
avalanche problem for each scenario showing likelihood and size 
assessments. This includes a minimum and maximum value 
(bounds of coloured bars) and a typical value (black circle). D) The 
secondary avalanche problem for each scenario. 
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7.3.1. Ambiguous Sensemaking 

I observed a variety of ambiguous sensemaking processes involved in both 

hazard analysis and assessment. A key distinction arises between the AvObs and 

InfoEx toolsets during hazard analysis (Fig. 15). A larger number of forecasters engaged 

in ambiguous sensemaking processes when using InfoEx, and ambiguous sensemaking 

was also overall more common with the InfoEx toolset. However, the relative proportions 

of types of processes appear consistent. Some sensemaking processes appear to carry 

more significance for tasks related to hazard analysis, while others are more related to 

the needs of hazard assessment. 

Forecasters speculated about factors explaining data information. For instance, 

in hazard analysis, some conjectured about how physical processes or data sampling 

procedures influence how data is shaped. 

most [avalanche activity] that's been reported is treeline and below but 
that also might be because that's just where people are skiing... it's 

storming they can't land in the Alpine. (P10) 

During hazard assessment, speculation often had to do with understanding fellow 

forecasters' reasoning processes.  

During analysis, forecasters frequently mentally converted data values to 

account for biases, inconsistencies, or extrapolations across space and time. A common 

example involved questioning the classification of observed avalanches after reading the 

details of the report. 

Depth 40… that tends to make me think that was actually a storm slab 

problem [as opposed to a different avalanche problem type] (P17) 

 In another example, P6 used their prior knowledge of a locale to adjust a bias in size 

estimates. 

a 1.5 [avalanche size] in the Monashees [addressing operators in a 

particular area] is at least a two (P6) 

Mental conversion was considerably less common in hazard assessment and dealt 

primarily with interpreting formal assessment standards and the prior bulletin. 
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I observed how forecasters weighed evidence during analysis based on 

diagnostic strength and representativeness. P10 used his knowledge of localized terrain 

to discount a set of large, reported avalanches because they were not representative of 

broader avalanche conditions.  

triggered two and a half's from Gullies on Mt. McDonald, I pretty much 

discard those avalanches on that huge mountain because they're always 

two and a half's and threes (P10) 

Meanwhile, P17 put more weight into a report authored by a recreationist they were 

familiar with and trusted. 

He's one of the power users in Rogers pass and I actually put more 

weight on his observations than I would on the average MIN user (P17) 

Weighing evidence was considerably less common in hazard assessment. 

Finally, triangulation - a process of refining understanding through comparison 

with alternative perspectives - was common in assessment but not analysis. To better 

understand how to assess conditions, forecasters referred to the information provided in 

the prior day's bulletin, formal documentation and guidelines to compare with their 

subjective perceptions, and their own prior assessments check for soundness, 

coherence, and self-consistency. Rather than simply averaging multiple judgments for a 

more accurate prediction, they used this to develop coherence and identify new issues 

to consider.  

Assuming we are talking about the new smaller wind slabs, I don’t know 

if I agree with the step down part here… unless it’s the wind slabs that 
are directly sitting on this, the step down is covered by the persistent 

problem not the wind slab problem (P17).  

The path from hazard analysis to assessment is not sequential; instead, 

forecasters constantly iterate between the two contexts (Fig. 16). While these processes 

are clearly closely coordinated, my focus is primarily on evaluating how analytic tools 

support the demands of this work. To this end, I now shift attention to processes 

important in hazard analysis and how tools may come to support the processes of 

mental conversion, weighing evidence, and speculation. In the following section, I 

examine the interactions and analytic actions each tool affords to inform how they might 

support ambiguous sensemaking processes. 
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Figure 15  Counts of ambiguous sensemaking tasks by sensemaking context. 

 
Figure 16  Sequences of activity are shown by sensemaking context. 
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7.3.2. Analytic Actions and Tool Affordances 

 
Figure 17 Participants’ use of various views in the InfoEx condition (red) and 

the AvObs condition (light blue). Interactions involving reading 
patterns and tooltips (dark blue) are shown for core AvObs 
visualizations illustrating the relative effort devoted to accessing 
detailed information. 

I found differences between the tools in how much effort was involved in finding 

information of interest and how representations support navigation to this information. 

Specifically, forecasters expended much more effort toward detailed information within 

reports rather than high-level patterns across reports. In addition, differences in 

interactions and analytic actions reveal differences in the analytic affordances of either 

set of tools.  

This is apparent in how forecasters used different views. Charts and maps were 

used considerably less frequently than text table views in the InfoEx system and the 

InfoEx condition overall (Fig. 17). However, maps in the MIN system (part of the InfoEx 

condition), were used more frequently by forecasters who used the MIN system. 

However, the MIN system does not feature a comprehensive view showing all attributes 

of reports simultaneously, as in the InfoEx tables, and the MIN map and list views were 
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used exclusively for accessing the details of these reports rather than investigating 

broader spatial or aggregate patterns.  

In AvObs, I observed forecasters using available charts quite frequently. 

However, as highlighted in Figure 17, the use of tooltips to access detailed information 

which normally would be available in InfoEx tables was more common than 

investigations of high-level patterns. This reveals the relatively higher effort forecasters 

dedicated to investigating details of reports as well as the affordances of either toolset in 

navigating to information of interest. I explore these differences further through high-level 

analytic actions derived from interaction logs. 

All forecasters drilled-down to details by first identifying reports of interest using 

visual information in the display (Fig. 18). However, forecasters using AvObs did this 

more frequently and for longer durations. In InfoEx, this involved sorting tables and 

subsetting reports of interest with certain characteristics and then accessing details by 

reading the full report row. In AvObs, this involved using the layout, visual encodings, 

and cross-highlighting interactions to identify reports of interest and then opening tooltips 

to read the report.  

By contrast, reading reports serially in the order that the reports are presented 

without first identifying which reports are of interest was considerably more common in 

InfoEx. In AvObs, only three forecasters engaged in this activity, and only when reading 

free-form text avalanche summaries (Fig. 12.D) in the side panel, rather than opening 

tooltips for reports in the primary AvObs display. Forecasters using the InfoEx spent 

more time reading reports serially. 

Overall, more than half of the forecasters were observed to be investigating 

patterns in either tool, but I found that investigation of patterns in AvObs seemed to 

prompt ambiguous sensemaking more often. One notable example using the single 

aggregate visualization in AvObs, the aspect-elevation heatmap, prompted speculation. 

There aren’t really any persistent observations on direct south-facing 
slopes. So maybe the surface hoar layer got destroyed there? I don’t 

know, just speculating… (P13). 

 InfoEx presents elevation and aspect in separate attributes making the task of 

synthesizing such patterns considerably more difficult. 
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Similarly, more than half of the participants in both toolsets spent time focusing 

on individual reports. In AvObs, where accessing some details involved not only opening 

a tooltip but also expanding a scrolling list of further attributes, I observed focus 

marginally more frequently. 

Finally, the starkest difference was in gisting, the activity of getting "the big 

picture" of the information space. I observed this only when forecasters were using the 

InfoEx tables. I inferred this by a combination of behavioural cues: the forecaster's 

mouse cursor jumping around InfoEx tables, sporadically fixating on seemingly random 

cells, with no discernable visual or auditory indication of how forecasters were navigating 

the information space, and murmuring as they did this. While I was attuned to seeing 

similar behaviour in AvObs, there was no evidence of this activity.  

 
Figure 18 Chart comparing InfoEx and AvObs conditions according to 

indicators of effort devoted to various identified analytic actions. 

7.3.3. Participant Feedback 

In the questionnaire feedback, forecasters were generally enthusiastic about 

AvObs and its potential but expressed some concerns that AvObs was missing. 

The raw layout of data where a forecaster can make up their own 

thought on the distributions (P3)  

They were also concerned visualizations may be misleading. 
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perceive patterns in data when the sample size is too small (P5) 

P5 also emphasizes the use of language in reports as a key indicator. 

 How a day of avalanche activity is talked about is very important to me 

and often says more than the 'hard' data alone (P5) 

P3 stressed that the textual avalanche summaries, which were used considerably less in 

AvObs (Fig. 13), were de-emphasized in our design. 

The summaries are important for seeing areas that didn't have activity 

or for other notable events not entered in the tables, but it is easy to 

forget the small box in the top corner. (P3) 

Such information is critical for assessing likelihood. 

7.4. Discussion 

In summary, the key findings from this study are that either toolset did not bias 

the judgment of forecasters in a way that meaningfully affected hazard assessments, 

that forecasters engaged in more ambiguous sensemaking when using existing tools in 

the InfoEx condition, that forecasters dedicated a disproportionate amount of effort 

accessing detailed information, and that each toolset presented different affordances in 

terms of analytic actions. Namely, that InfoEx supported gisting while this analytic action 

was not observed in AvObs. 

In retrospect, it is unsurprising that the hazard assessments produced in either 

toolset condition were not noticeably different – this the forecasters’ job after all. I was 

encouraged that the AvObs prototype did not bias their judgment and lead to different 

hazard assessment outcomes. At the same time, findings in this study do offer some 

insight into how visual and interactive idioms can serve to support or impede 

sensemaking, and they illustrate that conventional approaches to visualization design 

have shortcomings in applications like avalanche forecasting.  

 InfoEx, largely constructed from the base textual data, seemed overall to have a 

higher propensity for prompting ambiguous sensemaking, whereas AvObs provoked 

concerns about access to all the data needed. Given that InfoEx is their current 

operating tool, one might expect simply that they are more accustomed to it. But I 

conjecture that differences in analytic affordances relate to assessing the nature of what 
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is interesting, seeing enough detail in the larger context, and actually getting to the 

important information, highlighted strengths and weaknesses between the two 

approaches. In short, the differences in ambiguous sensemaking may have to do with 

differences in the accessibility of and emphasis placed on detailed information within 

either toolset. 

I knew details (the raw "base data"), were important in this work, but I did not 

anticipate the scale of effort that is devoted to accessing this information. AvObs placed 

an additional interaction step towards accessing details whereas InfoEx tables make 

details available at a glance. While this may have hampered some forms of inquiry, 

AvObs also presented some advantages in supporting ambiguous sensemaking. It 

supported fluid integration between spatial, temporal, and categorical attributes of data 

and scaffolded insights about patterns otherwise difficult to understand. Findings showed 

forecasters using aggregate summary views to speculate about alternative factors that 

could explain the shape of data. Taken as a whole, the relative importance placed on 

detailed text which was only accessible through laborious and fragmented interactions is 

problematic for any task that relies on integrating information across tooltips. Any 

information accessed through tooltip interactions, bearing any relevance to the task at 

hand or relationship to details found in other reports, is transient, has to be remembered, 

and is not easily assembled with other such details during the flow of analysis. I 

speculate that this fragmentation and the relative importance of detailed information in 

this problem area may have contributed to why ambiguous sensemaking was more 

commonly observed in the InfoEx condition.  

