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Abstract
This document will outline the design specifications for the ScootPilot to ensure that
e-scooter riders are safe by throttling the speed when the user is in a risk-prone riding
environment or the rider is about to crash into an object. In particularly dangerous scenarios,
our device will apply an emergency brake. To ensure a safe riding experience for the user,
the device uses a radar sensor to calculate the distance and relative velocity of an object in
front of the user. Depending on the distance and velocity, the ScootPilot system will throttle
the motor safely and notify the user audibly, avoiding collisions. To accomplish this, a
Raspberry Pi 4B will interface with the radar sensor and scooter motor controller to throttle
the motor. The Raspberry Pi will also signal the mechanical braking mechanism to stop the
scooter. By creating this system, e-scooter riders will benefit from a safer riding experience,
especially within a crowded, city setting.
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1. Introduction
In British Columbia, there is currently a pilot program in place for electric scooters, which has
raised concerns regarding the safety of riders and pedestrians alike. To address these
concerns, ADAScooter is working to develop a safety device, ScootPilot utilising ADAS for
e-scooters. By implementing this device, we aim to substantially reduce the occurrence of
accidents involving e-scooters and improve the overall safety of individuals using this mode
of transportation. By constantly monitoring the surroundings for potential collisions,
ADAScooter will be able to promptly adjust and/or apply the brakes to the e-scooter, thereby
mitigating the risk of accidents. To provide a clear overview of the safety device being
developed, Figure 1 illustrates a simple block diagram showcasing the basic components of
the system.

Figure 1: Simple Block Diagram of ScootPilot

1.1 Scope
The purpose of this document is to outline the design decisions of ADAScooter in its
endeavour to create a modular Advanced Driver Assistance System (ADAS) for electric
scooters. The document comprises a comprehensive account of the mechanical, software,
and electrical preferences, with each decision being substantiated by detailed justifications.
Additionally, the document is accompanied by two appendices, namely, Appendix A which
outlines the test plan and Appendix B which presents an alternative design.

1.2 Challenges
Below is a list of challenges that ADAScooter may face during the design of the device.
However, additional challenges may occur later in the completion of the project.

● Insufficient/excessive torque for the motor to apply the brake
● Radar not detecting objects
● High power consumption from peripheral devices, resulting in low battery life
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● Software not properly sending signals to stop the scooter
● Creating a UI that is easy to navigate

1.3 Updates on Feedback
Upon receiving feedback from Dr. Mike Hegedus, Yalda Foroutan, and Usman Ahmed, the
company (ADAScooter) has made the following changes to the design to ScootPilot:

1. The device will slow down when object presence is detected to maximize the safety
of the user. The braking system will be used only as a last resort.

2. Designing and implementing a control system to be added to an e-scooter for speed
reduction.

1.4 Design Specification Classification
The following convention has been used in the design specification document.

Des {Encoding [A-C]}-{Section}.{Subsection}.{Requirement Number}

The requirement specification document is listed in order of priority. The example below
provides the used convention alongside the table for the categories:

Des A.1.1.1 - Primary design specification for section 1.1.
Des A.2.1.1 - Primary design specification for section 2.1.

Encoding Stage of Development

A Proof-of-Concept

B Engineering Prototype

C Production Version

Table 1.4.1: Design Specification Encoding Classification

2. System Overview
In this section, we present a detailed overview of the safety module device that has been
specifically designed for ScootPilot. The device is equipped with an XE121 Acconeer AB
radar that continuously scans the surrounding area for potential obstacles and alerts both
the driver and nearby individuals in the event of a high risk of collision. This alert system
consists of both audio and visual warnings. An audio speaker alerts the driver and
pedestrians of an approaching e-scooter, while a small display screen is used as a user
interface. Moreover, in crowded areas, the device can automatically adjust the speed of the
e-scooter to half, to reduce the risk of collisions. In case of emergency situations, the device
activates the e-scooter's built-in braking system and automatically cuts off the throttle and
applies a brake, preventing any potential accidents. The Raspberry Pi 4 is responsible for
receiving and interpreting analog signals from the sensor to determine whether an obstacle
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has been detected, enabling the device to take the necessary actions. The entire device is
powered by a rechargeable Lion battery, designed to provide sufficient power to run for the
duration of a single charge of an e-scooter battery, ensuring uninterrupted operation and
reliability. The implementation of this device is of utmost importance in ensuring the safety of
both e-scooter riders and those in the vicinity. Figure 2 shows the overview block diagram of
the system.

Figure 2: Block diagram for the whole system

During the proof-of-concept (PoC) stage, the radar system implemented in the e-scooter will
detect stationary objects such as a wall or a person, and transmit the information to the
Raspberry Pi processor. Raspberry Pi will interpret the data and send signals to the speed
controller and braking system for necessary decision-making, while simultaneously
activating alerts through the speaker and LCD. All of these components will be powered by a
battery, allowing for a comprehensive and efficient detection and response system.

