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Abstract

The development of an accurate, efficient, portable, and affordable method for identifying
breast cancer is critical for both early detection and improved prognosis. Medical imaging
modalities play a critical role in cancer screening and treatment monitoring. Diffuse optical
tomography (DOT) is a non-invasive imaging modality that can be used in a low-complexity
probe design, resulting in an inexpensive portable imaging diagnostic device with low power
consumption. In recent years, machine learning techniques have created transformative op-
portunities for medical image reconstruction and analysis, helping move toward data-driven
algorithm designs wherein computational power is augmented with physics priors to push
the accuracy and fairness of image driven diagnosis to new limits.

In this thesis, we present multiple deep learning-based medical image reconstruction and
analysis approaches for screening breast cancer lesions acquired by DOT. First, an end-to-
end image reconstruction model from sensor-domain data is proposed, where physics-based
simulation is leveraged to address the lack of available real-world data required for training.
Next, we adopt a transfer learning strategy to align and translate the sensor domain distri-
bution between in silico and real-world data and propose a novel loss to promote appearance
similarity and penalize artifacts. Following up on this we propose a joint reconstruction and
localization solution that simultaneously attends to the most important features while en-
suring better lesion localization. Finally, we propose an orthogonal multi-frequency fusion
solution for direct prediction of the end task from sensor signal data, increasing diagnosis
accuracy at a reduced computational cost.

Extending a portable device with such diagnosis ability promises to improve first-line treat-
ment throughput. These contributions demonstrate the promising role of deep learning in
DOT image reconstruction and diagnosis. Combined, our contributions open the path to-
wards personalized medicine for non-invasive portable diagnosis and treatment monitoring
of breast cancer in the very near future.

Keywords: Medical imaging; Diffuse optical tomography; Image reconstruction; Deep
learning; Object localization and diagnosis; Breast cancer
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Chapter 1

Introduction

1.1 Background and Motivation

Early screening of breast cancer lesions, the most common form of cancer in women [13],
is critical for patient outcome. Although X-ray mammography is considered the "gold stan-
dard" for identifying breast cancer lesions, it has potential cumulative health risks due to
the dependence on ionizing radiation and low sensitivity (67.8%) in patients with thick
breast tissue [225]. Additionally, the timely availability of mammography devices is of-
ten problematic, leading to long waiting times. However, both early detection and timely
follow-up are critical, both in first detection and in novel personalized medicine-based treat-
ment paradigms. Non-invasive screening via diffuse optical tomography (DOT), a modality
based on near-infrared light (NIR), has gained increasing interest over the past few years
as an alternative given that NIR light is well tolerated and can penetrate several cen-
timeters into human soft tissue [219], offering several advantages in terms of safety and
costs [22]. However, given the ill-posedness of the problem and the absence of an exact an-
alytic inverse transform, standard DOT reconstruction approaches involve approximating
the inverse function and remain computationally expensive, making them prohibitive for
real-time imaging and delaying their integration into clinical settings [76]. Furthermore, a
portable setting and limited power budget of DOT deployments can further complicate the
reconstruction task.

This thesis proposal has both clinical and technical motivations. The clinical motivation
of this proposal resides in the need for accurate and real-time image reconstruction and
analysis of portable DOT devices [227], to enable fast and robust screening of diseases such
as breast cancer. A subsequent aim is to reduce the burden on the health care system by
prioritizing more invasive diagnostic (e.g., CT) for acute cases, thus reducing overall patient
wait times. Furthermore, a portable probe DOT device can dramatically impact the quality
and quantity of precision diagnostics available to remote locations and under-privileged
communities with limited access to other imaging modalities, enabling critical diagnostics
for underrepresented communities.

1



The technical motivation is to advance state-of-the-art DOT reconstruction and diag-
nosis by developing innovative deep learning (DL) methodologies for an important clinical
problem while leveraging advances in optical image acquisition techniques. In the process,
we specifically need to overcome the following key challenges: reconstruction data in real-
world settings, i.e. patient data, has no ground truth and very low availability due to
ethical constraints; a probe design optimized for portability, restricting source and sen-
sor counts, results in information loss and reduced measured signal quality; reproducibility
across datasets and patients is critical, as is the robustness of the proposed approaches;
and finally diagnosis must be balanced in its accuracy, even in the presence of extremely
imbalanced data.

While most works focus on conventional reconstruction methods that exploit only priors
encoded by human designers and solve each instance separately, in contrast, we investigate
DL methodologies as they can exploit implicitly learned feature encodings from the sen-
sor data while reducing the computational cost by performing the optimization or learning
stage offline. We adopt an end-to-end solution, i.e. leveraging the image reconstruction task
directly from sensor-domain data by mapping sensor measurements to the image domain
while approximating the underlying physics of the inverse problem. This methodological
choice is motivated by the automatic feature extraction capabilities of DL models while
reducing extra computational cost and avoiding the downsides of combining DL and con-
ventional, where one or the other is hybridized as a pre- or post-processing stage to work
around suboptimal results using either alone.

The second methodological choice we made was to leverage physics-based simulation
and take advantage of cross-domain learning for data distribution adaptation. This transfer-
learning approach addresses the lack of available real measurements and images required to
train the millions of parameters commonly found in state-of-the-art DL models.

The following section outlines the Chapters within the proposed thesis. Each subsection
briefly describes the approach, lists specific contributions, and concludes with details about
the resulting publication that corresponds to the work.

1.2 Thesis Contributions

In this thesis, we first review the state of the art in deep learning models applied to biomed-
ical images reconstruction and discuss limitations and potential directions (Chapter. 2).
Chapter 3 through Chapter 6 present the proposed approaches for limited-angle DOT im-
age reconstruction and diagnosis. In this Chapter, we provide a background on DOT and
introduce a preliminary approach to map sensor data to the image domain in Chapter. 3
and tackle image reconstruction artifacts in limited-angle DOT in Chapter. 4. In Chapter 5,
we propose a multitask approach for joint image reconstruction and lesion localization. In
Chapter 6, we investigate multifrequency data fusion for reconstruction and diagnosis. Fi-
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nally, Chapter 7 summarizes the proposed works and contributions and suggests future
directions. The following subsections outline the Chapters within this thesis. Each subsec-
tion provides a brief summary of the Chapter, emphasizes its significant contributions, and
concludes by providing information about the publication associated with the work. The
full details of each work are provided in the respective chapters.

1.2.1 Deep Learning for Biomedical Image Reconstruction

Deep learning-based image reconstruction is a new and rapidly growing field with sev-
eral efforts to leverage transforming signals collected from sensor data into interpretable
representations and demonstrate the superior performance of DL models in 2D or 3D re-
construction. We examine 154 research papers for DL based reconstruction from different
imaging modalities and present a thorough survey of the studies leveraging the capabilities
of the different paradigms.

We review the contributions of existing literature and analyze the works from several
dimensions in terms of model design such as architecture, modules, losses, augmentation,
data, etc., as well as evaluation aspects such as speed and evaluation metrics. We discuss
those dimensions and how future research can solve their limitations. We summarize all
examined works into a comprehensive table encoding the analyzed dimensions.

Contributions:

• We present the first thorough survey on deep learning for image reconstruction that
classifies and analyzes different reconstruction model paradigms.

• We analyze state of the art models from several aspects, such as architecture, modules,
losses, data, evaluation metrics, etc..

• We examine benchmark datasets and commonly used evaluation metrics.

• We discuss different challenges and future directions in this field.

This Chapter was published [31] in the Journal of Artificial Intelligence Review.

[31] H. Ben Yedder, B. Cardoen, and G. Hamarneh, “Deep Learning for Biomed-
ical Image Reconstruction: A Survey,” Artificial Intelligence Review, pp. 1–33,
2020.

1.2.2 End-to-End Deep Learning based DOT Image Reconstruction

DOT image reconstruction has been tackled using a wide variety of reconstruction methods;
until recently, the research focus has been on model-based algorithms, whose design follows
directly from the mathematical problem formulation and are commonly solved iteratively
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until convergence [16]. However, model optimization parameters’ tuning and computational
cost, prohibitive for real-time application, remain the main disadvantages [296]. This work
represents a step forward in the use of machine learning in bio-imaging and DOT image
reconstruction specifically. In Chapter 3, we evaluate the use of a DL model to reconstruct
images directly from their corresponding DOT raw data. Given the scarcity of real-world
sensor-image pairs required for training supervised DL models, we leverage physics-based
simulation to generate synthetic datasets. We show that our DL based method improves
the quality of reconstructed images while enabling real-time image reconstruction.

Contributions:

• We propose the first end-to-end deep learning model for limited angle NIR-based
optical imaging.

• We propose the first method that leverages physics-based optical diffusion simulation
to generate in silico training datasets.

• We train the reconstruction model using in silico data only and test it on real mea-
surements acquired from a phantom dataset subject to sensor non-idealities and noise.

This work [30] was published in the MICCAI Workshop on Machine Learning for Medical
Image Reconstruction.

[30] H. Ben Yedder, A. BenTaieb, M. Shokoufi, A. Zahiremami, F. Golnaraghi,
and G. Hamarneh, “Deep learning based image reconstruction for diffuse optical
tomography,” in International Workshop on Machine Learning for Medical Image
Reconstruction. Springer, 2018, pp. 112–119.

1.2.3 Tackling DL Image Reconstruction Artifacts in Limited-Angle DOT

As the previous Chapter (Chapter. 3) demonstrated the utility of using DL for real-time
DOT image reconstruction, this Chapter tackles model artifacts observed in previous re-
sults. In a limited-view data acquisition setting, solving the inverse problem is difficult,
especially in the presence of noise, due to the highly diffusive nature of light propagation
in biological tissues and the sparsity of the recovered information. To this end, we propose
a DL network with a novel hybrid loss to promote appearance similarity while penalizing
artifacts. Furthermore, a transfer learning module renders an in silico trained network appli-
cable to real world data. The novel loss and transfer learning yields consistent improvements
in reconstruction quality and reducing lesion localization error.

Contributions:
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• We propose the first attempt to align the sensor domain distribution between in silico
and real-world data using a transfer learning module while taking advantage of cross-
domain learning.

• We propose a novel loss function that dynamically combines the mean squared error
loss and the similarity coefficient-based fuzzy Jaccard term.

This work [33] was published in the MICCAI main conference.

[33] H. Ben Yedder, M. Shokoufi, B. Cardoen, F. Golnaraghi, and G. Hamarneh,
“Limited- angle diffuse optical tomography image reconstruction using deep
learning,” in International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2019, pp. 66–74.

1.2.4 Multitask Deep Learning for Joint Reconstruction and Localization

The previous Chapter (Chapter.4) described a method for reconstructing breast tissue’s
optical properties, per pixel. However, localization, which identifies those image regions
that have characteristics indicative of a breast lesion, may contribute to a more accurate
reconstruction of the lesion as a whole. To attend to the most important features, we
propose a deep spatial-wise attention network that re-weights features according to their
inter-dependencies in feature space and filters noisy ones. Further, a distance transform
based loss is introduced to promote more accurate lesion localization in limited-view data
acquisition, given its sensitivity to small changes in the size and position of the foreground
object. Our results demonstrate an improvement in localization error over the state of the
art and show that our method is sufficiently fast to ensure real-time processing that is
necessary for deployment in clinical settings.

The ability of our network to successfully find the inverse mapping by learning only
from the simulation data without seeing any real or physical phantom data during the
training and validation process can be viewed as evidence that it can learn a general in-
verse function instead of learning a trivial mapping or memorizing examples. The addition
of transfer learning and Gaussian noise to simulated data helps the network generalize to
unseen data from physical sensors that capture real signals under non-ideal acquisition con-
ditions. Hence, it generalizes well to both phantom and real patient data.

Contributions:

• We present the first work that tests DL-based DOT reconstruction generalization on
real patient data.

• We leverage a deep spatial-wise attention network to adaptively re-weight features
and attend to the most important ones.
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• We introduce a distance transform loss to improve lesion localization.

• We conduct experiments to assess the trade-offs between network characteristics, scan-
ning probe design, and performance.

This Chapter was published [282] in the IEEE Transaction of Medical Imaging.

[282] H. Ben Yedder, B. Cardoen, M. Shokoufi, F. Golnaraghi, and G. Hamarneh,
“Multitask deep learning reconstruction and localization of lesions in limited
angle diffuse optical tomography,” IEEE Transactions on Medical Imaging, 2021.

1.2.5 End-to-End Diagnosis via Deep Orthogonal Multi-Frequency Fu-
sion

Identifying breast cancer lesions with a portable DOT device can improve early detection.
However, critical to this is the more complex problem of discriminating between malig-
nant and benign lesions. In Chapter 6, we investigate diagnosis capability of a portable
DOT device. In DOT, multiple light frequencies can be leveraged to derive different tis-
sue composition responses and obtain an optimal trade-off between tissue penetration and
signal-to-noise ratio. However, these frequency responses share variable overlap in the ab-
sorption spectra of the major tissue constituents in the NIR range [245]. Therefore, this
could produce suboptimal downstream analysis tasks if intermediate tissue composition
estimation includes errors and artifacts. To tackle this problem, we introduce orthogonal
fusion for multi-frequency DOT to maximize the independent contribution of each frequency
and emphasize their collective strength. Furthermore, we introduce ‘direct medical image
analysis’ (DMIA) for DOT, where we immediately learn the diagnosis rather than relying
on intermediate image reconstruction, with the added advantage of drastically reduced com-
putational overhead. We show that our DMIA approach produces more balanced accuracy
between benign and malignant lesions. While classical multifrequency DOT reconstruction
methods rely on the combination of multiple images, each from a single frequency, our
method proposes an end-to-end real-time solution.

Contributions:

• We present the first deep learning framework that investigates the benefit of multi-
frequency data on DOT reconstruction and diagnosis quality.

• We investigate the merit of predicting diagnosis from raw data directly without image
reconstruction in DOT (direct medical prediction), a novel trend in medical imaging.

• We maximise the independent contribution of each modulation frequency data while
emphasizing their collective strength using an orthogonal projection loss.
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This Chapter [32] is under review for publication in the journal IEEE Transactions of
Medical Imaging.

[32] H. Ben Yedder, B. Cardoen, M. Shokoufi, F. Golnaraghi, and G. Hamarneh,
“Orthogonal Multi-frequency Fusion Based Image Reconstruction and Diagnosis
in Diffuse Optical Tomography,” submitted.
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Figure 1.1: Summary of contributions presented in this thesis. (A) Generic representation
of a DOT based screening pipeline: A DOT probe acquires signals that are used for image
reconstruction and lesion localization followed by diagnosis and interpretation. (B) Sum-
mary of the contributions presented in this thesis.

1.3 Summary of Contributions

Our work develops novel computational medical imaging and analysis approaches for screen-
ing breast cancer lesions. We tackle the problem of recovering the presence and characteris-
tics of such lesions as well as predicting their malignancy in a critical imaging probe design
setting using deep learning based methods. Accurate and real-time image reconstruction and
diagnosis with portable DOT devices may enable fast, robust screening of diseases such as
breast cancer, where early detection and monitoring are absolutely critical for patient out-
come. Technological advancements in DOT imaging and image analysis have the potential
to reduce the burden on the health care system by prioritizing more invasive diagnostics for
acute cases, thereby reducing overall patient wait times. As such, our work has the potential
to directly impact the future line of care screening of breast cancer.
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1.4 Research Contributions Excluded from The Thesis

The list below enumerates peer-reviewed publications I was involved with over the course
of my PhD studies. While not part of the thesis, these papers highlight the benefits of
interdisciplinary science and the cross pollination across domains.

[48] B. Cardoen, H. Ben Yedder, S. Lee, and G. Hamarneh. Log-Paradox: Necessary and sufficient
conditions for confounding statistically significant pattern reversal under the log-transform,
To be submitted to Nature Communications Journal.

[47] B. Cardoen, H. Ben Yedder, S. Lee, I. R. Nabi, and G. Hamarneh. DataCurator.jl: Efficient,
portable, and reproducible validation, curation, and transformation of large heterogeneous
datasets using human-readable recipes compiled into machine verifiable templates, BioInfor-
matics Advances, 2023.

[49] B. Cardoen, H. Ben Yedder, A.Sharma, K.C. Chou, I.R. Nabi, and G. Hamarneh. ERGO:
efficient recurrent graph optimized emitter density estimation in single molecule localization
microscopy. IEEE Transactions on Medical Imaging, 2019, 39(6), pp.1942-1956.

[290] U. Zakia, H. Ben Yedder. Dynamic load balancing in SDN-based data center networks.
In IEEE Annual Information Technology, Electronics and Mobile Communication Conference
(IEMCON), 2017, Oct 3, pp.242-247.

[284] H. Ben Yedder, U. Zakia, A. Ahmed, and L. Trajković. Modeling prediction in recommender
systems using restricted Boltzmann machine. In IEEE International Conference on Systems,
Man, and Cybernetics (SMC), 2017, Oct 5 pp. 2063-2068.

[283] H. Ben Yedder, Q. Ding, U. Zakia, Z. Li, S. Haeri, and L. Trajkovic. Comparison of virtu-
alization algorithms and topologies for data center networks. In 26th International Conference
on Computer Communication and Networks (ICCCN), 2017 Jul 31, pp. 1-6.

Disclaimer: The author declares that substantial parts of Chapters 2, 3, 4, 5 and 6
of this thesis have been borrowed near-identical from the author’s original first-authored
publications listed in Section 1.2.
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Chapter 2

Deep Learning for Biomedical
Image Reconstruction: A Survey

In this Chapter, we provide a comprehensive background and an overview of the state-of-
the-art deep-learning based methods in the domain of medical image reconstruction1. This
foundation will enable us to establish a solid understanding of the current landscape and
pave the way for the subsequent exploration of our novel approaches.

2.1 Introduction

Biomedical image reconstruction translates signals acquired by a wide range of sensors into
images that can be used for diagnosis and discovery of biological processes in cell and organ
tissue. Each biomedical imaging modality leverages signals in different bands of the electro-
magnetic spectrum, e.g. from gamma rays ( Positron emission tomography PET/SPECT)),
X-rays (computed tomography (CT)), visible light (microscopy, endoscopy), infrared (ther-
mal images), and radio-frequency (Nuclear magnetic resonance imaging (MRI)), as well
as pressure sound waves (in ultrasound (US) imaging) [265]. Reconstruction algorithms
transform the collected signals into a 2, 3, or 4-dimensional image.

The accuracy of each reconstruction is critical for discovery and diagnosis. Robustness
to noise and generalization cross-modality specifications (e.g., sampling pattern, rate, etc.)
and imaging devices parameters’ allow a reconstruction algorithm to be used in wider ap-
plications. The time required for each reconstruction determines the number of subjects
that can be diagnosed as well as the suitability of the technique in operating theatres and
emergency situations. The number of measurements needed for a high quality reconstruc-
tion impacts the exposure a patient or sample will have to endure. Finally, the hardware
requirements define whether a reconstruction algorithm can be used only in a dedicated
facility or in portable devices, thus dictating the flexibility of deployment.