This may be because the gisting afforded by data tables in the InfoEx system 

makes apprehending the relevant information more fluid. Details are available at a 

glance and the structural layout of the table makes it easier to retrieve this information. 

Further, I saw how the layout of data tables allows other analytic actions such as drilling-

down using attributes of interest or discerning patterns such as trends, distributions, and 

central tendencies by scanning down columns. I conjecture one of the main benefits of 

this gisting is how rapidly and fluently forecasters can switch between these actions 

using learned visual scanning procedures. The design of data tables does not take 

advantage of perceptual salience and attention-directing mechanisms in the same way 

that common visual idioms do. The visual hierarchy is much flatter. Consequently, the 

data table makes a much wider set of potential inferences from data possible and allows 
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the observer to themselves direct attention where and when it is needed within the flow 

of analysis. Where data are ambiguous and comprehensive understanding of contextual 

details is important, this can be advantageous.  

While the scale and volume of data in this application area make it possible to 

read all reports in a realistic scenario, this does not preclude the relevance of gisting in 

applications with higher volumes of data where reviewing all details is not possible. This 

analytic action has also been observed in studies of data workers and is applied in the 

interrogation of data regardless of scale (Bartram et al., 2021). Furthermore, the 

relevance of gisting in the context of ambiguous sensemaking has more to do with the 

accessibility of relevant and raw information from which potential explanations can be 

recognized, compared, constructed or refined. In cases such as avalanche forecasting, 

where data are ambiguous in that there are multiple potential factors explaining the 

shape of data and subsequent interpretations bear risk implications, gisting as an 

analytic action is especially important because the cost of a false negative is much 

higher than a false positive. In other words, ‘missing’ critical details that are difficult to 

anticipate can have serious consequences. While visualizations have the advantage of 

making it easier to see certain patterns and outliers that fall outside a certain way of 

framing data, they can occlude important details and in doing so, leave the viewer 

comfortably unaware. 

I did not find that either AvObs or data tables in InfoEx are overall a better 

analytic tool for avalanche forecasting: each brings representational advantages. Since 

this evaluation study was run, AvObs has been incorporated into operational workflows 

at Avalanche Canada and several other forecasting organizations operating in Canada. 

From early reports and anecdotal evidence, I have learned that forecasters use AvObs 

to provide them with a quick summary overview at the beginning of the day, to review 

the prior day's forecast, and to have a first impression of broader patterns in the data. 

They then continue to use the InfoEx data tables for the subsequent detailed analyses 

throughout the day, to ensure that they are not "missing anything" in the text reports. A 

further investigation of how these tools are used in real-world applications is warranted. 

In addition, future work should further validate and re-evaluate the formative 

understanding that has been developed in the present exploratory study. 
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7.4.1. Re-evaluating Visualization Design Guidelines 

I argue that conventional design guidelines are misaligned with the cognitive 

work involved in ambiguous sensemaking. The overviews and aggregations produced 

through strict adherence to the information-seeking mantra (Shneiderman, 2003) or 

precision-based visual variable effectiveness rankings (Bertini et al., 2020) can be 

misleading or at least inappropriate when dealing with ambiguity in risk-based 

applications. Visualizations can occlude important information (McNutt et al., 2020) and 

in doing so impart a misplaced sense of confidence in inferences made. As the costs of 

missing critical information are high and as evidenced by the concerns of forecasters in 

this and prior studies, this raises issues of trust.  

Visualizations need to provide access to information of relevance. When nuances 

of how data are shaped have bearing on interpretation, as is often the case in analysis 

but especially is especially pertinent in risk-based applications, access to details in the 

raw base data is critical. The disproportionate amount of time forecasters spent 

navigating to and reading this detailed information is evidence of this. Moreover, access 

needs to fluidly integrate into the flow of analysis as meaning is being constructed. 

Simply providing access to details-on-demand through interactions is not enough 

because it could serve to interrupt this flow. The fact that the InfoEx resulted in a greater 

amount of ambiguous sensemaking serves as an indicator of this. In addition, anecdotal 

reports of the role AvObs and InfoEx play in real-world applications also support this 

understanding. Specifically, that InfoEx is used for core analyses ensuring forecasters 

are not missing critical relevant information. 

I argue that visualizations need to better support gisting. A data table is a visual 

representation that clearly supports this distinct analytic action, but I don't believe it is 

necessarily the only one. I believe that the capacity to show the relevant data in its raw 

form and provide access to details to allow various processes like gisting could be 

supported by a variety of representations. Further, I don't believe that tables and 

visualizations are an “either-or”. While combining the two is not uncommon, I suggest 

this surfaces a larger challenge to the visualization community: how to better integrate 

visualization strengths of enhanced pattern and feature recognition with sequential 

reading and scanning strategies common to symbolic representations. 
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7.5. Limitations 

As with all ethnographically-inspired research, this study is prone to limitations in 

reliability and validity. This study was essentially exploratory, and I acknowledge a 

number of methodological limitations. Evaluating what people are thinking in a complex 

reasoning task is inherently problematic and imprecise. In an ideal world, I would have 

liked to trace the relationship between specific interactions, analytic actions, and how 

these lead to specific various ambiguous sensemaking processes. However, drawing a 

one-to-one correspondence between these levels of abstraction is not possible in such a 

complex environment which also relies heavily on prior knowledge. Much of the 

information used in the forecaster's sensemaking is not explicit in data nor is it vocalized 

by forecasters making such an analysis intractable. Thus, my observations must be 

treated as indications for further questions, rather than conclusive proof of cause and 

effect.   

I also note the shortcomings of using observations, screen recordings and 

forecaster vocalizations to capture interactions and attention. They only provide partial 

insight into how visual information is being used in analysis. Future work may use other 

methods such as eye-tracking to make more refined inferences about patterns of how 

visual information is being scanned. This may, for instance, provide more reliable 

information about analytic actions such as gisting. 
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Chapter 8. Study 4: Exploring Knowledge Capture 

 

Everything simple is false. Everything complex is unusable. 

(Paul Valéry) 

While Study 2 & 3 address issues of individual sensemaking, they do not deal 

with the challenges of shared understanding identified in Study 1. In this chapter, I 

describe a set of preliminary investigations for processes of shared knowledge 

construction and how they can be supported to better facilitate collaboration and 

communication in this domain.  

Using participatory design and diary study methods, the forecasters and I explore 

how visual analytics systems can enhance collaborative sensemaking in asynchronous 

hand-offs. Specifically, how domain knowledge may be used as a templated structure to 

simplify the process of gathering, organizing, and communicating materials for hand-off.  

It is important to note that this study falls into the early stages of the iterative 

design and rapid prototyping phase of a visualization design study. It serves to develop a 

preliminary formative understanding by identifying core tasks, needs, challenges, and 

preliminary indications of potential solutions. 

8.1. Motivation 

In study 1 (Chapter 5) I identified asynchronous sequential “hand-off” of work 

between forecasters at shift changes as a critical challenge. As avalanche forecasting 

relies on continuity of analysis – with historical understanding of avalanche conditions 

having direct bearing on understanding the current and future states of avalanche 

conditions – hand-off is a challenge because communications tend to be incomplete and 

disruptive to a given forecaster’s more immediate daily goals and responsibilities. 

Forecasters use the prior day’s bulletin as the starting point for their workday. It is used 

to plan work, set expectations, and guide information-search. They iteratively update the 

bulletin, changing assessments as they work to bring them in line with current 

understanding. However, as the relationship between assessments in the bulletin and 
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reasoning processes of forecasters is not captured, collaborators often have to try and 

reconstruct their collaborators reasoning processes by investigating the available 

evidence that could serve as an explanation.  

In addition to the bulletin itself, forecasters at Avalanche Canada also employ a 

variety of other tools to facilitate asynchronous sequential collaboration. They use chat 

tools for direct communication, which help maintain a record of discussions about 

conditions, evidence references, and reasoning processes. Furthermore, these tools are 

also used for communications with field teams. Internally, forecasters utilize specific 

documentation to track weak layers in the snow and identify avalanche issues not 

mentioned in the public bulletin. Additionally, daily synchronous discussions with fellow 

forecasters also help fill gaps in understanding. 

These materials are often compiled at the end of the day, as a separate and 

additional step beyond normal responsibilities. Consequently, they are often incomplete. 

This is problematic because materials used for monitoring evolving conditions should 

align with the state of current conditions. Further, this can lead forecasters who are 

starting their shift to misallocate their time. In Study 1, forecasters described a latency in 

how long it takes them to “come up to speed” and gain enough confidence to start 

making challenging assessment decisions. 

 I frame this as a challenge of distilling and articulating tacit knowledge, 

embedded within a particular working context. I draw inspiration from common ways to 

capture knowledge and document reasoning in other domains. One of the most common 

examples is the use of marginalia, or notes in the margins of books, to facilitate 

knowledge construction and critical thinking (Jackson, 2001). This goes beyond the 

concept of annotation and speaks to a variety of actions like highlighting or the 

development of common categories of information that facilitate thinking and the 

progressive development of emergent abstractions. This is a common practice in 

reading (Brummett, 2018), in taking notes, and is an interaction paradigm that is 

ubiquitous in interactive spreadsheet programs (Bartram et al., 2021). It is a practice 

whereby the observer begins the task of narrating the understanding they are developing 

as they read or analyze data, while still maintaining a trace of the originating context. 

Drawing inspiration from these other media, I explore what flexible knowledge support 

tools for avalanche forecasters might look like within a visual analytics tool ecosystem. 



 100 

8.2. Research Questions and Objectives 

I frame the challenges faced by forecasters as having to do with issues of shared 

context, coordination of work, and the principle of least collaborative effort as defined in 

collaborative visual analytics (Heer & Agrawala, 2008). Domain knowledge can 
provide structure to better facilitate the capture and communication of analysis 

(Rind et al., 2019) offering a schematization mechanism for meta-data. We sought to 

characterize these knowledge structures and investigate how they could be implemented 

in a visual analytics system for both the capture and communication of analysis including 

key evidence, interpretation, and any other related partial findings. 

• What domain knowledge is essential to facilitate handoff in public 
avalanche forecasting? 
 

• What knowledge structures can facilitate the capture of knowledge during 
analysis and how? 

 
• What knowledge structures can facilitate the communication of analysis 

and how? 
 

8.3. Research Approach 

In this study, I employ a combination of participatory design and diary study 

approaches to investigate how domain knowledge may be structured and implemented 

in a visual analytics system to better facilitate the capture and communication of analysis 

in asynchronous collaboration. Participatory design involves actively engaging end-users 

in the design process, allowing participants to themselves create artefacts. It has often 

been employed in the context of evaluation in visualization, as it enables the 

development of visualization tools that closely align with user needs and preferences (T. 

Isenberg et al., 2013; Lam et al., 2012). Diary studies, on the other hand, involve 

collecting self-reported data from participants over time, providing valuable insights into 

their experiences and behaviours (J. Lazar et al., 2017). Often, this involves a log or 

journal capturing data throughout tasks as well as reflective interviews or questionnaires. 

