
Addressing the Labeled Data Scarcity Problem
in Deep Learning

by

Mehran Khodabandeh

M.Sc., Simon Fraser University, 2015

B.Sc., Sharif University of Technology, 2013

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

© Mehran Khodabandeh 2023
SIMON FRASER UNIVERSITY

Summer 2023

Copyright in this work is held by the author. Please ensure that any reproduction or re-use

is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name:

Degree:

Thesis title:

Committee:

Mehran Khodabandeh

Doctor of Philosophy (Computing Science)

Addressing the Labeled Data Scarcity Problem in Deep
Learning

Greg Mori
Supervisor

Professor, Computing Science

Ze-Nian Li
Committee Member

Professor, Computing Science

Binay Bhattacharya
Examiner

Professor, Computing Science

Michael S. Brown
External Examiner

Professor, Computing Science

ii



Abstract

A significant challenge in machine learning and, more specifically, deep learning is the necessity

for extensive labeled data. Given the high cost, time, and complexity of procuring such data, espe-

cially in computer vision applications, we focus on improving strategies for scenarios with limited

data. We propose novel methodologies in three primary areas: Active Learning, Data Augmentation,

and Domain Adaptation. Firstly, in the domain of Active Learning, we propose an algorithm that

caters to cases with structured outputs, efficiently expanding the labeled dataset from a large pool

of unlabeled data. By exploiting the inherent interdependencies in each sample, we can identify the

most informative components for further labeling. Secondly, under Data Augmentation, we propose

a unique algorithm for synthesizing realistic human action videos to enhance the training dataset

for human action recognition tasks. Lastly, in the area of Domain Adaptation, we address the chal-

lenges of varying data distributions between training and deployment stages in object detection. A

novel algorithm is proposed to enable object detectors adapt effectively using available unlabeled

data from the target domain.

Keywords: Active Learning Data augmentation Domain adaptation Group Activity Detection

Human Action Classification Object Detection
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Chapter 1

Introduction

Machine learning is a fast-growing field that is revolutionizing the way we address a wide range

of real-world problems. It has been used in diverse tasks, including image recognition, natural lan-

guage processing, anomaly detection, and even drug discovery. Deep learning, a branch of machine

learning, has gained popularity thanks to its ability to automatically and effectively learn intricate

patterns from vast amounts of data. Nonetheless, a significant obstacle in deep learning is the need

for a massive quantity of labeled data to train models efficiently. In many real-life situations, ob-

taining labeled data can be difficult or expensive, leading to a constrained pool of accessible labeled

data.

For example, in the field of computer vision, obtaining labeled data for autonomous vehicle

systems may require extensive and costly manual annotation of images or videos, capturing vari-

ous road conditions, weather, and potential hazards. In the domain of facial recognition, collecting

labeled data could involve acquiring consent from individuals to use their images, which can be

time-consuming and raise privacy concerns. Similarly, training models for object detection and seg-

mentation often require large datasets with accurately labeled images of numerous objects and their

corresponding boundaries. The process of annotating these images can be labor-intensive, requiring

significant human effort to generate high-quality labeled datasets. These challenges with gathering

data can hinder the development and deployment of machine learning models in real-world com-

puter vision applications.

One might argue that, for industries such as autonomous driving, the cost of labeling data is

negligible in comparison to the profits that can be garnered from training accurate models, justify-

ing the cost. Additionally, recent advancements like Amazon Turk and other similar services have

made the acquisition of labeled data more cost-effective. While these arguments hold true, the pro-

cess is far from being free of charge. The cost can be prohibitive for small businesses and individual

researchers who may lack the resources to afford large labeled datasets for custom tasks without

access to already available public datasets. Furthermore, in many real-world applications such as

medical imaging or disaster prediction, the events of interest are often rare or unique. These in-

stances are underrepresented in large datasets, making it challenging to train a reliable model with

these scarce labeled examples.
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Moreover, not all labeled data can be directly applied to specific tasks due to differences in con-

text, environment, or demographic. For instance, a model trained on traffic data from one city might

not perform well in another city due to different driving patterns and infrastructure. Additionally,

strict regulations and ethical considerations in fields like healthcare or finance often prevent the

sharing and labeling of sensitive data.

We also cannot predict all the types of data and problems AI will encounter in the future. Prepar-

ing our models to work well with limited labeled data makes them more flexible and adaptable. Fur-

thermore, methods that can learn from fewer labeled examples allow us to leverage the vast amount

of unlabeled data more effectively, increasing the efficiency of our models.

In light of these challenges, this dissertation proposes novel approaches in Active Learning, Data

Augmentation, and Domain Adaptation, specifically designed for scenarios where data scarcity is

a concern. Despite the abundance of labeled data in some areas, it is crucial to continue research

into learning from limited labeled data to ensure the broad applicability and versatility of AI. This

research aims to contribute to this ongoing effort, addressing the scarcity of labeled data in deep

learning.

In the realm of Active Learning, where a small amount of labelled data and a large pool of

unlabelled data are available, the objective is to efficiently expand the labeled dataset in order to train

a better model. We propose a new algorithm that is specific to the case where output is structured.

We leverage the inherent interdependencies and relationships among the components of each sample

and select the components that provide the most amount information, for further labelling.

For Data Augmentation, a standard strategy in deep learning that artificially expands the size of

the labeled dataset, we introduce a method focused on synthesizing realistic human action videos.

This specific algorithm is designed to strengthen the training data for human action recognition

tasks.

Lastly, in the Domain Adaptation strategy, we target scenarios where a model is trained on a

source domain and then deployed on a target domain that has a different distribution. Here, we

suggest a novel algorithm to enable object detectors to adapt effectively using available unlabeled

data from the target domain.

In the following chapters, we will delve into the details of these proposed methods.

1.1 Contributions

In this dissertation, we present three innovative methods to address the challenge of limited labeled

data in different scenarios. The following summaries describe our contributions, with comprehen-

sive discussions provided in the subsequent chapters:

• Active Learning for Structured Prediction from Partially Labeled Data [101]: We pro-

pose a general purpose active learning algorithm for structured prediction – gathering labeled

data for training a model that outputs a set of related labels for an image/video. Active learn-

ing starts with a limited initial training set, then iterates querying a user for labels on unlabeled

2



data and retraining the model. We propose a novel algorithm for selecting data for labeling,

choosing examples to maximize expected information gain based on belief propagation in-

ference. This is a general purpose method and can be applied to a variety of tasks/models.

As a specific example we demonstrate this framework for learning to recognize human ac-

tions and group activities in video sequences. Experiments show that our proposed algorithm

outperforms previous active learning methods and can achieve accuracy comparable to fully

supervised methods while utilizing significantly less labeled data.

• Dataset Augmentation for Human Action Classification [102]: Deep learning’s increas-

ing use in computer vision highlights the need for large, diverse datasets. This is especially

challenging in human action recognition tasks, which require varied human appearances, ac-

tions, and environments. To address this, we’ve developed a new technique for generating

data specifically for action recognition. We start with a small set of human action videos and

generate new clips. Each video shows a "human subject" performing a variant of an "action"

in a specific "background" or environment. By separately changing the "human subjects",

"actions", and "backgrounds", we can generate many more realistic videos. Our method in-

cludes a unique approach to generating human skeleton trajectories. When combined with

our video frame generation technique, this method allows us to create unlimited training data

for action recognition, bypassing the need for expensive and time-consuming data collection.

We tested our approach on two small human action recognition datasets and found significant

improvements in the performance of existing action recognition methods.

• A Robust Learning Approach to Domain Adaptive Object Detection [104]: Domain shift

is unavoidable in real-world applications of object detection. For example, in self-driving cars,

the target domain consists of unconstrained road environments which cannot all possibly be

observed in training data. Similarly, in surveillance applications sufficiently representative

training data may be lacking due to privacy regulations. In this work, we address the domain

adaptation problem from the perspective of robust learning and show that the problem may be

formulated as training with noisy labels. We propose a robust object detection framework that

is resilient to noise in bounding box class labels, locations and size annotations. To adapt to the

domain shift, the model is trained on the target domain using a set of noisy object bounding

boxes that are obtained by a detection model trained only in the source domain. We evaluate

the accuracy of our approach in various source/target domain pairs and demonstrate that the

model significantly improves the state-of-the-art on multiple domain adaptation scenarios on

the SIM10K, Cityscapes and KITTI datasets.
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Chapter 2

Related Work

In chis chapter we aim to provide an overview of seminal papers addressing the challenge of han-

dling limited labeled data in training deep learning models for computer vision tasks. While com-

prehensively covering the entire landscape of this critical research area is beyond the scope of this

chapter, we aim to present key techniques and approaches that have significantly contributed to

addressing this challenge.

2.1 Data Augmentation

Data augmentation can be formally defined mathematically as the process of applying a set of pre-

defined transformation operations t ∈ T to a given dataset D := { (x, l) | } for x ∈ X and l ∈ L,

consisting of a set of training samples X = {x1, x2, . . . , xn} and labels L = {l1, l2, . . . , ln},

where xi is data and li is the corresponding label. The goal of data augmentation is to create ad-

ditional training data Xt = {t(x1), t(x2), . . . , t(xn)}, t ∈ T , without altering the original labels

L = {l1, l2, . . . , ln}. Each transformation operation t ∈ T is carefully selected to ensure that the

transformed sample t(xi) remains within the same sample space as the original data and retains the

same semantic meaning as described by the original label li. Mathematically, t ∈ T : (X , L) →
(Xt, L), where X is the original dataset, X ′ is the augmented dataset and T is the set of transforma-

tion operations. This process is also known as label preserving transformation operations in image

processing and computer vision literature.

Image augmentation has become a commonly used approach to enhance the performance of

many computer vision algorithms. Well-known image classifier and object detection algorithms

have been shown to benefit from basic image transformations like cropping, flipping, and others,

resulting in improved robustness and accuracy. Well-known algorithms in computer vision and their

corresponding data augmentation techniques are presented in Table 2.1.

2.1.1 Model free techniques

Data augmentation techniques have evolved over time, with researchers constantly exploring novel

ways to enhance the performance of deep learning models. Simard et al. [193] focused on simple
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Paper Image augmentation method

AlexNet[113] Translate, Flip, Intensity Changing, Crop

ResNet[70] Crop, Flip

DenseNet[79] Flip, Crop, Translate

MobileNet[78] Crop, Elastic distortion

NasNet[264] Cutout, Crop, Flip

ResNeSt[252] AutoAugment, Mixup, Crop

DeiT[211] AutoAugmentat, RandAugment, Random Erasing, Mixup, CutMix

Swin Transformer[129] RandAugment, Mixup, CutMix, Random Erasing

Faster R-CNN[160] Flip

YOLO[157] Scale, Translate, Color space

SSD[128] Crop, Resize, Flip, Color Space, Distortion

YOLOv4[7]
Mosaic, Distortion, Scale, Color space, Crop, Flip, Rotate, Random

erase, Cutout, Hide-and-Seek, GridMask, Mixup, CutMix, StyleGAN

Table 2.1: Well-known algorithms in computer vision and their corresponding data augmentation

techniques

techniques such as elastic distortion, which simulates the variability in handwriting by randomly

distorting original images using local elastic transformations. This technique artificially increases

the dataset size, leading to better generalization performance of the trained model on unseen data.

Ciregan et al. [19] showed that augmenting dataset simply by randomly translating the image de-

crease error rates and improves overall performance on the MNIST dataset [29]; these techniques

are only suitable for images.

Following these initial advancements, Krizhevsky et al. [113] proposed more sophisticated data

augmentation techniques that contributed to the success of their deep learning model, AlexNet.

Krizhevsky et al. [113] introduced two critical techniques in their groundbreaking paper "ImageNet

Classification with Deep Convolutional Neural Networks", which helped improve the accuracy of

their deep learning model, AlexNet. The first technique generates image translations and horizontal

reflections by randomly extracting 224x224 pixel crops from the original 256x256 pixel images and

flipping them horizontally, resulting in a 2048-fold augmentation. The second technique manipu-

lates the intensities of the RGB channels by performing PCA on the RGB pixel values from the

ImageNet [28] training set and adding multiples of the found principal components to the images,

helping the model capture variations in lighting and color. These data augmentation techniques,

along with dropout regularization, enabled them to train a large neural network that achieved state-

of-the-art results on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [168] at

the time.

Subsequently, Perez et al. [146] conducted a comprehensive study evaluating various augmen-

tation techniques for image classification tasks. They evaluated several augmentation strategies,

including geometric transformations, color jittering, and random erasing, ultimately finding that

they all consistently improved the performance of deep learning models, and the best results were
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achieved when multiple augmentation techniques were combined. This research opened the door

for more innovative approaches to data augmentation, such as MixUp by Zhang et al. [253]. MixUp

improves generalization performance by linearly interpolating pairs of training examples and their

labels. Concretely, for two examples xi and xj with corresponding labels yi and yj , MixUp creates

a new example x and label y by taking a linear combination of the two original examples and their

labels: x = λxi + (1 − λ)xj and y = λyi + (1 − λ)yj , where λ ∼ Beta(α, α), for α ∈ (0, ∞); The

mixup parameter α determines the extent of blending between feature-target pairs. As α approaches

0, it reverts back to the ERM (Empirical Risk Minimization) principle.. The paper shows that MixUp

regularization improves the generalization performance of deep neural networks on various tasks,

including image classification, object detection, and language modeling. The authors provide several

theoretical analyses of MixUp, showing that it encourages the model to interpolate between train-

ing examples rather than simply memorizing them. Specifically, they show that MixUp promotes

linear behavior in the intermediate layers of the network, and they provide a convexity argument

that suggests MixUp can lead to a smoother loss landscape and better generalization. Additionally,

they provide an interpretation of MixUp as a form of ensemble learning, where the model is trained

on a convex combination of multiple training examples. The authors demonstrated that MixUp acts

as a strong regularizer, improving the generalization of deep learning image classification mod-

els on several datasets, including CIFAR-10 [110], CIFAR-100 [111], and ImageNet [113] as well

as object detectaion models on Pascal VOC [44] and MS COCO [124]. Furthermore, the authors

demonstrate that MixUp can be combined with other regularization techniques, such as dropout and

weight decay, to further improve performance. This method has been widely used in the computer

vision domain

In parallel, DeVries and Taylor [33] developed another data augmentation technique for en-

hancing the generalization capabilities of Convolutional Neural Networks (CNNs). The proposed

method, known as Cutout, involves randomly masking out contiguous regions within input images

during the training process, thus forcing the network to learn more robust features that are invariant

to partial occlusions by relying on the remaining unmasked regions. By applying this straightfor-

ward yet effective approach, the authors were able to achieve state-of-the-art performance on mul-

tiple benchmark datasets, including CIFAR-10, CIFAR-100, and SVHN. The paper provides com-

prehensive empirical evidence to demonstrate the efficacy of Cutout, showing that it consistently

outperforms other regularization techniques like Dropout and data augmentation. Additionally, the

authors highlight that Cutout is computationally efficient and can be seamlessly combined with

existing regularization methods to further improve performance.

Yun et al. [250] introduced CutMix, a data augmentation technique for image classification

tasks that involves cutting and pasting patches from different images and adjusting their labels.

This technique further pushed the boundaries of data augmentation for image classification tasks.

Specifically, given two input images Ia and Ib with ground-truth labels ya and yb, CutMix randomly

selects a rectangular patch Pa from Ia and replaces it with a corresponding patch Pb from Ib, as

shown in the following equation:
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Imixed = Mcutmix(Ia, Ib) =

⎧⎨
⎩

Ia(x, y) if (x, y) /∈ B

Ib(x, y) otherwise
(2.1)

where B is the bounding box of the patch Pa, and (x, y) are the pixel coordinates in the image.

To compute the ground-truth label ymixed for the mixed image Imixed, the authors use the area ratio

λ between the two patches:

ymixed = λya + (1 − λ)yb (2.2)

where λ = area(B)/area(Ia). In other words, the ground-truth label for the mixed image is a

weighted average of the labels of the two original images, where the weight is determined by the

area ratio of the two patches. This label adjustment technique helps ensure that the model learns to

recognize objects that may appear partially in the mixed image, which can improve the model’s ro-

bustness and generalization performance. Additionally, CutMix encourages the model to learn more

robust features by forcing it to focus on multiple objects in the same image and to learn more fine-

grained boundary information. The authors show that CutMix provides better regularization and

leads to improved performance compared to existing data augmentation methods, such as MixUp

and CutOut, on various benchmark datasets, including CIFAR-10, CIFAR-100, and ImageNet. They

also demonstrate that CutMix is less sensitive to the choice of hyperparameters than MixUp, mak-

ing it more practical for use in real-world applications. Figure 2.1 shows performance of CutMix

compared to the previous methods.

Figure 2.1: Summary of the results obtained from ImageNet classification, ImageNet localization,

and Pascal VOC 07 detection tasks using Mixup, Cutout, and our CutMix techniques. CutMix

demonstrates a substantial improvement in the performance of these tasks. [250] © 2019 IEEE.

Expanding on the techniques described earlier, new approaches have been developed to fur-

ther advance the field and enhance the effectiveness of data augmentotion. Hendrycks et al. [72]

proposed AugMix, which improves model robustness by applying multiple basic augmentations,
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such as rotation and flipping, to an input image and probabilistically blending the results with the

original image, generating a diverse set of training samples. The same year, Yin et al. [107] in-

troduced PuzzleMix, which optimizes a mask for fusing two images, capturing salient information

and underlying statistics to encourage better feature representations and generalization capabilities.

Co-Mixup, proposed by Wang et al. [106], focuses on maximizing the salient signal of input images

while maintaining diversity among the augmented images, using a co-regularized training objective

to promote a more effective learning process. Subsequently, Luo et al. [24] introduced SuperMix,

which utilizes the Newton iterative method to optimize a mask for fusing two images, exploiting

salient regions to create richer training samples that improve model performance and generaliza-

tion. Lastly, Ghiasi et al. [58] proposed Simple Copy-Paste, which randomly pastes object instances

into images with large-scale jittering, forcing the model to learn more robust and invariant feature

representations for enhanced performance on unseen data on the image segmentation task.

2.1.2 Model based techniques

Model-free data augmentation techniques have limitations that hinder their effectiveness in im-

proving deep learning models. These techniques generate a limited range of plausible alternative

data and rely on heuristic approaches, potentially missing important task-specific transformations.

Model-based data augmentation techniques are being developed to address these limitations and

significantly enhance the generalizability of deep learning models by learning task-specific trans-

formations and discovering novel data augmentations.

Antoniou et al. [3] proposed the Data Augmentation Generative Adversarial Network (DA-

GAN), based on the assumption that samples from the same class can be transformed into each

other using complex transformations. The DAGAN model aims to learn these complex transforma-

tions from a set of available data and apply them to a domain with limited labeled data, such as

few-shot learning. In contrast to traditional data augmentation techniques, this method generates a

wider variety of images while preserving the original data distribution and semantic information.

The key contribution of this work is the DAGAN model, which combines the power of GANs with

a conditional generation mechanism. The DAGAN consists of a generator network that creates new

samples based on input images and a discriminator network that learns to differentiate between pairs

of input images, determining if they are both real or if one is real and the other is fake. In essence,

the discriminator learns to identify complex transformations between the images. The underlying

assumption is that this transformation is valid for labeled data on hand, but not for a combination

of a real and a generated image. The generator’s objective is to learn these complex transformations

between real data points and apply them to input data, thereby generating new data points. The

goal is to produce samples that deceive the discriminator into incorrectly identifying them as both

real images. The authors illustrated the generator’s ability to generate diverse and visually plausi-

ble image samples from a single novel data point. They then demonstrated that data augmentation

using DAGAN could enhance a standard classifier in low-data situations, significantly improving

generalization performance on the Omniglot and EMNIST datasets.
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Training machine learning models on synthetic images can be more cost-effective and efficient

than using annotated real-world images. However, the performance of models trained on synthetic

images often suffers due to differences between synthetic and real image characteristics. By en-

hancing the realism of synthetic images with the help of unlabeled real data, Shrivastava et al.

[191] aim to improve the performance of machine learning models trained on large datasets with-

out the need for expensive data collection or human annotation efforts. They developed the Simu-

lated+Unsupervised (S+U) learning method to address the challenge of bridging the gap between

synthetic and real image distributions. The developed framework, SimGAN, refines computer-

generated images through a refiner network that employs both adversarial and self-regularization

losses during training. The authors made key adjustments to the conventional Generative Adversar-

ial Networks (GAN) approach to ensure training stability, maintain annotation details, and avoid

artifact production by the refiner network. First, they introduced a self-regularization term to pre-

serve the annotations of synthetic images. By adding this self-regularization loss to the adversarial

loss, the method penalizes large changes between synthetic and refined images, ensuring the re-

tention of important details from the original synthetic images. Second, they addressed the issue

of training instability and artifact generation in traditional GANs, which use a discriminator that

operates on the entire image. By limiting the discriminator’s receptive field to local regions instead

of the whole image, the authors created multiple local adversarial losses per image, resulting in a

more stable training process and fewer artifacts. Finally, they tackled the standard GAN training

process’s instability due to the competing goals of the generator and discriminator networks. The

authors proposed updating the discriminator using a history of refined images, rather than only those

from the current refiner network, further enhancing training stability.