The Figures 3,4, and 5 below illustrate the attachment of the various components of the
ScootPilot device to an e-scooter. The radar and Raspberry Pi are housed inside a case that
is securely affixed to the headset of the e-scooter. The LCD display and speaker are
mounted on the handlebar for easy visibility and audibility. The braking system is attached to
the left handle where the lever is located, while the speed controller is positioned adjacent to
the e-scooter's main controller. This configuration ensures that all components of the
ScootPilot system are optimally positioned for efficient and effective operation.
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Figure 3: Isometric View of the Whole System

Figure 4: Display and Speaker System Mounted on Handlebars
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Figure 5: Motor for Pulling the Brake Lever

Table 2.0.1 provides a comprehensive bill of materials, detailing the cost of all components
necessary for constructing the ScootPilot device.

Material Unit Cost ($) Quantity Total Cost ($)

Raspberry Pi 4 Model B 66.13 [1] 1 66.13

XE121 Acconeer AB 236.48 [2] 1 236.48

Waveshare 5”
Capacitive LCD Display

71.95 [3] 1 71.95

Odseven USB Mini
Speakers

11.25 [4] 1 11.25

Charmast 10400 Power
Bank

42.99 [5] 1 42.99

DF Robot Dual Motor
Controller

19.22 [6] 1 19.22

Cytron 12V 75RPM
Spur Gearmotor

19.43 [7] 1 19.43

Total Cost 458.94

Table 2.0.1: Bill of Materials
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3. ScootPilot Design

3.1 Mechanical Design Specifications

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.1.1 The motor connected
to the brake lever
provides 5.5 kg.cm of
torque

None Req A-4.1.1
Req A-4.1.3

Des A.3.1.2 The selected motor is
rated for 75 RPM

None Req A-4.1.2
Req A-4.1.3

Des A.3.1.3 The designed motor
mount minimally
interferes with the
user's ability to
operate the scooter

Injected moulded
plastic to be used
for the production
version

Req B-3.2.8
Req B-6.1.2

Des B.3.1.4 The motor mount will
be 3D printed for
prototype purposes

Production version
would be smaller
dimensions and
aluminum alloy

Req B-6.1.2

Des B.3.1.5 The enclosure for the
radar, raspberry pi,
and battery will be 3D
printed.

The production
would be injection
moulded plastic

Req B-6.1.2
Req B-6.1.3

Des B.3.1.6 The mount for the
LCD and speaker will
be 3D printed

The production
would be injection
moulded plastic

Req B-6.1.2
Req B-6.1.3

Table 3.1.1: Mechanical Design Specifications

3.1.1 Mechanical Design Calculations
The design of the braking system as outlined by the requirements specification, is related to
the translation of the actuated force at the lever onto the disc. As the automated emergency
braking aims to stop the scooter from a maximum speed of 24km/h within 9m from the point
of braking, the required linear deceleration is simply calculated as below:

(Eq. 1)𝑎 =  
𝑣2 −𝑣

𝑜
2

2(𝑑) = 0−6.672

2(9) =− 2. 47𝑚/𝑠2

At the contact point of the brake pad on the disc, the required amount of force to bring the
e-scooter to a full stop can be found with the use of the free body diagram (Figure 6) and the
Kinetic energy formula:
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(Eq. 2)𝐾𝐸 =  1
2 𝑚𝑣2 + 1

2 𝐼𝑤2

Figure 6: Free Body Diagram of the Wheel Connected to the Brake Pads

where MTotal is the total mass of the moving object, v is the linear velocity, is the𝐼 = 𝑀
𝑊ℎ𝑒𝑒𝑙

𝑅2

moment of inertia of the wheel, and w is the angular velocity.

The rotational kinetic energy about the centre of the wheel, using the sum of the moments,
Wnet is then found as shown below:

(Eq. 3)𝑊
𝑛𝑒𝑡

= τ
𝑛𝑒𝑡

θ = (𝐹1 · 𝑅1) + (𝐹2 · 𝑅2)[ ] · 9
𝑅2

By equating this to Eq. 2 we can then solve for the required force to bring the e-scooter’s
kinetic energy to zero, or from 24km/h (KE initial) to a full stop (KE final).