1The content of this Chapter heavily relies on our published research [31]. Reproduced with permission
from Springer Nature.
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Figure 2.1: Data flow in a medical imaging and image interpretation system. Forward model
encodes the physics of the imaging system. The inverse model transforms the collected sig-
nals by the acquisition hardware into a meaningful image. The success of diagnosis, eval-
uation, and treatment rely on accurate reconstruction, image visualization and processing
algorithms.

The study of image reconstruction is an active area of research in modern applied math-
ematics, engineering and computer science. It forms one of the most active interdisciplinary
fields of science [85] given that improvement in the quality of reconstructed images offers
scientists and clinicians an unprecedented insight into the biological processes underlying
disease. Fig. 2.1 provides an illustration of the reconstruction problem and shows a typical
data flow in a medical imaging system.

Over the past few years, researchers have begun to apply machine learning techniques
to biomedical reconstruction to enable real-time inference and improved image quality in
a clinical setting. Here, we first provide an overview of the image reconstruction problem
and outline its characteristics and challenges (Section 2.1.1) and then outline the purpose,
scope, and the layout of this review (Section 2.1.2).

2.1.1 Inverse Problem and Challenges

From Output to Input

Image reconstruction is the process of forming an interpretable image from the raw data
(signals) collected by the imaging device. It is known as an inverse problem where given a
set of measurements, the goal is to determine the original structure influencing the signal
collected by a receiver given some signal transmission medium properties (Fig. 2.2). Let
y ∈ CM represent a set of raw acquired sensor measurements and subject to some unknown
noise (or perturbation) vector N ∈ CM intrinsic to the acquisition process. The objective
is to recover the spatial-domain (or spatio-temporal) unknown image x ∈ CN such that:

y = A(F(x), N ) (2.1)
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Figure 2.2: Propagation of signals from sender to receiver. While passing through a trans-
mission channel, signals s pick up noise (assuming additive) along the way, until the acquired
sensor data y = s+N reaches the receiver. The properties of the received signal may, via a
feedback loop, affect properties of future signal transmission. Sender and receiver modeling
differ within modalities. For example the lower figure illustrates in the left ultrasound probe
used to send and collect signals (S=R); in the middle: X-ray signal propagates through the
subject toward the detector (S → R); Single molecule localization microscopy is an instance
where S and R are components of a feedback loop (S ↔ R). The signal, optical measure-
ments of nano-meter precise fluorescent emissions, is reconstructed in a discrete (temporal)
X/Y/Z domain. An example of a feedback loop in SMLM is the auto-tuning of the laser
power in response to an increase in density (R) that can compromise the spatio-temporal
sparsity required for accurate reconstruction [49].

where F(·) is the forward model operator that models the physics of image-formation, which
can include signal propagation, attenuation, scattering, reflection and other transforms, e.g.
Radon or Fourier transform. F(·) can be a linear or a nonlinear operator depending on the
imaging modality. A is an aggregation operation representing the interaction between noise
and signal, in the assumption of additive noise A = +.

While imaging systems are usually well approximated using mathematical models that
define the forward model, an exact analytic inverse transform F−1(·) is not always possible.
Reconstruction approaches usually resort to iteratively approximate the inverse function
and often involve expert-tuned parameters and prior domain knowledge considerations to
optimize reconstruction performance.
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Figure 2.3: Uniqueness and Prior Knowledge in Ill-Conditioned Inverse Problems. (A) A
problem is ill-conditioned when two different objects produce very close observed signals.
When the observed signals are identical and hence identical reconstructed images, the in-
verse solution is non-unique. Prior knowledge can be leveraged to rule out certain solutions
that conflict with the additional knowledge about the object beyond the measurement vec-
tors. (B) A use case toy example of two objects with the same acquired signals. Prior
knowledge about homogeneity of object rules out the second object.

An Ill-Posed Problem

A basic linear and finite-dimensional model of the sampling process leads us to study a
discrete linear system of the imaging problem of the form:

y = Fx + N . (2.2)

For full sampling, in MRI for instance, we have M = N and the matrix F ∈ CM×N is a
well-conditioned discrete Fourier transform matrix. However, when (M < N), there will be
many images x that map to the same measurements y, making the inverse an ill-posed prob-
lem (Fig. 2.3). Mathematically, the problem is typically under-determined as there would
be fewer equations to describe the model than unknowns. Thus, one challenge for the re-
construction algorithm is to select the best solution among a set of potential solutions [170].
One way to reduce the solution space is to leverage domain specific knowledge by encoding
priors, i.e. regularization.

Sub-sampling in MRI or sparse-view/limited-angle in CT are examples of how reduc-
ing data representation (M < N) can accelerate acquisition or reduce radiation exposure.
Additional gains can be found in lowered power, cost, time, and device complexity, albeit
at the cost of increasing the degree of ill-posedness and complexity of the reconstruction
problem. This brings up the need for sophisticated reconstruction algorithms with high fea-
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ture extraction power to make the best use of the collected signal, capture modality-specific
imaging features, and leverage prior knowledge. Furthermore, developing high-quality re-

Figure 2.4: (A) The marked increase in publications on biomedical image reconstruction
and deep learning in the past 10 years. In red: results obtained by PubMed query that can
be found at: https://bit.ly/recon_hit. Search query identified 310 contributions which
were filtered according to quality, venue, viability and idea novelty, resulting in a total of 95
contributions as representatives covered in this survey( blue). (B) The pie chart represents
the frequency of studies per modality covered in this survey.

construction algorithms requires not only a deep understanding of both the physics of the
imaging systems and the biomedical structures but also specially designed algorithms that
can account for the statistical properties of the measurements and tolerate errors in the
measured data.

2.1.2 Scope of this Survey

The field of biomedical image reconstruction has undergone significant advances over the
past few decades and can be broadly classified into two categories: conventional methods
(analytical and optimization based methods) and data-driven or learning-based methods.
Conventional methods (discussed in section 2.2) are the most dominant and have been
extensively studied over the last few decades with a focus on how to improve their re-
sults [250, 132, 19] and reduce their computational cost [72].

Researchers have recently investigated deep learning (DL) approaches for various biomed-
ical image reconstruction problems (discussed in section 2.3) inspired by the success of deep
learning in computer vision problems and medical image analysis [98]. This topic is rela-
tively new and has gained a lot of interest over the last few years, as shown in Fig. 2.4-A and
listed in Table 2.1, and forms a very active field of research with numerous special journal
issues [256, 258, 205]. MRI and CT received the most attention among studied modalities,
as illustrated in Fig. 2.4-B, given their widespread clinical usage, the availability of ana-
lytic inverse transform and the availability of public (real) datasets. Several special issues
journals devoted to MRI reconstruction have been recently published [146, 156, 215].
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Fessler et al. [85] wrote a brief chronological overview on image reconstruction methods
highlighting an evolution from basic analytical to data-driven models. [169]) summarized
works using CNNs for inverse problems in imaging. Later, Lucas et al. [162] provided an
overview of the ways deep neural networks may be employed to solve inverse problems in
imaging (e.g., denoising, superresolution, inpainting). As illustrated in Fig. 2.4 since their
publications a great deal of work has been done warranting a review. Recently, Mccann
et Unser [170] wrote a survey on image reconstruction approaches where they presented a
toolbox of operators that can be used to build imaging systems models and showed how a
forward model and sparsity-based regularization can be used to solve reconstruction prob-
lems. While their review is more focused on the mathematical foundations of conventional
methods, they briefly discussed data-driven approaches, their theoretical underpinning, and
performance. Similarly, Arridge et al. [14] gave a comprehensive survey of algorithms that
combine model and data-driven approaches for solving inverse problems with focus on deep
neural based techniques and pave the way towards providing a solid mathematical theory.
Zhang et al. [294] provided a conceptual review of some recent DL-based methods for CT
with a focus on methods inspired by iterative optimization approaches and their theoretical
underpinning from the perspective of representation learning and differential equations.

This survey provides an overview of biomedical image reconstruction methods with a
focus on DL-based strategies, discusses their different paradigms (e.g., image domain, sensor
domain (raw data) or end to end learning, architecture, loss, etc. ) and how such methods
can help overcome the weaknesses of conventional non-learning methods. To summarize the
research done to date, we provide a comparative, structured summary of works represen-
tative of the variety of paradigms on this topic, tabulated according to different criteria,
discusses the pros and cons of each paradigm as well as common evaluation metrics and
training dataset challenges. The theoretical foundation was not emphasized in this work as
it was comprehensively covered in the aforementioned surveys. A summary of the current
state of the art and outline of what we believe are strategic directions for future research
are discussed.

The remainder of this Chapter is organized as follows: in Section 2.2 we give an overview
of conventional methods discussing their advantages and limitations. We then introduce the
key machine learning paradigms and how they are being adapted in this field complementing
and improving on conventional methods. A review of available data-sets and performance
metrics is detailed in Section 2.3. Finally, we conclude by summarizing the current state-
of-the-art and outlining strategic future research directions (Section 2.7).

2.2 Conventional Image Reconstruction Approaches

A wide variety of reconstruction algorithms have been proposed during the past few decades,
having evolved from analytical methods to iterative or optimization-based methods that
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account for the statistical properties of the measurements and noise as well as the hardware
of the imaging system [85]. While these methods have resulted in significant improvements
in reconstruction accuracy and artifact reduction, are in routine clinical use currently, they
still present some weaknesses. A brief overview of these methods’ principles is presented in
this section outlining their weaknesses.

2.2.1 Analytical Methods

Analytical methods are based on a continuous representation of the reconstruction problem
and use simple mathematical models for the imaging system. Classical examples are the
inverse of the Radon transform such as filtered back-projection (FBP) for CT and the inverse
Fourier transform (IFT) for MRI. These methods are usually computationally inexpensive
(in the order of ms) and can generate good image quality in the absence of noise and under
the assumption of full sampling/all angles projection [170]. They typically consider only the
geometry and sampling properties of the imaging system while ignoring the details of the
system physics and measurement noise [85].

Figure 2.5: CT Image reconstruction from sparse view measurements. (A) Generation of 2D
projections from a target 2D CT slice image x for a number of N fixed angles αi. (B) Image
reconstructed using conventional filtered back projection method for different number of a
projection angles N. (Modified figures from [246])
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When dealing with noisy or incomplete measured data e.g., reducing the measurement
sampling rate, analytical methods results deteriorate quickly as the signal becomes weaker.
Thus, the quality of the produced image is compromised. Thaler et al. [246] provided ex-
amples of a CT image reconstruction using the FBP method for different limited projection
angles and showed that analytical methods are unable to recover the loss in the signal
(Fig. 2.5), resulting in compromised diagnostic performance.

2.2.2 Iterative Methods

Iterative reconstruction methods, based on more sophisticated models for the imaging sys-
tem’s physics, sensors and noise statistics, have attracted a lot of attention over the past
few decades. They combine the statistical properties of data in the sensor domain (raw
measurement data), prior information in the image domain, and sometimes parameters of
the imaging system into their objective function [170]. Compared to analytical methods it-
erative reconstruction algorithms offer a more flexible reconstruction framework and better
robustness to noise and incomplete data representation problems at the cost of increased
computation [205].

Figure 2.6: Iterative image reconstruction workflow example. (A) Diffuse optical tomography
(DOT) fibers brain probe consisting of a set of fibers for illumination and outer bundle fibers
for detection [120]. (B) Probe scheme and light propagation modelling in the head, used by
the forward model. (C) Iterative approach pipeline. (D) DOT reconstructed image shows
the total Hemoglobin (Hb) concentrations in the brain. (Figure licensed under CC-BY 4.0
Creative Commons license.)
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Iterative reconstruction methods involve minimizing an objective function that usually
consists of a data term and a regularization terms imposing some prior:

x̂∗ = argmin
x̂

∥F(x̂) − y∥ + λR(x̂), (2.3)

where ||F(x̂) − y∥ is a data fidelity term that measures the consistency of the approximate
solution x̂, in the space of acceptable images e.g 2D, 3D and representing the physical
quantity of interest, to the measured signal y, which depends on the imaging operator
and could include images, Fourier samples, line integrals, etc. R(·) is a regularization term
encoding the prior information about the data, and λ is a hyper-parameter that controls the
contribution of the regularization term. The reconstruction error is minimized iteratively
until convergence. We note that the solution space after convergence does not need to be
singular, for example in methods where a distribution of solutions is sampled (Bayesian
neural networks [277, 164]). In such cases, the “x̂∗ ∈” notation replaces the current “x̂∗ =”.
However, for consistency with recent art we use the simplified notation assuming a singular
solution space at convergence.

The regularization term is often the most important part of the modeling and what
researchers have mostly focused on in the literature as it vastly reduces the solution space
by accounting for assumptions based on the underlying data (e.g., smoothness, sparsity,
spatio-temporal redundancy). The interested reader can refer to [74, 170] for more details
on regularization modeling. Fig. 2.6 shows an example of an iterative approach workflow
for diffuse optical tomography (DOT) imaging.

Several image priors were formulated as sparse transforms to deal with incomplete data
issues. The sparsity idea, representing a high dimensional image x by only a small number of
nonzero coefficients, is one dominant paradigm that has been shown to drastically improve
the reconstruction quality especially when the number of measurements M or theirs signal
to noise ratio (SNR) is low. Given the assumption that an image can be represented with
a few nonzero coefficients (instead of its number of pixels), it is possible to recover it from
a much smaller number of measurements. A popular choice for a sparsifying transform is
total variation (TV) that is widely studied in academic literature. The interested reader
is referred to [209] for TV based algorithms modeling details. While TV imposes a strong
assumption on the gradient sparsity via the non-smooth absolute value that is more suited
to piece-wise constant images, TV tends to cause artifacts such as blurred details and
undesirable patchy texture in the final reconstructions (Fig. 2.7 illustrates an example of
artifacts present in TV-based reconstruction). Recent work aimed at exploiting richer feature
knowledge to overcome TV’s weaknesses, for example TV-type variants [298], non-local
means (NLM) [299], wavelet approaches [89], and dictionary learning [276]. Non-local means
filtering methods, widely used for CT [295], are operational in the image domain and allow
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the estimation of the noise component based on multiple patches extracted at different
locations in the image [237].

Figure 2.7: Fig. Reconstruction results of a limited-angle CT real head phantom (120 pro-
jections) using different conventional reconstruction methods. (A) Reference image recon-
structed from 360 projections, (B) Image reconstruction using analytical FBP, (C) Images
reconstructed by iterative POCS-TV with initial zero image [108]. Arrows point out to
artifacts present in the reconstructed images.(Figure licensed under CC-BY 4.0 Creative
Commons license.)

While sparsity measures the first order sparsity, i.e the sparsity of vectors (the number of
non-zero elements), some models exploited alternative properties such as the low rank of the
data, especially when processing dynamic or time-series data, e.g. dynamic and functional
MRI [158, 233] where data can have a correlation over time. Low rank can be interpreted
as the measure of the second order (i.e., matrix) sparsity [159]. Low rank is of particular
interest to compression given its requirement to a full utilization of the spatial and temporal
correlation in images or videos leading to a better exploitation of available data. Recent work
combined low rank and sparsity properties for improved reconstruction results [301]. Guo et
al.; Otazo et al. [107, 191] decomposed the dynamic image sequence into the sum of a low-
rank component, that can capture the background or slowly changing parts of the dynamic
object, and sparse component that can capture the dynamics in the foreground such as
local motion or contrast changes. The interested reader is referred to [159, 205] for low
rank based algorithms modeling survey.

The difficulties of solving the image reconstruction problems motivated the design of
highly efficient algorithms for large scale, nonsmooth and nonconvex optimization problems
such as the alternating direction method of multipliers (ADMM) [41, 88], primal-dual algo-
rithm [50], iterative shrinkage-thresholding algorithm (ISTA) [68], to name just a few. For
instance, using the augmented Lagrangian function [237] of Eq. 2.3, the ADMM algorithm
solves the reconstruction problem by breaking it into smaller subproblems that are easier
to solve. Despite the problem decomposition, a large number of iterations is still required
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for convergence to a satisfactory solution. Furthermore, performance is defined to a large
extent by the choice of transformation matrix and the shrinkage function which remain
challenging to choose [170].

ISTA is based on a simpler gradient-based algorithm where each iteration leverages
hardware accelerated matrix-vector multiplications representing the physical system mod-
eling the image acquisition process and its transpose followed by a shrinkage/soft-threshold
step [68]. While the main advantage of ISTA relies on its simplicity, it has also been known
to converge quite slowly [294]. Convergence was improved upon by a fast iterative soft-
thresholding algorithm (FISTA) [29] based on the idea of Nesterov ( [184]).

Overall, although iterative reconstruction methods showed substantial accuracy im-
provements and artifact reductions over the analytical ones, they still face three major
weaknesses: First, iterative reconstruction techniques tend to be vendor-specific since the
details of the scanner geometry and correction steps are not always available to users and
other vendors. Second, there are substantial computational overhead costs associated with
popular iterative reconstruction techniques due to the load of the projection and back-
projection operations required at each iteration. The computational cost of these methods
is often several orders of magnitude higher than analytical methods, even when using highly-
optimized implementations. A trade-off between real-time performance and quality is made
in favor of quality in iterative reconstruction methods due to their non-linear complexity
of quality in function of the processing time. Finally, the reconstruction quality is highly
dependent on the regularization function form and the related hyper-parameters settings as
they are problem-specific and require non-trivial manual adjustments. Over-imposing spar-
sity (L1 penalties) for instance can lead to cartoon-like artifacts [170]. Proposing a robust
iterative algorithm is still an active research area [241, 176].

2.3 Deep Learning Based Image Reconstruction

To further advance biomedical image reconstruction, a more recent trend is to exploit deep
learning techniques for solving the inverse problem to improve resolution accuracy and
speed up reconstruction results. As a deep neural network represents a complex mapping,
it can detect and leverage features in the input space and build increasingly abstract rep-
resentations useful for the end-goal. Therefore, it can better exploit the measured signals
by extracting more contextual information for reconstruction purposes. In this section, we
summarize works using DL for inverse problems in imaging.

Learning-based image reconstruction is driven by data where a training dataset is used
to tune a parametric reconstruction algorithm that approximates the solution to the inverse
problem with a significant one-time, offline training cost that is offset by a fast inference
time. There is a variety of these algorithms, with some being closely related to conventional
methods and others not. While some methods considered machine learning as a reconstruc-
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Figure 2.8: Visualization of common deep learning-based reconstruction paradigms from raw
sensor data. (A) A two-step processing model is shown where deep learning complements
conventional methods (Section 2.3.1). A typical example would be to pre-process the raw
sensor data using a conventional approach f1, enhance the resulting image with a deep
learning model fθ2 then perform task processing using fθ3 . The overall function will thus be
fθ3 ◦fθ2 ◦f1. Vice versa, one can pre-process the raw sensor data using a DL-based approach
fθ2 to enhance the collected raw data and recover missing details then apply conventional
method f1 to reconstruct image and finally perform task processing using fθ3 . The overall
function will be fθ3 ◦ f1 ◦ fθ2 in this case. (B) An end-to-end model is shown: The image is
directly estimated from the raw sensor data with a deep learning model (2.3.2) followed by
downstream processing tasks. The overall function will be fθ3 ◦ fθ2 . (C) Task results can be
inferred with or without explicit image reconstruction (Section 2.3.3) using fθ3 function.

tion step by combining a traditional model with deep modeling to recover the missing details
in the input signal or enhance the resulting image (Section 2.3.1), some others considered
a more elegant solution to reconstruct an image from its equivalent initial measurements
directly by learning all the parameters of a deep neural network, in an end-to-end fashion,
and therefore approximating the underlying physics of the inverse problem (Section 2.3.2),
or even going further and solving for the target task directly (Section 2.3.3). Fig. 2.8 shows a
generic example of the workflow of these approaches. Table 2.1 surveys various papers based
on these different paradigms and provides a comparison in terms of used data (Table 2.1-
Column "Mod.","Samp.","D"), architecture (Table 2.1-Column "TA","Arch."), loss and regu-
larization (Table 2.1-Column "Loss","Reg."), augmentation (Table 2.1-Column "Aug."), etc.
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2.3.1 Deep Learning as Processing Step: Two Step Image Reconstruction
Models

Complementing a conventional image reconstruction approach with a DL-model enables
improved accuracy while reducing the computational cost. The problem can be addressed
either in the sensor domain (pre-processing) or the image domain (post-processing) (Fig. 2.8-
A, Table 2.1-Column "E2E").

