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Abstract

The conventional method for functional quantile regression is to fit the regression model for each

quantile of interest separately. The slope function of the regression, as a bivariate function indexed

by time and quantile, is actually estimated as a univariate function of time only by first fixing

the quantile. This estimation strategy has two major limitations. The monotonicity of conditional

quantiles can not be guaranteed, and the smoothness of the slope estimator as a bivariate function

can not be controlled. We develop a new framework for functional quantile regression to overcome

the two limitations. We propose to simultaneously fit the functional quantile regression model for

multiple quantiles under some constraints so that the estimated quantiles satisfy the monotonicity

conditions. Meanwhile, the smoothness of the slope estimator is controlled.

Motivated by an application of modeling the impact of daily temperature, annual precipitation and

irrigation system on soybean yield, we propose two locally sparse estimation methods under a semi-

parametric functional quantile regression model. In the target application, the daily temperature is a

functional predictor, and the influence of daily temperature on soybean yield may not always exist

during the whole growing season. We aim to identify the time regions where the influence exists.

For this purpose, in two projects, we use two different penalized estimation methods, functional

SCAD and modified group lasso, to obtain locally sparse estimations for the bivariate slope function

associated with the functional predictor.

Focusing on the soybean yield application introduced above, we further propose a novel semi-

parametric functional generalized linear model (FGLM) to analyze the relationship between the

environmental factors and the soybean yield. In this project, we consider the data from different

years as from different populations due to the fact that the climate conditions can be very differ-

ent year by year. Based on the new assumption, the main challenge is that we only have limited

number of observations for each year. To solve this issue, we combine a density ratio model with

the proposed semi-parametric FGLM so that the new framework can be fitted using the pool data.

We propose to use a combination of penalized B-spline and empirical likelihood method to fit the

model. The proposed method is highly flexible and robust to model misspecification.

Keywords: Functional quantile regression; Locally sparse estimation; Bivariate splines; Functional

generalized linear model; Empirical likelihood; Penalized B-splines
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Chapter 1

Introduction

Nowadays, with modern technology, more and more data can be recorded continuously over a pe-

riod of time such as daily temperature curves or daily humidity curves. They are both examples of

functional data, which has become a commonly encountered type of data. Functional data analysis

(FDA) focuses on the analysis and the theory of such data. Under the FDA framework, sample of

functional data are considered as realizations of some random functions. From this point of view,

functional data are intrinsically infinite dimensional objects. Then, in addition to the curves, analyz-

ing images, surfaces or other infinite dimensional objects varying over a continuum also belongs to

FDA. In FDA, functional quntile regression and functional generalized linear model are two popular

and useful tools in real data applications. In this thesis, we propose new methodologies for these

two models.

Functional quantile regression is an useful tool to analyze the relationship between functional

predictors and scalar response. The simplest version of functional quantile regressions can be for-

mulated as

QY (u | X) = c(u) +
∫

T
X(t)β(t, u)dt, (1.1)

where Y is scalar response, X(t) is a functional predictor over the time domain T , QY (u | X) is

the u-th quantile of Y conditioning on X(t). The function β(t, u) in model (1.1) is called the slope

function, which is a bivariate function indexed by the time t and quantile u. In real applications,

β(t, u) is of great interest because it describes the dynamic influence of the X(t) on the conditional

distribution of Y .

The commonly used estimation strategy for model (1.1) is to first fix a quantile u, and then

estimate β(t, u) as a univariate function of t only, βu(t) [6, 41]. The advantage of this conventional

method is that it can reduce the dimensionality of the parameter space but it also have two major

limitations. Since the model (1.1) is fitted for different quantiles separately, the estimation of β(t, u)
obtained from the conventional method is usually very wiggle as a bivariate function. Moreover,

the estimated conditional quantiles of Y may cross each other, which violates the monotonicity

condition of a valid quantile function. In practice, the non-monotone quantile estimations can lead

to invalid interpretation. In Chapter 2, propose a novel estimation strategy to overcome these two

1



limitations. We use bivariate splines [64, 46] to approximate β(t, u) and then fit the model (1.1)

for multiple quantiles simultaneously. We impose constraints and regularization into our estimation

procedure to control the smoothness of the estimator for β(t, u) and to guarantee the monotonicity

of the quantile estimations.

Motivated by an application of analyzing the impact of daily temperature, annual precipitation

and irrigation system on soybean yield, in Chapter 3 and 4, we consider a more general semi-

parametric functional quantile regression with both scalar predictors and functional predictors. The

u-th quantile of a scalar response Y conditioning on scalar predictors, Z, and functional predictors

X(t), Qτ (Y |Z,X(t)) can be modeled as: For this purpose, we use the same soybean yield data

set as in Chapter 2, and for this data set, we consider the following functional quantile regression

model,

QY (u|Z, X) = Zτα(u) +
∑

k

∫
T
βk(t, u)Xk(t)dt, (1.2)

where Y is a scalar response, Z = (1, Z1, Z2, . . . , Zp) is a vector of scalar predictors and {Xk(t)}
are functional predictors defined over the same domain T . For the target application, Y is the annual

soybean yield, Xk(t) are the daily temperature related measurements, and Z1 and Z2 are the annual

precipitation and the ratio of irrigated area of each county in Kansas. In (1.2), each entry ofα(u) is a

varying coefficient depending on the quantiles and βk(t, u) are a bivariate slope functions associated

with different functional predictors.

Reviewing the literature [72, 79], we know that there exists a comfortable range of temperature

for soybean growth and within the range, small fluctuations of the temperature has no influence

on the soybean growth. In other words, under model (1.2), there should exist some sub-regions

within the domain of Xk(t) where βk(t, u) = 0. We call this property as local sparsity. In Chapter

3 and 4, we focus on finding locally sparse estimators for β(t, u) under the model (1.2). Specif-

ically, in Chapter 3, we adopt the conventional estimation strategy to fit the model (1.2). That is,

we first fix the quantile u, and then estimate α(u) as a vector of scalar parameters and estimate

βk(t, u) as univariate functions. We propose a method that combines smoothed quantile loss [32]

and functional SCAD method [50] to obtain locally sparse estimation for βk(t, u). In Chapter 4, we

follow the idea of Chapter 2 to approximate βk(t, u) using bivariate splines and fit the model (1.2)

for multiple quantiles simultaneously. With the help of a modified group lasso [89] type penalty,

we propose another locally sparse estimator for betak(t, u) based on the simultaneous functional

quantile regression.

Focusing on the soybean yield application, in Chapter 5, we further propose a novel semi-

parametric functional generalized linear model (FGLM) to analyze the relationship between the

environmental factors and the soybean yield. In the real data analysis of Chapter 3 and 4, we as-

sume that the observations from different years, namely between 1991 and 2006, have the same

distribution. In other words, we assume that model (1.1) and (1.2) hold for all the observations col-

lected between 1991 and 2006. This assumption neglect the possibility that the climate conditions
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of Kansas can be very different across years and we do not have enough environmental variables,

such as daily humidity and sunshine, in the data set to account for this variation.

For this reason, in this project, we consider the data from different years as from different pop-

ulations. Then a new challenge arises. We only have limited number of observations for each year.

The small sample size could bring difficulty in the estimation of the unknown functions associated

with functional predictors. To solve this issue, we combine a density ratio model with the proposed

semi-parametric FGLM so that the new framework can be fitted using the pool data. The proposed

method is very flexible and robust to model misspecification.
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Chapter 2

Simultaneous Functional Quantile
Regression

2.1. Introduction

The u-th quantile of a scalar response Y conditioning on a functional covariate X(t), QY (u | X)
can be modeled as:

QY (u | X) = c(u) +
∫

T
X(t)β(t, u)dt, (2.1)

where X(t) is a stochastic process defined on a compact interval T , and β(t, u) is a bivariate slope

function indexed by both time t and quantile u. The model (2.1) is called the functional quantile

regression model. The slope function β(t, u) is of primary interest because it describes how the

quantile of the response variable is related to the functional covariate.

In the literature, a commonly used strategy for estimating β(t, u) is to treat it as a univariate

function of t by fixing the quantile u first. This conventional strategy has two major limitations. First,

the slope function β(t, u) is usually assumed to be smooth over both t and u, which is also favorable

in real applications. However, fitting the regression models for different quantiles separately cannot

guarantee that the resulting estimator for β(t, u) is smooth over u. Second, for some observations,

the estimation of QY (u | X) may not be monotonically increasing in u as it should be. These

crossing quantiles can further lead to invalid distribution estimation for the response variable.

In this chapter, we address the above two limitations. Different from the existing methods that

β(t, u) is estimated as the univariate function of t for each fixed u, we propose to use bivariate

spline basis functions to approximate β(t, u) directly and then estimate the corresponding basis

coefficients. Under our framework, the smoothness of the estimation is guaranteed by the smooth-

ness of the bivariate spline approximation, which is ensured by adding some linear constraints on

the spline coefficients. In addition, we further impose some extra linear constraints to mitigate the

crossing-quantile problem. In this way, we can make sure that the estimated quantiles for each

subject are monotone. The monotonicity issue, to some extent, can be fixed by using some mono-

tonization techniques, such as [13]. But it can not improve the estimation for β(t, u), because the

monotonicity of the quantiles are not considered in the estimation procedure for β(t, u) and the
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monotonization is only applied to the estimated quantiles. For example, [41] proposed first to esti-

mate β(t, u) for the model (2.1), and then to estimate conditional quantile functions based on the

estimated β(t, u). For the quantile functions that are not monotone, he adjusted them to become

monotone by using the technique of [13]. However, the estimation for β(t, u) was left unchanged.

The model we consider is an extension of linear quantile regression (LQR) model, which de-

scribes the linear relationship between conditional quantiles of a scalar response and some predic-

tor variables [43]. By estimating multiple conditional quantiles, LQR allows us to depict and then

make the inference on the entire distribution of the response conditioning on the predictors. Linear

quantile regression has been well studied and makes many contributions to real-world applications

[45, 83].

Nowadays, functional variables becomes more and more common in real-world applications.

FDA has become a comprehensive branch of statistics that provides a useful and convenient frame-

work to analyze functional data with some high dimensional structures, such as curves, images, and

surfaces, which are so-called functional data. Estimation for a quantile regression with a scalar re-

sponse and some functional covariates is a fruitful research topic as related questions arise in many

recent applications, such as [7], [11], [86], [81] and [92].

The model (2.1) was first formulated in [6] as a natural extension of classical linear quantile

regression. In the paper, a penalized spline estimator for β(t, u) was proposed for a fixed u with-

out any dimension reduction on the functional covariate. Later on, for the same model (2.1), [41]

proposed to first use functional principal component analysis (FPCA) to truncate the functional co-

variate X(t) for dimension reduction and then to estimate the slope function β(t, u) for a fixed u

based on the conventional linear quantile regression framework. [41] also established an optimal

convergence rate for the proposed estimator under the minimax sense.

2.2. Proposed Method

2.2.1 Estimation Procedure

Let Y be a scalar random variable, and X(t) be a random function with mean curve µ(t), where

t ∈ T , and T ⊂ R is a compact set. Let Ω = T × A , where A ⊂ (0, 1) is an interval. For any

u ∈ A , the u-th quantile of Y given the functional covariate X(t) is modelled by the following

functional quantile model,

QY (u | X) = c(u) +
∫

T
X(t)β(t, u)dt. (2.1)

To estimate the slope function β(t, u) in (2.1), We propose to first approximate β(t, u) by bivariate

splines, and then estimate the corresponding coefficients.

There are multiple types of bivariate splines that can be used for the approximation, such as

tensor products of B-splines [75, 64, 91] and bivariate Bernstein polynomials over triangulations

[46]. In this project, we choose the Bernstein polynomials over a triangulation to approximate the
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bivariate slope function in (2.1). In comparison with the tensor products of B-splines, the bivariate

Bernstein polynomials enjoy the advantage that the triangulation technique allows the local refine-

ment, that is, we can flexibly adjust the number of bivariate basis functions with different resolutions

in various local areas of the two-dimensional space T × [0, 1], which is convenient in many appli-

cations. Of course, the Bernstein polynomials and the triangulation technique are not a must for the

proposed method and other bivariate bases should also work.

Figure 2.1 shows the example of local refinement of a triangulation. The left panel of Figure

2.1 shows a triangulation over [0, 1] × [0, 1]. The right panel of Figure 2.1 shows the triangulation

after a local refinement by adding a new vertex D inside the triangle △ABC. The triangle △ABC is

further split into three triangles: △ABD, △BCD and △ACD.
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Figure 2.1: Example of local refinement of triangulation. The left panel shows a triangulation over
[0, 1]× [0, 1]. The right panel shows the triangulation after a local refinement by adding a new vertex
D inside the triangle △ABC.

Suppose that A is the interval containing multiple quantiles of interest. Our goal is to find

a function s(t, u) ∈ Sr
d(∆) that can well approximate the slope function β(t, u) on the domain

T × A . To make our writing and proofs in the subsequent sections clearer, we use {bj(t, u)}J
j=1

to denote the Bernstein polynomials defined over the triangulation ∆ = {Λ1, . . . ,ΛM }, where

j = 1, . . . , J is the index for the polynomials. The relationship between J and M is J = (d +
2)(d + 1)M/2, because there are (d + 2)(d + 1)/2 Bernstein polynomials associated with each

triangle of ∆. In addition, for each basis function bj(t, u), we denote its support by ∆j , which is

a specific triangle of ∆ with ∆j = the triangle of ∆ that is the support of bj(t, u). In other words,

bj(t, u) ̸= 0 for (t, u) ∈ ∆j , and bj(t, u) = 0 for (t, u) ̸∈ ∆j . If two Bernstein polynomials bj(t, u)
and bk(t, u) are associated with the same triangle, then ∆j and ∆k are identical.
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The function s(t, u) ∈ Sr
d(T × A ) that approximates β(t, u) can be written as a linear combi-

nation of Bernstein polynomials {bj(t, u)}J
j=1. Then on the domain T × A , we have the approxi-

mation

β(t, u) ≈ s(t, u) =
J∑

j=1
γjbj(t, u) ∈ Sr

d(∆), (2.2)

where {γj}J
j=1 are the corresponding coefficients.

Under some conventional assumptions on X(t), which are commonly assumed in the literature

[84, 71, 60, 59, 73] and are usually satisfied in real applications, by the Mercer’s theorem, X(t)
admits the decomposition

X(t) = µ(t) +
∞∑

k=1
ξkϕk(t), (2.3)

where ϕk(t), k = 1, . . ., are called functional principal components (FPC) and ξk are called func-

tional principal component scores. By the decomposition (2.3) and the approximation (2.2), model

(2.1) can be approximately re-expressed as

QY (u | X) ≈ c(u) +
∫

T
µ(t)β(t, u)dt+

∫
T

∞∑
k=1

ξkϕk(t)s(t, u)dt,

= c0(u) +
∫

T

∞∑
k=1

ξkϕk(t)s(t, u)dt,

where c0(u) = c(u)+
∫
T µ(t)β(t, u)dt. Let {b0,j(u)}J0

j=1 denote the univariate B-spline basis func-

tions defined over the interval A . Then we further approximate c0(u) by c0(u) ≈
∑J0

j=1 γ0,jb0,j(u) =
bT

0 (u)γ0, where bT
0 (u) = (b0,1(u), . . . , b0,J0(u)) and γT

0 = (γ0,1(u), . . . , γ0,J0(u)).

Under the functional data context, functional observations as the infinite dimension subjects can

not fit in the conventional framework of linear quantile regression. In addition, the observed func-

tional data is not always smooth enough for using numerical integration to approximate the integral

in (2.1). To tackle these problems and to extend the classical linear quantile regression to functional

quantile regression, we usually need to truncate the functional observations {xi(t)}n
i=1 to reduce

the dimensionality and to smooth them. A plausible approach for the dimensionality reduction is to

truncateX(t) by using its firstm functional principal components obtained from the decomposition

(2.3).

As we have mentioned in the introduction, different from the conventional methods, we want

to estimate β(t, u) as a bivariate function directly. Therefore, all the quantiles of interest should be

considered simultaneously in the estimation procedure. There are a lot of papers that have discussed

the advantage of combining multiple quantile regression models, such as [96, 40, 93, 31]. One

commonly used approach is to consider the sum of those models.

We know that for a real-valued random variable Y , the minimizer of E{ρu(Y − u)} is the u-

quantile of Y , where ρu(x) = x (u− 1{x < 0}) is called the check function [43]. Assume that

we observe independent and identically distributed data pairs {yi, xi(t)}n
i=1 as the realizations of
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{Y,X(t)}. We useA ∈ A to denote a set of quantiles of interest, which are assumed to be uniformly

distributed in A , and use nA to denote the cardinality of A. We first apply FPCA on {yi, xi(t)}n
i=1

to obtain the estimated FPCs {ϕ̂k(t)}, and FPC scores {ξ̂ik}m
k=1. Then, based on the approximation

(2.2), a reasonable estimator for β(t, u) should minimize the following loss function

1
nnA

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ0 −
∫

T

m∑
k=1

ξ̂ikϕ̂k(t)s(t, ur)dt
)
, (2.4)

with respect to s(t, u) ∈ Sr
d(∆) and γ0.

The conventional framework of linear quantile regression is designed for finite dimensional

subjects, and the slope parameter to be estimated in classical linear quantile regression is also finite-

dimensional. Although the functional observations can be truncated by FPCA into a finite dimen-

sion, the slope function β(t, u) in the model (2.1) is still infinite-dimensional. As a consequence,

the direct extension (2.4) of the conventional linear quantile regression framework to functional

data can lead to invalid estimation for β(t, u) and the uniqueness of the minimizer of (2.4) cannot

be guaranteed.

To clarify this, let {ŝ(t, u), γ̂0} be a minimizer of (2.4) and fix the truncation level at m. As-

sume that there exists another function s1(t, u) ∈ Sr
d(∆) such that s1(t, u) is orthogonal to the

first m estimated FPCs of X(t). Then {ŝ(t, u) + s1(t, u), γ̂0} is another minimizer of (2.4). More

specifically, by FPCA, we can obtain the (m + 1)-th FPC denoted as ϕ̂m+1(t), which is orthogo-

nal to the first m estimated functional principal components, ϕ̂1(t), . . . , ϕ̂m(t). If there exists some

measurable function w(u) such that ŝ(t, u) + w(u)ϕ̂m+1(t) also belongs to the space Sr
d(∆), then{

ŝ(t, u) + w(u)ϕ̂m+1(t), γ̂0

}
is also a minimizer of (2.4). This implies that ŝ(t, u)+w(u)ϕ̂m+1(t)

is another estimator for β(t, u). However, the information of ϕ̂k(t) for any k ≥ m + 1 is excluded

from our estimation procedure when we choose the truncation level as m, and the estimator for

β(t, u) derived from the estimation procedure should not include any information about ϕ̂k(t) for

any k ≥ m+ 1. Therefore, the objective function (2.4) derived directly from the conventional linear

quantile regression is problematic under the functional data context.

To overcome this problem, we propose to penalize the L2-norm of the approximation s(t, u)
during the estimation procedure. In addition, the roughness of the slope function estimator s(t, u) is

also a concern under functional data context. Therefore, a roughness penalty for s(t, u) is also used

during the estimation procedure. Roughness penalty is a very useful tool to control the smoothness

of functions through the estimation procedure. Detailed discussions on roughness penalty for func-

tional data can be found in [66], [8], [68], [67] and [5]. In this project, we consider the following

roughness penalty R(s;ω0, ω1, ω2),

R(s;ω0, ω1, ω2) =
∑
Λ∈∆

∫
Λ

∑
d1+d2=2

ωd1

(
2
d1

)[
∇d1

t ∇d2
u s(t, u)

]2
dtdu,
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where ω0, ω1 and ω2 are three tuning parameters representing the weights corresponding to second

derivatives in different directions. More specifically, ω0 is the weight corresponding to ∂2s
∂t2 . ω1 is

the weight corresponding to ∂2s
∂t∂u . ω2 is the weight corresponding to ∂2s

∂u2 . Since in our estimation

procedure, we include a tuning parameter λ2,n for the whole roughness penalty R(s;ω0, ω1, ω2),

then ω0 can be fixed as a constant ω0 = 1. In addition, if the smoothness of the target slope function

along quantile index and functional index can be assumed to be identical or without much difference,

then we can simply set ω0 = ω1 = ω2 = 1 to reduce the computational cost. Then, R(s;ω0, ω1, ω2)
becomes to R(s),

R(s) =
∑
Λ∈∆

∫
Λ

∑
d1+d2=2

(
2
d1

)(
∇d1

t ∇d2
u B

T(t, u)γ
)2
dtdu,

which is the most commonly used roughness penalty discussed in the literature listed above.

Let λ1,n and λ2,n be two nonnegative tuning parameters. Then, we estimate the slope function

β(t, u) in (2.1) by minimizing

1
nnA

nA∑
r=1

n∑
i=1
ρur

(
yi − bT

0 (ur)γ0 −
∫

T

m∑
k=1

ξ̂ikϕ̂k(t)s(t, u)dt
)

+ λ1,n ∥s∥2
L2(Ω) + λ2,nR(s;ω0, ω1, ω2), (2.5)

with respect to s(t, u) ∈ Sr
d(∆) and γ0, where the norm ∥s∥2

L2(Ω) is defined as ∥s∥2
L2(Ω) =∫

T ×A s2(t, u)dtdu.

For any s(t, u) ∈ Sr
d(∆), we have the expression

s(t, u) =
J∑

j=1
γjbj(t, u) = BT(t, u)γ, (2.6)

whereB(t, u) = (b1(t, u), · · · , bJ(t, u))T and γ is the vector of coefficients satisfying some linear

constraint

Hγ = 0. (2.7)

The constraint (2.7) ensures that s(t, u) = BT(t, u)γ ∈ Cr(T × A ). The matrix H depends on

the triangulation ∆, the degree d, and the smoothness parameter r of the spline space Sr
d(∆) [46].

For example, when r = 1, s(t, u) is assumed to have the continuous first partial derivatives over

both t and u. An useful technique to remove the constraint (2.7) is QR decomposition [82]. For a

givenH , by QR decomposition, we have

HT = (Q∗,Q)
(
R

0

)
, (2.8)
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where (Q∗,Q) is a matrix with orthogonal columns and R is a upper triangle matrix with nonzero

diagonal elements. With the decomposition (2.8), the constraintHγ = 0 can be removed by rewrit-

ing γ as

γ = Qθ. (2.9)

Suppose we observe Xi(t) for t ∈ T and we use nT to denote the cardinality of T . By (2.6), the

penalty ∥s∥2
L2(Ω) can be approximated by ∥s∥2

L2(Ω) ≈ 1
nAnT

γTBA,TB
T
A,Tγ, where BA,T is a J

by nAnT matrix with the jth row of BA,T being the evaluations of Bernstein polynomials bj(t, u)
for all t ∈ T and u ∈ A. The roughness penalty R(s;ω0, ω1, ω2) or R(s) can also be written as the

matrix form γTDγ, where the matrix D is a J by J positive definite and block diagonal matrix

with each block corresponding to one triangle of the triangulation ∆, and the size of each block

depends on the degree d.

DefineL0(θ,γ0) = (nnA)−1∑nA
r=1

∑n
i=1 ρur

(
yi − bT

0 (ur)γ0 − ξ̂T
i P̂ (ur)Qθ

)
, the whole quan-

tile loss based on FPCA. Then by (2.6) and (2.9), the minimization problem (2.5) can be converted

into the following,

min
θ,γ0

L0(θ,γ0) + λ1,nθ
TQTBA,TB

T
A,TQθ + λ2,nθ

TQTDQθ, (2.10)

where ξ̂i = (ξ̂i1, . . . , ξim)T, P̂ (u) is an m × J matrix with the (k, j)-entry being p̂k,j(u) =∫
(t,u)∈∆j

ϕ̂k(t)bj(t, u)dt. Note that, for the matrix P̂ (u), and a specific u, say u = ur ∈ A, many

entries of P̂ (ur) are zeros because the integral
∫

(t,u)∈∆j
ϕ̂k(t)bj(t, ur)dt is equal to zero if the

triangle ∆j , which is the support of bj(t, ur), does not intersect with the horizontal line u = ur.

If we denote the minimizer of (2.10) by (γ̂0, θ̂), then our proposed estimator for β(t, u) in (2.1)

is

β̂(t, u) = BT(t, u)Qθ̂. (2.11)

In practice, to guarantee the estimated conditional quantile functions of all the subjects to be mono-

tone, some extra linear constraints on θ can be further imposed. Specifically, given (γ̂0, θ̂), the

estimated u-quantile of the ith subject is Q̂Y (u | X = xi) = bT
0 (u)γ̂0 + ξ̂T

i P̂ (u)Qθ̂.

The monotonicity of Q̂Y (u | X = xi) can be approximately expressed as Q̂Y (ur | X = xi) ≤
Q̂Y (u′

r | X = xi) for any ur < u′
r, ur, u

′
r ∈ A. Then a reasonable way to mimic the monotonicity

of these quantile functions is to impose the following constraints into the optimization,

{bT
0 (ur) − bT

0 (u′
r)}γ0 + ξ̂T

i {P̂ (ur) − P̂ (u′
r)}Qθ ≤ 0

for any quantile ur < u′
r and any i = 1, . . . , n, which guarantee that the estimated conditional

quantiles of Y | Xi(t) do not cross each other [4, 51]. Then, we can solve (2.10) under the con-

straints

{bT
0 (ur) − bT

0 (u′
r)}γ0 + ξ̂T

i {P̂ (ur) − P̂ (u′
r)}Qθ ≤ 0 (2.12)

for all i = 1, . . . , n, and any ur < u′
r, ur, u

′
r ∈ A.
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2.2.2 Computation

This subsection is concerned with the computational aspect of the minimization problem (2.10).

As introduced in [43], for a specific quantile u, the minimization of loss function derived from

the classical linear quantile regression model is equivalent to a constrained linear programming

problem.

For the proposed method, we need to solve the minimization problem (2.10). Following the

same idea in [43], (2.10) can also be formulated into the minimization of the following quadratic

programming problem with respect to θ, γ0, and {wi,r, vi,r}i=1,...,n,r=1,...,nA ,

1
nnA

nA∑
r=1

{
ur

n∑
i=1

wi,r + (1 − ur)
n∑

i=1
vi,r

}
+ λ1,nθ

TQTBA,TB
T
A,TQθ

+ λ2,nθ
TQTDQθ, (2.13)

subject to yi − bT
0 (ur)γ0 − ξ̂T

i P̂ (ur)Qθ = wi,r − vi,r, wi,r ≥ 0, and vi,r ≥ 0, for all i = 1, . . . , n,

and r = 1, . . . , nA.

If we want to further impose the monotonicity constraints (2.12) on (2.13), then the constrained

optimization can be similarly formulated as the following problem with respect to θ, γ0, and

{wi,r, vi,r}i=1,...,n,r=1,...,nA ,

1
nnA

nA∑
r=1

{
ur

n∑
i=1

wi,r + (1 − ur)
n∑

i=1
vi,r

}
+ λ1,nθ

TQTBA,TB
T
A,TQθ

+ λ2,nθ
TQTDQθ,

subject to yi − bT
0 (ur)γ0 − ξ̂T

i P̂ (ur)Qθ = wi,r − vi,r, {bT
0 (ur) − bT

0 (u′
r)}γ0 + ξ̂T

i {P̂ (ur) −
P̂ (u′

r)}Qθ ≤ 0, wi,r ≥ 0, and vi,r ≥ 0, for all i = 1, . . . , n, r = 1, . . . , nA and any ur <

u′
r, ur, u

′
r ∈ A.

In summary, the complete algorithm can be splitted into two parts:

• Derive the coefficients in (2.13) with or without the monotonicity constraints (2.12), such

as {ξ̂i}n
i=1, {P̂ (u)}u∈A, Q, etc. Specifically, we first derive the estimated FPCs {ϕ̂k(t)}m

k=1
and corresponding scores {ξ̂i}n

i=1. Next we compute the matrices related to the bivariate

spline basis, BT(t, u), Q, BA,T and D. Given {ϕ̂k(t)}m
k=1 and BT(t, u), {P̂ (u)}u∈A are

approximated by using numerical integration based on Simpson’s rule.

• With all the preparations in the previous step, we can code the quadratic programming prob-

lem (2.13) with or without the constraints (2.12) in MATLAB and solve it in MATLAB as

well.
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2.2.3 Tuning Parameter Selection

In our proposed method, to obtain the estimation of c(u) and β(t, u) in model (2.1), we need to first

decide the truncation level m, and the values of tuning parameters λ1,n and λ2,n.

For the truncation level m, we suggest to use following BIC criterion to choose m,

BIC(m) = log
(
n−1

nA∑
r=1

n∑
i=1

ρur

{
yi − bT

0 (ur)γ̂0 −
∫

T

m∑
k=1

ξ̂ikϕ̂k(t)β̂(t, u)dt
})

+ (m+ 1) logn
n

. (2.14)

For the selection of penalty parameters λ1,n and λ2,n, ideally, leave-one-out cross-validation should

be the best way to do it. However, the computational cost for each fitting is expensive, therefore, in

practice, we usually use five-fold or ten-fold cross-validation to select the parameter values. As we

will show in the next section, the value of λ2,n depends on the value of λ1,n. For this reason, we

propose a sequential procedure to choose values for λ1,n and λ2,n. and the specific cross-validation

procedure is described as follows. We use ten-fold cross-validation as an example.

We first use the complete sample {xi(t)}n
i=1 to estimate FPCs {ϕ̂k(t)}m

k=1, and corresponding

scores {ξ̂i}i=1,...,n. Then for a fixed m, we use ten-fold cross validation to find the optimal value

for tuning parameters λ1,n and λ2,n. More specifically, we first apply the cross validation on the

following objective function with only one penalty θTQTBA,TB
T
A,TQθ,

Ln,1(θ,γ0) = L0(θ,γ0) + λ1,nθ
TQTBA,TB

T
A,TQθ,

to decide the optimal value for λ1,n among all candidates, denoted as λ̂1,n.

Next, based on λ̂1,n, we apply the cross validation again on the full objective function with two

penalties

Ln,2(θ,γ0) = L0(θ,γ0) + λ̂1,nθ
TQTBA,TB

T
A,TQθ + λ2,nθ

TQTDQθ,

to find the optimal value for λ2,n among all candidates, denoted as λ̂2,n. Then (λ̂1,n, λ̂2,n) are the

optimal values for (λ1,n, λ2,n) for the current truncation level m. We will repeat this sequential

selection procedure for multiple values of m, and then choose the optimal value for m based on the

criterion (2.14).

2.3. Theoretical Results

To investigate the asymptotic properties of the proposed slope function estimator β̂(t, u) defined

in (2.11), we assume the following conditions on the distribution of the random function X(t), the

conditional distribution of Y | X(t), and the slope function β(t, u).

(A1) {Yi, Xi(t)}n
i=1 are independent and identically distributed.

12



(A2)
∫
T E

(
X4(t)

)
dt < ∞, and E

(
ξ4

k

)
< Cκ2

k for all k ≥ 1.

(A3) For some α > 1 and for any k ≥ 1, C−1k−α ≤ κk ≤ Ck−α, κk − κk+1 ≥ C−1k−α−1.

(A4) ∂FY |X(y | X)/∂y ∨ |∂2FY |X(y | X)/∂y2| ≤ C, and infu∈A fY |X(QY |X(u | X) | X) ≥
C−1.

(A5) β(t, u) ∈ W d+1
q (T × A ), and for some ζ > α/2 + 1, supu∈A |βk(u)| ≤ Ck−ζ , k = 1, . . .,

whereW d+1
q (T ×A ) is a Sobolev space defined over T ×A , and βk(u) =

∫
T β(t, u)ϕk(t)dt.

(A6) There exists a finite number p0 such that κk = 0 for all k ≥ p0.

The i.i.d. assumption is conventional and the scenario of dependent data is not considered in

this project. A2 are commonly assumed restrictions on the moments of X(t) and ξk. There is no

condition on the moment of Y needed. A3 is adapted from (A3) of [41], which ensures the iden-

tifiability of ϕk(t) as well as the estimation accuracy of ϕ̂k(t). A4 are common conditions on the

conditional distribution and density functions of Y under quantile regression context. A5 determines

the estimation accuracy of β̂(t, u) by using the truncated functional covariate, and the Sobolev space

assumption ensures that bivariate splines can be used to approximate β(t, u). A6 implies that the

functional covariateXi(t) can be represented by a finite number of pairs of FPCs and corresponding

FPC scores.

For a triangle Λ, let |Λ| be length of its longest edge, and then for a triangulation ∆, we define

|∆| := max{|Λ| : Λ ∈ ∆} ( i.e., the length of the longest edge of all triangles in the triangula-

tion ∆). Recall that nA and nT represent the cardinalities of A and T as previously defined. The

following theorem gives the rate of convergence of the slope function estimator β̂(t, u) for a given

truncation level m when the FPCA is used to reduce the dimension of the functional covariate.

For any fixed u ∈ (0, 1), we use βu(t) to denote β(t, u) and use β̂u(t) to denote β̂(t, u). Define

A1 = {r ∈ (1, . . . , nA) :
∥∥∥β̂ur (t) − βur (t)

∥∥∥
L2

≥ Mκ−1/2
m m1/2n−1/2,

for some constant M > 0},

where
∥∥∥β̂ur (t) − βur (t)

∥∥∥
L2

=
{∫

T

(
β̂ur (t) − βur (t)

)2
dt

}1/2
. The set A1 can be regarded as an

index set of quantiles for which the estimation are not good enough.

Theorem 1. Under the conditions A1-A5, and assume further that |∆| =
o
(
m−(1+2α)/(2d+2)n−3/(2d+2)

)
, and n−1

A |∆|−1m(α−1)/3 = o(1). Suppose the tuning parameters

λ1,n and λ2,n satisfy λ1,n ≍ n−1
A n−1

T m−1/2n|∆|d+1, and λ2,n = o(λ1,nn
−1
A n−1

T |∆|4), then∥∥∥β̂(t, u) − β(t, u)
∥∥∥

L2(Ω) ≈ Op

(
κ−1/2

m m1/2n−1/2 ∨m−(2ζ+1)/2
)
.

In addition, for A1 we have |A1| = op(m−1−αn−1/2nA).
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Remark 1. The first term of the stochastic order of
∥∥∥β̂(t, u) − β(t, u)

∥∥∥
L2(Ω) in Theorem 1 is

decreasing as the sample size n becomes larger, and is increasing with a larger the truncation level

m (i.e, adding more FPCs in the estimation). The second term represents the information loss if we

include too few FPCs in the estimation procedure. Then based on condition A5, we can obtain a

theoretically optimal truncation level m ≍ n1/(α+2ζ).

The following theorem presents the asymptotic distribution of the slope estimator β̂(t, u). We

now assume that p0 is known and finite as in [48]. Under A6 and by Lemma 1 and Lemma 3 in the

supplementary material, there exist γ∗
0 and θ∗ such that

sup
(t,u)∈T ×A

|β(t, u) −BT(t, u)Qθ∗| ≤ C1|∆|d+1, sup
u∈A

|c(u) − bT
0 (u)γ∗

0| ≤ C2|∆|d+1,

for some constant C1 and C2. Let Γ∗ = (γ∗
0,θ

∗)T, Zi(u) =
[
bT

0 (u), ξ̂T
i P̂ (u)Q

]
, B̃(t, u) =

(01×nB ,B
T(t, u)Q)T, and Z̃i = (ZT

i (u1), . . . ,ZT
i (unA)). Then define Σ1 = n−1

A

∑nA
r=1E [fi(Zi(ur)Γ∗)ZT

i (ur)Zi(ur)],
and

Σ2 = 1
2nΣ1 + λ1,n

[
0 0
0 QTBA,TB

T
A,TQ

]
+ λ2,n

[
0 0
0 QTDQ

]
,

where fi is the conditional density of Yi | Xi(t). Let U1 be an nA by nA matrix with its (r, r′)-

entry being ur ∧ ur′ − urur′ for any r, r′ = 1, . . . , nA. Define U2 = n−2
A E

[
Z̃T

i U1Z̃i

]
, and

Σ = (2nΣ2)−1U2/n (2nΣ2)−1.

Theorem 2. Under the conditions of Theorem 1, A6 and nAn|∆|d+2 = o(1), as n → ∞ and

nA → ∞, for fixed (t, u), we have

σ
−1/2
β (t, u)

{
β̂(t, u) − β(t, u)

}
→ N(0, 1)

in distribution, where σβ(t, u) = B̃T(t, u)ΣB̃(t, u).

Remark 2. Due to the fact that the number of quantile levels, nA, is used to ensure a good estimate

of the bivariate function in the quantile interval, nA shouldn’t be too small. Meanwhile, larger nA

will result in larger number of triangle basis functions, which will increase the variance of the

estimator. So in our theorems, nA needs to satisfy n−1
A |∆|−1m(α−1)/3 = o(1) and nAn|∆d+2| =

o(1).

The next theorem presents how to construct a simultaneous confidence region (SCR) for β(t, u).

Let Γmin(·) and Γmax(·) represent the minimum and maximum eigenvalues of a square matrix. Let

Ωs denote the set of vertices of the triangulation ∆ and |Ωs| denote the cardinality of the set Ωs.

Theorem 3. Under the conditions of Theorem 2, and further assume that Γmin (Σ) and Γmax (Σ)
are bounded away from 0 and ∞ with probability tending to one as n → ∞,

(1) As n, nA → ∞, we have

σ
−1/2
β (t, u)

{
β̂(t, u) − β(t, u)

}
→ ϑ(t, u), (2.1)
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in distribution, where ϑ(t, u) is a Gaussian random field with mean 0 defined on Ω with the

covariance function

C(t, u, t′, u′) : = Cov
(
ϑ(t, u), ϑ(t′, u′)

)
= σ

−1/2
β (t, u)σ−1/2

β (t′, u′)B̃T(t, u)ΣB̃(t′, u′).

Specifically, C(t, u, t, u) = V ar (ϑ(t, u)) = 1.

(2) For any a ∈ (0, 1),

lim
n→∞

P

 sup
(t,u)∈Ωs

∣∣∣σ−1/2
β (t, u)

{
β̂(t, u) − β(t, u)

}∣∣∣ ≤ Qβ(a)

 = 1 − a, (2.2)

where Ωs as a subset of Ω becomes denser as n → ∞, and Qβ(a) = (2 log |Ωs|)1/2 −
(2 log |Ωs|)−1/2 {log(−0.5 log(1 − a)) + 0.5 [log(log |Ωs|)+
log 4π]}. Then an asymptotic 100(1 −a)% simultaneous confidence region (SCR) for β(t, u)
over Ωs is given by β̂(t, u) ± σ

1/2
β (t, u)Qβ(a).