Further, the artefacts designed and used within such studies can serve as probes to 

better understand the potential functionality and design criteria of a tool that does not yet 
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exist. Together, this set of methods is well suited to the progressive and iterative process 

of exploring design solutions in an ecologically valid manner. 

This study is divided into three parts, each conducted during operational 

forecasting work. Given the exploratory nature of this study and its evolving 

methodology, the approaches in Parts B and C were shaped by findings in Part A. The 

initial part, Part A, had two objectives. The first objective of Part A was to identify 

common categories of information forecasters highlighted in the exercise with the 

intention of repurposing this structure to more easily capture and organize hand-off 

materials during analysis. Part C implements this structure in a dedicated knowledge 

capture tool and investigates how it serves forecasters during their workday. The second 

objective of Part A was to encourage forecasters to imagine better ways to capture, 

organize, and communicate hand-off materials. This informed the investigation in Part B, 

where I examined the operation of one such mechanism in a real-world hand-off 

scenario. 

In all three parts of this study, I employ the diary study method to prompt 

forecasters to reflect on what is important to capture and communicate while they are 

working. This approach serves to both inspire design ideation about an as-yet non-

existent hand-off support tool and mimic its functionality. This allows forecasters to 

experience and evaluate the challenges and benefits of using such a tool. This is critical 

as many potential insights may only be realized through the practice of work, rather than 

post-hoc reflection. A variety of methods function as “diaries” throughout the three parts 

of this study. These include think-aloud recordings, written notes, screen-captured 

images and recordings, sketched diagrams, and questionnaire answers. 

8.3.1. Analysis 

Research materials such as transcripts, artefacts, and video recordings were 

reviewed at each stage of research to extract key themes and findings. Given my role in 

this design process, they are largely a reflection of my own understanding. However, at 

each stage, I reviewed these themes and findings with other forecasters to check and 

validate my understanding. As a final step, materials from all three stages were reviewed 

to synthesize common themes from throughout the study. 
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8.4. Part A. Identifying Structures & Mechanisms 

8.4.1. Objective and Scope 

The objectives of this part of the study were to: 

1. Identify the types of information captured with the intention of reusing this as a 

schematization mechanism. 

2. Provoke forecasters to reflect on what is important and relevant to share during 

their workday to help them become aware of their evidential reasoning. 

3. Invite forecasters to suggest ways to structure and package materials for 

collaboration and handoff. 

8.4.2. Participants and Procedure 

Three forecasters (P2, P3, P11), participated in this stage of the study (Table 9). 

Forecasters were instructed to record their screens throughout the workday. In addition, 

they were asked to capture information they deemed important for their own analyses 

and for hand-off. It was up to their own discretion as to how to do this, though it was 

recommended that they vocalize their thoughts about such information during the screen 

recording akin to a think-aloud protocol. 

At a later point in time, forecasters were debriefed using video recordings as a 

reference. Interviews lasted between 30 and 90 minutes. Interviews centered around the 

kinds of information that forecasters found important and potential design strategies for 

tools they imagine could be useful to improve hand-off. 

Table 9  Participant table for Part A of Study 4 

ID Public Avalanche 
Forecasting 
Experience 

Background 

2 N/A Marketing, Communications 

3 4+ Geological Engineer 

11 N/A Engineering, Natural Science 
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8.4.3. Data Collection 

Data collected include recordings and transcripts from work sessions, debrief 

interviews, notes the forecasters took and email correspondences between us. 

8.4.4. Findings 

Common Themes for Structure 

Data gathered throughout Part A revealed common categories of information that 

forecasters deemed important for their analysis and to share with others. P2 spoke over 

screen-captured video recordings to highlight information they deemed important to 

carry forward to others on subsequent days. P11 took notes over several days 

discussing what information is relevant for their specific handover. P3, by contrast, used 

their workday as inspiration to reflect on and abstract the types of information that would 

be relevant to carry forward. 

Key Evidence 

A core topic of information discussed was key or “notable” evidence that 

influenced forecasters understanding of avalanche conditions and ultimately their 

assessment decisions. Evidence came in various forms. Often forecasters highlighted 

individual reports, such as those describing snowpack structure, weather conditions, or 

observations of avalanches. In Figure 19, P2 captured an image from a report revealing 

salient visual cues that aid prediction. A “glazed” bed surface and how the crown line of 

the avalanche “wrapped around” contours of the terrain provided a predictive indication 

that avalanches could propagate to much larger sizes than those being reported at the 

time. 
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Figure 19  Evidence captured by P2 that a crust layer may propagate to 

produce larger avalanches than are being reported currently. P2 
noting a "glazed" surface. 

P3 highlighted that understanding which numerical weather prediction models 

were used in forecasts and how they were interpreted would be a useful form of 

evidence that is currently rarely discussed. 

 I’d say [weather model interpretation] is rarely passed on to the next 

forecaster right now; that valuable information is usually lost. (P3) 

Meanwhile, P11 noted higher-level trends and spatial patterns in data as key pieces of 

evidence informing their analysis and assessment decisions. 

Tracking past 14 days of avalanche activity (InfoEx and MINs) to 

determine whether deep persistent problem can be removed or localized 

(P11) 

Hunches 

Although they never explicitly labelled these as hunches, forecasters recorded 

instances where they were developing suspicions backed by little, weak, or difficult-to-

articulate evidence. For example, P2 captured an instance where they suspected a 

snowstorm’s trajectory might shift its course to impact their forecast region. This hunch 

was based on observed trends in the hourly model updates of a numerical weather 

prediction system (Fig. 20). 
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Figure 20  P2 reasoning through weather model interpretations and developing 

a hunch based on hourly weather models updates that an incoming 
weather system is likely to impact their forecast region. 

Meanwhile, P11 picked up on a hunch represented by the prior forecaster’s 

danger rating trend. 

 

Previous [forecaster’s] danger rating trend cued me into their suspicion 

danger would drop quickly post storm. (P11) 

 

Uncertainty 

In our prior research, we observed forecasters often discussing their 

uncertainties. These included gaps in understanding that guide information search or 

irreducible factors such as weather forecast model uncertainty. We also observed 

forecasters capturing this information during this study. P11 captured uncertainties 

multiple times in their notes. 

Main uncertainty: I am assuming there won’t be much in terms of new 

wind slab formation over the weekend (P11) 

 

Decision Rationale 

All three forecasters highlighted the importance of providing a rationale for 

assessment decisions, particularly involving changes to the bulletin that are not obvious 

or would require additional analysis to understand why an assessment decision might 

have been made.  



 106 

I provide information on why I removed [December weak layer] from 
the [bulletin] just so that the next person… has some validation as to 

why it's not there. (P3) 

We observed that the rationale forecasters provided for assessment decision 

elements generally included mentions of key evidence, hunches, uncertainties, and their 

relationships formulating the explanation.  

Dropped [the danger] rating from MLL to LLL after confirming no 

avalanche activity after a few days of clear [weather] allowing alpine 

[observations] (P11) 

P3 emphasized the importance of sharing specific facts and evidence to provide 

enough context for the oncoming forecaster to make sense of the situation and not have 

to engage in redundant analysis attempting to reconstruct the prior forecaster’s 

assessment decisions. 

If we just say ‘I think when slabs are going to continue, and this weak 
layer is still a problem’ without that factual data… that requires the next 

person to find that factual data to confirm… which is a loss of time and… 
effort… the previous person would have already gone through those 

efforts… tracking data is important, and not just the interpretation. (P3) 

Persistence of Information 

All three forecasters stressed the problem of information persistence. They 

explained that there is no indication of when documented information such as weak 

layers or weather summaries have been updated, leaving such information vulnerable to 

becoming outdated. P11 argued that meta-data such as the last time a piece of 

information was updated could help coordinate efforts by directing forecasters to focus 

on determining the relevance of any piece of documented information. Reflecting on his 

own experience forecasting that day, P2 discussed how explicit directives in hand-off 

artefacts could direct attention toward work that needs to be done and help coordinate 

work between forecasters. 

A screenshot of that snow profile, put a red circle around… different 

weak layers [to indicate] ‘maybe you can sort this out’ (P2) 
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Challenges for Schematization 

Reflecting on potential mechanisms to schematize knowledge, P11 pointed out 

that forecasters often invent or use descriptive phrases that evoke understanding based 

on connotations and shared tacit knowledge. These are important communication 

vehicles but are not captured in formal standards. For example, P11 defined a “rockies 

moderate” as a situation where there is a shallow snowpack with many unstable 

persistent weak layers but few avalanches or “popcorn avalanches” as the last few 

avalanches that have a latency for being triggered after the primary avalanche cycle, 

drawing an analogy to the last few kernels of popcorn popping in a bag in the 

microwave. 

P3, on the other hand, pointed out how the use of shorthand phrases can also 

lead to inefficiencies. They point out that vague words like “recent” to describe events 

can be very misleading. This word obfuscates the timeline and sequence of events 

forecasters need to understand current avalanche conditions, particularly when it is 

carried forward in documentation to future days of work. 

Representative Snowprofile for Hand-off 

P2 and P3 both suggested using a representative snow profile as a way of 

organizing hand-off information in a simple and easy-to-understand manner. Such 

snowprofiles are commonly used in guiding operations to maintain a mental model of 

snowpack structure and relevant risk considerations. P2 and P3 suggested this could be 

an effective way of associating interpretation and evidence, and linking it to specific 

weak layers within the snowpack. In the following section, I provide further background 

on representative snowprofiles and present findings from an investigation of how such a 

representative snowprofile may be adapted to support hand-off. 

8.5. Part B. Snowprofile Handoff 

Representative snowprofiles, common in mountain guiding operations, are used 

to capture the forecaster’s mental model of snowpack stratigraphy and summarize key 

aspects of the snowpack to focus on (Canadian Avalanche Association, 1995). These 

are often recorded in text tables or illustrated in diagrams showing the spatial and 

physical properties of snow layers relevant to risk assessment (Fig. 21). The y-axis of 
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such diagrams shows the depth of layers which are represented by rectangles. The x-

axis represents the hardness of such layers, while the thickness of each rectangle 

represents the thickness of each layer. 

 
Figure 21  An example representative snowpack summary illustration.  
This example was drawn on 23 December 2017 by an avalanche forecaster at Mike Wiegele 
Helicopter Skiing in Canada (photo: Mike Wiegele Helicopter Skiing) 

8.5.1. Objectives and Scope 

The purpose of this study was to explore how representative snowprofiles might 

be repurposed to capture, organize, and communicate hand-off materials in avalanche 

forecasting. The objectives of this study were to: 

1. Observe how a representative snowprofile serves to facilitate hand-off in practice. 

2. Invite forecasters to reflect on the utility of this approach. 

8.5.2. Participants and Procedure 

Two forecasters (P11 & P3) took part in this portion of the study (Table 10). 