(Eq. 4)(𝐹1 · 𝑅1) + (𝐹2 · 𝑅2)[ ] · 9
𝑅2  = 0 −  ( 1

2 𝑚𝑣2 + 1
2 𝐼𝑤2)

Then by isolating and solving for F1, we find the required force at the brake pads:

(Eq. 5)𝐹1 = 1
𝑅1 · 𝑅2

9  ( 1
2 𝑚𝑣2 + 1

2 𝐼𝑤2) − 𝐹2 · 𝑅2⎡
⎣

⎤
⎦

Where (Eq. 6)𝐹2 = 𝑚𝑔𝐶𝑟𝑟,  𝐶𝑟𝑟 =  𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

(Eq. 7)𝐼 =  𝑚𝑟2,  𝐼 =  𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙
(Eq. 8)𝑤 =  𝑣/𝑅2,  𝑤 =  𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑤ℎ𝑒𝑒𝑙

7



The table below provides the values of the parameters in the equations above

Parameter Value Unit

R1 (disc) 0.055 m

R2 (wheel) 0.136 m

m (wheel) 15 kg

m (scooter + load) 112 kg

Crr 0.001

v 6.67 m/s

Table 3.1.1.1: Values and Units of the Parameters Used in Force Calculation

Using these values, F1 as shown in equations 5 to 8 is calculated as shown below:

𝐹1 = 1
(0.055) · 0.136

9  ( 1
2 (112)(6. 67)2 + 1

2 (15)(0. 1362)(6. 67/0. 136)2) − (112)(9. 81)(0. 001) · (0. 136)⎡
⎣

⎤
⎦

(Eq. 9) =  18. 18 0. 01511(2491. 3784 + 333. 6667) − 0. 149426[ ] ≈  773. 457 𝑁

At the next step, to translate this to the force required at the lever, the factor of the
mechanical advantage of the braking system is considered. While the actual mechanical
advantage is the ratio of the output force to the input force, it is possible to approximate a
mechanical advantage figure with the ratio of the displacement of the input force over the
displacement of the output force. The following sample calculation is found by measuring the
amount of cable movement at the lever as well as the caliper.

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 =  𝑂𝑢𝑡𝑝𝑢𝑡 𝐹𝑜𝑟𝑐𝑒
𝐼𝑛𝑝𝑢𝑡 𝐹𝑜𝑟𝑐𝑒 ≈ 𝑖𝑛𝑝𝑢𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 8 𝑚𝑚 (𝑏𝑟𝑎𝑘𝑒 𝑐𝑎𝑏𝑙𝑒 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡)
1 𝑚𝑚 (𝑏𝑟𝑎𝑘𝑒 𝑝𝑎𝑑 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡) = 8

(Eq. 10)

Similarly the mechanical advantage of the brake lever at the handlebar is found by the ratio
of L1/L2 as shown in the figure below:
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Figure 7: Mechanical Advantage of the Brake Lever L1/L2 [8]

This ratio L1/L2 according to our measurements is about 3, which once multiplied by the
previously found mechanical advantage at the disc gives an estimation of that of the entire
system to be around 24. The F1 as found previously is then divided by 24 to find the total
required force at the brake lever. This F1 value is around 32.23Newtons.

The calculated value used various estimations and neglected friction, as well as the resistive
spring force at the lever to set it back to zero position; therefore, a factor of safety of 2 is
considered to determine the total amount of force required to pull the lever. This then allows
us to find a suitable motor for this purpose.

Below is the selected motor to actuate emergency braking.

Figure 8: Cytron 12V 75RPM Spur Gearmotor

9



This motor is capable of generating 539mN.m which is sufficient considering the pulley
design which would be mounted to the rotor shaft with a 3cm diameter. In addition, the
extent of the lever displacement from the zero position is measured to be around 42mm,
which is about a 160.5 degrees rotation of the pulley mounted onto the motor shaft. This
allowed us to determine the required speed of the motor in revolutions per minute (rpm),
which is very well covered by our choice of motor that rates at 56 rpm. Calculations below
summarise this conclusion:

(Eq. 11)θ
360 = 4.2

2π𝑟  → θ
360 = 4.2

9.42  ,  θ = 160. 51◦ 

Aiming to pull the lever in full in half a second, we then get the following rpm:

(Eq. 12)160.51
360 ÷ 0.5

60 = 53. 5 𝑟𝑝𝑚 

Figure below provides the sizing specifications of the selected motor:

Figure 9: Appearance size of the Cytron 12V 75RPM Spur Gearmotor

3.1.2 Mechanical Design
The main mechanical aspects of ScootPilot involve the automatic braking feature and the
housing of all components. As can be seen in Figure 3 above, ScootPilot has 3 points of
contact with an e-scooter which has it installed. These 3 points are the motor mount for
automatic braking, a display screen with speakers mounted on the handlebars, and a radar
sensor with a processing unit attached to the headset of the scooter.