Figure 2.2: The model enhances the realism of synthetic images generated by a simulator by lever-

aging unlabeled data, while also maintaining the annotation information [191]. @ 2017 IEEE

GANs have been used in the medical image domain, where labelled data is scarce. Bowles et

al. [8] investigate the use of Generative Adversarial Networks (GANs) for augmenting training data

in medical imaging applications. The authors focus on brain segmentation tasks and demonstrate

that GAN-generated synthetic data can improve the Dice Similarity Coefficient (DSC) by 1 to 5
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percentage points. The improvement is most significant when fewer than ten training image stacks

are available. The study explores various aspects of GAN augmentation, such as the choice of seg-

mentation network, comparison to rotation augmentation, the impact of synthetic data quantity, and

the influence of available real data. The results suggest that GANs can benefit medical image seg-

mentation tasks, and the method is transferable to multiple datasets. Frid-Adar et al. [51] proposed

to use an augmentation scheme that combines standard image perturbation and synthetic liver lesion

generation using Deep Convolutional GAN (DCGAN). They were able to generate realistic images

of liver lesion and used for classification task. They demonstrated that using synthesized images

significantly improved the classification performance.

In real-world datasets, it is not uncommon for some classes to have significantly fewer examples

than others, resulting in a skewed distribution. This imbalance can adversely affect the performance

of machine learning models, as they may develop a bias towards the majority class. To address

this issue, Douzas et al. [37] introduce a novel method using Conditional Generative Adversarial

Networks (CGANs), a type of generative model that generates synthetic samples based on class

labels. By producing additional samples for under-represented classes, CGANs effectively balance

the class distribution. The authors train a CGAN to learn the underlying data distribution and create

realistic samples for minority classes, which are then used to augment the original dataset. This

augmentation not only reduces the imbalance but also enhances the performance of various machine

learning models. The experiments conducted on different imbalanced datasets and classification

algorithms show that the proposed CGAN-based method outperforms existing techniques, such as

the Synthetic Minority Over-sampling Technique (SMOTE). Overall, the CGAN approach excels

in generating high-quality synthetic samples, leading to improved classification performance across

diverse machine learning models.

2.1.3 Policy based techniques

The algorithms discussed in the previous two sections involve specific schemes that require domain

knowledge to achieve better performance.. Typically, these methods use tailored operations with

suitable magnitudes for image augmentation, catering to the specific characteristics of each dataset.

However, the process of hyperparameter optimization can be both complex and time-intensive. An

alternative approach is to create algorithms capable of determining the best augmentation strategies

automatically. Such algorithms, referred to as policy-based optimization, can be classified into two

groups: those based on reinforcement learning and those based on adversarial learning. Reinforce-

ment learning-based methods identify the optimal strategy through reinforcement learning, while

adversarial learning-based techniques select augmentation operations and magnitudes that lead to a

high training loss but a low validation loss.

Cubuk et al. [22] introduced a seminal method called AutoAugment to automatically learn

data augmentation policies by leveraging the training data itself In AutoAugment, a reinforcement

learning-based search algorithm is employed to find the best augmentation policies. These policies

consist of sequences of basic image operations, such as rotation, translation, shearing, and color
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transformations, with specific probabilities and magnitudes. The search algorithm utilizes a recur-

rent neural network (RNN) controller to generate augmentation policies, which are then applied to

the training dataset to create augmented images. These images are used to train "child" models for

a limited number of epochs, and the resulting validation loss is used as feedback to update the con-

troller using Proximal Policy Optimization (PPO). The process is iteratively performed, refining the

controller’s ability to propose better augmentation policies. The key idea behind AutoAugment is to

use the data to learn the best augmentation policy rather than relying on human intuition or exper-

tise. The authors demonstrate that AutoAugment leads to significant improvements in performance

on various image classification tasks and datasets. The optimal augmentation policy discovered by

AutoAugment for each dataset is different, which highlights the versatility of the approach. By

employing a reinforcement learning-based search algorithm, AutoAugment can effectively explore

various combinations and magnitudes of image operations, ultimately finding an optimal policy

tailored to the specific dataset. This adaptability contributes to the improved performance of deep

learning models across a range of image classification tasks, such as CIFAR-10, CIFAR-100, SVHN,

and ImageNet.

Despite achieving favorable classification results on multiple datasets, AutoAugment’s exten-

sive training time is a significant drawback. Consequently, several research studies have investi-

gated different approaches to address this problem. Fast AutoAugment [122] and Faster AutoAug-

ment [68] present more efficient alternatives to the original AutoAugment method for discovering

data augmentation policies. Fast AutoAugment uses Bayesian optimization on smaller proxy tasks

to reduce search time, while Faster AutoAugment introduces Differentiable Augmentation Policy

Search (DAPS), which uses backpropagation to learn policies in an end-to-end manner, eliminat-

ing the need for proxy tasks and additional optimization techniques. Both methods significantly

reduce computational cost and search time compared to the original AutoAugment, while achieving

competitive performance on benchmark datasets, demonstrating their effectiveness in enhancing the

generalization of deep learning models.

In many cases, simpler and more efficient methods can lead to better results. One such example

is the RandAugment technique proposed by Cubuk et al. [23]. This approach streamlines the data

augmentation process by eliminating the need for a proxy task and reducing the search space to just

two hyperparameters: the number of augmentation operations (N) and the magnitude of the applied

augmentations (M). In RandAugment, the optimal operations and magnitudes are not explicitly

searched for. Rather, during training, N augmentation operations are randomly selected from a fixed

set of transformations (such as rotation, translation, and shearing) and applied to the input images.

The magnitude of each transformation is determined by the M parameter, which is set by the user.

RandAugment relies on the assumption that, by randomly selecting and composing various aug-

mentation operations with the appropriate magnitude, the model will learn to generalize better. In

practice, users might perform a coarse grid search or use validation performance to find suitable val-

ues for N and M. However, the search space for these two hyperparameters is much smaller and less

computationally expensive compared to the search process in AutoAugment Despite its simplicity,
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RandAugment has been shown to perform on par with or outperform more complex augmentation

methods, including AutoAugment, on various benchmark datasets such as CIFAR-10, CIFAR-100,

and ImageNet. Its practicality and accessibility make RandAugment a valuable technique for a wide

range of applications and users in the field of deep learning.

The main goal of image augmentation is to help train a model using a training dataset so it

can perform well on a testing dataset. It is assumed that more challenging samples are beneficial,

and those input images resulting in a higher training loss are regarded as such difficult samples.

Adversarial learning-based image augmentation strives to develop a policy for generating these

challenging samples by building upon the original training examples.

Xie et al. [240] propose a method called Adversarial Propagation (AdvProp) to improve the

performance and robustness of image recognition models. AdvProp generates adversarial examples

using a variant of the Projected Gradient Descent (PGD) method and incorporates them into the

training process alongside clean examples. Adversarial examples are inputs to machine learning

models that are intentionally designed to cause the model to make incorrect predictions. They are

crafted by introducing small, imperceptible perturbations to input data, such as images, that lead

the model to make incorrect classifications. Training on adversarial examples naturally degrades the

performance due to the distribution discrepancy between clean and adversarial examples. To address

this, the authors introduce two separate batch normalization layers, one for each type of example.

This approach enables the model to better adapt to the different distributions and learn more robust

features. The evaluation of AdvProp on benchmark datasets, including ImageNet, demonstrates that

models trained with this method achieve better performance compared to models trained without

adversarial examples or with traditional adversarial training methods.

In summary, the various data augmentation techniques discussed above, including model-free,

model-based, and policy-based approaches, demonstrate the effectiveness of generating new train-

ing samples while preserving the original semantic information. These methods encompass a wide

range of techniques. However, there are certain limitations associated with these methods. For in-

stance, many of these techniques require domain knowledge and involve assumptions, such as se-

lecting reasonable ranges for cropping, mixing, and applying transformations, which might not be

universally applicable to all tasks or datasets. Furthermore, the optimization of hyperparameters can

be complex and time-consuming, potentially limiting the adoption of these techniques in certain

applications. Some data augmentation techniques have limitations due to their varying effective-

ness across different domains and inability to remove biases in datasets. For instance, while vertical

flipping works well in scene recognition, it may change labels in digit recognition (digit 9 vs 6).

Additionally, in cases like waterbirds versus landbirds recognition, where background differences

dominate, the model may learn to identify the background instead of the bird species, highlight-

ing that data augmentation alone may not be sufficient to mitigate inherent biases. Despite these

drawbacks, data augmentation has proven to be a powerful tool for enhancing the generalization

capabilities and robustness of deep learning models across various domains and tasks.
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2.2 Transfer Learning

Transfer learning is a powerful machine learning technique that leverages the knowledge gained

from one domain or task, referred to as the source domain, to improve the performance of a model

on a different but related domain or task, known as the target domain. The main idea behind transfer

learning is to take advantage of the similarities between tasks or domains, enabling the model to

learn from one context and apply that knowledge to another. This approach can significantly reduce

training time, computational resources, and the need for large amounts of labeled data in the target

domain.

Transfer learning can be broadly divided into two main groups based on the availability of

labeled data in the target domain: inductive transfer learning and transductive transfer learning. In

inductive transfer learning, labeled data are available in the target domain. This setting allows the

model to be fine-tuned on the target task using the available labeled data, adapting the pre-trained

model to better perform on the new task. On the other hand, transductive transfer learning deals with

situations where labeled data are only available in the source domain. In this case, the challenge lies

in adapting the model to the target domain while minimizing the distribution differences between

the source and target domains, even in the absence of labeled data in the target domain. Both groups

provide different strategies to address the challenges of transfer learning depending on the data

available in the source and target domains.

2.2.1 Inductive Transfer Learning

Inductive transfer learning is a setting where labeled data are available in the target domain. This

approach allows models to leverage the knowledge gained from the source domain while fine-tuning

the model using labeled data from the target domain. Inductive transfer learning is particularly useful

when the target task is similar to the source task, but the labeled data in the target domain is limited.

Inductive transfer learning can be further divided into two subcategories. Multi-task learning

and Sequential transfer learning which we discuss in the following two sub-sections.

Sequential transfer learning

In sequential transfer learning, the model is first trained on a source task and then fine-tuned on the

target task using the labeled data available in the target domain. This fine-tuning process can involve

adjusting the entire network or just the final layers, depending on the degree of similarity between

the source and target tasks. This approach has been successfully applied to various domains, includ-

ing computer vision and natural language processing. One of the early and influential applications

of sequential transfer learning in computer vision is the R-CNN method, which demonstrates the

power of this approach in object detection tasks.

Li-Jia et al. [117] propose ObjectBank method, an early attempt at transfer learning in the

field of computer vision. The ObjectBank method leverages pre-trained object detectors to generate

semantically-rich image representations, which can be applied to various visual recognition tasks,
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such as object recognition, scene classification, and event detection. By using a set of pre-trained

detectors to extract high-level features from images, the Object Bank approach demonstrates the

potential of transfer learning, where knowledge learned in one task is reused and adapted to im-

prove performance on related tasks. While not as sophisticated as more recent deep learning-based

transfer learning techniques, the Object Bank method was an important early work in the area of

high-level visual representations and transfer learning.

Girshick et al. [63] introduced a groundbreaking work in the field of computer vision called

R-CNN, which revolutionized object detection tasks by integrating region proposals with convo-

lutional neural networks (CNNs) and yielding significantly improved performance. The R-CNN

approach leverages transfer learning by pretraining a deep CNN on a large-scale dataset like Ima-

geNet and then fine-tuning it on a smaller, target-specific dataset. This fine-tuning process updates

the pretrained network’s weights using backpropagation, aligning them with the target task and

adapting the features learned from ImageNet to the target dataset’s object classes, resulting in im-

proved performance. The R-CNN method consists of three main components: region proposals, fea-

ture extraction, and classification. Selective Search generates candidate regions, reducing the search

space compared to a sliding-window approach. Fixed-length feature vectors are extracted from each

region proposal by warping it to a fixed size and passing it through the pretrained CNN, capturing

high-level information from ImageNet. Finally, class-specific linear SVMs classify these feature

vectors, while bounding box regression refines the objects’ spatial locations, creating a cohesive

object detection pipeline.

Building on the idea of repurposing features learned from large-scale datasets, Donahue et al.

[34] explored the potential of such features for various novel tasks, in their seminal work DeCAF.

They investigate the potential of repurposing features extracted from a deep convolutional network,

trained on a large dataset with fixed set of object recognition tasks, for novel generic tasks that differ

significantly from the original tasks and have limited labeled or unlabeled data. The authors analyze

the semantic clustering of deep convolutional features for various tasks (Figure 2.3), such as scene

recognition, domain adaptation, and fine-grained recognition challenges, and compare the efficacy

of using different network levels to define a fixed feature. The clustering results demonstrate the

generalizability and implicit semantic understanding of these features, indicating that they tend to

group images into intriguing semantic categories, despite the fact that the network was not specifi-

cally trained for them. Additionally, they demonstrate that their multi-task deep learning framework,

DeCAF, is able to learn powerful and generalizable features for semantic visual discrimination tasks.

They demonstrate that the semantic understanding embedded in DeCAF features, enables simple

linear classifiers to outperforms state-of-the-art methods based on complex multi-kernel learning

techniques with traditional hand-engineered features, across various visual recognition tasks.

The transferability of features in deep neural networks has also been investigated by Yosinski et

al. [246], who sought to understand how these features generalize across different tasks and datasets.

They discovered that first-layer features tend to be general and applicable to various datasets and

tasks. However, as features progress through the layers, they become more task-specific and less
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Figure 2.3: Several t-SNE visualizations of ImageNet validation set using different features [34].

transferable. The authors identify two factors that negatively impact transferability: 1) the special-

ization of higher layer neurons to their original task, and 2) optimization difficulties arising from

splitting networks between co-adapted neurons. Higher layer neurons’ specialization to their origi-

nal task implies that they are less likely to be useful for other tasks, thus limiting the transferability

of features learned in deep neural networks. The second factor, optimization difficulties, refers to

the phenomenon where neurons in a deep neural network become co-adapted, working together to

recognize specific features in the original dataset. When applied to a new dataset, these co-adapted

neurons may not perform as effectively, leading to decreased performance. This unexpected find-

ing underscores the importance of understanding feature learning and representation in deep neural

networks. Additionally, the authors reveal that initializing a deep neural network with transferred

features from a pre-trained network can enhance the network’s performance on a new dataset, even

if the pre-trained network was trained on an entirely different dataset. This result is significant,

demonstrating the effectiveness of transfer learning and the potential for pre-training deep neural

networks on large, general-purpose datasets to boost performance on specific tasks.

Further reinforcing the effectiveness of pretraining as a form of transfer learning, Razavian

et al. [190] showcased its applicability to an even wider array of tasks. They demonstrated that

a simple pipeline, which employs a pre-trained CNN as a feature extractor followed by a linear

classifier, can achieve remarkable results across various recognition tasks, such as object and scene

recognition, fine-grained recognition, attribute detection, and image retrieval. Their study indicates

that this straightforward approach can outperform or match the performance of more complex state-

of-the-art methods in numerous instances.

Multi-task learning

In multi-task learning, a model is trained to perform multiple tasks simultaneously, utilizing shared

representations across tasks. This approach enables the model to achieve better performance and

generalization on each individual task. This approach is particularly useful when the tasks are re-

lated, as the model can leverage the shared characteristics between them to enhance its performance.

A common form of multi-task learning involves classification tasks, where a neural network extracts

features from an input image and applies softmax to the final layer to predict the class to which the

image belongs. This method has become a standard approach in deep learning, as it is more efficient
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than training binary classifiers for each class individually. In this case, all tasks share a common

characteristic, which is the presence of a label in the input image. However, this approach can also

be extended to dissimilar tasks, such as segmentation and object detection.

One of the seminal works in multi-task learning was introduced by Caruana [12]. The author pre-

sented the concept of multi-task learning, emphasizing that concurrently learning multiple related

tasks can lead to improved performance compared to learning them separately. The paper outlines a

framework for multi-task learning and examines various applications. Caruana investigates methods

for knowledge sharing between tasks, such as feature sharing, and using outputs as inputs and vice

versa in neural networks. The author provides empirical evidence from diverse domains, illustrating

the effectiveness of multi-task learning in enhancing generalization.

Kendall et al. [99] address the challenge of finding the optimal weighting between different task

losses in multi-task learning. They demonstrate that performance heavily relies on the appropriate

choice of these weightings, which is difficult to determine through manual tuning. The authors pro-

pose a novel method that leverages homoscedastic uncertainty to combine multiple loss functions

and learn multiple objectives simultaneously. They model the loss functions for each task as a Gaus-

sian distribution with a constant variance. These variances represent the homoscedastic uncertainty

or task-dependent weighting for each task. The main idea is to learn the log of these variances log σ2

along with the model’s parameters during the training process. By optimizing these log variances,

the model can automatically adjust the weights for each task’s loss function. The total multi-task

loss function is a weighted sum of the individual task losses, where the weights are derived from

the learned homoscedastic uncertainties. Specifically, the weight for each task is the inverse of its

learned variance, which results in the following multi-task loss function:

Loss =
∑

i

( 1
2σ2

i

)Li + log(σ2
i ) (2.3)

In this formula, Li represents the loss for task i, and σ2
i is the learned variance (homoscedastic

uncertainty) for that task. By minimizing this combined loss function, the model automatically

learns the optimal weightings for each task, effectively balancing the different task losses during

training. The authors showcase their approach in learning scene geometry and semantics using three

tasks, illustrating its effectiveness in the context of complex multi-task learning scenarios.

Misra et al. [138] present strong evidence supporting multi-task learning’s effectiveness and pro-

pose an innovative approach to achieve it. Building on previous work that shared a subset of initial

network layers to extract features for multiple tasks, they acknowledged the challenge of identifying

the optimal subset. The authors conducted experiments using various network architectures in order

to determine the optimal level of shared representation for task pairs. They achieved this by split-

ting a ConvNet at different layers and measuring the performance on each task for each resulting

architecture. Their goal was to identify the most effective architecture that allowed for the greatest

transfer of knowledge between tasks, while maintaining high performance on both tasks. Their dis-

covery highlights that multi-task learning yields superior results compared to single-task learning,
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Figure 2.4: Mirsra et al. [138] experimented with several multi-task (two-task) architectures by di-

viding the ConvNet [113] at various layers for two sets of tasks. They compared the performance of

these networks on each task to that of task-specific networks. They observed that the most effective

multi-task architecture is dependent on the specific tasks involved and does not necessarily general-

ize well to different pairs of tasks. @ 2016 IEEE

and the most effective architectural split is contingent on the specific task pairings, which varies for

each pair of tasks. However, identifying the optimal architecture for each task pair is cumbersome

and impractical, as it requires enumerating all possible splits. To address this challenge, the authors

introduced cross-stitch units, enabling a single network to capture various "Split" architectures and

more. These units model shared representations by learning a linear combination of input activation

maps from both tasks at each layer, with subsequent layers operating on this shared representation.

Cross-stitch networks automatically learn the optimal combination of shared and task-specific rep-

resentations, eliminating the need for brute-force enumeration and search, ultimately resulting in

better performance than those obtained through exhaustive exploration.

Multi-task learning became increasingly popular in the following year. This led to Sebastian

Ruder [166] publishing a survey that examines different MTL methods and offers valuable insights

into the intuition behind MTL’s success. Ruder highlights implicit data augmentation, attention

focusing, and regularization as some of the reasons for MTL’s effectiveness.

Implicit data augmentation is a crucial factor in effectiveness of MTL, as it effectively increases

the sample size utilized for training the model. Since all tasks exhibit some degree of noise, training

a model on a single task (task A, for example) aims to learn a good representation for that specific

task, ideally disregarding data-dependent noise and generalizing well. However, different tasks have

varying noise patterns, so a model trained on two tasks simultaneously can learn a more general

representation. This prevents the risk of overfitting to task A, as learning tasks A and B jointly

allows the model to obtain a superior representation (F) by averaging the noise patterns.

Attention focusing is another essential aspect of MTL’s efficacy, particularly when a task is

highly noisy, or the data is limited and high-dimensional. In such cases, it becomes challenging

for a model to differentiate between relevant and irrelevant features. MTL aids the model in con-
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Figure 2.5: Kendall et al. [99] developed a method to combine multiple regression and classification

loss functions for multi-task learning. Their architecture accepts a single monocular RGB image as

input and generates pixel-wise classification, instance semantic segmentation, and an estimation of

per-pixel depth. Multi-task learning can enhance accuracy compared to individually trained models,

as cues from one task (e.g., depth) help regularize and boost the generalization performance in

another domain (e.g., segmentation). @ 2018 IEEE

centrating on crucial features, as other tasks supply supplementary evidence for the significance or

insignificance of those features.

Regularizer is the final key component of MTL’s success. By introducing an inductive bias, MTL

acts as a regularizer that helps to mitigate both overfitting and the model’s capacity to fit random

noise, which is known as the Rademacher complexity.