Throughout their workday, one forecaster (P3) created a static digital representative 

snowprofile diagram, which served as an organizing structure to capture relevant 

information for hand-off to the oncoming forecaster. It was entirely at their discretion as 

to how to design this diagram. The receiving forecaster (P11) then used this snowprofile 

as the starting point for their workday and preceding the review of any other handoff 
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materials that might be available. Both forecasters documented their workday using 

screen recordings and participated in a 60-minute unstructured debriefing interview. 

Table 10  Participant table for Part B of Study 4 

ID Public Avalanche 
Forecasting 
Experience 

Background 

3 4+ Geological Engineer 

11 N/A Engineering, Natural Science 

 

8.5.3. Data Collection 

Data collected in this study included recordings and transcripts from the screen 

recording sessions and debrief interviews. Additionally, the snow profile artifact itself was 

also considered an essential piece of collected data. 

8.5.4. Findings 

The authoring forecaster (P3) generated a snowprofile diagram (Fig. 22) 

annotating layers of the snowpack with notes they deemed relevant to communicate to 

the oncoming forecaster (P11).  This diagram expands on traditional representative 

snowprofiles by including notes discussing various aspects of P3’s reasoning, use of 

evidence, speculation, and assessment decisions. I note how this visual metaphor 

effectively captures a variety of information types, however, some did not fit the 
structure and had to be added at the end of the document in the form of freeform text 

and an image. This underscores how such a structure does not comprehensively 

account for all relevant information. 

Some freeform text at the bottom that didn't really fit well into the snow 

profile. And this is pretty common… (P3). 
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Figure 22  The snowprofile P3 created and annotated thoughts, impressions, 

and references to evidence. 

 

Authoring Forecaster Reflections 

While creating the snowprofile, P3 found they could recognize important 

information but could not immediately articulate its significance. They found that this 

approach proved helpful for writing more thorough hand-off notes. 

It took me… a few minutes to realize… sometimes I would say 

something, and then five minutes later… ‘Oh, well, that's why it's 

important’… And then I would… go back to it… a little bit of a different 
mindset… But I found it very valuable… usually you only have like five 

minutes at the very end of your shift to do it… this process really helped 
me kind of hone-in on what is actually relevant to pass on [and] that'll 

improve my handover notes (P3) 

P3 once again highlighted that persistence of information should be a key 

consideration in designing a production version of such a snowprofile hand-off tool. They 

discuss how the recency of information can serve as an important indicator for 
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understanding the relative importance of information or whether it requires further 

investigation. This could serve to help coordinate work between forecasters.  

If you could sort of scroll back to what, what the notes were, like, three 

or four or five days ago to see what changes were made?... stagnant 

old data, versus what was actually modified by the most recent 
forecaster, which is probably the most relevant data. I think that that 

would be important to highlight. (P3) 

P3 also reiterated the importance of providing a decision rationale in 

assessment decisions. 

I provide information on why I removed [December weak layer] from 

the [bulletin] just so that the next person… have some validation as to 

why it's not there. (P3) 

They stressed how providing evidential details aids the coordination of work between 

forecasters by eliminating the need to search for such evidence. 

If we just say ‘I think when slabs are going to continue, and this weak 
layer is still a problem’ without that factual data… that requires the next 

person to find that factual data to confirm… which is a loss of time and… 

effort… the previous person would have already gone through those 

efforts… (P3) 

Receiving Forecaster Reflections 

P11, the receiving forecaster, found the visual format of information easy to 

understand found it improved their ability to coordinate and plan their workday. The 

summary of evidence provided cues where work needed to focus. 

That was the last avalanche from a week ago… it was immediately off 
my whole workflow… I wasn't gonna spend much time looking at 

weather stations or filtering through old InfoEx… this kind of shows that 

work wouldn't be relevant to the current conditions. (P11) 

They found it effectively captured a lot of the broader context within which to 

weigh evidence. He explored how this would be very valuable in circumstances of high 

uncertainty from weather or snowpack structure. 

[It] gave me some context to kind of weigh that evidence against… 

[when there is] big uncertainty about either the weather forecast, or the 
snowpack structure itself… that's probably where there'd be more value 

in notes like this. (P11) 
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In the recording, it is evident that P11 formed a hunch about a weak layer that 

P3 had added to the snowprofile and decided to focus work on this weak layer.  

Sounds questionable whether or not that will be an avalanche problem. 

… I kind of want to look around at some of my own sources to see if I 

can find any more info on that. (P11) 

In the later interview, P11 reflected how they directed their attention to the item with the 

most uncertainty, forming their suspicions using information communicated through the 

visual format of the snowprofile. They read the depth of the layer in the diagram as a 

proxy for age and in turn the likely amount of effort that had been spent investigating this 

layer. 

The main thing that seemed like would be dangerous is if that buried 
weak layer was more reactive than suspected… that one is more 

shallowly buried, and there's been less opportunity to observe it or 

collect info… we've probably been making some assumptions about it 
[and] haven't really been able to collect a lot of data to validate that. 

(P11) 

Ultimately, they added a new avalanche problem to the bulletin based on this work. 

However, as this assessment was based on little evidence, they communicated to the 

oncoming future forecaster that they should try and focus their efforts testing to see if 

this assessment was valid, fearing that it would be automatically carried forward and 

become stagnant and erroneous information. They provided a directive to fellow 

forecasters to coordinate work and ensure that information did not persist longer than 

needed.  

I tried to push them to remove the problem. If there was any kind of 
more compelling evidence to do that, where I felt like I made that 

decision with quite a bit of uncertainty. (P11) 

8.6. Part C. Tagging Partial Findings 

8.6.1. Objectives and Scope 

In the final portion of this study, I repurposed themes derived in Part A (Key 
Evidence, Hunch, Uncertainty, Decision Rationale) as a way of categorizing, or 

“tagging”, information during work. Recognizing that it requires additional effort to 

articulate findings during analysis, this categorization might reduce some of that strain. 

Moreover, engaging with material through active reading (Brummett, 2018; Mehta et al., 
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2017; Walny et al., 2018) is thought to improve comprehension and positively benefit 

work activities. The objectives of this study were to: 

1. Investigate how forecasters found such an approach for capturing relevant 

information during analysis. 

2. Investigate whether forecasters found benefit in reflecting on gathered materials. 

8.6.2. Participants and Procedure 

Table 11  Participant table for Part C of Study 4 

ID Public Avalanche 
Forecasting 
Experience 

Background 

3 4+ Geological Engineer 

11 N/A Engineering, Natural Science 

18 N/A Educator 

Three forecasters participated in this stage of the study (Table 11), with two of 

them utilizing the tool for a single day, while the third utilized it for four consecutive days. 

Themes identified in Part A were transformed into “tags” – labels or categories for 

captured information. I did not expect these tags to be comprehensive or to fully 

represent everything talked about, but simply as a starting point to test how capturing 

relevant insights during analysis might serve the forecasters in their daily work. 

 
Figure 23  Images of tool used for capturing and “tagging” evidence using 

screenshots and screen recordings. A) Several buttons allow 
forecasters to select a tag and whether they would like to capture 
video or a screenshot. B) This tool uses the screen capture api for 
modern web browsers. 
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These tags were incorporated into a browser-based tool allowing forecasters to 

record their screen and explain their insight or capture a screenshot and write notes in 

text (Figure 23). Forecasters were instructed to follow a two-step process using this tool. 

First, forecasters were asked to capture their daily work using these tags. Collected 

media were stored in memory. At the end of the workday, forecasters were then 

instructed to reflect on the information they captured using this tool (Fig. 24). As the 

focus was primarily on how this information would support forecasters in their daily work, 

forecasters were not instructed to use these materials directly for hand-off.  

Following these work sessions, forecasters were debriefed through email and 

unrecorded video conference conversations. 

 
Figure 24  Images of the interface where forecasters review gathered evidence 

and their comments and log their reflections. A) A reflection 
questionnaire. B) An example with captured evidence loaded for 
reflection. 

8.6.3. Data Collection 

Data collected included materials captured using this tool, reflections captured in 

answers to the questionnaire, and notes taken during debriefing conversations.  
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8.6.4. Findings 

Easy to Recognize, Difficult to Express 

Overall, all three forecasters found tagging and capturing relevant information 

while working relatively easy. However, while forecasters were easily able to recognize 

important information, they sometimes found articulating its significance difficult. P18 

found it difficult to categorize the information they were capturing using screen 

recordings. While they found it easy to recognize which information was important to 

capture, they found decisions on how to categorize information in the moment more 

difficult. 

It was all very easy to use. Sometimes I wasn’t sure what [tag] to 

capture it with (P18) 

In conversations following the study, P11 and P3 discussed how they found it 

much easier to identify uncertainties and key evidence than hunches. I speculate that 

this may be because ‘uncertainties’ and ‘key evidence’ are familiar constructs 

forecasters regularly use in discussions whereas the term and construct of ‘hunches’ is 

not. It is a formalism we introduced through our study. 

There Isn’t Always Something to Capture 

P11 reflected how some forecasting days do not involve much change in 

conditions from prior days and do not yield new insights. 

Today was largely a carry forward day, with most of my analysis simply 
confirming the previous fxers analysis. Nothing contradictory. Most of 

my day was spent searching for any counter-evidence, but did not find 

anything. (P11) 

In conversations after the work sessions, they argued that they should be ways to 

explicitly indicate that no significant changes occurred from prior days and that there are 

no new insights.  

Reflection Aids Work Planning 

The process of reflection after a day of gathering notes helped P11 plan their 

upcoming following workday.  
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…what I'm flagging here is things that will prepare me to take a deep 
dive analysis tomorrow. Given the sparse observations and difficulty 

knowing the impact of warming as highlighted by these screen captures, 
I think my forecast tomorrow will be written to communicate uncertainty 

rather and be a less prescriptive forecast. (P11) 

8.7. Discussion 

The objective of this study was to explore how domain knowledge may be used 

to scaffold the capture and organization of hand-off materials during rather than after 

analysis with the intent of reducing effort and streamlining communication and 

coordination of work between forecasters. Common themes that shed light on 

challenges, needs, and opportunities for visual analytics tool designs emerged across all 

three studies.  

First, while forecasters found it easy to recognize important information, they 

found it difficult to immediately articulate why it is important. Nevertheless, they found 

the exercise of reflection beneficial to their work. Second, forecasters repeatedly 

stressed that any system designed for hand-off will need mechanisms to manage the 

persistence of information in the system. As the state of avalanche conditions is 

evolving, forecasters must bring knowledge artefacts into a state matching their own 

mental model formulated through data analysis. Finally, the structure provided by both 

“tags” in Part C and the spatial layout of the representative snowprofile in Part B, made it 

easier for forecasters to organize and reflect on work done and in turn coordinate work 

efforts. However, neither of these schematization mechanisms comprehensively 

captured everything relevant highlighting the limitations of such formalisms in complex 

and dynamic analysis applications. 