Remark 3. In Theorem 2, the condition nAn|∆|d+2 = o(1) is used for undersmoothing of the slope

estimator, which is widely applied in the series approximating estimations [87, 88]. By consistently

estimating the asymptotic variance σβ(t, u), the result in Theorem 2 can be used to establish the

pointwise confidence interval of the slope function. Compared with the asymptotic 100(1 − a)%

point confidence interval in Theorem 2, β̂(t, u) ± σ
1/2
β (t, u)za, the width of the simultaneous con-

fidence region in Theorem 3 for any (t, u) ∈ Ωs is inflated by the rate Qβ(a)/za, where za is the

a-quantile of the standard normal distribution.

2.4. Simulation Studies

In this section, we use simulation studies to compare the performance of the proposed method and

the conventional method in [41] based on the estimation of β(t, u) under three scenarios. In Scenario

I, the true slope function β(t, u) is free from u, that is, β(t, u) is just a univariate function of t, which

is similar to the simulation study in [41]. In Scenario II, the true slope function β(t, u) is a bivariate

function of both t and u, which is more complicated than the slope function in the first scenario and

is not considered in [41]. The data generating models are introduced as follows.
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2.4.1 Data Generating Models

Scenario I. In this scenario, we suppose that realizations of the {X(t), Y } are generated from

X(t) =
10∑

i=1
i−1riϕi(t) + µ(t), µ(t) =

√
3ϕ1(t),

Y =
∫ 1

0
ρ1(t)X(t)dt+ ϵ, ρ1(t) =

10∑
j=1

τjϕj(t),

where ϕj(t) = 21/2cos(jπt), τ1 = 1, τj = 4(−1)j+1j−2 for j ≥ 2, ri are i.i.d. Uniform(−
√

3,
√

3)
random variables, and ϵ is an N(0, 1) random variables independent of other random variables.

Under this setting, the underlying slope function β(t, u) is β(t, u) = ρ1(t) =
10∑

j=1
τjϕj(t).

Scenario II. In this scenario, we suppose that the realizations of the pair {X(t), Y } are generated

from

X(t) =
10∑

i=1
i−1riϕi(t) + µ(t), µ(t) = 3

√
3ϕ1(t),

Y =
∫ 1

0
ρ1(t)X(t)dt+ σ(X)ϵ, σ(X) =

∫ 1

0
ρ2(t)X(t)dt,

ρ1(t) =
10∑

j=1
τjϕj(t), ρ2(t) = ϕ1(t),

where ϕj(t) = 21/2cos(jπt), τ1 = 1, τj = 4(−1)j+1j−2 for j ≥ 2, ri are i.i.d. Uniform(−
√

3,
√

3)
random variables, and ϵ is an Gamma(1, 2) random variable independent of other random vari-

ables. Under this setting, the underlying slope function β(t, u) is β(t, u) = ρ1(t) + ρ2(t)Qϵ(u) =
10∑

j=1
τjϕj(t) + ρ2(t)Qϵ(u), where Qϵ(u) is the u-quantile of the random variable ϵ.

Scenario III. In this scenario, we suppose that the realizations of the pair {X(t), Y } are generated

from

X(t) =
10∑

i=1
i−1riϕi(t) + µ(t), µ(t) = 3

√
3ϕ1(t),

Y =
∫ 1

0
ρ1(t)X(t)dt+ σ(X)ϵ, σ(X) =

∫ 1

0
ρ2(t)X(t)dt,

ρ1(t) =
10∑

j=1
τjϕj(t), ρ2(t) = ϕ1(t),

where ϕj(t) = 21/2cos(jπt), τ1 = 1, τj = 4(−1)j+1j−2 for j ≥ 2, ri are i.i.d. Uniform(−
√

3,
√

3)
random variables, and ϵ is an Gamma(1, 2) random variable independent of other random vari-

ables. Under this setting, the underlying slope function β(t, u) is β(t, u) = ρ1(t) + ρ2(t)Qϵ(u) =
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Table 2.1: The average of the mean squared error (MSE) defined in (2.1) and the average of max-
imum absolute error (MAE) defined in (2.2) for the estimations of the slope function β(t, u) by
using the proposed simultaneously functional quantile regression (SFQR) method and the con-
ventional functional quantile regression (FQR) method under three scenarios with the sample size
n = 300, 400, 500 respectively in 100 simulation repetitions.

n SFQR FQR SFQR/FQR
MSE MAE MSE MAE MSE MAE

300 0.085 0.699 0.099 0.706 0.848 0.991
Scenario I 400 0.068 0.630 0.080 0.648 0.849 0.97

500 0.062 0.600 0.067 0.596 0.927 1.007
300 0.321 1.383 0.505 1.548 0.635 0.894

Scenario II 400 0.253 1.241 0.381 1.380 0.664 0.900
500 0.212 1.201 0.309 1.249 0.686 0.962
300 0.267 1.196 0.647 1.567 0.412 0.763

Scenario III 400 0.193 1.009 0.459 1.337 0.422 0.755
500 0.172 0.945 0.379 1.222 0.453 0.773

10∑
j=1

τjϕj(t) + ρ2(t)Qϵ(u), where Qϵ(u) is the u-quantile of the random variable ϵ. Note that in this

scenario, the error term has the asymmetric distribution, which is different from the other scenarios.

2.4.2 Summary of Simulation Results

In the simulations of Scenario I and 2, the setA consists of 30 quantiles uniformly distributed within

the interval [0.2, 0.8]. In the simulations of Scenario III, the set A consists of 17 quantiles uni-

formly distributed within the interval [0.1, 0.9]. The truncation level m for the functional covariate

{xi(t)}n
i=1 by using FPCA is chosen as m = 3. The candidate sets for the tuning parameters λ1,n

and λ2,n are chosen as {10−2, 10−2.5, 10−3, 10−3.5, 10−4} and {10−1, 10−2, 10−3}. We consider

two metrics, the mean squared error (MSE) and the maximum absolute error (MAE), to evaluate the

performance of the two methods for the estimation of the slope function β(t, u) for the ith repetition

of simulation, i = 1, . . . , 100,

MSE = 1
nAnT

∑
t∈T

∑
ur∈A

{β̂(i)(t, ur) − β(t, ur)}2, (2.1)

MAE = max
t∈T,ur∈A

|β̂(i)(t, ur) − β(t, ur)|. (2.2)

MSE measures the average deviation between the estimator β̂(t, u) and the true β(t, u), and MAE

measures the maximum deviation between them. The simulation results are summarized in Table

2.1.

Under Scenario I, the true slope function β(t, u) is a univariate function of time t, and it does not

change with the quantile u. We regard Scenario I as the simple case. Under Scenario II, the true slope

function β(t, u) changes with both t and u, and the error ϵ is Normally distributed. Under Scenario
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III, the true slope function β(t, u) also changes with both t and u. But different from Scenario II,

the error ϵ has a asymmetric distribution. We regard both Scenario II and 3 as the complex cases.

Table 2.1 shows that for the simple case, the proposed method and the conventional method [41]

have similar performance on the estimation of β(t, u). For the complex cases, the performance of

the proposed method is much better than the conventional method [41] . For instance, when the

sample size n = 300, our method has reduced the average MSE by 36.5% in comparison with

the conventional method [41]. The improvement in MAE is less significant than in MSE, but our

method still brings down the average MAE by 10.6%. When the sample size n increases to 500,

the improvement gap of the proposed method is decreasing in comparison with the conventional

method [41] . Nevertheless, the MSE of our estimate is still 31.6% less than the estimate obtained

from the conventional method. This empirical result is supported by our intuition. For the simple

case, the functional covariate X(t) has the same effect on all the quantiles of the response variable

Y , and therefore, incorporating multiple quantiles into the estimation procedure may not have any

advantage compared with the conventional method [41]. While for the complex cases, the effect

of X(t) on different quantiles of Y is different, and combining the strength of multiple quantiles

should provide a better estimation.

Fig.2.2, Fig.2.3 and Fig.2.4 present the boxplots of the mean squared error (MSE) and the maxi-

mum absolute error (MAE) for the estimation of β(t, u) under the setting that the true slope function

β(t, u) is a univariate function of t and does not change with u for sample size n = 300, 400 and

500. Fig.2.5, Fig.2.6, Fig.2.7 Fig.2.8, Fig.2.9, and Fig.2.10 present the boxplots of the mean squared

error (MSE) and the maximum absolute error (MAE) for the estimation of β(t, u) under the settings

that the true slope function β(t, u) changes with both u and t based on sample size n = 300, 400
and 500.

Based on Fig.2.2-Fig.2.14, for MSE, the advantage of our method is significant compared with

the conventional method. The proposed method in general has a smaller variance and a smaller

median in comparison with the estimator derived from the conventional method. In addition, we

can also see that for MSE, the advantage of the proposed method is more significant when the true

β(t, u) changes with both t and u compared with the situations when the true β(t, u) only changes

with t. But for MAE, the proposed estimator for β(t, u) usually has a larger variation than the

estimator obtained from the conventional method.

To compare the influence of truncation level m on the estimation of β(t, u), we carry out addi-

tional simulations based on 100 repetitions under Scenario II and 3 with the sample size n = 500.

The estimations are obtained with different truncation levels, m = 3 and m = 4. The MSE of the

estimations are calculated based on 17 quantiles uniformly distributed on [0.1, 0.9]. The results are

summarized in Table 2.2.
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Table 2.2: The average of the mean squared error (MSE) defined in (2.1) for the estimations of the
slope function β(t, u) by using the proposed simultaneously functional quantile regression (SFQR)
method of two truncation levels m = 3, 4 under two scenarios with the sample size n = 500 in 100
simulation repetitions.

Truncation Level m 3 4
Scenario II 0.181 0.259

Scenario III 0.172 0.285
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Figure 2.2: Boxplots of the average of mean squared error (MSE) and the average of maximum ab-
solute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario I with
sample size 300.
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Figure 2.3: Boxplots of the average of mean squared error (MSE) and the average of maximum ab-
solute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario I with
sample size 400.
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Figure 2.4: Boxplots of the average of mean squared error (MSE) and the average of maximum ab-
solute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario I with
sample size 500.
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Figure 2.5: Boxplots of the average of mean squared error (MSE) and the average of maximum ab-
solute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario II with
sample size 300.
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Figure 2.6: Boxplots of the mean squared error (MSE) defined in (2.1) and the maximum absolute
error (MAE) defined in (2.2) for the estimation of β(t, u) using the proposed simultaneous func-
tional quantile regression (SFQR) and the conventional functional quantile regression (FQR) under
Scenario II with sample size 400.

21



MSE of SFQR MSE of FQR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

MAE of SFQR MAE of FQR

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 2.7: Boxplots of the average of mean squared error (MSE) and the average of maximum ab-
solute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario II with
sample size 500.
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Figure 2.8: Boxplots of the average of mean squared error (MSE) and the average of maximum abso-
lute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario III
with sample size 300.
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Figure 2.9: Boxplots of the average of mean squared error (MSE) and the average of maximum abso-
lute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quantile
regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario III
with sample size 400.
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Figure 2.10: Boxplots of the average of mean squared error (MSE) and the average of maximum
absolute error (MAE) for the estimation of β(t, u) using the proposed simultaneous functional quan-
tile regression (SFQR) and the conventional functional quantile regression (FQR) under Scenario
III with sample size 500.
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2.5. Real Data Analysis

2.5.1 The Capital Bike Share Program

The Urban population is growing rapidly in recent years. Meanwhile, air pollution, greenhouse gas

emissions, and other environmental problems are getting worse and worse as an increasing number

of people need to drive to work. As an alternative to driving to work, especially in big cities, which

are facing traffic, environmental and health issues, biking is a healthy and eco-friendly way.

Instead of owing bikes, renting bikes is considered a more economical and environmental-

friendly alternative. Nowadays, bike-sharing systems have become an essential part of urban mobil-

ity in many major cities, and the number of cities that are becoming bike-friendly is increasing day

by day.

As an outdoor activity, customers’ rental behaviors are affected by weather conditions. A suc-

cessful bike business needs to have a good strategy to adjust the supply of available bikes to meet the

demands based on the weather conditions. Therefore, it is of great interest to quantify the weather

condition’s effect on the bike rental. Weather conditions can be measured using a wide range of

factors. In this article, we investigate the relationship between the total daily number of bike rentals

and the hourly temperature.

The data set we use in this study is from the Capital Bike Share study [21], which contains

rentals to cyclists without membership in the Capital Bike Share program in Washington D.C. from

January 1st, 2011 to December 31th 2012. The hourly counts of casual bike rentals every day, the

weather conditions, and the hourly temperature measurements are all recorded in the data set. The

demands of bike rentals are quite different between weekdays and weekends. In the study, we restrict

our analysis to the data observed on the weekends. Specifically, we only consider the temperature

measurements and the counts of bike rentals obtained between 7:00 and 17:00 on Saturdays and

Sundays without raining or snowing. The goal of our analysis is to investigate how the hourly

temperature affects the lower, middle, and upper quantiles of the daily total bike rentals during the

weekends.

Figure 2.11 shows the estimated slope function β̂(t, u) for u = 10%, 20%, 50%, and 90%. In

the top two panels of Figure 2.11, the slope function is negative in the early morning and becomes

positive in the noon and afternoon, which are the peak demand periods for bike rentals. Since the

temperature in the early morning is usually much cooler than the temperature in the noon and

afternoon, the cumulative effect of temperature on the bike rental is positive. It indicates that as

long as the overall temperature of that day is not too low, then the lower bounds of the bike rental

will usually not be bad because the 10% and 20% quantiles measure the worst situations for the

bike rental demand. The result on the 50% quantile displayed in the bottom left panel in Figure

2.11 represents the normal situation. It shares a similar pattern with the lower quantiles that the cool

morning and the warm noon are preferred for a normal bike demand.

The bottom right panel in Figure 2.11 shows that when u = 90%, the slope function is negative

in the early morning before 9:00 and late afternoon after 15:30. This may be due to the fact that

24



−1
00

0
0

50
0

Time

E
st

im
at

io
n 

fo
r 

10
%

−q
ua

nt
ile

7 8 9 10 11 12 13 14 15 16 17 −1
00

0
0

50
0

Time

E
st

im
at

io
n 

fo
r 

20
%

−q
ua

nt
ile

7 8 9 10 11 12 13 14 15 16 17

−1
00

0
0

50
0

Time

E
st

im
at

io
n 

fo
r 

50
%

−q
ua

nt
ile

7 8 9 10 11 12 13 14 15 16 17 −1
00

0
0

50
0

Time

E
st

im
at

io
n 

fo
r 

90
%

−q
ua

nt
ile

7 8 9 10 11 12 13 14 15 16 17

Figure 2.11: The estimated slope function β̂(t, u) for the regression model (2.1) at quantiles u =
10%, 20%, 50%, 90% based on the data collected from Capital Bike Share program in Washington
D.C. during 7:00 to 17:00 every weekend.

a high temperature in the morning deters unnecessary bike rental at noon and afternoon. If the

temperature is high in the morning, then the temperature of the whole day is usually very high as

well. In addition, the late afternoon is usually the hottest time of the day, and on some days, the late

afternoon temperature can be too high for biking. On the other hand, a cool morning may indicate

a comfortable biking temperature for the peak demand periods: the noon and the afternoon. Since

90% quantile almost measures the most ideal situation for the bike rental demand, this plot indicates

that for a high bike rental demand, the weather needs to be cool in the morning, and comfortable or

moderate in the afternoon.

To give an overall visualization of the estimated β̂(t, u), Figure 2.12(a) displays the heat map

of β̂(t, u) estimated from the proposed method for the time t from 7:00 to 17:00 and the quantile

u from 10% to 90%. The estimated slope function β̂(t, u) is positive after 9:00 for the quantiles u

from 10% to 60%, while it gradually becomes negative in the late afternoon for quantiles u from

60% to 90%.

In comparison with the proposed method, Figure 2.12(b) shows the heat map of the estimation

for β(t, u) derived from the conventional method [41]. We can observe that this estimation is not

smooth. In addition to that, the proposed method can overcome the issue of the monotonicity of

the quantile estimates. Figure 2.13 shows the comparison of the estimated quantile functions of the

60th and the 100th subjects derived from the conventional method [41] and the proposed method.

Let Q∗
60(u) and Q∗

100(u) be the estimated quantile functions of the 60th and the 100th subjects
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Figure 2.12: The heat maps of the estimated slope function β̂(t, u) for the regression model (2.1)
derived from the proposed method (Panel (a)) and the conventional method [41] (Panel (b)) based
on the data collected from Capital Bike Share program in Washington D.C. during 7:00 to 17:00
every weekend.
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Figure 2.13: Estimated quantile functions of the 60th and the 100th subjects derived from the con-
ventional method [41] (shown in the left two panels) and the proposed method (shown in the right
two panels) based on the data collected from the Capital Bike Share program in Washington D.C.
during 7:00 to 17:00 every weekend.

derived from the conventional method [41], andQ60(u) andQ100(u) be the corresponding estimated

quantile functions derived from the proposed method. We can directly observe that Q∗
60(u) and

Q∗
100(u) are not monotone over the interval u ∈ [0.1, 0.9] as they should be, while Q60(u) and

Q100(u) are both monotonically increasing in u ∈ [0.1, 0.9].
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Figure 2.14: The heat maps of the estimated slope function β̂(t, u) for the regression model (2.1)
derived from the proposed method (Panel (a)) and the conventional method [41] (Panel (b)) based
on the Berkeley growth data for one-year-old to twelve-year-old.

2.5.2 Berkeley Growth Data

Child’s height growth is an important health indicator, and abnormal growth usually implies an

underlying health problem or growth disorder. It is thus helpful to understand the relationship be-

tween children’s growth history and their adult height to evaluate the health and growth progress

of children. If the predicted adult height of a child has an abnormally small lower quantile, then

interventions should be considered during their teenage year to treat any potential health problem

that affects height growth.

To investigate this relationship, we use the children’s growth history between one-year-old and

twelve-year-old as a functional covariate [11], and the conditional quantile of their eighteen-year-

old heights as the response variable. We apply the proposed method to the Berkeley growth data

[78] to estimate the slope function β(t, u) from the model (2.1).

Figure 2.14(a) displays β̂(t, u) for u ∈ [0.2, 0.8] and t ∈ [1, 12]. We can observe that the major

variation of β̂(t, u) along the direction of u (y-axis variable) occurs between one-year-old and six-

year-old. For any fixed age t ≥ 7, β̂(t, u) does not change too much as a function of u.
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Figure 2.15: The estimated slope function β̂(t, u) for the regression model (2.1) at u =
20%, 25%, 50%, 75%, and 80% over the age t from one-year-old to twelve-year-old and the es-
timated slope function β̂(t, u) at age t = 5 for u from 20% to 80% based on the Berkeley growth
data.
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Figure 2.16: Estimated quantile functions of the 37th and the 67th subjects derived from the con-
ventional method [41] (shown in the left two panels) and the proposed method (shown in the right
two panels) based on the Berkeley growth data for one-year-old to twelve-year-old.

More specifically, Figure 2.15(a) displays β(t, u) as a function of t for u = 20%, 25%, 50%, 75%,

and 80%. It shows that the children’s growth history between age seven years and eleven years is

always positively correlated with the quantiles of their adult height. This interval may be regarded

as a growth spurt. If one child has a significantly lower height compared to the normal level during

the growth spurt period, then some intervention should be considered.

Figure 2.15(b) shows the estimated slope function β̂(t, u) as a function of u from 0.2 to 0.8
when t = 5, which is a negative function for any u ∈ [0.2, 0.8]. It indicates that the early growth

spurt is not always a good sign for children’s adult height. The early spurt may decrease children’s

potential to have a higher adult height due to the sex hormone levels in their bodies [74]. These

children grow taller than other kids when they are young. However, their skeletons mature more

rapidly. Consequently, they may stop growing at an early age, and eventually, end up having average

or below average height as adults.

Similar to the previous application, Figure 2.14 and Figure 2.16 also show the comparison of

the performance of the proposed method and the conventional method. In Figure 2.16, Q∗
37(u) and

Q∗
67(u) are defined in the same way as the previous application. Clearly, the quantile estimations

obtained from the conventional method [41] are not monotone over the interval u ∈ [0.2, 0.8], while

the proposed method can guarantee the desired monotonicity.
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2.6. Conclusions and Discussion

We propose a novel framework for the simultaneous functional quantile regression to overcome the

two major limitations of the conventional methods. When the true slope function is not a univariate

function of time index, our framework can provide a better estimation for the slope function com-

pared with the conventional estimation strategy that estimates the slope function as the univariate

function by first fixing the quantile index. This advantage of the proposed method is examined by

simulation studies in comparison with the method of [41]. In addition, the proposed framework can

solve the two major limitations of the conventional methods. Within the proposed framework, the

estimated conditional quantile functions are guaranteed to be monotone and their smoothness can

be controlled.

In the current model (2.1), we only consider a single functional covariate. It may not be flexible

enough to capture all of the information from data. In [11], they proposed a generalized version of

the model (2.1) by using the composition of some link function and the linear functional of the func-

tional covariate. In practice, it is common that several accompanying scalar covariates are observed

along with the functional covariate. For this reason, in [77], a linear combination of scalar covariates

is included in the model. Moreover, we often observe multiple functional covariates simultaneously

in applications. To take multiple functional covariates into account, [54] further extended the model

to incorporate a linear combination of multiple functional covariates with different slope functions.

Although we present our method based on the model (2.1), our proposed method can be further

extended to different settings of the functional quantile regression model, such as sparse functional

observations [84, 9]. Therefore, for the future work, we will extend our framework to the model that

contains multivariate functional covariates and finite dimensional covariates. We will also investi-

gate the properties and performance of our method in the scenario of sparse functional observations.

2.7. Proofs in Section 2.3

We use ∥·∥l2 to denote the l2-norm of a vector. We assume that A1-A5 given in the previous chapter

are satisfied.

Lemma 1. [16] Let l and d be integers with 0 ≤ l ≤ d. For a given set of knots T on [a, b]. a

B-spline basis of degree d is defined based on the knots T , denoted as a vector bT
0 (x). Then for any

function g(x) ∈ W l+1
q ([a, b]) and for any 1 ≤ q ≤ ∞, any 0 ≤ r ≤ l, there exists a coefficient

vector γ0 such that

∥Dr(bT
0 (x)γ0 − g(x))∥Lq([a,b]) ≤ Chl+1−r

∥∥∥Dl+1g
∥∥∥

Lq([a,b])
.

where C is a constant and h is the largest length of a knot interval in T .

Lemma 2. [46] Let {B(t, u)j}J
j=1 be the Bernstein polynomials basis defined on the spline space

Sr
d(∆) over a π-quasi-uniform triangulation ∆. Then there exist positive constants c1 and c2, which
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only depend on d, r and shape parameter π, such that

c1|∆|2 ∥γ∥2
l2 ≤ ∥B(t, u)Tγ∥2

2 ≤ c2|∆|2 ∥γ∥2
l2 .

Given any domain Ω ∈ R2, for any 1 ≤ q ≤ ∞, we define the q−norm of any function f ∈ Ω
by

∥f∥q,Ω =


(∫

Ω |f(u)|qdu
)1/q

, 1 ≤ q < ∞

ess supu∈Ω|f(u)|, q = ∞,

Lemma 3. [46] Suppose ∆ is a quasi-uniform triangulation over a polygonal domain Ω, and

f(x, y) ∈ W d+1
q (Ω), where W d+1

q (Ω) is a Sobolev space defined on Ω. Suppose d ≥ 3r+ 2. Then,

for any integers a1, a2, 0 ≤ a1 + a2 ≤ d, there exists f∗(x, y) ∈ Sr
d(∆) such that∥∥∥∇a1

x ∇a2
y (f∗ − f)

∥∥∥
q,Ω ≤ C|∆|d+1−a1−a2 |g|d+1,q,Ω,

for some constant C, which only depends on d, r and π, the shape parameter of the triangulation

∆.

DefineLn(γ0,θ) = 1
nA

∑nA
r=1En {ρur (vi,r(γ0,θ))}+λ1,nθ

TQTBA,TB
T
A,TQθ+λ2,nθ

TQTDQθ,

where vi,r(γ0,θ) = Yi − bT
0 (ur)γ0 − ξ̂T

i P̂ (ur)Qθ. Suppose (γ̂0 ,θ̂) is a solution of

min
γ0,θ

Ln(γ0,θ), (2.1)

and define γ̂ = Qθ̂ and β̂(t, u) = BT(t, u)Qθ̂.

For convenience, we first define several notations. Let βk(u) =
∫
β(t, u)ϕk(t)dt for k =

1, . . . ,m. For i = 1, . . . , n and k = 1, . . . ,m, let ηi,k = κ
−1/2
k ξi,k, η̂i,k = κ

−1/2
k ξ̂i,k, dk(u) =

κ
1/2
k βk(u), d̂k(u) = κ

1/2
k

∑J
j=1 γ̂j p̂k,j(u). where γ̂j is the jth entry of γ̂. For k = 0, let η̂i,0 =

ηi,0 = 1 and d0(u) = c0(u) as well as d̂0(u) = bT
0 (u)γ̂0.

Then for any i = 1, . . . , n, define

dm(u) = (d1(u), . . . , dm(u))T,

dm+1(u) = (d0(u), d1(u), . . . , dm(u))T,

d̂m(u) = (d̂1(u), . . . , d̂m(u))T,

d̂m+1(u) = (d̂0(u), d̂1(u), . . . , d̂m(u))T,

ξ̂i = (ξ̂i,1, . . . , ξ̂i,m)T,

η̂m
i = (η̂i,1, . . . , η̂i,m)T,

η̂m+1
i = (η̂i,0, η̂i,1, . . . , η̂i,m)T = (1, η̂i,1, . . . , η̂i,m)T.

For a sequence {ai}n
i=1, define En{ai} = 1

n

∑n
i=1 ai.
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Lemma 4. [41] Let Sm = {h ∈ Rm+1| ∥h∥l2 = 1}. Then,

−En[{u− 1(Yi ≤ η̂m+1
i ·(dm+1(u) +M

√
m/nh))}(η̂m+1

i · h)]

≥ c1M(1 − op(1))
√
m/n−Op(

√
m/n) −M2op(

√
m/n),

where c1 and M are some positive constants, as well as the stochastic orders are evaluated uni-

formly for any u ∈ (0, 1) and any h ∈ Sm

Lemma 5. Let (γ̂0 ,θ̂) be a solution of (2.1), λ1,n ≍ n−1
A n−1

T m−1/2n|∆|d+1, and λ2,n = o(λ1,nnAnT |∆|4).

The estimator β̂(t, u) can be expressed as

β̂(t, u) =
m∑

k=1
κ

−1/2
k d̂k(u)ϕ̂k(t) +

∞∑
k=m+1

κ
−1/2
k d̂k(u)ϕ̂j(t)

=
m∑

k=1
κ

−1/2
k d̂k(u)ϕ̂k(t) + β̂re(t, u),

where κ−1/2
k d̂k(u) =

∫
β̂(t, u)ϕ̂k(t)dt and β̂re(t, u) =

∑∞
k=m+1 κ

−1/2
k d̂k(u)ϕ̂j(t). Then, we have∥∥∥BT

A,TQθ̂
∥∥∥

l2
≤ λ−1

1,n(1 − o(1))Op(mn− 1
2 ∨m|∆|d+1),

and

β̂re(t, u) ≈ Op(m1/2n−1/2).

Proof : Under the condition A5, and by Lemma 1 and Lemma 3, there exist γ∗
0 and θ∗ such

that

sup
(t,u)∈T ×A

|β(t, u) −BT(t, u)Qθ∗| ≤ C1|∆|d+1,

sup
u∈A

|c(u) − bT
0 (u)γ∗

0| ≤ C2|∆|d+1,

for some constant C1 and C2. Since (γ̂0 ,θ̂) is the minimizer of (2.1), then

Ln(γ̂0, θ̂) ≤ Ln(γ̂0,θ
∗). (2.2)

For any ur ∈ A, let

(d̃0(ur), d̃m(ur)) = argminf0,f1,...,fm
En {ρur (Yi − f0 − η̂m

i · fm)} ,

where fm = (f1, . . . , fm)T. From [41], we know that

sup
u∈A

{
(d0(u) − c0(u))2 +

∥∥∥d̃m(u) − dm(u)
∥∥∥2

l2

}
= Op(mn−1).
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Therefore,

∣∣∣∣n−1
A

nA∑
r=1

En

{
ρur

(
Yi − d̃0(ur) − η̂m

i · d̃m
)}

− n−1
A

nA∑
r=1

En

{
ρur

(
Yi − bT

0 (ur)γ∗
0 − ξ̂T

i P̂ (ur)Qθ∗)
)} ∣∣∣∣

≤{nAn}−1
nA∑
r=1

n∑
i=1

{ ∣∣∣d̃0(ur) + η̂m
i · d̃m(ur) − bT

0 (ur)γ∗
0 − ξ̂T

i P̂ (ur)Qθ∗
∣∣∣

+ |2ur − 1|
∣∣∣d̃0(ur) + η̂m

i · d̃m(ur) − bT
0 (ur)γ∗

0 − ξ̂T
i P̂ (ur)Qθ∗

∣∣∣ },
≤2n−1

A n−1
nA∑
r=1

n∑
i=1

{ ∣∣∣η̂m
i · d̃m(ur) − ξ̂T

i P̂ (ur)Qθ∗
∣∣∣+ ∣∣∣d̃0(ur) − bT

0 (ur)γ∗
0

∣∣∣ },
≤2n−1

A n−1
nA∑
r=1

n∑
i=1

{
∥η̂m

i ∥l2

∥∥∥d̃m(ur) − κP̂ (ur)Qθ∗
∥∥∥

l2
+
∣∣∣d̃0(ur) − bT

0 (ur)γ∗
0

∣∣∣ },
≤Op(m1/2) ×Op(m1/2n−1/2 ∨ |∆|d+1) = Op(mn−1/2 ∨m1/2|∆|d+1), (2.3)

where κ is a m by m diagonal matrix with the diagonal entries being (κ1/2
1 , . . . , κ

1/2
m ). In addition,

by definition of (d̃0(ur), d̃m(ur)),

nA∑
r=1

En

{
ρur

(
Yi − d̃0(ur) − η̂m

i · d̃m(ur)
)}

≤
nA∑
r=1

En

{
ρur

(
Yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂)

)}
.

(2.4)

Since

n−1
A

nA∑
r=1

En

{
ρur

(
Yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂)

)}
< n−1

A

nA∑
r=1

En

{
ρur

(
Yi − bT

0 (ur)γ∗
0 − ξ̂T

i P̂ (ur)Qθ∗)
)}

,

then by (2.3) and (2.4),

∣∣∣∣n−1
A

nA∑
r=1

En

{
ρur

(
Yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂)

)}
− n−1

A

nA∑
r=1

En

{
ρur

(
Yi − bT

0 (ur)γ∗
0 − ξ̂T

i P̂ (ur)Qθ∗)
)} ∣∣∣∣ ≤ Op(mn−1/2 ∨m1/2|∆|d+1).

(2.5)

By Lemma 2 and [82],

θ̂
T
QTDQθ̂ ≤ C|∆|−2

∥∥∥θ̂∥∥∥2

l2
= C|∆|−4

∥∥∥β̂(t, u)
∥∥∥2

L2(Ω)
.

On the other hand,

θ̂
T
QTBA,TB

T
A,TQθ̂ ≈ nAnT

∥∥∥β̂(t, u)
∥∥∥2

L2(Ω)
.

32



Since λ2,n = o(λ1,nnAnT |∆|4), when nA and nT are large enough,

λ−1
1,nλ2,nθ̂

T
QTDQθ̂

θ̂
T
QTBA,TBT

A,TQθ̂
= o(1). (2.6)

Combine (2.2), (2.5) and (2.6), we have

θ̂
T
QTBA,TB

T
A,TQθ̂ ≤ Op(λ−1

1,nmn
−1/2 ∨ λ−1

1,nm
1/2|∆|d+1) + θ∗TQTBA,TB

T
A,TQθ

∗,

= Op(λ−1
1,nmn

−1/2 ∨ λ−1
1,nm

1/2|∆|d+1) +O(nAnT ),

which implies
∥∥∥BT

A,TQθ̂
∥∥∥

l2
= Op(λ−1/2

1,n m1/2n−1/4 ∨ λ
−1/2
1,n m1/4|∆|(d+1)/2 ∨ n

1/2
A n

1/2
T ).

By Lemma 3, there exists a vector θ̂m such that maxt∈T,u∈A |β̂∗
m(t, u)−

∑m
k=1

(∫
β̂(t, u)ϕ̂k(t)dt

)
ϕ̂k(t)| ≤

C|∆|d+1, where β̂∗
m(t, u) = BT(t, u)Qθ̂m. Since (γ̂0, θ̂) is a minimizer of (2.1), then Ln(γ̂0, θ̂) ≤

Ln(γ̂0, θ̂m). That is,

n−1n−1
A

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂

)
+ λ1,nθ̂

T
QTBA,TB

T
A,TQθ̂

+ λ2,nθ̂
T
QTDQθ̂ ≤ n−1n−1

A

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂m

)
+ λ1,nθ̂

T
mQ

TBA,TB
T
A,TQθ̂m + λ2,nθ̂

T
mQ

TDQθ̂m. (2.7)

On the other hand,

n−1n−1
A

∣∣∣∣ nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂

)
−

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ̂0 − ξ̂T
i P̂ (ur)Qθ̂m

) ∣∣∣∣,
= n−1n−1

A

nA∑
r=1

n∑
i=1

{ ∣∣∣ξ̂T
i P̂ (ur)Qθ̂ − ξ̂T

i P̂ (ur)Qθ̂m

∣∣∣
+ (2ur − 1)

(
ξ̂T

i P̂ (ur)Qθ̂ − ξ̂T
i P̂ (ur)Qθ̂m

)}
,

≤ n−1n−1
A

nA∑
r=1

n∑
i=1

{
2
∣∣∣ξ̂T

i P̂ (ur)Qθ̂ − ξ̂T
i P̂ (ur)Qθ̂m

∣∣∣ },
≤ n−1n−1

A

nA∑
r=1

n∑
i=1

{
2
∥∥∥ξ̂i

∥∥∥
l2

∥∥∥P̂ (ur)Qθ̂ − P̂ (ur)Qθ̂m

∥∥∥
l2

}
,

= Op(m1/2|∆|d+1), (2.8)
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provided that En

{∥∥∥ξ̂i

∥∥∥
l2

}
= Op(m1/2) [41]. By Lemma 2, (2.7) and (2.8), we have

n−1
A n−1

T

{
θ̂

T
QTBA,TB

T
A,TQθ̂ − θ̂T

mQ
TBA,TB

T
A,TQθ̂m

}
≤ Op(λ−1

1,nn
−1
A n−1

T m1/2|∆|d+1) +Op(λ−1
1,nλ2,nn

−1
A n−1

T |∆|−2
∥∥∥θ̂m

∥∥∥2

l2
),

= Op(λ−1
1,nn

−1
A n−1

T m1/2|∆|d+1 ∨ λ−1
1,nλ2,nn

−1
A n−1

T |∆|−4) = Op(m/n). (2.9)

Then, by (2.9)

∥∥∥∥∥β̂(t, u) −
m∑

k=1

(∫
β̂(t, u)ϕ̂k(t)dt

)
ϕ̂k(t)

∥∥∥∥∥
2

L2(Ω)

,

=
∥∥∥β̂(t, u)

∥∥∥2

L2(Ω)
−
∥∥∥∥∥

m∑
k=1

(∫
β̂(t, u)ϕ̂k(t)dt

)
ϕ̂k(t)

∥∥∥∥∥
2

L2(Ω)

=
∥∥∥β̂(t, u)

∥∥∥2

L2(Ω)
−
∥∥∥∥∥

m∑
k=1

κ
−1/2
k d̂k(u)ϕ̂k(t) − β̂∗

m(t, u) + β̂∗
m(t, u)

∥∥∥∥∥
2

L2(Ω)

,

≤
∥∥∥β̂(t, u)

∥∥∥2

L2(Ω)
−
∥∥∥β̂∗

m(t, u)
∥∥∥2

L2(Ω)
+O(|∆|d+1),

≈n−1
A n−1

T

{
θ̂

T
QTBA,TB

T
A,TQθ̂ − θ̂T

mQ
TBA,TB

T
A,TQθ̂m

}
+O(|∆|d+1),

=Op(m/n).

Therefore, we conclude that β̂re(t, u) ≈ Op(m1/2n−1/2).

Lemma 6. Let (γ̂0 ,θ̂) be a solution of (2.1). Then,∥∥∥∥∥n−1
A n−1

nA∑
r=1

n∑
i=1

{
ur − 1(Yi < b

T
0 (ur)γ0 + ξ̂T

i P̂ (ur)Qθ̂)
}
ξ̂T

i P̂ (ur)Q
(
θ̂ − θ∗

)∥∥∥∥∥
l2

≤ c{m+ (nA ∧ C|∆|−1)}
nAn

max
i∈1,...,n

∥∥∥ξ̂i

∥∥∥
l2

max
ur∈A

σmax{P̂ (ur)}
∥∥∥θ̂ − θ∗

∥∥∥
l2

+
∥∥∥(2λ1,nθ̂

T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ

) (
θ̂ − θ∗

)∥∥∥
l2
, (2.10)

where σmax(x) is the largest singular value of a matrix x.

Proof : The check function ρu(x) is

ρu(x) = |x| + (2u− 1)x,
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then we can rewrite (2.1) as

min
γ0,θ

1
nA

nA∑
r=1

En{|vi,r(γ0,θ)| + (2ur − 1)vi,r(γ0,θ)} + λ1,nθ
TQTBA,TB

T
A,TQθ

+ λ2,nθ
TQTDQθ. (2.11)

To further remove the absolute value sign, the minimization problem (2.11) is equivalent to the

following constrained optimization problem

min
φ,γ0,θ

g(φ,γ0,θ) = 1
nA

nA∑
r=1

En{φi,r + (2ur − 1)vi,r(γ0,θ)} + λ1,nθ
TQTBA,TB

T
A,TQθ

+ λ2,nθ
TQTDQθ (2.12)

such that

− φi,r + vi,r(γ0,θ) ≤ 0,

− φi,r − vi,r(γ0,θ) ≤ 0.