The motor mount which is fixed onto the standard-sized handlebar will be clamped via 2
7mm pinch bolts as seen in Figure 10 below. Spacers can be used to mount onto smaller
handlebars. The electric motor will be fixed to the mount through the 35.8mm cylindrical
opening. For prototyping purposes, this mount will first be made by 3D printing techniques,
but the production model would be made of an aluminium alloy for longevity.
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Figure 10: Motor Mount for Handlebar

The speaker and display system will mount to the handlebars with a very similar design to
that of the motor mount. The mount uses 2 clamps that go around the handlebars and centre
the display. The mount also has room to add the chosen speakers to the system. Similarly to
the motor mount, this piece will also be 3D printed for prototype purposes while the
production model would be made from injection moulded plastic.
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Figure 11: Display and Speaker on Mount

Figure 12: CAD of Display and Speaker Mount

The radar sensor, processing unit and system battery will all be housed in the same
enclosure near the bottom of the e-scooter headset. For similar reasons as above, the
prototype model would be made from 3D printing of the CAD models while the production
version will be made from an injection moulded plastic. The clamp around the headset will
squeeze tight into place as to not change its orientation in relation to the front of the scooter
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Figure 13: Radar, Processing Unit and Battery Unit Enclosure

Figure 14: CAD of Radar, Processing Unit and Battery Unit Enclosure
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3.2 Software Design

3.2.1 Software Design Specifications

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.2.1 Distance
measurements will be
taken at a rate of 20
Hz or higher.

None Req A-5.1.2

Des A.3.2.2 The system software
will be available at
boot up.

None Req A-5.1.5

Des A.3.2.3 The system will have a
self calibration
function at start up
and through user
input.

None Req A-5.1.6

Des A.3.2.5 The user will be able
to interface with the
system through a
touchscreen GUI.

None Req A-5.1.5

Des A.3.2.6 The Raspberry Pi 4B
will control the motor
controller through SPI
and/or GPIO ports.

None Req A-5.1.3

Des B.3.2.7 System will
dynamically send
signals to adjust motor
power based on
distance and velocity
measurements.

Possibly get
speed data from
hall effect
sensors on the
scooter.

Req A-5.1.2

Des B.3.2.8 System will play
sounds according to
the velocity and
distance to the object.

None Req A-5.1.5

Table 3.2.1.1: Software Design Requirements

3.2.2 Software State Controller
To meet the outlined software design requirements, a state controller onboard the Raspberry
Pi 4 is used. Below, Figure 15, outlines the main system control loop for the state controller.
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Figure 15: System Control Loop from Software Perspective

Data from the E-Scooter controller and radar sensor equipped with ScootPilot feed velocity
and distance data to the state controller onboard the Raspberry Pi. Based on a look up table,
the state controller will decide if the E-Scooter must slow down by limiting throttle,
emergency brake, or do nothing at all. These control signals are passed back to the
E-scooter controller and speed throttling circuit outlined in the Electrical System section.
Finally, the speaker will play audio depending on the control signal dictated, and the LCD will
receive velocity data from the state controller.

The Look-Up Table (LUT) is a 2D array indexed by the rounded velocity∈ [-24, 24] and the
rounded distance ∈ [0, 20]. These are dictated by the maximum velocity of the E-Scooter
(24 km/h), and the maximum range of the radar sensor (20 m), respectively. For each
possible relative velocity and distance, the E-Scooter will brake, throttle speed, or do
nothing. These controllers are looked up through the LUT and passed to the various
components.
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Figure 16: Look up Table for States

The state controller is the main software running on the Raspberry Pi. It dictates what all
other components should do based on the input data.

main() {

system_init()

while(true) {
if(power-off) {

break;
}

AvgVelocityDelta = getVelocity()
AvgDistance = getDistanceFromRadar()

speakerState, motorState =
getStates(AvgVelocityDelta, AvgDistance)

updateSpeakerState(speakerState)
updateMotorState(motorState)

}

system_shutdown()

}

getStates(Velocity v, Distance d) {
//velocity delta range -24 to 24 m/s
// distance range 0 to 20 m
v = round(v)
d = round(d)

16



return LUT[v][d]
}

updateState(State state) {
gpio(state.pin_number, state.value)

}

Figure 17: State controller pseudo code

It begins by initialising the system, then in the main loop, it acquires the velocity and distance
data and passes it to the various components through the getStates function. This state
controller will allow us to modularize the responses to the input data to each system,
avoiding unnecessary cross-over in the code base.

3.2.3 Radar Software
The Acconeer XE-121 has an SDK that can be used to develop applications using the
sensor. This SDK provides an interface to set configurations in the sensor such as changing
the signal strength, which changes the SNR, measurement range, the number of sweeps
and algorithms to calculate the distance of the object. In order to properly calibrate our
sensor, Acconeer provides the Exploration Tool which provides a way to configure the
sensor to the user's needs by visualising the data from the sensor in real-time. Figure 18
below shows the interface that we have access to.