Building upon the ideas from previous methods to address network architecture and loss weight

balancing challenges, Liu et al. [127] proposed a novel multi-task learning architecture that employs

task-specific feature-level attention, called the Multi-Task Attention Network (MTAN). This archi-

tecture comprises a single shared network with a global feature pool and a soft-attention module for

each task. These modules enable the learning of task-specific features from the global features while

allowing features to be shared across different tasks. The MTAN can be built on any feed-forward

neural network and is designed to address two main challenges in multi-task learning: Network Ar-

chitecture (weight sharing mechanism) and Loss Function (loss weight balancing mechanism). The

MTAN architecture encourages the learning of both task-shared and task-specific features, enabling

the network to learn a generalizable representation while avoiding overfitting or underfitting. Addi-

tionally, the MTAN inherently balances the contributions of each task in the multi-task loss function,

making it less sensitive to different weighting schemes. Authors demonstrate that the MTAN archi-

tecture achieves state-of-the-art performance in multi-task learning compared to existing methods

and is less sensitive to various weighting schemes in the multi-task loss function. The architecture

is evaluated on a variety of datasets and tasks, including image-to-image predictions and image

classification tasks, showcasing its effectiveness and adaptability.

In recent years, numerous papers have proposed innovative methods to address the challenges

in multi-task learning, Notable examples include, but are not limited to, HRNet [202] and Grad-
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Norm [16], which present distinctive solutions aimed at enhancing the effectiveness of previous

approaches. HRNet maintains high-resolution representations throughout the network for tasks like

semantic segmentation and human pose estimation, preserving fine-grained details by connecting

high-resolution feature maps in parallel with the low-resolution ones, thereby improving the per-

formance of tasks requiring precise pixel-level predictions. On the other hand, GradNorm tackles

the challenge of loss balancing by dynamically adapting loss weights during training. It calculates

the gradient norms for each task and adjusts the task-specific loss weights to equalize the gradient

norms across tasks or follow a target ratio. This adaptive loss balancing prevents tasks with larger

gradients from dominating the learning process, enabling the network to learn multiple tasks more

effectively.

2.2.2 Transductive Transfer Learning

Transductive transfer learning addresses the situation where labeled data are only available in the

source domain, and the target domain has only unlabeled data, for example when obtaining labeled

data for the target domain is expensive, time-consuming, or simply not feasible. The challenge lies

in bridging the gap between the source and target domains without the benefit of labeled data in the

target domain.

Domain adaptation

Domain adaptation algorithms generally fall into two categories: feature-based and instance-based.

Feature-based approaches, which are more popular, focus on using training samples from both

source and target domains to extract shared features or minimize the feature distribution distance.

This typically involves calculating the distance between low-level features, selecting or re-weighting

them, and then learning high-level feature combinations. Some feature-based methods also convert

features into a new space to reduce distance between them. These methods perform well when

source and target domains have strong connections, but can struggle when there is limited similarity

between data samples. On the other hand, instance-based algorithms select similar instances from

different domains to facilitate quality knowledge transfer. These methods often combine instance

re-weighting and distribution distance metrics.

Learning from Instances. Essentially, instance-based learning algorithms involve transferring

knowledge from the source domain to the target domain through reweighting or resampling source

instances. These methods rely on two key assumptions: 1) a certain number of training instances in

the source domain are relevant to the target domain, enabling their reuse, and 2) the conditional dis-

tributions of the source and target domains are identical. It is crucial to selectively choose samples

that will be beneficial for the target domain task since not all source data can be reused for train-

ing the target model. Wang et al.’s [232] proposed four rules for designing instance-based domain

adaptation: 1) Minimize the weighted empirical loss across source and target domains, 2) Allocate

balanced weights to data points to prevent over-fitting caused by perturbations in the training data,
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3) Assign more weight to the target sample since it will be used for testing, and 4) Distribute weights

such that the performance gap between the domains is minimized.

Learning from Features
Nevertheless, the conditions required for instance-based algorithms do not consistently apply to

many real-world problems [201, 244]. As a result, feature-based methods have been developed as

an alternative.

Ghifary et al. [59] introduced the concept of an adaptation layer with their Domain Adaptive

Neural Network (DaNN), a modified feedforward neural network. The loss function consists of

two components: general loss and Maximum Mean Discrepency (MMD) regularizer. The MMD

measures the dissimilarity between two probability distributions based on their respective samples.

The goal is to minimize the distribution mismatch between the source and target feature distributions

in the latent space domain. The MMD loss can be calculated as follows:

MMD2(P, Q) = |Ex[Φ(x)] − Ey[Φ(y)]|2 (2.4)

here P and Q are the source and target domain distributions, x and y are samples from these dis-

tributions, Φ(x) and Φ(y) are the mappings of x and y into the latent space, and Ex and Ey denote

the expectations over the source and target domain samples, respectively. The MMD loss quantifies

the distance between the means of the mapped samples in the latent space. While the DaNN out-

performed similar models, its performance was limited due to its simplicity and shallow structure.

To address this issue, Tzeng et al. [215] proposed a method, called Deep Domain Confusion (DDR)

to improve domain adaptation in deep learning by focusing on learning domain-invariant features.

To achieve this, they introduce a loss function that ensures the features extracted from both source

and target domains have similar distributions, making them indistinguishable. This is accomplished

by using the Maximum Mean Discrepancy (MMD) metric as a measure of divergence between the

domains. The DDC method is integrated into the deep neural network architecture as a layer, allow-

ing for simultaneous training with the main task on the source domain. This joint training process

guides the model to learn domain-invariant features that are useful for both source and target do-

mains. Additionally, they show that the evaluation metric could be used to determine the position

and dimensionality of the adaptation layer.

Ganin et al. [53] proposed a similar approach for learning domain invarient features but with a

different mechanism. They propose a method for unsupervised domain adaptation models using a

gradient reversal layer (GRL) and a domain-adversarial training strategy. The model consists of a

feature extractor, responsible for learning domain-invariant features, and a domain classifier, which

attempts to distinguish between the source and target domains. The adversarial loss, incurred by the

domain classifier, is minimized, encouraging the feature extractor to generate features that confuse

the domain classifier. The GRL is inserted between the feature extractor and the domain classifier,

reversing the gradient during backpropagation, effectively maximizing the domain classification er-

ror. In other words, while the domain classifier parameters are optimized to distinguish between
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source and target domains, the reversed gradients are passed to the feature extractor to induce the

opposite effect, producing features that confuse the classifier. By optimizing these competing objec-

tives, the model learns domain-invariant features that are useful for the primary task while being less

sensitive to differences between the source and target domains, resulting in improved generalization

on the target domain data.

Drawing on the concept of Maximum Mean Discrepancy (MMD) as a metric for gauging dif-

ferences between source and target features, Long et al. [130]. developed the Deep Adaptation

Network (DAN) framework for domain adaptation. This method utilizes a multi-kernel MMD loss

to minimize distribution discrepancies between source and target domains across multiple layers in

a deep neural network. By freezing the initial layers that learn general features and fine-tuning the

mid-layers, the last few layers in the network effectively benefit from this approach.

Another approach for training a model while simultaneously learning domain-invariant features

is Deep CORAL (CORrelation ALignment), proposed by Sun et al. [201]. This method focuses on

aligning the second-order statistics, specifically the covariance matrices, of the source and target

domains within the feature space of a deep neural network. Deep CORAL works to minimize the

distance between the source and target covariance matrices while maintaining the discriminative

power of the deep features. This is accomplished by incorporating a CORAL loss term into the

standard classification loss. This term measures the difference between the second-order statistics

(covariance matrices) of the source and target domain feature distributions. The primary objective

of the CORAL loss is to minimize this difference, which in turn helps align the source and target

domain distributions. As a result, the performance in domain adaptation tasks is improved. The

CORAL loss function can be calculated as follows:

CORALloss = 1
4d2 ‖Cs − Ct‖2

F (2.5)

Where Cs and Ct are the covariance matrices of the source and target domain features, re-

spectively. d is the dimensionality of the feature representations. ‖.‖F denotes the Frobenius norm,

which is used to calculate the distance between the two covariance matrices.

Alternatively, multi-kernel MMD is employed to reduce the distribution mismatch between the

source and target domains, with multiple adaptation layers utilized to enhance performance. A prime

example of multi-kernel MMD-based architectures is the Domain Adaptive Hash (DAH) network

in Venkateswara et al.’s [224] "Deep hashing network for unsupervised domain adaptation." This

research, the first of its kind, leverages the feature learning capabilities of neural networks to learn

representative hash codes for addressing domain adaptation problems. Notably, hashing techniques

can convert high-dimensional data into binary codes, simplifying access and storage.

Tzeng et al. [214] collected all the ideas from previous methods and proposed a unified frame-

work for unspervised domain adaptation. They proposed that each method has three parts. The first

part is the base model, whether it is discriminative [53, 59] or generative [126]. The second part

is source and target mappings, whether they are tied [53, 59] or untied [126]. And the last part is
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Figure 2.6: To enhance domain adaptation performance, Deep CORAL aligns the covariance matri-

ces of the source and target domains in a deep neural network’s feature space. This is achieved by

minimizing the CORAL loss term in the classification loss, which reduces the difference between

the correlation matrices of the source and target feature domains[201].

the adversarial loss that makes sure the source and target mappings distributions match, examples

are minmax [53], confusion [59], and GAN [126]. In this unified framework they proposed a novel

method that uses a discriminative model, with unshared network weights and a GAN based adver-

sarial loss. The framework comprises a source encoder (trained on source domain data), a target

encoder (sharing the same architecture as the source encoder but initially untrained), and a domain

discriminator (trained to distinguish between features from the source and target encoders). The

training process involves iteratively training the source encoder with supervised learning, training

the domain discriminator to recognize the features from the source and target encoders, and updat-

ing the target encoder to generate features that confuse the domain discriminator. This adversarial

training process aims to align the features learned by the target encoder with those of the source

encoder, resulting in features that are both discriminative for the classification task and domain-

invariant across the source and target domains. at test time, the model uses the target encoder and

the source classifier to predict the labels for the target domain.

Tzeng et al. [214] consolidated ideas from previous methods and proposed a unified framework

for unsupervised domain adaptation, consisting of three key components. The first component is

the base model, which can be either discriminative [53, 59] or generative [126]. The second com-

ponent involves source and target mappings, which can be either tied [53, 59] or untied [126]. The

third component is the adversarial loss that ensures the distributions of the source and target map-

pings match, such as min-max [53], confusion [59], or GAN-based [126] losses. Within this unified

framework, the authors introduced a novel method that employs a discriminative model with un-

shared network weights and a GAN-based adversarial loss. The method includes a source encoder

(trained on source domain data), a target encoder (sharing the same architecture as the source en-

coder but initially untrained), and a domain discriminator (trained to distinguish between features
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from the source and target encoders). The training process iteratively updates the source encoder

with supervised learning, trains the domain discriminator to recognize features from the source and

target encoders, and refines the target encoder to generate features that confuse the domain discrim-

inator. This adversarial training process aims to align features learned by the target encoder with

those of the source encoder, producing features that are both discriminative for the classification

task and domain-invariant across the source and target domains. During testing, the model utilizes

the target encoder and the source classifier to predict labels for the target domain

2.3 Active Learning

In this section, we explore the seminal works of active learning, a machine learning technique that

leverages an oracle to efficiently select and acquire labeled data that can enhance the model’s per-

formance. By actively selecting the most informative data points, active learning reduces the need

for massive amounts of labeled data and improves model accuracy. Consider a supervised learning

problem with a labeled data pool L and an unlabeled data pool U . The goal of active learning is to it-

eratively select instances from U to be labeled and added to L, maximizing the learning algorithm’s

performance.

Given a hypothesis space H, a learning algorithm A, and a selection strategy S, the active

learning process can be formulated as follows:

1. Train an initial model h ∈ H using the labeled data L.

2. Estimate the informativeness of each instance x ∈ U using the selection strategy S and the

current model h.

3. Select the instance x̂∗ from U with the highest informativeness score,i.e.

x̂∗ = arg max
x∈U

S(x, h).

4. Obtain the label ŷ for the instance x̂∗ from an oracle, and update the labeled data as L =
L ∪ {(x̂∗, ŷ)} and the unlabeled data as U = U \ {x̂∗}.

5. Update the model h by retraining it with the updated labeled data L.

6. Repeat steps 2-5 until a stopping criterion is met, such as a predefined budget for labeling

instances or model performance convergence.

Active learning methods for classical machine learning typically involve sampling data instances

one by one, which is suitable for traditional models such as support vector machines, decision trees,

and logistic regression. Settles [184] has written a comprehensive survey on these pre-deep learning

active learning techniques. However, this approach is not efficient for deep learning models, as

they often require large-scale datasets and benefit from batch processing to optimize their training.

Consequently, active learning strategies for deep learning (DeepAL) have been adapted to account
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for these differences, focusing on batch sampling and other techniques that cater to the unique

requirements of deep neural networks. In this section, we will primarily focus on active learning

methods tailored for deep learning.

The batch-based query strategy forms the basis of DeepAL. A simplistic approach might involve

continuously querying a batch of samples using a one-by-one strategy. For instance, Janz et al. [87]

employs Bayesian Active Learning by Disagreement (BALD) to score the unlabeled samples and

then select the top-k samples with the highest scores. BALD’s acquisition function is designed to

measure the expected information gain from observing a new data point’s label, by calculating the

difference in entropy between the expected posterior distribution and the expected entropy of the

posterior distribution after label observation. This method is effective in identifying data points that

are highly informative and can provide useful insights into the model parameters. However, this

approach tends to select similar samples, which may lead to redundant information and limit the

model’s learning potential. Additionally, the method treats each sample independently, without con-

sidering their correlation, which can result in suboptimal batch selections. To address these issues,

Kirsch et al. [109] improves BALD by estimating the joint mutual information between multiple

data points and model parameters, thereby considering the correlation between different query sam-

ples simultaneously. The main objective of BatchBALD is to maximize the mutual information

between a batch of points B and the model parameters θ. The acquisition function for a batch of

x1:b with predictetd labels y1:b is given by the mutual information between y1:b and θ, which can be

written as:

I(y1:b, θ|x1:b, D) = H(y1:b|x1:b, D) − Ep(θ|D)[H(y1:b|x1:b, D, θ)] (2.6)

The equation 2.6 shows that for high mutual information, the left term (model prediction en-

tropy) should be high, and the right term (expectation of entropy over posterior) should be low.

The first term, H(y1:b|x1:b, D), represents the entropy of the labels y1:b given the batch of points

x1:b and the data D. This term measures the uncertainty in the labels given the data points, and a

higher value indicates the batch contains points, where model is marginally uncertain about their

labels. The second term, Ep(θ|D)[H(y1:b|x1:b, D, θ)], represents the expected entropy of the labels

y1:b given the batch of points x1:b, specific model parameters θ, and the data D, where the expecta-

tion is taken over the posterior distribution of the model parameters given the observed data D. This

term measures the average uncertainty in the labels for specific model parameters, and a lower value

indicates that on average, the model is uncertain about the label of y1:b for given model parameters.

In other words, different models (parameters) confidently disagree about the labels, so acquiring the

labels y1:b for x1:b is expected to provide a significant information gain about the model parameters.

The uncertainty-based approach is a popular query strategy in Active Learning (AL) due to

its simplicity and low computational complexity. Often employed in shallow models like SVM or

KNN, it uses traditional uncertainty sampling methods to accurately measure a model’s uncertainty.

In this strategy, the most uncertain samples are selected to form a batch query set. Margin sam-
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pling is one example, where margin M is the difference between the highest and second-highest

predicted probabilities for a sample. Smaller margins indicate greater uncertainty, and the top-K

samples with the smallest margins are selected. Information entropy is another commonly used un-

certainty measure, with larger entropy values indicating greater uncertainty. Thus, the top-K samples

with the highest information entropy [184] are chosen. There are several DeepAL methods that use

uncertainty-based sampling strategies [71, 156]. However, DeepFool Active Learning (DFAL) [40]

highlights that conventional methods are vulnerable to adversarial examples. Instead, DFAL focuses

on examining examples near the decision boundary and actively incorporates the information from

these adversarial examples to estimate their distance to the boundary. This approach can effectively

enhance the convergence speed of CNN training. However, it may lead to limited diversity in batch

query samples, resulting in suboptimal or even ineffective deep learning model training. A potential

solution is to adopt a hybrid query strategy that considers both the information volume and diversity

of samples, either explicitly or implicitly.

Diverse Mini-Batch Active Learning [261], is one such method that incorporates informative-

ness into the K-means optimization objective by assigning weights. Additionally, it delves into a

hybrid query approach that takes into account both the information volume and diversity of samples

within a mini-batch sample query context.

Additionally, Ash et al. [5] proposed a method for achieving a balance between uncertainty

and diversity in without the need for hand-tuned hyperparameters. The authors propose to measure

the uncertainty of the model by calculating the gradient magnitude with respect to the parameters

in the final (output) layer. This is done using the most likely label according to the model. The

gradient magnitude indicates how sensitive the model’s output is to changes in the input. Larger

gradients signify higher uncertainty, meaning the model is less confident about the predicted label.

o ensure that the selected batch of examples covers a diverse set of scenarios, the authors focus on

gradients that span various directions. This helps the model improve its understanding of different

aspects of the problem. Finally o build up the batch of query points based on the "hallucinated gra-

dients" (imaginary gradients that haven’t been observed yet), the authors employ the k-MEANS++

initialization technique. This method helps in selecting the initial cluster centers for the k-MEANS

clustering algorithm. By using k-MEANS++ initialization, the authors can simultaneously capture

the magnitude of a candidate gradient and its distance from previously included points in the batch.

Another group of active learning approaches explores the use of coresets. A coreset is a subset

of a dataset that serves as a representative sample for the entire set. The concept, introduced by

Phillips (2016) [148], involves utilizing coresets to approximate the full dataset in such a way that

the output of an algorithm applied to the coreset closely resembles the output obtained from the

entire dataset, with respect to a specific cost function. By executing the same algorithm on a smaller

portion of the input data, coresets facilitate the development of efficient approximation algorithms.

Many coreset methodologies draw inspiration from computational geometry

Geifman et al. [56] propose propose an active learning algorithm that is inspired by coreset

dataset compression ideas. The method is based on the farthest-first traversal (also known as the
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Gonzalez [65] algorithm) in the space of neural activations over a representation layer. The farthest-

first traversal is a greedy algorithm used for the k-center clustering problem, where points are chosen

iteratively, with each subsequent point being the one farthest away from the points already chosen.

The main idea is that, for complex inputs like images or sound, it is more meaningful to consider

the geometry of spaces induced by the representation layers of a deep neural network rather than

the input space itself. In their approach, the authors aim to select informative samples based on their

distance in the representation layer’s space.

Building upon prior work and drawing inspiration from a similar idea, Sener et al. [183] pro-

posed a seminal deep active learning technique for batch sampling that was formulated as a core-set

selection problem. The goal is to find a small subset from a large unlabeled dataset that allows a

model to perform competitively when trained on it. authors derives a rigorous bound between the

average loss over a chosen subset and the remaining data points based on their geometry. The pro-

posed active learning algorithm aims to minimize this bound, which is equivalent to solving the

k-Center problem, which involves finding a set of k centers in a metric space that minimizes the

maximum distance between any point in the space and its closest center. The author employs an ef-

ficient approximate solution to this combinatorial optimization issue and evaluates the algorithm’s

performance using three distinct image classification datasets, achieving state-of-the-art results by

a significant margin.

In a recent study, Simeoni et al. [194] propose combining active learning with semi-supervised

learning to fully utilize all available information, including unlabeled data, previously labeled data,

and new data in each cycle of active learning. The authors first learn rich representations through

unsupervised pretraining on the union of labeled and unlabeled data. In each active learning cycle,

they employ semi-supervised methods to train the task learner. By comparing various acquisition

strategies, the researchers discover that incorporating unlabeled data significantly enhances the per-

formance of active learning methods.

2.4 Summary

To sum up, this chapter recognizes the difficulties stemming from limited data when training deep

learning models, especially in the context of computer vision tasks. We have presented an overview

of key approaches and techniques, each tailored for specific problem settings. Within each problem

setting, these methods aim to tackle the issue by addressing it from different perspectives, thereby

offering diverse solutions to the labelled data scarcity challenge.

We provided a summary of data augmentation techniques, transfer learning approaches, and

active learning methods, which serve as key approaches to addressing the challenges of labelled

data scarcity in deep learning models.

Data augmentation techniques, such as the widely used CutMix, MixUp, AutoAugment, and

RandAugment, are applied to artificially increase the training dataset, subsequently enhancing the

performance of deep learning models. As a standard part of training models, these techniques have
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gained widespread adoption. However, they may face limitations due to insufficient diversity and

the inability to address biases present in the dataset.