A Pre-Processing Step (Sensor Domain)

The problem is formulated as a regression in the sensor domain from incomplete data
representation (e.g., sub-sampling, limited view, low dose) to complete data (full dose or
view) using DL methods and has led to enhanced results [129, 157, 59]. The main goal is to
estimate, using a DL model, missing parts of the signal that have not been acquired during
the acquisition phase in order to input a better signal to an analytical approach for further
reconstruction.

Hyun et al. [129] proposed a k-space correction based U-Net to recover the unsampled
data followed by an IFT to obtain the final output image. They demonstrated artifact re-
duction and morphological information preservation when only 30% of the k-space data
is acquired. Similarly, Liang et al. [157] proposed a CT angular resolution recovery based
on deep residual convolutional neural networks (CNNs) for accurate full view estimation
from unmeasured views while reconstructing images using filtered back projection. Recon-
struction demonstrated speed-up with fewer streaking artifacts along with the retrieval of
additional important image details. Unfortunately, since noise is not only present in the
incomplete data acquisition case, but also in the full data as well, minimizing the error
between the reference and the predicted values can cause the model to learn to predict the
mean of these values. As a result, the reconstructed images can suffer from lack of texture
detail.

Huang et al. [125] argue that DL-based methods can fail to generalize to new test
instances given the limited training dataset and DL’s vulnerability to small perturbations
especially in noisy and incomplete data case. By constraining the reconstructed images
to be consistent with the measured projection data, while the unmeasured information
is complemented by learning based methods, reconstruction quality can be improved. DL
predicted images are used as prior images to provide information in missing angular ranges
first followed by a conventional reconstruction algorithm to integrate the prior information
in the missing angular ranges and constrain the reconstruction images to be consistent to
the measured data in the acquired angular range.

Signal regression in the sensor domain reduces signal loss enabling improved downstream
results from the coupled analytic method. However, the features extracted by DL methods
are limited to the sensor domain only while analytical methods’ weaknesses are still present
in afterword processing.
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A Post-Processing Step (Image Domain)

The regression task is to learn the mapping between the low-quality reconstructed image and
its high-quality counterpart. Although existing iterative reconstruction methods improved
the reconstructed image quality, they remain computationally expensive and may still result
in reconstruction artifacts in the presence of noise or incomplete information, e.g. sparse
sampling of data [65, 232]. The main difficulty arises from the non-stationary nature of the
noise and serious streaking artifacts due to information loss [58, 5]. Noise and artifacts are
challenging to isolate as they may have strong magnitudes and do not obey specific model
distributions in the image domain [260]. The automatic learning and detection of complex
patterns offered by deep neural networks can outperform handcrafted filters in the absence
of complete information [278, 232].

Given an initial reconstruction estimate from a direct inverse operator e.g., FBP [242,
110, 55], IFT [260], or few iterative approach steps [133, 65, 274], deep learning is used to
refine the initialized reconstruction and produce the final reconstructed image. For example,
Chen et al. [56] used an autoencoder to improve FBP results on a limited angle CT projec-
tion. Similarly, Jin et al. [133] enhanced FBP results on a sparse-view CT via subsequent
filtering by a U-Net to reduce artifacts. U-Net and other hour-glass shaped architectures
rely on a bottleneck layer to encode a low-dimensional representation of the target image.

Generative adversarial networks (GAN) [104] were leveraged to improve the quality
of reconstructed images. Wolterink et al. [269] proposed to train an adversarial network
to estimate full-dose CT images from low-dose CT ones and showed empirically that an
adversarial network improves the model’s ability to generate images with reduced aliasing
artifacts. Interestingly, they showed that combining squared error loss with adversarial loss
can lead to a noise distribution similar to that in the reference full-dose image even when
no spatially aligned full-dose and low dose scans are available.

Yang et al. [278] proposed a deep de-aliasing GAN (DAGAN) for compressed sensing
MRI reconstruction that resulted in reduced aliasing artifacts while preserving texture and
edges in the reconstruction. Remarkably, a combined loss function based on content loss (
consisting of a pixel-wise image domain loss, a frequency domain loss and a perceptual VGG
loss) and adversarial loss were used. While frequency domain information was incorporated
to enforce similarity in both the spatial (image) and the frequency domains, a perceptual
VGG coupled to a pixel-wise loss helped preserve texture and edges in the image domain.

Combining DL and conventional methods reduce the computational cost but has its
own downsides. For instance, the features extracted by DL methods are highly impacted
by the results of the conventional methods, especially in case of limited measurements
and the presence of noise where the initially reconstructed image may contain significant
and complex artifacts that may be difficult to remove even by DL models. In addition, the
information missing from the initial reconstruction is challenging to be reliably recovered by
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Figure 2.9: Common network architectures used for image reconstruction. From left to
right: a multilayer perceptron network based on fully connected layers; an encoder-decoder
architecture based convolutional layers; a residual network, e.g. ResNet [116], utilizing skip
connections (skip connection is crucial in facilitating stable training when the network is very
deep); and a generative adversarial network (GAN). A decoder like architecture includes
only the decoder part of the encoder-decoder architecture and may be preceded by a fully
connected layer to map measurements to the image space depending on the input data size.
A U-Net [210] resembles the encoder-decoder architecture while it uses skip connections
between symmetric depths. A GAN [104] includes a generator and descriminor that contest
with each other in a min-max game. The generator learns to create more realistic data by
incorporating feedback from the discriminator. We refer the interested reader to [7, 143] for
a an in depth survey of various types of deep neural network architectures.

post-processing like many inverse problems in the computer vision literature such as image
inpainting. Furthermore, the number of iterations required to obtain a reasonable initial
image estimate using an iterative method can be hard to define and generally requires a
long run-time (in the order of several min) to be considered for real-time scanning. Therefore,
the post-processing approach may be more suitable to handle initial reconstructions that
are of relatively good quality and not drastically different from the high-quality one.

2.3.2 End-to-End Image Reconstruction: Direct Estimation

An end-to-end solution leverages the image reconstruction task directly from sensor-domain
data using a deep neural network by mapping sensor measurements to image domain while
approximating the underlying physics of the inverse problem (Fig. 2.8-B). This direct esti-
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mation model may represent a better alternative as it benefits from the multiple levels of
abstraction and the automatic feature extraction capabilities of deep learning models.

Given pairs of measurement vectors y ∈ CM and their corresponding ground truth
images x ∈ CN (that produce y), the goal is to optimize the parameters θ ∈ Rd of a neural
network in an end-to-end manner to learn the mapping between the measurement vector
y and its reconstructed tomographic image x, which recovers the parameters of underlying
imaged tissue. Therefore, we seek the inverse function A−1(·) that solves:

θ∗ = argmin
θ

L
(
A−1(y, θ), x

)
+ λR(A−1(y, θ)), (2.4)

where L is the loss function of the network that, broadly, penalizes the dissimilarity between
the estimated reconstruction and the ground truth. The regularization term R, often in-
troduced to prevent over-fitting, can apply penalties on layer parameters (weights) or layer
activity (output) during optimization. L1/L2 norms are the most common choices. λ is a
hyper-parameter that controls the contribution of the regularization term. Best network pa-
rameters (θ∗) depend on hyper-parameters, initialization and a network architecture choice.

Recently, several paradigms have emerged for end-to-end DL-based reconstruction the
most common of which are generic DL models and DL models that unroll an iterative
optimization.

Generic Models

Although some proposed models rely on multilayer perceptron (MLP) feed-forward artificial
neural network [197, 39, 83, 259], CNNs remain the most popular generic reconstruction
models mainly due to their data filtering and features extraction capabilities. Specifically,
encoder-decoder [183, 112], U-Net [253], ResNet [45] and decoder like architecture [286,
272, 307] are the most dominant architectures as they rely on a large number of stacked
layers to enrich the level of features extraction. A set of skip connections enables the later
layers to reconstruct the feature maps with both the local details and the global texture
and facilitates stable training when the network is very deep. Fig. 6.2 illustrates some of
the architectures that are widely adopted in medical image reconstruction.

The common building blocks of neural network architectures are convolutional layers,
batch normalization layers, and rectified linear units (ReLU). ReLU is usually used to en-
force information non-negativity properties, given that the resulting pixels values represent
tissue properties e.g., chromophores concentration maps [285], refractive index [237], and
more examples in Table 2.1. Batch normalization is used to reduce the internal covariate
shift and accelerates convergence. The resulting methods can produce relatively good recon-
structions in a short time and can be adapted to other modalities but require a large train-
ing dataset and good initialization parameters. Table 2.1-Column "E2E" (check-marked)
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summarizes papers by architecture, loss, and regularization for 2D, 3D, 4D, and different
modalities.

Zhu et al. [307] proposed a manifold learning framework based decoder neural network to
emulate the fast-Fourier transform (FFT) and learn an end-to-end mapping between k-space
data and image domains where they showed artifact reduction and reconstruction speed up.
However, when trained with an L1 or L2 loss only, a DL-based reconstructed image still
exhibits blurring and information loss, especially when used with incomplete data. Similarly,
Ben Yedder et al. [30] proposed a decoder like model for DOT image reconstruction. While
increased reconstruction speed and lesion localization accuracy are shown, some artifacts
are still present in the reconstructed image when training with L2 loss only. This motivated
an improved loss function in their follow-up work [33] where they suggested combining L2
with a Jaccard loss component to reduce reconstructing false-positive pixels.

Thaler et al. [246] proposed a Wasserstein GAN (WGAN) based architecture for im-
proving the image quality for 2D CT image slice reconstruction from a limited number of
projection images using a combination of L1 and adversarial losses. Similarly, Ouyang et
al. [192] used a GAN based architecture with a task-specific perceptual and L1 losses to
synthesize PET images of high quality and accurate pathological features. Some attempts
were made to reconstruct images observed by the human visual system directly from brain
responses using GAN [224, 235]. Shen et al. [224] trained a GAN for functional magnetic
resonance imaging (fMRI) reconstruction to directly map between brain activity and per-
ception (the perceived stimulus). An adversarial training strategy which consists of three
networks: a generator, a comparator, and a discriminator was adopted. The comparator is a
pre-trained neural network on natural images used to calculate a perceptual loss term. The
loss function is based on L2 distance in image space, perceptual loss (similarity in feature
space) and adversarial loss.

To further enhance results and reduce artifacts due to motion and corruption of k-space
signal, Oksuz et al. [189] proposed a recurrent convolutional neural network (RCNN) to
reconstruct high quality dynamic cardiac MR images while automatically detecting and
correcting motion-related artifacts and exploiting the temporal dependencies within the
sequences. Proposed architecture included two sub-networks trained jointly: an artifact
detection network that identifies potentially corrupted k-space lines and an RCNN for re-
construction.

To relax the requirement of a large number of training samples, a challenging require-
ment in a medical setting, simulating data was proposed as an alternative source of training
data. However, creating a realistic synthetic dataset is a challenging task in itself as it re-
quires careful modeling of the complex interplay of factors influencing real-world acquisition
environment. To bridge the gap between the real and in silico worlds, transfer learning pro-
vides a potential remedy as it helps transfer the measurements from the simulation domain
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to the real domain by keeping the general attenuation profile while accounting for real-world
factors such as scattering, etc.

Ben Yedder et al. [33] proposed a supervised sensor data distribution adaptation based
MLP to take advantage of cross-domain learning and reported accuracy enhancement in
detecting tissue abnormalities. Zhou et al. [306] proposed unsupervised CT sinograms adap-
tation, based on CycleGAN and content consistent regularization, to further alleviate the
need for real measurement-reconstruction pairs. Interestingly, the proposed method inte-
grated the measurement adaptation network and the reconstruction network in an end-to-
end network to jointly optimize the whole network.

Waibel et al. [253] investigated two different variants of DL-based methods for photo-
acoustique image reconstruction from limited view data. The first method is a post-processing
DL method while the second one is an end-to-end reconstruction model. Interestingly,
they showed empirically that an end-to-end model achieved qualitative and quantitative
improvements compared to reconstruction with a post-processing DL method. Zhang et
al. [297] studied the importance of fully connected layers, commonly used in end-to end
model [307, 33], to realize back-projection data from the sensor domain to the image do-
main and showed that while a back-projection can be learned through neural networks it
is constrained by the memory requirements induced by the non-linear number of weights in
the fully connected layers. Although several generic DL architectures and loss functions have
been explored to further enhance reconstruction results in different ways (resolution, lesion
localization, artifact reduction, etc.), a DL-based method inherently remains a black-box
that can be hard to interpret. Interpretability is key not only for trust and accountability
in a medical setting but also to correct and improve the DL model.

Unrolling Iterative Methods

Unrolling conventional optimization algorithms into a DL model has been suggested by
several works [201, 217, 273, 237, 3, 121] in order to combine the benefits of traditional
iterative methods and the expressive power of deep models (Table 2.1-Column "E2E").
Rajagopal et al. [203] proposed a theoretical framework demonstrating how to leverage
iterative methods to bootstrap network performance while preserving network convergence
and interpretability featured by the conventional approaches.

Deep ADMM-Net [237] was the first proposed model reformulating the iterative re-
construction ADMM algorithm into a deep network for accelerating MRI reconstruction,
where each stage of the architecture corresponds to an iteration in the ADMM algorithm.
In its iterative scheme, the ADMM algorithm requires tuning of a set of parameters that
are difficult to determine adaptively for a given data set. By unrolling the ADMM algo-
rithm into a deep model, the tuned parameters are now all learnable from the training
data. The ADMM-Net was later further improved to Generic-ADMM-Net [279] where a
different variable splitting strategy was adopted in the derivation of the ADMM algorithm
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and demonstrated state-of-the-art results with a significant margin over the BM3D-based
algorithm [66]. Similarly, the PD-Net [3] adopted neural networks to approximate the proxi-

Figure 2.10: Reconstructions of the Shepp–Logan phantom in a two-dimensional CT image
reconstruction problem using different reconstruction methods.(a) Reference image. (b)-(c)
The standard FBP and TV-regularized reconstruction. (d) FBP reconstruction followed by
a U-Net architecture. (e) The learned primal–dual scheme [3]. One can observe the artifacts
in the conventional methods removed by the DL-based approaches. Overall, the unrolled-
iterative method gave the best results and outperformed even the DL as a post-processing
step method. The interested reader is referred to [14] for more details about the training
setting. Reproduced with permission from Cambridge University Press.

mal operator by unrolling the primal-dual hybrid gradient algorithm [51] and demonstrated
performance boost compared with conventional and two step image reconstruction models.
Fig. 2.10 shows results of their proposed method in a simplified setting of a two-dimensional
CT image reconstruction problem.

In like manner, Schlemper et al. [217] proposed a cascade convolutional network that
embeds the structure of the dictionary learning-based method while allowing end-to-end
parameter learning. The proposed model enforces data consistency in the sensor and image
domain simultaneously, reducing the aliasing artifacts due to sub-sampling. An extension
for dynamic MR reconstructions [218] exploits the inherent redundancy of MR data.

While, the majority of the aforementioned methods used shared parameters over itera-
tions only, Qin et al. [201] proposed to propagate learnt representations across both itera-
tion and time. Bidirectional recurrent connections over optimization iterations are used to
share and propagate learned representations across all stages of the reconstruction process
and learn the spatio–temporal dependencies. The proposed deep learning based iterative
algorithm can benefit from information extracted at all processing stages and mine the
temporal information of the sequences to improve reconstruction accuracy. The advantages
of leveraging temporal information was also demonstrated in single molecule localization
microscopy [49]. An LSTM was able to learn an unbiased emission density prediction in
a highly variable frame sequence of spatio-temporally separated fluorescence emissions. In
other words, joint learning over the temporal domain of each sequence and across iterations
leads to improved de-aliasing.
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Semi-supervised and Unsupervised Learning Methods

The majority of deep learning methods for image reconstruction are based on supervised
learning where the mapping between signal and reconstructed image is learned. However,
the performance of supervised learning is, to a large degree, determined by the size of the
available training data which is constrained in a medical setting. In an effort to work around
this requirement, Qong et al. [102] applied the deep image prior method [247] to PET image
reconstruction. The network does not need prior training matching pairs, as it substitutes
the target image with a neural network representation of the target domain but rather
requires the patient’s own prior information. The maximum-likelihood estimation of the
target image is formulated as a constrained optimization problem and is solved using the
ADMM algorithm. Qong et al. [103] have extended the approach to the direct parametric
PET reconstruction where acquiring high-quality training data is more difficult. However,
to obtain high-quality reconstructed images without prior training datasets, registered MR
or CT images are necessary. While rigid registration is sufficient for brain regions, accurate
registration is more difficult for other regions.

Figure 2.11: Unified Biomedical Image Processing Workflow: Joint Reconstruction and Im-
age Analysis for Enhanced Diagnosis.(A) Biomedical image processing workflow usually
involves two steps optimized independently (reconstruction and image analysis) for diagno-
sis purposes. (B) Jointly solving these tasks using a unified model allows joint parameters
tuning and feature sharing.

Instead of using matched high-dose and a low-dose CT, Kang et al. [138] proposed to
employ the GAN loss to match the probability distribution where a cycleGAN architecture
based cyclic loss and identity loss for multiphase cardiac CT problems is used. Similarly, Li et
al. [152] used an unsupervised data fidelity enhancement network that uses an unsupervised
network to fine-tune a supervised network to different CT scanning protocol properties.
Meng et al. [173] proposed to use only a few supervised sinogram-image pairs to capture
critical features (i.e., noise distribution, tissue characteristics) and transfer these features
to larger unlabeled low-dose sinograms. A weighted least-squares loss model based TV
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regularization term and a KL divergence constraint between the residual noise of supervised
and unsupervised learning is used while a FBP is employed to reconstruct CT images from
the obtained sinograms.