Figure 18: Acconeer Exploration Tool Interface
The sensor allows the user to use a service called the sparse IQ which gives the user raw
data in the form of an array of complex numbers as seen in Figure 19. These complex
numbers represent the amplitude and phase of the reflected pulse within a certain range. By
processing this raw data, we can obtain distance and velocity. Distance can be obtained by
taking the absolute value of the complex data and comparing which value gives the largest
value. By comparing this absolute value with the threshold, we can determine if an object
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has been detected at what distance. With trial and error, it was discovered that using a fixed
threshold resulted in fewer false alarms than using the CFAR (Constant false alarm rate)
algorithm.

Figure 19: Plotting magnitude of complex Sparse IQ data.

Sometimes, the sensor may give false alarms when detecting an object. Because the sensor
is able to record distance data at a fast rate, outliers can be removed by grouping multiple
measurements and taking the median. This can be done relatively quickly with a sorting
algorithm and taking the center of the array of points. Below, in Figure 20 is a pseudo-code
of how this may be implemented.

NUMBER_OF_DISTANCE_MEASUREMENTS = 5

class DistanceData:
distance_measurement
timestamp

def get_distance_data():
distances[NUMBER_OF_DISTANCE_MEASUREMENTS]

for i in range(NUMBER_OF_DISTANCE_MEASUREMENTS):
dist_data = DistanceData
dist_data.distance_measurement = get_distance_measurement()
dist_data.timestamp = get_time()
distances[i] = dist_data

# Insertion sort is fast for small n. Sort by distances. Sorts by
distance.

insertion_sort(distances)
return distances[NUMBER_OF_DISTANCE_MEASUREMENTS//2]

def calculate_velocity():
distance_data_start = get_distance_data()
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distance_data_end = get_distance_data()
velocity = (distance_data.end -

distance_data_start.distance)/(distance_data_end.timestamp -
distance_data_start.timestamp)

return velocity
Figure 20: Pseudo code for velocity measurements

3.2.4 GUI Software and Libraries
The GUI will be created using GTK Toolkit. GTK Tool kit is a powerful GUI library that can be
used to create expert-looking interfaces. This is a C library that is able to create a GUI and is
platform-independent, which means that it can run on the version of Linux running on the
Raspberry Pi. Because the Acconeer SDK is written in C, our entire system can be compiled
with ease.

3.2.5 Raspberry Pi GPIO ports
Our system will extensively make use of the Raspberry Pi 4B’s GPIO and communication
ports and pins. There are several ways to do this. One method is to use DRC (Direct
Register Control) to control the GPIO pins. This can be done by calling mmap() on
/dev/mem. This will allow the developer to create a new mapping in the virtual address
space of the calling process and give the user direct access to the GPIO registers. Another
method is to use an API that wraps around the DRC method. This method also allows for
controlling off-board and on-board pins which is very advantageous for developers at
ADAScooter because the Acconeer XE-121 has accessible pins on its own board. This
method allows for developers to access pins on the expansion board as if it were controlling
pins on the Raspberry Pi itself.

Figure 21: External GPIO ports on the Acconeer XE-121.
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3.3 Electrical and Hardware Design

3.3.1 Processor and Sensor

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.3.1.1 The microprocessor
must process input
data fast enough to
not create debilitating
latency.

None Req A-4.2.2

Des A.3.3.1.2 The microprocessor
should have enough
GPIO pins for, radar,
speaker, LCD, etc.

None Req B-3.2.3

Des A.3.3.1.3 The microprocessor
power up suing 5V
and 1.2A

None Req A-4.2.1

Des A.3.3.1.4 The radar should be
able to detect objects
within the safe range.

None Req B-3.2.7

Des A.3.3.1.5 Radar with sufficient
frequency for object
detection application

None Req B-3.2.7

Table 3.3.1.1: Microprocessor and Sensor Design Specification

The Single Board Computer (SBC) used is the Raspberry Pi 4B.This computer has a Quad
core Cortex-A72 (ARM v8) 64-bit SoC running at 1.8 GHz with 2 GB of RAM. It will be
running the Raspberry Pi OS, a powerful Linux distro which will be able to run any
application the team creates. It is an excellent choice for rapid prototyping due to its small
footprint, and large number of GPIO pins and ports (HDMI, 4x USB, Ethernet) and rated for
maximum 15W power draw but with an average power consumption of about 3W [9]. In
addition, Raspberry Pi is an open-source platform that offers users a wide range of options
and tools to design and customise their projects according to their specific needs and
requirements. Figure 22 illustrates the critical ports available on Raspberry Pi, along with its
dimension providing an essential reference for users seeking to leverage the capabilities of
this platform.
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Figure 22: Raspberry Pi 4B Critical Ports and Dimension
Figure 23 shows the GPIO and the 40 pin header of Raspberry Pi 4B which will be used to
connect different components to the microprocessor. All 40 pins will connect to the Acconeer
XE-121, however the XE-121 has its own header pins that pass through the original 40
header pins on the Raspberry Pi. The pins that can be accessed on the Acconeer XE-121
can be seen in Figure 24.