Suppose (φ̂, γ̂0 ,θ̂) is a solution of (2.12). Define three sets

I1 = {(i, r) : vi,r(γ̂0, θ̂) > 0},

I2 = {(i, r) : vi,r(γ̂0, θ̂) < 0},

I3 = {(i, r) : vi,r(γ̂0, θ̂) = 0}.

The gradient of objective function g is

∇g = 1
n

[
1

1
nA

∑nA
r=1

∑n
i=1(2ur − 1)∇vi,r

]
+


0
0

2λ1,nθ̂
T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ


The active constraints are given by [

−ei,r

∇vi,r

]
∀(i, r) ∈ I1,

[
−ei,r

−∇vi,r

]
∀(i, r) ∈ I2,

and [
−ei,r

∇vi,r

]
,

[
−ei,r

−∇vi,r

]
∀(i, r) ∈ I3,
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where ei is a nAn-vector with a one in the position corresponding to the pair (i, r) and zeros

elsewhere.

By checking Kuhn-Tucker condition, we have the following necessary condition for the opti-

mality [17],

∇g + 1
n

∑
(i,r)∈I1

δi,r

[
−ei,r

∇vi,r

]
+ 1
n

∑
(i,r)∈I2

δi,r

[
−ei,r

−∇vi,r

]

+ 1
n

∑
(i,r)∈I3

{
δi,r

[
−ei,r

∇vi,r

]
+ νi,r

[
−ei,r

−∇vi,r

]}
=
[
0
0

]
, (2.13)

where δi,r ≥ 0 and νi,r ≥ 0. Since the sets I1, I2 and I3 are disjoint, then the top nnA equations of

(2.13) imply that

δi,r = 1 ∀(i, r) ∈ I1, (2.14)

δi,r = 1 ∀(i, r) ∈ I2, (2.15)

δi,r + νi,r = 1 ∀(i, r) ∈ I3. (2.16)

Now we consider the rest of equations in (2.13). By (2.14), (2.15) and (2.16), we can derive that

1
nAn

∑
(i,r)∈I1∪I2

{sign(vi,r) + 2ur − 1} ∇vi,r + 1
nAn

∑
(i,r)∈I3

{δi,r − νi,r + 2ur − 1} ∇vi,r

+
[

0
2λ1,nθ̂

T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ

]
= 0, (2.17)

where ∇vi,r is defined as

∇vi,r =
[

−bT
0 (ur)

−ξ̂T
i P̂ (ur)Q

]
.

The equations (2.17) implies that

1
nAn

∑
(i,r)∈I1∪I2∪I3

{ur − 1(Yi < b
T
0 (ur)γ̂0 + ξ̂T

i P̂ (ur)Qθ̂)}bT
0 (ur)

= 1
nAn

∑
(i,r)∈I3

{1/2 − (δi,r − νi,r)/2 − 1(Yi < b
T
0 (ur)γ̂0 + ξ̂T

i P̂ (ur)Qθ̂)}bT
0 (ur), (2.18)

and
1

nAn

∑
(i,r)∈I1∪I2∪I3

{1 − ur − 1(Yi < b
T
0 (ur)γ̂0 + ξ̂T

i P̂ (ur)Qθ̂)}ξ̂T
i P̂ (ur)Q

= 1
nAn

∑
(i,r)∈I3

{1/2 − (δi,r − νi,r)/2 − 1(Yi < b
T
0 (ur)γ̂0 + ξ̂T

i P̂ (ur)Qθ̂)}ξ̂T
i P̂ (ur)Q

− 2λ1,nθ̂
T
QTBA,TB

T
A,TQ− 2λ2,nθ̂

T
QTDQ. (2.19)
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Let nB denote the number of B-spline basis functions, and nknots denote the number of its

interior knots. The relationship bewteen nB , nknots and d is

nB = d+ nknots.

Since we only require the chosen B-spline basis has the same approximation power as the bivariate

splines used for the approximation of β(t, u), we can choose the interior knots uniformly distributed

within the range of u with nknots = C|∆|−1 for some constant C.

Define Zi(u) =
[
bT

0 (u), ξ̂T
i P̂ (u)Q

]
, and Γ̂ =

[
γ̂0

θ̂

]
. Recall that I3 is defined as

I3 = {(i, r) : vi,r(γ̂0, θ̂) = 0}.

Let

Z =



Z1(u1)
Z2(u1)
...

Zn(u1)
Z1(u2)
...

Zn(ur)
...


=



bT
0 (u1), ξ̂T

1 P̂ (u1)Q
bT

0 (u1), ξ̂T
2 P̂ (u1)Q

..., ...

bT
0 (u2), ξ̂T

1 P̂ (u2)Q
..., ...

bT
0 (ur), ξ̂T

i P̂ (ur)Q
..., ...


= [M1,M2],

where M1 =



bT
0 (u1)
bT

0 (u1)
...

bT
0 (u2)
...

bT
0 (ur)
...


and M2 =



ξ̂T
1 P̂ (u1)Q
ξ̂T

2 P̂ (u1)Q
...

ξ̂T
1 P̂ (u2)Q

...

ξ̂T
i P̂ (ur)Q

...


. The matrix M1 is a nAn by nknots matrix.

It is easy to see that rank(M1) ≤ (nA ∧ C|∆|−1) and rank(M2) ≤ m. Therefore, rank(Z) ≤
m + (nA ∧ C|∆|−1). Then by Sard’s theorem, almost surely, Card(I3) ≤ m + (nA ∧ C|∆|−1).
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Combined with (2.18) and (2.19), we have almost surely,

En

[
1
nA

nA∑
r=1

{(
ur − 1

{
Yi −Zi(ur)Γ̂ ≤ 0

})
ξ̂T

i P̂ (ur)Q
}](

θ̂ − θ∗
)

= c

nAn

∑
(i,r)∈I3

(
ur − 1

{
Yi −Zi(ur)Γ̂ ≤ 0

})
ξ̂T

i P̂ (ur)Q
(
θ̂ − θ∗

)
,

≤c{m+ (nA ∧ C|∆|−1)}
nAn

max
i,r

∣∣∣(ur − 1

{
Yi −Zi(ur)Γ̂ ≤ 0

})
ξ̂T

i P̂ (ur)Q
∣∣∣ ∥∥∥θ̂ − θ∗

∥∥∥
l2

+
∥∥∥(2λ1,nθ̂

T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ

) (
θ̂ − θ∗

)∥∥∥
l2
,

≤c{m+ (nA ∧ C|∆|−1)}
nAn

max
i∈1,...,n

∥∥∥ξ̂i

∥∥∥
l2

max
ur∈A

σmax{P̂ (ur)}
∥∥∥θ̂ − θ∗

∥∥∥
l2

+
∥∥∥(2λ1,nθ̂

T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ

) (
θ̂ − θ∗

)∥∥∥
l2
,

where σmax(x) is the largest singular value of a matrix x.

2.7.1 Proof of Theorem 1

Denote the minimizer of (2.1) by (γ̂0, θ̂). Define β̂(t, u) = BT(t, u)Qθ̂,

A0 = {r ∈ (1, . . . , nA) :
∥∥∥d̂m+1(ur) − dm+1(ur)

∥∥∥
l2

≥ M
√
m/n, for some constant M > 0},

and

A1 = {r ∈ (1, . . . , nA) :
∥∥∥β̂ur (t) − βur (t)

∥∥∥
L2

≥ Mκ−1/2
m m1/2n−1/2, for some constant M > 0}.

Then by Lemma 4, we have for some M > 0

− n−1
A

nA∑
r=1

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)}
η̂m+1

i ·
(
d̂m+1(ur) − dm+1(ur)

)]
= − n−1

A

∑
r∈(A\A0)

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)}
η̂m+1

i ·
(
d̂m+1(ur) − dm+1(ur)

)]
− n−1

A

∑
r∈A0

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)}
η̂m+1

i ·
(
d̂m+1(ur) − dm+1(ur)

)]
,

≥ − n−1
A

∑
r∈(A\A0)

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)}
η̂m+1

i ·
(
d̂m+1(ur) − dm+1(ur)

)]
+ n−1

A

{
M(1 − op(1))m1/2n−1/2 −Op

(
m1/2n−1/2

)} ∑
r∈A0

∥∥∥d̂m+1(ur) − dm+1(ur)
∥∥∥

l2
.

(2.20)
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For the first term in (2.20), almost surely∣∣∣∣∣∣−n−1
A

∑
r∈(A\A0)

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)}
η̂m+1

i ·
(
d̂m+1(ur) − dm+1(ur)

)]∣∣∣∣∣∣
≤ n−1

A

∑
r∈(A\A0)

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)} ∥∥∥η̂m+1

i

∥∥∥ ∥∥∥d̂m+1(ur) − dm+1(ur)
∥∥∥]

= n−1
A n−1 ∑

(i,r)∈(A\A0)∩I3

{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)} ∥∥∥η̂m+1

i

∥∥∥ ∥∥∥d̂m+1(ur) − dm+1(ur)
∥∥∥

= op

(
n−1

A n−1m|∆|−1
)

×O
(
m1/2n−1/2

)
= op

(
n−1

A n−3/2|∆|−1m3/2
)
. (2.21)

On the other hand, by standard matrix theory,

max
ur∈A

σmax{P̂ (ur)} ≤ max
ur∈A

∥∥∥P̂ (ur)
∥∥∥

F
,

≤

cmmax
ur∈A

∑
bj(t,ur )̸=0

(∫
∆j

bj(t, ur)ϕ̂k(t)dt
)2


1/2

,

= cm1/2|∆|1/2.

Then, for the first term of (2.10), we have

max
i∈1,...,n

∥∥∥ξ̂i

∥∥∥
l2

max
ur∈A

σmax{P̂ (ur)}
∥∥∥θ̂ − θ∗

∥∥∥
l2

≤op

(
(logn)−1n1/2m−1/2

)
cm1/2|∆|−1/2

∥∥∥β̂ − β∗
∥∥∥

L2(Ω)
,

=o
(
(logn)−1n1/2|∆|−1/2

) ∥∥∥∥∥β̂(t, u) −
m∑

k=1
βk(u)ϕ̂k(t) +

m∑
k=1

βk(u)ϕ̂k(t) − β∗(t, u))
∥∥∥∥∥

L2(Ω)

,

≲o
(
(logn)−1n1/2|∆|−1/2

){
n

−1/2
A

(
nA∑
r=1

κ−1
m

∥∥∥d̂m(ur) − dm(ur)
∥∥∥2

l2

)1/2

+O(|∆|d+1)
}
,

(2.22)

provided that max1≤i≤n

∥∥∥ξ̂i

∥∥∥
l2

= o((logn)−1n1/2m−1/2) [41]. By Lemma 2 and [82],

∥∥∥θ̂T
QTDQ

∥∥∥
l2

≤ C|∆|−2
∥∥∥θ̂∥∥∥

l2
= C|∆|−3

∥∥∥β̂(t, u)
∥∥∥

L2(Ω)
.

By Lemma 5,∥∥∥β̂(t, u)
∥∥∥

L2(Ω)
≈ n

−1/2
A n

−1/2
T

∥∥∥BT
A,TQθ̂

∥∥∥
l2

≤ Op(m3/4n−3/4|∆|(d+1)/2 ∨m1/2n−1/2) + C.
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In addition,
∥∥∥θ̂T

QTBA,TB
T
A,TQ

∥∥∥ ≤ Γmax(BA,TB
T
A,T )

∥∥∥θ̂∥∥∥
l2

= C|∆|nAnT

∥∥∥β̂(t, u)
∥∥∥

L2(Ω)
. Then

we conclude that ∥∥∥(2λ1,nθ̂
T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ

) (
θ̂ − θ∗

)∥∥∥
l2

≤
∥∥∥2λ1,nθ̂

T
QTBA,TB

T
A,TQθ̂

∥∥∥
l2

+
∥∥∥2λ2,nθ̂

T
QTDQθ̂

∥∥∥
l2

+
∥∥∥(2λ1,nθ̂

T
QTBA,TB

T
A,TQ+ 2λ2,nθ̂

T
QTDQ

)
θ∗
∥∥∥

l2

=Op(m−1/2n|∆|d+1)(1 + o(1)) (2.23)

Given |∆| = o
(
m(1+α)/(2d+2)n−3/(2d+2)

)
, from (2.22), if

n
−1/2
A

(
nA∑
r=1

κ−1
m

∥∥∥d̂m(ur) − dm(ur)
∥∥∥2

l2

)1/2

≤ Op(|∆|d+1) = op

(
m(1+α)/2n−1/2

)
,

then by Lemma 5, we can conclude
∥∥∥β̂(t, u) − β(t, u)

∥∥∥
L2(Ω)

≈ Op

(
κ

−1/2
m m1/2n−1/2

)
. If not,

then

(2.22) = op

(
(logn)−1n1/2|∆|−1/2

)(
n

−1/2
A

nA∑
r=1

κ−1/2
m

∥∥∥d̂m(ur) − dm(ur)
∥∥∥2

l2
+O(|∆|d+1)

)1/2

,

= op

(
(logn)−1n

−1/2
A n1/2|∆|−1/2κ−1/2

m

) ∑
r∈A0

∥∥∥d̂m(ur) − dm(ur)
∥∥∥

l2
(1 + o(1)). (2.24)

By Lemma 6, (2.23) and (2.24) , almost surely

− n−1
A

nA∑
r=1

En

[{
u− 1

(
Yi ≤ η̂m+1

i · d̂m+1(ur)
)}
η̂m+1

i ·
(
d̂m+1(ur) − dm+1(ur)

)]
≤ op

(
n

−3/2
A |∆|−3/2n−1/2κ−1/2

m

) ∑
r∈A0

∥∥∥d̂m(ur) − dm(ur)
∥∥∥

l2
+Op(m−1/2n|∆|d+1)(1 + o(1))

(2.25)

Then by Lemma 4, (2.20), (2.21), (2.25) and n−1
A |∆|−1m(α−1)/3 = o(1), we have almost surely{

M(1 − op(1))m1/2n−1/2 −Op

(
m1/2n−1/2

)} ∑
r∈A0

∥∥∥d̂m+1(ur) − dm+1(ur)
∥∥∥

l2

≤ op

(
n

−3/2
A |∆|−3/2n−1/2κ−1/2

m

) ∑
r∈A0

∥∥∥d̂m(ur) − dm(ur)
∥∥∥

l2
+Op(m−1/2n|∆|d+1)(1 + o(1)),

(2.26)

which implies that

∑
r∈A0

∥∥∥d̂m+1(ur) − dm+1(ur)
∥∥∥

l2
= Op(nAn

1/2|∆|d+1).
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Based on the definition of A0 and A1, we have A1 ⊂ A0 and |A0| = op(m−1−αn−1/2nA). Then by

Lemma 4,

∥∥∥∥∥β̂(t, u) −
m∑

k=1
βk(u)ϕk(t)

∥∥∥∥∥
L2(Ω)

≲ n
−1/2
A

(
nA∑
r=1

κ−1
m

∥∥∥d̂m(ur) − dm(ur)
∥∥∥2

l2

)1/2

= Op(κ−1/2
m m1/2n−1/2).

By condition A5, ∥∥∥∥∥β(t, u) −
m∑

k=1
βk(u)ϕk(t)

∥∥∥∥∥
L2(Ω)

= O(m−(2ζ+1)/2).

Therefore, we conclude that∥∥∥β̂(t, u) − β(t, u)
∥∥∥

L2(Ω)
≈ Op

(
κ−1/2

m m1/2n−1/2 ∨m−2ζ+1
)
.

2.7.2 Proof of Theorem 2

Assume that p0 is known and let m = p0. Under the condition A5, and by Lemma 1 and Lemma 3,

there exist γ∗
0 and θ∗ such that

sup
(t,u)∈T ×A

|β(t, u) −BT(t, u)Qθ∗| ≤ C1|∆|d+1,

sup
u∈A

|c(u) − bT
0 (u)γ∗

0| ≤ C2|∆|d+1,

for some constant C1 and C2. Let Γ∗ = (γ∗T
0 ,θ∗T)T and δ =

√
n(γ0 − γ∗

0,θ − θ∗)T. Let P (ur)
denote the p0 by J matrix with the (k, j)-entry being

∫
(t,ur)∈∆j

ϕk(t)bj(t, u)dt, where j = 1, . . . , J
is the index for the bivariate splines basis. Then define

ψu(x) = u− 1(x ≤ 0), ω̂i,r = yi −Zi(ur)Γ∗, and ωi,r = yi −Z∗
i (ur)Γ∗,

where

Z∗
i (ur) = [bT

0 (ur), ξT
i P (ur)Q] .

We further define L0,1
n (Γ, δ) and L0,2

n (Γ, δ) as follow,

L0,1
n (Γ, δ) = {nnA}−1

nA∑
r=1

n∑
i=1
Zi(ur) δ√

n
{1(yi −Zi(ur)Γ∗ ≤ 0) − ur}

= − {nnA}−1
nA∑
r=1

n∑
i=1
Zi(ur) δ√

n
ψur (ω̂i,r),
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and

L0,2
n (Γ) = (nnA)−1

nA∑
r=1

n∑
i=1

∫ Zi(ur)δ/
√

n

0
{1 (Yi −Zi(ur)Γ∗ ≤ t) − 1(Yi −Zi(ur)Γ∗ ≤ 0)} dt

= n−1
A

nA∑
r=1

Gr(Γ, δ),

where

Gr(Γ, δ) = n−1
n∑

i=1

∫ Zi(ur)δ/
√

n

0
{1(Yi −Zi(ur)Γ∗ ≤ t) − 1(Yi −Zi(ur)Γ∗ ≤ 0)} dt.

Lemma 7. Under the conditions of Theorem 1,

L0,2
n (Γ, δ) = 1

2nδ
TΣ1δ + op(1),

where

Σ1 = n−1
A

nA∑
r=1

E [fi(Zi(ur)Γ∗)ZT
i (ur)Zi(ur)] .

Proof : By Taylor expansion,

E [Gr(Γ, δ)] = E
[
E
[
Gr(Γ, δ) | ξ̂i, i = 1, . . . , n

]]
= E

[
n−1

n∑
i=1

∫ Zi(ur)δ/
√

n

0
{Fi(Zi(ur)Γ∗ + t) − Fi(Zi(ur)Γ∗)} dt

]

= n−1
n∑

i=1
E

[∫ Zi(ur)δ/
√

n

0
{fi(Zi(ur)Γ∗)t+Ri,r(t)} dt

]

= n−1
n∑

i=1
E

fi(Zi(ur)Γ∗)
2 t2

∣∣∣∣Zi(ur)δ/
√

n

0
+Ri,r(t)


= n−1

n∑
i=1

E

[ 1
2nfi(Zi(ur)Γ∗)δTZT

i (ur)Zi(ur)δ
]

+
n∑

i=1
E [Ri,r(t)]

= 1
2nδ

T

{
n−1

n∑
i=1

E [fi(Zi(ur)Γ∗)ZT
i (ur)Zi(ur)]

}
δ +

n∑
i=1

E [Ri,r(t)] ,

where {Ri,r(t)} are the remainder terms of Taylor expansion. Regarding these remainder terms

{Ri,r(t)}, we have

n∑
i=1

E [Ri,r(t)] ≤constant · n−3/2
n∑

i=1
E
[
(Zi(ur)δ)3

]
≤ O(n−1/2)E

[
∥Zi(ur)∥3

l2

]
∥δ∥3

l2 = o(1).

Then, we can conclude that

E
[
L0,2

n (Γ)
]

= 1
2nδ

TΣ1δ + o(1).
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Next, we need to prove E
[
L0,2

n (Γ)2] = o(1).

E

[(
L0,2

n (Γ)
)2
]

=E
[
E

[(
L0,2

n (Γ)
)2

| ξ̂i, i = 1, . . . , n
]]

≤E
[
E

[
(nAn)−1

nA∑
r=1

n∑
i=1

{∫ Zi(ur)δ/
√

n

0
1(Yi −Zi(ur)Γ∗ ≤ t)

− 1(Yi −Zi(ur)Γ∗ ≤ 0)dt
}2

| ξ̂i, i = 1, . . . , n
]]

≤E
[
(nAn)−1

nA∑
r=1

n∑
i=1

∫ |Zi(ur)δ/
√

n|

0
|Zi(ur)δ/

√
n|E

[{
1(Yi −Zi(ur)Γ∗ ≤ t)

− 1(Yi −Zi(ur)Γ∗ ≤ 0)
}2
dt | ξ̂i, i = 1, . . . , n

]]

=E
[
(nAn)−1

nA∑
r=1

n∑
i=1

|Zi(ur)δ/
√
n|
∫ |Zi(ur)δ/

√
n|

0
E

[∣∣1(Yi −Zi(ur)Γ∗ ≤ t)

− 1(Yi −Zi(ur)Γ∗ ≤ 0)
∣∣dt | ξ̂i, i = 1, . . . , n

]]
.

Thus,

E

[(
L0,2

n (Γ)
)2
]

≤E
[
(nAn)−1

nA∑
r=1

n∑
i=1

|Zi(ur)δ/
√
n|

∫ |Zi(ur)δ/
√

n|

0
E
[
1
(
Zi(ur)Γ∗ < Yi < Zi(ur)Γ∗ + t

)]
dt | ξ̂i, i = 1, . . . , n

]]
=E

[
(nAn)−1

nA∑
r=1

n∑
i=1

|Zi(ur)δ/
√
n|

∫ |Zi(ur)δ/
√

n|

0
{Fi(Zi(ur)Γ∗ + t) − Fi(Zi(ur)Γ∗)} dt

]
=(nAn)−1

nA∑
r=1

n∑
i=1

E

[
|Zi(ur)δ/

√
n|

2n fi(Zi(ur)Γ∗)δTZT
i (ur)Zi(ur)δ

]

+ (nAn)−1
nA∑
r=1

n∑
i=1

E [Ri,r(t)]

=o(1).

Define

V0 = −(nAn)−1
nA∑
r=1

n∑
i=1
Z∗

i (ur)ψur (ωi,r),

and let Z̃i and ψ denote (ZT
i (u1), . . . ,ZT

i (unA)) and
(
ψu1 , . . . , ψunA

)
respectively.

Lemma 8. Under the conditions of Theorem 1 and A6,

√
nV0 → N(0,U2),
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in distribution, where

U2 = n−2
A E

[
Z̃T

i U1Z̃i

]
.

Proof : First notice that

cov (ψur (ωi,r), ψur (ωj,r))

=

0, i ̸= j

ur′ − urur′ +O
(∣∣∫ ∑p0

k=1 ξi,kϕk(t) (β(t, ur) − β∗(t, ur)) dt
∣∣) , otherwise

=

0, i ̸= j

ur ∧ ur′ − urur′ +Op(|∆|d+1), otherwise

Since E [ψur (ωi,r) | ξi] = ur − Fi(Z∗
i (ur)Γ∗) = Op(|∆|d+1), then E [V0 | ξi] = Op(|∆|d+1). On

the other hand, V ar (V0 | ξi) = var
(
n−1∑n

i=1 n
−1
A Z̃T

i ψ
)

= (nAn)−2∑n
i=1 Z̃

T
i U1Z̃i, where U1

is a matrix with its (r, r′)-entry being ur ∧ ur′ − urur′ . Then the co-variance matrix of V0 is given

by

var(V0) =var (E (V0 | ξi)) + E (var (V0 | ξi))

=Op(|∆|d+1) + n−1
[
n−2

A E
[
Z̃T

i U1Z̃i

]]
=Op(|∆|d+1) + n−1U2.

Regarding U2, we have

U2 ≤ 2
n2

A

E
[
Z̃T

i Z̃i

]
≤ 2
n2

A

nA max
r
E ∥Zi(ur)∥2

2

= 2
nA

max
r

{
∥b0(ur)∥2

2 + E ∥ξT
i P (ur)Q∥2

2

}
=O

(
n−1

A |∆|−1
)
.

Based on nAn|∆|d+2 = o(1), we just prove that

√
nV0 → N(0,U2)

in distribution.

Define

L0
n(Γ) = {nnA}−1

nA∑
r=1

n∑
i=1

ρur

(
yi − bT

0 (ur)γ0 − ξ̂T
i P̂ (ur)Qθ

)
= {nnA}−1

nA∑
r=1

n∑
i=1

ρur (yi −Zi(ur)Γ) , (2.27)
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where Γ = (γ0,θ)T, and Pλ(Γ) = λ1,nθ
TQTBA,TB

T
A,TQθ + λ2,nθ

TQTDQθ. Recall that Γ =
Γ∗ + δ/

√
n. Then minimizing

Ln(Γ) = L0
n(Γ) + Pλ(Γ)

is equivalent to minimizing

LLn(δ) = {nnA}−1
nA∑
r=1

n∑
i=1

{
ρur

(
yi −Zi(ur)δ/

√
n−Zi(ur)Γ∗)− ρur (yi −Zi(ur)Γ∗)

}
(2.28)

+ Pλ(δ/
√
n+ Γ∗).

Applying the Knight’s identity [42],

ρu(x− y) − ρu(x) = y {1(x ≤ 0) − u} +
∫ y

0
{1(x ≤ t) − 1(x ≤ 0)} dt,

on the first term of (2.28), then we have

L0
n(Γ) = {nnA}−1

nA∑
r=1

n∑
i=1

{
Zi(ur)δ/

√
n {1(yi −Zi(ur)Γ∗ ≤ 0) − ur}

+
∫ Zi(ur)δ/

√
n

0
{1(yi −Zi(ur) ≤ t) − 1(yi −Zi(ur) ≤ 0)} dt

}
= {nnA}−1

nA∑
r=1

n∑
i=1
Zi(ur)δ/

√
n {1(yi −Zi(ur)Γ∗ ≤ 0) − ur}

+ {nnA}−1
nA∑
r=1

n∑
i=1

∫ Zi(ur)δ/
√

n

0
{1(yi −Zi(ur)Γ∗ ≤ t) − 1(yi −Zi(ur)Γ∗ ≤ 0)} dt

=L0,1
n (Γ) + L0,2

n (Γ).
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From Lemma 7 and Lemma 8, under the conditions λ1,n ≍ n−1
A n−1

T m−1/2n|∆|d+1, and λ2,n =
o(λ1,nnAnT |∆|4), we have

LLn(δ) = − {nnA}−1
nA∑
r=1

n∑
i=1
Zi(ur) 1√

n
δψur (ω̂i,r)

+ 1
2nδ

TΣ1δ + E [R(t)] + Pλ( 1√
n
δ + Γ∗)

= − {nnA}−1
nA∑
r=1

n∑
i=1
Zi(ur) 1√

n
δψur (ω̂i,r)

+ 1
2nδ

TΣ1δ + δT
[
λ1,n

[
0 0
0 QTBA,TB

T
A,TQ

]
+ λ2,n

[
0 0
0 QTDQ

] ]
δ

+ 2√
n
δT
[
λ1,n

[
0 0
0 QTBA,TB

T
A,TQ

]
+ λ2,n

[
0 0
0 QTDQ

] ]
Γ∗ + o(1)

=V δ(1 + op(1)) + δTΣ2δ + o(1),

with

V = − {nnA}−1
nA∑
r=1

n∑
i=1

1√
n
Zi(ur)ψur (ω̂i,r),

Σ2 = 1
2nΣ1 + λ1,n

[
0 0
0 QTBA,TB

T
A,TQ

]
+ λ2,n

[
0 0
0 QTDQ

]
.

Then by the convexity lemma [63] and quadratic approximation lemma [18], we have δ̂ = −1
2Σ−1

2 V T+
op(1). Let B̃(t, u) = (01×nB ,B

T(t, u)Q)T, and β∗(t, u) = BT(t, u)Qθ∗. Then, we have β̂(t, u)−
β∗(t, u) = B̃T(t, u)δ̂/

√
n. Therefore,

β̂(t, u) − β(t, u) = B̃T(t, u)δ̂/
√
n+ β∗(t, u) − β(t, u)

= − 1
2nB̃

T(t, u)Σ−1
2

√
nV + β∗(t, u) − β(t, u) + op(1).
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Now, we need to prove the asymptotic normality of V . We first decompose V0 −
√
nV into

three terms and then calculate the order for each of them.

{nnA}−1
nA∑
r=1

n∑
i=1
Zi(ur)ψur (ω̂i,r) − {nnA}−1

nA∑
r=1

n∑
i=1
Z∗

i (ur)ψur (ωi,r)

= {nnA}−1
nA∑
r=1

n∑
i=1

{Zi(ur) −Z∗
i (ur)} {ψur (ω̂i,r) − ψur (ωi,r)}

+ {nnA}−1
nA∑
r=1

n∑
i=1
Z∗

i (ur) {ψur (ω̂i,r) − ψur (ωi,r)}

+ {nnA}−1
nA∑
r=1

n∑
i=1

{Zi(ur) −Z∗
i (ur)}ψur (ωi,r)

=V1 + V2 + V3.

First notice that

E

[
ψur (ω̂i,r)

∣∣∣∣Zi(ur),Z∗
i (ur)

]
=ur − Fi(Zi(ur)Γ∗)

=ur − Fi(Z∗
i (ur)Γ∗) + Fi(Z∗

i (ur)Γ∗) − Fi(Zi(ur)Γ∗)

=op(1) + fi(Zi(ur)Γ∗) (Z∗
i (ur)Γ∗ −Zi(ur)Γ∗) +O

(
(Z∗

i (ur)Γ∗ −Zi(ur)Γ∗)2
)
.

Then for the first term V1 = {nnA}−1∑nA
r=1

∑n
i=1 {Zi(ur) −Z∗

i (ur)} {ψur (ω̂i,r) − ψur (ωi,r)},

E|V1| ≤E
[
{nnA}−1

nA∑
r=1

n∑
i=1

|Zi(ur) −Z∗
i (ur)| |ψur (ω̂i,r) − ψur (ωi,r)|

]

=E
[
{nnA}−1

nA∑
r=1

n∑
i=1

|Zi(ur) −Z∗
i (ur)|E [|ψur (ω̂i,r) − ψur (ωi,r)| | Zi,Z

∗
i ]
]

=E
[
{nnA}−1

nA∑
r=1

n∑
i=1

|Fi(Zi(ur)Γ∗) − Fi(Z∗
i (ur)Γ∗)| |Zi(ur) −Z∗

i (ur)|
]
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Therefore,

E|V1| ≤E
[

{nnA}−1
nA∑
r=1

n∑
i=1

|Fi(Zi(ur)Γ∗) − Fi(Z∗
i (ur)Γ∗)|2

]1/2

× E

[
{nnA}−1

nA∑
r=1

n∑
i=1

|Zi(ur) −Z∗
i (ur)|2

]1/2

≤O
(

max
r
E
[
(Zi(ur) −Z∗

i (ur))2
]1/2

)
=O

(
max

r
E

[{
ξ̂T

i P̂ (ur) − ξT
i P (ur)

}2
]1/2

)

=O
(

max
r
E

[{
ξ̂T

i P̂ (ur) − ξT
i P̂ (ur) + ξT

i P̂ (ur) − ξT
i P (ur)

}2
]1/2

)

According to [29] and [30], we have∥∥∥ϕ̂k − ϕk

∥∥∥
L2(Ω)

≤ constant · s−1
k n−1/2,

and for any c > 0,

E
∥∥∥ξ̂i − ξi

∥∥∥c
≤ constant · s−c

p0 n
−c/2,

where sk = minr≤k (κr − κr+1). Therefore, we can conclude that

E|V1| = O(n−1/2|∆|).

Similarly,

E
[
V 2

1

]
≤E

[
{nnA}−1

nA∑
r=1

n∑
i=1

{Zi(ur) −Z∗
i (ur)}2 {ψur (ω̂i,r) − ψur (ωi,r)}2

]

≤ max
r
E
[
(Zi(ur) −Z∗

i (ur))4
]1/2

max
r
E
[
(ψur (ω̂i,r) − ψur (ωi,r))4

]1/2

=constant · n−1|∆|2.

Then we have

V1 = Op(n−1/2|∆|).

For the second term V2 = {nnA}−1∑nA
r=1

∑n
i=1Z

∗
i (ur) {ψur (ω̂i,r) − ψur (ωi,r)}, we first de-

fine

Rr(tr) =
n∑

i=1
Z∗

i (ur) {ψur (ωi,r − ξT
i tr) − ψur (ωi,r)}
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for any vector such that ∥tr∥ ≤ Ct with some constantCt. According to [48], we have sup ∥Rr(tr) − E [Rr(tr)]∥ =
Op

(
n1/2 log (n) ∥tr∥1/2

)
, and therefore,

E [Rr(tr)] =
n∑

i=1
E [Z∗

i (ur) {Fi(Z∗
i (ur)Γ∗) − Fi (Z∗

i (ur)Γ∗ − [b0(ur)T, ξT
i ] tr)}]

= − nE
[
Z∗

i (ur)fi(Z∗
i (ur)Γ∗) ([b0(ur)T, ξT

i ] tr)
]

+O
(
nE

[
([b0(ur)T, ξT

i ] tr)2
Z∗

i (ur)
])
.

(2.29)

Define Σc,r = E
[
fi(Z∗

i (ur)Γ∗)b0b
T
0
]

and Σ3,r = QTP T(ur)E
[
fi(Z∗

i (ur)Γ∗)ξiξ
T
i

]
. Then from

(2.29), we have

RT
r (tr) = −n [Σc,r,Σ3,r] tr +O

(
n ∥tr∥2

2

)
+Op

(
n1/2 log (n) ∥tr∥1/2

2

)
.

By [48], we know that there exists a random matrix Cξ such that

ξ̂i − ξi = n−1/2Cξξi +Op(n−1).

The dimension of Cξ =
(
ck,k′

)
is p0 by p0 where ck,k′ = 0 if k = k′ and ck,k′ = n−1/2(κk −

κk′)−1∑n
i=1 ξikξik′ if k ̸= k′. Then,

ξ̂T
i P̂ (ur) − ξT

i P (ur) = ξ̂T
i P̂ (ur) − ξT

i P̂ (ur) + ξT
i P̂ (ur) − ξT

i P (ur)

= n−1/2ξT
i C

T
ξ P̂ (ur) +Op

(
n−1|∆|

)
+Op

(
n−3/4|∆|

)
= n−1/2ξT

i C
T
ξ

(
P (ur) +Op

(
n−3/4|∆|

))
+Op

(
n−1|∆|

)
+Op

(
n−3/4|∆|

)
= n−1/2ξT

i C
T
ξ P (ur) + op(1).

Choose tr as tT
r =

[
0, n−1/2Γ∗τQTP T(ur)Cξ

]
, and define Σ3 = n−1

A

∑nA
r=1 Σ3,rC

T
ξ P (ur)Q.

Then,

V2 = {nnA}−1
nA∑
r=1

n∑
i=1
Z∗

i (ur) {ψur (ωi,r − [b0(ur)T, ξT
i ] tr) − ψur (ωi,r)}

= − n−1/2n−1
A

nA∑
r=1

Σ3,rC
T
ξ P (ur)Γ∗Q (1 + op(1))

= − n−1/2Σ3Γ∗ (1 + op(1)) ,

where

Σ3Γ∗ =n−1
A

nA∑
r=1

Σ3,rC
T
ξ P (ur)QΓ∗

=n−1
A

nA∑
r=1

fi(Z∗
i (ur)Γ∗)QTP T(ur)E [ξiξ

T
i ]CT

ξ P (ur)QΓ∗.
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We know that E [ξiξ
T
i ] is a diagonal matrix with the main diagonal entries being the variances of

functional principal component scores. For Cξ, its main diagonal are zeros and its off diagonal

entries are of order Op(1) because under the conditions A2 and A3, we have

(κk − κk′)−2E
[
(ξikξik′)2

]
≤ (κk − κk′)−2

(
E
[
ξ4

ik

]
E
[
ξ4

ik′

])1/2
= O(1).

On the other hand, recall that for each r, P (ur) is a p0 by J matrix with the (k, j)-entry being∫
(t,ur)∈∆j

ϕk(t)bj(t, u)dt, where j = 1, . . . , J is the index for the bivariate splines basis and J =
O(|∆|−1). By the choice of Γ∗, we know that

P (ur)QΓ∗ =


β1(ur)
...

βp0(ur)

 ,
where βk(u) =

∫
β(t, u)ϕk(t)dt, k = 1, . . . , p0. Given that p0 is finite, we can conclude that

V2 = Op(n−1/2|∆|).

For the third term V3 = {nnA}−1∑nA
r=1

∑n
i=1 {Zi(ur) −Z∗

i (ur)}ψur (ωi,r), since

E [ψur (ωi,r) | ξi] = Op(|∆|d+1),

E
[
ψ2

ur
(ωi,r) | ξi

]
= ur − u2

r +Op(|∆|d+1),

then we have

E [V3] = Op(|∆|d+1),

and

E
[
V 2

3

]
≤ n−1

A

nA∑
r=1

ur(1 − ur)E
[
(Zi(ur) −Z∗

i (ur))2
]

= Op(n−1|∆|2),

which implies that

V3 = Op(n−1/2|∆|).

Based on the above calculation and Lemma 8, under the conditions of Theorem 1, by Slutsky’s

theorem we have
√
nV → N(0,U2/n) (2.30)

in distribution. Finally we prove the asymptotic normality of β̂(t, u) −β(t, u). Recall that β̂(t, u) −
β(t, u) admits the following decomposition,

β̂(t, u) − β(t, u) = − 1
2nB̃

T(t, u)Σ−1
2

√
nV + β∗(t, u) − β(t, u) + op(1).

50



Under the conditions of Theorem 1, the bias of β̂(t, u) − β(t, u) is asymptotically negligible. Then

by (2.30) and Slutsky’s theorem, we can conclude that

1√
σβ(t, u)

(
β̂(t, u) − β(t, u)

)
→ N(0, 1)

in distribution, where σβ(t, u) = B̃T(t, u)ΣB̃(t, u).

2.7.3 Proof of Theorem 3

Define ϑ(t, u) = σβ(t, u)−1/2B̃T(t, u)Σ−1
2 U

1/2
2 n−1/2∑n

i=1 Z̃i, where Z̃1, . . . , Z̃n
iid∼ N(0, I)

and the dimension of Z̃i is same as the dimension of Zi, i = 1, . . . , n. Note that ϑ(t, u) is a

Gaussian random field with E [ϑ(t, u)] = 0 and V ar [ϑ(t, u)] = 1 for any (t, u), and its covariance

function is given by

Cov
[
ϑ(t, u), ϑ(t′, u′)

]
= σ

−1/2
β (t, u)σ−1/2

β (t′, u′)B̃T(t, u)ΣB̃(t′, u′).