Pretraining, which is one of the most commonly used methods in training deep models, in-

volves employing a model trained on an extensive dataset as the foundation for a new task. In

contrast, multi-task learning focuses on training a single model on various related tasks to enhance

performance across each individual task. The improvement in performance for individual tasks can

be attributed to the implicit data augmentation, the regularization effect, and the enhancement of

shared information between tasks that multi-task learning provides. Domain adaptation approaches

aim to develop domain-agnostic data representations, facilitating the exchange of knowledge across

disparate domains, further contributing to the effectiveness of deep learning models.

Active learning methods, on the other hand, prioritize expanding the labeled set while maximiz-

ing the information gained with minimal labeled data. These approaches involve querying an oracle,

such as a human expert, to provide labels for the most informative subset of data, streamlining the

learning process.

It is important to note that many of these techniques can be used simultaneously to optimize

performance. For example, data augmentation, pretraining, and domain adaptation can be combined

to achieve the best results.

In conclusion, although a variety of methods have been proposed to tackle the issue of data

scarcity in training deep learning models, there remains significant potential for further advance-

ments and improvements in this field.
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Chapter 3

Active Learning for Structured
Prediction from Partially Labeled Data

3.1 Abstract

In this work, our contribution lies in the development of a universal active learning algorithm de-

signed for structured prediction. This method efficiently harnesses partially labeled data to train

models producing interconnected labels for an image or video. We iterate between requesting user

labels for unlabeled data and model retraining. Our novel algorithm, adept at selecting data for

labeling, chooses instances that maximize expected information gain based on belief propagation

inference. Applicable across a spectrum of tasks and models, we demonstrated its efficacy on the

recognition of human actions and group activities in video sequences. Performance comparisons

show our algorithm surpassing previous active learning methods and achieving accuracy on par

with fully supervised methods, but using significantly less labeled data.

3.2 Introduction

Consider the activity recognition problem depicted in Fig. 3.1. Gathering large quantities of labeled

data can lead to accurate classifiers that can predict what each person is doing and the overarching

activity taking place in a scene.

However, naive approaches for labeling training data would be inefficient. Video data have sig-

nificant redundancy; it seems unnecessary to label every single person in each frame of each video.

Further, action categories vary significantly in frequency and intra-class variation. If images were

selected randomly for labeling, copious quantities of similar walking poses would likely result. Fi-

nally, contextual inference that utilizes relationships between people in a scene should be accounted

for when deciding whether a sample is necessary for learning.

For these reasons, we focus on active learning for building labeled datasets in structured predic-

tion. In our framework the active learner benefits from partially labeled data. For example, in the

task of activity recognition, we have video frames consisting of multiple people with both individ-

ual action and overarching activity labels. Our proposed algorithm selects which people and scenes
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Figure 3.1: Example of active learning for recognizing human actions. Given a partially labeled

dataset (labeled examples in green, unlabeled red), we train a classifier to recognize the actions of

each person and group in a scene. Our active learning criterion selects individual people or scenes

to be annotated by the user (shown in yellow). These new data are added to the training dataset, and

the process repeated.

would be most informative to label. This allows labeling effort to hone in on the most important

examples – such as unusual poses, categories with intra-class variation, key people in scenes, or

ambiguous overarching scene labels.

While we demonstrate our active learning algorithm on human activity recognition, we note that

structured prediction is a common task in computer vision. A variety of methods and algorithms

have been developed in this vein. Recently, a number of approaches encode graphical model-style

structured prediction inference within modern deep neural networks [262, 210, 85, 30]. Our algo-

rithm follows in this line, showing that a novel criterion for active learning can result in highly

effective inference for structured prediction with these state of the art techniques.

Active learning has deep roots within the vision/learning literature. The key ingredient of an ac-

tive learning algorithm is the selection strategy used to choose which unlabeled examples to label.

Although active learning has substantial literature, there has been limited work on active learning

for structured prediction. Standard methods include uncertainty based sampling [133, 116], margin

based sampling [180], expected model change [186, 225], and query-by-committee [187]. For ex-

ample, a typical uncertainty based approach [133] would calculate the entropy of all the people in a

scene separately and choose the ones with the highest entropy.

A key concept in graphical models and information theory is mutual information, which mea-

sures the amount of information gained about one random variable through the observation of an-

other. In the context of a graphical model, an edge between two nodes signifies that they are not
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independent and that they share some mutual information. In other words, knowing the state of one

node can reduce uncertainty about the state of another. This dependency structure can lead to sig-

nificant redundancies in the information carried by the nodes. For instance, in a densely connected

graph, knowing the state of a single node might give us a considerable amount of information about

the states of its neighbors. Similarly, in a hierarchical structure, higher-level nodes might summarize

the information contained in a whole subset of lower-level nodes. Given this property, it’s plausible

to assume that we might not need to label every node in a graphical model to train an effective

machine learning model.

To illustrate, consider a scenario where we are trying to understand the group activity of people

in a scene. In this situation, each person could be a node in the graph, with edges representing the

interaction between them. The group activity can be inferred by the individual actions of people, but

in many cases, understanding the action of just one or two key individuals might be enough to infer

the overall group activity. Hence, we might not need to label the actions of every individual (node)

to predict the group activity effectively.

With this motivation, we propose the development of an active learning method designed to

select for labeling those nodes expected to provide the most information. This strategy could be

based on measures of expected information gain, identifying those nodes which, when labeled,

would most significantly reduce the uncertainty about the unlabeled nodes. More specifically, we

approximate the mutual information between each node and the rest of the graph by estimating how

much the average entropy of the graph would be reduced if we “knew" the label of a particular node

in the graph.

The main contributions of this work are (1) introducing a novel expected structured entropy

reduction as a sample selection criterion for active learning, (2) developing an inference machine

based on deep neural networks for efficiently computing this criterion, and (3) demonstrating the

effectiveness of this algorithm for labeling data for human activity recognition

In the rest of the chapter, we first review related work (Sec. 3.2.1). Then we present our algo-

rithm and the details of our proposed criterion (Sec. 3.3). We conduct empirical comparisons of our

proposed method to the state of the art (Sec. 3.4) and conclude in Sec. 3.7.

3.2.1 Related Work

In this chapter we propose a novel approach for active learning in structured prediction, applied

to human activity recognition. Each of these areas has seen substantial amounts of previous work.

Below, we briefly review closely related previous work in each of these areas.

Active Learning: A large number of methods and applications of active learning have been ex-

plored. Active learning has been used for many tasks such as image classification [150], categoriza-

tion of images and objects [94, 86], video segmentation [41, 45], and discovery of human interac-

tions [105]. Another prominent use case is labeling large video or image datasets [245, 20, 228, 169]

There are numerous methods to measure the informativeness of samples. Entropy [189] is a

standard measure, which has been used in many applications. For example, Holub et al. [77] devel-
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oped a measurement based on minimum expected entropy. Varadarajan et al. [222] measure entropy

reduction over the whole dataset. An alternate uncertainty criteria is least confidence, where the

learner queries the instance that has the lowest probability for its most likely label [185]. Roth and

Small [165] use the margin between the two most probable classes as an uncertainty measure. Sun

et al. [203] estimate the joint distribution in a histogram-based method, however full supervision is

needed, which could be expensive.

All these methods require the user/oracle to fully label an instance. However, we are interested

in structured prediction tasks. Recent active learning methods that use partially labeled data include

Luo et al. [133], in which the entropies of the marginal distributions are computed using belief

propagation. Vezhnevets et al. [225] measured the (discrete) count of changes in labels of the nodes

in a CRF, retraining the model for each instance and every possible label, on each iteration. We

build on these approaches, by taking into account relations between examples, and select instances

based on how much information they can provide to other examples as well. Further, rather than

counts, we instead we measure expected entropy change which is a more informative, continuous

value, within a more efficient belief propagation paradigm.

Structured Prediction: Many computer vision problems involve a set of output variables with re-

lations among them. Structured prediction has a long history and recently has been addressed using

deep learning. Zheng et al. [262] design a network called CRF-RNN which is basically a CRF

that is formulated with Guassian pairwise potentials, trainable in and end-to-end manner. Tompson

et al. [210] build a model consisting of a MRF and a CNN that are jointly trained to exploit re-

lationships between body parts for human pose estimation. Deng et al. [31] propose to represent

factor graph in deep learning to model group activities. Jain et al. [85] use a generic method to train

spatio-temporal graphs in a deep learning framework. Deng et al. [30] propose a sequential infer-

ence model in an RNN framework that is motivated by the traditional message passing inference

algorithm. They utilize gates on edges between graph nodes to learn the structure of a graph. Our

proposed method utilizes Deng et al.’s inference RNN-based inference technique.

Activity Recognition: In our work we focus on recognizing human actions and overarching group

activities taking place in a scene. Previous work on this topic has shown that modeling this problem

as a form of graphical model helps in providing contextual information for recognizing indvidual

and group activities [2, 115, 171, 17, 172, 162]. Lan et al. [115] used latent variables in a max margin

framework to find the most discriminative structure for the scene. Amer et al. [2] used grouping

nodes to achieve the same goal. Shu et al. [192] utilized AND-OR graphs to recognize events and

assign roles to the engaged people in noisy tracklets. Khamis et al. [100] combined track-level

and frame-level information for the task of action recognition. Ramanathan et al. [154] use attention

models to focus on the key player in sports videos. Deng et al. [30] used Recurrent Neural Networks

to learn the structure of the people in a scene. In this work we propose a general active learning

method for selecting the most informative nodes in structured data. Activity recognition methods

can benefit from our approach since annotating videos/images with a full set of action and activity

labels is time-consuming.
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3.3 Active Learning for Structured Prediction

Successes in visual recognition hinge on the availability of quantities of labeled training data. Ac-

quiring these labeled data efficiently is especially important in human activity recognition. Videos

contain much redundant data, and significant structure exists amongst the people present in a scene.

Leveraging information regarding the relationships between people and focusing labeling effort on

more challenging categories present opportunities for efficiency.

Consider the example images in Fig. 3.2. Knowing that the action of one person in this scene is

walking will assist in labeling other people in the scene. As another example, consider the volleyball

scenes depicted in Fig. 3.6. Focusing labeling effort on rare, challenging classes such as spiking that

help determine the group activity is advantageous.

We formalize our ideas within a typical active learning setting. We start with an initial labeled

data set L, and train a model. Next, we select for labeling additional data from an unlabeled pool U .

The learner will alternate between these two stages to build a progressively more accurate model.

The key question we must answer is: which unlabeled instances from U should we choose to label?

In our work the data are a set of video frames, in which we wish to predict the actions of

each person and the overarching group activity taking place. In this structured prediction task, good

samples to label are ones about which we are uncertain, and will help to disambiguate many other

labels. Hence, our goal is to design an active learning algorithm that annotates the right human

actions / group activity labels to improve the learned classifier.

To quantify this we use expected reduction in entropy as our selection criterion. Entropy refers

to uncertainty. For example, if an instance has similar probabilities for different labels it has a high

entropy. An instance with low entropy means the model can determine the label of that instance with

high confidence. We select the most informative instance(s) based on how much entropy is reduced.

This is a simple idea and similar ideas have been used before. However, structured prediction

presents new challenges: how can we know how much labeling a particular unlabeled instance

yu ∈ U , reduces the entropy? This is the challenge that we address in this work. In a naive solution,

for all possible labels of yu a classifier is trained on yu ∪L and the expected entropy is computed by

taking a weighted average. Obviously, this is not feasible because it is time consuming (especially

for deep learning) and secondly adding one datum is very noisy.

We address this challenge with an intuitive method based on belief propagation. In order to

estimate the entropy if we knew the label of an unlabeled sample yu, we consider it as an observation

using every possible value for it, and perform belief propagation. Based on this intuition, for every

unlabeled node yu we calculate the average entropy reduction and select the ones that have the

largest entropy reduction. We explain the details of this method below.

3.3.1 Stage 1: Structured Prediction Model

In this section we introduce the formulation of the structured prediction model and how we connect

it to the active learning procedure.
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We formulate our model as follows. Denote the image observations as X = {xi} and the people

and scene labels as Y = {yi}. We define a graphical model describing the distribution over variables

Y conditioned on the observation X:

P (Y |X; θ) = 1
ZX

∏
f∈F

φf (yf , xf ; θf ) (3.1)

in which θ are the parameters of the model, F is the set of cliques, yf , xf , and θf are variables

and parameters of a clique f . We utilize graphs that connect each action / group activity label to its

corresponding person / scene image features, and a fully connected graph of relations between all

people and the group activity in each scene.

In our work we model all distributions using convolutional neural networks. These include po-

tentials that relate image observations to action/group activity labels, and potentials over sets of

action/group activity labels in an image.

Inference in this graphical model is conducted using a forward pass through the neural network,

which imitates a fixed set of rounds of belief propagation over the graph [30]. In this manner, we

can estimate marginalized probability distributions P (yi|X; θ) over a particular variable, or likewise

P (yi|X, yj = k; θ) given a value for another label yj .

Parameter Learning. In active learning, we normally only have a part of the data labeled. Denote

the labeled set as L = {yl}. To learn the model parameters θ, we use the loss:

�(θ) = −
∑
yl∈L

log P (yl = y∗
l |X; θ) (3.2)

where y∗
l is the provided label for variable yl. This function minimizes the negative log likelihood

of the correct classes for the labeled data.

Based on the above formulation, in the next section, we provide the details of how our active

learning algorithm chooses new data to be annotated by the oracle.

3.3.2 Stage 2: Instance Selection Strategy

Our objective is to select informative samples for labeling. These are samples that would signifi-

cantly reduce ambiguity in labels across an entire scene. The previous section discussed how infer-

ence could be conducted provided we have certain node values.

The ideal scenario is to pick a node from a graph that holds the maximum information about

the other nodes. This node is the one with the highest mutual information with the rest of the graph,

meaning it carries the maximum information. To put it another way, knowing the label of this node

would provide us with the most information compared to knowing the label of any other individual

nodes. Let’s assume a graphical model, g, with N nodes. We can frame the problem as follows:

yi = arg max
i

I(yi, g) (3.3)

Here, mutual information can be portrayed using the entropy of the graph, as illustrated below:
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Algorithm 1 Compute Top K Most Informative Instances

1: procedure GETINSTANCES(COUNT: INT)

2: for all frame f in dataset do
3: g ← BUILDGRAPH(f)
4: Φg ← GETEXPECTEDENTROPYREDUCTION(g)
5: end for
6: return ARGMAXTOPK(Φ, count)
7: // Note:Φ is a set of arrays. ArgmaxTopK searches this 2D structure and returns indexes of K largest

instances (persons or scenes annotations)

8: end procedure

yi = arg max
i

H(g) − H(g|yi) (3.4)

In these equations, H(g) represents the entropy of the graph, and H(g|yi) denotes the entropy

of the graph given the label of node i. In essence, the most informative node is the one that, if its

label were known, would most significantly reduce the entropy of the graph.

We now utilize this to compute expected entropy reduction to determine the informativeness of

samples.

Assume a frame requiring N labels (person actions + group activity) is given; for ease of no-

tation we assume each can take T possible values (actions / group activity). We can obtain the

probability distributions P (yi|X; θ) for each person and the group activity using the model from

Sec. 3.3.1.

The entropy of node i with label yi, H(yi) is defined as:

H(yi) = −
T∑

j=1
P (yi = j|X; θ) log P (yi = j|X; θ) (3.5)

where P (yi = j|X; θ) indicates the probability of assigning label j to the variable i. The average

entropy, H̄(g), of a graph with N nodes is the mean of the individual node entropies:

H̄(G) = 1
N

N∑
i=1

H(yi) (3.6)

Expected average entropy. In a graph g with some unlabeled nodes, in order to find the most

informative node, we need to find the node that reduces the average entropy of the graph if its label

is known. Computing the actual average entropy of the graph if we label an example is not possible.

This is because the labels that would be given to examples are not known, and if a certain label is

given to an example it impacts the entropy over other nodes in the graph. Therefore, we approximate

it with the expected total entropy.

The key idea behind the expected average entropy is the following. Suppose we choose to ask a

user to label node i in graph g. We currently have a belief (probability distribution) over the possible

35



Algorithm 2 Compute Graph Expected Entropy Reduction

1: procedure GETEXPECTEDENTROPYREDUCTION(G: GRAPH)

2: P ← DOINFERENCE(g)
3: H̄(g) ← GETAVERAGEENTROPY(g, P )
4: for all node i in graph g do
5: for label j in 1..T do
6: Fix the label of node i to j by changing probablities

7: P̂ ← DOINFERENCE(g, i, j)
8: ¯H(g|yi = j) ← GETAVERAGEENTROPY(g, P̂ , i, j)
9: end for

10: E(H̄(g|yi)) ← ∑T
j=1 P (yi = j|X; θ)H̄(g|yi = j)

11: Φg
i ← H̄(g) − E[H̄(g|yi)]

12: end for
13: return Φg

14: // Note:Φg is a tuple of nodes computations

15: end procedure

labels the user could give us for this node. For each of these possible resultant labels, we can estimate

the average entropy that would remain. This is done by running our structured prediction model

while fixing the value of node i. The expected average entropy computes a weighted average of

these total entropies according to our current belief about node i.

In detail, denote by H̄(g|yi = j) the average entropy of the graph g if the label of node i is

known and is equal to j (symbol g is omitted for simplicity). In order to compute H̄(g|yi = j), we

fix the label of node i to j and run inference to obtain the probability distributions of all the other

nodes. Then we compute the average entropy of the graph using Eqs. 3.5 and 3.6.

H̄(g|yi = j) = − 1
N

N∑
n=1
n�=i

T∑
t=1

P̂ (yn = t) log P̂ (yn = t) (3.7)

where P̂ (ym = t) ≡ P (ym = t|X, yi = j; θ) is the probability of node m having the label t, after

fixing the label of node i to j. We can compute H̄(g|yi = j) for all possible values of j (label of the

node i).

The expected average entropy H̄(g|yi) is defined as:

E[H̄(g|yi)] =
T∑

j=1
P (yi = j|X; θ)H̄(g|yi = j) (3.8)

Fig. 3.3 illustrates this process. As a result, we can determine for each node i in the graph, what

we expect to happen if this node were chosen for labeling by the user.

Expected Average Entropy Reduction. Finally, we choose to label the node(s) i that would result

in the largest reduction in entropy. Denote by Φ the amount of information that nodes could provide

to their graphs if labels are known. For a particular node i in a graph g we define the expected
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Figure 3.3: In the above graph node m is unlabeled. In order to compute the average entropy of

the graph if the label of node m was given and equal to 2 we do the following. First set the label

distribution of the node m to [0, 1, 0, 0, 0] ("2"). Then we perform inference using the current learned

inference machine. This will produce the probability distributions of all nodes, P̂ . Then the average
entropy is the mean entropy over all the nodes. In this figure the blue histograms are the action

label distributions of the nodes obtained given the current model; and the green histograms are the

probability distributions of the nodes after observing m = 2.

average entropy reduction as:

Φg
i = H̄(g) − E[H̄(g|yi)] (3.9)

Then, to add the next K training instances S to our dataset, we get the top K most informative

nodes in all available graphs from Φ (which is a set of arrays, for every graph, Φg
i is computed for

its nodes). This can be formulated as the following:

S = ARGMAXTOPK(Φ, K) (3.10)

where ArgmaxTopK returns the positions of the top K entries (corresponding to person or scene

nodes) in Φ.

Summary. The complete algorithm is as follows. Given a structured prediction model with param-

eters θt, labeled set Lt, and unlabeled set Ut at iteration t, our active learning process evaluates each

node in Ut by determining how much entropy reduction we expect to obtain by labeling it. We select

a set of nodes Ct ⊆ Ut for labeling by the user according to this criterion. These nodes are anno-

tated and labeled/unlabeled sets are updated: Lt+1 = Lt ∪ Ct; Ut+1 = Ut \ Ct. Then the structured

prediction model is re-trained and new parameters θt+1 obtained, and the process repeated. Algo-
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rithms 1 and 2 summarize this process. We provide a reference implementation in Caffe to enable

reproduction of the results.

3.4 Experiments

We evaluated our method on the task of group activity recognition, which involves structured pre-

diction of individual human actions and group activities. We utilize the Volleyball Dataset [81] and

Collective Activity Dataset [18] to evaluate the performance of our method.

Below, we compare to other active learning methods, structured prediction baselines, and ap-

proaches based on entropy. We further analyze and interpret the performance of our method. The

supplementary material contains details on training settings and results visualizations.

3.4.1 Datasets

Volleyball Dataset [81]: This dataset contains 4830 annotated frames from 55 volleyball videos

with nine player action labels (waiting, setting, digging, falling, spiking, blocking, jumping, mov-

ing, standing) and eight team activity labels (right set, right spike, right pass, right winpoint, left

winpoint, left pass, left spike, left set). The standing action represents around 70% of the action

labels, making the dataset very imbalanced. The distribution of action labels and scene labels are

illustrated in the right-most histogram of Figures 3.5b and 3.5c respectively. We follow the same

datasets split as [81], in which 3493 frames are used for training and 1337 frames for testing. There

is a maximum of 12 people in each frame, and the number of people varies from frame to frame.