2.3.3 Raw-to-Task Methods: Task Specific Learning

Typical data flow in biomedical imaging involves solving the image reconstruction task fol-
lowed by preforming an image processing task (e.g., segmentation, classification) (Fig 2.11-
A). Although each of these two tasks (reconstruction and image processing) is solved sepa-
rately, the useful clinical information extracted for diagnosis by the second task is highly de-
pendent on the reconstruction results. In the raw-to-task paradigm, task results are directly
inferred from raw data, where image reconstruction and processing are lumped together
and reconstructed image may not be necessarily outputted (Fig. 2.8-C, Fig 2.11-B)

Jointly solving for different tasks using a unified model is frequently considered in the
computer vision field, especially for image restoration [216], and has lead to improved re-
sults than solving tasks sequentially [196]. The advantages explain the recent attention this
approach received in biomedical image reconstruction [238, 124]. For instance, a unified
framework allows joint parameters tuning for both tasks and feature sharing where the
two problems regularize each other when considered jointly. In addition, when mapping is
performed directly from the sensor domain, the joint task can even leverage sensor domain
features for further results enhancing while it can be regarded as a task-based image quality
metric that is learned from the data. Furthermore, Sbalzarini et al. [216] argues that solv-
ing ill-posed problems in sequence can be more efficient than in isolation. Since the output
space of a method solving an inverse problem is constrained by forming the input space of
the next method, the overall solution space contracts. Computational resources can then be
focused on this more limited space improving runtime, solution quality or both.

Image reconstruction is not always necessary for optimal performance. For example,
in single-pixel imaging recent work [150] illustrates that an online algorithm can ensure
on-par performance in image classification without requiring the full image reconstruction.
A typical pipeline in processing compressive sensing requires image reconstruction before
classical computer vision (CV) algorithms process the images in question. Recent work [44]
has shown that CV algorithms can be embedded into the compressive sensing domain di-
rectly, avoiding the reconstruction step altogether. In discrete tomography the full range
of all possible projections is not always feasible or available due to time, resource, or phys-
ical constraints. A hybrid approach in discrete tomography [193] finds a minimal number
of projections required to obtain a close approximation of the final reconstruction image.
While an image is still reconstructed after the optimal number of projections is found, de-
termining this optimal set required no reconstructions, a significant advantage compared
to an approach where either an iterative or combinatorial selection of reconstructions to
determine the optimal set of projections.
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2.4 Medical Training Datasets

The performance of learning-based methods is dictated to a large extent by the size and
diversity of the training dataset. In a biomedical setting, the need for large, diverse, and
generic datasets is non-trivial to satisfy given constraints such as patient privacy, access
to acquisition equipment and the problem of divesting medical practitioners to annotate
accurately the existing data. In this section, we will discuss how researchers address the
trade-offs in this dilemma and survey the various publicly available dataset type used in
biomedical image reconstruction literature.

Table 2.1-Columns "Data", "Site" and "Size" summarise details about dataset used by
different surveyed papers, which are broadly classified into clinical (real patient), physical
phantoms, and simulated data. The sources of used datasets have been marked in the last
column of Table 2.1-Columns "Pub". Data" in case of their public availability to other re-
searchers. Since phantom data are not commonly made publicly available, the focus was
mainly given to real and simulated data whether they are publicly available or as part
of challenges. Used augmentation techniques have been mentioned in Table 2.1-Columns
"Aug". Remarkably, augmentation is not always possible in image reconstruction task es-
pecially in sensor domain given the non-symmetries of measurements in some case, the
nonlinear relationship between raw and image data, and the presence of other phenom-
ena(e.g., scattering). We herein survey the most common source of data and discuss their
pros and cons.

2.4.1 Real World Datasets

Some online platforms (e.g., giveascan [163],mridata [180], MGH-USC HCP ([81]), and
ukbiobank [38]) made the initiative to share datasets between researchers for image recon-
struction task. mridata [180], for example, is an open platform for sharing clinical MRI
raw k-space datasets. The dataset is sourced from acquisitions of different manufacturers,
allowing researchers to test the sensitivity of their methods to overfitting on a single ma-
chine’s output while may require the application of transfer-learning techniques to handle
different distributions. As of writing, only a subset of organs for well known modalities e.g.,
MRI and CT are included (Table 2.1-Columns "Site"). Representing the best reconstruction
images acquired for a specific modality, the pairs of signal-image form a gold standard for
reconstruction algorithms. Releasing such data, while extremely valuable for researchers, is
a non-trivial endeavour where legal and privacy concerns have to be taken into account by,
for example, de-anonymization of the data to make sure no single patient or ethnograph-
ically distinct subset of patients can ever be identified in the dataset. Source of real-word
used datasets on surveyed papers has been marked in Table 2.1-Columns "Pub. Data".
The dataset sizes remain relatively limited, which can hinder the ability to achieve robust
generalization of DL-based methods.
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2.4.2 Physics Based Simulation

Physics-based simulation [220, 114, 111] provides an alternative source of training data
that allows generating a large and diversified dataset. The accuracy of a physical simula-
tion with respect to real-world acquisitions increases at the cost of an often super-linear
increase in computational resources. In addition, creating realistic synthetic datasets is a
nontrivial task as it requires careful modeling of the complex interplay of factors influencing
real-world acquisition environment. With a complete model of the acquisition far beyond
computational resources, a practitioner needs to determine how close to reality the sim-
ulation needs to be in order to allow the method under development to work effectively.
Transfer learning provides a potential remedy to bridge the gap between real and in silico
worlds and alleviates the need for a large clinical dataset [307, 33]. In contrast, the approach
of not aiming for complete realism but rather using the simulation as a tool to sharpen the
research question can be appropriate. Simulation is a designed rather than a learned model.
For both overfitting to available data is undesirable. The assumptions underlying the design
of the simulation are more easily verified or shown not to hold if the simulation is not fit to
the data, but represents a contrasting view. For example, simulation allows the recreation
and isolation of edge cases where a current approach is performing sub-par. As such simula-
tion is a key tool for hypothesis testing and validation of methods during development. For
DL-based methods the key advantage simulation offers is the almost unlimited volume of
data that can be generated to augment limited real-world data in training. With the size of
datasets as one of the keys determining factors for DL-based methods leveraging simulation
is essential. Surveyed papers that used simulated data as a training or augmentation data
have been marked in Table 2.1-Columns "Pub".

2.4.3 Challenge Datasets

There are only a few challenge (competition) datasets for image reconstruction task e.g.,
LowDoseCT [243], FastMRI [293], Fresnel [91], and SMLM challenge [119] that includes
raw measurements. Low-quality signals can be simulated by artificially subsampling the
full-dose acquired raw signal while keeping their corresponding high resolution images pair
[102, 274]. While this method offers an alternative source of training data, the downsampling
is only one specific artificial approximation to the actual acquisition of low-dose imaging
and may not reflect the real physical condition. Hence, performance can be compromised
by not accounting for the discrepancy between the artificial training data and real data.
Practitioners can leverage techniques such as transfer learning to tackle the discrepancy.
Alternatively, researchers collect high-quality images from other medical imaging challenges,
e.g., segmentation (MRBrainS challenge [172], MICCAI challenge [34]), and use simulation,
using a well known forward model, to generate full and/or incomplete sensor domain pairs.
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Here again, only a subset of body scans and diseases for well-studied modalities are publicly
available as highlighted in Table 2.1-Columns "Site" and "Pub. Data".

2.5 Reconstruction Evaluation Metrics

2.5.1 Quality

Measuring the performance of the reconstruction approaches is usually performed using
three metrics, commonly applied in computer vision, in order to access the quality of the
reconstructed images. These metrics are the root mean squared error (RMSE) or normalized
mean squared error, structural similarity index (SSIM) or its extended version multiscale
structural similarity [263], and peak signal to noise ratio (PSNR).

While RMSE measures the pixel-wise intensity difference between ground truth and re-
constructed images by evaluating pixels independently, ignoring the overall image structure,
SSIM, a perceptual metric, quantifies visually perceived image quality and captures struc-
tural distortion. SSIM combines luminance, contrast, and image structure measurements
and ranges between [0,1] where the higher SSIM value the better and SSIM = 1 means that
the two compared images are identical.

PSNR (Eq. 2.5) is a well-known metric for image quality assessment which provides
similar information as the RMSE but in units of dB while measuring the degree to which
image information rises above background noise. Higher values of PSNR indicate a better
reconstruction.

PSNR = 20 × log10

(
Xmax√
MSE

)
, (2.5)

where Xmax is the maximum pixel value of the ground truth image.
Illustrating modality specific reconstruction quality is done by less frequently used met-

rics such as contrast to noise ratio (CNR) [272] for US. Furthermore, modalities such as US,
SMLM or some confocal fluorescence microscopy can produce a raw image where the in-
tensity distribution is exponential or long-tailed. Storing the raw image in a fixed-precision
format would lead to unacceptable loss of information due to uneven sampling of the rep-
resented values. Instead, storing and more importantly processing the image in logarithmic
or dB-scale preserves the encoded acquisition better. The root mean squared logarithmic
error (RMSLE) is then a logical extension to use as an error metric [27].

Normalized mutual information (NMI) is a metric used to determine the mutual in-
formation shared between two variables, in this context image ground truth and recon-
struction [272, 306]. When there is no shared information NMI is 0, whereas if both are
identical a score of 1 is obtained. To illustrate NMI’s value, consider two images X, Y with
random values. When generated from two different random sources, X and Y are indepen-
dent, yet RMSE(X,Y) can be quite small. When the loss function minimizes RMSE, such
cases can induce stalled convergence at a suboptimal solution due to a constant gradient.
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NMI, on the other hand, would return zero (or a very small value), as expected. RMSE
minimizes average error which may make it less suitable for detailed distribution matching
tasks in medical imaging such as image registration where NMI makes for a more effective
optimization target [266].

The intersection over union, or Jaccard index, is leveraged to ensure detailed accurate
reconstruction [30, 238]. In cases where the object of interest is of variable size and small
with respect to the background, an RMSE score is biased by matching the background
rather than the target of interest. In a medical context, it is often small deviations (e.g.
tumors, lesions, deformations) that are critical to diagnosis. Thus, unlike computer vision
problems where little texture changes might not alter the overall observer’s satisfaction, in
medical reconstruction, further care should be taken to ensure that practitioners are not
misled by a plausible but not necessarily correct reconstruction. Care should be taken to
always adjust metrics with respect to their expected values under an appropriate random
model [90]. The understanding of how a metric responds to its input should be a guideline
to its use. As one example, the normalization method in NMI has as of writing no less than
6 [90] alternatives with varying effect on the metric. Table 2.1-Columns "Metrics" surveys
the most frequently used metrics on surveyed papers.

2.5.2 Inference Speed

With reconstruction algorithms constituting a key component in time-critical diagnosis or
intervention settings, the time complexity is an important metric in selecting methods. Two
performance criteria are important in the context of time: throughput measures how many
problem instances can be solved over a time period, and latency measures the time needed to
process a single problem instance. In a non-urgent medical setting, a diagnosing facility will
value throughput more than latency. In an emergency setting where even small delays can
be lethal, latency is critical above all. For example, if a reconstruction algorithm is deployed
on a single device it is not unexpected for there to be waiting times for processing. As a
result latency, if the waiting time is included, will be high and variable, while throughput is
constant. In an emergency setting there are limits as to how many devices can be deployed,
computing results on scale in a private cloud on the other hand can have high throughput,
but higher latency as there will be a need to transfer data offsite for processing. In this regard
it is critical for latency sensitive applications to allow deployment on mobile (low-power)
devices. To minimize latency (including wait-time), in addition to parallel deployment, the
reconstruction algorithm should have a predictable and constant inference time, which is
not necessarily true for iterative approaches.

Unfortunately, while some papers reported their training and inference times, (Table 2.1-
Columns "Metrics-IS") it is not obvious to compare their time complexity given the vari-
ability in datasets, sampling patterns, hardware, and DL frameworks. A dedicated study,
out of the scope of this survey, needs to be conducted for a fair comparison. Overall, the
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offline training of DL methods bypasses the laborious online optimization procedure of con-
ventional methods, and has the advantage of lower inference time over all but the simplest
analytical. In addition, when reported, inference times are usually in the order of millisec-
onds per image making them real time capable. The unrolled iterative network, used mainly
in the MR image reconstruction [237, 279] as the forward and backward projections can be
easily performed via FFT, might be computationally expensive for other modality where
the forward and backward projections can not be computed easily. Therefore, the total
training time can be much longer. In addition when data is acquired and reconstructed in
3D, the GPU memory becomes a limiting factor especially when multiple unrolling modules
are used or the network architecture is deep.

2.6 Discussion

Literature shows that DL-based image reconstruction methods have gained popularity over
the last few years and demonstrated image quality improvements when compared to con-
ventional image reconstruction techniques especially in the presence of noisy and limited
data representation. DL-based methods address the noise sensitivity and incompleteness of
analytical methods and the computational inefficiency of iterative methods. In this section
we will discuss DL-based methods challenges and illustrate the main trends in DL-based
medical image reconstruction: a move towards task-specific learning where image recon-
struction is no longer required for the end task, and focus on a number of strategies to
overcome the inherent sparsity of manually annotated training data.

Learning: Unlike conventional approaches that work on a single image in isolation
and require prior knowledge, DL-based reconstruction methods leverage the availability of
large-scale datasets and the expressive power of DL to impose implicit constraints on the
reconstruction problem. While DL-based approaches do not require prior knowledge, their
performance can improve with it. By not being dependent on prior knowledge, DL-based
methods are more decoupled from a specific imaging (sub)modality and thus can be more
generalizable. The ability to integrate information from multiple sources without any pre-
processing is another advantage of deep neural networks. Several studies have exploited
GANs for cross-modal image generation [151, 142] as well as to integrate prior informa-
tion [149, 36]. Real-time reconstruction is offered by DL-based methods by performing the
optimization or learning stage offline, unlike conventional algorithms that require iterative
optimization for each new image. The diagnostician can thus shorten diagnosis time increas-
ing the throughput in patients treated. In operating theatres and emergency settings this
advantage can be life saving.

Interpretability: While the theoretical understanding and the interpretability of con-
ventional reconstruction methods are well established and strong (e.g., one can prove a
method’s optimality for a certain problem class), it is weak for the DL-based methods (due
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to the black-box nature of DL) despite the effort in explaining the operation of DL-based
methods on many imaging processing tasks. However, one may accept the possibility that
interpretabilty is secondary to performance as fully understanding DL-based approaches
may never become practical.

Complexity: On the one hand, conventional methods can be straightforward to imple-
ment, albeit not necessarily to design. On the other, they are often dependent on parameters
requiring manual intervention for optimal results. DL-based approaches can be challenging
to train with a large if not intractable hyper-parameter space (e.g., learning rate, initializa-
tion, network design). In both cases, the hyper-parameters are critical to results and require
a large time investment from the developer and the practitioner. In conclusion, there is a
clear need for robust self-tuning algorithms, for both DL-based and conventional methods.

Robustness: Conventional methods can provide good reconstruction quality when the
measured signal is complete and the noise level is low, their results are consistent across
datasets and degrade as the data representation and/or the signal to noise ratio is reduced
by showing noise or artifacts (e.g., streaks, aliasing). However, a slight change in the imag-
ing parameters (e.g., noise level, body part, signal distribution, adversarial examples, and
noise) can severely reduce the DL-based approaches’ performances and might lead to the
appearance of structures that are not supported by the measurements [10, 105]. DL based
approaches still leave many unsolved technical challenges regarding their convergence and
stability that in turn raise questions about their reliability as a clinical tool. A careful fusion
between DL-based and conventional approaches can help mitigate these issues and achieve
the performance and robustness required for biomedical imaging.

Speed: DL-based methods have the advantage in processing time over all but the most
simple analytical methods at inference time. As a result, latency will be low for DL-based
methods. However, one must be careful in this analysis. DL-based methods achieve fast
inference by training for a long duration, up to weeks, during development. If any changes
to the method are needed and retraining is required, even partial, a significant downtime
can ensue. Typical DL-based methods are not designed to be adjusted at inference time.
Furthermore, when a practitioner discovers that, at diagnosis time, the end result is sub-
par, an iterative method can be tuned by changing its hyper-parameters. For a DL-based
approach, this is non-trivial if not infeasible.

A final if not less important distinction is adaptive convergence. At deployment, a DL-
based method has a fixed architecture and weights with a deterministic output. Iterative
methods can be run iterations until acceptable performance is achieved. This is a double-
edged sword as convergence is not always guaranteed and the practitioner might not know
exactly how many more iterations are needed.

Training Dataset: Finally, the lack of large scale biomedical image datasets for train-
ing due to privacy, legal, and intellectual property related concerns, limits the application
of DL-based methods on health care. Training DL-based models often requires scalable high
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performance hardware provided by cloud based offerings. However, deploying on cloud com-
puting and transmitting the training data risks the security, authenticity, and privacy of
that data. Training on encrypted data offers a way to ensure privacy during training [97].
More formally a homomorphic encryption algorithm [208] can ensure evaluation (recon-
struction) on the encrypted data results are identical after decryption to reconstruction on
the non-encrypted data. In practice, this results in an increase in dataset size as compression
becomes less effective, a performance penalty is induced by the encryption and decryption
routines, and interpretability and debugging the learning algorithm becomes more complex
since it operates on human unreadable data.

The concept of federated learning, where improvements of a model (weights) are shared
between distributed clients without having to share datasets, has seen initial success in
ensuring privacy while enabling improvements in quality [94]. However a recent work by
Zhu et al. [308] has shown that if an attacker has access to the network architecture and the
shared weights, the training data can be reconstructed with high fidelity from the gradients
alone. Data sharing security in a federated setting still presents a concern that requires
further investigations.

Simulating a suitable training set also remains a challenge that requires careful tuning
and more realistic physical models to improve DL-based algorithm generalization.

Performance: Reconstruction is sensitive to missing raw measurements (false negative,
low recall) and erroneous signal (false positive, low precision). Sensitivity in reconstruction
is critical to ensure all present signals are reconstructed but high recall is not sufficient as in
this setting a reconstructed image full of artifacts and noise can still have high recall. Speci-
ficity may be high in reconstructed images, where little to no artifacts or noise is present,
but at the cost of omitting information. In the following we discuss how the indicators of
both are affected by training regimes and dataset sizes.

Deep learning reconstruction quality varies when using different loss metrics. For in-
stance, when a basic L1/L2 loss in image space is used solely, reconstruction results tend
to be worse quality because it generates an average of all possible reconstructions hav-
ing the same distance in image space, hence the reconstructed images might still present
artifacts [224, 30]. Adding feature loss in high dimensional space like perceptual loss and
frequency domain loss helps to better constrain the reconstruction to be perceptually more
similar to the original image [278, 224, 125]. Furthermore, reconstruction quality varies with
dataset size. To analyze the effect of training-dataset size on reconstruction quality, Shen et
al. [224] trained their reconstruction model with a variable number of training samples while
gradually increasing the dataset size from 120 to 6,000 samples. Interestingly, they reported
that while the reconstruction quality improved with the number of training samples, the
quality increase trend did not converge which suggests that better reconstruction quality
might be achieved if larger datasets are available. Similarly, Sun et al. [240] studied the effect
of decreasing the number of measurements and varying the noise level on multiple scattering
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based deep learning reconstruction methods and concluded that better feature extraction
from higher dimensional space are required for very low sampling cases. In addition, data is
usually imbalanced, with the unhealthy (including anomalies) samples being outnumbered
by the healthy ones resulting in reduced performance and compromised reconstruction of
tumor related structures [267].