Figure 23: Raspberry Pi 4B GPIO Pin Layout [11]
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Another hardware component of the project is the Acconeer XE-121 breakout board. This
board has a A121 Radar sensor and header pins which makes it easy to interface with the
Raspberry Pi 4 Model B. The radar sensor has a max range of 20m with centimetre
precision. The board also has a low power draw at a maximum of 2.5W but will likely
consume less during normal operation. Figure 24 demonstrates the Acconeer XE-121 board
with its dimensions.

Figure 24: Acconeer XE-121 Front View with the Dimensions

Figure 25 shows the Acconeer XE-121 pins that connect to the Raspberry Pi. Table 3.3.1.2
lists the description of each pin and maps to the ports.
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Figure 25: Acconeer XE-121 Connection to the Raspberry Pi Pin Layout
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Table 3.3.1.2: Pin Description of Acconeer XE-121 Connection to the Raspberry Pi [12]
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3.3.2 Speaker Wiring and Operation

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.3.2.1 Speaker with 60 dB
SNR

None Req A-3.1.3

Des A.3.3.2.2 The speaker is small
to easily fit the
enclosure

None Req B-6.1.3

Table 3.3.2.1: Speaker Design Specification

To ensure that the ScootPilot system can alert the user with a sufficiently loud sound, a mini
USB-powered speaker designed for Raspberry Pi has been employed. This speaker can be
easily powered through the USB port on the Raspberry Pi, which provides a steady 5 volts of
power, with a total output of 2x2 W. With a wire length of 1.68 metres and dimensions of
84.0mm x 43.0mm x 32.0mm, this speaker is the ideal choice for the ScootPilot project,
meeting both its size and functional requirements. Its compact design and ease of use make
it an excellent fit for the system, ensuring clear and effective alerts to the user when
necessary. Figure 26 shows the Odseven Mini External USB Stereo Speaker. [13]

Figure 26: Odseven Mini External USB Stereo Speaker
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3.3.3 Battery

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.3.3.1 Battery capacity with
22.5 Wh or 3000mAh

None Req A-3.2.2

Des A.3.3.3.2 Battery max rated
power of at least 15W

None Req A-4.2.1
Req A-5.1.4

Table 3.3.3.1: Battery Design Specification

The components which consume the most power and are on at all times are the LCD
screen, the processor, and the radar sensor. Adding the power consumption of these
components should give us a typical power consumption of less than 10W for the whole
system. Considering the braking system and the speakers, the max power draw of the whole
system should be no more than 15W at full tilt. The range of our scooter is listed at 28 km, or
about 1.2 hours at max speed. Factoring in full tilt consumption and operation at lower
speeds, our battery should support a maximum power draw of 15W and an average power
draw of 10W for 1.5 hours. At 5V DC, the battery capacity should be a minimum 4500mAh.
The battery capacity calculations are shown below in Eq 13 and 14.

Eq. 13𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑊ℎ) =  15 𝑊 ×  1. 5 ℎ =  22. 5 𝑊ℎ
Eq. 14𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝐴ℎ) =  22.5×1000

5 𝑉 = 4500 𝑚𝐴ℎ

We plan to use a power bank for our design. Common 5V-3A DC output power banks are
available with capacities starting from 5000mAh which meets our design requirements [5].
Alternatives include using 4 parallel AA batteries and building our own power supply meeting
our design specifications.

3.3.4 E-scooter Controller

To control the throttle of the scooter we control the connection of the throttle using a relay to
reroute the signal when the throttle needs to be reduced to slow down. In safe conditions the
throttle is connected directly to the controller to allow for maximum speed as the user
wishes. When conditions unsafe for maximum speed are determined by the device, the
throttle signal to the controller is attenuated using a variable resistor controlled by a PWM
from another GPIO signal. This allows for a safe, gradual deceleration while maintaining full
user control in safe scenarios without having to resort to using the emergency brake. Figure
27 highlights the relay circuitry to enable the throttle.
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Figure 27: Circuitry used for controlling the throttle.

This circuit amplifies the GPIO signal through a NPN darlington pair to close the relay when
the GPIO signal is present. The use of the darlington pair is to ensure the amplified signal is
strong enough to close the relay, while guaranteeing that it turns fully off when no signal is
present. A flywheel diode is used to protect the darlington pair from back voltage generated
when the relay is de-energized. When the relay is open (NC), the throttle signal is allowed to
pass-through to the controller. When the relay is closed (NO), the throttle signal is modulated
to reduce the throttle by half. Currently, this is represented by the variable resistor in the NO
path.