The total number of annotations in the training set is 44,294 (3493 scene labels and 40801 action

labels). From the training set, we only use 696 frames for the initial fully labeled training data and

the rest (≈ 35,400 annotations) is the unlabeled pool.

Collective Activity Dataset [18]: This dataset contains 44 videos of outdoor/indoor activities

Crossing, Waiting, Talking, Queueing, and Walking. Each individual person could have one of the

following 6 labels: Crossing, Waiting, Talking, Queueing, Walking, and Not Available. We use the

same train/test split as [115]. The training set contains 1908 frames. The total number of annotations

(scene/action labels) in the training set is 11,734. We only use 382 frames for the initial fully labeled

set and the rest (≈ 9,400 annotations) is used as the “unlabeled" set.

A model is trained using the initial training set. Our method iteratively selects a number of

scenes and queries the user to label certain people in some scenes (a total of K annotations per

iteration). The number of people that are labeled at each iteration depends on the available resources

that one has. We show results of K = 1000 (and K = 500 in the supplementary material).
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3.4.2 Baselines

In order to verify the effectiveness of our method, we compared our model against baselines that:

(1) utilize entropy in a non-structured prediction setting, (2) utilize alternative structured prediction

criteria, and (3) standard active learning methods.

• Separate Active (SA) [133]: Select K nodes, including person nodes and scene nodes, with

the highest entropy. We implement their “Separate active" method using approximate belief

propagation for inference.

• Least Confidence (LC) [185]: Among all the person/scene nodes in all the graphs (frames),

select K nodes that the trained model has the lowest confidence in their most probable label-

ing.

• Margin (M) [165]: select the K nodes amongst all the nodes in the unlabeled pool that have

the lowest margin between their two most probable labellings.

• Expected Change (EC) [225]: select the K nodes that has the highest expected number of

changed labels.

• Random Sampling (RND): randomly select a batch of nodes (persons and/or scenes) in all

graphs (frames).

The Least Confidence [185] and Margin [165] algorithms are originally proposed for simple

prediction but we extended them for our structured prediction task. We examine performance of

these methods over iterations of active learning. To enable fair comparison, the same amount of

data/annotations are given to all the methods.

We trained a base model with the same initial training set (which is a small portion of the

whole training set) for each method, and then grow the labeled training set by actively selecting K

annotations per iteration.

3.5 Results and Analysis

Below, we compare our method quantitatively to baselines and perform analysis of the results.

3.5.1 Quantitative Results

Volleyball Dataset: Figures 3.4a and 3.4b show the results of our method and baselines on the

Volleyball Dataset. Our proposed method exhibits similar performance, focusing on scene labeling

performance first, outperforming all baseline methods at this task and eventually outperforming all

at action labeling as well.

0The accuracy versus added annotation is not a monotonically increasing function. Due to existence of multiple local

optima, the accuracy of the model could decrease. Also there is a possibility that the model overfits to the given training

set.
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Collective Activity Dataset: Figures 3.4c and 3.4d illustrate the comparison of our method against

baselines on the Collective Activity Dataset. Note that performance on both individual action and

group activity (scene) labeling are measured. Our method tends to focus its initial effort on labeling

scenes, likely because of the gains in structured prediction performance that can be obtained in this

manner. Overall, our method outperforms all baselines on this dataset on scene labeling and after a

few iterations outperforms all baselines on action labeling as well.

(a) Volleyball - Scene (b) Volleyball - Action

(c) Collective Activity Dataset - Scene (d) Collective Activity Dataset - Action

Figure 3.4: Results of comparison of our method against baselines on Volleyball Dataset (a and

b), Collective Activity Dataset (c and d). The y-axis is accuracy and x-axis is iteration. For all the

methods we start from the same small initial labeled set so the accuracies of the first column are

exactly the same. Our method outperforms the other methods in both action and scene accuracy1.

The full details of Figure 3.4 and a table of the accuracy that each method has achieved at each

iteration is reported in the supplementary material.

3.5.2 Comparison to Supervised Methods

For these datasets alternate approaches use all available data supervised. Our experiments show that

our method can save ≈ 70% of annotation cost yet achieve similar accuracy as the state-of-the-art

supervised methods.

In terms of fully supervised methods, Deng et al. [30] achieved 74.0% scene accuracy on the

whole training set (11,734 annotations) using the “untied version" of their method. Our method

achieves comparable accuracy (74.8%) after 3 iterations of adding 500 annotations (in total 1500

extra annotations) (Table 1 right-side in the supplementary material). In other words, using 33% of

the data the same accuracy is achieved. Higher accuracy (76%) is obtained after labeling ≈ 44% of

the data. This shows the potential for active learning-based methods for this task.
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Number of Added Annotations

Epochs
0

1000 2000 3000 4000 5000 6000 7000 8000

90 42.4 56.9 60.6 62.5 64.4 65.3 66.1 66.1 66.2

60 42.4 55.7 59.9 62.4 64.3 65.2 65.4 65.3 65.8

30 42.4 53.7 58.5 61.7 62.9 64.1 64.6 64.9 65.1S
ce

n
e

15 42.4 53.2 58.4 60.8 62.6 63.3 63.4 63.6 63.8

90 68.1 68.4 70.7 74.3 76.1 76.8 77.3 77.7 78.1

60 68.1 68.3 70.5 73.3 75.8 76.5 76.8 77.3 77.5

30 68.1 68.3 70.1 72.9 74.8 75.6 76.3 76.7 76.9A
ct

io
n

15 68.1 68.2 69.7 72.5 74.1 74.3 75.4 75.7 75.8

Table 3.1: Results of our method with different number of epochs at each iteration.

Ibrahim et al. [81] obtain 68.1% accuracy (the non-temporal model) using 44,294 training an-

notations. Using much less training data, e.g. ≈35% of the data we can achieve results comparable

to this fully supervised method.

3.5.3 Analysis

Analysis of Nodes Chosen: Figure 3.5a shows the number of scene and action nodes that have been

selected by our active learner at each iteration. In the first few iterations, mostly scene nodes have

been chosen for labeling and later on action nodes are selected. This makes intuitive sense given the

impact that correct scene labels can have on the action labels in a video frame. The reason that our

method doesn’t outperform baselines in terms of action accuracy at first is that almost no new action

annotations are provided to the learner. But after choosing action nodes our method outperforms the

baselines.

The distributions of labeled action and scene classes at each iteration are illustrated in Fig-

ures 3.5b and 3.5c respectively. For the sake of comparison, the distribution of different classes in

the whole training set is shown in the right side of Figures 3.5b and 3.5c.

There is an interesting observation in Figure 3.5b that 70% of the action labels belong to the

standing action, which is ≈28,000 annotations. Looking at the distribution of the selected action

labels in the first few iterations, the ratio of the standing action to other actions is significantly

lower than its frequency in the dataset. This indicates that our algorithm considered this class as

an easy class and a smaller number of instances were selected. On the other hand, only 1% of the

training instances belong to the jumping class. Therefore the probability of choosing a sample from

this class is below 1%. Nevertheless, our method has selected significantly more from the jumping

class at each iteration, in order to model the relative complexity of this class.

Regarding the standing class, because the number of standing people is enormous compared

to other classes, the probability of choosing this class is still higher; thus at each iteration more

standing instances have been chosen compared to other classes such as jumping.

Effect of number of epochs in training: In this section we study how the number of epochs used in

training affects the accuracy. For a given annotation set often the more epochs of stochastic gradient

descent the better accuracy gets. There exist different work-flow patterns for acquiring labels from
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(a) Number of scene/action annotations selected at each iteration for volleyball dataset ex-

periment, in which 1000 annotations are added at each iteration.

(b) Amount of individual action labels chosen at each iteration for volleyball dataset. No

action labels are added at iteration 1.

(c) Amount of scene labels chosen at each iteration for volleyball dataset. After iteration 4

no scene labels are added.

Figure 3.5: Distribution of scene/action labels at each iteration

an oracle (e.g. Amazon Mechanical Turk). These include recruiting workers at sparse intervals,

inter-leaving human labeling with model training, and concurrent training and labeling.

In a deep learning framework, usually with the right choice of learning rate and weight decay,

the solver achieves higher accuracies if enough time is spent on training. However, in active learning,

there might be some cases where user wait time is constrained and the interaction time between a
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Before After

Figure 3.6: Examples of chosen variables in the Volleyball dataset. Each row shows one pair of

before/after an active learning iteration. Left image shows scene with current labels (ground truth

in green box, incorrectly predicted labels in yellow box). Yellow arrow shows variable chosen for

labeling by oracle by our method. Note that selection of group activity (scene annotation) in top 2

rows or actions of specific people (bottom 2 rows) help in correcting other labels afterwards.

user and the active learner is limited. In this case, less time should be spent on training2. We have run

2This depends on the setting, one could also use crowdsourced services where the “wait time” might involve different

labelers and not be relevant.
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experiments that show the performance of our method for different numbers of epochs of learning

in between each active data labeling cycle. We have reported our results in Table 3.1.

In terms of running time, the bottleneck of our pipeline is the training part not the instance

selection part. In each iteration of our experiments on the Volleyball Dataset, training for 60 epochs

takes 1 hour (only ≈ 5 minutes for sample selection and ≈ 55 minutes for training) on a GeForce

GTX 1080 in a Caffe [89] implementation. There is an application-dependent trade-off based on

worker recruitment, ramp-up, labeling time, etc. The results that we have provided for different

numbers of epochs (running time) in Table 3.1, illustrate this accuracy-time trade-off.

3.6 Discussion

3.6.1 Recent Advancements in Data Labelling Systems and Active Learning

This research was completed in 2015. Since this time, there have been significant advances in the

field of machine learning and data labelling. In this section we address the relevance of this research

in the context of these advances.

The success of deep learning highlights the crucial role of data [112] in allowing machine learn-

ing models to tackle real-world problems. Deep models depend on the quality of the data they use.

As a result, various specialized software tools for labeling data [170, 42, 196, 49, 175] have been

developed to simplify the process and create large datasets suitable for training these models. These

tools are designed to minimize the costs and human effort involved in labeling.

However, this leads to an important question: Is active learning still relevant with the advance-

ments in data labeling software? A recent report [1] indicates that the global market for data collec-

tion and labeling is growing rapidly, with its value expected to increase from $2.9 billion in 2023,

to $17.1 billion by 2030. Moreover, a recent study [173] conducted a comprehensive review of the

available data labeling software, focusing specifically on image labeling software (ILS), over the

past decade. The study revealed a substantial growth of 400% in the number of research papers

related to ILS from 2013 to 2019.

This trend clearly highlights the ongoing importance of acquiring labeled data. Despite the

cost and effort reductions brought about by data labeling software, the overall labeling costs on

a global scale remain significant. Active learning strategies, which aim to reduce labeling costs,

work alongside data labeling software instead of competing with it. Consequently, active learning

remains an important area of research, even in domains such as computer vision and text analysis.

Furthermore, although the advancements in the ILS have considerably reduced the cost of la-

belling over the years, we must consider that these advancements are not uniformly distributed

across all areas of computer vision. For instance, labeling in complex and highly variable domains

like medical imaging, wildlife tracking, or astronomical imaging continues to present significant

challenges due to the unique nature of these data and the specialized expertise needed for accurate

labeling. As such, our active learning algorithm continues to hold great relevance for these challeng-
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ing domains, as it helps prioritize the labeling of the most informative data points and thus optimize

the utilization of limited expert time and resources.

Additionally, it is essential to consider the broader application of the principles of active learning

beyond computer vision. While we utilized a group activity recognition problem in computer vision

as a demonstration, the active learning algorithm developed is fundamentally a general-purpose ap-

proach. It can apply to any problem or domain where data can be represented by graphical models.

This includes domains medical imaging, drug discovery [43], or other structured prediction prob-

lems. These areas continue to face issues of data sparsity and high labelling costs, underlining the

continued relevance of our work.

Moreover, our algorithm’s utility is not limited to situations with scarce labeled data or high

labelling costs. The selection of most informative data points using mutual information can also be

beneficial in scenarios with abundant data. With the growth of data, the computational burden of

training models increases. By focusing on more informative samples, we can potentially achieve

comparable model performance with less computational resources and time.

In conclusion, while the landscape of computer vision and data labeling has evolved over the

past eight years, the relevance and importance of our work in active learning remain consider-

able. The principles and methods we have developed not only continue to provide value in specific

computer vision tasks and other structured prediction problems but also contribute to the broader

advancement and understanding of machine learning as a field.

3.6.2 Potential Future Directions

This study has provided us with several possibilities for expanding and improving our existing

knowledge and approach. One such possibility is related to our use of the concept of expected

information gain. We have applied this concept by considering the mutual information between the

most informative node and the rest of the graphical model. To do this, we relied on the entropy of the

graph and conditional entropy. However, in our actual calculations, we resorted to an approximation

of the entropy and conditional entropy within the graphical model. This decision was primarily

driven by the considerable computational complexity involved in calculating all the conditional

entropies. We can express the entropy of a joint distribution as:

H(X1, X2, . . . , XN ) =
N∑

i=1
H(Xi|X1, X2, . . . , Xi−1) (3.11)

However, each node in our algorithm required an evaluation proportional to iL for

H(Xi|X1, X2, . . . , Xi−1) , as each node could have L potential labels. One potential method for

estimating the expected entropy without needing to make iL evaluations is to only take into account

the most probable label for each node, thereby approximating this conditional entropy with a single

evaluation.

Another future direction for this work could be the integration of semi-supervised or self-

supervised learning into our framework. These approaches, which make use of both labeled and
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unlabeled data, could potentially offer additional efficiency and accuracy benefits, leading to more

robust and reliable outcomes.

3.7 Summary

In this chapter, we presented a general purpose active learning approach for partially labeled struc-

tured prediction models that can be represented using graphical models. In our method, the initial

models are built using a small training subset. Then, in an iterative manner we select a subset of

people/scene labels to relearn better models. The selection strategy is based on a novel expected

information gain criterion, which is computed from expected entropy reduction. Results demon-

strate that our algorithm can improve upon baseline active learning approaches and achieve results

competitive with fully supervised methods while using only a fraction of the labeled data.
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Chapter 4

Dataset Augmentation for Human
Action Classification

4.1 Abstract

Recognizing the demand for extensive and diverse datasets in deep learning for computer vision,

we’ve designed a novel method to generate data tailored for action recognition tasks. Our approach

starts with a minimal set of human action videos and generates new variations. By independently

manipulating "human subjects", "actions", and "backgrounds", we generate a plethora of realistic

videos. Our unique technique for creating human skeleton trajectories, combined with our video

frame generation method, allows us to bypass resource-intensive data collection and create virtu-

ally unlimited training data for action recognition. Our tests on two small human action recognition

datasets reveal significant improvements in the performance of existing action recognition method-

ologies.

4.2 Introduction

Following considerable advancements in face detection, face recognition, and object detection –

technologies that have permeated our daily lives – computer vision researchers are now directing

their efforts towards understanding videos, a challenge of higher dimensional complexity. While

the utilization of advanced machine learning techniques has played a crucial role in achieving these

remarkable accomplishments, it is important to acknowledge that their effectiveness heavily relies

on the availability of sufficient training data. Large training datasets large datasets, like those en-

compassing millions of object and animal photographs [112], hundreds of thousands of faces [98],

or millions of scenes [123], provided sufficient data for training complex neural networks. How-

ever, when confined to small datasets manually gathered by researchers, these outcomes cannot be

replicated.

Compiling video datasets, especially those centered on human actions, poses further complica-

tions. Typical methods of creating a human action dataset include: (1) recording subjects performing

a series of actions; (2) curating and labeling pre-existing online videos. E.g. UCF 101 [197], con-
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Figure 4.1: Our algorithm takes as input an action label, a set of reference images and an arbitrary

background. The output is a generated video of the person in the reference image performing a given

action. We approached this problem in two stages. Firstly (left side) a generative model trained on

a small labeled dataset of skeleton trajectories of human actions, generates a sequence of human

skeletons conditioned on the action label. Secondly (right side), another generative mode trained on

an unlabeled set of human action videos, generates a sequence of photo-realistic frames conditioned

on the given background, generated skeletons, and the person’s appearance given in the reference

frames. This produces an arbitrary number of human action videos.

taining 101 actions of thousands of online clips, Hollywood2 [134] containing 12 actions in around

3 thousands clip extracted from movies, and the kinetics [97] including 400 actions from hundreds

of thousands of YouTube videos; and (3) synthesizing 3D videos [61]. The first method suffers from

scalability issues due to the number of subjects and capturing environment limitations. The second

approach, while useful for algorithm benchmarking, may not align with real-world action recogni-

tion tasks like security surveillance or health monitoring, as each scenario carries unique settings

and action sets. The third and more recent approach, despite showing promise, requires MoCap data

and is costly.

In this work, we introduce a novel method of segmenting an action video clip into action, sub-

ject, and context. We demonstrate the feasibility of manipulating each segment independently and

reassembling them into new clips using our proposed video generation model. Actions are repre-

sented by a series of skeletons, the context is a still image or video clip, and the subject is depicted

by random images of the same individual.

Our technique enables the alteration of an action, subject, or context using arbitrary video clips,

paving the way for the generation of unique action clips. This is particularly advantageous for action

recognition models that require extensive datasets to enhance their accuracy. By utilizing a large set
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of unlabeled data and a small pool of labeled data, we can synthesize a realistic training dataset for

deep learning models.

To quantitatively evaluate our data generation technique, we applied it to UT Kinects [237], a

human action dataset comprised of 200 video clips featuring 10 actions. We created new types of

video clips by adding new subjects or actions or by expanding the current actions and subjects. Our

results demonstrated that our generated data, used alongside existing data, could improve the perfor-

mance of high-performing video representation networks (e.g. I3D [11] and C3D [212]) on action

recognition tasks. o further demonstrate the efficacy of our algorithm, we extended its application

to the SUB-Interact [249] datasets, which consist of videos showcasing interactions between two

individuals.

The outline of this chapter is as follows. In section 4.3 we’ve described related works in ac-

tion recognition, data augmentation and video generative model. Section 4.4 introduces our video

generation methods as well as skeleton trajectory generation methods with samples and use cases.

In section 4.5, we’ve discussed the datasets and action recognition methods used to evaluate our

work. In section 4.6 we’ve presented the extensive experimental data backing our claims. Finally

we conclude in section 4.8.

4.3 Related Works

4.3.1 Action Recognition

Human action recognition has drawn attention for some time. Before deep learning era of computer

vision, many researchers tried to inflate successful 2D features or descriptors in order to solve this

problem such as 3D SIFT [182], 3D bag of features [118] or dense trajectories [233]. A recent report

[149] provides a comprehensive survey of these types of algorithms.

In this chapter, we will focus on deep learning networks due to their significant outperformance

over traditional approaches. The area of video representation networks is particularly challenging

and has not seen as many satisfactory advances as image representation network architecture. Vari-

ous strategies have been employed to tackle this issue.

Some have utilized 2D (image-based) convolution layers [35, 248], while others have adopted

3D (video-based) kernels [88, 212, 11]. Regarding network inputs, some systems use solely RGB

video [212], while others incorporate optical flow as an additional input [46, 11].

As for information propagation across frames, different methods are applied, including Long

Short-Term Memory (LSTM)[35, 248] and feature aggregation[95]. These various approaches to

video representation in deep learning networks highlight the diverse ways researchers are tackling

this complex issue.

Data Augmentation Using synthetic data or data warping for training classifiers has been

proven effective [112, 256, 193]. Sato et al. [179] proposes a method for training a neural net-

work classifier using augmented data. Wong et al. [236] thoroughly investigated the benefits of data

augmentation for classification tasks. In action recognition tasks, data is usually very limited, since
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collecting and annotating videos is difficult. Although one can use our algorithm for data augmenta-

tion by generating videos varying in background, human appearance, and type of actions, this is not

the purpose of our work. Unlike data augmentation that is limited to manipulating data, our method

is capable of generating new data with new content and visual features.

4.3.2 Video Generative Models

Video generation has posed as a challenge for a number of years. The early work in the field focused

on generating texture [36, 206, 235]. In recent years with the success of generative models in image

generation such as GANs [66], VAEs [108, 161], Plug&Play Generative Networks [143], Moment

Matching Networks [121], and. PixelCNNs [221], a new window of opportunity has opened to-

wards generating videos using generative models. In this chapter, we use GANs to generate human

skeleton trajectories and realistic video sequences. GAN consists of a discriminator and a genera-

tor, trained in a 2-player zero-sum game. Although GANs have shown promising results on image

generation [32, 151, 251, 126, 125], they have proven to be difficult to train. To address this is-

sue, Arjovsky et al. [4] proposed Wassertein GAN to combat mode collapse with more stability.

Salimans et al. [178] introduced several tricks for training GANs. Karras et al. [96] proposed a

novel method for training GANs through progressively adding new layers. Ronneberger et al. [164]

proposed U-Net, a convolutional network for segmentation.

GANs have previously been used for video generation. There are two lines of work in video

generation. First is video prediction where given the first few frames of a video, the goal is to

predict the future frames. Several papers focus on producing pixel values conditioned on the past

observed frames [243, 198, 144, 135, 93, 242, 226]. Another group of papers aimed at reordering

the pixels from the previous frames to generate the new ones [220, 50].