While deep networks can take the whole image and produce outputs in a single forward
pass, input size can sometimes be a limiting factor as excessive memory cost becomes a
challenge for current GPU architectures especially for three-dimensional (3D) images with
relatively high resolution. Patch-based training divides the image into possibly overlapping
patches and produces outputs for each sub-image in independent forward passes while re-
quiring a reduced amount of memory and time on GPU. For patch-based training, each
iteration can take a set of patches (minibatch) for a more stable training where a proper
choice of batch size is important for a network convergence and generalization [99]. How-
ever, patch-based learning is mostly relevant when training in the same domain, which is
the case of deep learning as a pre/post-processing step [59, 271, 274], given the difficulty to
map part of the raw signal to a corresponding image patch in end-to-end learning.

Task-specific Learning: Prediction tasks, such as classification or prediction of treat-
ment directly from measurements, that is, omitting the image reconstruction task, is a non-
trivial approach that, under the right conditions, can be very worthwhile. Since an explicit
encoding of the image is no longer needed, the architecture can be reduced in complexity
or redesigned to focus specifically on the task. In addition, focusing on task-specific perfor-
mance ensures all computational resources are committed to task-specific training rather
than expending focus to perhaps unnecessary image reconstruction as an intermediate step.
Indeed, as we move towards artificial intelligence based task the field is still undecided if
the reconstructed image is required at all for state-of-the-art performance in classification,
diagnosis, or treatment prediction as it becomes less important to have a spatio-temporal
image representation (i.e. the domain that humans are familiar with). However, one cannot
deny the human reliance on visual evidence. Removing the image reconstruction task then
can lead to lower interpretability, and perhaps makes it harder for clinicians to trust the
outcome. Trust can be regained by increased performance and stability. We observe that
from an optimization point of view solving a sequence of two ill-posed problems (reconstruc-
tion and task prediction) can be easier compared to solving the entire composite problem at
once. When the output of the first ill-posed problem is the input of the second, the search
space can be dramatically reduced [216].

Finally, a stumbling block towards adaptation of task-specific training is the lack of
standardized datasets. Learning the translation from measurement domain to task domain
leads to a field of widely diverse combinations of measurement versus tasks domains, making
it less likely to find a standardized challenge dataset offering at least a subset of combi-
nations. The motivation behind task-specific learning can be as simple as a lack of image
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training data, forcing the practitioner to remove the image reconstruction task altogether
by necessity. An contrasting approach to task-specific learning and image-reconstruction
aided learning are multi-output or synthesizing networks. For example, consider MRI where
the acquisition device can generate T1 or T2 images, or a combination of both, by changing
acquisition parameters. A classification network that expects both as input is then limited
in application unless an intermediate network synthesizes the ‘missing‘ images. In other
words, rather than omitting the reconstruction, synthesizing networks reconstruct a set of
images from a single input [223]. One can then generalize this concept to asking what re-
construction space is ideal for the end task, rather than limiting the method to human
interpretable reconstruction (images).

There remain a vast range of challenges and opportunities in the field. So far, most
approaches focus on CT and MR image reconstruction while only a handful of approaches
exist for the reconstruction of the remaining modalities. Hence, the applicability of deep
learning models to these problems is yet to be fully explored. In addition, proposed deep
learning architectures are often generic and are not fully optimized for specific applications.
For instance, how to optimally exploit spatio-temporal redundancy, or how to exploit multi-
spectral data. By addressing these core questions and designing network layers to efficiently
learn such data representation, the network architecture can gain a boost in performance
and reliability.

2.7 Conclusion

The landscape of medical image reconstruction has witnessed a significant transformation
with the recent rise of deep learning techniques. The literature reviewed evidences a no-
table surge in the adoption of DL-based image reconstruction methods in recent years. This
trend has been underscored by their ability to yield remarkable improvements in image
quality compared to conventional reconstruction approaches, particularly when confronted
with challenges like noisy and limited data representation. As we move forward, it is im-
perative to address the identified challenges at hand and further leverage the advantages
of of DL techniques to continue revolutionizing medical image reconstruction for improved
diagnostics and patient care.
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Chapter 3

End-to-End Deep Learning Based
DOT Image Reconstruction

This Chapter focuses on the use of deep learning for image reconstruction in the context of
diffuse optical tomography imaging modality. Our primary objective is to address the chal-
lenges associated with DOT and introduce a DL-based solution1. To achieve this, we begin
by providing a comprehensive background on DOT, highlighting its unique characteristics
and the difficulties it poses in terms of image reconstruction.

3.1 Introduction

Imaging modalities based on near-infrared light are emerging as tools for biomedical diag-
nosis, given the non-ionizing nature of infrared light as well as their ability to penetrate
a few centimeters into human structures, such as the skull, brain, and breast [67]. The
recent progress of optical sensors makes optical-based modalities increasingly attractive.
DOT uses near-infrared light to image soft tissues and examination of biological tissue at a
macroscopic scale, offering several advantages in terms of safety, costs, portability, and sen-
sitivity to functional changes [12]. This technique has shown great potential in investigating
functional brain imaging [53, 302] and breast cancer screening [229, 9].

3.1.1 Background on Diffuse Optical Tomography Imaging

DOT measures the distribution of tissue optical properties as a function of absorption
and scattering coefficients. These properties are closely correlated to physiological markers
and allow indirect quantitative assessment of tissue malignancy [12, 166]. Indeed, marked
variations between healthy and tumor tissue are observed in terms of optical properties and
chromophore components (e.g., oxy/deoxy hemoglobin and collagen) [78]. In particular,
normal breast tissue and lesions can be separated in terms of optical coefficients at several

1This Chapter is based on our published work [30]. Reproduced with permission from Springer Nature.

41



Figure 3.1: DOT image reconstruction workflow example. A DOT-Scan probe consists of
two near-infrared sources for tissue illumination and a set of detectors registering the back-
scattered photons. Light propagation and scattering in the tissue are schematized. DOT
reconstructed image shows the optical coefficients in the tissue. The success of diagnosis
and treatment relies on accurate reconstruction and estimation of the optical properties of
a medium. © 2021 IEEE.

wavelengths [245, 166]. These properties make DOT a potential promising tool in pre-
screening of patients in a clinical setting, saving them from unnecessary exposure to more
precise but potentially harmful ionizing modalities such as CT. In such a setting, there is
a clear need for both low latency, i.e. method inference speed, preferably real-time, and
accurate reconstruction and classification.

The choice of wavelength is crucial in DOT as different wavelengths have varying de-
grees of penetration depth in biological tissues. Longer wavelengths can penetrate deeper
into tissues but may suffer from increased scattering. Shorter wavelengths have shallower
penetration but lower scattering. Furthermore, different chromophores, such as hemoglobin,
water, and lipids, have varying absorption properties at different wavelengths as shown in
Fig. 3.2. By selecting appropriate wavelengths, DOT can target specific chromophores and
provide information about tissue composition and oxygenation levels [100]. This wavelength
sensitivity is leveraged to analyze optical spectra and reconstruct images of the exposed tis-
sue for diagnostic purposes, given that recovered chromophore concentration changes can
convey information about functional brain vascular events, assessing tissue oxygenation, and
the characterization and monitoring of breast lesions [76]. In addition, the signal strength
and the level of background noise in DOT measurements can also be influenced by the
wavelength used.

A DOT scanner is, generally, comprised of an array of emitters and receivers, using
low-powered LEDs or lasers, to measure the optical transmission [20] or reflection [229]
of light beamed into the tissue at various locations on the tissue surface. DOT projects
near-infrared light from one or more light sources and acquires boundary data of the tissue
(back-scattered light) using a set of detectors yielding, after reconstruction, cross-sectional
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Figure 3.2: The therapeutic optical imaging window, from 600 nm to 900 nm is highly
advantageous for in vivo imaging. Hemoglobin and water, which are major absorbers of
light in biological tissues, exhibit lower absorption within this window. This enables deeper
penetration into biological tissues compared to shorter wavelengths. The reduced scattering
in the NIR enables better image quality and signal-to-noise. Reproduced with permission
from [118]. Figure licensed under CC-BY 4.0 Creative Commons license.

or volumetric images of tissue [120]. The reconstruction process converts information from
the projection (sensor) domain into the image domain to enable interpretation and diagnosis
by domain experts or by artificial intelligence (Fig. 3.1). While an optimized probe design
enables a reduced hardware complexity and better portability, it increases the complexity
of the reconstruction task, especially when the number of sources is limited [282].

A recently developed new functional hand-held diffuse optical breast scanner probe
(DOB-Scan) [227], used for real-word data collection in this thesis, has been applied to
breast cancer detection as a screening tool and aims to improve the assessment parameters
in terms of positive predictive value and accuracy. The probe is currently in clinical tests
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for in vivo breast cancer imaging studies. It combines multi-frequency near-infrared light to
quantify tissue optical properties in 690 to 850 nm spectra and produces a cross-sectional
image of the underneath tissue. The proposed probe uses encapsulated light emitting diodes
instead of laser-coupled fiber-optic, which decreases the complexity, size, and cost of the
probe while providing accurate and reliable optical properties measurement of the tissue.

3.1.2 Current DOT Image Reconstruction and Challenges

DOT image reconstruction is an inherently ill-posed problem given the nonlinear physics of
photon scattering. Although near-infrared light can propagate several centimeters inside the
tissue, photons scatter many times and penetrate along random paths through the tissue
before reaching the detectors, which makes the reconstruction task difficult. When applied
to limited-view data acquisition, allowing reduction of scanner complexity, reconstruction
becomes even more challenging (smaller number of measurements compared to the number
of unknowns) [15].

The DOT image reconstruction problem has been tackled using a wide variety of recon-
struction methods (see [16, 296] for a review). While absolute imaging relies on a single set
of measurements to reconstruct spatially distributed optical coefficients, difference imaging
aims at recovery of the change in the tissue optical properties based on measurements be-
fore and after the change [179]. The reference measurement can be the previous state (e.g.,
the rest stage in brain DOT) or a reference tissue or phantom. A drawback of difference
imaging is that reconstructed images are usually only qualitative [117]. In this manuscript,
focus is given to absolute imaging.

The image reconstruction problem is commonly formulated as recovering the optical
properties distribution x̂∗ (2D image or 3D volume) that minimizes the reconstruction
error between the boundary measurement sample y and the forward projection F(·) from
a possible reconstructed image x̂:

x̂∗ = argmin
x̂

{1
2∥F(x̂) − y∥2

2 + λR(x̂)
}
, (3.1)

where the first term aims to enforce data fidelity, R(·) is a regularization term used to
constrain the inverse problem to yield plausible solutions, and λ is a hyper-parameter
that controls the contribution of R. Common regularization choices include, for instance,
standard Tikhonov regularization R(x) = λ∥x∥2 and total variation (TV) regularization
R(x) = λ∥∇x∥1.

Until recently the focus in DOT reconstruction research has been on model-based al-
gorithms, whose design follows directly from the underlying mathematical problem formu-
lation. A disadvantage of a model based approach is that each instance needs to be opti-
mized independently at reconstruction time, a computationally costly approach that can
prohibit real-time application [120]. Reconstruction methods can roughly be divided into
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linear approaches, based on inverse scattering theory, and nonlinear iterative approaches,
based on model fitting. Linear approaches rely on Born or Rytov approximations, where
the linearization is developed from analytical solutions of the diffuse equation for a homo-
geneous background [120]. This model can be constructed using Green’s functions for the
diffusion equation. The resultant linear system is usually solved by an iterative method
(e.g., conjugate gradients [261]). The Born or Rytov approximation assumes that relative
changes induced by anomalies are sufficiently small. When the values of the optical coeffi-
cient changes become very large, as in the case of large abnormal lesions, this approximation
can lose accuracy in reconstruction [285].

Non-linear methods consider the model in terms of explicit parameters and adjusts these
parameters in order to optimize the objective function in (3.1). Methods usually minimize
an objective function in an iterative manner until convergence where the distribution of
optical properties is searched for by minimizing the difference between the measured and
the modelled data. A common approach in iterative reconstruction is to solve the forward
model and calculate the Jacobian matrix at each iteration (e.g., Newton-like methods [17]).
Alternatively, gradient-based reconstruction techniques use the gradient of the objective
function to update the solution offering a reduction in computational complexity, at the cost
of slower convergence. Regularization terms have to be added generally as the optimization
problems are ill-posed.

Optimization of acquisition time, computational speed along with reconstruction quality
remain an active research area in DOT. Despite recent advances, the reconstruction time
of conventional DOT reconstruction methods is too high to be suitable for real time appli-
cation [12]. In this manuscript, we consider throughput of at least 20 images (frames) per
second as a minimum real-time equivalent for human experts [289], which corresponds with
a refresh rate per image of < 0.05 s. An ideal frame rate of 60 frames per seconds, or 0.016
s per frame, is the minimum sufficient rate to perceive no flickering for normal images [69].

Alternatively, the image reconstruction task can be learned using a deep neural network
with a significant off-line training time, up to weeks during prototyping where each model
takes a few hours of training, that is offset by a fast inference time as reported in Ben
Yedder et al.[31] (chapter 2).

3.1.3 Deep Learning based Methods

Recently, deep learning has emerged as a powerful alternative for biomedical image recon-
struction [31, 205, 169] and shown potential in improving resolution accuracy and speeding
up reconstruction results especially in the presence of noisy and limited view acquisition.

Convolutional neural networks (CNNs) have previously been applied to medical im-
age reconstruction problems in computed tomography and MRI [56, 217, 169]. Many ap-
proaches [133, 39, 185] obtain an initial estimate of the reconstruction using a direct inverse
operator or an iterative approach, then use machine learning to refine the estimate and pro-
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duce the final reconstructed image, as discussed in Chapter 2. Although this is a straight-
forward solution, the number of iterations required to obtain a reasonable initial image
estimate can be hard to define and in general increases the total reconstruction run-time.

A more elegant solution is to reconstruct an image from its equivalent projection data
directly by learning all the parameters of a deep neural network, in an end-to-end fashion
and therefore, approximates the underlying physics of the inverse problem. In [307], a unified
framework for image reconstruction that allows a mapping between sensor and image domain
is proposed. A pre-trained CNN model is used to learn a bidirectional mapping between
sensor and image domains where image reconstruction is formulated in a manifold learning
framework. The trained model is tested on a variety of MRI acquisition strategies.

While deep learning based image reconstruction has been applied to a variety of medical
imaging modalities, they have not yet been used for DOT. In this Chapter, we propose a
deep DOT reconstruction method to learn a mapping between raw acquired measurements
and reconstructed images. The raw collected data can be considered as image features that
approximate nonlinear combinations of image pixel values, which form the desired tissue
optical coefficients. Therefore, the raw measured data is a nonlinear function of the desired
image pixels values and so performing image reconstruction amounts to learning to invert
this nonlinear function. We propose to use deep neural networks to learn, from training
data, this nonlinear inverse mapping.

3.1.4 Contributions

We make the following contributions in this Chapter:
(i) We propose the first end-to-end deep learning model for limited angle near-infrared-

based optical imaging.
(ii) We leverage a physics-based optical diffusion simulation to generate in silico training

datasets and evaluate results on real measurements on physical phantoms collected with the
diffuse optical probe (DOB-Scan) [227, 231].

(iii) We train the reconstruction model using in silico data only and test it on real mea-
surements acquired from a phantom dataset subject to sensor non-idealities and noise. We
show the utility of our synthetic data generation technique in mimicking real measurements
and the generalization ability of our model to unseen phantom datasets.

In section 3.2, we introduce our proposed method for end-to-end reconstruction, the
mathematical formulation behind, and detail physics-based optical diffusion training simu-
lation. Model performance results on physical phantoms are presented in Section 3.4. We
conclude the Chapter by discussing insights and limitations in Section 3.5. The performance
of our proposed system shows that our framework improves reconstruction accuracy when
compared against a baseline analytic reconstruction approach.
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3.2 Methodology

Our main goal is to reconstruct tomographic images from corresponding sensor-domain
sampled data or measurements. To this end we collect training measurements from (a)
synthesized tissue geometries with known optical properties using a physics-based simulation
of the forward projection operation, and (b) data collected using the probe on physical
phantoms. We describe the generation of synthetic training and phantom test datasets as
well as the design of the neural network architecture below.

3.2.1 Physics based Training Data for DOT Reconstruction

Our aim here is to create training data pairs in-silico, which include image of optical tis-
sue property and its corresponding detectors measurement. The deep learning model will
then be trained to generate the image from the measurement. A set of synthetic 2D images
with different lesion shapes, sizes, and locations, representing optical tissue properties, dis-
cretized into finite element nodes (2D triangular meshes), and their corresponding forward
projection measurements were synthesized (Fig. 3.3). We then assign to these geometries
optical transport parameters (absorption and scattering coefficients) similar to real human
breast tissue and lesion distribution values [96].

2D images

Figure 3.3: Workflow of silico training data generation for DOT image reconstruction. 2D
triangular meshes modeling tissue with different lesion sizes and depths were generated us-
ing the Gmsh software [93]. The Toast++ software suite was used to simulate the forward
projection with a 750 nm wavelength modulation and optical properties approximating
breast tissue. Functional handheld probe characteristics were modeled to obtain measure-
ments that mimic real world values. Measurements (y) and ground truth images (x) pairs
were saved and fed to the deep learning model for training. © 2021 IEEE.

The time-resolved optical absorption and scattering tomography software (Toast++) [221]
was used to simulate the frequency-domain forward model and generate projection measure-
ments for each training mesh. Frequency-domain models or intensity-modulated sources use
a frequency ω for modulating the intensity of light. Frequency-domain systems provide in-
formation on the medium in the form of amplitude and phase data that permits the recovery
of absorption and scattering coefficient parameters. The forward model uses the finite ele-
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ment method to solve the diffusion equation that models the light propagation in a diffusive
medium. The diffusion equation is given by [221]:

−∇ · D(r)∇φ(r, ω) +
(
µa(r) + iω

cm(r)

)
φ(r, ω) = 0, r ∈ Ω\∂Ω (3.2)

with boundary condition [221, 115]:

φ(m, ω) + 2ζ(cm)D(m)∂φ(m, ω)
∂ν

= q(m, ω), m ∈ ∂Ω (3.3)

where µa(r) and D(r) denote the absorption and the diffusion coefficients at position r,
respectively; cm(r) represents the speed of light in the medium; q(r, ω) represents the light
source term; ζ is a term incorporating the refractive index mismatch at the tissue-air bound-
ary; q is a source distribution on boundary ∂Ω of domain Ω; ∂ν is the outward boundary
normal; and ϕ(r, ω) is the generated photon density distribution with a modulation fre-
quency ω. Synthesized meshes define the medium and distribution of parameters (absorp-
tion, scattering, refractive index).