For part (1), similar to the proofs for Theorem 3 in [56], Theorem 3 in [28], and Theorem 5 in

[3], by the strong approximation theorem [14], we can prove that

sup
t,u

∣∣∣σ−1/2
β (t, u)

{
β̂(t, u) − β(t, u)

}
− ϑ(t, u)

∣∣∣ = op(1). (2.31)

For part (2), based on the triangulation, we first partition Ω,the domain of β(t, u), into M

triangles with vertices v1,v2, . . . ,vJM
. Then we can construct the simultaneous confidence regions

(SCRs) for the estimator β̂(t, u) over a subset of Ω, Ωs = (v1, . . . ,vJM
).

For any vj and vj′ ∈ Ωs, we notice that

∣∣Cov (ϑ(vj), ϑ(vj′)
)∣∣ =


0, ∆j ̸= ∆j′

1, j = j′

σ
−1/2
β (vj)σ−1/2

β (vj′)B̃T(vj)ΣB̃(vj′), j ̸= j′,∆j = ∆j′ .

By definition of σβ(t, u), for any vj ∈ Ωs, we have σβ(vj) = tr
{
ΣB̃(vj)B̃T(vj)

}
, and there-

fore, λmin (Σ) tr
(
B̃(vj)B̃T(vj)

)
≤ σβ(vj) ≤ λmax (Σ) tr

(
B̃(vj)B̃T(vj)

)
, where λmin(·) and
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λmax(·) represent the minimum and maximum eigenvalues of the matrix. Then,

σ
−1/2
β (vj)σ−1/2

β (vj′)B̃T(vj)ΣB̃(vj′)

=σ−1/2
β (vj)σ−1/2

β (vj′)tr
(
B̃T(vj)ΣB̃(vj′)

)
=σ−1/2

β (vj)σ−1/2
β (vj′)tr

(
ΣB̃(vj′)B̃T(vj)

)
≤σ−1/2

β (vj)σ−1/2
β (vj′)λmax {Σ} tr

(
B̃(vj′)B̃T(vj)

)
≤λmin {Σ}−1 λmax {Σ}

× tr
(
B̃(vj)B̃T(vj)

)−1/2
tr
(
B̃(vj′)B̃T(vj′)

)−1/2
tr
(
B̃(vj′)B̃T(vj)

)
=λmin {Σ}−1 λmax {Σ}

B̃T(vj)B̃(vj′)
∥B̃(vj)∥∥B̃(vj′)∥

≤λmin {Σ}−1 λmax {Σ} .

Since this upper bound does not depend on the location of vj and vj′ , then there must exist constants

c1 and c2 such that

λmin {Σ}−1 λmax {Σ} ≤ c1c
JM
2 ≤ c1c

j−j′

2 ,

for any 1 ≤ j, j′ ≤ JM . Now combined with Lemma 1 in [57], we can conclude that for any

a ∈ (0, 1),

lim
n→∞

P

{
sup

j
|ϑ(vj)| ≤ Qβ(a)

}
= 1 − a,

where Qβ(a) = (2 log JM )1/2 − (2 log JM )−1/2 {log(−0.5 log(1 − a)) + 0.5 [log
(log JM ) + log 4π]}.
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Chapter 3

Convolution Smoothing Based Locally
Sparse Estimation for Functional
Quantile Regression

3.1. Introduction

In agriculture, crop yield is a key focus worldwide because of its direct connection to the global

needs for food, feed, and fuel. In addition, crops are highly liquid in the futures market, so crop

price fluctuations can directly affect the stability of financial markets. As one of the most important

crops around the world, more than three-quarters of soybeans are used to feed livestock, and only a

small percentage (about 7%) of global soybeans are used for typical soybean products such as tofu

and soy milk. Meanwhile, the growing appetite for meat, dairy and soybean oil results in a rapidly

increasing demand for soybean as shown in Figure 3.1-(a). There are two main ways to increase

production, one is to expand the amount of land to grow soybean and the other is to improve soybean

yields (increasing per area harvest). Taking data from the United States as an example, it is clear

that the impressive improvement in soybean yields (Figure 3.1-(b)) is not able to keep up with the

increasing demand for soybean production (Figure 3.1-(c)), which makes the government have to

devote additional land to production. However, many scientists think increasing harvested area is a

major underlying cause of deforestation. Therefore, it is urgent to improve soybean yields due to

increasing product demand and environmental protection.

Soybean is a crop with high demands on the natural environment and resources, especially on

temperature and water. Our study focuses on studying how soybean yield is affected by temperature,

precipitation and irrigation. Our objective is to identify the time regions when there is a significant

effect of daily temperature on the annual soybean yields. Motivated by this problem, we propose

the following novel locally sparse semi-parametric functional quantile model,

Qτ (Y |Z,X(t)) = ZTατ +
∫ T

0
XT (t)βτ (t)dt, (3.1)
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where Qτ (Y |Z,X(t)) is the τ -th conditional quantile of the scalar response Y given X(t) =
(X1(t), . . . , Xm(t))T and Z = (Z0, . . . , Zd)T for a fixed quantile level τ ∈ (0, 1). βτ (·) =
(βτ,1(·), . . . , βτ,m(·))T is a vector of functional coefficients and ατ is a d × 1 vector of coeffi-

cients. We set Z0 ≡ 1 and use ατ,1 to denote the intercept throughout this project. In our soybean

application, Y is the annual soybean yield per unit, X1(t) and X2(t) are the daily maximum and

minimum temperature, respectively, and Z1 and Z2 are the annual precipitation and the ratio of

irrigated area. All of these observations are measured at county level in Kansas.
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Figure 3.1: (a) Soybean production data from 2000 to 2020 in the world and the four highest
soybean-producing countries, namely the United States, Brazil, Argentina, and China. (b) Soybean
yield in the United States from 2000 to 2020. (c) Comparison of soybean production and yield and
area harvested in the United States from 2000 to 2020. These data are published by the Food and
Agriculture Organization of the United Nations.

The functional coefficient βτ,l(·) is assumed to be locally sparse, which means that βτ,l(t) = 0
in some regions N , where N is a subset of the whole time domain [0, T ]. The local sparsity of βτ (·)
can depict the dynamic dependence of the functional covariates on the τ -th conditional quantile of

the scalar response Y . Especially, when the identified locally sparse region N is identical to the

domain [0, T ], then the corresponding functional variable is not significantly related to the τ -th

conditional quantile of Y .

The proposed sparse semi-parametric functional quantile model (3.1) includes a variety of func-

tional models as special cases. For example, when the identified sparse regions for all functional

coefficient βτ,l(t), l = 1, . . . ,m, equal to [0, T ], then model (3.1) becomes the classic quantile re-

gression [44]. If ατ,l = 0 for all l = 1, . . . , d, and no functional coefficient βτ,l has a locally sparse

region, model (3.1) is reduced to the functional quantile regression (FQR) with functional covariates

only [6, 11, 41]. Various partially functional quantile regression models are also special cases of the

proposed model. For instance, [86] studied a model with multiple functional covariates and a finite

number of scalar covariates. [85] consider a partially functional quantile regression with a func-

tional covariate and high-dimensional scalar covariates. [55] proposed a functional partially linear

model with multiple functional covariates and ultrahigh-dimensional scalar covariates, and imposed

two nonconvex penalties to select the significant functional and scalar covariates. To the best of
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our knowledge, no work has studied the local sparsity structure for functional quantile regression

models, although it is important in various applications.

Most existing works that consider local sparsity feature are based on the functional linear mod-

els [80, 39, 94]. For example, [50] proposed a functional generalization of ordinary SCAD [19],

called fSCAD, to obtain a locally sparse estimator for the slope function under univariate scalar-

on-function regression. [22] and [49] applied fSCAD [50] to the multiple outputs functional linear

regression. In [27], they used the B-spline expansion and group bridge penalty [35] to identify the

non-zero region close to the endpoint. In addition, [62] developed a new regularization method for

functional linear discriminant analysis to induce zero regions.

This project has four major contributions. First, we introduce a semi-parametric functional quan-

tile model with a locally sparse structure. Second, we propose a Convolution smoothing based

Locally Sparse Estimation (CLoSE) method to do three tasks simultaneously, including selecting

significant functional covariates, identifying locally sparse regions to improve the interpretability

of the model, and estimating functional coefficients in nonzero regions. In order to overcome the

computational difficulty in minimizing the non-differentiable quantile loss combined with the non-

convex fSCAD penalty, we choose to replace the standard quantile loss function with a smoothed

version using convolution-type smoothing method. [24, 32, 76]. Third, we establish the oracle prop-

erty of the proposed estimator, and derive a simultaneous confidence band (SCB) for the functional

coefficients. The last but not the least, the analysis of the soybean data from Kansas shows that the

time period in which the daily temperature has a significant impact on soybean yields varies with

the quantile levels. In particular, we find that the significant functional predictors are different for

different quantile levels.

3.2. Convolution Smoothing based Locally Sparse Estimation

3.2.1 Convolution-type Smoothing Approach

Suppose that {(Zi,Xi(t), Yi, t ∈ [0, T ]}n
i=1 is an independent and identically distributed random

sample from (Z,X(t), Y, t ∈ [0, T ]). Then the locally sparse FQR estimator can be obtained by

minimizing the following loss function

L(ατ ,βτ , γl, λl) = 1
n

n∑
i=1

ρτ

(
Yi −ZT

i ατ −
∫ T

0
XT

i (t)βτ (t)dt
)

+
m∑

l=1
γl ∥Dqβτ,l∥2

2

+ Locally sparse penalty,

(3.2)

where ρτ (u) = u(τ−I(u < 0)) is the quantile check function, and I(·) is an indicator function. But,

the first-order derivative of ρ(u), ψτ (u) = ρ̇(u) = τ−I(u < 0), is not a smooth function. In the loss
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function (3.2), the second term is a convex roughness penalty with the qth-order differential operator

Dq and the non-negative tuning parameters γl, l = 1, . . . ,m, which control the smoothness of the

estimated coefficient functions. For the third term, we choose the fSCAD penalty [50], which is a

concave penalty, to simultaneously identify the zero regions of the estimated functional coefficients

and select the significant functional covariates.

The loss function (3.2) has no closed-form solution. Iterative procedures are often adopted to

find the optimal solution. However, in the iterative algorithm for minimizing the loss function (3.2),

the combination of a second-order non-differentiable check function and a concave locally sparse

penalty brings computation difficulty. More specifically, local quadratic approximation (LQA) is a

commonly used strategy for the optimization that involves fSCAD or SCAD penalty [19, 50]. Such

an algorithm usually requires the calculation of gradient and Hessian matrix, which is not available

for (3.2) because of the non-differentiable check function. To make the computation fast and stable,

we consider an alternative convolution smoothed quantile loss function [24, 32, 76].

Let e(ατ ,βτ ) = Y − ZTατ −
∫ T

0 XT (t)βτ (t)dt. Denote the conditional cumulative dis-

tribution function (CDF) and density function of e(ατ ,βτ ) given Z and X(t) as Fe|Z,X(·) and

fe|Z,X(·), respectively. Then the population quantile loss can be expressed as

E[ρτ (ατ ,βτ )] =
∫
ρτ (u)dFe|Z,X(u;ατ ,βτ ). (3.3)

When the unknown CDF Fe|Z,X(u;ατ ,βτ ) in (3.3) is replaced by the empirical distribution func-

tion F̂ (t;ατ ,βτ ) = 1/n
∑n

i=1 I(ei(ατ ,βτ ) ≤ u} of the residuals ei(ατ ,βτ ) = Yi − ZT
i ατ −∫ T

0 XT
i (t)βτ (t)dt, we can obtain the standard quantile loss, that is, the first term in (3.2). How-

ever, the empirical distribution function F̂ (t;ατ ,βτ ) is a discontinuous function. Thus, a kernel

smoothing estimator of Fe|Z,X(u;ατ ,βτ ) is a better choice [24, 76]. The kernel density estimator

is f̂h(u;ατ ,βτ ) = 1/n
∑

Kh(u − ei(ατ ,βτ )) = (nh)−1∑K((u − ei(ατ ,βτ ))/h), where K(·)
is a kernel function, h is a bandwidth and Kh(u) = 1/hK(u/h). The corresponding kernel smooth-

ing CDF estimator is F̂h(u;ατ ,βτ ) = n−1∑Gh(t − ei(ατ ,βτ )), where Gh(u) = G(u/h) and

G(u) =
∫ u

−∞ K(v)dv. When we replace the unknown CDF by the kernel smoothing estimator of

the CDF F̂h(u;ατ ,βτ ), we derive a new loss function with the convolution smoothed quantile loss:

L∗(ατ ,βτ , γl, λl) = 1
n

n∑
i=1

(ρτ ∗ Kh)
(
Yi −ZT

i ατ −
∫ T

0
XT

i (t)βτ (t)dt
)

+
m∑

l=1
γl ∥Dqβτ,l∥2

2

+
m∑

l=1

1
T

∫ T

0
pλl

(|βτ,l(t)|)dt,

(3.4)

where (ρτ ∗ Kh) (u) =
∫∞

−∞ ρτ (v)Kh(v − u)dv and ∗ is the convolution operator. The smoothed

quantile loss is a globally convex function of u, which has first and second-order derivatives to make
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the computation faster. Here pλl
(u) is the SCAD penalty [19] defined as

pλl
(u) =



λlu 0 ≤ u ≤ λl

−u2 − 2aλlu+ λ2
l

2(a− 1) λl ≤ u ≤ aλl

(a+ 1)λ2
l

2 u ≥ aλl

,

with the non-negative tunning parameters a.

3.2.2 Estimation Procedure

We use B-spline basis functions to represent the functional coefficients βτ,l(t), l = 1, . . .m. We set

the order to be p+1 and placeK+1 equally spaced knots 0 = t0 < t1 < · · · < tK−1 < tK = T in

the domain [0, T ] to define a set of B-spline basis functions. Then the functional coefficient βτ,l(t)
can be approximated by the B-spline basis functions:

βτ,l(t) ≈ BT (t)θτ,l, (3.5)

where B(t) = (B1(t), . . . , BK+p(t))T is the vector of B-spline basis functions and θτ,l = (θτ,l,1, . . . ,

θτ,l,K+p)T is the corresponding coefficients. DenoteUi =
∫ T

o Xi(t)⊗B(t)dt and θT
τ = (θT

τ,1, · · · ,θT
τ,m),

then the first term of L∗(ατ , βτ , γ, λ) can be written as n−1∑n
i=1 (ρτ ∗ Kh) (Yi −ZT

i ατ −UT
i θτ ).

The roughness penalty in (3.4) can be expressed as

m∑
l=1

γl

∥∥∥∥∥
(

B(q)(t)
)T

θτ,l

∥∥∥∥∥
2

2
=

m∑
l=1

γlθ
T
τ,lV θτ,l = θT

τ (Γ ⊗ V )θτ , (3.6)

where Γ = diag(γ1, · · · , γm), V =
∫ T

0 [B(q)(t)][B(q)(t)]Tdt.
According to Theorem 1 in [50], as K → ∞, the fSCAD penalty term can be approximated by

m∑
l=1

K

T

∫ T

0
pλl

(|βτ,l(t)|)dt ≈
m∑

l=1

K∑
j=1

pλl

(√
K

T

∫ tj

tj−1
β2

τ,l(t)dt
)
. (3.7)

Plugging the spline approximation into
∫ tj

tj−1 β
2
τ (t)dt, we can get the matrix representation,

∫ tj

tj−1 β
2
τ,l(t)dt =

θT
τ,lWjθτ,l , whereWj is an (K + p) by (K + p) matrix with entries wuv =

∫ tj

tj−1 Bu(t)Bv(t)dt if

j ≤ u, v ≤ j + p and zero otherwise. Thus the fSCAD penalty (3.7) can be rewritten as

m∑
l=1

K∑
j=1

pλl

(√
K

T

∫ tj

tj−1
β2

τ,l(t)dt
)

=
m∑

l=1

K∑
j=1

pλl

√K

T
θT

τ,lWjθτ,l

 . (3.8)
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Then, combined with (3.5), (3.6) and (3.8), we can rewrite the loss function (3.4) as follows,

L∗(ατ ,θτ , γl, λl) ≈ 1
n

n∑
i=1

(ρτ ∗ Kh) (Yi −ZT
i ατ −UT

i θτ )

+ θT
τ (Γ ⊗ V )θτ

+
m∑

l=1

K∑
j=1

pλl

√K

T
θT

τ,lWjθτ,l

 .
(3.9)

The SCAD penalty pλl
(·) is not differentiable, which brings difficulty in the optimization. There

are two ways to approximate pλl
(·), local quadratic approximation (LQA; [19]) and local linear

approximation (LLA; [95]). [50] found that LLA does not work well with Lq norm of functions and

they suggested using LQA in their paper. Therefore, we also choose the LQA to approximate the

fSCAD penalty. When u ≈ u(0), the LQA of the SCAD function pλl
(u) is:

pλl
(|u|) ≈ pλl

(|u(0)|) + 1
2
ṗλl

(|u(0)|)
|u(0)|

(u2 − u(0)2)

= 1
2
ṗλl

(|u(0)|)
|u(0)|

u2 + pλl
(|u(0)|) − 1

2
ṗλl

(|u(0)|)
|u(0)|

u(0)2

∆= 1
2
ṗλl

(u(0))
|u(0)|

u2 +R1(u(0)),

(3.10)

where ṗλl
(u) is the first order derivative of pλl

(u) and R1(u(0)) is a constant which only depends

on u(0).

Then given some initial estimator θ̂(0)
τ = (θ̂(0)T

τ,1 , · · · , θ̂(0)T
τ,m )T , when θτ ≈ θ̂

(0)
τ , we have

m∑
l=1

K∑
j=1

pλl

√K

T
θT

τ,lWjθτ,l

 ≈ 1
2

m∑
l=1

K∑
j=1

ṗλl

(√
K
T θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

)
√

K
T θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

θT
τ,lWjθτ,l

T /K
+R2(θ̂(0)

τ )

≈ 1
2

m∑
l=1

K∑
j=1

ṗλl

(√
K
T θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

)
√

T
K θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

θT
τ,lWjθτ,l +R2(θ̂(0)

τ ),

(3.11)

where

R2(θ̂(0)
τ ) =

m∑
l=1

K∑
j=1

pλl

√K

T
θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l


− 1

2

m∑
l=1

K∑
j=1

ṗλl

√K

T
θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

√K

T
θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l ,
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only depends on the initial estimator θ̂(0)
τ . Denote

W
(0)
τ,l = 1

2

K∑
j=1

ṗλl

(√
K
T θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

)
√

T
K θ̂

(0)T
τ,l Wj θ̂

(0)
τ,l

Wj , and W (0)
τ =


W

(0)
τ,1

. . .

W
(0)
τ,m

 ,
we can get

m∑
l=1

K∑
j=1

pλl

√K

T
θT

τ,lWjθτ,l

 ≈ θT
τ W

(0)
τ θτ +R2(θ̂(0)

τ ).

Thus we can express the loss function (3.9) as follows,

L∗(ατ ,θτ , γl, λl | θ̂(0)
τ ) ≈ 1

n

n∑
i=1

(ρτ ∗ Kh) (Yi −ZT
i ατ −UT

i θτ )

+ θT
τ (Γ ⊗ V )θτ

+ θT
τ W

(0)
τ θτ +R2(θ̂(0)

τ ).

(3.12)

Denote L∗
0(ατ ,θτ ) = 1/n

∑n
i=1 (ρτ ∗ Kh) (Yi − ZT

i ατ − UT
i θτ ), we can get the first-order and

second-order derivatives of L∗
0(ατ ,θτ ) respectively, that is,

L̇∗
0(ατ ,θτ ) = 1/n

n∑
i=1

{
Gh(ZT

i ατ +UT
i θτ − Yi) − τ

}
(ZT

i ,U
T
i )T ,

L̈∗
0(ατ ,θτ ) = 1/n

n∑
i=1

Kh(ZT
i ατ +UT

i θτ − Yi)(ZT
i ,U

T
i )T (ZT

i ,U
T
i ).

With the smoothed quantile loss and LQA on the fSCAD penalty, we are able to calculate its

gradient and Hessian matrix. Then an iterative Newton–Raphson-type algorithm can be used to

solve the optimization problem. More specifically, for a fixed W (k)
τ , we use a Newton–Raphson

type algorithm to solve the minimization of L∗(ατ ,θτ , γl, λl | θ̂(k)
τ ) with respect to (ατ ,θτ ).

After it converges, we update W (k)
τ to W (k+1)

τ and then minimize L∗(ατ ,θτ , γl, λl | θ̂(k+1)
τ ). We

repeat this procedure until the sequences of minimizers (α(j)
τ ,θ

(j)
τ ) converge. Note that in practice,

the term ṗλl
(u(0))/|u(0)| in (3.10) can go to infinity if |u(0)| is very small, which can cause the

algorithm to be unstable. Following [36], in our algorithm we use a perturbed version of LQA for

pλl
(·). We summarize the computational details in Algorithm 1. Note that for each iteration, ηj,k is

chosen such that the objective function decreases after the update.

Let S1 and S2 denote the candidate sets for the tuning parameters λl and γl, respectively. We

tune these parameters based on the following strategy. For a given pair (λl, γl), we first fit the model

(3.12) to identify the estimated null and nonnull subregions. Next, we remove the information on

the functional covariates within the null subregions and refit the model without the fSCAD penalty.

Then, we apply the Bayesian information criterion (BIC) [47] to find the best pair (λl, γl).
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Algorithm 1: Algorithm for CLoSE Method
Input : Data, quantile level τ , bandwidth h

1 Initialization: (
α̂

(0)
τ

θ̂
(0)
τ

)
= argminατ ,θτ

{
L∗

0(ατ ,θτ ) + θT
τ (Γ ⊗ V )θτ

}
,

where the tuning parameters γl in the matrix Γ are selected by cross validation;

2 while not converged do
3 while not converged do
4 Let α̂(0,k2)

τ = α̂
(k2)
τ and θ̂(0,k2)

τ = θ̂
(k2)
τ ;

5 Update α̂(k1,k2)
τ and θ̂(k1,k2)

τ as follows:(
α̂

(k1,k2)
τ

θ̂
(k1,k2)
τ

)
=
(
α̂

(k1−1,k2)
τ

θ̂
(k1−1,k2)
τ

)
− ηk1,k2

{
D

(k1−1,k2)
2

}−1
D

(k1−1,k2)
1 ,

where

D
(k1−1,k2)
1 = L̇∗

0

(
α̂(k1−1,k2)

τ , θ̂(k1−1,k2)
τ

)
+2
(

0d×d

W
(k2−1)
τ + Γ ⊗ V

)(
α̂

(k1−1,k2)
τ

θ̂
(k1−1,k2)
τ

)
,

D
(k1−1,k2)
2 = L̈∗

0

(
α̂(k1−1,k2)

τ , θ̂(k1−1,k2)
τ

)
+ 2

(
0d×d

W
(k2−1)
τ + Γ ⊗ V

)
.

6 Let k1 := k1 + 1.
7 end
8 The limit is denoted as α̂(k2)

τ and θ̂(k2)
τ

9 UpdateW (k2)
τ ;

10 Let k2 := k2 + 1;
11 end

Output: The final estimators α̂τ and θ̂τ
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3.3. Large Sample Properties

For any vector, we shall use ∥ · ∥2 to denote the Euclidean norm. The null region and nonnull re-

gion of βτ,l(t), l = 1, . . . ,m are denoted by N (βτ,l) and S(βτ,l), respectively, where N (βτ,l) =
{t ∈ [0, T ] : βτ,l(t) = 0} and N (βτ,l) = {t ∈ [0, T ] : βτ,l(t) ̸= 0}. Bτ,l,1(t) denotes the K∗

τ,l di-

mensional sub-vector of B(t) such that each Bj(t) in Bτ,l,1(t) has a support inside S(βτ,l). Let

U∗
τ and U∗

τ,i be a K∗
τ =

∑m
l=1K

∗
τ,l dimensional vector of the corresponding elements of U and

Ui, respectively, associated with Bτ,1,1, . . . ,Bτ,m,1. We also define Z∗
τ = (ZT ,U∗T

τ )T , Στ,1 =
E
{
Z∗

τZ
∗T
τ

}
and Στ,2 = E

{
fe|Z,X(0)Z∗

τZ
∗T
τ

}
.

3.3.1 Conditions

To establish the asymptotic results of the estimated parameters, and the oracle properties of the

estimated functional coefficients, we first need to give some Conditions.

Definition 1. (i) For the functional predictor Xl(t), l = 1, . . . ,m, it holds that ∥Xl∥2 is almost

surely bounded, where ∥Xl∥2
2 =

∫ T
0 X2

l (t)dt. Moreover, ρmin(UUT )/K−1 and ρmax(UUT )/K−1

are bounded away from 0 and ∞ as n → ∞, where ρmin(A) and ρmax(A) denote the minimal and

maximal eigenvalues of the matrix A, respectively. (ii) For the scalar predictors, the components

of Z have bounded support. E(ZZT ) is positive definite and has eigenvalues bounded away from

zero.

Definition 2. Let υ be a nonnegative integer, and κ ∈ (0, 1] such that r = υ+κ ≥ p+1. We assume

the unknown functional coefficient βτ,l(·) ∈ H(r)(S(βτ,l)), which is the class of function f on

S(βτ,l) whose υth deriative exists and satisfies a Lipschitz condition of order κ: |f (υ)(t)−f (υ)(s)| ≤
Cυ|s− t|κ, for s, t ∈ S(βτ,l) and some constant Cυ > 0.

Definition 3. The conditional density function fe|Z,X(·) is bounded away from zero, and second

times continuously differentiable.

Definition 4. Suppose K(·) is a symmetric, bounded, continuous and non-negative function inte-

grating to one, which means that K(u) = K(−u), K ≥ 0 and
∫∞

−∞ K(u) = 1 for all u ∈ R.

Furthermore, K(·) is second-order continuously differentiable and bounded.

Definition 5. Let δj = kj+1 − kj and δ = max0≤j≤K(kj+1 − kj). There exists a constant M > 0,

such that

δ/ min
0≤j≤K

(kj+1 − kj) ≤ M, max
0≤j≤K−1

|δj+1 − δj | = o(K−1). (3.13)

Definition 6. The number of knots K = o(
√
n) and K = ω(n1/(2r+1)), where K = ω(n1/(2r+1))

means K/n1/(2r+1) → ∞ as n → ∞.

Definition 7. For the roughness penalty, we assume tuning parameter γl, l = 1 . . . ,m satisfies that

γl = o(n1/2K1/2−2q), where q ≤ p.
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Definition 8. The positive bandwidth h satisfies nh4 → 0 and hKr → 0.

Definition 9. For the fSCAD penalty term, λl → 0 as n → ∞, (i) maxl

√∫
S(β0

τ,l
) ṗλl

(|BT (t)θ0
τ,l|)2dt

= o(n−1/2K−1), and maxl

√∫
S(β0

τ,l
) p̈λl

(|BT (t)θ0
τ,l|)2dt = o(1). (ii) K1/2n−1/2λ−1

l → 0 and

lim infn→∞ lim infu→0+ ṗλl
(u)λ−1

l > 0.

Remark 4. Condition 1-(i) gives some moment conditions for functional predictors and is essential

to obtain the oracle property of the estimators. For the scalar predictors, Condition 1-(ii) imposes

some moment conditions. Condition 2 is about the smoothness of the functional coefficients βτ,l(t),

which has been widely used in the literature of nonparametric estimation. The common conditions

on the conditional density function of e(ατ ,βτ ) in the quantile regression context is given in Con-

dition 3. Condition 4 is a necessary condition on the kernel function, which is also required in [24],

[32] and [76]. Condition 5 gives the assumption about the knots used in B-spline approximation,

which implies that δ ∼ K−1, i.e., δ and K−1 are rate-wise equivalent from (3.13). Condition 6 is

imposed to make the spline approximation bias asymptotically negligible. Condition 7 can make

the shrinkage bias negligible brought by roughness penalty. Condition 8 ensures that the convolu-

tion smoothing has an asymptotically negligible bias on the estimator of α0
τ and βτ,l. Condition

9-(i) is the regularity condition to ensure the bias brought by the sparsity penalty is asymptotically

negligible [20], and Condition 9-(ii) is used to obtain the functional oracle property of β̂τ,l(t).

3.3.2 Functional Oracle Property and Asymptotic Normality

Theorem 1. Under Conditions 1-9, there exists a local minimizer (α̂τ , β̂τ ) of (3.4) such that ∥α̂τ −
ατ ∥2 = Op(n−1/2) and ∥β̂τ − βτ ∥2 = Op(n−1/2K1/2).

From this theorem, it is clear that there exists a root-n consistent estimator α̂τ and a root-n/M

consistent estimator β̂τ (t). We then give the functional oracle property of β̂τ (t) and the asymptotic

result of α̂τ .

Theorem 2 (Functional Oracle Property). If Conditions 1-9 hold, as n → ∞:

(i) Locally Sparsity: For every t not in the support of βτ,l(t), we have β̂τ,l(t) = 0 with probability

tending to one.

(ii) Asymptotic Normality: For t such that βτ,l(t) ̸= 0 we have

σ
−1/2
τ,l (t)(β̂τ,l(t) − βτ,l(t))

d→ G(t), (3.14)

where στ,l(t) = τ(1−τ)Λτ,l(t)Σ−1
τ,2(Στ,1/n)Σ−1

τ,2ΛT
τ,l(t), Λτ,l(t) = ξT

l B̃τ (t)(0K∗
τ ×d, IK∗

τ
),

ξl is a m× 1 unit vector in which the l-th element is 1, Id be a d× d identity matrix, 0d×K∗
τ

is a d×K∗
τ zero matrix,

B̃τ,1(t) = Bdiag(BT
τ,1,1(t), · · · BT

τ,m,1(t)),
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and G(t) is a Gaussian random process with mean 0 defined on S(βτ,l) with the covariance

function

C(t, s) = τ(1 − τ)σ−1/2
τ,l (t)σ−1/2

τ,l (s)Λτ,l(t)Σ−1
τ,2(Στ,1/n)Σ−1

τ,2ΛT
τ,l(s).

Consequently, for any a ∈ (0, 1),

lim
n→∞

P

{
sup

t∈Sε(βτ,l)

∣∣∣σ−1/2
τ,l (t)

{
β̂τ,l(t) − βτ,l(t)

}∣∣∣ ≤ Qτ,l(a)
}

= 1 − a,

where Sε(βτ,l) as a subset of S(βτ,l) becomes denser as n → ∞ , Qτ,l(a) = (2 log |Sε(βτ,l)|)1/2

−(2 log |Sε(βτ,l)|)−1/2 {log(−0.5 log(1 − a)) + 0.5 [log(log |Sε(βτ,l)|) + log(4π)]}, and |Sε(βτ,l)|
denote the cardinality of the set |Sε(βτ,l)|. Then an asymptotic 100(1 − a)% simultaneous

confidence band (SCB) for βτ,l(t) over Sε(βτ,l) is given by β̂τ,l(t) ± σ
1/2
τ,l (t)Qτ,l(a).

Theorem 3 (Asymptotic Normality of the Estimators of Parameters). If Conditions 1-9 hold, as

n → ∞, we have

√
n(α̂τ −α0

τ ) d→ N(0, τ(1 − τ)Iτ Σ−1
τ,2Στ,1Σ−1

τ,2IT
τ ), (3.15)

where α0
τ is the true parameters and Iτ = (Id,0d×K∗

τ
).

Remark 5. Theorem 2 shows that the estimators β̂τ (t) possess the functional version oracle prop-

erty, which makes the fitted model simpler and more interpretable. From Theorem 2, for any given

fixed point t such that βτ,l(t) ̸= 0, we have σ−1/2
τ,l (t)(β̂τ,l(t) − βτ,l(t))

d→ N (0, 1), then the asymp-

totic 100(1 − a)% point-wise confidence band (PCB) of βτ,l is β̂τ,l(t) ± σ
1/2
τ,l (t)za and the width of

SCB is inflated by Qτ,l(a)/za, where za is the a-quantile of the standard normal distribution. Theo-

rem 3 establishes the asymptotic normality of the parameters ατ,l and its corresponding 100(1−a)%
point-wise confidence interval is α̂τ,l ± n−1/2

√
τ(1 − τ)ξ̃T

l Iτ Σ−1
τ,2Στ,1Σ−1

τ,2IT
τ ξ̃lza, where ξ̃l is a

d× 1 unit vector in which the l-th element is 1 and l = 1, . . . , d.

3.3.3 Wild Bootstrap

However, Στ,1 and Στ,2 in the covariance function of β̂τ,l(t) and the covariance matrix of α̂τ are

both unknown. Especially, in the covariance function and matrix, the unknown conditional density

function of the error given the scalar covariates and infinite-dimensional functional covariates is very

difficult to estimate. So, before we construct the corresponding SCBs and point-wise confidence

intervals, we need to obtain the accurate estimators of the covariance function and covariance matrix.

Adopting the ideas of the wild bootstrap procedure for classical quantile regression in [23] and

refitted wild bootstrap for the high-dimensional quantile regression in [12], we propose a modified

wild bootstrap method for the sparse semi-parametric functional quantile regression to estimate the

covariance function of β̂τ,l(t) and the covariance matrix of α̂τ simultaneously. We randomly split
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the original data set into two even parts and carry out this wild bootstrapping using the following

steps:

Step 1. We first minimize the objective function (3.9) based on the first part dataset to obtain the

estimators α̃τ,I and θ̃τ,I .

Step 2. Based on the non-zero coefficient identified by the estimator θ̃τ,I and the second part

dataset, we can obtain the estimators (α̂T
τ,II , θ̂

T
τ,II)T by the following equation

(α̂τ,II , θ̂τ,II) = arg min
ατ ,θτ

1
n1

n1∑
i=1

(ρτ ∗ Kh) (Yi −ZT
i ατ −UT

i θτ ) + θT
τ (Γ ⊗ V )θτ ,

(3.16)

where n1 is the sample size of the second dataset and θ̂τ,II includes those zero coefficients

identified in Step 1.

Step 3. Independently generate weights wi such that

(1) there are two positive constants c1 and c2 satisfying supw ∈ W : w ≤ 0 = −c1 and

inf w ∈ W : w ≥ 0 = c1, where W is the support of w;

(2) E
[
w−1

i I(wi > 0)
]

= −E
[
w−1

i I(wi < 0)
]

= 1/2 and E [|wi|] < ∞;

(3) the τ th quantile of w is zero.

Step 4. Calculate the residuals based on the second dataset: êi = Yi − ZT
i α̂τ,II − UT

i θ̂τ,II .

Then used the second part data set to obtain the bootstrapped samples denoted by Y (b)
i =

ZT
i α̂τ +UT

i θ̂τ + e
(b)
i , where e(b)

i = wi|êi|.

Step 5. Resolve the objective function (3.16) based on the bootstrapped samples and denote the

estimate by α̂(b)
τ and θ̂(b)

τ .

Step 6. Repeat Step 2 - Step 5 B times and then estimate the variance function στ,l(t) of β̂τ,l(t)
from the 100 estimations at each t. A confidence interval for ατ can also be established from

the bootstrap estimations of ατ .

Theorem 4. Under the Conditions given in Section 3.3.1, using the above wild bootstrap procedure,

we have

sup
u∈R

∣∣∣∣∣P
{

sup
t∈Sε(βτ,l)

√
n

K
(β̂(b)

τ,l (t) − β̂τ,l(t)) ≤ u

}
− P

{
sup

t∈Sε(βτ,l)

√
n

K
(β̂τ,l(t) − βτ,l(t)) ≤ u

}∣∣∣∣∣ → 0,

sup
v∈R

∣∣∣P (n1/2(α̂(b)
τ,l − α̂τ,l) ≤ v) − P (n1/2(α̂τ,l − α0

τ,l) ≤ v)
∣∣∣ → 0.
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Theorem 4 shows that the estimated variance function based on the above-mentioned wild boot-

strap method is consistent, which makes it possible to conduct statistical inferences without estimat-

ing the unknown terms in the covariance function and covariance matrix, such as the error density

function.

3.4. Simulation Studies

In this section, we conduct simulation studies to evaluate the finite sample performance of our pro-

posed CLoSE method in comparison with the smoothed quantile loss (SQL) method. The difference

between the SQL method and the CLoSE method is that the SQL method only uses the combination

of the smoothed quantile loss and the roughness penalty to estimate βτ (t), while the CLoSE method

contains the additional local sparse penalty in the objective function to estimate βτ (t).

We consider synthetic data generated from the following semi-parametric functional quantile

model:

Yi = ZT
i ατ +

∫ 1

−1
XT

i (t)βτ (t)dt+ ei(τ), i = 1, . . . , n,

where Xi(t) is a Wiener process, Zi1, Zi2
iid∼ N(0, 0.1), Zi = (1, Zi1, Zi2)T , ατ = (0, 1, 1)T ,

βτ (t) = sin(2πt)1{−0.5 ≤ t ≤ 0.5}, and ei(τ) = ei − F−1
e (τ), where Fe(·) is the CDF of ei. We

consider the following two scenarios to generate ei.

• Scenario I: ei are i.i.d from the normal distribution, namely, ei
iid∼ N(0, 0.02). Under this

scenario, the distribution of the random error is symmetric.

• Scenario II: ei are i.i.d from a heavy-tailed distribution, Cauchy distribution, namely, ei
iid∼

C(0, 0.01).

In the convolution smoothing loss function, we use the Gaussian kernel K(u) = (2π)−1/2e−u2/2,

and bandwidth h = ((K+p) ×m+d)/n)2/5 [32]. Then the corresponding smoothed loss function

is (ρτ ∗ Kh) (u) = (h/2)lG(u/h) + (τ − 1/2)u where lG(u) = (2/π)1/2e−u2/2 + u(1 − 2Φ(u))
and Φ(·) is the cumulative distribution function of the standard normal distribution. The simulation

is repeated for 100 times.

Regarding the estimation for βτ (t), we consider two aspects of the performance of the proposed

estimator β̂τ (t): (i) identification of null and nonnull regions and (ii) the difference between β̂τ (t)
and βτ (t). Let T denote the set of time points where X(t) is evaluated. Define the null region

N (βτ ) = {t ∈ T : βτ (t) = 0} and the nonnull region S(βτ ) = {t ∈ T : βτ (t) ̸= 0}. Define the

true discovery rate (TDR) for N (βτ ) and the false discovery rate (FDR) for S(βτ ) as follows

TDR = |N (β̂τ ) ∩ N (βτ )|
|N (βτ )| , FDR = |N (β̂τ ) ∩ S(βτ )|

|S(βτ )| .