In the second line of work, the goal is to generate a sequence of video frames conditioned on

label, single frame, etc. Early attempts assumed video clips to be fixed length and embedded in

a latent space [229, 176]. Tulyakov et al. [213] proposed to decompose motion from content and

generate videos using a recurrent neural net. Our work is different from [213] where their model

learns motion and content in the same network whereas we separated them completely.Furthermore,

[213] is not capable of generating complex human motions. Also filling gaps in the background

initially blocked by the person in the input video is a difficult task for this method. On the other

hand, our method handles these challenges by completely separating appearance, background, and

motion. Our work is somewhat similar to [231], which does video forecasting using pose estimation,

by modeling the movement of human using a VAE and then using a GAN to predict the pixel value

of the future frames.

Our work lies in the "video generation" category where we focus on employing video genera-

tion techniques to generate human action videos. In our proposed method we completely separate

background, skeleton motion, and appearance, allowing us to model frame generation and skele-

ton trajectory independently. So, one would require labeled data and the other can benefit from

unlimited unlabeled human action videos available on internet, respectively.
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4.4 Method

We define problem as follows; given an action label l a small set of reference images I = {I1, ...Ik}
each containing a human subject from which a sequence of video frames is generated featuring a

human with the same appearance as the human in the reference image set I performing an action l.

Modeling the (human/camera) motion and generating photo-realistic video frames may be challeng-

ing but knowing the location/motion of human skeletons in each frame would simplify it. Hence,

we subdivided the problem into two simpler tasks (inspired by [213, 226]).

• The first task comprised of the reference images I , background image B, and a sequence of

target skeletons S = [S1, S2, ..., Sn] employed to render photo-realistic video frames of the

person in I moving according to S on background.

• The second task produced the target skeleton sequences for the first part. In another words,

given action label l, a sequence of skeletons of a random person performing action l was

generated.

By combining the two tasks, we created a novel algorithm that can generate arbitrary number of

human action videos with varying backgrounds, human appearances, actions, and ways each action

is performed.

4.4.1 Video Generation from Skeleton and Reference Appearance

In this section, we explain our algorithm used to generate a video sequence of a person based on

given appearance (I) and a series of target skeletons (S) in an arbitrary background(B). In our pro-

posed model, we use GAN conditioned on the appearance, the target skeleton, and the background.

Our proposed generator network works in a frame-by-frame fashion, where each frame is generated

independently from others. We have tried using LSTMs and RNNs to take into account smoothness

of the videos. However, our experiments show frames that are generated separately are sharper as

RNNs/LSTMS may introduce blurriness to the generated frames.

Generator Input. Our generator network needs a reference image of the person in order to gen-

erate images of the same person with arbitrary poses/backgrounds. However, one reference image

may not have all the appearance information due to occlusions in some poses (e.g. face is not visi-

ble when the person is not facing the camera). To overcome this issue to some extent, we provided

multiple reference images of the person to the network. In both training and testing, these images

were selected completely at random, so that network would be responsible for choosing the right

pieces of appearance features from the set of input images. These images could be selected with a

better heuristic to produce better results though this is not in the scope of this work.

The reference images were pre-processed before incorporation into the network. First we ex-

tracted the human skeleton from each reference image Ii (using [10]), then used an offline trans-

form to map the RGB pixel values of each skeleton part from the image to the target skeleton.
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Also, a binary mask of where the transformed skeleton is located was created. All these images,

It = {It
1, ..., It

k}, along with the background, B, and the target skeleton, Si were stacked.

Conditional GAN. Inspired by pix2pix [84], we used a U-net style conditional GAN. The

generator G(C), is conditioned on the set of transformed images and corresponding masks, along

with the background and target skeleton. The generator, G, maps C = {It
1, ..., It

k, B, Si} to the

target frame Y , such that it fools the discriminator, D(C, Y ). The discriminator, D(C, Y ), on the

other hand is trained to discriminate between real images and the fake images generated by G. The

architecture of the discriminator is illustrated in Figure 4.2b. The pipeline and architecture of the

generator G is illustrated in Figure 4.2a. Figure 4.5a illustrates some of the results.

The objective function of GAN is expressed as:

LGAN (G, D) = Ec,y∼Pdata(c,y)[log D (c, y)]

+ Ec∼Pdata(c),z∼Pz(z)[1 − log D
(
c, G (c, z)

)
]

Following [84] we added an L1 loss to the objective function, which resulted in sharper generated

frames.

LL1(G) = Ec,y∼Pdata(c,y),z∼Pz(z)[||y − G(c, z)||]

(a) Architecture of the "generator", G, which takes as input background, target skeleton, and the transformed

reference images to the target skeleton along with their masks.

(b) Architecture of the "discriminator", D, which takes as input generated image or ground truth and outputs

"fake" or "real". .

Figure 4.2: Network Architecture
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In initial experiments, we noticed that using only L1 loss and GAN loss is not enough as the output

background would be sharp but the region that the target person is supposed to be was blurry.

Subsequently, we introduced a "Regional L1 loss" with a larger weight as following,

LR(G) =Ec,y∼Pdata(c,y),z∼Pz(z)

[||masked(y) − masked(G(c, z))||]
where "masked" masks out the region where the person was located. This mask was generated based

on the target skeleton, Si, using morphological functions (erode, etc.).

Our final objective is as follows:

L(G, D) = LGAN (G, D) + λLL1(G) + βLR(G)
where λ and β are weights of L1 and R regional losses (in our experiments β > λ). and the goal is

to solve the following optimization problem.

G∗ = arg min
G

max
D

L(G, D) (4.1)

Multi-person Video Generation In a nutshell, our algorithm merges transformed images of

a person on an arbitrary pose with an arbitrary background in a natural photo-realistic way. We

managed to go beyond simple one person human action videos and extended our method to multi-

person interaction videos as well. For this purpose, we trained our model on a two person interaction

dataset [249]. The only difference with single frame generation process is that in the pre-processing

phase, for each person in the input reference image, we needed to know the corresponding skeleton

in the target frame, we then transformed each person’s body parts to his/her own body parts in the

target skeleton. There are some challenges in this task such as occlusions in certain interactions (e.g.

passing by, hugging, etc.). The dataset that we used contains these occlusions to some extent. Our

method is able to handle relatively well some simple occlusions that occur in such interactions. We

acknowledge that there is room for improvement in this area, but that would not fit in the scope of

this work. Figure 4.5b illustrates some of the generated videos.

4.4.2 Skeleton Trajectory Generation

In the previous section, we explained how we designed a method that enables us to generate videos

of an arbitrary person in any background based on any given sequence of skeletons. Although num-

ber of backgrounds and persons are unlimited, the number of labeled skeleton sequences are limited

to the ones in the existing datasets. We propose a novel solution to this problem; using a generative

model to learn the distribution of skeleton sequences conditioned on the action labels. This allows

us to generate as many skeleton sequences as needed for the actions in the dataset. Figure 4.4 shows

a few sample generated skeleton sequences.

We used small datasets for training our model. However, due to the nature of the problem and the

limited amount of data, generating long sequences of natural looking skeletons proved challenging.

Thus we aimed at generating relatively short fixed-length sequences. Having said that, training

GAN in such way is still prone to problems such as mode collapse, divergence, etc. In designing the
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(a) Generator Network.

(b) Trajectory Discriminator Network. The discriminator is the sum of three discriminators illustrated in this

figure: D = Df + Dt + Df .

Figure 4.3: Trajectory GAN network architecture.

generator and discriminator networks, we have taken into account these problems (e.g. introduced

batch diversity in the discriminator, created multiple discriminators, etc.).

Skeleton Trajectory Representation. Each skeleton consists of 18 joints. We represented each

skeleton with a 1 × 36 vector (a flattened version of 18 × 2 matrix of joints coordinates). We

normalized the coordinates by dividing them by "height" and "width" of the original image.

Generator Network. We used a conditional GAN model to generate sequences of skeletal

positions corresponding to different actions. Our generator has a "U" shape architecture where input

consists of action label and noise, and output is a 8 × 1 × 36 tensor representing a human skeleton

trajectory with 8 time-steps.

Based on our results, providing a vector of random noise for each time step helps the generator

to learn and generalize better. So the input noise, z, is a tensor with size 8 × 1 × 128; drawn from

a uniform distribution. The one-hot encoding of action label, l, is replicated and concatenated to

the 3rd dimension of the z. The rest is a "U" shaped network with skip connections that maps the

input (z, l) to a skeleton sequence S. Figure 4.3a illustrates the network architecture. We also used

Dense-net [79] blocks in our network.
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Discriminator Network. Architecture of discriminator is three-fold. The base for discriminator

is 1D convolutional neural net along the time dimension. In order to allow discriminator to dis-

tinguish "human"-looking skeletons, we used sigmoid layer on top of fully-convolutional net. To

discriminate "trajectory", we used set of convolutions along the time with stride 2, shrinking output

to one 1 × 1 × C containing features of the whole sequence. To prevent mode collapse, first we

grouped fully convolutional net outputs across batch dimension.We then used min, max and mean

operations across batch, and provided these statistical information to the discriminator. This method

seems to provide enough information about distribution of values across batch and allows to change

batch size during training. For detailed discriminator architecture see Figure 4.3b.

Our objective function is:

LT (G, D) = El,s∼Pdata(l,s)[log D (l, s)]

+ El∼Pdata(l),z∼Pz(z)[1 − log D
(
l, G (l, z)

)
]

where l and s are action label and skeleton trajectories, respectively. We aim to solve the fol-

lowing:

G∗ = arg min
G

max
D

LT (G, D)

In this work, we have shown that generative models can be adopted to learn human skeleton

trajectories. We trained a Conditional GAN on a very small dataset (200 sequences) and managed

to generate natural looking skeleton trajectories conditioned on action labels. This can be used to

generate a variety of human action sequences that don’t exist in the dataset. However, our work is

limited to a fixed number of frames. Thus for future work, we’ll work to improve our method so

that it’ll accommodate longer sequences varying in length. We also explained that in addition to

Figure 4.4: Samples of generated skeleton sequences, conditioned on action label (e.g. throwing,

hand waving, sitting).

55



the generated skeletons, we can also use real skeleton sequences from other sources (other datasets,

current dataset but different subjects) to largly expand existing datasets.

4.5 Datasets and Action Recognition Methods

4.5.1 datasets

In this chapter, we’ve claimed to expand small amount of action videos by addition of new generated

videos. We targeted smaller action recognition datasets and expanded them to meet the large data

load requirements of recent action recognition algorithms such as UCF 101 [197], the kinetics [97]

or NTU RGB+D [188]. This eliminates the need for time and cost inefficient data acquisition pro-

cesses.

UT Kinects [237]: One of the datasets wildly used in our experiments is UT Kinects which

includes 10 action labels: Walk, Sit-down, Stand-up, Trow, Push, Pull, Wave-hand, Carry and Clap-

hand. There are 10 subjects that perform each of these action twice in front of a rig of RGB camera

and Kinect. Therefore in total they are 200 action clips of RGB and depth though depth is ignored.

All videos are taken in office environment with similar lighting condition and the position of the

camera is fixed.

For the training setup, 2 random subjects were left out (20%, used for testing) and the ex-

periments were carried out using 80% of the subjects. The reported results are the average of six

individual runs. The 6 train/test runs are constant throughout our experiment.

SUB Interact [249]: Since our methods work with multiple human subjects in a scene, we

picked SUB Interact. It is a kinect captured human activity recognition dataset depicting two person

interaction. It contains 294 sequences of 8 classes (Kicking, Punching, Hugging, Shaking-hand,

Approaching, departing and Exchanging objects) with subject independent 5-fold cross validation.

The original data includes RGB, depth and skeleton but we only use RGB for our purpose. We used

a 5-fold cross validation throughout our experiments and reported the average accuracy.

KTH [181]: KTH action recognition dataset was commonly used at the early stage of action

recognition. It includes 600 low resolution clips of 6 actions: Walk, Wave-hand, Clap-hand, Jogging,

running and boxing which are divided in train, test and validation. The first three action labels are

shared with UT dataset while the last three are new. We used this dataset to add new action to UT

dataset and for cross dataset evaluation.

4.5.2 Action Recognition Methods

We used the following deep learning networks which have previously shown decent performance

on recent action recognition datasets.

Convolutional 3D (C3D) [212]: is a simple and efficient 3-dimensional ConvNet for spatiotem-

poral feature which shows decent performance on video processing benchmarks such as action

recognition in conjunction with large amount of training data. We used their proposed network with

8 convolutional layers, 5 pooling layers and 2 fully connected layers with 16-frames of 112 × 112
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(a) UT dataset. Subjects from the same dataset.

(b) SBU dataset. None of the subjects exist in this

dataset.

Figure 4.5: Generated images on two different datasets.

RGB input. They released a network pre-trained on UCF Sport [197] which we used for our ex-

periments aimed at training from scratch, denoted as C3D(p) vs. C3D(s). Unfortunately we can not

couldn’t converge the C3D when we trained from scratch on UT dataset but it converged success-

fully on SUB.

Inflated 3D ConvNets (I3D) [11] : is a more complex model which has recently been proposed

as the state-of-the-art for action recognition task. It builds upon Inception-v1 [83], but inflates their

filters and pooling kernels into 3D. It is a two-steam network which uses both RGB and optical flow

input with 224 × 224 inputs. We only used RGB for simplicity. They released a network pre-trained

on ImgeNet [28] followed by the Kinetics [97]. We used this for our experiments aimed at training

from scratch, denoted as I3D(p) vs. I3D(s).

We use data augmentation by translation and clipping as mentioned in [11] for all experiments.

For training, we only used the original clips as test, making sure there was no generated clips with

skeletons or subjects (subject pair) from test data in each run.

4.6 Experiments

So far, we have introduced our video generation method which enable us to generate new action

clips for the action recognition training process. In this section, we show different scenarios for

generating new data and running experiments for each to see if adding the generated data to a

training process can improve the accuracy of the action recognizer. We applied our proposed video

generation models to all the experiments using skeletons. The skeletons were trained using data from

UT and SBU datasets as well as 41 un-annotated clips (between 10 to 30 seconds) that we captured
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from our colleagues. For future works, we will train our model again using a large amount of data

from web. But the time being, we are satisfied with the current model as higher resolution for action

recognition is currently unnecessary. Our technique for generating new action video clips has the

capacity of running experiments with numerous varying settings. Here, we show five experiments

which may be quantitatively evaluated.

4.6.1 Generated Trajectory

The first experiments is a combination of our proposed video generation technique and skeleton

trajectory generation. We generated around 200 random skeleton trajectories from action labels in

UT dataset using the method mentioned in §4.4.2. Each of these skeleton trajectories generated a

video by proposed video generation applied to a person in UT dataset, meaning our new dataset

is doubled with half of it being the generated data. We then trained our model by I3D and C3D

using training setting mentioned in §4.5.1. Table 4.1 shows about 3% improvement for I3D with

and without training data as well as significant improvement (by 15%) for C3D network which is

less complex.

Method Org. Org. + Gen.

I3D(s) 64.58% 67.50%

I3D(p) 86.25% 89.17%

C3D(p) 55.83% 70.83%

Table 4.1: Action recognition on UT dataset using original data compared to generated from scratch

data with proposed method in §4.4.1 and §4.4.2

4.6.2 New Subjects

A common method to augment a video dataset involves recruiting new individuals to perform a se-

ries of actions on camera. Diversification in body shape, clothing, and behavior [6] can significantly

improve the generalizability of machine learning (ML) methods. In this experiment, our goal was

to virtually add new subjects to the dataset. We collected small, unannotated clips from ten distinct

individuals and input them as new subjects into our proposed video generation method. For the UT

dataset, each subject was replaced by a new one across all of their actions, similar to adding ten

new subjects to the UT dataset. The same process was conducted with the SUB dataset to double

its size, the only difference being that each pair was replaced with a new subject pair. Figure 4.5b

displays some of the new subjects along with their generated action videos from the SBU dataset.

The results are presented in Table 4.2.

4.6.3 New Actions

In real computer vision problems, one might decide to add a new label class after the data collection

process has been done. Adding a new label action to a valid dataset could cost the same as gathering
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UT SBU

Org. Exp. Org Exp.

I3D(s) 64.58% 67.08% 86.48% 91.23%

I3D(p) 86.25% 89.17% 97.30% 98.65%

C3D(s) - - 83.52% 87.00%

C3D(p) 55.83% 70.43% 92.02% 96.25%

Table 4.2: Performance comparison of multiple algorithms, trained on original data and additional

subjects.

a dataset from scratch as all the subjects are needed for re-acting that single action. In this experi-

ment, we tried to introduce a new action labeled to UT dataset. As mentioned in §4.5.1 , UT consists

10 action labels. We used training data from a third dataset called KTH [181] in order to generate

3 new actions, running, jogging and boxing, in addition to that of the UT. For each subject in UT

dataset and each of these 3 new action, we randomly picked 5 action clips from KTH training data

clips and extracted the skeleton by OpenPose [10] where in addition to input background image, we

generated 150 new action clips from our dataset. We then trained a new model using I3D by pre-

Figure 4.6: The screen shot of a video generated by UTK expansion. The first row shows skeleton

clips extracted from an arbitrary action. Second to fourth rows show the generated video for subjects

from different clip carrying out that specific action.
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trained network where in each run we used training data from original set and all the data generated

for the new set of actions. Since the KTH data is grey scaled images, we randomly grey scaled both

the original and the generated training clips in the training phase. For each run, we found per class

accuracy for UT test set (refer to §4.5.1 for explaining UT train/test) as well as KTH test sets. Ta-

ble 4.3 shows average of the per class accuracy for both test sets. We may consider KTH test results

as a measure of cross dataset accuracy for walk, wave-hand and clap-hand. Our trained network on

new action labels boxing, running and jogging achieved 72.14%, 44.44% and 63.20%, respectively.

This indicates that the new actions in the dataset performed as good as the data captured by camera.

Action UTK Test Label KTH Test

Walk 91.67% Walk 67.18%

Wave-hand 100.0% Wave-hand 58.59%

Clap-hand 91.67% Clap-hand 28.90%

Push 33.33% Boxing 72.14%
Pull 58.33% Running 44.44%
Pick-up 100.0% Jogging 63.20%
Sit-down 87.50%

Stand-up 95.83%

Threw 54.17%

Carry 79.17%

Table 4.3: Per class average accuracy for model trained by i3d using original training data from UT

plus new action clip generated by our method using skeleton extracted from KTH training set.

4.6.4 dataset Expansion

So far, we’ve shown that using our proposed method we can generate video clips with any number

of arbitrary action videos and subjects. In an action dataset with N subjects carrying out M distinct

actions, there will be M × N video actions. when applied to our proposed method of action video

generation, the N subjects and the M × N video actions will result in generation of M × N2 video

actions comprising of M × N original videos while the rest is generated videos. This approach

enabled us to expand UT Kinect dataset from 200 clips to 4000 clips and SUB Interact from 283

clips to 5943 using only the original dataset. We trained I3D and C3D using our expanded dataset

as described in §4.5.1. Table 4.4 shows the result of this experiment.

Figures 4.6 shows an screen shot of the clips from UTK and SUB datasets. The first row shows

skeleton clips extracted from an arbitrary action while rows 2-4 show the generated video for sub-

jects from different clip performing that specific action.

4.6.5 Real World

In this section, we carried out 4 different experiments on 2 datasets for bench-marking. Although

in all experiments, the generated data improved the network performance, we believe none of the

60



UTK SBU

Org. Exp. Org Exp.

i3d(s) 64.58% 69.58% 86.48% 93.54%

i3d(p) 86.25% 90.42% 97.30% 99.13%

c3d(s) - - 83.52% 86.03%

c3d(p) 55.83% 71.25% 92.02% 97.41%

Table 4.4: The comparison of dataset expansion by original data for UTK and SUB dataset.

experiments show the actual strength and convenience of our proposed methods in real world sce-

narios. In both datasets, as well as other commonly used small datasets, the environmental setup

for data acquisition such as distance from camera view [92] and light condition were kept as uni-

formly as possible for both test and train video clips. This would be unattainable in real life data

acquisitions. A way of overcoming this obstacle would be to collect diverse sets of data for strong

neural network models. We’ve previously shown that by partitioning the video to action, subject and

context allows us to easily manipulate the background or change the camera view. In this experi-

ment, We applied perspective transform on skeleton while using diverse backgrounds. Although the

model trained with these data did not outperform our previous experiments, a live demo showed it to

be better for unseen cases, qualitatively. Figure 4.7 illustrates an input skeleton and its perspective

transform as well as the generated clip.

Figure 4.7: Perspective transform example.

4.7 Discussion and Future Work

One of the key contributions of this chapter was the introduction of a novel method for generating

realistic human action videos. However, since the completion of this project in 2017, there have

been significant advancements in image generation techniques. Specifically, diffusion models such
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as DALL-E [155], Imagen [174], Stable Diffusion [163], etc. have emerged as effective tools for

generating images based on natural language prompts. Given these advancements in the field of

generative learning since the completion of our project, it is important to discuss the relevance and

limitations of our work.