Little work in visual analytics has focused on asynchronous sequential handoff of 

partial findings (Chen et al., 2011; S. Xu et al., 2018; Zhao et al., 2018) and the existing 

work has focused on exploratory investigative analyses focusing on emergent findings 

and largely in lab-based settings. By contrast, this application domain involves 

monitoring dynamically evolving systems and utilizes standardized formalisms for 

assessing avalanche hazards and communicating them. The judgment of observations 

along a set of qualitative scales and dimensions is distinct from applications more 

commonly studied in exploratory visual analysis. The development and application of 

categories for data are activities common in real-world analytics applications  (Bartram et 
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al., 2021). Thus, while this study comprises a small sample of individuals in a working 

context that is distinct and unique, the issues of how knowledge is constructed and 

communicated during analysis are not. In the following sections, I draw on key findings 

from this study as well as existing literature to explore how visual analytics systems can 

better support the process of knowledge construction and communication in complex 

and evolving application domains. Specifically, I explore lessons learned and how these 

inform potential design solutions for how to better capture, organize & manage, and aid 

the navigation of the meta-data that is the composite and evolving corpus of hand-off 

materials.  

Capture 

One of the key lessons I draw for how to best support the capture of information 

during analysis is to not be overly prescriptive as this can be an impediment to the work 

at hand. While forecasters found it easy to recognize important information, they could 

not immediately articulate why. Forecasters mentioned struggling to decide on how to 

categorize captured information, particularly when the category was not already in the 

common parlance of the organization. This suggests that the capture and structuring of 

information represent distinct thought processes which are often staggered in analysis. 

Mechanisms for capturing such information should therefore not force categorization at 

the same time as capture. Simply marking an item as important and bookmarking it to be 

explained at a later time may be enough and may better serve the flow of analysis. 

Organization & Management 

Our study shows that existing formalisms and knowledge structures, including 

those we developed, could not comprehensively account for all relevant information. 

Forecasters often used freeform text and colloquial phrases to communicate complex 

situations using shared tacit knowledge and a shared working environment. This reflects 

the dynamic and evolving nature of shared knowledge constructions. Just as forecasters 

continuously evolve new ways to express distinct and specific concepts applied to a 

particular situation, so too should collaborative tools support the natural dynamics of 

shared knowledge construction. I, therefore, argue for schematization mechanisms to 
be flexible and editable. 
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Qualitative data analysis tools provide a glimpse of how constructive knowledge 

processes can be better supported. “Coding” complex information according to common 

and emergent themes which are grouped, related, and recategorized as need and 

understanding evolves is a functionality that may prove useful in gathering and 

schematizing collaborative materials in avalanche forecasting. For instance, new “tag” 

categories may need to be invented, evidence could be related to multiple constructs, 

and the relations themselves may additionally have distinct types. 

Another issue relates to managing the persistence of captured meta-data. 

Avalanche forecasting involves monitoring an evolving system and aligning mental 

models as well as knowledge artefacts with the state of the system. Carrying irrelevant 

information into the future leads to misunderstanding and misallocation of time.  

The context of captured meta-data, such as its timeliness, helps forecasters 

determine its relevance. In some cases, a visual analytics system could automatically 

capture contextual information like timestamps. In Part B, P11 used the depth of a buried 

weak layer as a proxy for its recency and a need for further investigation to determine its 

relevance. The visual and spatial layout of the snowprofile allowed the forecaster to 

make this determination. in other instances, forecasters may need to direct their 

attention more deliberately to questionably relevant information. P11 felt the need to 

explicitly direct the oncoming future forecaster to evaluate the assessment decisions 

made based on this same weak layer. Similarly, P2 suggested visually annotating 

snowprofiles to direct attention toward instabilities requiring more work to coordinate 

efforts between collaborators. 

As the outcome of such investigations involves updates such as the addition or 

removal of information, these examples point to a need for passive and active 
mechanisms for managing the persistence of meta-data. Passive mechanisms might 

include visually representing how recently an element has been updated and by whom. 

This, along with change histories or interaction logs to reconstruct past analysis 

activities, is a common approach for increasing awareness in virtual collaborative 

environments that could help address issues of persistence management (Drouhard et 

al., 2017; Marriott et al., 2018; Wu et al., 2013; Zhao et al., 2018). In addition, heatmaps 

of how frequently certain information was reviewed or worked on could provide a useful 
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cue of where work has been focused and where work remains. Such approaches have 

been used to facilitate software learning (Matejka et al., 2013) 

However, given the heavily context-laden and complex nature of this work, much 

of what is relevant depends on the forecaster. They determine what information needs 

further analysis, what may or may not be relevant, and what needs to stay or be 

removed. Providing a mechanism to “flag” information that needs to be checked and 

direct attention to may be an effective way for individual forecasters to bookmark items 

they need to follow-up on or to coordinate work that is in a partial state of completion 

with other forecasters. 

Navigation 

Navigating meta-data presents another challenge for visual analytics tools to 

address. While this study only tested one example of handoff using a snowprofile, our 

findings do provide an indication of what may be helpful. The representative snowprofile 

supports various inferences, providing an effective spatial metaphor, and organizing 

meta-data around the primary focus of forecasters’ work: buried weak layer instabilities. 

As useful as this structure proved to be in our study, I note how most discussion, 

thoughts, and efforts are not organized around specific named weak layers, but 

assessment decisions and changes to the bulletin. The rationale for a decision appears 

to be more common and incorporates other discussed content such as evidence, 

hunches, uncertainties, or other factors that do not neatly fit the ontology we derived. In 

this sense, changes to assessments provide a ‘common path of travel’ or a focal point 

through which to explore other meta-data. I conjecture that using decision rationales as 

an organizing structure would therefore be easier to interpret and thus navigate and 

capture. Moreover, in studies 1 and 3, we observed how forecasters iteratively update 

the bulletin as they work, bringing it to cohere with their current understanding. In this 

context, the bulletin itself provides a central organizing structure to scaffold captured 

meta-data and references to contextual materials. Many domains do not regularly use 

formalisms like avalanche forecasting. However, when searching for effective domain 

knowledge constructs explicitly to embed in a visual analytics system to support handoff, 

focusing on topics that are frequently discussed and centrally related to other topics is 

best. 
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In this study, I used screen-captured video and text as proxies for annotations 

and hypermedia that would be presented in some form of centralized shared view. 

However, a key challenge to address are mechanisms for navigating between 

centralized views and other views in which annotated data appears. Annotations are 

traditionally bound to a representation rather than underlying data, presenting technical 

challenges in showing annotations in different representational contexts with the same 

data. This is particularly challenging when using aggregations.  

In recent work, researchers explore techniques that bind references to underlying 

data entities within annotation data structures (Badam et al., 2022). This allows 

annotations to be displayed in a variety of visual contexts irrespective of data granularity 

or scale. Meanwhile, the researchers studying collaborative support tools in 

programming documentation utilize “multi-anchoring”, a method to manually specify what 

annotations refer to so that it may be displayed in multiple relevant contexts (Horvath et 

al., 2022). These present promising approaches to better enable navigating between 

relevant representational contexts, such as the original place in which an annotation was 

made, and how to ensure that annotations are shown in other contexts where they may 

be relevant.  

This raises questions about what types of additional meta-data need to be 

captured. For instance, the author, the time of annotation, the originating 

representational context, the application state, related data entities, or other contexts or 

objects that the author explicitly deems relevant may need to be captured along with the 

annotation itself.  

This also raises questions about how to best represent annotations in data 

displays. Given the potential richness of captured meta-data and the volume of 

annotations, dedicated visual representations and interactions will be needed to avoid 

visual clutter. A common solution is to use separate coordinated displays such as node-

link network knowledge graphs, a concept map, or some other visualization of aggregate 

annotation structure (Chen & Yang, 2013; Zhao et al., 2018). Badam et al. (2022) use 

visual overlays to indicate clusters of annotations with shared attributes related to 

specific data marks. Other subtle approaches such as visual linting (Hopkins et al., 

2020), “scented” UI elements (Willett et al., 2007), or other ambient visual markers could 
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provide useful indicators for annotations without cluttering the display or distracting 

analysis. 

8.7.2. Limitations 

This formative study provides a preliminary glimpse of how domain knowledge 

could be used to facilitate handoff in domains involving continuous monitoring and risk 

assessment. However, this study only included one instance of handoff and gathered a 

limited set of data exploring meta-data capture. Moreover, no fully functional 

implementing suggested design features was implemented or tested. While this study 

has provided rich insights into some of the most central issues arising in this domain, it is 

limited in scope and not comprehensive. Nevertheless, it provides transferable insights 

about how visual analytics tools could potentially serve to better support collaborative 

sensemaking and knowledge construction. Further work is needed to refine and examine 

the understanding this study suggests. 
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Chapter 9. Conclusion and Future Work 

The key lesson of this dissertation is to design for ambiguity, rather than 
design it away. Often, what this means is capturing and representing the relevant 

information as it is: partial and incomplete. This provokes ambiguity and invites the 

appropriate sensemaking approach. Ambiguity can instill discomfort and in doing so it 

can motivate action and inquiry. This is a facet of work forecasters are familiar with and 

expect, which is why they grow suspicious when it is absent. Precision can masquerade 

as accuracy and when risk is involved, this can have dire consequences. Designing for 

ambiguity means ensuring that representations support the cognitive work that is 

needed. Rather than optimizing for precise decoding of summary information, which 

narrows focus and can obfuscate the relevant but difficult-to-anticipate critical details, 

designing for ambiguity entails showing nuance, complexity, incompleteness, and 

partiality, inviting the observer to construct their own understanding and supporting them 

in employing their personal knowledge and sensemaking capabilities. 

These understandings challenge normative visualization and interaction design 

guidelines. Summary overviews or salient perceptual encodings organized into strong 

visual hierarchies draw attention and increase how accurately information is decoded 

from a display. However, they do not guarantee that the question or framing presented is 

the right one to consider. Moreover, relying on interactions to access details presumes 

that relevant lines of inquiry will be apparent to the viewer at higher levels of abstraction. 

As we observed, this often is not the case and visualizations can serve to hide what is 

relevant as much as they can reveal it. In complex analyses, nuance can upend how a 

problem is conceptualized. Access to raw base data to allow an observer to themselves 

synthesize and comprehend what is relevant is critical but comprises a set of tasks more 

akin to reading symbols rather than perceiving patterns in visual displays of data. This 

gisting is currently not well supported or understood in visualization. It demands further, 

more rigorous investigation. 

9.1. Addressing Research Objectives 

In the following section I reflect on how this dissertation has addressed its 

objective to 1) Characterize the challenges and opportunities for tractable visual 
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analytics solutions in the complex risk-based prediction domain of avalanche 

forecasting; 2) Design and develop targeted visual analytics solutions; and 3) evaluate 

these targeted visual analytics solutions by discussing key findings, their significance, 

and the basis for transferability. 

9.1.1. Problem Characterization 

An understanding of the characteristics that define a problem domain is a 

prerequisite for evaluating the transferability of findings. The defining characteristics of 

avalanche forecasting that give rise to ambiguity are that it involves a dynamic complex 

system, time and resource constraints, incomplete data often gathered using a targeted 

sampling approach thus requiring deep contextual understanding, and a risk prediction 

and management context where the cost of “missing” important information can have 

dire consequences. The limitations of incomplete data and constrained resources 

produce ambiguity in individual sensemaking. Meanwhile, the interactions between 

organizations, people – each with different needs, goals, knowledge, constraints, and 

contexts – and computers, produce ambiguity in collaborative sensemaking. 