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.3.4.1 Throttle circuit can
attach to Raspberry Pi
GPIO pins

None None

Des A.3.3.4.2 GPIO signal can fully
open and close relay

None None

Des A.3.3.4.3 The impedance /
circuit in the throttle
NO path modulates
the throttle to 50%

None None

Table 3.3.4.1: Design Specification for E-Scooter Controller and Throttle Control Circuit
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Note that the throttle control circuit design specifications do not have a requirement
specifications ID as this feature was added during progress meeting #2.

3.3.5 Display

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des B.3.3.5.1 5 inch display for clear
visual feedback

A mobile app
may replace the
screen

Req A-3.1.4
Req A-5.1.5

Des B.3.3.5.2 Compatibility with
Raspberry Pi 4B

An app may
connect to the
Raspberry Pi
via bluetooth

Req A-4.2.3
Req A-5.1.3

Des B.3.3.5.3 The display is
touchscreen

A mobile app
may replace the
screen

Req B-3.2.3

Table 3.3.5.1: Design Specification for Display

Figure 28: 5-inch Touchscreen Displays with Dimensions and Connection to Raspberry Pi .

We will make use of a capacitive touch screen display for the uses of our product. This
allows for the user to interact with the interface easily and intuitively without adding extra
bulk in the form of controls and dials. The screen is bright and its large size makes it easier
for the user to see the interface in bright sunny conditions. It can be connected directly to the
Raspberry Pi via HDMI and the touch interface and DC power are connected via USB.
During normal operation at 5V the display should consume about 2.5W of power [14].
Therefore, we will use Waveshare 5” Capacitive LCD Display for ScootPilot which is shown
in Figure 28.
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3.3.6 E-Brake Motor Controller

Design Specification ID Description Expected
Changes for
Future Design

Related
Requirement
Specifications

Des A.3.3.6.1 Controller supports
Pulse Width
Modulation

None Req A-5.1.3

Des A.3.3.6.2 Controller supports the
12V 320mA as
required by the motor

None Req A-4.2.3

Des A.3.3.6.3 Controller is
compatible with the
Raspberry Pi

None Req A-4.2.3

Table 3.3.6.1: Design Specification for Motor Controller

The DFRobot Dual motor controller is based on the L298N dual full-bridge driver. The
e-brake control motor will be connected to one of the motor terminals, as well as our battery
bank to the power supply pins. The Raspberry Pi GPIO pins will be used to control the
throttle motor through the control pins on the diagram below. Note: this motor controller was
chosen versus a single motor controller because of a favourable price. The second motor
terminal will not be used in the ScootPilot product. [6]

Figure 29: Description of throttle motor controller [6]
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4. Conclusion

This design specification document serves as a reference for ADAScooter to best meet the
obligations laid out in the ScootPilot requirements specification. It describes the
implementation requirements via design specifications tables, and design choices via the
figures, tables, and supporting text. It will be used heavily to guide the team members of
ADAScooter to fully implement a product to best serve our customers and market.

ScootPilot’s design specifications are broken into 3 major sections: Mechanical Design,
Software Design, and Electrical / Hardware Design. Each of these sections lay out the
design implementation and theory for their corresponding focuses. The Mechanical Design
section's main focus is on automated braking and housing, while the Software Design
section's focus is on data collection from the controller and radar sensor and implementing a
state controller to control the various sub-systems. Finally, the Electrical / Hardware section
describes the various circuit designs and power needs for the system.

ADAScooter is passionate about safety. Our goal is to not only protect our customers with
ScootPilot, but to continue to help increase the safety of novel technologies that are coming
to market. We hope that providing affordable safety solutions will increase the adoption and
accelerate the legislation of these technologies while continuing to have the general public's
best interests in mind.
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Appendix A: Test Plan
This appendix will outline the testing coverage and methods to ensure the safety of the users
of the ADAS system.

A.1 Proof of Concept Deliverables
On April 12th, 2023, the employees of ADAScooter will present the following features and
functions of the ScootPilot system:

1. The functionality of the radar sensor interfacing with the Raspberry Pi
microprocessor.

2. Variable speed control from the motor controller depending on road conditions and
objects in front of the scooter.

A.2 Testing Procedures

Test: Radar Sensor Validation Time: Date:

Testing Procedure:

● The tester will power on the system.

● The tester will position the sensor so an object can be placed in front.

● The tester will run the radar sensor program via command line.

● The tester will move an object towards the stationary sensor.

Expected Outcome: Distance measurements should be accurately displayed, decrementing slowly.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:
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Test: Sound Verification Time: Date:

Testing Procedure:

● Tester will connect the speaker to the Raspberry Pi 4B

● Tester will run program to play sound from Raspberry Pi 4B

● Tester will move towards the radar sensor to collision range.