Our functional hand-held probe geometry was modeled accurately in Toast++ to obtain
measurements that mimic real values obtained by the DOB probe [227, 229]. The probe
is composed of two symmetrical multi-wavelength light-emitting diode (eLED) sources,
illuminating the tissue symmetrically and delivering near-infrared light to a body surface
at different points, and featuring 128 co-linear equi-spaced detectors (a row) that measure
the back-scattered light from the tissue and emitted from the boundary. Each eLED source
consists of four different near-infrared (NIR) wavelengths: 690 nm, 750 nm, 800 nm, and 850
nm. These encapsulated light-emitting diodes serve as pencil beam sources, emitting light
into the scattering medium. Positioned 0.5 mm apart from each other, the eLEDs function
as multi-wavelength pointed illumination sources within the tissue. Correspondingly, the
output of the forward model simulation captures a 1D raw intensity diffraction (1× 256)
vector ys resulting from the scattering of the illuminating light exiting the object. Both
LED and all detectors are colinear as depicted in Fig. 3.4.

The absorption coefficients of breast tissue vary between 0.0018 and 0.0025 mm−1 for
healthy tissue and between 0.09 and 0.16 mm−1 for cancerous tissue. Similarly, the scattering
coefficients vary between 0.8 and 1 mm−1 for healthy tissue and 1 and between 1.6 mm−1

for cancerous tissue. Given that relative optical parameters changes at healthy tissue are
sufficiently small compared to optical perturbations at abnormalities, background optical
parameters were assumed uniform in each sample (the absorption coefficient of background
is set to the average of breast tissue similar to [245, 106]) while abnormalities’ size, depth,
number, and their respective optical parameters were varied. The size of the reconstructed
image is 6×6 cm with a resolution of 128×128 pixels.
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Figure 3.4: The spatial distribution of the simulated sources and detectors matching the
layout of the physical probe (left). A sample synthetic mesh is also shown (right).

3.2.2 Phantom Test Dataset

To create physical phantom datasets we rely on a tissue-equivalent solution where an in-
tralipid solution is used to mimic background breast tissue due to its similarity in optical
properties to breast fat [228, 87]. Measurements are collected with the DOB-Scan probe.
In order to mimic cancerous lesions, a tube with 4 mm cross-sectional diameter was filled
with a tumor-like liquid phantom (Indian black ink solution) and was placed at different
locations inside the intralipid solution container. The flowchart of synthetic and phantom
data acquisition procedures are shown in Fig. 3.5 (Left side).

3.2.3 Reconstructing Images from DOT Measurements

By passing an input measurement through a set of nonlinear transformations one can re-
construct the equivalent image. The proposed architecture consists of a dense layer followed
by a set of convolution layers which are designed to efficiently combine features from the
first layer with those of deeper layers. The architecture of our proposed model is shown in
Fig. 3.5 (right side).

Initial Image Estimate: A fully connected layer, with a ReLu activation, is used as the
first layer of the network in order to map the measurement vector to a two-dimensional ar-
ray that will serve as an initial image estimate. This layer is first pre-trained then included
in the deeper architecture including convolutional layers. The goal we seek to achieve using
the fully connected layer is to generalize a back projection (BP) operation by learning a
weighted combination of the different receptive sensors based on the signal collected from
scattered light emitted at different locations in the reconstructed tissue. Empirically we
did not observe any improvements in the reconstruction results using more than one fully
connected layer. This may be related to the size of the input measurement which is only 256
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Figure 3.5: In silico training pairs generation using TOAST++ and phantom test pairs
collection using DOT-probe are depicted on the left. The overall architecture of the proposed
model is shown on the right, where the arrow after the first fully connected layer represents
the reshaping procedure before the convolution layers.

dimensional in our dataset. Higher dimensional inputs may benefit from additional layers.

Convolutional Layers: A set of convolutional layers, with 64 channels, are used to refine
the first image and produce the final reconstruction image. The non linear ReLU activation
and zero-padding are employed at each convolution layer. All feature maps produced by all
convolutional layers are set to size 128 × 128. The size of the convolution filters is increased
gradually to cover a larger receptive field at deeper layers and capture local spacial corre-
lations. Details of the architecture are shown in Fig. 3.5.

Integration Layer: The integration layer is a convolutional layer with 7 × 7 kernel size
and a single output channel. It is used to reduce features across the channels from the
penultimate layer of the CNN model into a single channel. The output of this layer is the
reconstructed image.

3.2.4 Mathematical Model Formulation

The fully connected layer emulates an approximate inverse of the forward operator that can
be further refined by subsequent convolution layers. During the training process, the error
between the predicted output and the ground truth distribution of absorption coefficients
is backward propagated from the output layer to the fully connected layer to adjust the
weights and biases. By repeatedly applying this procedure for each sample in the training
set, the learning process can converge. Given randomly initialized weights wl

ij and bias
variables bl

ij at each layer (l), the output oj of the j’th neuron at the fully connected (fc)
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layer is computed using:

ofc
j = g

(
N∑

i=1
wfc

ij yi + vfc
j

)
, (3.4)

where g(·) is the neuron activation function, and y is the measurement vector input to the
network. Hence, the fully connected layer learns a weighted combination of the different
receptive sensors, based on the signal collected (y), and its reshaped output provides a first
image estimate that is subsequently enhanced by subsequent layers. Filters (kernels) pass
over the image estimate and transform it based on the weights in each filter. The final
feature map values at each convolutional (cn) layer are then computed according to the
following formula:

ocn[m, n] = (ocn−1 ∗ h)[m, n]

=
∑

i

∑
k

h[i, k]ocn−1[m − i, n − k], (3.5)

where the input image is denoted by ocn−1[m, n], kernel by h and m and n are indexes of rows
and columns, respectively. We show in the silico reconstruction, Fig. 3.6, that consecutive
convolution layers are very important to recover the accurate size and location of the optical
anomalies.

3.3 Implementation

We trained the model by minimizing the mean squared error between the reconstructed
image and the ground truth synthetic image. We used an L2 norm penalty on the last
convolutional layer output as it facilitates training (i.e. we observed faster convergence
using regularization). The model was implemented in Keras and trained for a total of 2,000
epochs on an Nvidia Titan X GPU using batch gradient descent with momentum. The
learning rate was set to 0.001 and we used a learning decay of 1e−6, momentum was set to
0.9. All training hyper-parameters were optimized via grid search on a validation set. We
sequentially trained the model to first reconstruct an image using the fully connected layer
only, then we fine-tuned the entire architecture after including the different convolution
layers (Fig. 3.5).

Note that the model was only trained on synthetic data and we kept the phantom data
for evaluation only, as depicted in Fig. 3.5. In total, we generated 4,500 synthetic training
images and their corresponding simulated DOT measurements and tested our model in
2000 synthetic DOT measurements then in 32 phantom real probe measurements with
corresponding ground truth images.
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Figure 3.6: Qualitative reconstruction performance of our model compared to conventional
techniques. (a)-(d): Ground truth; analytic approach results; generalized BP with one fully
connected layer only; and proposed model results.

3.4 Experiments and Results

We compared our results with those obtained by the analytic reconstruction approach de-
scribed in [227]. Briefly, the analytic method is based on comparing the collected mea-
surement to the measurement of a tissue-equivalent solution with homogeneous value. The
resulting difference is then used to perform filtered back-projection and to estimate the
spatial location of the lesion.

3.4.1 Qualitative Results

Once trained using the generated synthetic data, our model was tested on the phantom
dataset. In Fig. 3.6, we visually compare our proposed reconstruction method to the ana-
lytic approach results for phantom cases. Evidently, the images reconstructed by our method
are more accurate than those reconstructed by the more conventional analytic approach,
when tested on data with a known ground truth. In Fig. 3.6 we show the reconstructed
image using only the first fully connected layer which is equivalent to the filtered back-
projection operation. Our qualitative results show that reconstructions obtained with one
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Table 3.1: Quantitative results scores on 32 phantom test measurements
Loc. Error

(pixel (in mm) , < is better)
MSE

(< is better)
PSNR

(dB, > is better)
SSIM

(> is better)
Jaccard

(> is better)
Runtime

(ms, < is better)

Analytic approach 77.4 ±32.2 (17 ± 7.1) 0.06 ±0.05 15.08 ±6 0.32 ±0.26 0.5 ±0.19 83.3
Proposed model 33.2 ±23.4 (7.1 ± 5.1) 0.02 ±0.03 20.1 ±4.6 0.46 ±0.28 0.85 ±0.07 7.3

fully connected layer (third column in Fig. 3.6) are on par with reconstructions obtained
with the analytic approach (second column in Fig. 3.6).

3.4.2 Quantitative Results

In order to measure the quality of the results, we consider the mean square error as well
as the pixel-wise distance between the centre of the lesions in the ground truth image
versus the reconstructed image (Loc. Error) where each pixel is 0.22 mm isotropic. The
peak signal to noise ratio (PSNR), the SSIM similarity measure, and the Jaccard index
(intersection over union) are also calculated. The Jaccard index, used for comparing the
similarity and diversity of sample sets, is the ratio of area of overlap between detected and
ground truth lesion to the area of their union. This metric is computed after thresholding
the reconstructed image to obtain a binary mask where foreground pixels correspond to
pixels with highest optical coefficient.

Table 3.1 shows the results for the phantom dataset. This experiment also allows us
to evaluate the quality of the synthetic dataset we generated by testing how well a model
trained only on synthetic data generalizes to unseen physical phantom images. Results re-
ported in Table 3.1 show that the proposed approach is able to generalize well to the phan-
tom dataset and achieves better performance than the baseline analytic approach in terms
of distance (+50%), Jaccard index (+35%), similarity score (+14%) and PSNR (+5db).
The high standard deviation in distance metric is mainly due to samples with deep lesion
(lesion location ≥ 30 mm) since as the lesion depth increases it becomes harder to differen-
tiate the signal from the tumor-free tissue signal. On average, our model achieves an order
of magnitude faster reconstruction than the baseline analytic approach.

3.5 Conclusion

This work represents a step forward for both image reconstruction in DOT and the use of
machine learning in bio-imaging. We present the first model that leverages physics based
forward projection simulators to generate realistic synthetic datasets and we model the
inverse problem with a deep learning model where the architecture is tailored to accu-
rately reconstruct images from DOT measurement. We test the method on real acquired
projection measurements subject to sensor non-idealities and noise. Results show that our
method improves the quality of reconstructed images and shows promising results towards
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real-time image reconstruction. Our next phase in this research is to improve further the
reconstruction accuracy and lesion localization while reducing artifacts.
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Chapter 4

Tackling DL Image Reconstruction
Artifacts in Limited-Angle DOT

In the preceding Chapter, the effectiveness of employing deep learning in real-time recon-
struction of DOT images was shown. In this Chapter, we focus on addressing model artifacts
that were observed in the previous contributions1. Dealing with the inverse problem in a sce-
nario of limited-view data acquisition is challenging, particularly when noise is present. This
difficulty arises from the highly diffusive characteristics of light propagation in biological
tissues and the sparsity of the recovered information.

4.1 Introduction

Most DOT inverse problems consider a circular shape scanner with 16 or more point sources
uniformly distributed along the field of view boundary to maximize the number of measure-
ments thereby improving spatial resolution, especially in strongly scattering media. Most
recently, a multi-layer perceptron network (MLP) was used to solve DOT image reconstruc-
tion problem using high source count [83]. However, increasing the number of sources and
detectors adds complexity to the DOT scanner hardware and increases manufacturing cost
and computational resources.

One common limitation of existing reconstruction methods is that they perform poorly
on data with a very low number of point sources (limited projection data), limited-angle
acquisition (e.g, acquisition from one view), or both [227].

Sun et al. [242, 240] address the multiple scattering problem of microwaves in biological
samples. They study the effect of decreasing the number of sources, to a limited extent (to
a minimum of 20 sources), on deep learning based reconstruction methods for weak and
strong scattering scenarios. While their proposed reconstruction model leverages the rich
data representation collected from 20 up to 40 point sources, it relies on a computationally

1This Chapter is based on our published work [33]. Reproduced with permission from Springer Nature.
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expensive analytic reconstruction step to provide a first estimate of the reconstructed image,
prohibiting real time inference. Furthermore, their deep model is not optimized in an end-
to-end manner.

Limited-angle and limited sources DOT image reconstruction in a strong scattering
medium is a challenging task that has been considered in end-to-end fashion for a functional
hand-held probe in a clinical trial by Ben Yedder et al. [30]. Yet, their results still suffer
from noisy reconstruction and deviation of the reconstruction lesion compared to the ground
truth location.

To address the aforementioned limitations, in this Chapter, we propose a deep learning
DOT reconstruction method based on a novel loss function and transfer learning to solve the
limited-angle and limited sources DOT image reconstruction problem in a strong scattering
medium. By adaptively focusing on important features and filtering irrelevant and noisy
ones using the Fuzzy Jaccard loss, our network is able to reduce false positive reconstructed
pixels and as a result reconstruct more accurate images.

Training machine learning based methods requires a high number of training samples, a
challenging requirement in a medical setting, especially with relatively new imaging devices
like DOT probes. Synthetic data simulators can provide an alternative source of training
data. However, creating a realistic synthetic dataset is a challenging task as it requires careful
modelling of the complex interplay of factors influencing real world acquisition environment.
A potential remedy is to attempt to bridge the gap between real word acquisition and
synthetic data simulation via transfer learning. To the best of our knowledge, this is the
first work to employ a Jaccard based loss and transfer learning to the DOT reconstruction
problem.

4.2 Methodology

Given pairs of measurement vectors y and their corresponding ground truth image x, our
goal is to optimize the parameters θ of a convolutional neural network in an end-to-end
manner to learn the mapping between the measurement vector y and its reconstructed
tomographic image x, which recovers the optical parameters of underlying imaged tissue.
Therefore, we seek the inverse function F−1(·) that solves:

θ∗ = argmin
θ

L
(
F−1(y, θ), x

)
+ λR(F−1(y, θ)) (4.1)

where L is the loss function of the network that, broadly, penalizes the dissimilarity between
the estimated reconstruction and the ground truth. We use an L2 regularization term (R).

The proposed architecture, which extends Yedder et al.’s [30] FCN architecture, Chap-
ter 3, with a transfer learning and novel loss components, is a decoder-like network that
consists of a fully connected layer followed by a set of residual layers. The fully connected
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Figure 4.1: Overall architecture of the proposed model: Transfer learning (tackling domain
shift) and reconstruction network integration. (lower left) The probe (in black) is positioned
to image a phantom (white) with an embedded synthetic lesion (red arrow). The transfer
learning network (multilayer perceptron) maps phantom measurements yp to the domain
of in silico training measurements ys. The mapped measurements are passed through the
reconstruction network to produce the reconstructed image x̂∗ (rightmost image).
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layer maps the measurement vector to a two-dimensional array and provides a coarse im-
age estimate, while the subsequent residual blocks refine the image estimate by passing it
through a set of nonlinear transformations to produce the final reconstruction image. The
architecture of our proposed model is shown in Fig. 4.1, where each residual block uses
convolutions with batch normalization and ReLU.

4.2.1 Similarity-wise Loss Function

To address DOT image reconstruction from a limited information representation (one view
with few sources), we propose a novel loss function, L, that dynamically combines two loss
terms:

L = LMSE + β(epoch)LFJ (4.2)

where LMSE is the mean squared error (MSE) loss, which focuses on pixel-wise similarity.
LFJ is similarity coefficient based fuzzy Jaccard term designed to promote lesion location
and appearance similarity while penalizing artifacts. β is a hyper-parameter balancing the
two terms and varies with the training epochs to capture the dynamics of this interaction.
In particular, β(epoch+∆) = β0 +γβ(epoch) with γ > 0, which allows the network to learn
to first reconstruct, via LMSE, an image estimate that is relatively close to the ground truth
image pixel wise distribution and then, via LFJ, gradually refine that candidate image. In
DOT image reconstruction of a breast tissue with zero or more isolated lesions, the majority
of the pixels are background, LFJ is chosen to address this imbalance. Further, LFJ does not
require binary values and accounts for the similarity between the foreground as well as the
background pixel values. Finally, a log transform of LFJ ensures a steep convex gradient,

LFJ = −log
(∑n

i=1 min(ai, a′
i)∑n

i=1 max(ai, a′
i)

+ ϵ

)
(4.3)

where the min(·, ·) and max(·, ·) functions compute a probabilistic intersection and union,
respectively while setting ϵ= 10−5 avoids log (0) domain errors.

4.2.2 Cross Sensors Learning Transfer

In medical imaging settings, transfer learning [80] can be used to bridge the gap between
simulated and clinical data by transferring knowledge learned from simulated data to im-
prove the performance of models on clinical data [287]. Domain adaptation deals with the
situation where the distribution of data in the source domain is different from the distri-
bution of data in the target domain. The goal is to adapt the model’s knowledge from the
source domain to perform well in the target domain despite the distribution shift. This is
particularly important in medical imaging and relatively new imaging devices such as DOB
probes, where obtaining large quantities of annotated clinical data can be challenging and
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expensive. As training on real world data is limited by availability of samples, we resort to
generating artificial training data via a simulator.

A transfer learning network, implemented as a multilayer perceptron, tackles the domain
shift between the real data measurement yp, as collected from the probe and used during
inference, and the in silico data measurement ys used during training time (Fig. 4.1-upper
left). By minimizing a loss LT L, the transfer learning network learns to translate the real
world data distribution onto the in silico data distribution while avoiding overfitting on the
in silico model. Finally, by retraining or fine-tuning this transfer learning network only, our
proposed approach can be generalized to new DOT sensors and or source configurations.

Given the i-th phantom xp
i we simulate its xs

i tissue equivalent and derive the correspond-
ing sensor measurements ys

i , while we collect yp
i using a physical probe. By minimizing LT L

over Np phantom experiments, the transfer learning module learns the mapping ϕ(yp
i ) ≈ ys

i

to ensure it is in the same domain as ys,

θ∗ = argmin
θ

LTL(θ) where LTL(θ) =
Np∑
i=1

||ϕ(yp
i ; θ) − ys

i || (4.4)

where a final test reconstructed image is computed as, x̂i
∗ = F−1(ϕ(yp

i )).

4.3 Experiments and Results

We compare our proposed approach to the state of the art FCN architecture for limited
angle data [30] and the aforementioned MLP approach [83], as well as the analytic recon-
struction approach described by Shokoufi et al. [227]. In addition, we evaluate the individual
contributions of the terms of our loss function and the transfer learning.

4.3.1 Dataset

To train our network F−1(·) we use in silico training data pairs (xs, ys) as designed in
previous Chapter (Chapter 3, Section 3.2.1). It includes images xs of optical tissue prop-
erties, and their corresponding forward projection measurements ys Simulated lesions have
varying sizes, locations, and optical coefficients. Similarly, the phantom test-set based on a
tissue-equivalent solution (Chapter 3, Section 3.2.2) was used. All phantom measurements
yp are collected with the DOB-probe.

4.3.2 Implementation

The model was implemented in the Keras framework and trained for a total of 1,000 epochs
on an Nvidia Titan X GPU using the Adam optimizer. By optimizing the model’s per-
formance on the validation set, we set all hyper-parameters as follows: Batch size to 64;
learning rate to 0.001; AMS Grad optimizer set to true; and (∆ = 10, β0 = 0.2, γ = 0.002),
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Figure 4.2: Qualitative reconstruction performance of our model compared to state of the
art techniques on phantom samples with known lesion ground truth locations. The parabolic
shape of the reconstruction produced by the analytical approach is due to the algorithm
used.

which describe the update equation of the hyper-parameter β in (5.2); We use a 80/10/10
training/validation/test split of the in silico data.