In terms of limitations, our approach was hinged on the utilization of Generative Adversarial

Networks (GANs) for generating skeleton trajectories, a task for which GANs were not intrinsically

designed. Training GANs for this specific application proved to be a formidable challenge, fre-

quently leading to mode collapse [13, 209] despite rigorous hyper-parameter tuning, incorporation

of batch diversity loss, and a reduction of time steps.

A potential improvement for future iterations of this work might involve the application of Vari-

ational Autoencoders (VAEs) or Diffusion models instead of GANs for skeleton generation. VAEs,

although renowned for lower reconstruction accuracy compared to GANs, tend to have better mode

coverage[239]. The low reconstruction accuracy for 2D coordinates of human skeleton is not ex-

pected to negatively impact the training of human action videos on the synthesized videos. More-

over, Diffusion models have proven to be proficient in generating high-resolution images, which can

potentially replace the conditional GAN in our model for refining the quality of synthesized action

videos.

With these technological advances since the original research, questions about the relevance of

our work in 2023 naturally arise. Our techniques, although no longer novel, continue to contribute

valuable insights to the field. It is critical to understand that our core contribution lies not within

a novel method for generating human action videos, but within the demonstration of how data

augmentation using generative learning can significantly enhance the performance of human action

recognition models. As such, with continued advancement in generative learning, we anticipate an

escalating improvement in the performance of action recognition models trained using synthesized

videos generated by these increasingly sophisticated generative models.

At present, state-of-the-art video generation techniques are not yet adept at producing realistic,

controllable human action videos, especially for longer durations with accurate labels [73, 74].

These current methods still necessitate the application of certain engineering techniques, such as the

decomposition of the video into subject, action, and background. This was an approach proposed

and used in our original work. Consequently, the video generation technique presented in this work

remains potentially beneficial, especially if paired with state-of-the-art generative models like VAEs

or Diffusion models. Therefore, we maintain that our work retains relevance in the continually

evolving landscape of generative learning, particularly in the context of human action recognition

models.

4.8 Summary

In this chapter, we’ve introduced a novel way to partition an action video clip into action, subject

and context. We showed that we can manipulate each part separately, reassemble them with our
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proposed video generation model into new clips and use as an input for action recognition models

which require large data. We can change an action by extracting it from an arbitrary video clip,

generate it through our proposed skeleton trajectory model or by applying perspective transform

on existing skeleton. Additionally, we can change the subject and the context using arbitrary video

clips. We demonstrated that by using synthesized videos in the training set, the accuracy of action

recognition models can be significantly improved.
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Chapter 5

A Robust Learning Approach to Domain
Adaptive Object Detection

5.1 Abstract

Considering the inevitability of domain shift in real-world applications of object detection, we’ve

formulated a robust learning approach to the domain adaptation problem, treating it as training

with noisy labels. We introduce a robust object detection framework, which exhibits resilience to

noise in bounding box class labels, locations, and size annotations. To accommodate domain shift,

the model is trained on the target domain using a set of noisy object bounding boxes provided

by a detection model trained solely in the source domain. Evaluation of our approach on various

source/target domain pairs reveals considerable improvements in the state-of-the-art across multiple

domain adaptation scenarios, as demonstrated on the SIM10K, Cityscapes, and KITTI datasets.

5.2 Introduction

Object detection lies at the core of computer vision and finds application in surveillance, medical

imaging, self-driving cars, face analysis, and industrial manufacturing. Recent advances in object

detection using convolutional neural networks (CNNs) have made current models fast, reliable and

accurate.

However, domain adaptation remains a significant challenge in object detection. In many dis-

criminative problems (including object detection) it is usually assumed that the distribution of in-

stances in both train (source domain) and test (target domain) set are identical. Unfortunately, this

assumption is easily violated, and domain changes in object detection arise with variations in view-

point, background, object appearance, scene type and illumination. Further, object detection models

are often deployed in environments which differ from the training environment.

Common domain adaptation approaches are based on either supervised model fine-tuning in

the target domain or unsupervised cross-domain representation learning. While the former requires

additional labeled instances in the target domain, the latter eliminates this requirement at the cost of

two new challenges. Firstly, the source/target representations should be matched in some space (e.g.,
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either in input space [263, 75] or hidden representations space [54, 214]). Secondly, a mechanism

for feature matching must be defined (e.g. maximum mean discrepancy (MMD) [141, 132], H
divergence [14], or adversarial learning).

In this work, we approach domain adaptation differently, and address the problem through robust

training methods. Our approach relies on the observation that, although a (primary) model trained

in the source domain may have suboptimal performance in the target domain, it may nevertheless

be used to detect objects in the target domain with some accuracy. The detected objects can then

be used to retrain a detection model on both domains. However, because the instances detected in

the target domain may be inaccurate, a robust detection framework (which accommodates these

inaccuracies) must be used during retraining.

The principal benefit of this formulation is that the detection model is trained in an unsupervised

manner in the target domain. Although we do not explicitly aim at matching representations between

source and target domain, the detection model may implicitly achieve this because it is fed by

instances from both source and target domains.

To accommodate labeling inaccuracies we adopt a probabilistic perspective and develop a ro-

bust training framework for object detection on top of Faster R-CNN [160]. We provide robustness

against two types of noise: i) mistakes in object labels (i.e., a bounding box is labeled as person but

actually is a pole), and ii) inaccurate bounding box location and size (i.e., a bounding box does not

enclose the object). We formulate the robust retraining objective so that the model can alter both

bounding box class labels and bounding box location/size based on its current belief of labels in

the target domain. This enables the robust detection model to refine the noisy labels in the target

domain.

To further improve label quality in the target domain, we introduce an auxiliary image classifi-

cation model. We expect that an auxiliary classifier can improve target domain labels because it may

use cues that have not been utilized by the original detection model. As examples, additional cues

can be based on additional input data (e.g. motion or optical flow), different network architectures,

or ensembles of models. We note however, that the auxiliary image classification model is only used

during the retraining phase and the computational complexity of the final detector is preserved at

test time.

The contributions of this chapter are summarized as follows: i) We provide the first (to the best

of our knowledge) formulation of domain adaptation in object detection as robust learning. ii) We

propose a novel robust object detection framework that considers noise in training data on both ob-

ject labels and locations. We use Faster R-CNN[160] as our base object detector, but our general

framework, theoretically, could be adapted to other detectors (e.g. SSD [128] and YOLO [158]) that

minimize a classification loss and regress bounding boxes. iii) We use an independent classification

refinement module to allow other sources of information from the target domain (e.g. motion, ge-

ometry, background information) to be integrated seamlessly. iv) We demonstrate that this robust

framework achieves state-of-the-art on several cross-domain detection tasks.
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5.3 Previous Work

Object Detection: The first approaches to object detection used a sliding window followed by a

classifier based on hand-crafted features [26, 47, 227]. After advances in deep convolutional neu-

ral networks, methods such as R-CNN [63], SPPNet [69], and Fast R-CNN [62] arose which used

CNNs for feature extraction and classification. Slow sliding window algorithms were replaced with

faster region proposal methods such as selective search [216]. Recent object detection methods fur-

ther speed bounding box detection. For example, in Faster R-CNN [160] a region proposal network

(RPN) was introduced to predict refinements in the locations and sizes of predefined anchor boxes.

In SSD [128], classification and bounding box prediction is performed on feature maps at different

scales using anchor boxes with different aspect ratios. In YOLO [157], a regression problem on a

grid is solved, where for each cell in the grid, the bounding box and the class label of the object

centering at that cell is predicted. Newer extensions are found in [254, 158, 25]. A comprehensive

comparison of methods is reported in [80]. The goal of this chapter is to increase the accuracy of an

object detector in a new domain regardless of the speed. Consequently, we base our improvements

on Faster R-CNN, a slower, but accurate detector.1

Domain Adaptation: was initially studied for image classification and the majority of the domain

adaptation literature focuses on this problem [39, 38, 114, 67, 64, 48, 200, 130, 131, 54, 52, 60, 9,

140, 119]. Some of the methods developed in this context include cross-domain kernel learning

methods such as adaptive multiple kernel learning (A-MKL) [39], domain transfer multiple kernel

learning (DTMKL) [38], and geodesic flow kernel (GFK) [64]. There are a wide variety of ap-

proaches directed towards obtaining domain invariant predictors: supervised learning of non-linear

transformations between domains using asymmetric metric learning [114], unsupervised learning

of intermediate representations [67], alignment of target and domain subspaces using eigenvector

covariances [48], alignment the second-order statistics to minimize the shift between domains [200],

and covariance matrix alignment approach [234]. The rise of deep learning brought with it steps to-

wards domain-invariant feature learning. In [130, 131] a reproducing kernel Hilbert embedding of

the hidden features in the network is learned and mean-embedding matching is performed for both

domain distributions. In [54, 52] an adversarial loss along with a domain classifier is trained to learn

features that are discriminative and domain invariant.

There is less work in domain adaptation for object detection. Domain adaptation methods for

non-image classification tasks include [55] for fine-grained recognition, [15, 76, 258, 230] for se-

mantic segmentation, [103] for dataset generation, and [136] for finding out of distribution data

in active learning. For object detection itself, [241] used an adaptive SVM to reduce the domain

shift, [153] performed subspace alignment on the features extracted from R-CNN, and [14] used

Faster RCNN as baseline and took an adversarial approach (similar to [52]) to learn domain invari-

1Our adoption of faster R-CNN also allows for direct comparison with the state-of-the-art [14].

66



Extract
Ground truth

Source
Domain

Faster R-CNN

Target
Domain

Train

Improved  
Faster R-CNN 
with Robust 
Loss Function

Image
Classifier

Train

Object Proposals
Pseudo Ground-truth

Train

Car (?)

Car (?)
Apply

Bicycle (60%)

Car 80%

Apply

Car 99%

Bicycle (99%)

Car 90%

Final Output

Target
Domain

Phase 1 Phase 2 Phase 3

Figure 5.1: The robust learning approach consists of three phases. In phase 1, a detection module is

trained using labeled data in the source domain. This detector is then used to generate noisy anno-

tations for images in the target domain. In phase 2, the annotations assigned in phase 1 are refined

using a classification module. Finally, in phase 3, the detector is retrained using the original labeled

data and the refined machine-generated annotations in the target domain. Retraining is formulated

to account for the possibility of mislabeling.

ant features jointly on target and source domains. We take a fundamentally different approach by

reformulating the problem as noisy labeling. We design a robust-to-noise training scheme for object

detection which is trained on noisy bounding boxes and labels acquired from the target domain as

pseudo-ground-truth.

Noisy Labeling: Previous work on robust learning has focused on image classification where

there are few and disjoint classes. Early work used instance-independent noise models, where each

class is confused with other classes independent of the instance content [142, 139, 145, 199, 259,

247]. Recently, the literature has shifted towards instance-specific label noise prediction [238, 137,

217, 218, 219, 223, 207, 90, 27, 159]. To the best of our knowledge, ours is the first proposal for an

object detection model that is robust to label noise.

5.4 Method

Following the common formulation for domain adaptation, we represent the training data space as

the source domain (S) and the test data space as the target domain (T ). We assume that an annotated

training image dataset in S is supplied, but that only images in T are given (i.e. there are no labels

in T ). Our framework, visualized in Fig. 5.1, consists of three main phases:

1. Object proposal mining: A standard Faster R-CNN, trained on the source domain, is used to

detect objects in the target domain. The detected objects form a proposal set in T .

2. Image classification training: Given the images extracted from bounding boxes in S, we

train an image classification model that predicts the class of objects in each image. The re-

sulting classifier is used to score the proposed bounding boxes in T . This model aids in
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training the robust object detection model in the next phase. The reason for introducing im-

age classification is that i) this model may rely on representations different than those used

by the phase one detection model (e.g., motion features) or it may use a more sophisticated

network architectures, and ii) this model can be trained in a semi-supervised fashion using

labeled images in S and unlabeled images in T .

3. Robust object detection training: In this phase a robust object detection model is trained

using object bounding boxes in S and object proposals in T (from phase one) that has been

rescored using the image classification (from phase two).

We organize the detailed method description as follows. Firstly, we introduce background no-

tation and provide a description of Faster R-CNN in Sec. 5.4.1 to define the model used in phase

one. Secondly, a probabilistic view of Faster R-CNN in Sec. 5.4.2 provides a foundation for the

robust object detection framework presented in Sec. 5.4.3. This defines the model used in phase

three. Lastly, the image classification model used in phase two is discussed in Sec. 5.4.4.

Notation: We are given training images in S along with their object bounding box labels. This

training set is denoted by DDDS = {(xxx(s), yyy(s))} where xxx(s) ∈ S represents an image, yyy(s) is the

corresponding bounding box label for xxx(s) and s is an index. Each bounding box yyy = (yc, yyyl)
represents a class label by an integer, yc ∈ Y = {1, 2, . . . , C}, where C is the number of foreground

classes, and a 4-tuple, yyyl ∈ R4, giving the coordinates of the top left corner, height, and width of

the box. To simplify notation, we associate each image with a single bounding box.2

In the target domain, images are given without bounding box annotations. At the end of phase

one, we augment this dataset with proposed bounding boxes generated by Faster R-CNN. We denote

the resulting set by DDDT = {xxx(t), ỹyy(t)} where xxx(t) ∈ T is an image, ỹyy(t) ∈ Y is the corresponding

proposed bounding box and t is an index. Finally, we obtain the image classification score obtained

at the end of phase two for each instance in DDDT from pimg(yc|xxx, ỹyyl) which represents the probability

of assigning the image cropped in the bounding box ỹyyl in xxx to the class yc ∈ Y ∪ {0} which is one

of the foreground categories or background.

5.4.1 Faster R-CNN

Faster R-CNN [160] is a two-stage detector consisting of two main components: a region proposal

network (RPN) that proposes regions of interests (ROI) for object detection and an ROI classifier

that predicts object labels for the proposed bounding boxes. These two components share the first

convolutional layers. Given an input image, the shared layers extract a feature map for the image.

In the first stage, RPN predicts the probability of a set of predefined anchor boxes for being an

object or background along with refinements in their sizes and locations. The anchor boxes are

2This restriction is for notational convenience only. Our implementation makes no assumptions about the number of

objects in each image.
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a fixed predefined set of boxes with varying positions, sizes and aspect ratios across the image.

Similar to RPN, the region classifier predicts object labels for ROIs proposed by the RPN as well

as refinements for the location and size of the boxes. Features passed to the classifier are obtained

with a ROI-pooling layer. Both networks are trained jointly by minimizing a loss function:

L = LRP N + LROI . (5.1)

LRP N and LROI represent losses used for the RPN and ROI classifier. The losses consist of

a cross-entropy cost measuring the mis-classification error and a regression loss quantifying the

localization error. The RPN is trained to detect and localize objects without regard to their classes,

and the ROI classification network is trained to classify the object labels.

5.4.2 A Probabilistic View of Faster R-CNN

In this section, we provide a probabilistic view of Faster R-CNN that will be used to define a

robust loss function for noisy detection labels. The ROI classifier in Faster R-CNN generates an

object classification score and object location for each proposed bounding box generated by the

RPN. A classification prediction pcls(yc|xxx, ỹyyl) represents the probability of a categorical random

variable taking one of the disjoint C + 1 classes (i.e., foreground classes plus background). This

classification distribution is modeled using a softmax activation. Similarly, we model the location

prediction ploc(yyyl|xxx, ỹyyl) = N (yyyl; ȳyyl, σIII) with a multivariate Normal distribution3 with mean ȳyyl and

constant diagonal covariance matrix σIII . In practice, only ȳyyl is generated by the ROI classifier which

is used to localize the object.

5.4.3 Robust Faster R-CNN

To gain robustness against detection noise on both the label (yc) and the box location/size (yyyl), we

develop a refinement mechanism that corrects mistakes in both class and box location/size annota-

tions. The phase three detection model is trained using these refined annotations.

If the training annotations are assumed to be noise-free then both pcls and ploc are used to define

the maximum-likelihood loss functions in Eq. 5.1. In the presence of noisy labels, arg max pcls and

arg max ploc may disagree with the noisy labels but nevertheless correctly identify the true class

or location of an object. Additionally, we also have access to the image classification model pimg

from phase 2 that may be more accurate in predicting class labels for proposed bounding boxes

in T since it is trained using information sources different from the primary detection model. The

question then is how to combine pcls, ploc from Faster R-CNN and pimg from the image model to

get the best prediction for the class and location of an object?

3This assumption follows naturally if the L2-norm is used for the localization error in Eq. 5.1. In practice however, a

combination of L2 and L1 norms are used which do not correspond to a simple probabilistic output.
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Vahdat [217] has proposed a regularized EM algorithm for robust training of image classification

models. Inspired by this approach, we develop two mechanisms for correcting classification and

localization errors, based on the assumption that when training a classification model on noisy

labeled instances, the distribution over true labels should be close to both the distributions generated

by the underlying classification model and an auxiliary distribution obtained from other sources.

Since the accuracy of the learned classification model improves during training, the weighting of

these information sources should shift during training.

Classification Error Correction: We seek a distribution, q(yc), which is close to both the clas-

sification model of Faster R-CNN and the image classification model pimg, that is trained in phase

two. We propose the following optimization objective for inferring q(yc)

min
q

KL(q(yc)||pcls(yc|xxx, ỹyyl))+αKL(q(yc)||pimg(yc|xxx, ỹyyl)). (5.2)

KL denotes the Kullback-Leibler divergence and α > 0 balances the trade-off between two terms.

With large values of α, q favors the image classification model (pimg) over Faster R-CNN predic-

tions (pcls), and with smaller α, q favors pcls. Over the course of training, α can be changed to set a

reasonable balance between the two distributions.

The following result provides a closed-form solution to the optimization problem in Eq. 5.2:

Theorem 1. Given two probability distributions p1(z) and p2(z) defined for the random variable z

and positive scalar α, the closed-form minimizer of

min
q

KL(q(z)||p1(z)) + αKL(q(z)||p2(z))

is given by:

q(z) ∝
(
p1(z)pα

2 (z)
) 1

α+1 (5.3)

Proof. Here, we prove the theorem for a continuous random variable defined in domain Ω.

min
q

KL(q(z)||p1(z)) + αKL(q(z)||p2(z))

=
∫

Ω
q(z) log q(z)

p1(z)dz + α

∫
Ω

q(z) log q(z)
p2(z)dz

= (α + 1)
∫

Ω
q(z) log q(z)[

p1(z)pα
2 (z)

] 1
α+1

dz

= (α + 1)KL(q(z) || 1
Z

[
p1(z)pα

2 (z)
] 1

α+1 ) + C

where Z is the normalization for
(
p1(z)pα

2 (z)
) 1

α+1 and C is a constant independent of q. The final

KL is minimized when Eq. 5.3 holds.
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Using Theorem. 1, the solution to Eq. 5.2 is obtained as the weighted geometric mean of the

two distributions:

q(yc) ∝
(
pcls(yc|xxx, ỹyyl)pα

img(yc|xxx, ỹyyl)
) 1

α+1 . (5.4)

Since both pcls(yc|xxx, ỹyyl) and pimg(yc|xxx, ỹyyl) are categorical distributions (with softmax activation),

q(yc) is also a (softmax) categorical distribution whose parameters are obtained as the weighted

mean of the logits generated by pcls and pimg, i.e., σ
(
(lllcls + αlllimg)/(1 + α)

)
where σ is the

softmax and lllcls and lllimg are the corresponding logits. Setting α = ∞ in Eq. 5.4 sets q(yc) to

pimg(yc|xxx, ỹyyl) while α = 0 sets q(yc) to pcls(yc|xxx, ỹyyl). During training we reduce α from large to

smaller values. Intuitively, at the beginning of the training, pcls(yc|xxx, ỹyyl) is inaccurate and provides

a poor estimation of the true class labels, therefore by setting α to a large value we guide q(yc) to

rely on pimg(yc|xxx, ỹyyl) more than pcls. By decreasing α throughout training, q will rely on both pcls

and pimg to form a distribution over true class labels.

Bounding Box Refinement: Eq. 5.4 refines the classification labels for the proposal bounding

boxes in the target domain. Here, we provide a similar method for correcting the errors in location

and size. Recall that Faster R-CNN’s location predictions for the proposal bounding boxes can be

thought as a Normally distributed N (yyyl; ỹyyl, σIII) with mean ỹyyl and constant diagonal covariance

matrix σIII . We let pinit(yyyl|xxx, ỹyyl) := N (yyyl; ỹyyl, σIII) denote the initial detection for image xxx. At each

iteration Faster R-CNN predicts a location for object using ploc(yyyl|xxx, ỹyyl) = N (yyyl; ȳyyl, σIII) for image

xxx and the proposal ỹyyl. We use the following objective function for inferring a distribution q over

true object locations:

min
q

KL(q(yyyl)||ploc(yyyl|xxx, ỹyyl))+αKL(q(yyyl)||pinit(yyyl|xxx, ỹyyl)) (5.5)

As with Eq. 5.2, the solution to Eq. 5.5 is the weighted geometric mean of the two distributions.