We use TDR and FDR to evaluate the performance of the proposed method on identifying the null

and nonnull regions of βτ,l(t) for τ = 0.1, . . . , 0.8 and l = 1, . . . ,m. Ideally, we want a larger TDR
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and a smaller FDR. A larger TDR means more null regions of functional predictors are correctly

detected. A smaller FDR means less nonnull region of functional predictors are mistakely identified

as the null region.

The simulation results on TDR and FDR are summarized in Table 3.1. Table 3.1 shows that the

TDR is overall satisfying for all chosen quantiles under both scenarios. The FDR of the Normal

scenario is much better than that of the Cauchy scenario. This may be due to the fact that the

Cauchy distribution is heavy-tailed and the variance of the error cannot be controlled. But under both

scenarios, FDR decreases as the sample sizes increase for all chosen quantiles, which is desirable.

Table 3.1: True discovery rate (TDR) for the null region N (βτ ) and false discovery rate (FDR) for
the nonnull region S(βτ ) using the convolution smoothing based locally sparse estimation (CLoSE)
method when the errors are simulated from the Normal or Cauchy distribution. Here n denotes the
sample size and τ denotes the quantile.

Normal Cauchy
n τ TDR FDR TDR FDR

0.2 98.5% 4.2% 89.3% 17.2%
0.3 99.2% 4.3% 95.1% 13.9%
0.4 98.9% 3.3% 88.6% 17.5%

500 0.5 98.7% 2.8% 98.4% 10.7%
0.6 98.7% 3.1% 92.5% 17.6%
0.7 99.0% 3.5% 96.1% 17.2%
0.8 98.6% 3.8% 86.9% 16.3%
0.2 99.3% 2.5% 95.8% 12.2%
0.3 98.9% 2.7% 98.6% 11.6%
0.4 95.9% 1.9% 99.9% 11.5%

1000 0.5 99.5% 2.1% 99.6% 7.8%
0.6 96.1% 1.5% 99.7% 10.6%
0.7 98.6% 2.0% 97.5% 12.6%
0.8 98.5% 2.4% 93.4% 13.6%

Table 3.2 shows the L2-norm of the difference between the estimator β̂τ (t) and the true function

βτ (t) from two different methods. It shows that the performance of both methods is improved as the

sample size increases while the proposed method always outperforms the SQL method without the

locally sparse regularization. The advantage of the proposed method is especially significant when

the sample size is small. Figure 3.2 displays the estimator β̂0.8(t) under the Normal scenario using

the CLoSE method and the SQL method. It shows that the CLoSE method can obtain a strictly zero

estimate for the functional coefficient β0.8(t) in the null regions, while β̂0.8(t) estimated from the

SQL method is always nonzero in the null regions.

Table 3.3 shows the performance of the estimator for the parametric components ατ using the

CLoSE method. The bias and standard error of the estimators for α1,τ and α2,τ both decrease as the

sample size increases under two scenarios for all chosen quantiles.
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Figure 3.2: The estimator β̂0.8(t) in one simulation replicate using the convolution smoothing based
locally sparse estimation (CLoSE) method (red solid line) and the smoothed quantile loss (SQL)
method (black dashed line) when the errors are simulated from the normal distribution when the
sample size n = 500. The true β0.8(t) is displayed as the blue dotted line.

Table 3.2: The L2-norm of the difference between the estimator β̂τ (t) and the true function βτ (t)
∥β̂τ (t, u) − βτ (t)∥2 using the convolution smoothing based locally sparse estimation (CLoSE)
method and the smoothed quantile loss (SQL) method when the errors are simulated from the nor-
mal or Cauchy distribution. Here n denotes the sample size and τ denotes the quantile.

Normal Cauchy
n τ SQL CLoSE SQL CLoSE

0.2 0.058 0.028 0.110 0.097
0.3 0.037 0.027 0.090 0.086
0.4 0.039 0.026 0.102 0.091

500 0.5 0.036 0.023 0.076 0.046
0.6 0.043 0.028 0.103 0.092
0.7 0.039 0.024 0.093 0.088
0.8 0.064 0.026 0.105 0.088
0.2 0.043 0.026 0.075 0.070
0.3 0.041 0.026 0.069 0.057
0.4 0.036 0.028 0.065 0.062

1000 0.5 0.029 0.022 0.057 0.035
0.6 0.037 0.027 0.065 0.058
0.7 0.044 0.025 0.071 0.059
0.8 0.044 0.026 0.082 0.075
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Table 3.3: Biases and standard errors (SEs) of the estimator for α1,τ and α2,τ using the convolution
smoothing based locally sparse estimation (CLoSE) method when the errors are simulated from the
normal or Cauchy distribution. Here n denotes the sample size, and τ denotes the quantile.

n τ
Normal Cauchy

Bias(α1,τ ) SE(α1,τ ) Bias(α2,τ ) SE(α2,τ ) Bias(α1,τ ) SE(α1,τ ) Bias(α2,τ ) SE(α2,τ )
×102 ×102 ×102 ×102 ×102 ×102 ×102 ×102

0.2 0.05 0.90 0.11 0.99 0.09 4.40 -0.92 4.36
0.3 0.04 0.87 0.12 0.99 0.24 3.65 -0.88 3.62
0.4 0.04 0.90 0.12 0.97 0.31 3.37 -0.80 3.19

500 0.5 0.05 0.89 0.11 0.97 0.34 3.34 -0.85 3.09
0.6 0.04 0.87 0.11 0.99 0.50 3.52 -0.92 3.15
0.7 0.05 0.88 0.11 0.98 0.49 3.85 -0.99 3.43
0.8 0.04 0.88 0.12 0.98 0.75 4.66 -1.20 4.07

0.2 -0.07 0.63 -0.14 0.68 -0.09 2.34 0.30 2.80
0.3 -0.06 0.62 -0.15 0.66 -0.03 1.97 0.16 2.37
0.4 -0.05 0.65 -0.14 0.68 0.04 2.03 0.10 2.34

1000 0.5 -0.06 0.61 -0.15 0.66 0.02 1.82 -0.02 2.19
0.6 -0.08 0.63 -0.15 0.65 0.03 2.01 -0.10 2.36
0.7 -0.06 0.62 -0.15 0.63 0.01 2.14 -0.29 2.50
0.8 -0.05 0.64 -0.15 0.66 0.03 2.66 -0.51 3.05

3.5. Real Data Analysis

Climate factors such as temperature and rainfall have significant effects on soybean germination

and growth. In North America, these climate factors can account for 15% variation of the soybean

yield [79]. For the stability of soybean production, it is important to keep tracking these factors over

the growing season. If we can figure out when and how the temperatures combined with other envi-

ronmental and non-environmental factors influence the soybean yield, then we may obtain a better

soybean planting and harvesting strategy. We can also make some interventions when the tempera-

ture is too low or too high. In addition, to have a more thorough understanding of this relationship,

analyzing the conditional quantiles of soybean yield should be more meaningful than analyzing the

conditional mean only. For these reasons, in this analysis, we want to identify the impact of daily

minimum and daily maximum temperatures on the soybean yield for different quantiles.

Kansas in the United States has 4.7 million acres of soybean planted, producing 200 million

bushels, and rank the 10th in the United States in terms of soybean yield. The data on soybean yield

and other related non-environmental variables in Kansas state between 1991 and 2006 are collected

and organized from the United States Department of Agriculture (USDA) website (https://

quickstats.nass.usda.gov/). The corresponding measurements on climate variables are

collected from National Oceanic and Atmospheric Administration (NOAA) website (https://

www.ncei.noaa.gov/products) for Kansas within the same time range.
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To be more specific, the soybean yield-related data collected from the USDA website contains

the county level annual soybean yield (measured in bushels per acre), the size of harvested land and

the size of irrigated area among each harvested land. The climate data collected from the NOAA

website contains daily minimum temperatures, daily maximum temperatures and annual precipita-

tions at the climate station level. To link the observations from different websites together, we first

identify the latitudes and longitudes of each climate station and the center of each county of Kansas.

Next we label the location of each climate station by comparing its distance to all the county centers.

More specifically, for each climate station, the closest county center is its label of location. To ob-

tain county level daily minimum and maximum temperature and annual precipitation observations,

we average the corresponding climate station level observations over all the climate stations within

each county. In this way, we integrate all the observations at the county level.
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Figure 3.3: A sample of daily minimum and maximum temperature curves of counties in Kansas.
The unit of the y-axis is the Fahrenheit temperature scale.

In the following analysis, we treat the annual precipitation, and the ratio of the size of the

irrigated area over the size of harvested land of each county as two scalar predictors and we treat

daily minimum temperature and daily maximum temperature curves as two functional predictors.

Figure 3.3 displays a sample of the daily minimum temperature and daily maximum temperature

curves of Kansas.

Let X1(t) and X2(t) denote the daily maximum temperature and daily minimum temperature

between February and November respectively. Let Z1 and Z2 denote the annual precipitation and
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the ratio of irrigated area of each county in Kansas. Let Y denote the annual soybean yield of each

county in Kansas. The model we want to investigate is the following,

Qτ (Y |X1(t), X2(t), Z1, Z2) =c(τ) + α1,τZ1 + α2,τZ2 +
∫

T
X1(t)β1,τ (t)dt

+
∫

T
X2(t)β2,τ (t)dt.

We fit the model at three different quantiles τ = 0.25, 0.5, 0.75, which represent three different

scenarios of the soybean yield: the “worst” case, the normal case and the “best” case. We apply

the bootstrap procedure mentioned above to compute the simultaneous confident bands for β1,τ and

β2,τ , and the 90%-confidence intervals for α1,τ and α2,τ .

−
4

0
2

4
6

Month

β
1

, 
0
.2

5

Feb Apr June Aug Oct Dec

−
1

0
0

1
0

2
0

Month

β
2

, 
0
.2

5

Feb Apr June Aug Oct Dec

−
1

0
0

5
1

0

Month

β
1

, 
0
.5

Feb Apr June Aug Oct Dec

−
4

0
2

4
6

Month

β
2

, 
0
.5

Feb Apr June Aug Oct Dec

−
1

0
−

5
0

5
1

0

Month

β
1

, 
0
.7

5

Feb Apr June Aug Oct Dec

−
6

−
2

2
4

Month

β
2

, 
0
.7

5

Feb Apr June Aug Oct Dec

Figure 3.4: The estimated slope functions using the convolution smoothing based locally sparse
estimation (CLoSE) method (red solid line) and the smoothed quantile loss (SQL) method (blue
dashed line) at different quantile levels, τ = 0.25, 0.50 and 0.75, from the soybean dataset of
Kansas. The gray areas are the corresponding 95% simultaneous confidence bands.
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Figure 3.4 displays the simultaneous confident bands for β1,τ and β2,τ with τ = 0.25, 0.5 and

0.75. Specifically, Figure 3.4-(a) and Figure 3.4-(b) show that the daily maximum temperature has

no influence on the 25% quantile of the soybean yield. Only the daily minimum temperature after

late July matters for this “worst” scenario of the soybean yield. From Figure 3.4-(d) and Figure 3.4-

(f), we observe that the daily minimum temperature has no effect on the soybean yield for the

50% and 75% quantiles of the soybean yield. On the other hand, Figure 3.4-(c) and Figure 3.4-

(e) show that the daily maximum temperatures play an important role in these two quantiles of

the soybean yield. More specifically, from Figure 3.4-(c) and Figure 3.4-(e), we can observe that

regarding the 50% and 75% quantiles of the soybean yield, the maximum temperature during the

hot summer has a negative effect and the maximum temperature during the fall and winter have a

positive influence. This may be due to the fact that before reaching 30◦C (86◦F ), the increasing

air temperature can lead to an increase in soybean yield. But after reaching 30◦C (86◦F ), a higher

temperature is negatively related to the soybean yield [72]. The most active soybean planting dates of

different counties of Kansas range from mid-May to late June. This can explain why we observe the

sparsity of β̂1,τ (t) and β̂2,τ (t) between February and late June. In addition, comparing the estimated

functions from the proposed method and the SQL method, we notice that the SQL method tends to

use both functional predictors: daily minimum and daily maximum temperature curves. This may be

due to the high correlation of these two functional predictors. The proposed CLoSE method tends

to use only one of them, which implies that the two functional predictors may contain repetitive

information and therefore using only one of them in the model should be enough.

Table 3.4 summarizes 95%-confidence intervals for α1,τ and α2,τ . We observe that for all three

quantiles, the proportion of irrigated areas of each county is significant to the annual soybean yield,

while the annual precipitation is not significant for any quantiles.

Table 3.4: The estimate and 95% Confidence Intervals (CI) for α1,τ and α2,τ at different
quantile levels, τ = 0.25, 0.50 and 0.75, using the convolution smoothing based locally
sparse estimation (CLoSE) method from the soybean dataset of Kansas.

τ
α1,τ α2,τ

Estimate 95% CI Estimate 95% CI

0.25 19.26 [-94.23, 84.60] 15.19 [13.03, 23.69]

0.50 5.36 [-56.55, 14.34] 16.69 [14.33, 19.42]

0.75 7.23 [-32.79, 28.42] 15.17 [13.22, 18.34]

3.6. Conclusion and Discussion

In this project, we propose a locally sparse semi-parametric functional quantile model to study the

dynamic dependence of functional covariates on scalar response. A convolution smoothing based

locally sparse estimation (CLoSE) method is developed to identify the locally sparse regions of the
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functional coefficients and estimate the parameters and the functional coefficients on the non-null

regions. We also establish the functional version of the oracle property of the functional coefficients

and the asymptotic properties of the estimated parameters. The standard quantile loss function is

convex, which means that it is relatively easy to optimize using standard methods. However, we

need to add a concave penalty to keep the locally sparse structure of the functional coefficients. Then

the loss function becomes more complicated, and optimization becomes more difficult. The CLoSE

method addresses this problem by first smoothing the quantile loss function. This step smooths out

the function and makes it easier to optimize. The CLoSE method has been shown to be effective

in estimating the locally sparse semi-parametric functional quantile model in our simulation studies

and real application.

When the data size is large-scale, the computation burden brought by the fSCAD penalty and

the selection of several tuning parameters is heavy even if we use the convolution-smoothed quan-

tile loss. Improving the computation efficiency when analyzing large-scale functional data is indeed

an important topic worth investigating in future research. One possible approach is to develop new

algorithms that can handle large-scale data more efficiently. For example, one could consider us-

ing parallel computing techniques or developing distributed algorithms that can run on clusters of

computers.

3.7. Some Lemmas

To prove our theorems in the manuscripts, we start by proving the following lemmas.

Lemma 1. Under Condition 2, β0
τ,l(t) − βτ,l(t) = ba(t) + o(K−r), where β0

τ,l(t) = BT (t)θ0
τ,l is

the best B-spline function in approximating βτ,l, and ba(t) = O(k−r) is the spline approximation

bias.

Proof The proof of this lemma can be found in [2].

Lemma 2. Under Condition 1 and 5,

(i) there exists constants CG > cG > 0 such that

cGK
−1 ≤ ρmin

(
UUT

)
≤ ρmax

(
UUT

)
≤ CGK

−1,

where ρmin and ρmax denote the smallest and largest eigenvalues of a matrix, respectively.

(ii) we can have ∥U∥∞ = O(K−1).

Lemma 3. Under Condition 5, we can get

(i) ∥V ∥∞ = O(K2q−1);

(ii) for any non-zero vectoru, there are two positive constants cD < CD such that cDK
2q−1∥µ∥2

2 ≤
µTV µ ≤ CDK

2q−1∥µ∥2
2.
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Lemma 4. If Conditions 1, 2, 3, 4 and 8 hold, for any δ > 0, there exists a constant C such that

Pr(∥L̇∗
0(α0

τ ,θ
0
τ )∥2 < C

√
1/n) > 1 − δ, (3.17)

holds for all sufficiently large K and n.

Proof Recall that

L̇∗
0(α0

τ ,θ
0
τ ) = 1

n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
(ZT

i ,U
T
i )T .

Note that each B-spline basis function Bk(t) is non-negative, nonzero over no more than p + 1
consecutive subintervals and

∑K+p
k=1 Bk(t) = 1 for all t ∈ [0, T ], therefore, we can get

∫ T
0 B2

k(t) =
O(K−1). Then, with Condition 1, we have

∥Ui∥∞ = O(K−1/2), and ∥Ui∥2 = O(1).

For Gh(ZT
i α

0
τ +UT

i θ
0
τ − Yi), we have

Gh(ZT
i α

0
τ +UT

i θ
0
τ − Yi)

=Gh

(
ZT

i α
0
τ +UT

i θ
0
τ − Yi +

∫ T

0
XT

i (t)βτ (t)dt−
∫ T

0
XT

i (t)βτ (t)dt
)

=Gh

(
−ei +UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)
,

by Lagrange mean value theorem, we can get

Gh

(
−ei +UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)

=Gh(−ei) + Ġh

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)

=Gh(−ei) + Kh

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)
,

where β∗
τ (t) lies between βτ (t) and UT

i θ
0
τ .

Then L̇∗
0(α0

τ ,θ
0
τ ) can be expressed as:

L̇∗
0(α0

τ ,θ
0
τ ) = 1

n

n∑
i=1

{
Kh

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)}

(ZT
i ,U

T
i )T

+ 1
n

n∑
i=1

{Gh(−ei) − τ} (ZT
i ,U

T
i )T

∆= I1 + I2.

73



First, we will prove that ∥I1∥2 = Op(K−r(h2 + (nh)−1/2)). By Lemma A.1 and Condition 1,

we have
∣∣∣UT

i θ
0
τ −

∫ T
0 XT

i (t)βτ (t)dt
∣∣∣ = Op(K−r). Then, by the weak law of large numbers and

Condition 1, we can get ∥I1∥2 = Op(K−r(h2 + (nh)−1/2)).

Moreover, we want to prove the bound of the term I2. It follows from Condition 3 that

E

(
1
n

n∑
i=1

Gh(−ei) | Zi,Xi(t)
)

= E(Gh(−ei) | Zi,Xi(t))

=
∫
G(−ε/h)fe|Z,X(ε)dε

= 1
h

∫
K(−ε/h)Fe|Z,X(ε)du

=
∫

K(−u)Fe|Z,X(hu)dε

=
∫

K(u)
{
Fe|Z,X(0) + hufe|Z,X(0) +O(h2)

}
du

= τ +O(h2),

then, using Condition 1, it is easy to have

E

{
1
n

n∑
i=1

{Gh(−ei) − τ} (ZT
i ,U

T
i )T

}
= E

{
E

{
1
n

n∑
i=1

{Gh(−ei) − τ} | Zi,Xi(t)
}

(ZT
i ,U

T
i )T

}
= O(h2).

(3.18)

For any matrixA, letA⊗2 = AAT . Given that

Cov

{
1
n

n∑
i=1

{Gh(−ei) − τ} (ZT
i ,U

T
i )T

}
= 1
n
Cov

{
{Gh(−ei) − τ} (ZT

i ,U
T
i )T

}
= 1
n
E

{
{Gh(−ei) − τ}2

(
(ZT

i ,U
T
i )T

)⊗2
}

= 1
n
E

{
G2

h(−ei)
(
(ZT

i ,U
T
i )T

)⊗2
}

− 2τ × 1
n
E

{
Gh(−ei)

(
(ZT

i ,U
T
i )T

)⊗2
}

+ τ2 1
n
E

{(
(ZT

i ,U
T
i )T

)⊗2
}
.
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Denote K̃(u) = 2G(u)K(u), cK =
∫
uK̃(u)du and note that

∫
K̃(u)du = 1. Similarly, using

integration by parts and a change of variable, we have

E(G2
h(−εi) | Zi,Xi(t)) =

∫
G2

h(−ε)fe|Z,X(ε)dε

= 1
h

∫
K̃(−ε/h)Fe|Z,X(ε)dε

= τ − hfe|Z,X(0)
∫
uK̃(u)du+O(h2)

= τ +O(h).

According to the bounded condition of Zi andXi(t) (Condition 1), we can get

E

{
G2

h(−ei)
∥∥∥∥((ZT

i ,U
T
i )T

)⊗2
∥∥∥∥

∞

}
= E

{∥∥∥∥((ZT
i ,U

T
i )T

)⊗2
∥∥∥∥

∞
E(G2

h(−ei) | Zi,Xi(t))
}

= τ +O(h).
(3.19)

Combining (3.18) and (3.19), we cant get
∥∥∥Cov {n−1∑n

i=1 {Gh(−ei) − τ} (ZT
i ,U

T
i )T

}∥∥∥
2

=
1/n(τ(1−τ)+O(h)) = O(1/n). Then ∥I2∥2 = Op(h2+

√
1/n) and ∥L̇∗

0(α0
τ ,θ

0
τ )∥2 = Op(K−r(h2+

(nh)−1/2) + h2 +
√

1/n) = Op(
√

1/n).

Lemma 5. If Conditions 1, 2, 3, 4 and 8 hold hold, we have

1√
n

n∑
i=1

{
E
(
(ZT ,UT )T

)⊗2
}−1/2

{Gh(−ei) − τ} (ZT
i ,U

T
i )T d→ N(0, τ(1 − τ)Id+m×(K+p)).

(3.20)

Proof Denote Mi = (ZT
i ,U

T
i )T , M = E

{(
(ZT ,UT )T

)⊗2
}

, and

G∗
τ,ni = 1√

n
M−1/2 {Gh(−ei) − τ} Mi,

then
n∑

i=1
G∗

τ,ni = 1√
n

n∑
i=1

M−1/2 {Gh(−ei) − τ} Mi.

From the proof of Lemma A.4, we can get E(Gh(−ei) − τ) = O(h2) and V ar(Gh(−ei) − τ) =
τ(1 − τ) +O(h), then

E(G∗
τ,ni) = O(h2n−1/2), Cov(G∗

τ,ni) = 1
n
τ(1−τ)M−1/2E

(
MiMT

i

)
M−1/2+O(h/n).

Correspondingly,

E

(
n∑

i=1
G∗

τ,ni

)
= O(h2n−1/2), Cov

(
n∑

i=1
G∗

τ,ni

)
= τ(1 − τ)I +O(h).
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By Cramér–Wold Theorem, to establish the asymptotic normality of the vector
∑n

i=1G
∗
τ,ni, we first

need to prove the asymptotic normality of
∑n

i=1µ
TG∗

τ,ni for any unit vector µ, where µj , j =
1, . . . , d+m× (K + p) is the j-th column of the identity matrix Id+m×(K+p).

Denote Φi = n−1/2µT M−1/2Mi, then µTG∗
τ,ni = ΦiGh(−ei) − τ). Next, we will check the

following condition, which ensures Lindeberg’s condition is both sufficient and necessary:

max
1≤i≤n

V ar(ΦiGh(−ei) − τ))∑n
i=1 V ar(ΦiGh(−ei) − τ)) = max

1≤i≤n

E(Φ2
i )∑n

i=1E(Φ2
i )

→ 0, (3.21)

as n → ∞. By the definition of Φi, we have

E(Φ2
i ) = 1

n
µT M−1/2E(MiMT

i )M−1/2µ

= 1
n
tr
{
µT M−1/2E(MiMT

i )M−1/2µ
}

= 1
n
tr
{
µµT M−1/2E(MiMT

i )M−1/2
}

= 1
n
tr
{

M−1E(MiMT
i )
}

≤ 1
n
tr
{

M−1
}
tr
{
E(MiMT

i )
}

≤ CΦ/n,

then we can obtain

max
1≤i≤n

E(Φ2
i )∑n

i=1E(Φ2
i )

= O

( 1
n

)
→ 0.

Thus condition (3.21) holds, which means that
∑n

i=1µ
TG∗

τ,ni has a asymptotic normal distribution.

By Cramér–Wold Theorem and the above results, it is straightforward to prove that
∑n

i=1G
∗
τ,ni =

n−1/2∑n
i=1 M−1/2 {Gh(−ei) − τ} Mi has an asymptotic multivariate normal distribution

1√
n

n∑
i=1

M−1/2 {Gh(−ei) − τ} Mi
d→ N(0, τ(1 − τ)Id+m×(K+p)),

thus (3.20) holds and the proof is completed.

Lemma 6. Under Conditions 1, 2, 3, 4 and 8, we have

L̈∗
0(α0

τ ,θ
0
τ ) = E

fe|Z,X(0)
(
Z

U

)⊗2+Op

( 1√
nh

)
, (3.22)

Proof Recall that

L̈∗
0(α0

τ ,θ
0
τ ) = 1

n

n∑
i=1

Kh(ZT
i α

0
τ +UT

i θ
0
τ − Yi)

(
Zi

Ui

)⊗2

.
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For Kh(ZT
i α

0
τ +UT

i θ
0
τ − Yi), we have

Kh(ZT
i α

0
τ +UT

i θ
0
τ − Yi)

=Kh

(
ZT

i α
0
τ +UT

i θ
0
τ − Yi +

∫ T

0
XT

i (t)βτ (t)dt−
∫ T

0
XT

i (t)βτ (t)dt
)

=Kh

(
−ei +UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)
,

by Lagrange mean value theorem, we can get

Kh

(
−ei +UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)

=Kh(−ei) + K̇h

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)

=Kh(−ei) + 1
h2 K̇h

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)
,

where K̇h(·) = K̇(·/h), β∗
τ (t) lies between βτ (t) and UT

i θ
0
τ .

Then L̈∗
0(α0

τ ,θ
0
τ ) can be expressed as:

L̈∗
0(α0

τ ,θ
0
τ ) = 1

nh2

n∑
i=1

{
K̇h

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)}(

Zi

Ui

)⊗2

+ 1
n

n∑
i=1

Kh(−ei)
(
Zi

Ui

)⊗2

∆= I1 + I2.

(1) First, we consider the first term I1.
∣∣∣UT

i θ
0
τ −

∫ T
0 XT

i (t)βτ (t)dt
∣∣∣ = O(K−r), and

1
nh2

n∑
i=1

K̇h

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)
= Op

(1
h

+ 1√
nh3

)
,

then

I1 = op

( 1√
nh

)
, (3.23)

with the Condition hKr → ∞.
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(2) We consider the second term I2. For n−1∑n
i=1 Kh(−ei), using change of variable, we

have

E

{
1
n

n∑
i=1

Kh(−ei) | Zi,Xi(t)
}

= E {Kh(−ei) | Zi,Xi(t)}

=
∫

Kh(−ε)fe|Z,X(ε)dε

=
∫

Kh(−u)fe|Z,X(hu)du

=
∫

Kh(u)
[
fe|Z,X(0) +O(h)

]
du

= fe|Z,X(0) +O(h2),

E
{

K2(−ei/h) | Zi,Xi(t)
}

=
∫

K2(−ε/h)fe|Z,X(ε)dε

= h

∫
K2(−u)fe|Z,X(hu)du

= O(h),

moreover,

V ar

{
1
n

n∑
i=1

Kh(−ei) | Zi,Xi(t)
}

= 1
nh2V ar {K(−ei/h) | Zi,Xi(t)}

= 1
nh2E

{
K2(−ei/h) | Zi,Xi(t)

}
− 1
nh2 {E {K(−ei/h) | Zi,Xi(t)}}2

= O(n−1h−1).

Then, we have

I2 = 1
n

n∑
i=1

Kh(−ei)
(
Zi

Ui

)⊗2

= E

fe|Z,X(0)
(
Z

U

)⊗2+Op

(
h2 + 1√

nh

)
. (3.24)

Combining (3.23) and (3.24), we can get that

L̈∗
0(α0

τ ,θ
0
τ ) = E

fe|Z,X(0)
(
Z

U

)⊗2+Op

( 1√
nh

)
,

with Condition nh4 → 0. Then the proof is completed.
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3.8. Proofs in Section 3.3

3.8.1 Proof of Theorem 1

We want to prove that for any δ > 0, there exists a sufficiently large constant ∆ such that for

sufficiently large n,

Pr

 inf
∥α−α0∥2=∆

√
n

∥θ−θ0∥2≤∆K/
√

n

L∗(ατ ,θτ ) − L∗(α0
τ ,θ

0
τ ) > 0

 ≥ 1 − δ. (3.25)

(3.25) implies with probability at least 1 − δ that there is a local minimizer (α̂τ , θ̂τ ) such that

∥α̂τ −α0
τ ∥2 = Op(n−1/2) and ∥θ̂τ − θ0

τ ∥2 = Op(n−1/2K).

By Taylor expansion, we have

L∗(ατ ,θτ ) − L∗(α0
τ ,θ

0
τ )

=L∗
1(ατ ,θτ ) − L∗

1(α0
τ ,θ

0
τ ) +

m∑
l=1

K

T

[∫ T

0
pλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫ T

0
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt]

≥L∗
1(ατ ,θτ ) − L∗

1(α0
τ ,θ

0
τ ) +

m∑
l=1

K

T

[∫
S(β0

τ,l
)
pλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫

S(β0
τ,l

)
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt]

≈
{

L̇∗
1(α0

τ ,θ
0
τ )
}T
(
ατ −α0

τ

θτ − θ0
τ

)
+ 1

2

(
ατ −α0

τ

θτ − θ0
τ

)T

L̈∗
1(α0

τ ,θ
0
τ )
(
ατ −α0

τ

θτ − θ0
τ

)

+
m∑

l=1

K

T

[∫
S(β0

τ,l
)
pλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫

S(β0
τ,l

)
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt]
=I + II + III.

(3.26)

(1) We consider the first term I in (3.26). Recall

L̇∗
1(α0

τ ,θ
0
τ ) = L̇∗

0(α0
τ ,θ

0
τ ) + 2

(
0d×d

Γ ⊗ V

)(
α0

τ

θ0
τ

)
,
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For this term, with Lemma A.4 and the Condition 7, then

|I| =
∣∣∣∣∣{L̇∗

1(α0
τ ,θ

0
τ )
}T
(
ατ −α0

τ

θτ − θ0
τ

)∣∣∣∣∣
≤
∣∣∣∣∣{L̇∗

0(α0
τ ,θ

0
τ )
}T
(
ατ −α0

τ

θτ − θ0
τ

)∣∣∣∣∣+ 2

∣∣∣∣∣∣
{(

0d×d

Γ ⊗ V

)(
α0

τ

θ0
τ

)}T (
ατ −α0

τ

θτ − θ0
τ

)∣∣∣∣∣∣
=
∣∣∣∣∣{L̇∗

0(α0
τ ,θ

0
τ )
}T
(
ατ −α0

τ

θτ − θ0
τ

)∣∣∣∣∣+ 2
∣∣∣θ0T

τ (Γ ⊗ V )T (θτ − θ0
τ )
∣∣∣

=
∣∣∣∣∣{L̇∗

0(α0
τ ,θ

0
τ )
}T
(
ατ −α0

τ

θτ − θ0
τ

)∣∣∣∣∣+ 2
∥∥∥θ0T

τ (Γ ⊗ V )T
∥∥∥

2

∥∥∥θτ − θ0
τ

∥∥∥
2

≤
∣∣∣∣∣ 1n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}{
ZT

i (ατ −α0
τ ) +UT

i (θτ − θ0
τ )
}∣∣∣∣∣

+ 2
∥∥∥θ0T

τ (Γ ⊗ V )T
∥∥∥

2

∥∥∥θτ − θ0
τ

∥∥∥
2

≤
∣∣∣∣∣ 1n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}{
ZT

i (ατ −α0
τ )
}∣∣∣∣∣

+
∣∣∣∣∣ 1n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}{
UT

i (θτ − θ0
τ )
}∣∣∣∣∣

+ 2
∥∥∥θ0T

τ (Γ ⊗ V )T
∥∥∥

2

∥∥∥θτ − θ0
τ

∥∥∥
2

≤
∥∥∥∥∥ 1
n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
ZT

i

∥∥∥∥∥
2

∥∥∥ατ −α0
τ

∥∥∥
2

+
∥∥∥∥∥ 1
n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
UT

i

∥∥∥∥∥
2

∥∥∥θτ − θ0
τ

∥∥∥
2

+ 2
∥∥∥θ0T

τ (Γ ⊗ V )T
∥∥∥

2

∥∥∥θτ − θ0
τ

∥∥∥
2

With the bounded Condition 1 and Lemma A.4, we have∥∥∥∥∥ 1
n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
ZT

i

∥∥∥∥∥
2

= C

∣∣∣∣∣ 1n
n∑

i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}∣∣∣∣∣
= O(n−1/2).

Thus, we have∥∥∥∥∥ 1
n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
ZT

i

∥∥∥∥∥
2

∥∥∥ατ −α0
τ

∥∥∥
2

= Op(n−1) = op(K/n), (3.27)

as the Condition
∥∥ατ −α0

τ

∥∥
2 = Op(n−1/2).
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Note that ∥Ui∥2 = O(1) and Lemma A.4, it has∥∥∥∥∥ 1
n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
UT

i

∥∥∥∥∥
2

∥∥∥θτ − θ0
τ

∥∥∥
2

= Op(K/n), (3.28)

with the Condition
∥∥θτ − θ0

τ

∥∥
2 = Op(K/n1/2).

As supl γl = o(n−1/2K1/2−2d) with Condition 7 , ∥θ0
τ ∥2 = O(K1/2) and Lemma A.3, we can

obtain ∥∥∥θ0T
τ (Γ ⊗ V )T

∥∥∥
2

≤ sup
l

(γl)λmax(V )∥θ0
τ ∥2 = o(K/n). (3.29)

Combining (3.27), (3.28) and (3.29), we have

I = Op(K/n). (3.30)

(2) For the second term II .

1
2

(
ατ −α0

τ

θτ − θ0
τ

)T

L̈∗
1(α0

τ ,θ
0
τ )
(
ατ −α0

τ

θτ − θ0
τ

)

=1
2

(
ατ −α0

τ

θτ − θ0
τ

)T
 1
n

n∑
i=1

Kh(ZT
i α

0
τ +UT

i θ
0
τ − Yi)

(
Zi

Ui

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)

+ (θτ − θ0
τ )T (Γ ⊗ V )(θτ − θ0

τ )

From Lemma A.6, we have

1
n

n∑
i=1

Kh(ZT
i α

0
τ +UT

i θ
0
τ − Yi)

(
Zi

Ui

)⊗2

= E

fe|Z,X(0)
(
Z

U

)⊗2+Op( 1√
nh

).

Based on Conditions 3 and 4, we can also have

1
2

(
ατ −α0

τ

θτ − θ0
τ

)T
 1
n

n∑
i=1

Kh(ZT
i α

0
τ +UT

i θ
0
τ − Yi)

(
Zi

Ui

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)

=1
2

(
ατ −α0

τ

θτ − θ0
τ

)T

E

fe|Z,X(0)
(
Z

U

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)
+Op( 1√

nh

K2

n
)

=1
2

(
ατ −α0

τ

θτ − θ0
τ

)T

E

fe|Z,X(0)
(
Z

U

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)
+ op

(
K

n

)
.

(3.31)

And, we have

(θτ − θ0
τ )T (Γ ⊗ V )(θτ − θ0

τ ) ≤ sup
l

(γl)ρmax(V )
∥∥∥θτ − θ0

τ

∥∥∥2

2
= op

(
K

n

)
. (3.32)
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Then, (3.31) and (3.32) lead to

II = 1
2

(
ατ −α0

τ

θτ − θ0
τ

)T

E

fe|Z,X(0)
(
Z

U

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)
+ op

(
K

n

)
. (3.33)

(3) Next, we consider the third term III . By the Taylor Expansion, we can get

m∑
l=1

K

T

[∫
S(β0

τ,l
)
pλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫

S(β0
τ,l

)
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt]

≈


K
T ∇

[∫
S(β0

τ,1) pλ1(
∣∣∣BT (t)θ0

τ,1

∣∣∣)dt]
...

K
T ∇

[∫
S(β0

τ,m) pλm(
∣∣∣BT (t)θ0

τ,m

∣∣∣)dt]


T (
θτ − θ0

τ

)
+ 1

2
(
θτ − θ0

τ

)T


K
T ∇2

[∫
S(β0

τ,1) pλ1(
∣∣∣BT (t)θ0

τ,1

∣∣∣)dt]
. . .

K
T ∇2

[∫
S(β0

τ,m) pλm(
∣∣∣BT (t)θ0

τ,m

∣∣∣)dt]
(θτ − θ0

τ

)

=III1 + III2

(3.34)

For the bound of ∇
[∫

S(β0
τ,l

) pλl
(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt] and all l = 1, 2, ...,m and j = 1, 2, ...,K + p,

using Hölder inequality, we have∣∣∣∣∣ ∂

∂θτ,l,j

∫
S(β0

τ,l
)
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt∣∣∣∣∣ =
∣∣∣∣∣
∫

S(β0
τ,l

)

∂

∂θ0
τ,l,j

pλl
(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt∣∣∣∣∣
=
∣∣∣∣∣
∫

S(β0
τ,l

)
ṗλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)Bj(t)dt sgn(θ0
τ,l,j)

∣∣∣∣∣
≤
√∫

S(β0
τ,l

)
ṗλl

(|BT (t)θ0
τ,l|)2dt

√∫
S(β0

τ,l
)
B2

j (t)dt

≤ ∥Bj∥2

√∫
S(β0

τ,l
)
ṗλl

(|BT (t)θ0
τ,l|)2dt

= O(K−1/2n−1/2K−1) = O(n−1/2K−3/2),
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with the condition maxl

√∫
S(β0

τ,l
) ṗλl

(|BT (t)θ0
τ,l|)2dt = o(n−1/2K−1) (Condition 9-(i)). Then, we

can also have

|III1| ≤

∥∥∥∥∥∥∥∥∥∥


K
T ∇

[∫
S(β0

τ,1) pλ1(
∣∣∣BT (t)θ0

τ,1

∣∣∣)dt]
...

K
T ∇

[∫
S(β0

τ,m) pλm(
∣∣∣BT (t)θ0

τ,m

∣∣∣)dt]


T
∥∥∥∥∥∥∥∥∥∥

2

∥∥∥θτ − θ0
τ

∥∥∥
2

= Op(K/n).