4.3.3 Qualitative Results

Our model is trained on the in silico data and tested on the phantom dataset. In Fig. 4.2, we
visually compare our proposed reconstruction method to the competing methods’ results on
sample phantom cases. As mentioned earlier, the transfer learning module, tackling domain
shift, maps the real world distribution onto the learned in silico distribution. Without such
mapping, unsurprisingly, we notice artifacts in the reconstructed image; note the extensive
scattering of false positives with different scales and locations (Fig. 4.2 - FCN (MSE)).
Adopting transfer learning clearly reduces these artifacts (Fig. 4.2 - FCN (MSE+TL)).
Further, observe how incorporating both the new loss term LF J and transfer learning module
significantly reduces the artifacts and improves lesion localization, which otherwise could
compromise diagnosis (Fig. 4.2 - FCN (MSE+TL+FJ)).

While MLP showed good performance in the complete information case, namely a cir-
cular shape scanner with 16+ uniformly distributed point sources [83], it underperforms on
the limited angle experiments (Fig. 4.2 - MLP). We hypothesize that this difference in per-
formance is due to the convolution operators’ ability to extract comprehensive contextual
information and synthesize more complex robust features.
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Table 4.1: Quantitative results on 32 phantom experiments.
Loc. Error

(pixel (in mm), < is better)
PSNR

(dB, > is better)
SSIM

(> is better)
Fuzzy Jaccard

(> is better)
Runtime

(ms, < is better)

Analytic approach [227] 77.4 ± 32.2 (17 ± 7.1) 15.0 ± 6.0 0.32 ± 0.26 0.17 ± 0.15 83.3
MLP [83] 42.0 ± 17.3 (9.3 ± 3.8) 12.5 ± 1.5 0.05 ± 0.03 0.07 ± 0.05 1.2
FCN (MSE) [30] 33.2 ± 23.4 (7.1 ± 5.1) 20.1 ± 4.6 0.46 ± 0.28 0.32 ± 0.06 7.3
FCN (MSE+TL) 16.6 ± 6.60 (3.6 ± 1.4) 20.6 ± 0.4 0.61 ± 0.17 0.45 ± 0.08 11.5
Proposed 14.8 ± 7.40 (3.2 ± 1.6) 21.7 ± 0.9 0.73 ± 0.03 0.64 ± 0.10 16.9

4.3.4 Quantitative Results

We measure the reconstruction quality via: (i) Lesion localization error, i.e. the distance
between the centre of the lesions in the ground truth image versus the reconstructed image;
(ii) peak signal to noise ratio (PSNR); (iii) structural similarity index (SSIM); and (iv) the
Fuzzy Jaccard [64]. All reconstructed images were first normalized prior to calculating the
performance metrics.

Table 4.1 presents the results on the phantom dataset. Using the transfer learning ϕ(·)
module, we observe ∼10% improvement in Fuzzy Jaccard and ∼16% in SSIM compared to
state of the art FCN with MSE only. Adding the new LF J loss term boosts the improvement
in these two metrics further to ∼34% and ∼33%, respectively. The lesion localization error
is also considerably reduced when using transfer learning and LF J .

4.4 Conclusion

We proposed novel extensions to the deep learning based diffuse optical tomography image
reconstruction method presented in previous Chapter. We have shown empirically that our
model, trained with the novel hybrid loss function, attains superior quantitative results on
multiple evaluation metrics and, qualitatively, improves the reconstructed images, showing
fewer artifacts that could compromise clinical diagnosis. The transfer learning module, tack-
ling domain shift, renders an in silico trained network applicable to real world data. More
importantly our approach is decoupled from a change in real world measurements and can
be generalized to new source configurations. Our next phase in this research is to improve
further the lesion localization and validate our approach on real patient data to assess its
diagnostic accuracy.
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Chapter 5

Multitask Deep Learning for Joint
Reconstruction and Localization

In the preceding Chapters, we presented techniques focused on the reconstruction of optical
properties in breast tissue. Nonetheless, incorporating localization, which aims to identify
specific regions within the images that exhibit characteristics suggestive of breast lesions,
can enhance the accuracy of the reconstruction. To achieve this, we adopt a multitask
learning approach, simultaneously addressing DOT-reconstruction and lesion localization
in breast cancer tissue1.

5.1 Introduction

5.1.1 DL-based DOT Reconstruction Methods

Deep neural networks-based techniques have shown promising potential in solving the in-
verse scattering problem [242, 137, 84, 285]. Preliminary work [242, 137, 249], did not
consider end-to-end models but rather two-step approaches where a first image estimate,
approximated using conventional methods, is further enhanced using a deep learning model.
Recent end-to-end models typically considered a full-view acquisition setup: a circular shape
scanner with more than 16 point sources uniformly distributed along the boundary to max-
imize the number of measurements. For instance, Sun et al.[242] addressed the multiple
scattering problem of microwaves in biological samples using a two-step reconstruction
method, where an analytical method providing the first image estimate is followed by a
convolutional neural network (CNN) for image reconstruction. Feng et al.[84] proposed a
multilayer perceptron (MLP) feed-forward artificial neural network for a full-view 2D-DOT
image reconstruction. However, performance degrades significantly for limited-angle acqui-
sition where the number of sources is smaller and their placement is co-linear. Recently,

1The contents of this Chapter is largely based on our published work © 2021 IEEE Reprinted, with
permission, from [282].
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based on the Lippman-Schwinger equation and deep convolutional framelets for inverse
problems [281], Yoo et al.[285] designed a deep learning approach for 3D inverse scattering
problems. The proposed model is based on an autoencoder CNN for a 3D-DOT inverse
problem to learn the nonlinear physics of the inverse scattering problem.

Preliminary versions of our work in Chapter 3 and 4 [30, 33] tackled reconstruction
of biological tissue parameters from limited-view data acquisition in a strong scattering
medium using a decoder-like fully convolutional neural network architectures (FCN and
FCN-FJ). In Chapter 4 [33], a weighted combination of mean squared error (MSE) and
Fuzzy Jaccard were used as loss function. Models were tested on phantom data only. While
advancements have been made, reconstructions are still plagued by artifacts (e.g., false
positive reconstructed pixels) and deviations from the ground truth location of the lesion,
limiting their practical clinical utility. Furthermore, accurate localization is not necessarily
guaranteed by a ‘good’ reconstruction, especially given the often small ratio of lesion versus
background. For accurate diagnosis (e.g., via lesion biopsy) and treatment planning, the
location and size of the lesion are paramount.

5.1.2 Multitask Learning

Jointly solving for different tasks using a unified model is frequently considered in the
computer vision field and has been shown to improve results in different applications, e.g.,
taskonomy [291] and skin-multitask [252]. Zamir et al.[291] showed that models optimized to
jointly predict several related tasks perform better than models trained on individual tasks
separately. Similarly, Kawahara et al.[139] proposed a single model capable of performing
multiple tasks on multimodal skin lesion classification while Abhishek et al.[2] reported a
performance improvement in skin cancer lesion management prediction when incorporating
multitask learning. Sbalzarini [216] asserted that solving ill-posed problems in sequence can
be more efficient and easier than in isolation as the overall solution space contracts since
jointly solved problems constrained each other’s input/output space. Arguably, a unified
framework allows feature space sharing and joint parameters tuning for both tasks and where
the two problems regularize each other when tackled jointly. In our application as well,
we illustrate that a multitask approach leads to a better reconstruction and localization,
enabling more accurate diagnosis.

5.1.3 Contributions

We make the following contributions in this Chapter:
(i) To the best of our knowledge, we are the first to leverage reconstruction guided

localization multitask learning for DOT reconstruction. We leverage a spatial attention
mechanism in combination with a distance transform based loss function. Our network,
Multitask-Net, exploits deep layers of spatial-wise attention [122, 211] to attend to im-
portant features by filtering irrelevant and noisy ones. Adaptively re-weighting features,
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according to their inter-dependencies in feature space, improves the representation ability
of our model. Crucially, the distance transform based loss improves lesion reconstruction
and localization.

(ii) We leverage a physics-based optical diffusion simulation to generate in silico training
datasets and evaluate results on real measurements on physical phantoms and clinical data
collected with the diffuse optical spectroscopy probe for breast tissue (DOB-Scan) [227, 231].
We evaluate the generalization ability of our model to unseen data subject to sensor non-
idealities and noise.

(iii) To the best of our knowledge, this is the first work that tests deep learning based
DOT image reconstruction on clinical data of real patients.

(iv) Extensive experiments on network characteristics trade-offs’ and scanning probe
characteristics are investigated. The performance evaluation of our proposed model shows
that our framework improves reconstruction and localization accuracy when compared
against competing methods.

In section 5.2, we introduce our proposed method for multitask reconstruction and
localization learning followed by domain adaptation learning. Physics-based optical diffusion
simulation test dataset, and competing methods are detailed in Section 5.3. Trade-offs of
network characteristics and evaluation on various datasets are described in Section 5.4. In
silico performance results are presented in Section 5.4.1, results on physical phantoms in
Section 5.4.2, and results on real-world data in Section 5.4.3. We conclude the Chapter by
discussing insights and limitations on lesion attention-directed reconstruction in DOT in
Section 5.5.

5.2 Methodology

5.2.1 Reconstructing Images from DOT Measurements

We extend our previously proposed decoder-like architecture FCN [30] and FCN-FJ [33]
consisting of a fully connected layer followed by a set of convolution layers, with a spatial-
wise attention mechanism and a new loss component (Fig. 5.1-C). The fully connected
layer maps the measurement vector y onto a two-dimensional array by learning a weighted
combination of the different receptive sensors based on the signal collected from the back-
scattered light collected at different locations in the reconstructed tissue, and therefore
provides an initial image estimate. Empirically, we did not witness any improvements in
the reconstruction results using more than one fully connected layer. This may be due to
the size of the input measurement vector, which is only 256×1 dimensional in our dataset.
Higher-dimensional inputs may benefit from additional layers. The output of this layer is
reshaped to an 128 × 128 array and delivered to the subsequent layers for optimization.
Then, a set of residual convolutional blocks (6 blocks), with 32 channels and increasing
filters size (3, 5, 7), refines the first image via nonlinear transformations and produces the
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Figure 5.1: The overall architecture of the deep residual attention model. (A) Transfer
learning network, tackling domain shift similar to Chapter 4, is used for data distribution
adaptation between in silico measurements ys and real data collected from the probe y. (B)
The generation of in-silico training data pairs (ground truth images xs and their correspond-
ing forward projection measurements ys) approximating our probe’s specification [229]. The
red arrow represents the simulated lesion. (C) Architecture of the proposed deep residual
attention model. The squeeze and excitation block (inset) squeezes a given feature map U
along the channels and excites spatially. The output of the sigmoid layer σ(.) represents the
relative importance of the spatial information (i, j) of the feature map U . All feature maps
produced by all convolutional layers (conv) are set to size 128 × 128 using (3×3) followed
by (5×5) kernels. The similarity-wise loss Lloc, leveraged to enforce localization accuracy,
computes the mean absolute error between the distance transform of the reconstructed and
ground truth images.
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final reconstruction image x. Yoo et al.[285] adopted a similar architecture and theoretically
justified the reason behind it based on the analysis of deep convolutional framelets [281].
While the mean squared error was used in isolation in our preliminary FCN work [30], a
Fuzzy Jaccard loss component LFJ was added later FCN-FJ [33] to address the imbalance
between the minority pixels corresponding to one or more lesions versus a majority of
‘background’ pixels corresponding to healthy tissue.

5.2.2 Spatial-wise Attention Network

The framework of our proposed residual attention network (RAN) is shown in Fig. 5.1-C.
The first and last convolutional layers are a shallow feature extractor and a reconstruction
layer, respectively. The middle layers are residual attention blocks used to extract hierarchi-
cal attention-aware features [255, 122]. Since the contributions of features to the reconstruc-
tion task vary from different feature maps, we leverage a spatial attention mechanism to
prune the irrelevant features and enhance the informative ones by adaptively re-weighting
features according to their inter-dependencies in feature space. The spatial attention com-
presses the feature map U along the channels and excites it spatially to guide the network
to pay more attention to the regions of interest; lesion localization in the case of DOT
reconstruction. The attention mechanism has been shown effective for natural language
processing [280, 251] and computer vision problems tasks [122, 211] as it selectively disre-
gards the noise (less important information) and focuses on what is relevant. Empirically,
we did not observe any improvements in the reconstruction results using channel-wise atten-
tion [122]. Each residual block uses sequential modules of the form: two convolutions – batch
normalization – ReLU and zero-padding followed by a squeeze and excite modules [211].

The spatial squeeze operation is achieved through a convolution generating a projection
tensor q = W × U with weight W ∈ R1×1×C where each element of the tensor q ∈ RH×W

represents the linearly combined representation for all C channels. The projection is then
passed through a sigmoid layer σ to rescale activations to [0, 1], which are thereafter used
to re-calibrate U spatially:

FSA(U) =
[
σ (q1,1) u1,1, · · · , σ (qi,j) uH,W

]
, (5.1)

where σ(qi,j) represents the relative importance of a spatial information (i, j) of a given
feature map. As a result, the focus is guided to the lesion location at the cost of loss of
attention to healthy tissue, a sacrifice justified given their relative lower importance to the
clinician when diagnosis is the end task.

5.2.3 Localization-wise Loss Function

To guide the learning of the RAN network, we propose a novel loss function that combines
two loss terms: a mean square error that guides the loss to reconstruct the pixel-wise repre-
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sentation of the image and a location based term to strengthen lesion localization accuracy:

L = LMSE + βLloc , (5.2)

where LMSE is the mean square error loss function commonly used in image reconstruction
tasks, Lloc is the location-based loss term, and β is a hyper-parameter balancing the con-
tribution of the Lloc term. We first allow the network to learn to reconstruct, via LMSE,
an image estimate that is relatively close to the ground truth image pixel-wise distribution
and then, via Lloc, refine that candidate image using β(epoch + ∆) = β0 + γβ(epoch) with
γ > 0.

Reconstruction Loss

LMSE measures the pixel-wise intensity difference between ground truth and reconstructed
images and allows the network to learn an image estimate that is relatively close to the
ground truth image pixel distribution. However, LMSE evaluates pixels in isolation, ignoring
the overall image structure. Furthermore, LMSE can be biased by matching the background
rather than the target of interest, a concern exacerbated in DOT image reconstruction of
breast tissue with zero or more small isolated lesions, where the majority of the pixels are
background (healthy tissue).

Localization Loss

The location-based loss term Lloc is introduced to emphasize more accurate lesion localiza-
tion. Lloc is based on the Euclidean distance transform that maps an image to a similar
grayscale image, except that the grayscale intensities of points inside the background region
are changed to show the distance to the closest foreground boundary from each point. The
distance transform is sensitive to small changes in size and position of the foreground object
(e.g., offsetting an object by a single pixel can generally change all pixel values of the distance
transform image). We leverage this sensitivity to penalize deviation in lesion localization in
the reconstruction. Lloc calculates the L1 distance between the distance transform of the
ground truth and the reconstructed image pairs ( Eq. (5.3), Fig. 5.1-C) and goes to zero
when the reconstructed image overlaps with the ground truth. The location-based distance
transform loss is given by:

Lloc(θ) = ||DT (F−1(y, θ), x) − DT (x)||, (5.3)

where

DT =

0 if aij ∈ S

D(aij , S) if aij ∈ RS ,
(5.4)
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and D(aij , S) refers to the Euclidean distance between the image pixel location aij and
lesion boundaries of a shape S. Lesion boundaries are computed during the training by
simply thresholding the training images based on the mean and standard deviation (µ + σ)
of each image.

5.2.4 Domain Learning Module

Training a deep learning based model can require a large dataset to converge to optimal
performance. However, this is a challenging requirement with relatively new imaging devices
such as DOB probes. Physics-based simulation data can provide an alternative source of
training samples. Similar to Ben Yedder et al.[33] and Zhou et al. [306], where sensor data
distribution adaptation is used to take advantage of cross-domain learning, we leverage
transfer learning (Fig. 5.1-A) to tackle domain shift and bridge the gap between real word
acquisition and in silico simulated data as proposed in Chapter 4.

5.3 Datasets

To train our tomographic image reconstruction network, we collect training samples from
synthesized tissue geometries with known optical properties using a physics-based simu-
lation. We use our recently developed functional hand-held diffuse optical breast scanner
(DOB-probe) [227] to collect real data of physical phantoms and from patients for testing
our method. No phantom or patient data is used during training and validation.

5.3.1 In silico Training Data

In silico training data pairs, which include images of optical tissue properties and their
corresponding detector measurements, as designed in Chapter 3 (Section 3.2.1) were used
to train our reconstruction network (Fig. 5.1-B).

A total of 4000 samples of (2D mesh, 256-D vector) data pairs are used where abnor-
malities’ size, depth, number, and their respective optical parameters were varied. Since the
absorption coefficients in the lesion are larger than the background, the absorption features
due to the lesion emerge in outgoing light at the boundary. Therefore, similar to [28], we
focused our in silico dataset on examples that have been shown to be hard to reconstruct
and more difficult in treatment.

The in silico data is designed to be consistent with existing prior art [37, 285, 84], where
we vary diameters of two-dimensional circular heterogeneous masses representing lesions.
We vary the radius from 3-15 mm and tune optical coefficients of background to match that
of biological non-lesion tissue. We randomize the number of lesions (0-3), as well as their
size, depth, and location to ensure a sufficiently rich dataset matching real world conditions.
While simulated data can in principle be infinite in size, we found the current size of our in
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silico dataset to be sufficient for our purposes, in that we observed a decreasing return in
performance with respect to increasing training time from increases in data set size.

A Gaussian noise layer is used before the dense layer to add independent zero-centered
Gaussian noise to each measurement yi. This noise model simulates the highly varying
noise to each individual detector as caused by interference of refracting light as well as
sensor noise. We choose σ = 10% of maximum signal value consistent with previous work
[285, 84, 242]. For completeness, we note that in addition to this in silico noise, the probe
accounts for ambient noise, recorded by capturing a frame without active emitters, which is
then subtracted from real data measurement (phantom and clinical) before reconstruction.

5.3.2 Phantom and Clinical Test Data

Two test datasets were used in our experiments: An in silico phantom dataset to validate
our method, and a clinical dataset to ensure generalizability to a clinical setting.

Phantom Data

To analyze the performance of our approach in controlled real experiments setting, breast-
mimetic phantoms with known inhomogeneity locations, as described in Chapter 3 (Section
3.2.2), are used (Fig. 5.1-A). The DOB-probe (Fig. 5.1-B) collects phantom measurements
yp. By varying the location of this simulated lesion, we can test the accuracy of the recon-
struction method in a number of different scenarios.

Clinical Data

The data is collected from two participants diagnosed with breast cancer, following ethics
and institutional review board approval protocol, and subsequently de-identified to protect
patient privacy. For each patient, 2D images were scanned from two locations, the first is a
sweep over the cancerous lesion location and the second is a sweep over the same region on
the opposite healthy breast, as a baseline. Figure 5.5-B illustrates the scan procedure. On
average, five measurements were taken on each sweep. The precise location of the cancerous
lesion was determined via mammography, ultrasound, showing calcification over the area,
and biopsy.