Theorem 2. Given two multivariate Normal distributions p1(zzz) = N (zzz;μμμ1,ΣΣΣ) and p2(zzz) =
N (zzz;μμμ2,ΣΣΣ) with common covariance matrix ΣΣΣ defined for the random variable zzz and a posi-

tive scalar α, the weighted geometric mean q(zzz) ∝
(
p1(zzz)pα

2 (zzz)
) 1

α+1 is also Normal with mean(
μμμ1 + αμμμ2

)
/(α + 1) and covariance matrix ΣΣΣ.

Proof. By the definition of the Normal distribution, we have:

q(zzz) ∝
(
p1(zzz)pα

2 (zzz)
) 1

α+1

∝ e− 1
2

[
1

α+1 (zzz−μμμ1)T ΣΣΣ−1(zzz−μμμ1)+ α
α+1 (zzz−μμμ2)T ΣΣΣ−1(zzz−μμμ2)

]

∝ e− 1
2

[
zzzT ΣΣΣ−1zzz−2zzzT ΣΣΣ−1(μμμ1+αμμμ2

α+1 )
]

∝ e− 1
2

(
zzz−(μμμ1+αμμμ2

α+1 )
)T

ΣΣΣ−1
(
zzz−(μμμ1+αμμμ2

α+1 )
)

Hence, q(zzz) = N (zzz; (μμμ1 + αμμμ2)/(α + 1),ΣΣΣ)
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Using Theorem. 2, the minimizer of Eq. 5.5 is:

q(yyyl) = N
(
yyyl; (ȳyyl + αỹyyl)/(α + 1), σIII

)
. (5.6)

This result gives the refined bounding box location and size as the weighted average of box loca-

tion/size extracted from phase one and the current output of Faster R-CNN. Setting α = ∞ ignores

the current output of Faster R-CNN while α = 0 uses its output as the location. At training time,

we initially set α to a large value and then gradually decrease it to smaller values. In this way, at

early stages of training q relies on pinit because it’s more accurate than the current estimation of the

model, but as training progresses and ploc becomes more accurate, q relies more heavily on ploc.

Training Objective Function: We train a robust Faster R-CNN using DDDS ∪ DDDT . At each mini-

batch update, if an instance belongs to DDDS then the original loss function of Faster R-CNN is used

for parameter update. If an instance belongs to DDDT then q(yc) in Eq. 5.4 and q(yyyl) in Eq. 5.6 are

used to refine the proposed bounding box annotations. q(yc) is used as the soft target labels in the

cross entropy loss function for the mis-classification term and (ȳyyl + αỹyyl)/(α + 1) is used as the

target location for the regression term. The modifications are made only in the ROI classifier loss

function because the RPN is class agnostic.

False Negative Correction: Thus far, the robust detection method only refines the object propos-

als generated in phase one. This allows the model to correct false positive detections, i.e., instances

that do not contain any foreground object or that contain an object from a class different than the

predicted class. However, we would also like to correct false negative predictions, i.e., positive in-

stances of foreground classes that are not detected in phase one.

To correct false negative instances, we rely on the hard negative mining phase of Faster R-CNN.

In this phase a set of hard negative instances are added as background instances to the training set.

Hard negatives that come from DDDS are actually background images. However, the “background” in-

stances that are extracted from DDDT may be false negatives of phase one and may contain foreground

objects. Therefore, during training for negative samples that belong to DDDT , we define pimg(yc) to

be a softened one-hot vector by setting the probability of a background to 1 − ε and the probability

of the other class labels uniformly to ε/C. This is used as a soft target label in the cross-entropy

loss.

5.4.4 Image Classification:

Phase two of our framework uses an image classification model to re-score bounding box proposals

obtained in phase one. The image classification network is trained in a semi-supervised setting on

top of images cropped from both DDDS (clean training set) and DDDT (noisy labeled set). For images

in DDDS , we use the cross-entropy loss against ground truth labels, but, for images in DDDT the cross-

entropy loss is computed against soft labels obtained by Eq 5.2, where the weighted geometric mean
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between predicted classification score and a softened one-hot annotation vector is computed. This

corresponds to multiclass extension of [217] which allows the classification model to refine noisy

class labels for images in DDDT .

Note that both DDDS and DDDT have bounding boxes annotations from foreground classes (although

instances in DDDT have noisy labels). For training the image classification models, we augment these

two datasets with bounding boxes mined from areas in the image that do not have overlap with

bounding boxes in DDDS or DDDT .

5.5 Experiments

To compare with state-of-the-art methods we follow the experimental design of [14]. We perform

three experiments on three source/target domains and use similar hyper-parameters as [14]. We use

the Faster R-CNN implementation available in the object detection API [80] source code. In all the

experiments, including the baselines and our method, we set the initial learning rate to 0.001 for

50, 000 iterations and reduce it to 0.0001 for the next 20, 000 iterations (a similar training scheme

as [14]). We linearly anneal α from 100 to 0.5 for the first 50, 000 iterations and keep it constant

thereafter. We use InceptionV2 [205], pre-trained on ImageNet [28], as the backbone for Faster R-

CNN. In one slight departure, we set aside a small portion of the training set as validation for setting

hyper-parameters. InceptionV4 [204] is used for the image classification phase with initial learning

rate of 3 × 10−4 that drops every 2 epochs by a factor 0.94. We set the batch size to 32 and train for

300 000 steps.

Baselines: We compare our method against the following progressively more sophisticated base-

lines.

• Faster R-CNN [160]: This is the most primitive baseline. A Faster R-CNN object detector

is trained on the source domain and tested on the target domain so that the object detector is

blind to the target domain.

• Pseudo-labeling [82]: A simplified version of our method in which Faster R-CNN is trained

on the source domain to extract object proposals in the target domain, and then based on a pre-

determined threshold, a subset of the object proposals are selected and used for fine-tuning

Faster R-CNN. This process can be repeated. This method corresponds to the special case

where α = 0 is fixed throughout training. The original method in [82] performs a progressive

adaptation, which is computationally extensive. Since our method and the previous state-of-

the-art method perform only one extra fine-tuning step, we perform only one repetition for a

fair comparison.

• Feature Learning [14]: This state-of-the-art domain adaptation method reduces the domain

discrepancy by learning robust features in an adversarial manner. We follow the experimental

setup used in [14].
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Cityscapes → Foggy Cityscapes

Method Cls-Cor Box-R FN-Cor person rider car truck bus train motorcycle bicycle mAP

Faster R-CNN[160] 31.69 39.41 45.81 23.86 39.34 20.64 22.26 32.36 31.92

Pseudo-labeling[82] 31.94 39.94 47.97 25.13 39.85 27.22 25.01 34.12 33.90

Feature Learning [14] 35.81 41.63 47.36 28.49 32.41 31.18 26.53 34.26 34.70

Noisy Labeling (Ours) :

� � � 34.82 41.89 48.93 27.68 42.53 26.72 26.65 35.76 35.62

� � � 35.26 42.86 50.29 27.87 42.98 25.43 25.30 35.94 36.06

� � � 35.10 42.15 49.17 30.07 45.25 26.97 26.85 36.03 36.45
Faster R-CNN[160] trained on target 40.63 47.05 62.50 33.12 50.43 39.44 32.57 42.43 43.52

Table 2: Quantitative results comparing our method to baselines for adapting from Cityscapes to

Foggy Cityscapes. We record the average precision (AP) on the Cityscapes validation set. “Cls-

Cor” represents “classification error correction”, Box-R stands for “Bounding Box Refinement”

component, and FN-Cor stands for “False Negative Correction” component of our method. The last

row shows the base detector’s performance if labeled data for target domain was available.
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Figure 5.2: Qualitative comparison of our method with Faster R-CNN on the “Cityscapes → KITTI”

experiment. Each column corresponds to a particular image in the KITTI test set. Top and bottom

images in each column illustrate the bounding boxes of the cars detected by Faster R-CNN and our

method respectively. In the first two columns our method corrects several false positives. In all cases

our method successfully corrected the size/location of the bounding boxes (e.g. the rooflines in the

third column). In the fourth and fifth examples, our method has detected cars that Faster R-CNN has

missed. Nevertheless, false positives do occur (e.g. in column five), though the probability of those

specific false positives is low (53% in this example).

Datasets: Following [14] we evaluate performance on multi- and single-label object detection

tasks using three different datasets. Depending on the experiment, some datasets are used as both

target and source domains and some are only used as either the source or target domain.

• SIM 10K [91] is a simulated dataset containing 10, 000 images synthesized by the Grand

Theft Auto game engine. In this dataset, which simulates car driving scenes captured by a

dash-cam, there are 58, 701 annotated car instances with bounding boxes. We use 10% of

these for validation and the remainder for training.
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• Cityscapes [21] is a dataset4 of real urban scenes containing 3, 475 images captured by a dash-

cam, 2, 975 images are used for training and the remaining 500 for validation. Following [14]

we report results on the validation set because the test set doesn’t have annotations. In our

experiments we used the tightest bounding box of an instance segmentation mask as ground

truth. There are 8 different object categories in this dataset including person, rider, car, truck,

bus, train, motorcycle and bicycle.

• Foggy Cityscapes [177] is the foggy version of Cityscapes. The depth maps provided in

Cityscapes are used to simulate three intensity levels of fog in [177]. In our experiments

we used the fog level with highest intensity (least visibility). The same dataset split used for

Cityscapes is used for Foggy Cityscapes.

• KITTI [57] is another real-world dataset consisting of 7, 481 images of real-world traffic sit-

uations, including freeways, urban and rural areas. Following [14] we used the whole dataset

for both training, when it is used as source, and test, when it is used as target.

5.5.1 Adapting synthetic data to real world

In this experiment, the detector is trained on synthetic data generated using computer simulations

and the model is adapted to real world examples. This is an important use case as it circumvents

the lack of annotated training data common to many applications (e.g. autonomous driving). The

source domain is SIM 10K and the target domain is Cityscapes dataset (denoted by “SIM 10K →
Cityscapes”). We use the validation set of Cityscapes for evaluating the results. We only train the

detector on annotated cars because cars is the only object common to both SIM 10K and Cityscapes.

SIM 10K → Cityscapes

Method Cls-Cor Box-R FN-Cor AP

Faster R-CNN[160] 31.08

Pseudo-labeling[82] 39.05

Feature Learning [14] 40.10

Noisy Labeling (Ours) :

� � � 41.28
� � � 41.83
� � � 42.56

Faster R-CNN[160] trained on target 68.10

Table 1: Quantitative results comparing our method to baselines for adapting from SIM 10K dataset

to Cityscapes. We record average precision (AP) on the Cityscapes validation set. The last row

shows the base detector’s performance if labeled data for target domain was available.

4This dataset is usually used for instance segmentation and not object detection.
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Table 1 compares our method to the baselines. We tested our method with “Classification Error

Correction (Cls-Cor)”5, with or without the “Bounding Box Refinement (Box-R)” and “False Neg-

ative Correction (FN-Cor)” components. The state-of-the-art Feature Learning [14] method has

+1.05% improvement over the basic Pseudo-labeling[82] baseline. Our best performing method

has a +3.51% improvement over the same baseline yielding more than triple the improvement over

the incumbent state-of-the-art.

5.5.2 Adapting normal to foggy weather

Changes in weather conditions can significantly affect visual data. In applications such as au-

tonomous driving, the object detector must perform accurately in all conditions [177]. However,

it is often not possible to capture all possible variations of objects in all weather conditions. There-

fore, models must be adaptable to differing weather conditions. Here we evaluate our method and

demonstrate its superiority over the current state-of-the-art for this task. We use Cityscapes dataset

as the source domain and Foggy Cityscapes as the target domain (denoted by “Cityscapes → Foggy

Cityscapes”).

Table. 2 compares our method to the baselines on multi-label domain adaptation. The categories

in this experiment are person, rider, car, truck, bus, train, motorcycle, bicycle. Average precision

for each category along with the mean average precision (mAP) of all the objects are reported.

Our method improves Faster R-CNN mAP by +4.53%, while the state-of-the-art’s improvement is

+2.78%.

5.5.3 Adapting to a new dataset

The previous examples of domain adaptation (synthetic data and weather change) are somewhat

specialized. However, any change in camera (e.g. angle, resolution, quality, type, etc.) or environ-

mental setup can cause domain shift. We investigate the ability of our method to adapt from one

real dataset to another real dataset. We use Cityscapes and KITTI as the source and target domain in

two separate evaluations. We denote the experiment in which Cityscapes is the source domain and

KITTI is the target domain by “Cityscapes → KITTI”, and vice versa by “KITTI → Cityscapes”.

Tables 5.3 and 5.4 compare average precision on the car class, the only common object. Our

method significantly outperforms the state-of-the-art in both situations (Cityscapes � KITTI). Qual-

itative results of our method on the KITTI test set are shown in Figure 5.2.

5.6 Summary

Domain shift can severely limit the real-world deployment of object-detection-based applications

when labeled data collection is either expensive or infeasible. We have proposed an unsupervised

5Turning off Cls-Cor reduces our approach to a method similar to Pseudo-labeling[82] with similar performance. To

maintain robustness to label noise, we run all experiments with Cls-Cor component.
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KITTI → Cityscapes

Method Cls-Cor Box-R FN-Cor AP

Faster R-CNN[160] 31.10

Pseudo-labeling[82] 40.23

Feature Learning [14] 40.57

Noisy Labeling (Ours) :

� � � 42.03
� � � 42.39
� � � 42.98

Faster R-CNN[160] trained on target 68.10

Table 5.3: Quantitative comparison of our method with baselines for adapting from KITTI to

Cityscapes. We record average precision (AP) on the Cityscapes test set. The last row gives the

base detector’s performance if labeled data for the target domain was available.

Cityscapes → KITTI

Method Cls-Cor Box-R FN-Cor AP

Faster R-CNN[160] 56.21

Pseudo-labeling[82] 73.84

Feature Learning [14] 73.76

Noisy Labeling (Ours) :

� � � 76.36
� � � 76.93
� � � 77.61

Faster R-CNN[160] trained on target 90.13

Table 5.4: Quantitative comparison of our method with baselines for adapting Cityscapes to KITTI.

We record average precision (AP) on the KITTI train set. The last row gives the base detector’s

performance if labeled data for target domain was available.
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approach to mitigate this problem by formulating the problem as robust learning. Our robust object

detection framework copes with labeling noise on both object classes and bounding boxes. State-of-

the-art performance is achieved by robust training in the target domain using a model trained only

in the source domain. This approach eliminates the need for collecting data in the target domain and

integrates other sources of information using detection re-scoring.
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Chapter 6

Conclusion

In this dissertation, we address the scarcity of labeled data in deep learning. The rise of deep learn-

ing has underscored the necessity for large data sets. Yet, obtaining large labeled datasets remains

a challenge for certain applications, such as autonomous driving, anomaly detection, and medical

imaging. This is due, in part, to the expertise required for annotations in specialized domains, such

as medical imaging, making it costly and time-intensive. In more standard fields like image classi-

fication or object detection, there exists a range of categories with few examples that are difficult to

acquire. Moreover, privacy and ethical concerns further exacerbate data scarcity in image labeling.

This research identifies data scarcity as a pressing concern in both academia and industry and

subsequently reviews prevalent strategies to combat this issue. These strategies are classified into

three main categories: Transfer Learning, which involves leveraging knowledge from well-labeled

domains to those with scant data, and encompasses sub-categories like multitask learning and do-

main adaptation; Active Learning, which seeks to intelligently and efficiently label data from a

smaller labeled set; and Data Augmentation, which artificially enlarges dataset size to bolster train-

ing of deep models.

We present three novel methodologies targeting the aforementioned categories—Active Learn-

ing, Data Augmentation, and Transfer Learning (specifically Domain Adaptation)—to alleviate the

constraints posed by limited labeled data.

6.0.1 Active Learning for Structured Prediction from Partially Labelled Data

In the realm of Active Learning, we introduced an algorithm tailored for structured prediction, ef-

ficiently leveraging partially labeled data. Our findings demonstrate that for classification problems

producing structured outputs, acquiring labels for every component of the structures in training

data isn’t essential. This stems from the inherent information sharing and redundancy across nodes

in a graphical model. From an information theory standpoint, we proposed a candidate selection

strategy based on our introduced metric, "expected entropy reduction". This metric measures the

informativeness of the nodes in a graph, emphasizing those nodes offering the most information

about the rest of the graph. Experimental results confirm that our algorithm outperforms preceding

active learning approaches.
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Limitations and Future Directions:
One primary constraint of our technique is its current impracticality within computer vision.

Given the iterative nature of our model training and node informativeness measurement, it may be

more resource-intensive than simply procuring labels for all images, especially considering recent

advances in image labeling tools [173]. Yet, in certain domains such as drug discovery, recommen-

dation systems, and autonomous driving, the concept of active learning for structured prediction

remains relevant. A future research direction would be adapting our method’s variants to domains

outside of computer vision. Notably, in the context of named entity recognition, active learning for

structured prediction remains an active research area [260, 152].

Another key limitation of our our methodology is that it did not consider the diversity of sam-

ples, a pivotal aspect extensively explored within the active learning framework [261, 5, 183]. As

an extension, these considerations can be integrated into the selection strategy along with with the

informativeness metric.

6.0.2 Dataset Augmentation for Human Action Classification

Human action classification stands as a pivotal task in computer vision. Yet, compared to image clas-

sification, annotating videos is both more resource-intensive and time-consuming. In this research,

we introduce a data augmentation method to enhance the performance of human action classifiers.

Central to our approach is a conditional GAN, designed to generate video frames, utilizing a human

skeleton, reference human images, and a background image as inputs.

This methodology synthesizes realistic human action videos from a limited dataset, augmenting

the training data without necessitating extensive data collection and labelling. Demonstrated suc-

cesses on two distinct human action recognition datasets highlight the efficacy of our approach in

augmenting conventional action recognition algorithms.

A pivotal factor driving the effectiveness of frame-based video generation techniques for human

action classification is the current superior advancement of generative models for images over those

for videos. Coupled with the richer availability of labeled data for images than for videos, there’s

a unique opportunity to transfer knowledge from the image to the video domain. This is especially

possible by harnessing generative models pretrained on vast amount of labeled image datasets, while

accounting for frame consistency and overall video coherence.

Limitations and Future Directions:
Contemporary video generation techniques, during the time of this research, didn’t offer the

desired proficiency for the task. Nevertheless, substantial advancements have been made in recent

years such as "Imagen Video" [74], "Make a Video" [195], hinting at a promising direction involving

these emerging methods. However, frame-based video generation is still a viable option.

A significant drawback of our approach resides in the separation between the background and

action, leading to potential discrepancies; an illustrative case being the ’sitting’ action not accom-

panied by appropriate background elements like chairs. State-of-the-art diffusion models, such as

ControlNet [255] and DreamBooth [167], have displayed capabilities to yield consistent images
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given only an input human skeleton or the subject’s image. Their outputs, in terms of quality, often

surpass those from GANs.

Furthermore, our efforts to train a GAN for generating skeleton trajectories encountered chal-

lenges, notably the persistent issue of mode collapse. Despite implementing various techniques, like

truncating trajectory lengths and integrating a batch diversity loss, we didn’t get the desired results.

Recent literature indicates that sophisticated models, such as VAE [147] and diffusion model [208],

may pave the way for superior quality in skeleton trajectory generation.

6.0.3 Robust Learning for Domain-Adaptive Object Detection

In addressing domain shift within Domain Adaptation, we presented a method addressing a sig-

nificant challenge in object detection’s real-world application. Our technique stands as an initial

contribution in domain adaptation for object detection, emphasizing refining pseudo-labels.

The framework introduced is characterized by its robustness and probabilistic approach, distinct

for its simplicity and resilience against label noise in bounding boxes. Our strategy involves a two-

fold process:

Extracting pseudo-labels in the target domain with an object detector pretrained on the source

domain. Iteratively refining these pseudo-labels grounded on model predictions. Empirical results

on datasets like SIM 10K, Cityscapes, and KITTI confirm our method’s superiority over existing

state-of-the-art techniques in various domain adaptation scenarios.

Limitations and Future Directions: Our approach’s iterative nature presents potential risks,

including the model reinforcing its own errors. We’ve counteracted this by strategic hyperparameter

tuning. As an example, we refrain from annealing alpha to zero, ensuring the model doesn’t wholly

lean on its predictions during training. Another tactic involves relying on high-confidence samples,

achieved by setting stringent thresholds on objectness scores. Looking ahead, refining pseudo-labels

remains an active area for exploration. Potential avenues include leveraging temporal consensus

during training epochs [257] or integrating teacher-student paradigms combined with source-target

domain feature alignment [120]

6.0.4 Final note

In conclusion, our approaches collectively contribute towards enhancing the performance and effi-

ciency of machine learning models in scenarios where labeled data is limited or hard to acquire. We

hope that the methods presented here will catalyze further research in overcoming the constraints

of labeled data scarcity and will enhance the real-world applicability of machine learning models

across a variety of fields.
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