(3.35)

For the bound of ∇2
[∫

S(β0
τ,l

) pλl
(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt] and all l = 1, 2, ...,m and j, k = 1, 2, ...,K+
p, using Hölder inequality, we have∣∣∣∣∣ ∂

∂θτ,l,j∂θτ,l,k

∫
S(β0

τ,l
)
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt∣∣∣∣∣ =
∫

S(β0
τ,l

)
∇2pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt
=
∫

S(β0
τ,l

)
p̈λl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣) [Bj(t) ◦ sgn(θ0
τ,l,j)

] [
Bk(t) ◦ sgn(θ0

τ,l,k)
]
dt

≤
√∫

S(β0
τ,l

)
p̈λl

(|BT (t)θ0
τ,l|)2dt

√∫ T

0
B2

j (t)B2
k(t)dt

≤
√∫

S(β0
τ,l

)
p̈λl

(|BT (t)θ0
τ,l|)2dt

√∫ T

0
Bj(t)Bk(t)dt

= o(K−1),

with Condition 9-(i), where ◦ denotes the entry-wise product of two vectors and the last equation is

based on the property supj,k | < Bj , Bk > | = O(K−1). Therefore,

|III2| ≤ 1
2

∥∥∥θτ − θ0
τ

∥∥∥2

2
max
l,j,k

∣∣∣∣∣ ∂

∂θτ,l,j∂θτ,l,k

∫
S(β0

τ,l
)
pλl

(
∣∣∣BT (t)θ0

τ,l

∣∣∣)dt∣∣∣∣∣
= op(K/n).

(3.36)

With the above results, we have

III = Op(K/n). (3.37)

Combining (3.26), (3.30), (3.33) and (3.37), we finally have

L∗(ατ ,θτ ) − L∗(α0
τ ,θ

0
τ )

≥I + II + III

=Op(K/n) + 1
2

(
ατ −α0

τ

θτ − θ0
τ

)T

E

fe|Z,X(0)
(
Z

U

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)

>0,

(3.38)
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where the positive term

1
2

(
ατ −α0

τ

θτ − θ0
τ

)T

E

fe|Z,X(0)
(
Z

U

)⊗2
(
ατ −α0

τ

θτ − θ0
τ

)

≥C1ρmin(UUT )
∥∥∥∥∥
(
ατ −α0

τ

θτ − θ0
τ

)∥∥∥∥∥
2

2

=Op(K/n),

with Condition 1 and Lemma A.2.

Then, (3.26) holds, which means there is a local minimizer (α̂τ , θ̂τ ) of L∗(ατ ,θτ ) such that

∥α̂τ − α0
τ ∥2 = Op(n−1/2) and ∥θ̂τ − θ0

τ ∥2 = Op(n−1/2K). Moreover, with β̂τ,l(t) = BT (t)θ̂τ,l,

we have ∥∥∥β̂τ,l − βτ,l

∥∥∥
2

≤
∥∥∥β̂τ,l − β0

τ,l

∥∥∥
2

+
∥∥∥β0

τ,l − βτ,l

∥∥∥
2

=
∥∥∥(θ̂τ,l − θ0

τ,l)T B(t)
∥∥∥

2
+
∥∥∥β0

τ,l − βτ,l

∥∥∥
2

=Op(n−1/2K1/2) +O(K−r)

=Op(n−1/2K1/2),

(3.39)

with the condition K/n1/(2r+1) → ∞ (Condition 6).

Then the proof of Theorem 1 is completed.

3.8.2 Proof of Theorem 2

Proof of (i) of Theorem 2

To prove the first part of Theorem 1, we need to show that β̂τ,l(t) = 0 for all t ∈ N (βτ,l) with

probability tending to one.

As stated in Section 3, Bτ,l,1(t) denotes the K∗
τ,l dimensional sub-vector of B(t) such that each

Bj(t) in Bτ,l,1(t) has a support inside S(βτ,l). We also further denote the Bτ,l,2(t) as the sub-vector

of B(t) such that the support of each Bj(t) in Bτ,l,2(t) belongs to N (βτ,l). Let Aτ,l,j consist of

indices k such that Bj(t) belongs to Bτ,l,j(t), and Fτ,l,j denote the union of supports of those basis

functions in Bτ,l,j(t), j = 1, 2. By the local support property of B-spline basis functions, Fτ,l,1

converges to S(βτ,l) and Fτ,l,2 converges to N (βτ,l) as K → ∞.

Fix a θτ,l,k such that k ∈ Aτ,l,2, recall that

∂L∗(ατ ,θτ )
∂θτ,l,k

=∂L∗
1(ατ ,θτ )
∂θτ,l,k

+ K

T
sgn(θτ,l,k)

∫ T

0
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)Bk(t)dt,
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for the first term of RHS, we take Taylor expansion, then

∂L∗(ατ ,θτ )
∂θτ,l,k

=∂L∗
1(α0

τ ,θ
0
τ )

∂θτ,l,k
+

m∑
l′ =1

K+p∑
j=1

∂2L∗
1(α0

τ ,θ
0
τ )

∂θτ,l,k∂θτ,l′ ,j

(θτ,l′ ,j − θ0
τ,l′ ,j

)

+ K

T
sgn(θτ,l,k)

∫ T

0
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)Bk(t)dt,

(3.40)

where

∂L∗
1(α0

τ ,θ
0
τ )

∂θτ,l,k
= 1
n

n∑
i=1

{
Gh(ZT

i α
0
τ +UT

i θ
0
τ − Yi) − τ

}
Ui,lk + 2γlVk·θ

0
τ,l,

Ui,lk =
∫ T

0 Xil(t)Bk(t)dt and Vk· denotes the kth row of V .

Below we will consider each term in (3.40).

(1) By Lemma A. 4, |Ui,lk| = O(K−1/2), ∥Vk·∥∞ = O(K2q−1) and Conditions 1-8, we have

∂L∗
1(α0

τ ,θ
0
τ )

∂θτ,l,k
= Op(n−1/2K−1/2). (3.41)

(2) Based on the Conditions 1-8, Lemma A.6 and assumption
∣∣∣θτ,l′ ,j − θ0

τ,l′ ,j

∣∣∣ = Op(
√
K/n),

we can get
m∑

l′ =1

K+p∑
j=1

∂2L∗
1(α0

τ ,θ
0
τ )

∂θτ,l,k∂θτ,l′ ,j

(θτ,l′ ,j − θ0
τ,l′ ,j

) = Op(K1/2n−1/2). (3.42)

(3) Let Sk denote the support of Bk(t), then, in the last term,∣∣∣∣∣
∫ T

0
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫

Sk

ṗλl
(|Bk(t)θτ,l,k|)dt

∣∣∣∣∣
=
∣∣∣∣∣
∫

S(βτ,l)
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt+
∫

N (βτ,l)
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫

Sk

ṗλl
(|Bk(t)θτ,l,k|)dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫

S(βτ,l)
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt∣∣∣∣∣+
∣∣∣∣∣
∫

N (βτ,l)
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt−
∫

Sk

ṗλl
(|Bk(t)θτ,l,k|)dt

∣∣∣∣∣
=o(n−1/2K−1) +O(K−1)

=o(1),

with the Condition
∫

S(βτ,l) ṗλl
(
∣∣∣BT (t)θτ,l

∣∣∣)dt = o(n−1/2K−1). Then we have

∫ T

0
ṗλl

(
∣∣∣BT (t)θτ,l

∣∣∣)dt =
∫

Sk

ṗλl
(|Bk(t)θτ,l,k|)dt+ o(1). (3.43)
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Combining (3.40), (3.41), (3.42) and (3.43), we finally have

∂L∗(ατ ,θτ )
∂θτ,l,k

= K

T
λlsgn(θτ,l,k)

∫
Sk

ṗλl
(|Bk(t)θτ,l,k|)λ−1

l Bk(t)dt+Op(K1/2n−1/2)

= λl

{
K

T
λlsgn(θτ,l,k)

∫
Sk

ṗλl
(|Bk(t)θτ,l,k|)λ−1

l Bk(t)dt+Op(K1/2n−1/2λ−1
l )
}
.

(3.44)

If Condition 9-(ii) holds, lim infn→∞ lim infθ→0+ ṗλl
(θ)λ−1

l > 0, and K1/2n−1/2λ−1
l → 0. Be-

sides, Bk(t) is non-negative, the sign of the derivative is completely determined by that of θτ,l,k.

Now, since (α̂τ , θ̂τ ) minimizes L∗(ατ ,θτ ), we must have θ̂τ,l,k = 0 for k ∈ Aτ,l,2. with proba-

bility tending to one. Similar with [50], it is easy to prove that the union F̂τ,l,2 of supports of basis

functions associated to θ̂τ,l,2 equals to Fτ,l,2 in probability. Therefore F̂τ,l,2 converges to N (βτ,l).

This completes the proof of the first part of Theorem 2.

Proof of (ii) of Theorem 2

We divide θ0
τ,l into two parts: θ0(1)

τ,l that consists of those θτ,l,k such that k ∈ Aτ,l,1, and θ0(2)
τ,l that

consists of those θτ,l,k such that k ∈ Aτ,l,2. Then we define θ0(1)
τ =

((
θ

0(1)
τ,1

)T
, · · · ,

(
θ

0(1)
τ,m

)T
)T

and θ0(2)
τ =

((
θ

0(2)
τ,1

)T
, · · · ,

(
θ

0(2)
τ,m

)T
)T

. Correspondingly, we also divide θ̂τ,l into two parts,

namely, θ̂(1)
τ,l and θ̂(2)

τ,l , then define θ̂(1)
τ =

((
θ̂

(1)
τ,1

)T
, · · · ,

(
θ̂

(1)
τ,m

)T
)T

and θ̂(2)
τ =

((
θ̂

(2)
τ,1

)T
, · · · ,

(
θ̂

(2)
τ,m

)T
)T

.

From the proof of (i), we can get that each element of α̂τ and θ̂(1)
τ stay away from zero when n is suf-

ficiently large. At the same time, θ̂(2)
τ = 0 with probability tending to one. Thus,

(
α̂T

τ ,
(
θ̂

(1)
τ

)T
)T

satisfies

L̇∗
1(α̂τ , θ̂

(1)
τ ) +

 0d×1[
K
T

∂
∂θτ,l,k

∫ T
0 pλl

(
∣∣∣BT (t)θ̂τ,l

∣∣∣)dt]l=1,...,m

k∈Aτ,l,1

 = 0.

Then applying the Taylor expansion to K
T

∂
∂θτ,l,k

∫ T
0 pλl

(
∣∣∣BT (t)θ̂τ,l

∣∣∣)dt, we can get that

K

T
∂

∂θτ,l,k

∫ T

0
pλl

(∣∣∣BT (t)θ̂τ,l

∣∣∣) dt =K

T
sgn(θ0

τ,l,k)
∫ T

0
ṗλl

(∣∣∣BT (t)θ0
τ,l

∣∣∣)Bk(t)dt

+ K

T

∫ T

0
p̈λl

(∣∣∣BT (t)θ0
τ,l

∣∣∣)B2
k(t)dt(θ̂τ,l,k − θ0

τ,l,k)

= op(θ̂τ,l,k − θ0
τ,l,k),

by the Condition 9-(i). Then, we can have

L̇∗
1(α̂τ , θ̂

(1)
τ ) +

(
0d×1

op(θ̂(1)
τ − θ0(1)

τ )

)
= 0.
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By Taylor expansion and the above results, we have

√
n

(
α̂τ −α0

τ

θ̂
(1)
τ − θ0(1)

τ

)
= −

{
L̈∗

1(α0
τ ,θ

0(1)
τ )

}−1 √
nL̇∗

1(α0
τ ,θ

0(1)
τ ) {1 + op(1)} . (3.45)

According to the proof of Lemma A.4, we have

√
nL̇∗

1(α0
τ ,θ

0(1)
τ ) = 1√

n

n∑
i=1

{
Kh

(
−ei +

∫ T

0
XT

i (t)β∗
τ (t)dt

)(
UT

i θ
0
τ −

∫ T

0
XT

i (t)βτ (t)dt
)}

(ZT
i ,U

∗T
τ,i )T

+ 1√
n

n∑
i=1

{Gh(−ei) − τ} (ZT
i ,U

∗T
τ,i )T + op(1)

= 1√
n

n∑
i=1

{Gh(−ei) − τ} (ZT
i ,U

∗T
τ,i )T + op(1).

Similar with the proof of Lemma A.5, we can prove that

1√
n

n∑
i=1

{
E
(
(ZT ,U∗T

τ )T
)⊗2

}−1/2
{Gh(−ei) − τ} (ZT

i ,U
∗T
τ,i )T d→ N(0, τ(1 − τ)Id+K∗

τ
),

and

Σ−1/2
τ,1

√
nL̇∗

1(α0
τ ,θ

0(1)
τ ) d→ N(0, τ(1 − τ)Id+K∗

τ
), (3.46)

where Στ,1 = E

{(
(ZT ,U∗T

τ )T
)⊗2

}
.

Similar with the proof of Lemma A.6, we have

L̈∗
0(α0

τ ,θ
0(1)
τ ) = 1

n

n∑
i=1

Kh(Ziα
0
τ +UT

i θ
0
τ − Yi)

(
Zi

U∗
τ,i

)⊗2

= E

fe|Z,X(0)
(
Z

U∗
τ

)⊗2+Op( 1√
nh

),

and

L̈∗
1(α0

τ ,θ
0(1)
τ ) = E

fe|Z,X(0)
(
Z

U∗
τ

)⊗2+ op

( 1√
nK

)
+Op( 1√

nh
)

= E

fe|Z,X(0)
(
Z

U∗
τ

)⊗2 ,
then

L̈∗
1(α0

τ ,θ
0(1)
τ ) P→ Στ,2, Στ,2 = E

fe|Z,X(0)
(
Z

U∗
τ

)⊗2 . (3.47)
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Thus, by (3.46), (3.47) and Lutsky’s theorem, we can get that

√
n
(
Σ−1

τ,2Στ,1Σ−1
τ,2

)−1/2
(
α̂τ −α0

τ

θ̂
(1)
τ − θ0(1)

τ

)
d→ N(0, τ(1 − τ)I) (3.48)

Finally we prove the asymptotic normality of
√
n/K(β̂τ,l(t)−βτ,l(t)). Recall that

√
n/K(β̂τ,l(t)−

βτ,l(t)) admits the following decomposition,

β̂τ,l(t) − βτ,l(t) = 1√
n

Λτ,l(t)
√
n

(
α̂τ −α0

τ

θ̂
(1)
τ − θ0(1)

τ

)
+ β0

τ,l(t) − βτ,l(t).

From Lemma A.1, for the B-spline approximation error, we have β0
τ,l(t) − βτ,l(t) = O(K−r).

Under Condition 6, nK−(2r+1) → 0, the bias of β̂τ,l(t) − βτ,l(t) is asymptotically negligible. Then

by (3.48) and Slutsky’s theorem, we can conclude that for any given point t such βτ,l ̸= 0, we have

σ
−1/2
τ,l (t)

(
β̂τ,l(t) − β(t)

)
→ N(0, 1), (3.49)

in distribution, where στ,l(t) = n−1τ(1 − τ)Λτ,l(t)Σ−1
τ,2Στ,1Σ−1

τ,2ΛT
τ,l(t) = O(K/n).

(3.49) shows the point-wise asymptotic normality and we can construct the corresponding con-

fidence interval. However, in many studies, it is desirable to obtain simultaneous confidence bands

(SCB) for the varying coefficient functions.

Define

Θτ,l(t) = σ
−1/2
τ,l (t)n−1

√
τ(1 − τ)Λτ,l(t)Σ−1

τ,2Σ1/2
τ,1

n∑
ß=1

ζi, ζτ,l,i
iid∼ N(0, Id+K∗

τ
).

It is easy to show that Θτ,l(t) is a Gaussian process with E(Θτ,l(t)) = 0 and V ar(Θτ,l(t)) = 1.

And, the covariance function of the Gaussian process is

C(t, s) = n−1τ(1 − τ)σ−1/2
τ,l (t)σ−1/2

τ,l (s)Λτ,l(t)Σ−1
τ,2Στ,1Σ−1

τ,2ΛT
τ,l(s).

Similar to the proofs for Theorem 3 in [56], and Theorem 5 in [3], by the strong approximation

theorem [14], we can prove that

sup
t∈S(βτ,l)

∣∣∣σ−1/2
τ,l (t)

{
β̂τ,l(t) − βτ,l(t)

}
− Θτ,l(t)

∣∣∣ = op(
√
K/n). (3.50)

Then for t ∈ S(βτ,l), it can be proved that

σ
−1/2
τ,l (t)(β̂τ,l(t) − βτ,l(t))

d→ G(t), (3.51)

where G(t) is a Gaussian random process with mean 0 defined on S(βτ,l) with the covariance

function C(t, s).
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Denote the left endpoint and right endpoint of S(βτ,l) as SL(βτ,l) and SR(βτ,l), respectively.

Then we partition S(βτ,l) into K̃τ,l + 1 equally spaced intervals with SL(βτ,l) = ν0 < ν1 < · · · <
ν

K̃τ,l
< ν

K̃τ,l+1 = SR(βτ,l), where K̃τ,l → ∞. We construct the SCB for βτ,l(t) over a subset of

S(βτ,l), namely, Sε(βτ,l) =
{
ν0, . . . , νNτ,l+1

}
, and Sε(βτ,l) becomes denser as n → ∞.

And, for any 0 ≤ j < j
′ ≤ Nτ,l + 1, the covariance function of the Gaussian process Θτ,l(t) is∣∣∣Cov (Θτ,l(νj),Θτ,l(νj′ )
)∣∣∣ =

∣∣∣n−1σ
−1/2
τ,l (νj)σ−1/2

τ,l (νj′ )Λτ,l(νj)Σ−1
τ,2Στ,1Σ−1

τ,2ΛT
τ,l(νj′ )

∣∣∣
∝ K−1

∣∣∣Λτ,l(νj)Σ−1
τ,2Στ,1Σ−1

τ,2ΛT
τ,l(νj′ )

∣∣∣
∝
∣∣∣Λτ,l(νj)ΛT

τ,l(νj′ )
∣∣∣

=
∣∣∣BT

τ,l(νj)Bτ,l(νj′ )
∣∣∣

=

∣∣∣∣∣∣
K+p∑
k=1

Bk(νj)Bk(νj′ )

∣∣∣∣∣∣ .
Since the B-spline basis function has a local support property, that is, each B-spline basis function is

nonzero over no more than p+1 consecutive sub-intervals [15], we can have
∣∣∣Cov (Θτ,l(νj),Θτ,l(νj′ )

)∣∣∣ ≤

C
−|j−j

′ |
B , with some positive constant CB . Now combined with Lemma 1 in [57], we can conclude

that for any a ∈ (0, 1),

lim
n→∞

P

{
sup

t∈Sε(βτ,l)

∣∣∣σ−1/2
τ,l (t)

{
β̂τ,l(t) − βτ,l(t)

}∣∣∣ ≤ Qτ,l(a)
}

= 1 − a,

where

Qτ,l(a) = (2 log |Sε(βτ,l)|)1/2

− (2 log |Sε(βτ,l)|)−1/2 {log(−0.5 log(1 − a)) + 0.5 [log(log |Sε(βτ,l)|) + log(4π)]} .

Then an asymptotic 100(1 − a)% simultaneous confidence band (SCB) for βτ,l(t) over Sε(βτ,l) is

given by β̂τ,l(t) ± σ
1/2
τ,l (t)Qτ,l(a). The proof of (ii) of Theorem 2 is completed.

3.8.3 Proof of Theorem 3

We want to prove the asymptotic normality of
√
n(α̂τ −α0

τ ), and
√
n(α̂τ −α0

τ ) can be expressed

as
√
n(α̂τ −α0

τ ) = Iτ

√
n

(
α̂τ −α0

τ

θ̂
(1)
τ − θ0(1)

τ

)
,

then by (3.48), we can have

√
n
(
α̂τ −α0

τ

)
d→ N(0, τ(1 − τ)Iτ Σ−1

τ,2Στ,1Σ−1
τ,2IT

τ ), (3.52)

where
∥∥Cov(α̂τ −α0

τ )
∥∥

∞ = O(1/n). Then we complete the proof of Theorem 3.
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3.8.4 Proof of Theorem 4

We choose to randomly split the original dataset into two partsDataI andDataII , whereDataI =
{(Yi,Zi,Xi(t), t ∈ [0, T ), n1 + 1 ≤ i ≤ n}, DataII = {(Yi,Zi,Xi(t), t ∈ [0, T ), 1 ≤ i ≤ n1},

n1 = [n/2] and [v] denotes the integer not greater than the positive number v. Denote the estimators

based on DataI as α̃τ,I and θ̃τ,I , which is the solution of the following objective function

(α̃τ,I , θ̃τ,I) = arg min
ατ ,θτ

1
n2

n∑
i=n1+1

(ρτ ∗ Kh) (Yi −ZT
i ατ −UT

i θτ )

+ θT
τ (Γ ⊗ V )θτ +

m∑
l=1

K∑
j=1

pλl

√K

T
θT

τ,lWjθτ,l

 , (3.53)

where n2 = n− n1.

Define the set Ŝθ,I = {j : θ̃τ,I,j ̸= 0, 1 ≤ j ≤ m(K + p)} and T̂θ,I = {v ∈ Rm(K+p) : vj =
0,∀j ∈ Ŝc

θ,I}, where Ŝc
θ,I is the complement of the set Ŝθ,I . To make the notation consistent, we

denote the estimators based on the DataII as α̃τ,II and θ̃τ,II , which is from

(α̂τ,II , θ̂τ,II) = arg min
ατ ,θτ ∈T̂θ,I

1
n1

n1∑
i=1

(ρτ ∗ Kh) (Yi −ZT
i ατ −UT

i θτ )

+ θT
τ (Γ ⊗ V )θτ ,

(3.54)

then θ̂τ,II includes those zero terms obtained from (3.53). Similar to the proof in [23] and [12], it is

easy to have α̃τ,I → α0
τ , α̂τ,II → α0

τ , θ̃τ,I → θ0
τ , and θ̂τ,II → θ0

τ in probability.

Recall that α̂(b)
τ θ̂

(b)
τ are the estimates which satisfy:

(α̂(b)
τ , θ̂(b)

τ ) = arg min
ατ ,θτ

1
n1

n1∑
i=1

(ρτ ∗ Kh) (Y (b)
i −ZT

i ατ −UT
i θτ )

+ θT
τ (Γ ⊗ V )θτ .

(3.55)

Based on the bootstrapped sample, denote the following derivative function

G(Y (b)
i ,ατ ,θτ ) =

{
Gh(ZT

i ατ +UT
i θτ − Y

(b)
i ) − τ

}
(ZT

i ,U
T
i )T

+ 2
(

0d×d

Γ ⊗ V

)(
ατ

θτ

) (3.56)

and the estimator (α̂(b)
τ , θ̂

(b)
τ ) based on the bootstrapped dataset is the solution to the equation:

1
n1

n1∑
i=1

G(Y (b)
i ,ατ ,θτ ) = 0. (3.57)
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Consider the following identity

E
{

G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ ) − G(Y (b)

i , α̂τ,II , θ̂τ,II)
}

= − 1
n1

n1∑
i=1

{
G(Y (b)

i , α̂τ,II , θ̂τ,II) − G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ )
}

+ 1
n1

n1∑
i=1

{
G(Y (b)

i , α̂τ,II , θ̂τ,II) − G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ )
}

− E
{

G(Y (b)
i , α̂τ,II , θ̂τ,II) − G(Y (b)

i , α̂(b)
τ , θ̂(b)

τ )
}

= − 1
n1

n1∑
i=1

G(Y (b)
i , α̂τ,II , θ̂τ,II)

+ 1
n1

n1∑
i=1

{
G(Y (b)

i , α̂τ,II , θ̂τ,II) − G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ )
}

− E
{

G(Y (b)
i , α̂τ,II , θ̂τ,II) − G(Y (b)

i , α̂(b)
τ , θ̂(b)

τ )
}
.

(3.58)

(1) First, we want to show that

1
n1

n1∑
i=1

{
G(Y (b)

i , α̂τ,II , θ̂τ,II) − G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ )
}

−E
{

G(Y (b)
i , α̂τ,II , θ̂τ,II) − G(Y (b)

i , α̂(b)
τ , θ̂(b)

τ )
}

= op(1),

(3.59)

it suffices by Chebyshev’s inequality to show that

1
n1
Cov

{
G(Y (b)

i , α̂τ,II , θ̂τ,II) − G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ )
}

→ 0. (3.60)

We have

Cov
{

G(Y (b)
i , α̂τ,II , θ̂τ,II) − G(Y (b)

i , α̂(b)
τ , θ̂(b)

τ )
}

=V ar
{
Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i ) −Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i )

}
(ZT

i ,U
T
i )T (ZT

i ,U
T
i )

=E
[
Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i ) −Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i )

]2
(ZT

i ,U
T
i )T (ZT

i ,U
T
i )

−
{
E
[
Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i ) −Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i )

]}2
(ZT

i ,U
T
i )T (ZT

i ,U
T
i ).

(3.61)

Let ∆ = ZT
i (ατ − α̂τ,II) +UT

i (θτ − θ̂τ,II) and ∆̂(b) = ZT
i (α̂τ,II − α̂(b)

τ ) +UT
i (θ̂τ,II − θ̂(b)

τ ).

Note that

∂

∂ei

[
Gh(−wi|êi|) −Gh(−wi|êi| − ∆̂(b))

]
= ∂

∂ei

[
Gh(−wi|ei + ∆|) −Gh(−wi|ei + ∆| − ∆̂(b))

]
= − wisgn(ei + ∆)

[
Kh(−wi|ei + ∆|) − Kh(−wi|ei + ∆| − ∆̂(b))

] (3.62)
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then when covariates are given, by integration by parts, we have

E
[
Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i ) −Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i )

]
=E

[
Gh(−wi|êi|) −Gh(−wi|êi| − ∆̂(b))

]
=E

{
wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)

[
Kh(−wi|ei + ∆|) − Kh(−wi|ei + ∆| − ∆̂(b))

]
dε

}
=E

{
wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)Kh(−wi|ei + ∆|)dε

}
− E

{
wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)Kh(−wi|ei + ∆| − ∆̂(b))dε

}
.

(3.63)

When wi > 0, using a change of variable, we have

wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)Kh(−wi|ei + ∆|)dε

=
∫ +∞

∆
wi

∫
Fe|Z,X(ε)Kh(−wi(ei + ∆))dε

−
∫ ∆

−∞
wi

∫
Fe|Z,X(ε)Kh(wi(ei + ∆))dε

=
∫ −∞

0
−Fe|Z,X(−hv/wi − ∆)K(v)dv −

∫ 0

−∞
Fe|Z,X(hv/wi − ∆)K(v)dv

=
∫ 0

−∞
Fe|Z,X(−hv/wi − ∆)K(v)dv −

∫ 0

−∞
Fe|Z,X(hv/wi − ∆)K(v)dv

≈
∫ 0

−∞

[
Fe|Z,X(0) + fe|Z,X(0)(−hv/wi − ∆)

]
K(v)dv

−
∫ 0

−∞

[
Fe|Z,X(0) + fe|Z,X(0)(hv/wi − ∆)

]
K(v)dv

= − 2h/wife|Z,X(0)
∫ 0

−∞
vK(v)dv + op(1),
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and

wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)Kh(−wi|ei + ∆| − ∆̂(b))dε

=
∫ +∞

∆
wi

∫
Fe|Z,X(ε)Kh(−wi(ei + ∆) − ∆̂(b))dε

−
∫ ∆

−∞
wi

∫
Fe|Z,X(ε)Kh(wi(ei + ∆) − ∆̂(b))dε

=
∫ −∞

0
−Fe|Z,X(−(hv + ∆̂(b))/wi − ∆)K(v)dv −

∫ 0

−∞
Fe|Z,X((hv + ∆̂(b))/wi − ∆)K(v)dv

=
∫ 0

−∞
Fe|Z,X(−(hv + ∆̂(b))/wi − ∆)K(v)dv −

∫ 0

−∞
Fe|Z,X((hv + ∆̂(b))/wi − ∆)K(v)dv

≈
∫ 0

−∞

[
Fe|Z,X(0) + fe|Z,X(0)(−(hv + ∆̂(b))/wi − ∆)

]
K(v)dv

−
∫ 0

−∞

[
Fe|Z,X(0) + fe|Z,X(0)((hv + ∆̂(b))/wi − ∆)

]
K(v)dv

= − 2h/wife|Z,X(0)
∫ 0

−∞
vK(v)dv − 2∆̂(b)w−1

i fe|Z,X(0)
∫ 0

−∞
K(v)dv + op(1)

= − 2h/wife|Z,X(0)
∫ 0

−∞
vK(v)dv − ∆̂(b)w−1

i fe|Z,X(0) + op(1)

Similarly, when wi < 0, we have

wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)Kh(−wi|ei + ∆|)dε

= − 2h/wife|Z,X(0)
∫ 0

−∞
vK(v)dv + op(1),

and

wi

∫
sgn(ε+ ∆)Fe|Z,X(ε)Kh(−wi|ei + ∆| − ∆̂(b))dε

= − 2h/wife|Z,X(0)
∫ 0

−∞
vK(v)dv + ∆̂(b)w−1

i fe|Z,X(0) + op(1).

Combing these results and (3.63), we have

E
[
Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i ) −Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i )

]
= ∆̂(b)fe|Z,X(0) + op(∆̂(b)).

(3.64)
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Let wi|ei + ∆∗| lies between wi|êi| and wi|êi| − ∆̂(b), then by Lagrange mean value theorem and

Condition 4, we can get

E
[
Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i ) −Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i )

]2
=E

[
Gh(−wi|êi|) −Gh(−wi|êi| − ∆̂(b))

]2
=E

[
−wisgn(ei + ∆∗)Kh(−wi|ei + ∆∗|)∆̂(b)

]2
=op(1/h).

(3.65)

By Conditions 1, 3, 4, and 8, combined (3.61), (3.63) and (3.65), (3.60) holds. So we can show that

n−1
1

n1∑
i=1

{
G(Y (b)

i , α̂τ,II , θ̂τ,II) − G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ )
}

−E
{

G(Y (b)
i , α̂τ,II , θ̂τ,II) − G(Y (b)

i , α̂(b)
τ , θ̂(b)

τ )
}

= op(1).

(2) Second, we want to prove

√
n1

α̂τ,II − α̂(b)
τ

θ̂τ,II − θ̂(b)
τ

 = E

fe|Z,X(0)
(
Z

U

)⊗2
−1

1
√
n1

n1∑
i=1

G(Y (b)
i , α̂τ,II , θ̂τ,II) + op(n−1/2).

When covariates are given and Conditions 6-9 hold, we have

E
{

G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ ) − G(Y (b)

i , α̂τ,II , θ̂τ,II)
}

=E
[
Gh(ZT

i α̂
(b)
τ +UT

i θ̂
(b)
τ − Y

(b)
i ) −Gh(ZT

i α̂τ,II +UT
i θ̂τ,II − Y

(b)
i )

]
(ZT

i ,U
T
i )T + op(1)

=E
[
Gh(−wi|êi| − ∆̂(b)) −Gh(−wi|êi|)

]
(ZT

i ,U
T
i )T + op(1).

(3.66)

For any vector u1, u2 ∈ Rd and v1,v2 ∈ Rm×(K+p), similar with the proof of (3.63), we have

E
[
Gh(−wi|ei −ZT

i u1 −UT
i v1| −ZT

i u2 −UT
i v2) −Gh(−wi|ei −ZT

i u1 −UT
i v1|)

]
= − (ZT

i u2 +UT
i v2)E

[
Kh(−wi|ei −ZT

i u1 −UT
i v1|)

]
= − (ZT

i u2 +UT
i v2)

[
fe|Z,X(0) +O(ZT

i u1 +UT
i v1)

]
.

(3.67)

When ∥u∥2 = Op(n−1/2) and ∥u∥2 = Op(n−1/2K), we have

E
[
Gh(−wi|ei −ZT

i u1 −UT
i v1| −ZT

i u2 −UT
i v2) −Gh(−wi|ei −ZT

i u1 −UT
i v1|)

]
= − (ZT

i u2 +UT
i v2)fe|Z,X(0) + op(n−1/2).

(3.68)
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By (3.66), (3.67) and (3.68), we have

E
{

G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ ) − G(Y (b)

i , α̂τ,II , θ̂τ,II)
}

= − E
{
fe|Z,X(0)(ZT

i ,U
T
i )T (ZT

i ,U
T
i )
}α̂τ,II − α̂(b)

τ

θ̂τ,II − θ̂(b)
τ

+ op(n−1/2
1 ).

(3.69)

Inserting (3.69) to (3.58) and by (3.59), we further have

E
{

G(Y (b)
i , α̂(b)

τ , θ̂(b)
τ ) − G(Y (b)

i , α̂τ,II , θ̂τ,II)
}

+ op(1)

= − E
{
fe|Z,X(0)(ZT

i ,U
T
i )T (ZT

i ,U
T
i )
}α̂τ,II − α̂(b)

τ

θ̂τ,II − θ̂(b)
τ


= − 1

n1

n1∑
i=1

G(Y (b)
i , α̂τ,II , θ̂τ,II) + op(1).

(3.70)

Then, we have

√
n1

α̂τ,II − α̂(b)
τ

θ̂τ,II − θ̂(b)
τ

 = E

fe|Z,X(0)
(
Z

U

)⊗2
−1

1√
n

n1∑
i=1

G(Y (b)
i , α̂τ,II , θ̂τ,II) + op(n−1/2

1 ),

(3.71)

where

1
√
n1

n1∑
i=1

G(Y (b)
i , α̂τ,II , θ̂τ,II) = 1

√
n1

n1∑
i=1

{Gh(−wi|êi|) − τ} (ZT
i ,U

T
i )T + op(1). (3.72)

For Gh(−wi|êi|), when covariates are given, we have

E(Gh(−wi|êi|)) = τ − E(w−1
i )2hfe|Z,X(0)

∫ 0

−∞
vK(v)dv + op(1) = τ + op(1),

and

E(G2
h(−wi|êi|)) = τ + op(1),

then asymptotic mean and variance of {Gh(−wi|êi|) − τ} are 0 and τ(1 − τ), respectively.

Finally, we can have

√
n
(
Σ−1

2 Σ1Σ−1
2

)−1/2
α̂(b)

τ − α̂τ,II

θ̂
(b)
τ − θ̂τ,II

 d→ N(0, τ(1 − τ)I), (3.73)
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where

Σ1 = E

{(
(ZT ,UT )T

)⊗2
}
, Σ2 = E

fe|Z,X(0)
(
Z

U

)⊗2 .
Correspondingly, we have

√
n
(
Σ−1

τ,2Στ,1Σ−1
τ,2

)−1/2
 α̂

(b)
τ − α̂τ,II

θ̂
(b),(1)
τ − θ̂(1)

τ,II

 d→ N(0, τ(1 − τ)I). (3.74)

This completes the proof of Theorem 4 by Theorem 2-3 and the asymptotic result above.
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Chapter 4

Locally Sparse Estimation in
Simultaneous Functional Quantile
Regression

4.1. Introduction

In this project, our primary goal remains understanding how soybean yield is influenced by key

factors such as temperature, precipitation, and machinery level on farms. Additionally, we aim to

identify specific time regions during the growing season when temperature has a significant impact

on soybean yields.

Building upon the previous chapter’s work, we now propose an extension of the locally sparse

estimation method introduced in Chapter 3. In the previous chapter, we focused on locally sparse

estimation for a single quantile at a time during model fitting. However, in this project, we aim to

expand this method to perform locally sparse estimation for multiple quantiles simultaneously. By

doing so, we can gain a more comprehensive understanding of how soybean yield varies across

different quantiles.

The locally sparse estimation method is particularly valuable in this project, as it helps us iden-

tify critical time regions during the growing season when temperature significantly influences soy-

bean yields. By focusing on quantile-specific effects, we can pinpoint periods when temperature has

a substantial impact on yield outcomes, beyond traditional mean-based analyses.

Given the importance of analyzing crop yield dynamics, we continue using the same soybean

yield data set as in Chapter 3. In this project, we consider the following functional quantile regres-

sion model to study the relationship between the predictors and soybean yields,

QY (u|Z, X) = Zτα(u) +
∫ T

0
β(t, u)X(t)dt, (4.1)

where Y is a scalar response, Z is a vector of scalar predictors and X(t) is a functional predictor

defined over [0, T ].
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In our soybean yield study, Y represents the annual soybean yield, which is the response variable

we are interested in modeling and predicting. X(t) denotes the daily average temperature, which

is a functional predictor that varies with time t throughout the growing season. Z1 represents the

annual precipitation, which is a scalar predictor representing the amount of rainfall received during

the year. Z2 is the ratio of the irrigated area of each county in Kansas. It serves as another scalar

predictor, describing the proportion of land that is irrigated for soybean cultivation in each county.

In the functional quantile regression model (4.1), each entry of the vector α(u) corresponds

to a varying coefficient that characterizes the influence of a scalar predictor on the u-quantile of

the response variable Y . This varying coefficient allows us to capture how the impact of the scalar

predictors changes across different quantiles of the soybean yield distribution. The function β(t, u)
is a bivariate slope function that is indexed by both time t and quantile u. It describes the dynamic

influence of the functional predictor X(t) on the quantiles of the soybean yield Y .

Reviewing the literature [72, 79], we know that there exists a comfortable range of temperature

for soybean growth, where small fluctuations of temperature have no influence on soybean yields.

This observation serves as a strong motivation for introducing the concept of local sparsity for the

functional coefficient β(t, u) in the functional quantile regression model (4.1).

The local sparsity refers to the property of having sub-regions within the domain of β(t, u)
where β(t, u) = 0. In other words, there are specific time intervals (sub-regions) during the growing

season where the effect of the daily average temperature on some quantiles of soybean yield is non-

existent. These sub-regions correspond to the comfortable temperature range for soybean growth,

where temperature fluctuations do not substantially impact the crop’s performance for some specific

quantiles. More formally, we assume that there exists a collection of sub-regions N ⊂ [0, T ]×(0, 1),

and β(t, u) = 0 for all (t, u) ∈ N .

By incorporating local sparsity into the model, we can accurately describe the dynamic depen-

dence between quantiles of soybean yield and the functional predictor, daily average temperature.

More specifically, this property allows the model to focus on the periods when temperature has a

meaningful influence on soybean growth and yield outcomes, while disregarding the sub-regions

where temperature fluctuations have no effect, and to provide more precise and meaningful insights

into how temperature impacts soybean yield across different quantiles.