Study 1 (Chapter 5) surfaced ambiguity as a pervasive aspect of avalanche 

forecasters’ work and contributes an abstraction of how ambiguity arises in analysis 

which serves to point towards potential visual analytics solutions. I characterize 

ambiguity as arising from data, analytic process, and collaboration & 
communication. These categories are not independent. For example, field reports may 

be framed as a form of collaborative communication. Nevertheless, these levels point 

towards the nature and role of ambiguity, the related cognitive work, and associated 

challenges to suggest visual analytics solutions. 

Focusing on ambiguity in sensemaking is significant because it marks a 

departure from some norms in visual analytics and visualization. Like Andrienko et al. 

(2018), I treat the goal of visual analysis to be some assessment, prediction, or decision, 

supported by a process of iterative mental model calibration and development, rather 

than the generation of insight.  This broadens the scope of abstraction and our goal as 

system designers and researchers from the ends of a primarily data-driven perspective 

on analysis (an insight), to a process both knowledge-driven and data-driven towards 

some context-dependant end. Rather than focus on the efficiency and effectiveness of 



 124 

decoding specific information, a ‘microcognitive’ perspective, I use a ‘macrocognitive’ 

lens to treat and investigate how representations come to aid the cognitive work 

demanded by a problem domain (Smith et al., 2006). This problem characterization is 

further refined in subsequent studies. 

9.1.2. Designing Visual Analytics for Ambiguity 

Study 2 (Chapter 6) explores targeted visual analytics design strategies to 

support the cognitive work demanded by ambiguity in data. 

The key lesson from this participatory design study was that conventional 

visualization approaches relying on numerical summaries can be problematic because 

they hide the relevant details necessary for sensemaking. Through iterative refinements, 

designs departed from conventional guidance in several ways. First, rather than aiming 

to make decoding information as efficient and automatic as possible, my collaborators 

and I chose a design strategy that deliberately uses a visual design that is more 
difficult to decode as a subversive strategy to encourage scrutiny and more 
careful consideration of the meaning and implications of data. In doing so, the 

necessary difficulties of making sense of this data are preserved rather than designed 

away. Rather than focusing on a strong visual hierarchy utilizing visual encodings with 

strong perceptual salience, we flattened the visual hierarchy and used multiple visual 

attributes allowing the observer to exert attentional control and broaden the scope of 

potential alternative inferences that can be made while preserving a disaggregated view 

of the data. Finally, we included visual information with no explicit data mapping to 
express a visual metaphor. Our packed circle glyphs used a dynamic force-directed 

layout that carried no inherent meaning associated with underlying data. Instead, it 

serves as a visual metaphor intended to remind viewers about the ambiguous 
nature of these data.  This contribution adds to the literature employing “desirable 

difficulties” in visualization (Hullman et al., 2011) and representations of qualitative 

uncertainties (Boukhelifa et al., 2012). 

9.1.3. Evaluating Visual Analytics for Ambiguity from Data 

The evaluation study (Study 3, Chapter 7) of AvObs and existing analytics tools 

provided insight as to how the analytic affordances of AvObs and data tables in InfoEx 
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serve to support or impede sensemaking. When forecasters used existing tools in the 

InfoEx conditions, they engaged in more ambiguous sensemaking tasks than when 

using AvObs. Considering the significant effort devoted to accessing report details 

across both toolsets, along with the fact that tooltip interactions to access these details 

introduced additional effort and fragmentation to the flow of analysis, the observed 

differences in ambiguous sensemaking between conditions are likely due to differences 

in how detailed information is accessed and presented. In contrast to the tooltips in 

AvObs, the data tables in the existing InfoEx system make details available at a glance. 

In addition, by showing this information simultaneously, data tables allow forecasters to 

make use of a distinct analytic affordance: the analytic action of gisting. This involves 

distilling the essence of rich and raw complex information through a mix of automatic 

and deliberate processes. Gisting is, to the best of my knowledge, not well-studied or 

discussed in visualization, highlighting a need for further investigation. 

Study 3 also contributes a novel approach for evaluating sensemaking in visual 

analytics. To the best of my knowledge, operationalizing the data-frame theory of 

sensemaking (Klein et al., 2007) to evaluate a visual analytics system in this way has 

previously not been done. Whereas sensemaking is conventionally evaluated using 

insight-based methodologies (North, 2006; Saraiya et al., 2005, 2006) which focus on 

the volume and type of insights gleaned as well as how visualization features may have 

supported these, the methodology employed in Study 3 focuses more on specific 

sensemaking processes and how these may relate to analytic actions. The data-frame 

theory of sensemaking describes a set of processes involving the manipulation of 

‘frames’, explanations that set expectations for data, while observing and seeking data 

out in the world. 

One limitation of sensemaking evaluation methodologies is the degree to which 

specific sensemaking processes can be associated with specific visualization features in 

a cause-and-effect manner. This relationship can only be determined holistically in any 

ecologically valid research setting. That being said, researchers have been able to trace 

this relationship in very controlled laboratory conditions, using tasks that do not rely 

heavily on expert knowledge, using very laborious analysis to gain this high level of 

resolution  (Smuc et al., 2009). The novel sensemaking evaluation used in Study 3 has 

demonstrated value in yielding useful insights about how visualizations may support 

cognitive work. As the data-frame theory provides a generalizable model of 
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sensemaking, this evaluation approach may be applied or adapted in other application 

contexts.  

9.1.4. Limitations 

As with all ethnographically-inspired formative research, this dissertation has 

limitations regarding reliability and validity which I would like to acknowledge. First, as it 

is formative and exploratory, the findings in this research are not conclusive or 

generalizable. In addition, given the long-term nature of this research, the environment in 

which the study was carried out and participants were changing. External factors, the 

technologies developed, as well as my role as a researcher, influenced the organization 

as it influenced me. Participants who engaged in all or most studies were more subject 

to being influenced through the research process, while those who engaged in one or a 

few studies only offered limited design insights as could not develop as rich a shared 

understanding with me as others.  

 

9.1.5. Summary of Contributions 

In addressing the above research objectives, I make the following contributions 

to the field of visual analytics:  

a) a case study of visual analytics applied in a real-world complex risk prediction 

and management domain;  

b) a characterization for how ambiguity arises in the domain of avalanche 

forecasting to inform the design of visual analytics solutions in risk assessment, 

prediction, monitoring, and collaboration;  

c) a preliminary set of explorations of interactive visualization design strategies and 

the resulting guidelines for tools to support ambiguity in sensemaking;  

d) A qualitative framework and method for evaluating visual analytics tools in 

complex systems derived from cognitive systems engineering; 
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e) An evaluation of how different representations can serve to enhance or impede 

ambiguous sensemaking; and 

f) a visual analytics system designed to address ambiguity that has seen field 

deployment. 

9.1.6. Reflection 

Drawing on my experience of problem-driven visual analytics research, I offer 

reflections on this form of research. In particular, I discuss how interactions and 

understanding developed between myself and the forecasters shaped this research, the 

practical challenges of conducting work in the field, and thoughts about alternative ways 

in which this research could have been conducted. 

A key aspect of this research was the exchange of knowledge between 

forecasters and me. At the start of this research, forecasters were primarily familiar with 

geographic information system (GIS) approaches to visualization which are often distinct 

from many visualization and interaction paradigms like coordinated and linked multi-view 

displays. It took some time for forecasters to develop a procedural understanding of how 

to use interaction as part of a process of inquiry, but they now have come to adopt and 

expect it in the tools they use. At the same time, this process of adoption also served to 

reveal new needs and in doing so make explicit how forecasters work. This helped me 

learn how existing visual analytics approaches do and do not serve forecasters' work 

and what the nature of their work is. By abstracting tasks and data, we were also 

translating between two approaches for data analysis and sensemaking. Consequently, 

there was always a risk of tacit knowledge and procedures being lost in the fray. Having 

access to both old and new tools available during work seems to have helped the 

forecasters develop a better understanding of the role each set of tools can play. In 

doing so, forecasters were able to tell me what was missing and what was not quite right 

during iterative development. This helped me develop a better understanding of the 

forecaster's work and shed new light on how existing knowledge in visualization 

research does or does not accommodate this work. 

Coordinating this applied form of research and the associated knowledge 

exchange was not always easy. Beyond delays in accessing proprietary data, which is 
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common in many visualization application projects, planning research around the 

forecasters’ seasonal and often intensive work was challenging. During the summer 

forecasters were more available to plan and be involved in design efforts. However, the 

winter forecasting season proved to be the most valuable time for research and design 

work. This was when forecasters were most immersed in their work and were able to 

use prototypes with live data in context to provide feedback that would otherwise have 

been difficult to anticipate at other times. There were bouts of intensive and closely 

coordinated rapid iterative design with a handful of forecasters that proved to be very 

productive because relevant prior design decisions and conversations were easily 

recalled. When too much time passed in between design iterations, it was more difficult 

to remind and orient forecasters within intermediary design stages. Finally, given the 

rapid and multi-modal communication that fit the convenience of the forecasters’ work 

schedules, it was difficult to ensure data was gathered throughout the design process. 

Much of what was discussed was not recorded and had to be reconstructed through 

notes, e-mail chains, and design prototypes. 

The challenges of balancing research and collaborators’ needs is common in 

applied visualization research. Decisions of how and when to capture research data or 

when design iterations should stop introducing trade-offs for either party’s needs. For 

instance, in the case of the present research, it may have been interesting to further 

investigate the concept of “desirable difficulty” by investigating alternative designs that 

varied the level of effortfulness involved in decoding visualizations. The forecasters may 

have even welcomed this type of investigation. However, given the practical constraints 

of such applied research, there are limits to the volume and variety of research inquiries 

that can be made. This is why my research and design decisions focused on maximizing 

mutual benefits that avoided narrowing too early on questions of research interest but 

unknown practical value for forecasters. 

In hindsight, there are decisions that I could have made to strengthen this body 

of research. Instrumenting prototyped tools to log interactions would have provided a 

highly valuable additional data stream to study how prototypes were used in practice. 

This would enrich the understanding gleaned from the simulation study (Study 3) and 

shed light on how tool use might have changed as forecasters adopted it. With hindsight, 

there are other decisions that could have more productively contributed to specific 

research questions about aspects of our design approach (e.g., relaxed visual 
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hierarchies, desirable difficulty, visual metaphors, or gisting-support). However, I can 

only now identify these with any confidence after having conducted this foundational 

research that inspired these questions in the first place. After all, this is formative and 

exploratory research intended to raise questions rather than definitively answer them. 