Expected Outcome: Tester should hear a sound coming from the speaker.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:

Test: Verify LCD Display Time: Date:

Testing Procedure:

● Tester will connect the LCD Touch screen to the Raspberry Pi.

● Tester will power on the LCD Touch screen and the Raspberry Pi.

● Tester will navigate the GUI within the LCD Touch screen.

● Tester will touch the settings icon to open the settings menu.

Expected Outcome: Screen should be responsive and be able to access all menus.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:
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Test: Verify Emergency Stop Time: Date:

Testing Procedure:

● Tester will connect the ScootPilot system to the E-Scooter.

● Tester will calibrate the sensor.

● Tester will ride the scooter in a straight line.

● Another tester will move an unexpected object in front of the scooter safely.

Expected Outcome: The scooter will stop right before colliding with the obstacle. The speakers will

play an urgent sounding beeping sound to alert the tester.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:

Test: Verify Speed Throttle Time: Date:

Testing Procedure:

● Tester will connect the ScootPilot system to the E-Scooter.

● Tester will calibrate the sensor.

● Tester will move towards a stationary object slowly.

Expected Outcome: Scooter should throttle speed as the tester gets closer to the object.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:
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Test: Battery operating time

validation

Time: Date:

Testing Procedure:

● Tester will connect the system to the scooter.

● Tester will calibrate the radar sensor.

● Tester will ride the scooter for its specified operating time and verify the ScootPilot battery

does not die early.

Expected Outcome: The ScootPilot battery will last as long as the main E-Scooter battery.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:

Test: UI validation Time: Date:

Testing Procedure:

● Tester will connect the ScootPilot system to the E-Scooter.

● Tester will verify functionality of all UI buttons and toggles.

Expected Outcome: UI works as described in UI document

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:
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Test: Test relay circuit for pass

through

Time: Date:

Testing Procedure:

● Tester will power the Raspberry Pi 4B.

● Tester will make sure that the motor controller is connected to motors.

● Tester will trigger GPIO controlling relay through the command line with a test script.

● Toggle the GPIO pin and watch the effects.

Expected Outcome: The motors will not throttle if GPIO is false. Otherwise, the motor should

throttle.

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:

Test: Scooter controller velocity

data

Time: Date:

Testing Procedure:

● Tester will connect the ScootPilot system to the E-Scooter.

● Tester will check the velocity read-out from the controller on the LCD display while driving

and compare it to a GPS velocity calculated from cell-phone

Expected Outcome: Velocity readings from the cellphone and E-Scooter controller will match within

± 1km/h

Observed Outcome:

Improvements/Comments:

Score: □ Pass □ Fail Tester:
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Appendix B: Alternative Design

B.1 Auto-Braking Motor Mount
Several ideas were considered as possible means for which to accomplish the physical
aspect of autonomous braking. The main goal is to be able to apply the brakes on the
e-scooter in a safe and timely manner, without impeding regular use of the scooter,
whenever the system deems it appropriate to do so according to the following requirement
specifications: Req A-3.2.1, Req B-3.2.8. Specifically, we need to be able to mount a motor
which can activate the brake lever without impeding a user from using the brakes
themselves.

It came down to two choices of possible motor mount designs. One included a pulley to be
able to change the line of direction from the motor, and the design involved a hole going
through the handlebars through which the wire to pull the brake lever could be passed
through. We came to the conclusion that the pulley design would slightly impede regular use
of the brake lever and we’re also concerned about the longevity of such a small part which
would need to handle relatively high forces on its axis of rotation. The figure below shows
the chosen design on the left and the alternate pulley design on the right.

Figure I: Chosen and Alternative Design for Motor Mount

B. 2 Velocity measurements
Because the radar sensor may have distance measurements that are inaccurate, we need to
reject outlier distance data in order to accurately measure relative velocity. However, this is
computationally expensive as we need to sample distance multiple times to reject outliers.
The scooter has a hall effect sensor which can be used to calculate speed. This allows the
radar sensor to focus on taking distance measurements faster and take fewer resources and
may provide a more accurate way of measuring speed. Using this method will make it easier
to meet Req A.3.2.1 and Req B.3.2.7. Figure II highlights where the hall effect signal can be
read on the scooter motor controller.
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Figure II: Scooter motor speed controller. The circled AC signal is where the Hall effect
sensor can be read.

The hall effect sensors can be accessed via the scooter controller. The voltage at the hall
effect sensor port varies from 0.8V to 4.2V. This signal can be converted into a pulse through
a zero crossover circuit. The frequency of these pulses can be interpreted to calculate the
speed of the scooter.
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