Functional quantile regression is indeed an important and popular tool for data analysis, partic-

ularly in applications related to environmental science. It serves as an extension of classic quantile

regression [44] and allows for more flexible and comprehensive modeling of data involving func-

tional predictors. Researchers have developed various variants of functional quantile regression to

address different scenarios and accommodate diverse data characteristics. For instance, [86] studied

a model with multiple functional covariates and a finite number of scalar covariates. [85] consider

a partially functional quantile regression with a functional covariate and high-dimensional scalar

covariates. [55] proposed a functional partially linear model with multiple functional covariates and

ultrahigh-dimensional scalar covariates.
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Indeed, many existing works that consider local sparsity in the context of functional data analy-

sis have focused on functional linear models. These models involve functional predictors and have

proven to be valuable in various applications, [80, 39, 94]. For example, [50] proposed a functional

generalization of ordinary SCAD [19], called fSCAD, to obtain the locally sparse estimator for

univariate scalar-on-function regression. [22] and [49] applied fSCAD [50] to the multiple outputs

functional linear regression.

The conventional strategy of fitting the functional quantile regression model (4.1) by fixing the

quantile u and estimating each entry of α(u) as a scalar parameter, along with estimating β(t, u)
as a univariate function of t, does offer advantages in reducing the dimensionality of the parameter

space. However, it also introduces two major limitations: lack of smoothness in the estimation of

the slope function β(t, u) and non-monotonicity of the estimated conditional quantile function of

the response Y .

When the model is fitted separately for different quantiles, the resulting estimator for the slope

function β(t, u) is not guaranteed to be smooth in the direction of the quantile u. This lack of

smoothness can lead to erratic behavior of the estimated β(t, u) across quantiles, which may not

accurately capture the true underlying relationship between the functional predictor and response

variable. In addition, fitting the model for different quantiles separately may lead to non-monotonic

conditional quantile estimation, while the true conditional quantile function of Y should be mono-

tonically non-decreasing in u. The crossing quantiles can result in invalid interpretations.

4.2. Estimation

Let Y denote a scalar response. LetZ = (1, Z1, . . . , Zp) be a vector of scalar predictors andX(t) be

a functional predictor over [0, T ]. For any quantile u ∈ (0, 1), we propose the following functional

linear quantile regression model,

QY (u|Z, X) = Zτα(u) +
∫ T

0
β(t, u)X(t)dt, (4.2)

where α(u) = (α0(u), . . . , αp(u))τ and β(t, u) are unknown functions, and β(t, u) exhibits the

local sparsity property.

Estimating the infinite-dimensional functions α(u) and β(t, u) directly can be challenging in

practice. To address this issue, a commonly used strategy is to first find finite-dimensional approx-

imations for these unknown functions and then estimate the coefficients of these approximations

using the data. When the univariate functions in α(u) are assumed to be smooth enough, a popular

approximation method is B-splines, where the entries of α(u) are represented as linear combina-

tions of B-spline basis functions with unknown coefficients,

αk(u) =
nb∑

j=1
ηk,jbj(u) := b(u)τηk,
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where b(u) = (b1(u), . . . , bnb
(u))τ is the vector of B-splines over (0, 1) and {ηk,j}nb

j=1 are the

unknown coefficients.

In the context of the proposed functional quantile regression model with locally sparse slope

function β(t, u), the estimation involves identifying the subset S0 = {(t, u) ∈ [0, T ] × (0, 1) :
β(t, u) = 0}, which represents the sub-regions of the domain of β(t, u) where β(t, u) is assumed

to be zero. Let Ŝ0 denote the identified S0 using the data. The next step is to estimate the function

β(t, u) on the complement set [0, T ]×(0, 1)\Ŝ0. This complement set consists of the regions where

the function β(t, u) is non-zero, and these are the regions of interest.

Similarly, when β(t, u) is smooth enough, we approximate β(t, u) using bivariate splines. Re-

garding the bivariate spline basis, there are various choices available for approximation purposes.

Two commonly used options are tensor products of B-splines [75, 64, 91] and bivariate Bernstein

polynomials over the triangulation [46]. In this project, the choice is made to use bivariate Bern-

stein polynomials over a triangulation for approximating the unknown slope function β(t, u) in

(4.6). Each bivariate Bernstein polynomial has its support on a single triangle of the triangulation,

and multiple polynomials are defined over each triangle. This local support property ensures that

we can use the triangles to estimate the subset S0.

Suppose that U is the interval containing the quantiles of interest. Let Sr
d(∆) denote the linear

space spanned by bivariate splines defined over a triangulation ∆, where r is the smoothness con-

dition of this space and d is the degree of the splines. Our goal is to find a function s(t, u) ∈ Sr
d(∆)

that can effectively approximate the slope function β(t, u) on the domain [0, T ] × U . To make our

writing and proofs in the subsequent sections more clear, we use {bj(t, u)}nB
j=1 to denote the Bern-

stein polynomials over the triangulation ∆ = {Λ1, . . . ,ΛM }, where j = 1, . . . , nB is the index for

the polynomials. The Bernstein polynomials are locally defined on each triangle of the triangulation

∆. More specifically, (d + 2)(d + 1)/2 Bernstein polynomials are defined on each triangle of ∆.

Therefore, the relationship between nB and M is nB = (d + 2)(d + 1)M/2 In addition, for each

bivariate basis function bj(t, u), we denote its support by ∆j , which is a specific triangle of ∆ with

∆j = the triangle of ∆ that is the support of bj(t, u). In other words, bj(t, u) ̸= 0 for (t, u) ∈ ∆j ,

and bj(t, u) = 0 for (t, u) ̸∈ ∆j . If two Bernstein polynomials bj(t, u) and bk(t, u) are associated

with the same triangle, then ∆j and ∆k are identical.

The function s(t, u) ∈ Sr
d(T × U ) that approximates β(t, u) can be written as a linear com-

bination of Bernstein polynomials {Bj(t, u)}nB
j=1. Then on the domain [0, T ] × U , we have the

approximation

β(t, u) ≈ s(t, u) =
nB∑
j=1

γjBj(t, u) := B(t, u)τγ ∈ Sr
d(∆), (4.3)

where B(t, u) = (B1(t, u), . . . , BnB (t, u))τ is the vector of bivariate splines over T × U and

{γj}nB
j=1 are the corresponding coefficients.

To ensure the desired smoothness of the approximation for β(t, u), such as continuity or continu-

ity of derivatives, it is necessary to impose linear constraints on the coefficients γ. These constraints

can be represented as Hγ = 0, where H is a matrix of linear constraints. By incorporating these
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constraints, we can enforce the desired smoothness property in the estimation. However, imposing

linear constraints on the coefficients may lead to complications in solving the following optimiza-

tion problem. To overcome this, a common approach is to use QR decomposition to remove the

linear constraints. For a givenH , by QR decomposition, we have

HT = (Q∗,Q)
(
R

0

)
, (4.4)

where (Q∗,Q) is a matrix with orthogonal columns and R is a upper triangle matrix with nonzero

diagonal elements. Based on the decomposition (4.4), the constraints Hγ = 0 can be removed by

rewriting γ as

γ = Qθ.

Then, the integral QY (u|X) can be approximated by

QY (u|X,Z) ≈ ZτD(u)η +
∫
B(t, u)τQθX(t)dt

= ZτD(u)η +A(u)τQθ,

where η = (ητ
0 , . . . ,η

τ
p )τ ,A(u)τ =

∫
B(t, u)τX(t)dt, and

D(u) =


b(u)τ 0 . . . 0

0 b(u)τ . . . 0
. . . . . . . . . . . .

. . . . . . 0 b(u)τ


In the proposed estimation procedure, the goal is to estimate the univariate functions α(u) and

the bivariate function β(t, u) by considering all the quantiles of interest simultaneously. Combining

multiple quantile regression models in the estimation process has been widely recognized for its

advantages. Several papers have discussed and proposed various methods for joint estimation of

quantile regression models such as [96, 40, 93, 31].

For a real-valued random variable Y , the minimizer of E{ρu(Y − u)} is the u-quantile of Y ,

where ρu(x) = x (u− 1{x < 0}) is called quantile loss function or check function [44]. Assume

that we observe independent and identically distributed data pairs {yi, zi, xi(t)}n
i=1 as the realiza-

tions of {Y,Z, X(t)}. To perform the quantile regression, we consider a set of quantiles of interest

denoted by U ∈ U . These quantiles are assumed to be uniformly distributed within the interval U .

The cardinality of U , denoted by nU , represents the number of quantiles of interest. Then, based on

the approximation (4.3), a reasonable estimation method of the unknown approximation coefficients

is to minimize the following loss function with respect to η and θ:

1
nnU

nU∑
r=1

n∑
i=1

ρur (yi − zτ
i D(ur)η −Ai(ur)τQθ) (4.5)
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whereAi(ur) =
∫
B(t, ur)τxi(t)dt.

However, after approximating β(t, u) using bivariate splines, the resulting design matrix in-

volving zi, b(ur), and Ai(ur) may become ill-conditioned, leading to a highly oscillatory estimator

for β(t, u) when directly minimizing (4.5). Consequently, the estimation of β(t, u) may not be as

smooth as assumed by the model. To address this issue, a common approach is to add a penalty term

to (4.5) during the minimization procedure. This addition aims to enhance numerical stability and

control the smoothness of the estimation for β(t, u). One particularly effective tool for this purpose

is the roughness penalty. Detailed discussions on roughness penalty in the context of functional

data analysis can be found in [8], [68], [67] and [5]. For a smooth bivariate function s(t, u), the

roughness penalty R(s) is defined as

R(s) =
∑
Λ∈∆

∫
Λ

∑
d1+d2=2

(
2
d1

)[
∇d1

t ∇d2
u s(t, u)

]2
dtdu. (4.6)

For the bivariate spline approximationB(t, u)τQθ, the roughness penalty ofB(t, u)τQθ(4.6) can

be further written as a quadratic form with a positive semi-definite matrixG,

R(B(t, u)τQθ) = θτGθ.

With the help of the roughness penaltyR(·), we propose to estimate the unknown coefficients η and

θ in (4.6) by minimizing the following objective function

1
nnU

nU∑
r=1

n∑
i=1

ρur (yi − zτ
i D(ur)η −Ai(ur)τQθ) + λθτGθ. (4.7)

4.2.1 Locally Sparse Estimation for β(t, u)

Our primary objective is to obtain a locally sparse estimator for β(t, u), which helps identify the

inactive regions of the functional predictor X(t) across different quantiles of the scalar response Y .

To achieve this goal, we employ a group lasso-type method.

By utilizing the triangulation-based spline approximation, we can introduce penalization on the

L2-norm of the approximation of β(t, u) (4.3) at the triangle level. This enables us to promote the

local sparsity of the target function β(t, u) at the level of triangles. In essence, the group lasso-type

penalties encourages the bivariate splines over certain triangles to have zero coefficients, which can

help identify the inactive regions of the functional predictor X(t) for specific quantiles of Y .

Denote the minimizer of (4.7) as (γ̃, θ̃) and define

wj =
∥∥∥γ̃[j]

∥∥∥−η

2
,
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where γ̃ = Qθ̃ and γ̃[j] denote the entries of γ̃ corresponding to the triangle ∆j . Then we minimize

the following objective function with respect to (η,θ)

1
nnU

nU∑
r=1

n∑
i=1

ρur (yi − zτ
i D(ur)η −Ai(ur)τQθ) + λ1θ

τGθ + λ2

J∑
j=1

wj

∥∥∥γ[j]

∥∥∥
2
, (4.8)

where γ = Qθ and γ[j] denote the entries of γ corresponding to the triangle ∆j .

4.2.2 Parameter Tuning

In the estimation procedure, the tuning parameter λ in (4.7) is selected using 10-fold cross-validation.

After fixing the tuning parameter λ, the weights wj can be computed. These weights are essential

for the group lasso-type penalties used to achieve local sparsity in the estimation of β(t, u). After

we obtain wj , we need to further tune λ1 and λ2 in (4.8). For this step, we still use 10-fold cross

validations. During each validation run, we first identify the triangles with zero coefficients based

on the γ̂ obtained from minimizing (4.8), where γ̂ = Qθ̂. Then we refit the model only using the

active regions of the functional predictor identified by γ̂ without group lasso-type penalties. To en-

sure that the identified inactive regions of the functional predictor (triangles with zero coefficients)

are properly excluded from the model fitting, we need to impose some linear constraints on γ during

the estimation procedure,

Kγ = 0,

where the matrix D consists of 0 and 1. Specifically, through the above linear constraints, we can

ensure that the coefficients corresponding to the triangles with zero coefficients in γ̂ remain zero

throughout the model fitting. In summary, we use the following procedure to select tuning parame-

ters (λ1, λ2).

• Let Λ1 and Λ2 denote the candidate sets for λ1 and λ2 respectively. For any pair of (λ1, λ2),

λ1 ∈ Λ1, λ2 ∈ Λ2, we compute the minimizer of (4.8) denoted as (η̂, γ̂).

• Given (η̂, γ̂), we can obtain the constraints matrix D corresponding to γ̂ and then define

H̃τ = (Kτ ,Hτ )τ .

• Consider the following minimization problem

min
η,θ

(nnU )−1 ∑
ur∈U

n∑
i=1
ρur (yi − zτ

i D(ur)η −Ai(ur)τQθ) + λ3θ
τGθ (4.9)

subject to H̃γ = 0.

Let (η̃, γ̃) denote the minimizer of (4.9). From the definition of H̃ , we know that γ̃ and γ̂

share the same sparsity structure. Run a 10-fold cross validation to select λ3 in (4.9), and use

the validation loss associated with the selected λ3 as the validation loss for (λ1, λ2).

• Use the proposed validation loss to select the best pairs (λ1, λ2).
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4.3. Theoretical Results

Define

ΓXf =
∫

s
cov(s, t)f(s, u)ds,

and

∥f(t, u)∥ΓX ,2 =
(∫

u

∫
t
ΓXf × fdtdu

)1/2
.

To derive the asymptotic property of the proposed estimator β̂(t, u) by minimizing (4.7), we assume

that the following hypotheses are satisfied.

(A1) {Yi,Zi, Xi(t)}n
i=1 are i.i.d.

(A2) ∥X∥ ≤ C0 < ∞ a.s.

(A3) The functions in α(u) are supposed to have p′th derivatives α(p′)(u) such that∣∣∣α(p′)
k (t) − α

(p′)
k (s)

∣∣∣ ≤ C |t− s|ϑ , s, t ∈ (0, 1),

where C1 > 0 and ϑ ∈ [0, 1]. In what follows, we set ν = p′ + ϑ.

(A4) The eigenvalues of ΓX are positive.

(A5) β(t, u) ∈ W d+1
q (T × U ).

(A6) The random variable ϵi defined by ϵi = Yi−Zτ
i α(u)−

∫
β(t, u)Xi(t)dt has a density function

f continuous and bounded below uniformly by a strictly positive constant at 0.

Theorem 1. Under the assumptions A1-A6, suppose nb ∼ |∆|−(d+1)/ν , and nU is large enough,

then

∥β̂(t, u) − β(t, u)∥ΓX ,2 = Op

(
|∆|d+1 + 1

nλ|∆|2
+ λ

)
,

except on a set whose probability goes to zero as n goes to infinity.

4.4. Simulation Studies

In this section, we perform simulation studies to assess the finite sample performance of the pro-

posed method and the conventional method [6] for estimating the slope function β(t, u). We con-

sider three different scenarios to evaluate the performance under varying levels of complexity.

Scenario I and Scenario II both assume that the true slope function β(t, u) is independent of

u and can be represented as a univariate function of t only. This setting is commonly used in the

literature of functional quantile regression. In Scenario III, we introduce a more intricate true slope

function β(t, u), which is a bivariate function of both t and u, adding complexity to the simulation

setup.
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4.4.1 Data Generating Models

Scenario I. In this scenario, the realizations of the {X(t),Z, Y } are generated from

Yi = ZT
i α+

∫ 1

0
Xi(t)ρ1(t)dt+ ei, i = 1, . . . , n,

ρ1(t) = 20(t− 0.5)2
1{t ≤ 0.5},

where Xi(t) is a Wiener process, Zi,1, Zi,2 ∼ N(0, 0.0.5), Zi = (1, Zi,1, Zi,2)τ , α = (0, 1, 1)τ ,

and ei ∼ N(0, 0.05). Xi(t), Zi,1, Zi,2 and ei are all independent. Under this setting, the underlying

slope function β(t, u) in model (4.6) is given by

β(t, u) = ρ1(t) = 20(t− 0.5)2
1{t ≤ 0.5}.

Scenario II. In this scenario, the realizations of the {X(t),Z, Y } are generated from

Yi = ZT
i α+

∫ 1

0
Xi(t)ρ1(t)dt+ ei, i = 1, . . . , n,

ρ1(t) = sin(2π(t− 0.25))1{0.25 ≤ t ≤ 0.75},

where Xi(t) is a Wiener process, Zi,1, Zi,2 ∼ N(0, 0.0.5), Zi = (1, Zi,1, Zi,2)τ , α = (0, 1, 1)τ ,

and ei ∼ N(0, 0.05). Xi(t), Zi,1, Zi,2 and ei are all independent. Under this setting, the underlying

slope function β(t, u) in model (4.6) is given by

β(t, u) = ρ1(t) = sin(2π(t− 0.25))1{0.25 ≤ t ≤ 0.75}.

Scenario III. In this scenario, the realizations of the pair {X(t),Z, Y } are generated from

Y = ZT
i α+

∫ 1

0
ρ1(t)X(t)dt+ σ(X)ϵ, σ(X) =

∫ 1

0
ρ2(t)(X(t) + 4)dt,

ρ1(t) = 20(t− 0.5)2
1{t ≤ 0.5}, ρ2(t) = (t− 0.5)2

1{t ≤ 0.5}

where Zi,1, Zi,2 ∼ N(0, 0.0.5), Zi = (1, Zi,1, Zi,2)τ , α = (0, 1, 1)τ , and ei ∼ N(0, 1). Regarding

the Xi(t) in the above data generating model, for each i, we first generate Xi(t) from Wiener

process. If Xi(t) satisfies Xi(t) + 4 ≥ 0, then we keep it as the functional predictor of the i-th

sample otherwise we will generate a new Xi(t) for the i-th sample. We repeat this process until

Xi(t) satisfies Xi(t) + 4 ≥ 0. Xi(t), Zi,1, Zi,2 and ei are all independent. Under this setting, the

underlying slope function β(t, u) in model (4.6) is given by

β(t, u) = ρ1(t) + ρ2(t)Qe(u) = 20(t− 0.5)2
1{t ≤ 0.5} + (t− 0.5)2Qe(u),

where Qe(u) is the quantile function of a standard Normal distribution.
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4.4.2 Simulation Results

Table 4.1: The averaged squared L2-norm of the difference between the estimator β̂(t, u) and the
true function β(t, u), ∥β̂(t, u)−β(t, u)∥2

2 using the proposed method with locally sparse estimation
(LS-SFQR), the proposed method without locally sparse estimation (SFQR) and the conventional
estimation method (FQR).

n = 300 n = 500
∥β̂(t, u) − β(t, u)∥2

2 × 102 ∥β̂(t, u) − β(t, u)∥2
2 × 102

Scenario LS-SFQR SFQR FQR LS-SFQR SFQR FQR
I 0.59 0.65 1.62 0.44 0.36 0.98
II 3.31 4.95 6.95 2.51 3.38 4.41
III 2.40 3.75 4.16 1.81 2.17 2.76

We use the averaged squared L2-norm of the difference between the estimator β̂(t, u) and the

true function β(t, u), to evaluate the estimation error,

∥β̂(t, u) − β(t)∥2
2 ≈ 1

nUnT

nU∑
r=1

nT∑
j=1

{
β̂(tj , ur) − β((tj , ur))

}2
,

where tj are the time points when the functional predictor is discretely observed. The results are

displayed in Table 4.1 from three different methods. LS-SFQR is the proposed method that simulta-

neously fits the model for multiple quantiles while employing locally sparse estimation for β(t, u).

The objective function for LS-SFQR is given by (4.8), where locally sparse penalties are applied to

achieve a locally sparse estimator for β(t, u). On the other hand, SFQR is another proposed method

that simultaneously fits the model for multiple quantiles but without using locally sparse estimation

for β(t, u). Instead, it minimizes the objective function (4.7) without the locally sparse penalties.

FQR is the method proposed in [6], which considers only one quantile for each fitting. It estimates

β(t, u) for different quantiles separately. This method does not consider the smoothness of β(t, u).

Table 4.1 reveals two important insights. Firstly, it demonstrates the advantage of using mul-

tiple quantiles simultaneously for model fitting when comparing the estimation errors of the two

proposed methods with the conventional method (FQR). Both LS-SFQR and SFQR outperform the

conventional method in terms of estimation accuracy. This highlights the benefit of considering the

quantiles jointly rather than fitting the model with each quantile separately.

Secondly, when comparing the estimation errors between the methods “LS-SFQR” and “SFQR”,

it becomes evident that the estimation efficiency can be further improved by employing the locally

sparse approach. By identifying and screening out irrelevant sub-regions from the domain of the

functional predictor before fitting the model, LS-SFQR achieves a more efficient estimation of the

slope function β(t, u). This locally sparse estimation leads to a more accurate representation of the

dynamic dependence between the quantiles of the response variable Y and the functional predictor

X(t).
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In summary, fitting the model (4.6) for multiple quantiles the simultaneously provides substan-

tial benefits over the conventional single-quantile approach. Moreover, incorporating the locally

sparse estimation technique in the proposed LS-SFQR method further enhances the estimation ef-

ficiency and accuracy. These findings reinforce the significance of considering multiple quantiles

jointly and leveraging the sparsity structure of the slope function β(t, u) in functional quantile re-

gression analysis.

4.5. Real Data Analysis

Indeed, temperature plays a crucial role in soybean growth during all stages, including the vegeta-

tive and reproductive phases. Both high and low temperatures can have adverse effects on soybean

germination and growth. Therefore, understanding the relationship between daily temperature and

soybean yield at different quantiles is vital for gaining a comprehensive understanding of soybean

growth dynamics.

In this study, we aim to investigate the influence of daily temperatures on soybean yield across

various quantiles while controlling for other environmental factors. By accounting for factors such

as annual precipitation and the ratio of irrigated area, we can better understand the independent

contribution of temperature to soybean yield.

Quantile regression allows us to analyze the relationship between variables at different points of

the distribution, going beyond traditional mean-based regression analysis. By examining multiple

quantiles, we can identify how temperature affects soybean yield under various conditions, including

both favorable and unfavorable scenarios.

The data collected from the United States Department of Agriculture (USDA) website and the

National Oceanic and Atmospheric Administration (NOAA) website provides valuable information

on soybean yield and related environmental variables in Kansas between 1991 and 2006. The data

covers an important agricultural period and geographical region, as Kansas is one of the leading

states in soybean production.

In the subsequent analysis, we consider three predictors for investigating the annual soybean

yield of each county in Kansas. The functional predictor, denoted as X(t), represents the average

of daily minimum and daily maximum temperatures. We specifically consider the temperature data

for February and November, allowing us to investigate the influence of temperature during both the

colder and warmer months on soybean yield. Figure 4.1 displays a sample of the daily average tem-

perature measurements of Kansas. The two scalar predictors, annual precipitation and the ratio of

irrigated area to harvested land (Z2), denoted as Z1 and Z2 provide additional environmental infor-

mation that can impact soybean growth. Finally, the response variable, denoted as Y , represents the

annual soybean yield per bushel for each county in Kansas. Then the model we want to investigate

is as follows:

QY (u|X(t), Z1, Z2) = α0(u) + α1(u)Z1 + α2(u)Z2 +
∫

T
β(t, u)X(t)dt. (4.10)
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Figure 4.1: A sample of daily average temperature curves of counties in Kansas. The unit of the
y-axis is the Fahrenheit temperature scale.

Figure 4.2: Estimated slope function β(t, u) of (4.10) using the Kansas soybean yield data set.

We fit the model with 17 quantiles uniformly distributed between 25% and 0.75%. Based on

the estimated slope function β̂(t, u) displayed in Figure 4.2, we can observe several trends. First,

the daily average temperature in Kansas during before June is found to be comfortable for soybean

germination and growth since the temperature before June has no influence on the soybean yield for

all the quantiles of interest. Second, between June and September, β̂(t, u) is consistently negative

for all quantiles between 25% and 75%. This indicates that the temperature of the late summer in

Kansas is relatively high, negatively affecting soybean growth and resulting in a decrease in soybean

yield. The last but not the least, after September, β̂(t, u) becomes positive for all the quantiles. This

suggests that the winter temperature in Kansas is too low for soybean growth, also having negative

impact on soybean yield for the entire year. Figure 4.3 provides another illustration of β̂(t, u) for
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three specific quantiles: 25%, 50%, and 75% and further emphasizes the changing patterns of the

temperature’s influence on soybean yield across different quantiles.
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Figure 4.3: Estimated slope function β(t, u) of (4.10) for three quantiles: 25%, 50% and 75%.

Overall, the analysis of β̂(t, u) provides valuable insights into the dynamic relationship between

daily average temperature and soybean yield in Kansas. The findings highlight the critical periods

during which temperature can significantly affect soybean growth and yield, and can aid in devel-

oping strategies to optimize soybean production in the region.

4.6. Conclusion and Discussion

In this project, we introduce a novel approach for estimating the bivariate slope function β(t, u) in

the functional quantile regression model . The goal is to investigate and understand the dynamic

relationship between functional predictors and scalar response variables. Our proposed method em-

ploys a locally sparse estimation technique, which allows us to identify and focus on specific regions

of interest in the domain of the functional predictor where the influence on the response variable is

significant.

For future research, we aim to extend this work to a more general model that can handle multiple

functional predictors, which would enhance the applicability of the method to a wider range of real-

world applications. However, this extension poses a challenge due to the large number of tuning

parameters involved. In practice, tuning these parameters effectively can be difficult. Addressing

this challenge would require developing efficient parameter tuning strategies for functional quantile

regression.

4.7. Proofs in Section 3

Proof. Define

Wi,u = [zτ
i D(u),Ai(u)τQ] .
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Then

1
nnU

nU∑
r=1

n∑
i=1

ρur (yi − zτ
i D(ur)η −Ai(ur)τQθ) + λθτGθ

= 1
nnU

nU∑
r=1

n∑
i=1

ρur

(
yi −W τ

i,ur
ξ
)

+ λθτGθ,

where ξ = (ητ ,θτ )τ . We further define

A =



A1(u1)
. . . ,

An(u1)
. . . ,

An(unU )


and

Cλ = 1
nUn

AAτ + λθτGθ.

Lemma 1. When λ = O(|∆|4), there exists a positive constants c1 such that

σmin {Cλ} ≥ c1λ|∆|2,

except on an event whose probability tends to 0 as n → ∞.

Proof. Suppose the dimension of G is nθ × nθ. Let K(G) = {θ ∈ R
nθ : Gθ = 0}, and let

v ∈ Rnθ with ∥v∥ = 1. We can decompose v into

v = v1 + v2,

where v1 ∈ K(G) and v2 ∈ K(G)⊥. Then

1
nnU

vτQτÃÃτQv + λvGv = 1
nU

∑
u∈U

E

∑
j

[vτQ]j
∫
Bτ

j (t, u)X(t)dt

2

+ λvτGv

= 1
nU

∑
u∈U

⟨ΓXB(t, u)τQv,B(t, u)τQv⟩ + λvτGv

≥ 1
nU

∑
u∈U

⟨ΓXB(t, u)τQv1,B(t, u)τQv1⟩ + λvτ
2Gv2,

= 1
nU

∑
u∈U

hv1(u) + λvτ
2Gv2,

=
∫

u
hv1(u)du+O(n−2

U ∥v1∥2) + λvτ
2Gv2,
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where the inner product ⟨·, ·⟩ is defined as ⟨f1(t, u), f2(t, u)⟩ =
∫

t f1(t, u)f2(t, u)dt, and hv1(u) =
⟨ΓXB(t, u)τQv1,B(t, u)τQv1⟩.

Let f(t, u) = B(t, u)τQv1. Since Gv2 = 0, then ∇i
t∇j

uf(t, u) = 0 for any non-negative

integers i and j with i + j ≤ m, which implies when u is fixed, as a function of t, f(t, u) is a

polynomial with degree less than m. We assume that all eigenvalues of ΓX are positive, therefore

for any g ∈ Pm, there exists a constant C3 such that

⟨ΓXg, g⟩ ≥ C3∥g∥2.

Then ∫
u
hv1(u)du ≥ C3

∫
u

∫
t
f(t, u)2dtdu ≥ C4|∆|2∥v1∥2. (4.11)

On the other hand, for any v2 ∈ K(G)⊥ there exists a constant C5 such that

λvτ
2Gv2 ≥ C5λ|∆|2∥v2∥2. (4.12)

Combine (4.11) and (4.12), we conclude that

1
nnU

vτQτÃÃτQv + λvGv ≥ c1λ|∆|2|v∥2.

Since

1
nnU

{
vτ
(
QτÃÃτQ

)
v − vτ (QτAAτQ)v

}
=vτ

{
1
nU

∑
u∈U

⟨ΓXB(t, u)τQ,B(t, u)τQ⟩ − ⟨ΓnB(t, u)τQ,B(t, u)τQ⟩
}
v,

≤ 1
nU

∑
u∈U

∥ΓX − Γn∥ sup
j

∑
k

|⟨Bk(t, u), Bj(t, u)⟩| ∥v∥2

where Γnf(t, u) =
∫

t ĉov(s, t)f(s, u)ds and ĉov(s, t) = n−1∑n
i=1Xi(s)Xi(t), and

(d+2
2
)

Bern-

stein polynomial basis functions are defined over each triangle, then

sup
j

∑
k

|⟨Bk(t, u), Bj(t, u)⟩| = O(|∆|).

According to [6], with some δ ∈ (0, 1), we have

∥ΓX − Γn∥ = op(n(δ−1)/2),

which implies

1
nnU

{
vτ
(
QτÃÃτQ

)
v − vτ (QτAAτQ)v

}
= op(n(δ−1)/2|∆|∥v∥2). (4.13)
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Then we can conclude that
(

1
nnU

vτQτAAτQv + λvGv
)

is non-singular except on an event

whose probability goes to 0 as n → ∞.

Lemma 2. For a given set [a, b] ⊂ (0, 1), there exist constants c1 and c2 such that

sup
u∈[a,b]

max
i=1...n

|⟨B(t, u)τ (QτAX(u)AX(u)τQ+ λG)−1/2 θ, Xi⟩| ≤ λ−1/2∥θ∥.

Proof. For any u ∈ [a, b], we have

|⟨B(t, u)τ
{

(nnU )−1QτAAτQ+ λG
}−1/2

θ, Xi⟩|2

≤⟨B(t, u)τ , Xi⟩
{

(nnU )−1QτAAτQ+ λG
}−1

⟨B(t, u), Xi⟩∥θ∥2

≤λ−1∥θ∥2,

which achieves the proof of Lemma 2.

Under the assumptions of Theorem 1 and according to [15, 46], there exists η∗ = (η∗
0, . . . ,η

∗
p)

and θ∗ such that

sup
u

|αk(u) − α∗
k(u)| = O(n−ν

b ),

and

sup
t,u

|β(t, u) − β∗(t, u)| = O(|∆|d+1),

where d is the degree of Bernstein polynomials, α∗
k(u) = b(u)τη∗

k, and β∗(t, u) = B(t, u)τQθ∗.

Let ΣZ be the covariance matrix of Zi and

Cη = 1
nU

∑
u∈U

D(u)τ ΣZD(u).

We further define

fi,u(d) =ρu

(
Yi −Zτ

i D(u)
(
C−1/2

η dα + η∗
)

−Ai(u)τ
(
C

−1/2
λ dθ + θ∗

))
,

+ λ
(
C

−1/2
λ dθ + θ∗

)τ
G
(
C

−1/2
λ dθ + θ∗

)
=ρu

(
ϵu,i −Zτ

i D(u)C−1/2
η dα −Ai(u)τC

−1/2
λ dθ −Ru,i

)
+ λ

(
C

−1/2
λ dθ + θ∗

)τ
G
(
C

−1/2
λ dθ + θ∗

)
,

where d = (dτ
α,d

τ
θ)τ , ϵu,i = Yi −Zτ

i α(u) −
∫
β(t, u)Xi(t)dt, and Ru,i = Zτ

i (α∗(u) −α(u)) +
⟨β∗(t, u) − β(t, u), Xi⟩.

Lemma 3. Let Tn denote the set of random variables {Z1, . . . ,Zn, X1(t), . . . , Xn(t)}. For any

ϵ > 0, there exists L such that

lim
n→∞

P

{
sup

∥d∥2=1

∑
u

∑
i

fi,u(Lδnd) − fi,u(0) −E [fi,u(Lδnd) − fi,u(0)] > ϵδ2
nnnU |Tn

}
= 0,
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where δn =
√

1/(nλ|∆|2) + λ

Proof.

sup
∥d∥2≤1

∑
u

∑
i

fi,u(Lδnd) − fi,u(0) −E [fi,u(Lδnd) − fi,u(0)|Tn]

=1
2 sup

∥d∥2=1

∑
u

∑
i

∣∣∣ϵu,i − Lδn

(
Zτ

i D(u)C−1/2
η dα +Ai(u)τC

−1/2
λ dθ

)
−Ru,i

∣∣∣
− |ϵu,i −Ru,i|

−E

( ∣∣∣ϵu,i − Lδn

(
Zτ

i D(u)C−1/2
η dα −Ai(u)τC

−1/2
λ dθ

)
−Ru,i

∣∣∣
− |ϵu,i −Ru,i| |Tn

)
:=1

2 sup
∥d∥2≤1

∑
u

∑
i

Ju,i(d) −E(Ju,i(d)|Tn).

The set D = {d ∈ R
(p+1)nb+nθ : ∥d∥ ≤ 1} is compact and therefore, it can be covered by finite

number of open balls. More specifically, for some r > 0, D = ∪Kn
k=1Dk with diam(Dk) = r, and

Kn = r−(p+1)nb−nθ . For 1 ≤ k ≤ Kn, we use ωk = (ωk,α,ωk,θ) to denote the element belongs

to Dk, where ωk,η denotes the entries of ωk corresponding to η and ωk,θ denote the entries of ωk

corresponding to θ. The minimum eigenvalue of Cη is bounded by constant when the covariace

matrix ΣZ is not singular, and a lower bound for the minimum eigenvalue ofCλ is given by Lemma

2. Then we have

min
k=1,...,Kn

∑
u

∑
i

|[Ju,i(d) −E(Ju,i(d)|Tn)] − [Ju,i(ωk) −E(Ju,i(ωk)|Tn)]|

≤2Lδn min
k=1,...,Kn

∑
u

∑
i

|Zτ
i D(u)C−1/2

η {dα − ωk,α}

+Ai(u)τC
−1/2
λ {dθ − ωk,θ} |

≤C6nnULδnλ
−1/2 min

k=1,...,Kn

∥d−wk∥

≤C6nnULδnλ
−1/2r.

On the other hand, by Lemma 2, we get

sup
d∈D

|Ju,i(d)| ≤ C6Lδnλ
−1/2.
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In addition,

∑
u

∑
i

Var (Ju,i(d)|Tn) ≤
∑

u

∑
i

Lδ2
n

(
Zτ

i D(u)C−1/2
η dα −Ai(u)τC

−1/2
λ dθ

)2

= nnUL
2δ2

n∥d∥2 − nnUL
2δ2

nλd
τ
θC

−1/2
λ GC

−1/2
λ dθ

≤ nnUL
2δ2

n.

Then,

P

[
sup

∥d∥2≤1

∑
u

∑
i

Ju,i(d) −E(Ju,i(d)|Tn) ≥ tϵ

]

= P

[
∃ k0 s.t. d ∈ Dk0 and

∑
u

∑
i

Ju,i(d) −E(Ju,i(d)|Tn) ≥ tϵ

]

≤ P

[
max

k=1,...,Kn

∑
u

∑
i

Ju,i(ωk) −E(Ju,i(ωk)|Tn) ≥ tϵ − 2C6nnULδnλ
−1/2r

]

≤ KnP

[∑
u

∑
i

Ju,i(ωk) −E(Ju,i(ωk)|Tn) ≥ tϵ − 2C6nnULδnλ
−1/2r

]
.

By Bernstein inequality,

P

[∑
u

∑
i

Ju,i(wk) −E(Ju,i(wk)|Tn) ≥ t′ϵ

]
≤ exp

{
− t′ϵ

2/2
nnUL2δ2

n + C6Lδnλ−1/2t′ϵ/3

}
,

where t′ϵ = tϵ − 2C6nnULδnλ
−1/2r.

Recall that Kn = r−(p+1)nb−nθ , and nθ ∼ |∆|−2. Then under the condition nb = O(nθ), we

have

P

[
sup

∥d∥2≤1

∑
u

∑
i

Ju,i(d) −E(Ju,i(d)|Tn) ≥ tϵ

]

≤ r−(p+1)nb−nθ exp
{

− t′ϵ
2/2

nnUL2δ2
n + C6Lδnλ−1/2t′ϵ/3

}

= exp
{
C7|∆|−2 log

(
r−1

)
− t′ϵ

2/2
nnUL2δ2

n + C6Lδnλ−1/2t′ϵ/3

}
.

Let r = C−1
6 n−1/2n

−1/2
U |∆|−3, L = ϵδ2

n

4C6δnλ−1/2r
, and tϵ = ϵnnUδ

2
n. Then as n → ∞,

P

[
sup

∥d∥2≤1

∑
u

∑
i

Ju,i(d) −E(Ju,i(d)|Tn) ≥ ϵnnUδ
2
n

]
→ 0
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Lemma 4. ∀ϵ > 0, there exists L such that when n is large enough,

P

{
inf

∥d∥2=1

∑
u

∑
i

E [fi,u(Lδnd) − fi,u(0)] > nnUδ
2
n|Tn

}
> 1 − ϵ.

Proof. The proof follows from a small modification of Lemma 5 in [6].

Lemma 5. Suppose

1
nnU

∑
u∈U

n∑
i=1

⟨β̂(t, u) − β(t, u)∗, Xi⟩2 + λ∥β̂(t, u)(m) − β(t, u)∗(m)∥2
2 = Op(an),

with an → 0 when n → ∞. Under assumptions

∥X∥ ≤ C0 < +∞ a.s.

and the eigenvalues of ΓX are strictly positive, then

∥β̂(t, u) − β(t, u)∗∥2
ΓX ,2 = Op(an).

Proof. The proof follows from a small modification of Lemma 2 in [6].