Throughout this entire project, I was concerned about balancing my research 

needs and the forecaster's practical needs. Upon reflection, I realize that any applied 

visualization research, aiming to support a particular domain group, is certain to produce 

valuable knowledge contributions to the visualization community. This does not always 

have to involve novel visualization designs or refinements to existing design guidance. 

Abstracting and characterizing a problem in an applied setting and mapping this to a set 

of known visual analytics solutions is a valuable contribution on its own. It reinforces 

existing understanding in a distinct applied setting that provides evidence setting the 

basis for transferability. 

9.2. Design Implications 

I discuss design implications for visual analytics systems aiming to address 

ambiguity drawing from this dissertation as a cohesive body of work.  

1. Do not unilaterally remove cognitive difficulties in problem solving. A 

common theme throughout all the studies conducted in this work is that avalanche 

forecasting involves much more than what is explicit in data, relying on subtle and 

difficult to anticipate cues in data that prompt alternative interpretations. This is an 

inherently difficult task. Conventional visualization design guidelines aim to ease 

the burden and effortfulness of perceiving patterns and outliers in data using 

summary overviews and precise perceptual encodings. This capitalizes on the 

automaticity of low-level perceptual processing but can impart a false sense of 

precision and, due to the limitations of visual encoding, can occlude details 

relevant to the task at hand. Designs need take care to balance the advantages of 

visualization and perceptual processing with the difficulties of a particular 

problem-solving task and domain. Using perceptually weaker encodings that are 

more effortful to decode or visual metaphors that remind viewers of the 

imprecision of data are strategies that can support and evoke the cognitive work 

necessary to make sense of ambiguous data and situations. In the participatory 
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design study (Study 2), forecasters found these representational strategies better 

suited to their needs. When presented with designs that employed conventional 

design strategies, they felt their sensemaking was impeded and expressed 

concerns about falsely trusting patterns in data. In addition, the evaluation study 

and subsequent deployment of AvObs (Study 3) provides further support that the 

chosen design supports ambiguous sensemaking.  

2. Flatten visual hierarchies. Whereas salient visual features and strong 

hierarchies’ direct attention to specific aspects of the display, reducing the 

strength or salience of visual hierarchies allows the viewer themselves the agency 

to re-target attention to different lines of inquiry as needed. In Study 2, this 

became apparent from the need to balance disaggregated views of data with 

broader pattern recognition activities involved in hazard assessment. Glyphs are 

one well-suited option for this as they can capture numerous data attributes and 

support a variety of ways for the visual system to traverse visual hierarchies 

(Borgo et al., 2013). Data tables are another option. As minimalist, precision and 

salience-emphasizing conventions of digital visualizations are at least partially 

due to the constraints of early computer graphics, historical printed visualizations 

and cartography making heavy use of text could serve as inspiration for new 

designs (Brath, 2020). An important consideration to consider is the scale of data. 

While the data used by Avalanche Canada is highly complex and rich, it involves 

relatively lower volumes of data than other domains. This scale certainly affects 

the interactive representational design strategies that are appropriate. However, it 

is important to note that in applications involving volumes of data that make 

comprehensive viewing impractical, data workers still return to sub-samples of  

large datasets for viewing in a raw form (Bartram et al., 2021). 

 

3. Reduce interaction overhead and facets. Interactions naturally introduce more 

overhead and are generally reserved for information that carries less significance 

to the primary task at hand. When details are of significance, interactions to 

access such details can introduce additional overhead. In the evaluation of AvObs 

(Study 3), forecasters dedicated a larger portion of time to reading tooltips than 

higher-level patterns. While AvObs provides representational advantages for 

perceiving patterns, feedback from forecasters and observed usage patterns 
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suggest that importance of details was undervalued and underemphasized. 

Further, interaction hierarchies slice the data into layers only retrievable through 

distinct steps. This can fragment analytic inquiry when the information that needs 

to be considered simultaneously or compared is only available in successive 

views through deliberate choice. As there are limits to how much information can 

be shown simultaneously, the challenge here is to identify which information is 

relevant to consider so that it is available for viewing. As observed in Study 3, the 

InfoEx showed the relevant information simultaneously, and thus supported the 

analytic action of gisting. Moreover, the fact that forecasters still choose to use 

data tables to diagnose errors in weather station data (Study 2), suggests that 

gisting may play a role here as well.  

 

4. Emphasize text reading and gisting. Throughout all the studies it is clear that 

details like the identity of a report author, the locations traveled to and manner 

travelled in, or even how data are expressed offer important cues necessary for 

forecaster’s reasoning processes. While the AvObs prototype has proven useful 

to the forecasters, having been adopted in operations and demonstrating support 

for both conventional and ambiguous sensemaking around patterns (Study 3), it 

occluded views of textual data. Text is of high importance in this domain. 

Forecasters still use the InfoEx for many core tasks for fear of “missing” critical 

information. Similarly, in Study 2 we learned that after the WxObs tool was 

deployed, some forecasters return to raw data tables of weather station data 

because they have developed ways to scan for and diagnose errors in ways they 

cannot in aggregate form. Analytics tools addressing such challenges and aiming 

to provide access to raw base data need to present text in ways that optimally 

supports sequential reading and rapid scanning of symbols. In addition, care 

needs to be dedicated to how users navigate between symbolic representations 

and visualizations. Existing work in the active research area of how text functions 

within a visualization context may provide further guidance (Brath, 2020). 

Computational text analysis integrated in such displays could offer additional aid. 

It could help improve search time when a target is known. However, as it is 

difficult to anticipate the relevance of any given cue in complex situations, text 

analysis suffers from the same limitations as aggregate visualizations in trying to 

reduce or simplify complexity. It therefore should therefore be employed carefully 
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and not aim to automate away the observer and the natural ambiguity that comes 

with sensemaking in complex analyses. 

 

9.3. Future Work 

This dissertation offers several potential avenues for future work. First, a more in-

depth and rigorous study of how AvObs is being used in practice is needed. It is unclear 

how exactly the tool fits within the broader workflows of hazard assessment, the specific 

tasks the tool is supporting, and how this relates to ambiguous sensemaking. As the 

prototype is being used by avalanche professionals in various other organizations, it 

would be worthwhile to investigate whether or how tool-use varies in these contexts. As 

this tool in some ways departs from traditional approaches, it may be worthwhile to 

investigate how this tool has changed work practices. Field observations and situated 

recall methods, such as those used in Part B of Study 2 may be appropriate here. In 

addition, evaluations that focus more on specific design features such as the packed 

circle glyphs and supported visual tasks could help to validate whether they function as 

intended or in some other way. Focusing attention on these features in a Cued-Recall 

Debrief interview could provide valuable insights. Alternatively, more lab-based methods 

with simulated tasks focusing on perceptual tasks could be used. However, findings from 

such studies would be limited in answering questions about ambiguity, as this deals with 

more abstract cognitive activities that arise from the complexity of naturalistic settings. 

Future research could also more rigorously explore gisting and its role in 

supporting ambiguous sensemaking. Eye tracking methods (Kurzhals et al., 2014) 

provide a more direct measure of gaze and attention than mouse cursor movements and 

could be adapted to the evaluation approach I employed in Study 3. This could offer a 

higher resolution and more valid perspective of gisting in complex information spaces 

using symbolic representations (text). Such a study will require careful design 

considerations. Just as text reading is a learned behaviour, I conjecture gisting in 

complex information spaces also requires expertise. Selecting an appropriate study 

population that shares familiarity and expertise using a particular representation will be 

crucial. In addition, eliciting this behaviour may be challenging as it may depend on the 

individual, the context, and the available data. As forecasters also rely on meteorological 
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charts and maps that make heavy use of dense symbolic representations, these could 

offer an alternative to data tables as a context in which to study gisting as an analytic 

action. Meteorologists, as expert users and authors of such visualizations, would 

themselves also offer a good target study population. 

This also raises questions of what other novel visualization designs that support 

gisting might be. Inspiration may be drawn from historical or contemporary 

meteorological visualizations (Houze & Houze, 2019) and historical printed maps, charts 

and diagrams (Brath, 2020). These may also serve to inform design improvements to the 

AvObs tool. Based on findings in this research adding text representations, either in the 

form of data tables or some other idiom, would be of benefit. Of course, such changes 

would also require further evaluation.  

Another potential future line of work addresses the use of domain knowledge as 

a schematization mechanism to support individual and shared knowledge construction 

during collaborative analyses. Study 4 yielded only preliminary insights that have yet to 

be validated. As is customary in visualization design study is, this would require further 

iterative design, prototyping, and evaluation. Future studies should aim to preserve 

realism as much as possible given the heavily contextual nature of knowledge work, 

particularly in as complex a domain as avalanche forecasting. 
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  Appendix A. 

This appendix includes supplementary materials for various studies. Each study 

with additional materials has its own section. Additional data files are detailed in each 

respective section. 

Study 1 

Table A.1.  Table of example quotes and evidence gathered through 
observation in notes. 

Theme Sub-Theme Definition Part A Interview Quote Part B Observed Evidence  

Missing Info 

 

Explicit Missing 
information is 
explicitly 
represented in 
data. 

“They [weather stations] get 
stuffed up by weather... rime or 
whatever... they just stop 
reporting.” P4 

 

Implicit Missing 
information must 
be inferred from 
the situational 

context. 

“When you’re modeling the 
natural world, you take shortcuts 
and there’s simplifications [...] the 
co-linearity between many of the 
avalanche problems […] they 
don’t occupy fully independent 
places.... within our drive to 
communicate effectively, we 
sometimes have to have 
discussions about whether we 
want to be technically accurate, 
or whether we want to retain 
clarity [...] we sense that starts to 
get quite complicated. And 
so...frequently, we look for ways 
to simplify.” P1  

[Observed during discussions] "After 
having worked this job [Avalanche 
Canada] ... I sort of realize the big 
holes the operators leave in their 
writeups when it comes to work in this 
office using this information... because 
they are having face to face 
conversations... and maybe not putting 
that information into their writeup... 
saying this layer [of snow] does not 
exist in our area may not be helpful to 
them, but it really helps us here in this 

office.” P8 

Data 

Representativeness 

 

Classification 

Overlap 

Classifications 
are often not 
independent or 
mutually 
exclusive. 

“When you're modeling the 
natural world, you take shortcuts 
and there's simplifications... 
The... major flaw of the 
conceptual model is the, the, the, 
the co-linearity between many of 
the avalanche problems and so... 
storms labs and wind slabs are 
heavily co-linear. So, you know, 
they, they don't occupy fully 
independent places.” P1 

[Observed during discussions]  
“Thinking about having all three [wind 
slab, storm slab, persistent slab], 
because they are so different right 
now.. There kind of always is a wind 
slab problem, but there was A LOT of 
wind so I want to capture that” P7 

Conservative 
Bias 

Avalanche guides 
and professionals 
are conservative 
when faced with 
uncertainty in the 
field or in data. 

“[If] we just like… puzzle it out, 
but then we still don't know. Like, 
I'll just start writing that… today, 
take a conservative approach” 
P2 
 
“Oh, you know, this one operator 
was saying, you know, that they 
really found things touchy. So, I 
think I'm going to lean that way 
and be conservative, then there 
have been times where another 
forecaster would have said 
something like: ‘Oh, well, you 
know, that... that person... Yeah, 

[Observed unrecorded conversation 
about how to interpret an operators 
report considering their conservative 
bias caused by a recent incident 
involving clients] P3 
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Theme Sub-Theme Definition Part A Interview Quote Part B Observed Evidence  

they always call that a little more 
than it actually is.’ And then that 
may change… influence me to 
say: Okay, well, maybe I should 
not necessarily discredit it, but I 
put less weight into it.” P3 

Circumstantial 
Definitions 

Official definitions 
and unofficial 
practices for 
reporting data 
depend on the 
situational 
context. 

“The CAA courses do quite a 
good job of standardizing those 
kind of threshold amounts and 
stuff like that […but] people who 
have spent a lot of time on the 
coast, for example, may think 30 
centimeters storm doesn't really 
do very much” P1 

[Observed during discussions]"I like 
[Anonymized] point yesterday, wind 
slabs in the alpine are kind of like 
cornices that you find always... it is just 
a winter mountain hazard... it goes on 
the bulletin when it is elevated to more 
than normal caution..." P2 

Analytic Practices 

 

Subjective 
Hunches 

Considering the 
behaviour, 
concerns, and 
hunches of others 
in the field to 
inform and guide 
analysis and 
interpretation. 

“I might be reading that 
snowpack description like saying 
like… ‘okay, are these guys still 
concerned about this?’ That's 
what really matters to me more 
so than like the really nuanced 
low-level data.” P2 

[Debrief from video] “I feel good about 
who was in the operation. So, I felt that 
the test was valid and valid information 
that I should be thinking about." P3 

Immersion Forecasters 
spend several 
days in forming a 
mental model 
through 
undirected review 
of contextual 
information. 

“If I take over regions, I kind of 
try to ease into it. So, if I know 
that I've got five days on a 
certain amount of regions. I 
usually... The first day is just I 
don't... I may have questions in 
my mind, but I don't delve too 
deeply because it's just, it's too 
overwhelming.” P4 

[Debrief from video] "...It was just to 
give me an orientation to get my mental 
picture for forecasting in the Columbia 
[mountain region]. like where are we 
relative to the history... just a little bit of 
context... I don’t know what that does 
for me exactly." P4 

Context-Seeking Directed 
information 
search for 
supplementary 
contextual 
information. 

“if I'm really struggling I'll like…  
look for keywords like "oh ya... 
skiing, like, steep terrain in the 
Alpine, up to 40 degrees and just 
exposed features. No problem." 
That tells me that not much is 
going on. Yeah, people are 
confident.” P2 

[Debrief from video] "...so I reviewed a 
few avalanches to understand what 
was driving those avalanches and why 
[Anonymized] added that persistent 
slab problem again." P6 

Mental Projection Forecasters 
assimilate 
information by 
imagining and 
mentally 
visualizing the 
interactions of 
avalanche 
conditions, 
weather, terrain, 
and people. 

“And, you know, by projecting 
yourself into the terrain. Actually, 
that's a technique that a lot of 
people use to help forecast and 
you know… kind of projecting 
yourself mentally, whether you 
close your eyes or you just have 
some kind of image of the kind of 
slopes, the kind of areas where 
the people are moving around in 
areas covered with trees, what 
the wind kind of might do, you 
know… I think it's pretty common 
to have some kind of, you know, 
visual representative little piece 
of terrain and you know, what 
people are doing. Users if you 
like, to help visualize, basically. 
So, you know, I think that 
experiential part, there is really 
relevant to the process.” P1 

 

Updating Forecasters 
iterate over 
knowledge 
artifacts like their 
forecast as they 
conduct their 
analysis and 

“So day one, if you... if you 
inherent forecasts you can kind 
of slightly tweak them all. And by 
day two, I'm usually grabbing 
one or two and doing like a pretty 
significant revamp of it. This is 
kind of where I put my voice in it 

[Debrief from video] “I import 
yesterday’s forecast... and I tweak my 
forecast, so it matches my nowcast” P6 
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update their own 

mental models. 

and any new insight that I might 
have in it. By day three, I 
probably… I've like updated all 
four of the forecasts. And I really 
put my voice into it. I have 
updated all the little tracking of 
the weak layers, that kind of 
thing. And then at that point, 
when you have a good feel for 
the regions like day four and five 

are a lot easier.” P2 

Deliberate 
Omission 

Forecasters 
manage 
information 
overload by 
ignoring certain 
data 

“It's a funny balance because 
much of the individual data 
points are not very 
consequential. And so, from an 
efficiency point of view, it's better 
if you let your brain just merge 
those and average those out and 
have some kind of general 
assessment.” P1 

[Debrief from video] “A result 
[snowpack test result] that’s a little 
alarming…that I wouldn’t expect under 
a low hazard… I am considering 
whether this layer is still a major 
concern. I decided my prior analysis 
still held [hazard is low]” P3  

Analytic Challenges 

 

Continuity Forecasting relies 
on continuity of 
analysis and 
monitoring. Shift-
changes disrupt 
this continuity.  

“And there's a lot of variability 
in... in different people and what 
they... what sort of information 
and leave and... how much 
information they leave. But the 
idea is, you know that that's the 
first place I'll look and hoping that 
the forecaster the... previous 
forecaster has left enough 
information to start that picture, 
start getting an idea on what are 
the problems, and where are the 
uncertainties.” P3 

[Observed during discussion] “I don’t 
think it was because it was a bad 
forecaster… it was because it had been 
in a few different hands... and then… 
someone did not have enough time to 
clarify it…” P2 

Translating 
Analysis 

Forecasters 
struggle with 
communicating 
complex 
conditions with 
simple clarity to 
the public. 

 

“You know, ‘snow turned into rain 
might might do this’, or it's… I try 
to… try to explain like the myriad 
of possibilities, there's just not 
that much room to explain things 
like that. And to put that kind of 
simply, that's a really challenging 
one” P2 

  

[Observed during discussion] “It is only 
on 30 cms… to me it seems more 
reasonable to call it a persistent slab 
because it captures it on all aspects. 
“Wind slabs will be most reactive on the 
SH layer…” I find that confusing and I 
am thinking of ditching the wind slab 

problem” P7 

Lack of Good 

Representations 

Forecaster lament 
a lack of good 
visual 
representations to 
alleviate some 

cognitive effort. 

“Wind is another one of those 
things… a lot of the wind output 
is all in degrees. And so, it's like 
an hour and the value of the 
speed and then it's the degree… 
but you know, if you just read like 
256 to 240, 220, 180… it's 
actually kind of hard… I actually 
keep this compass rose at my 
desk and look at it in my head to 
see where it is. But I think there's 
way better ways to visualize 
wind” P2 

[Debrief from video] “I opened up 3 
windows of InfoEx… one for today, one 
for yesterday and one for two days 
ago.” P6 

Lowering Danger 

Ratings 

It is challenging 
for forecasters to 
lower danger 
ratings as data 
reveal instability 
rather than 
stability.  

“it's because that ramp down is 
quite challenging. And, you 
know, it's... easy to go from 
considerable to high but it's hard 
to go down. It's easy to go from 
high back down to considerable 
but it's hard to go from 
considerable to moderate and it's 
even harder to go from moderate 
avalanche danger to low 
avalanche danger. Yeah, those 
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Theme Sub-Theme Definition Part A Interview Quote Part B Observed Evidence  

are the hard steps… is actually 
coming down. And ...so anything 
to help us come to the 
conclusion that… you know, the 
problem is not acute anymore 
and we can ramp things down 
and come down off our you 
know, screaming to the high 
heavens that it's dangerous out 
there or whatever that is, I think 

is most helpful.” P4 

Collaborative 
Sensemaking 
Strategies 

 

Data Production 

 

Forecasters 
facilitate 
collaborative work 
by producing 
hand-off notes 
and other internal 
knowledge 

artifacts. 

“Or if I'm, if I'm uncertain about 
something... like that's what I 
might dive in more for the next 
forecaster [creating hand-off 
notes]... " It's like those little 
things like I am trying to take that 
ease and control that I have at 
day four or five, because I feel 
like I've got it under control and I 
give that to the next person so 
they don't feel like they have to 
do their process of discovery 

from ground zero essentially.” P2 

[Observation during discussions]  “The 
notes [hand-off notes] thing is 
important… even if it’s just a 
breadcrumb trail… even if it’s just how 
you arrived at a conclusion… or even 
refer to {anonymized name} notes, it is 
just a carry-forward.” P2 

Regular 
Discussions 

Forecasters draw 
on each other’s 
diverse 
knowledge 
through daily 
discussions. 

“So, at two o'clock 230, we have 
our pow-wow where we all kind 
of go through our hazards and 
our problems. And, you know, 
does this make sense? Make 
sure that it's, it's, it's kind of like a 
peer review session.” 

[Observed and recorded several 
discussions during observations] 

Reaching out 
Directly 

Forecasters call 
or email field 
operators for 
further 
information when 
faced with critical 
information gaps. 

“...or am potentially missing 
something or I just don't feel 
comfortable with ...with what I 
have done, that's generally when 
I'll start picking the phone up and 
trying to find people in the area 
that can provide more… more 
insight.” P3 

[Observed forecaster making a phone 
call to an operator to inquire about 
conditions] 

Professional 

Exchange 

Forecasters work 
with other 
agencies and 
operators to gain 
a deeper 
understanding of 
the nuances of 
how data are 
produced and 

what they mean. 

“And the only way to really fully 
understand is to go and spend a 
bit of time with that operator. We 
try and facilitate that. We have 
professional exchanges go on. 
You know, we often go out. 
MOTI [The Ministry of 
Transportation and Industry] are 
really good partners with us. 
They're always happy for us to 
go and visit an operation.” P1 
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Study 2 

Figure A.1.  Intermediary low-fidelity prototypes of AvObs tool. 
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Study 3 

In addition to the example surveymonkey form in the images below, the following 

spreadsheets containing data and supplemental information are included: 

 

1. Data_Dictionary.xlsx definitions of fields and data attributes as well as 

participant metadata. 

2. Log_Data.xlsx compiled video coding for sensemaking, interactions, and analytic 

actions. 

3. Assessments.xlsx hazard assessments for both scenarios and survey feedback. 
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Figure A.2. Methodology diagram for study 3. 

 
 

Figure A.3.  The surveymonkey questionnaire presented to participants in Study 
3 used (all following images) 
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Figure A.4.  Diagram of how analytic action of ‘pattern’ was identified in either 
toolset 

 

Figure A.5.  Diagram of how analytic action of ‘drill-down’ was identified in either 
toolset 

 

 

Figure A.6.  Diagram of how analytic action of ‘serial’ was identified in either 
toolset 
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Figure A.7.  Diagram of how analytic action of ‘focus’ was identified in either 
toolset 

 

 

Figure A.8.  Diagram of how analytic action of ‘gisting’ was identified in either 
toolset 
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