Let (η̂, θ̂) be the minimizer of (4.7), and define

β̂(t, u) = B(t, u)τQθ̂

Then, under the assumption that Zi and Xi(t) are independent, we have

P

{ 1
nnU

(η̂ − η∗)τ D(u)τZZτD(u) (η̂ − η∗)

+ 1
nnU

∑
u∈U

n∑
i=1

⟨β̂(t, u) − β∗(t, u), Xi(t)⟩ + λ
(
θ̂ − θ∗

)τ
G
(
θ̂ − θ∗

)
≥ L2δ2

n

}

= P

{ 1
nU

∑
u∈U

(η̂ − η∗)τ D(u)τ ΣZD(u) (η̂ − η∗)

+ 1
nnU

∑
u∈U

n∑
i=1

⟨β̂(t, u) − β∗(t, u), Xi(t)⟩2 + λ
(
θ̂ − θ∗

)τ
G
(
θ̂ − θ∗

)
≥ L2δ2

n

}
= P

{
(η̂ − η∗)τ Cη (η̂ − η∗) +

(
θ̂ − θ∗

)τ
Cλ

(
θ̂ − θ∗

)
≥ L2δ2

n

}
≥ P

{
inf

∥d∥≥Lδn

∑
u∈U

n∑
i=1

fi,u(d) >
∑
u∈U

n∑
i=1

fi,u(C1/2ξ̂ −C1/2ξ∗)
}

(4.14)

where C =
(
Cη 0
0 Cλ

)
, ξ̂ =

(
η̂τ , θ̂

τ
)τ

, and ξ∗ = (η∗τ ,θ∗τ )τ .
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By Lemma 3 and Lemma 4, for any positive ϵ, there exists L such that

P

{
inf

∥d∥=1

∑
u∈U

n∑
i=1

fi,u(Lδnd) −
∑
u∈U

n∑
i=1

fi,u(0) > nnUδ
2
n

}
> 1 − ϵ. (4.15)

Since fi,u(·) is a strictly convex function, then (4.15) implies

P

{
inf

∥d∥≥1

∑
u∈U

n∑
i=1

fi,u(Lδnd) −
∑
u∈U

n∑
i=1

fi,u(0) > nnUδ
2
n

}
> 1 − ϵ. (4.16)

On the other hand, by definition of fi,u(·) and ξ̂,

∑
u∈U

n∑
i=1

fi,u(d)

is minimized at the point d = C1/2ξ̂ −C1/2ξ∗, therefore,

∑
u∈U

n∑
i=1

fi,u(0) ≥
∑
u∈U

n∑
i=1

fi,u(C1/2ξ̂ −C1/2ξ∗). (4.17)

By (4.15), (4.16) and (4.17), we can conclude that for any ϵ > 0, there exists L such that

(4.14) > 1 − ϵ.

In other words,

1
nnU

∑
u∈U

n∑
i=1

⟨β̂(t, u) − β∗(t, u), Xi(t)⟩2 + λ
(
θ̂ − θ∗

)τ
G
(
θ̂ − θ∗

)
= Op(δn).

Then by Lemma 5, we conclude that

∥β̂(t, u) − β(t, u)∗∥2
ΓX ,2 = Op(δn).

In addition,

sup
t,u

|β(t, u) − β∗(t, u)| = O(|∆|d+1).

Then we achieve the proof of Theorem 1.
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Chapter 5

A Semi-Parametric Functional
Generalized Linear Model with Density
Ratio Structure

5.1. Introduction

Soybean holds significant global importance due to its vital role in meeting food, feed, and fuel

demands. A significant portion, approximately 77%, of global soy production is used for livestock

feed to support meat and dairy production. The remaining soy is utilized for various purposes, in-

cluding fuel, industrial applications, and vegetable oils. A smaller proportion, around 7%, is directly

consumed by humans in the form of tofu and soy milk.

The germination and growth of soybeans are heavily reliant on environmental resources, partic-

ularly temperature and water availability. As a result, these environmental factors have a substantial

impact on soybean yield at the end of the growing season. In order to study the relationship be-

tween soybean yield and its environmental determinants, we have collected data on soybean yield

along with two related environmental variables, daily temperature and machinery levels on farms in

Kansas state over a period spanning from 1991 to 2006.

By analyzing this data set, we aim to gain insights into the factors influencing soybean yield and

how the temperature and water resources, play a crucial role in determining the crop’s final yield.

This study could provide valuable information for farmers, policymakers, and researchers seeking

to optimize soybean production and address food security and sustainability challenges.

To understand how these environmental factors influence soybean yield, we propose a novel

semi-parametric functional generalized linear model (FGLM) to model the relationship between the

county-level soybean yield, considered as a continuous response variable, and the scalar predictor,

machinery level, along with the functional predictor, daily temperature, across multiple years. This

model allows for a flexible and interpretable representation of the relationship between the response

and predictors. By considering the response as a continuous variable, we can effectively capture the

variability in soybean yield across different counties and years.
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The Functional Generalized Linear Model (FGLM) [69, 38] is an extension of the Generalized

Linear Model (GLM) [58] that directly models the relationship between a single scalar response

variable, which follows any member of the exponential family of distributions, and a functional

predictor. For a random variable Y with density

p(y; η, ϕ) = exp
{
yη − b(η)
a(ϕ) + c(y, ϕ)

}
,

the FGLM models the relationship between a functional predictor X(t) and response Y as

h(µ) = β0 +
∫

T
X(t)β(t)dt, (5.1)

where µ = E(Y |η, ϕ) = b′(η) and h(·) is a link function. Depending on the distribution of Y ,

different link functions are used in the FGLM. For instance, when Y follows a Gaussian distribution,

the identity function is commonly used as the link function. On the other hand, if Y is binary, the

logit function is typically used as the link function.

Model (5.1) is indeed a valuable tool in environmental science applications, particularly when

dealing with functional observations such as daily temperature and humidity commonly seen in

agriculture and forestry studies. However, it is important to note certain challenges and limitations

that arise when using this model in real-world scenarios.

One significant concern of the model (5.1) is the need to specify the functions a(ϕ), b(η), and

c(y, ϕ) in a way that exp{c(y, ϕ)} represents a valid density function of some underlying distri-

bution. When the underlying distribution is misspecified, it can lead to difficulties in accurately

estimating the functional coefficients β(t) in model (5.1). This could potentially impact the reliabil-

ity and interpretability of the results obtained from the model.

Furthermore, agricultural data sets often comprise samples gathered over various years or from

diverse locations. These samples might be considered to stem from distinct populations due to differ-

ences in environmental conditions and management practices. In such scenarios, directly applying

model (5.1) to each sample separately may not be the most efficient approach, especially when the

number of observations in each sample is limited. This limitation is particularly relevant in the spe-

cific context of this project, where the soybean yield data might have a relatively small number of

observations in each population. For example, the data collected for the target application includes

only a restricted number of environmental predictors, such as temperature and machinery level,

while other crucial factors like humidity and sunshine are not accounted for, which suggests that

the observations from different years in Kansas should be treated as originating from different pop-

ulations, given the distinct and potentially significant variations in climate conditions over time. In

addition, the data set provides only a relatively small sample size for most years between 1991 and

2006, with only 20 to 40 annual measurements available for most of the years. Such small sample

sizes can pose challenges when attempting to fit a model accurately, particularly for semi-parametric

models.
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To address these issues and effectively utilize the available data, we propose a novel semi-

parametric functional generalized linear with unspecified baseline distributions connected through

a density ratio structure [1]. Let Z be a vector of scalar predictors and X(t) be a functional predic-

tor. Specifically, to overcome the potential model misspecification limitation of (5.1), we propose

employing a semi-parametric functional generalized linear model for each individual year’s data,

f(y|z, x(t)) = exp {(zτγ + ⟨x, β⟩) y} g(y)∫
exp {(zτγ + ⟨x, β⟩) y} g(y)dy , (5.2)

where the g(y) is a density function of some unknown baseline distribution G(y), and f(y|z, x(t))
denotes the condition density function of Y given Z = z and X(t) = x(t). In model (5.2), the

vector γ, the function β(t) and the density g(y) are all unknown parameters, and we use ⟨x, β⟩ to

denote the inner product of x(t) and β(t), i.e. ⟨x, β⟩ =
∫ T

0 β(t)x(t)dt. The proposed model (5.2) is

robust again model misspecification compared with the conventional FGLM (5.1).

In order to address the remaining limited sample size issue, we further propose incorporating

the concept of a density ratio model (DRM) [1] into the framework (5.2). Suppose we have m + 1
populations with distribution functionsGr(y) and density functions gr(y), y = 0, . . . ,m. The DRM

models the ratios of density functions gr(y) through the following framework,

gr(y)
g0(y) = exp{αr + θτ

rq(y)}, (5.3)

where q(y) is a vector of basis functions corresponding to the distribution family of gr(y), and αr

are normalizing constants. The flexibility of the DRM is a key advantage, making it a valuable tool

for modeling a wide variety of data distributions. For example, selecting q(y) = (y, y2) allows the

DRM to cover Normal distribution families, while q(y) = (y, log(y)) covers Gamma distribution

families. In practice, researchers can use a long vector q(y) to cover a wide range of distribution

families and employ model selection criterion such as AIC or BIC to decide the best model. A

detailed discussions on using the density ratio structure to link multiple populations can be found

in [1, 65, 10, 90]. By incorporating the density ratio structure in the model (5.4), we can account

for the variations in the underlying baseline distributions of soybean yield across different years. In

addition, this approach allows us for simultaneous estimation of parameters associated with different

populations using the pooled data, effectively leveraging information from all samples.

By combining the framework (5.2) and (5.3), in this project we focus on the following semi-

parametric functional generalized linear model,

fk(y|z, x(t)) = exp {(zτγk + ⟨x, βk⟩) y} gk(y)∫
exp {(zτγk + ⟨x, βk⟩) y} gk(y)dy , k = 0, . . . ,m (5.4)

gr(y)
g0(y) = exp{αr + θτ

rq(y)}, r = 1, . . . ,m
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where fk(y|z, x(t)) is the conditional density of Y and gk(y) is the density of some unknown

baseline distribution Gk(y) for a specific year k. The unknown densities (g0(y), . . . , gm(y)) are

linked through the DRM structure. The proposed framework (5.4) is advantageous compared with

the conventional FGLM (5.1) in two aspects. It uses unspecified baseline distributions, which is

robust against model misspecification, and it allows for simultaneous estimation of parameters as-

sociated with different populations using the pooled data, effectively leveraging information from

all samples.

When dealing with data from only one population, model (5.2) can be regarded as an extension

of the proportional likelihood ratio model (PLRM) proposed in prior literature [52],

f(y|x) = exp {zτβy} g(y)∫
exp {zτβy} g(y)dy . (5.5)

Model (5.5) is a commonly used approach to assess nonlinear monotone relationships between

a scalar response and finite-dimensional predictors. This model has connections with several other

well-known statistical models and methods, making it a versatile and powerful tool for modeling

complex relationships in various fields. The connections between the model (5.5) with GLM [58],

density ratio models [65], biased sampling models [26], single-index models [37] and exponential

tilt regression models [70] are extensively discussed in [52].

In addition to these connections, the model (5.5) offers several advantages over other modeling

techniques such as generalized estimating equations, generalized additive models, and fully non-

parametric models [52]. It provides a parsimonious and interpretable way to capture nonlinear rela-

tionships between the outcome variable and covariates, making it suitable for practical applications,

and it has been also extended and adapted to various domains, such as engineering, biomedical re-

search, and survival analysis [53, 33, 34, 61]. These extensions and new models based on the model

(5.5) have demonstrated their utility and efficacy in analyzing diverse types of data.

Overall, the model (5.5) stands as a powerful and flexible tool for modeling nonlinear relation-

ships in a wide range of applications, making it an essential method in statistical modeling and data

analysis.

5.2. Estimation

5.2.1 Empirical likelihood based on the proposed model

Suppose the baseline population distribution functions, Gk(y), of m+ 1 samples with sample sizes

nk satisfy
gk(y)
g0(y) = exp{αk + θkq(y)} k = 1, . . . ,m, (5.6)

where gk(y) denotes the density function of Gk(y). For notational simplicity, we set α0 = 0 and

θ0 = 0. Assume i.i.d. data {zk,i, xk,i(t), yk,i}, k = 0, . . . ,m; i = 1, . . . , nk from distributions that
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satisfy the model,

fk(y|z, x(t)) = exp {(zτγk + ⟨x, βk⟩) y} gk(y)∫
exp {(zτγk + ⟨x, βk⟩) y} gk(y)dy , k = 0, . . . ,m. (5.7)

In this project, we use maximum empirical likelihood (EL) method to fit the model (5.7). Empir-

ical likelihood under DRM and PLRM can be found be in [25, 65, 52]. For convenience, we first

introduce some notations. Define

A(z, x(t);γ, β(t), G(y)) =
∫

exp {(zτγ + ⟨x, β⟩) y} dG(y).

The contribution to the likelihood function of one observation from population k, (zk,i, xk,i(t), yk,i)
is given by

lik(γk, βk, Gk) = exp
{(
zτ

k,iγk + ⟨xk,i, βk⟩
)
yk,i

}
∆Gk(yk,i)/A(zk,i, xk,i(t);γk, βk(t), Gk),

where ∆Gk(y) = Gk(y+) −Gk(y−). Then the log-likelihood for (γk, βk, Gk) is

nk∑
i=1

{
zτ

k,iγk + ⟨xk,i, βk⟩
}
yk,i +

nk∑
i=1

log ∆Gk(yk,i) −
nk∑
i=1

logA(zk,i, xk,i(t);γk, βk(t), Gk).

Under the DRM assumption on the baseline distributions Gk(y), the log-likelihood function of

(γk, βk, Gk) can also be viewed as a function of (γk, βk, αk,θk, G0). Then the log-likelihood func-

tion of (γk, βk, αk,θk, G0) can be written as

ln(γk, βk, αk,θk, G0) =
nk∑
i=1

{
zτ

k,iγk + ⟨xk,i, βk⟩
}
yk,i +

nk∑
i=1

log ∆G0(yk,i)

+
nk∑
i=1

αk + q(y)τθk −
nk∑
i=1

logA(zk,i, xk,i(t);γk, βk, Gk). (5.8)

From the empirical likelihood point of view, the distributions Gk(y) can be treated as discrete dis-

tributions. Let pk,i denote the mass that the distribution function G0(y) assigns at yk,i. Then the

log-likelihood function (5.8) can be further written as

ln(γk, βk, αk,θk, G0) =
nk∑
i=1

{
zτ

k,iγk + ⟨xk,i(t), βk(t)⟩
}
yk,i +

nk∑
i=1

log pk,i

+
nk∑
i=1

αk + q(yk,i)τθk

−
nk∑
i=1

log

 m∑
r=0

nr∑
j=1

pr,jexp
{(
zτ

k,iγk + ⟨xk,i(t), βk(t)⟩
)
yr,j + αk + q(yr,j)τθk

} ,
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under the constraints

m∑
k=0

nk∑
i=1

pk,i = 1,

m∑
k=0

nk∑
i=1

{αr + q(yk,i)τθr}pk,i = 1, r = 1, . . . ,m,

pk,i > 0, k = 0, . . . ,m, i = 1, . . . , nk.

Let γ = (γτ
0 , . . . ,γ

τ
m)τ , β = (β0(t), . . . , βm(t))τ , α = (α1, . . . , αm)τ , θ = (θτ

1 , . . . ,θ
τ
m)τ , and

p = {pk,i}τ
k=0,...,m;i=1,...,nk

. Then the log-likelihood function of (γ,β,α,θ,p) is given by

ln(γ,β,α,θ,p) =
m∑

k=0

nk∑
i=1

{(
zτ

k,iγk + ⟨xk,i(t), βk(t)⟩
)
yk,i

}
+

m∑
k=0

nk∑
i=1

log pk,i +
m∑

k=0

nk∑
i=1

αk + q(yk,i)τθk

−
m∑

k=0

nk∑
i=1

log

 m∑
r=0

nr∑
j=1

pr,jexp
{(
zτ

k,iγk + ⟨xk,i(t), βk(t)⟩
)
yr,j + αk + q(yr,j)τθk

} ,
(5.9)

s.t.

m∑
k=0

nk∑
i=1

pk,i = 1,

m∑
k=0

nk∑
i=1

{αr + q(yk,i)τθr}pk,i = 1, r = 1, . . . ,m,

pk,i > 0, k = 0, . . . ,m, i = 1, . . . , nk.

To estimate the parameters (γ,β,α,θ,p), a direct maximization of the log-likelihood function

(5.9) is challenging due to the infinite-dimensional nature of the unknown functionsβ, which belong

to an infinite-dimensional function space. To address this issue, a common approach is to find finite-

dimensional approximations for the unknown functions β. This involves approximating the target

functions by a set of basis functions with finite-dimensional coefficients. This way, we estimate the

coefficients of the approximation rather than the target functions directly, making the optimization

more tractable. In this project, we propose to use B-spline basis functions as the approximation for

the unknown functions in β(t). B-splines provide a flexible and finite dimensional representation

for approximating smooth functions. By employing B-spline basis functions, we can effectively

reduce the dimensionality of the problem and estimate the finite-dimensional coefficients instead of

the original infinite-dimensional functions.

In the next sub-section, we will introduce penalized B-spline estimators for βk(t), which will en-

able us to estimate the coefficients of the B-spline approximations, and, consequently, the unknown

functions β(t).
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5.2.2 Penalized B-spline estimator for βk(t)

For non-parametric estimation problems, the function to be estimated is usually assumed to be suf-

ficiently smooth, enabling its expansion in a basis representation. B-spline is a popular and effective

choice for such approximation tasks. For model (5.7), we employ B-splines to expand all m + 1
unknown functions β0(t), . . . , βm(t):

βk(t) ≈
nb∑

j=1
ck,jbj(t) = b(t)τck, k = 0, . . . ,m (5.10)

where b(t) = (b1, . . . bnb
(t))τ are B-spline basis functions and ck = (ck,1, . . . , ck,nb

) are unknown

coefficients. With the approximation (5.10), the inner product between βk(t) and xk,i(t) can be

approximately expressed as

∫
βk(t)xk,i(t)dt ≈

nb∑
j=1

ck,j

∫
bj(t)xk,i(t)dt := uτ

k,ick,

where uk,i = (
∫
b1(t)xk,i(t)dt, . . . ,

∫
bnb

(t)xk,i(t)dt)τ . Then the log-likelihood function defined

in (5.9) can be approximately rewritten as:

ln(γ, c,α,θ,p) =
m∑

k=0

nk∑
i=1

{
zτ

k,iγk + uτ
k,ick

}
yk,i +

m∑
k=0

nk∑
i=1

log pk,i +
m∑

k=1

nk∑
i=1
q(yk,i)τθk

−
m∑

k=0

nk∑
i=1

log

 m∑
r=0

nr∑
j=1

pr,jexp
{(
zτ

k,iγk + uτ
k,ick

)
yr,j + q(yr,j)τθk

} ,
(5.11)

s.t.

m∑
k=0

nk∑
i=1

pk,i = 1,

m∑
k=0

nk∑
i=1

{αr + q(yk,i)τθr}pk,i = 1, r = 1, . . . ,m,

pk,i > 0, k = 0, . . . ,m, i = 1, . . . , nk.

In order to obtain a good approximation for an unknown function using B-splines, the number of

basis functions, denoted as nb, is often chosen to be large, typically depending on the sample size n.

However, a large value for nb can lead to an ill-conditioned design matrix derived from the B-spline

approximation, causing numerical stability issues. To address this problem, one effective solution is

to introduce penalty terms on the coefficients ck. This penalty term acts as a regularization mech-

anism, controlling the smoothness of the estimated functions and mitigating the ill-conditioning

problem caused by a large number of basis functions.
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In the context of Functional Data Analysis (FDA), a widely used choice for the penalty is the

roughness penalty [69],

Pen {b(t)τck} = ∥ {b(t)τck}(2) ∥2
2 := cτ

kQkck,

where Qk is a symmetric and positive semi-definite matrix. This roughness penalty seeks to pe-

nalize the deviation of the estimated function from being too wiggly or oscillatory, encouraging

the estimation to favor smoother functions. By incorporating roughness penalties on the coefficient

vectors ck, the estimation process achieves more stable and reliable results, improving the numeri-

cal stability of the model while ensuring a well-behaved approximation for the unknown functions

using B-splines.

Then we proposed to estimate the parameters by minimizing the following penalized minimiza-

tion criterion with respect to (γ, c,α,θ,p),

min − ln(γ, c,α,θ,p) +
m∑

k=0
λkc

τ
kQkck, (5.12)

s.t.

m∑
k=0

nk∑
i=1

pk,i = 1,

m∑
k=0

nk∑
i=1

{αr + q(yk,i)τθr}pk,i = 1, r = 1, . . . ,m,

pk,i > 0, k = 0, . . . ,m, i = 1, . . . , nk,

where λk are tuning parameters. By minimizing this penalized criterion, we get a balance between

fitting the model well and achieving smooth and stable estimates of the unknown functions.

5.2.3 Parameter tuning strategy for λk

The proposed approach involves using cross-validation for parameter tuning in model (5.12). We

define the index sets for training and test data from population k as Ik and I∗
k , respectively. Define

Sk = {(zk,i, xk,i(t), yk,i) : i ∈ Ik}, k = 0, . . . ,m,

and

S∗
k = {(zk,i, xk,i(t), yk,i) : i ∈ I∗

k}, k = 0, . . . ,m.

To maintain the ratio of sample sizes from different populations in the cross validation procedure,

we ensure that
|Ik|
|I0|

= nk

n0
, k = 1, . . . ,m,

when constructing the training sets Sk.
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For each validation run, we fit model (5.12) using the training set ∪m
k=0Sk to obtain the parameter

estimates (γ̂, ĉ, α̂, θ̂, p̂). Then, we compute the negative log-likelihood of the test sets ∪m
k=0S

∗
k as

the validation loss. We use this validation loss to tune the parameters λk, k = 1, . . . ,m, using a 10-

fold cross-validation procedure. The procedure involves iterating through different combinations of

λk, k = 1, . . . ,m, and selecting the one that results in the smallest validation loss.

To calculate the log-likelihood of S∗
k , we need to compute pk,i = PĜk(y)(Y = yk,i) for

(k, i) ∈ I∗
k based on Ĝk(y) estimated from ∪m

k=0Sk. Since for any yk,i ∈ S∗
k , yk,i ̸∈ ∪m

k=0Sk

then p̂k,i = PĜk(y)(Y = yk,i) = 0, which is not reasonable. To address the issue of calculating the

log-likelihood for S∗
k , where yk,i ∈ S∗

k and yk,i /∈ ∪m
k=0Sk, we propose the following procedure to

approximate pk,i for (k, i) ∈ I∗
k .

The main concept is to first derive a continuous density estimation for gk(y) based on Ĝk(y), the

estimated distribution function. This continuous density approximation can be obtained using kernel

density estimation or any suitable non-parametric density estimation technique. In this project, we

choose to use the kernel density estimation approach. Define a kernel smoothed EL estimator for

the density function gk(y) of Gk(y) as

ĝksel
k (y) = 1

h

m∑
r=0

∑
i∈Ir

p̂r,iexp
{
α̂k + q(yr,i)τ θ̂k

}
K

(
y − yk,i

h

)
, (5.13)

where K(·) is a kernel function and h is the bandwidth.

Next, we use a weighted average of the probability mass of observations around the target data

point yk,i to approximate pk,i. This means that for each yk,i ∈ S∗
k , we calculate a weighted average

of probabilities assigned to nearby data points in ∪m
k=0Sk based on the derived density estimation.

Specifically, For any yk,i ∈ S∗
k , we define a neighbourhood for yk,i as

Nη(yk,i) := {yr,j : |yr,j − yk,i| ≤ η, (r, j) ∈ Sr, r = 0, . . . ,m}.

Then we estimate pk,i for yk,i ∈ S∗
k by

p̃k,i = 1
|Nη(yk,i)|

∑
yr,j∈Nη(yk,i)

ĝksel
k (yk,i)
ĝksel

k (yr,j)
p̂r,jexp

{
α̂k + q(yr,j)θ̂k

}
, k = 0, . . . ,m. (5.14)

By employing this approach, we can reasonably approximate pk,i for (k, i) ∈ I∗
k and calculate

the log-likelihood of the test set S∗
k . This procedure ensures that we consider the information avail-

able in the training set while evaluating the likelihood of the testing set, even for data points that are

not directly observed in the training set. Overall, this method provides a sound and reliable way to

compute the log-likelihood and assess the model’s performance during the cross-validation process.

We suggest using a 10-fold cross-validation process to tune the parameters (λ0, . . . , λm) for the

model. Here are the steps involved:
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1. Split the data into 10 subsets for the cross-validation process. Each subset serves as the

testing set once while the remaining nine subsets are used as the training set.

2. Given the set of parameters (λ0, . . . , λm), estimate the model parameters (γ, c,α,θ,p)
using the maximum empirical likelihood method on the training set ∪m

k=0Sk. The estimators

are denoted as (γ̂, ĉ, α̂, θ̂, p̂).

3. Use formulas (5.13) and (5.14) to calculate p̃k,i for each observation yk,i in the testing set

S∗
k based on the estimated distribution function Ĝk(y). Compute the negative log-likelihood

of the test set ∪m
k=0S

∗
k as the validation loss.

4. Repeat the above steps 10 times for each combination of tuning parameters (λ0, . . . , λm).

5. Find the combination of (λ0, . . . , λm) that results in the smallest validation loss. This com-

bination of parameters is considered optimal and will be used for the final model estimation.

By using the 10-fold cross-validation, we can tune the regularization parameters (λ0, . . . , λm) and

identify the combination that leads to the best model performance, helping us achieve a well-

calibrated model for the data.

5.3. Simulation Studies

5.3.1 Data Generating Models

Scenario I. In the first scenario, the data sets are generated from the following model:

Yk,i =
∫

[0,1]
ρk(t)Xk,i(t)dt+ ϵk,i, k = 0, 1, (5.15)

where Xk,i(t) is generated from a Wiener process, ϵk,i ∼ N(0, σ2
k) with σ0 = 0.1 and σ1 = 0.09,

and

ρ0(t) = 10(t− 0.5)2, ρ1(t) = 8(t− 0.4)2.

Scenario II. In the second scenario, the data sets are generated from the following model:

Yk,i = νk,1Z1,k,i + νk,2Z2,k,i +
∫

[0,1]
ρk(t)Xk,i(t)dt+ ϵk,i, k = 0, 1, 2 (5.16)

where Xk,i(t) is generated from a Wiener process; for k = 0, 1, 2, Z1,k,i ∼ Unif(−0.5, 0.5),

Z2,k,i ∼ Unif(−0.5, 0.5), ϵk,i ∼ N(µk, σ
2
k) with (µ0, µ1, µ2) = (0, 0, 0.05) and (σ0, σ1, σ2) =

(0.1, 0.1, 0.2); and

ν0 = (0.2, 0.4)τ , ν1 = (0.4, 0.2)τ , ν2 = (0.2, 0.4)τ ;

ρk(t) = 10(t− 0.5)2, k = 0, 1, 2.

126



Scenario III. In the third scenario, the data sets are generated from the following model:

Yk,i|Zk,i, Xk,i(t) ∼ TN(µk,i, σk), µk,i = ντ
kZk,i +

∫ 1

0
ρk(t)Xk,i(t)dt k = 0, 1, 2 (5.17)

where TN(µk,i, σk) denotes a truncated Normal r.v. over [0,∞) with (σ0, σ1, σ2) = (0.1, 0.1, 0.15);

Xk,i(t) is generated from a Wiener process; Z1,k,i ∼ Unif(−0.5, 0.5), Z2,k,i ∼ Unif(−0.5, 0.5);

ν0 = (0.2, 0.4)τ , ν1 = (0.4, 0.2)τ , ν2 = (0.1, 0.1)τ ,

ρk(t) = 10(t− 0.5)2, k = 0, 1, 2.

5.3.2 Simulation Results

Data generating model (5.15) indicates that the conditional density of Yk,i is also Normal. Then

model (5.15) can also be formulated in the format as we proposed in (5.4) with

β0(t) = ρ0(t)/σ2
0, β1(t) = ρ1(t)/σ2

1.

We perform simulations using model (5.15) under two different settings: (n0, n1) = (100, 200)
and (n0, n1) = (200, 200). Each setting is repeated 100 times to ensure reliable results. As the

L2-norms of the true functions β0(t) and β1(t) are relatively large, we adopt the relative integrated

squared error (RISE) to assess the performance of the proposed penalized B-spline estimators. RISE

is defined as follows:

RISE := ∥β̂k(t) − βk(t)∥2
L2

∥βk(t)∥2
L2

.

Under the proposed method, we utilize the true basis function q(y) = (y, y2) for the DRM frame-

work. In the cross-validation procedure for tuning parameters, we employ the Epanechnikov kernel,

K(u) = 3
4(1 − u2)1{|u| ≤ 1},

for the kernel smoothed EL density estimator, represented as f̂ksel
k (y).

The simulation results for Scenario I are presented in Table (5.1). We compare two methods:

EL, which employs the maximum empirical likelihood method to fit model (5.2) using only one

sample (k = 0 or k = 1), and DRM-EL, the proposed method that incorporates data from multiple

populations through model (5.4). EL method can be considered as a special case of the proposed

method with a single population (m = 1), where there is no density ratio structure. On the other

hand, DRM-EL leverages the pooled samples from both k = 0 and k = 1 for model fitting.

From the estimation errors in Table (5.1), we observe the clear advantage of using combined

samples for model fitting in DRM-EL. The efficiency of the estimations improves with a larger

sample size, thanks to the density ratio structure employed in model (5.4). By considering multiple

populations, the proposed method harnesses more information from the pooled samples, leading to
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more accurate results compared to EL method, especially when the sample size is increased. This

demonstrates the effectiveness of the DRM approach in enhancing estimation efficiency and making

better use of available data.

Figure (5.1) presents the averaged estimations for β0(t) and β1(t) over 100 repetitions using EL

and DRM-EL respectively under the setting (n0, n1) = (200, 200). We can observe that the bias

of the estimations obtained from DRM-EL is smaller than that obtained from EL, which provides

another illustration for the strength of using the density ratio structure to pool information across

samples.

Methods (n0, n1) RISE(β̂0) RISE(β̂1) SE(θ̂1,1) Bias(θ̂1,1) SE(θ̂1,2) Bias(θ̂1,2)
EL (100, 200) 0.263 0.129

DRM-EL (100, 200) 0.224 0.104 1.447 0.035 11.915 2.068
EL (200, 200) 0.101 0.129

DRM-EL (200, 200) 0.059 0.054 1.171 0.034 9.058 -1.513

Table 5.1: Simulation results based on Scenario I for the two proposed methods: EL and DRM-EL.
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Figure 5.1: Averaged β̂0(t) and β̂1(t) (red solid line) obtained from two proposed methods: EL and
DRM-EL based on 100 repetitions under the setting (n0, n1) = (200, 200); the true β0(t) and β1(t)
(black dashed line).
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In both Scenario II and Scenario III, we perform simulations with the same setup, having

(n0, n1, n2) = (100, 50, 50), and conduct 100 repetitions for each scenario. For the basis function

q(y) in the proposed method, we stick to the true basis function q(y) = (y, y2) in both scenarios.

During the cross-validation procedure for tuning parameters, we utilize the Epanechnikov kernel for

the kernel smoothed EL density estimator, denoted as f̂ksel
k (y). The data generating model (5.16)

and (5.17) both can be formulated in the format of (5.4) with

βk(t) = ρk(t)/σ2
k, γk = νk/σ

2
k, k = 0, 1, 2,

where νk = (νk,1, νk,2)τ .

The primary objective in both Scenario II and Scenario III is to compare the estimation effi-

ciency of the parameters θk and βk(t) obtained from the proposed method DRM-EL and the Maxi-

mum Likelihood Estimation (MLE) based on the Gaussian distribution family. While the Gaussian

distribution family is correctly specified in Scenario II, it is misspecified in Scenario III.

To implement the MLE method for FGLM, we employ the R function “fregre.glm” from the

package “fda.usc”. This function expands the unknown functions βk(t) using B-splines and then fits

the model using MLE. The number of B-splines for approximation is chosen based on the Akaike

Information Criterion (AIC) criterion, also integrated into the “fregre.glm” function.

The simulation results for both Scenario II and 3 are summarized in Table (5.2) and Table (5.3).

In Table (5.2), we observe that regardless of whether the model is misspecified or not, the estimation

errors of βk(t) obtained from MLE are significantly larger than those from the proposed method in

both scenarios. The reason behind this discrepancy is that the MLE method, as implemented by the

R package “fregre.glm”, lacks a penalty term to control the smoothness of the estimation. Although

the AIC criterion helps select a smaller number of B-spline basis functions, the resulting βk(t)
estimations are still undersmoothed.

Under Scenario II, the mean squared errors (MSE) of γ̂k derived from MLE are usually slightly

smaller than those from the proposed method, which is expected. But the difference is not large.

This could be attributed to the fact that the proposed method, leveraging the DRM structure in (5.4),

can use a larger sample to fit the model compared to MLE. However, under Scenario III, where the

model is misspecified, MLE performs significantly worse than the proposed method. Scenario III

serves as an example, emphasizing the importance of considering semi-parametric methods, as in the

proposed approach, to estimate the baseline distribution of FGLM when the model is misspecified.

5.4. Real Data Analysis

In the United States, Kansas boasts a substantial soybean cultivation, with approximately 4.7 mil-

lion acres dedicated to soybean planting. This productive effort yields an impressive output of 200

million bushels, securing Kansas’s position as the 10th highest soybean-yielding state in the country.

The scientific research cited from [79, 72] highlights the paramount significance of temperature

and water availability throughout all stages of soybean growth, encompassing both the vegetative
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Setting Methods RISE(β̂0) RISE(β̂1) RISE(β̂2)

Scenario II
DRM-EL 0.12 0.13 0.16

MLE 3.05 5.78 10.29

Scenario III
DRM-EL 0.20 0.22 0.47

MLE 4.59 14.01 16.05

Table 5.2: Simulation results on the estimation of βk(t) under Scenario II and 3. DRM-EL denotes
the proposed method based on model (5.4) and MLE denotes the maximum likelihood estimation
method.

Setting Methods MSE(γ̂0,1, γ̂0,2) MSE(γ̂1,1, γ̂1,2) MSE(γ̂2,1, γ̂2,2)

Scenario II
DRM-EL (0.025, 0.015) (0.011, 0.027) (0.037, 0.076)

MLE (0.018, 0.022) (0.022, 0.022) (0.042, 0.025)

Scenario III
DRM-EL (0.020, 0.027) (0.027, 0.030) (0.011, 0.032)

MLE (0.075, 0.031) (0.056, 0.070) (0.030, 0.044)

Table 5.3: Simulation results on the estimation of γk under Scenario II and 3. DRM-EL denotes
the proposed method based on model (5.4) and MLE denotes the maximum likelihood estimation
method.

and reproductive phases. During the vegetative stages, soybeans demonstrate a reasonable tolerance

to drought stress, proving to be less susceptible than corn crops until the late reproductive stages.

Nonetheless, the simultaneous occurrence of water scarcity and heat stress poses a significant

threat in many regions of Kansas during the soybean growing season. Such conditions can lead

to increased flower and pod abortion, ultimately resulting in reduced soybean yields. Furthermore,

excessively low temperatures also have adverse consequences, negatively impacting soybean ger-

mination and overall growth. As a result, it becomes evident that temperature and water availability

exert substantial influence over the soybean yield as the growing season draws to a close.

In following analysis, we use the data on soybean yield and two environmental predictors in

four specific years: 1993, 1998, 2001, and 2004. These years were chosen because they provide

observations with reasonable sample sizes and cover the main time span of the data. Let us define

the variables used in the model:

• X(t) represents the daily average temperature between June and November, which are dis-

played in Fig (5.2).

• Z represents the ratio of irrigated area for each county in Kansas.

• Y represents the annual soybean yield per unit for each county in Kansas.
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Figure 5.2: The daily average temperature curves of counties of Kansas in 1993, 1998, 2001 and
2004.

To keep things concise, we will use the year index k to refer to the specific year under consider-

ation. The following model is fitted to the target data set,

fk(y|z, x(t)) = exp {(γkz + ⟨x, βk⟩) y} gk(y)∫
exp {(γkz + ⟨x, βk⟩) y} gk(y)dy , k = 0, 1, 2, 3 (5.18)

gr(y)
g0(y) = exp{αr + θτ

rq(y)}, r = 1, 2, 3.

The vector q(y) of the density ratio structure in (5.18) is chosen as

q(y) = (y, y2, y3, log(y))τ ,

which covers the Normal and Gamma distribution families. We also tried the vector q(y) with more

polynomials terms and we observe very similar results. Therefore, in this section we report the

estimation results based on this q(y)
The estimated βk(t), k = 0, 1, 2, 3 are displayed in Fig (5.3). According to Fig (5.3), we can

observe the season effect of temperature and the impact of irrigation system on soybean yield. The

estimated functions β̂k(t) for all four years exhibit a consistent pattern. During the summer, all β̂k(t)
are negative, indicating that the temperature at this time is too hot for soybean growth. In contrast,

during the winter, all β̂k(t) become positive, suggesting that the temperature during this period is

too cold for soybean growth. The turning point from negative to positive β̂k(t) occurs around late

July and early August. In addition, the estimated values for γk are given by

(γ0, γ1, γ2, γ3) = (0.45, 0.56, 1.07, 2.09),
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which indicates the positive effect of irrigation system on soybean growth. This observation empha-

sizes the importance of irrigation in promoting soybean growth and yield in Kansas.
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Figure 5.3: The estimated βk(t) using the proposed DRM-EL method based on the soybean data set
of Kansas.

5.5. Conclusion and Discussion

The proposed semi-parametric functional generalized linear model (FGLM) with density ratio struc-

ture offers valuable flexibility for modeling data from different populations simultaneously, partic-

ularly for continuous responses. However, one limitation is that the current DRM-EL method based

on (5.4) can only handle continuous response variables, as the density ratio model (DRM) is specif-

ically defined for continuous random variables. For future research, we would like to investigate

how to further modify the framework (5.4) to incorporate categorical or other discrete responses.

Note that in the real data analysis of the this project and the previous project, the response

variables that related to the soybean yield are both modeled linearly in the daily average temperature

X(t) so that decreasing the summer temperature is estimated to improve the yield no matter how

cold the summer is. In reality, this cannot be the case. This is another limitation of the current model

132



when it is applied on the target application. We also aim to solve this issue in the future research by

allowing non-linear relationship between the response and the functional predictors.
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