5.3.3 Implementation

The model was implemented in the Keras [60] framework and trained for a total of 500
epochs, on an Nvidia Titan X GPU, with early stopping if the validation loss has not
improved in the last 10 epochs. Adam optimizer with default parameters is used [145]. The
optimal hyper-parameters such as the number of the filter channels, non-linearity, weights
initialization, regularization term, and the batch size were found by trial and error to be
optimal for our validation dataset during prototyping.

69



By optimizing the model’s performance on the validation set, we set all hyper-parameters
as follows: batch size to 64; learning rate to 10−4; Adam optimizer set to true; and (∆ = 10,
β0 = 0.2, γ = 0.005), which describe the update equation of the hyper-parameter β in
(5.2); We use a 80/10/10 training/validation/test split of the in silico training data. The
model was trained for the first 100 epochs using LMSE before introducing Lloc to avoid noisy
reconstruction. A L2 weights’ regularization of 10−4 was applied to the last residual layer of
the network to avoid overfitting to training data. Transfer learning was applied at evaluation
time in the phantom and real data while being trained using phantom measurements only.
A separate phantom dataset was used to train the transfer learning network.

5.3.4 Competing Methods

We contrast our method results to eight state-of-the-art methods; four of which are con-
ventional methods whereas the others are deep learning based methods. We compare to
Least squares-based approach (LS) [70], Levenberg-Marquardt (LM) [221] and nonlinear
conjugate gradient (NCG) optimatization based methods [18], and analytical method [229].
The deep learning based methods are: MLP [84], FC-CNN [285], and our preliminary works
FCN [30], and FCN-FJ [33]. Inverse solvers are constructed by making use of first deriva-
tives such as NCG-based or second derivatives such as LM-based approaches. Employed
algorithms are implemented in the state of the art public software packages of NIRFAST
for LS and TOAST++ software for LM and NCG methods.

LS [70] and LM [221] are Jacobian-based approaches. The LM based method employs
the modified Levenberg Marquardt (LM) [222], a trust region approach, to minimize the
objective function over the search space of model parameters. At each iterative step the
Jacobian matrix is recalculated and repeatedly inverted. Optical parameter estimates are
then updated. The algorithm converges when the reconstructed optical parameter at the
current iteration has not improved over the last two iterations. A first order Tikhonov
penalty term is used to regularize reconstruction algorithms. The regularization parameter,
found by parameter sensitivity study, is set to 0.01.

NCG is a gradient based method [18]. The objective function describes the difference be-
tween the calculated forward measurement and measured data. The inverse solver iteratively
computes updates to an initial distribution of the absorption and scattering parameters via
minimization of the gradient of the objective function. Total variation (TV) is used to
regularise the solution and the object threshold parameter β, found by parameter sensitiv-
ity study, is set to 0.1. The finite element discretisation method is used to discretise the
computational domain and break down the calculation domain onto the local elements in-
dividually. In this Chapter, object geometry is represented by a polygon over which a series
of disjoint triangles are generated using the GMesh software suite [93]. We used Isotropic
TV regularization [161, 75], as implemented in the Toast++ software suite [221].
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The analytical method in [229] is a difference approach that relies on a relative change
between optical perturbations at abnormalities and healthy tissue. A homogenous data is
collected using a phantom and used as a reference to measure any inhomogeneities in tis-
sue. The difference in absorption between the reference (normal) and abnormal tissues can
provide the imaging contrast for tissue diagnostics. Hypothetical curved paths, as explained
in [229], are used to recover the absorption coefficient from each illuminated source. The
relative change difference is back scattered, using a closed form solution for the diffusion
equation, to recover the optical coefficients. Hence, the absorption coefficient at each co-
ordinate (x, y) is calculated as a superposition of back scattered values along the paths
of illuminated light from each source. The computed absorption coefficients are then used
to recreate two-dimensional cross-sectional images for each wavelength. For the detailed
mathematical model description, we refer the reader to [229, 231].

The MLP method [84] is a multilayer perceptron network with two fully connected layers.
The FC-CNN [285] uses a fully connected layer followed by a CNN with an encoder-decoder
structure with three convolutional layers. The hyperbolic tangent function (tanh) is used as
an activation function for the fully connected layer and two first convolutional layers, and
rectified linear unit (ReLU) for the last convolutional layer [285]. The FC-CNN implements
a similar architecture to our baseline approach FCN [30] where the difference lies in the
number of convolution layers, filter, and kernel size. Both architectures were re-implemented
as specified in the introducing papers and trained using mean square error between input
and output as the loss function. Our preliminary works FCN [19], and FCN-FJ [20] were
described in Chapters 3 and 4.

5.3.5 Conventional Algorithms Hyper-parameter Selection and Settings

To validate the conventional algorithms in a quantitative manner and select the best re-
construction parameters, we conducted a study using numerical phantoms and reported
results in Table 5.1. Reference mesh coarseness was set to 1.5 mm iin all experiments as we
noticed that decreasing it only resulted in longer reconstruction time with negligible to no
improvement. The maximum number of iterations was set to 100 epochs for NCG and 30 for
LM. Algorithms are optimized over different values of the regularization parameter (λ), TV
object threshold parameter (β), and the control parameter (τ) (LM algorithm only). The
following optimized parameter values were used for the remainder of the test: λ = 1e − 6,
β = 0.1, and τ = 0.01.

5.4 Results

In order to measure the quality of the results, we consider: (i) Lesion localization error,
i.e. the distance between the centre of the lesions in the ground truth image versus the
reconstructed image where each pixel is 0.22 mm isotropic.; (ii) peak signal-to-noise ra-
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Table 5.1: Competing algorithm are evaluated under different regularization techniques and
hyper-parameters on 32 images from the numerical phantoms

Reg Parameters Loc. Error
(pixel, < is better)

PSNR
(dB, > is better)

SSIM
(> is better)

Fuzzy Jaccard
(> is better)

LM

T
V

β = 1e − 2, λ = 1e − 6 31.6 ± 14.5 15.8 ± 4.5 0.20 ± 0.02 0.12 ± 0.05
β = 1e − 1, λ = 1e − 6 31.0 ± 14.3 17.8 ± 5.6 0.39 ± 0.05 0.17 ± 0.03
β = 1e − 2, λ = 1e − 4 37.3 ± 23.3 19.3 ± 11.3 0.19 ± 0.01 0.09 ± 0.01

L1

τ = 1e − 4, λ = 1e − 6 30.9 ± 17.4 12.6 ± 5.8 0.32 ± 0.12 0.14 ± 0.07
τ = 1e − 2, λ = 1e − 6 25.1 ± 12.7 16.6 ± 8.6 0.38 ± 0.09 0.16 ± 0.05
τ = 1e − 2, λ = 1e − 4 40.9 ± 20.3 10.6 ± 9.7 0.20 ± 0.00 0.80 ± 0.01
τ = 1e − 2, λ = 1e − 2 28.2 ± 21.9 10.6 ± 7.3 0.39 ± 0.20 0.18 ± 0.14

N
C

G

T
V

β = 1e − 2, λ = 1e − 6 35.7 ± 19.9 13.5 ± 8.5 0.13 ± 0.02 0.08 ± 0.02
β = 1e − 2, λ = 1e − 4 37.5 ± 21.4 12.0 ± 8.6 0.14 ± 0.02 0.08 ± 0.02
β = 1e − 1, λ = 1e − 6 32.6 ± 16.5 16.5 ± 9.2 0.33 ± 0.01 0.22 ± 0.13
β = 1e − 0, λ = 1e − 6 37.4 ± 21.5 12.2 ± 8.7 0.14 ± 0.01 0.10 ± 0.02
β = 1e − 1, λ = 1e − 4 35.8 ± 19.9 14.2 ± 8.4 0.14 ± 0.01 0.13 ± 0.10

L1

λ = 1e − 3 40.5 ± 20.8 8.39 ± 8.4 0.15 ± 0.01 0.09 ± 0.03
λ = 1e − 4 41.8 ± 22.7 12.7 ± 6.0 0.15 ± 0.01 0.09 ± 0.03
λ = 1e − 6 34.1 ± 19.3 13.6 ± 7.4 0.13 ± 0.01 0.12 ± 0.08

tio (PSNR, 10 log10
MAXI

MSE , where MAXI is the maximum intensity value of all pixels); (iii)
structural similarity index (SSIM) [262]; and (iv) the Fuzzy Jaccard [140].

5.4.1 Results on Synthetic Data

Trained on the in silico data and tested on a separate test set of 80 images, we visually
evaluate the reconstruction of our Multitask-Net method and compare results with those of
LS [70], NCG [18], MLP [84], and FC-CNN methods [285]. In Fig. 5.2, we show results on
some in silico samples with different lesion sizes and depths. Interestingly, while both LS and
NCG methods are able to detect lesion presence, LS outperforms in terms of lesion depths
and size reconstruction. Images reconstructed by the MLP method provide a quite noisy
reconstruction and a rough approximation of the lesion location. Further, filtering via CNN
enabled better results by FC-CNN. Overall, our model provides more accurate results as
it is able to differentiate between different lesion sizes and recover correctly lesion location
and dimension and absorption coefficients despite the limited angle condition. The y-axis
scales highlight our model’s superiority in reconstructing the optical coefficient values. The
difference in performance can be explained by the ability of the convolution operators to
extract more comprehensive contextual information and synthesize more complex features.

The last two columns in Fig. 5.2 (e-f) show reconstruction performance in a healthy
tissue case as well as a deep lesion case (∼5 cm in depth). Note the model’s ability to
capture and reconstruct a tumor-free signal. We illustrate the limits of our contribution
where deep lesions cannot be distinguished from the background. This is expected given
the rapidly reducing strength of reflected signals due to photons scattering many times in
random paths before being absorbed by the tissue. A recent study [148] on self-diagnosis
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Figure 5.2: Qualitative reconstruction performance of our Multitask-Net model compared
to LS, NCG, MLP, and FC-CNN models in silico samples with various ground truth lesions
sizes, locations, and absorption coefficients (a-f). Different y-axis scales were needed to
highlight the models’ performance in reconstructing the optical coefficient values. Evidently,
the images reconstructed by our method are more accurate than those reconstructed by
the other approaches. The MLP approach presents a rough reconstruction that is further
improved by FC-CNN. The NCG method reproduces lesion location, while lesion depth is
less accurate. The LS method provides the best overall results.
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Figure 5.3: Qualitative reconstruction performance of our model compared to state-of-the-
art (Analytical, LS, LM, NCG, MLP, and FC-CNN) techniques on phantom samples with
known lesion ground truth location. The x-axis and y-axis show lesion location and depth in
mm, respectively. Color bar shows the reconstructed absorption coefficient values. Different
y-axis scales are unfortunately needed and indicative of the problematic performance of
some models in reconstructing the optical coefficient values. The reconstructed image using
MLP is equivalent to a back projection operation and gives a rough approximation of lesion
localization, while precision of the reconstructed absorption coefficients can be low. Adding
convolution layers helps to better filter noise and reduce false-positives while still miss-
predicting correct absorption coefficient values required for proper diagnosis. The LM and
NCG methods provide good reconstruction with accurate lesion presence detection. Lesion
size mis-prediction can be attributed to real data noise and artifacts.
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Figure 5.4: Ablation study qualitative reconstruction performance’ on phantom samples
with known lesion ground truth location. Our proposed method results (last column) are
contrasted to FCN with different combinations of loss functions (LMSE , LF J , and Lloc)
and RAN architecture with LMSE loss results. By attending to important features, spatial-
wise attention model (RAN) filters irrelevant features resulting in improved lesion size and
location compared to FCN while reducing false positives ( e.g., red triangles). Combining
spatial-wise attention and similarity loss provides the best reconstruction results with more
accurate reconstruction of absorption coefficients.

confirmed by imaging reported a mean depth of 1.6 cm with a maximum of 6 cm (163
patients, 173 lesions). While this does not preclude deeper lesions in larger population
studies, it shows that our performance is aligned with real-world assumptions on lesion
depth.

5.4.2 Results on Phantom Data

Trained on the in silico data and tested on the phantom dataset, we visually compare our
proposed reconstruction method of absorption coefficients to the competing methods’ results
on sample phantom cases. We compare to analytical method [229], LS based method [70],
LM based method [221], NCG based method [18], MLP model [84], FC-CNN [285], and our
preliminary works FCN [30], and FCN-FJ [33].

Qualitative Results on Phantom Data

In Fig. 5.3 and Fig. 5.4, we contrast our results with the state of the art on phantom data.
Our DOT reconstruction model is mainly interested in the absorption parameter change as it
is related to the hemoglobin concentration changes that mark the presence of anomalies [12].

The analytical approach, while detecting the presence of the lesion, only approximates
its location by a rough margin and fails to provide precise reconstructed optical coefficient
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Table 5.2: Quantitative results on 32 phantom experiments. Methods with a runtime smaller
than 20 images per second (< 0.05s) are considered real-time capable.

Loss
LMSE | LF J |LLoc

Loc. Error
(pixel (in mm), < is better)

PSNR
(dB, > is better)

SSIM
(> is better)

Fuzzy Jaccard
(> is better)

Runtime
(s, < is better)

C
on

ve
nt

io
na

l Analytical [229] na 77.4 ± 32.2 (17 ± 7.1) 15.0 ± 6.0 0.32 ± 0.26 0.17 ± 0.15 83 × 10−3

LS [221] na 31.7 ± 11.7 (6.9 ± 2.6) 13.7 ± 11 0.29 ± 0.07 0.16 ± 0.08 3 × 102

LM [221] na 25.2 ± 12.7 (5.5 ± 2.8) 16.6 ± 8.6 0.37 ± 0.09 0.16 ± 0.05 5 × 102

NCG [18] na 32.6 ± 16.5 (7.2 ± 3.6) 16.5 ± 9.2 0.33 ± 0.01 0.22 ± 0.13 2 × 102

D
ee

p
Le

ar
ni

ng

MLP [84] ✓ - - 42.0 ± 17.3 (9.3 ± 3.8) 12.5 ± 1.5 0.05 ± 0.03 0.07 ± 0.05 2 × 10−3

FC-CNN [285] ✓ - - 27.8 ± 18.7 (6.1 ± 4.1) 17.3 ± 7.2 0.38 ± 0.23 0.45 ± 0.11 5 × 10−3

FCN [30] ✓ - - 33.2 ± 23.4 (7.1 ± 5.1) 20.1 ± 4.6 0.46 ± 0.28 0.32 ± 0.06 8 × 10−3

FCN-FJ [33] ✓ ✓ - 14.8 ± 7.40 (3.2 ± 1.6) 21.7 ± 0.9 0.73 ± 0.03 0.64 ± 0.10 17 × 10−3

FCN+LLoc ✓ ✓ ✓ 13.6 ± 7.2 (3.0 ± 1.6) 21.3 ± 2.1 0.74 ± 0.21 0.63 ± 0.05 19 × 10−3

RAN ✓ - - 14.3 ± 7.1 (3.1 ± 1.6) 18.1 ± 6.1 0.76 ± 0.11 0.70 ± 0.04 20 × 10−3

Multitask-Net ✓ - ✓ 12.1 ± 6.4 (2.6 ± 1.4) 23.8 ± 1.7 0.77 ± 0.18 0.69 ± 0.09 23 × 10−3

values required for proper assessment of lesions (Fig. 5.3- Analytical). LM and NCG based
methods (Fig. 5.3- LM, NCG) provide good reconstruction as they are able to detect and
localize lesions. Lower performance on lesion size can be in part attributed to noise and ar-
tifact on real data information. MLP provides a rough approximation of lesion localization
and sizes with very low per pixel values of reconstructed absorption coefficients (Fig. 5.3-
MLP). The FC-CNN and FCN-FJ, on the other hand, localize the lesion in a single con-
centrated area with some error in lesion size and optical coefficients (Fig. 5.3- FC-CNN
and Fig. 5.4- FCN-FJ (LMSE+LFJ)). Adopting the new loss term Lloc clearly reduces the
lesion localisation error (Fig. 5.4- FCN (LMSE+LFJ +Lloc)). Small artifacts are a disad-
vantage of this model. The proposed RAN consistently obtains results that minimize both
location and size error while miss estimating values of reconstructed absorption coefficients
(Fig. 5.4- RAN). Observe how incorporating both the new loss term Lloc and the RAN in
the Multitask-Net significantly reduces the artifacts while improving lesion localization and
reconstruction of optical coefficients, which otherwise could compromise diagnosis (Fig. 5.4-
Multitask-Net). From these results, it is clear that multitask learning is able to achieve
superior performance in both tasks without compromising subtask performance.

Quantitative Results on Phantom Data

Table 5.2 presents the results on the phantom dataset. Yoo et al. architecture presents close
results to our preliminary work FCN [30] given the similarity between the used architectures,
where the difference lies in terms of model depth and filter sizes. It is worth mentioning
that some artifacts are due to the shift in distribution that we overcome using the transfer
learning model.

Rows 5 to 8 present an ablation study that shows the contribution of each element of our
model. While the distance transform loss allows reduction in lesion localization error, the
attention network helps in terms of reconstruction similarity and false positive reduction.
We obtain marked improvements in localization error (up to 18%), as well as improvements

76



NIR emitters

Tissue
Lesion

128 Detectors

Lesion

Probe

(A)

Figure 5.5: Reconstruction performance on real patient data. (A) Clinical data scan pro-
cedure. Dashed blue lines delineate the different probe sweeps. (B-C) Qualitative recon-
struction performance of our model (last column) compared to analytical, NCG, MLP, and
FC-CNN methods on different real patient data. (i) Reconstruction of healthy breast tissue
of candidate versus cancerous lesion over different probe positions (ii-iii). Note how the size
of the lesion reconstructed by our method more faithfully reflects the relative difference
in size. (approximate lesions sizes obtained with ultrasound; patient 1 (B): 22 × 21 × 23
mm, patient 2 (C): 19 × 16 × 18 mm). The minimum of the colorscale is set to the back-
ground value, the maximum dynamically to try to report visually consistent results, while
accommodating the very high variance between images that would otherwise prevent any
comparison.

in SSIM (up to 4%), Fuzzy Jaccard (up to 5%), and PSNR (up to 3%). Interestingly, we
found that a RAN performs better than an FCN+LLoc in terms of Fuzzy Jaccard metric,
hence, we can argue that a RAN helps to better focus on lesion area and reduces the false
positive pixel.

Computational time for each reconstruction in this study is reported in Table 5.2 (run-
time). Once the deep learning model training is completed, the time for the reconstruction is
in the order of a few ms, three orders of magnitude faster reconstruction than conventional
methods thus enabling real time application. Note that the new loss function has little to
no effect on the inference time.
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Table 5.3: Quantitative results on real data experiments.
Reconstructed area ratio

(> is better)
Patient I Patient II

Analytical 0.18 ± 0.31 0.61 ± 0.03
NCG 0.41 ± 0.37 0.40 ± 0.25
MLP 0.54 ± 0.16 0.34 ± 0.19
FC-CNN 0.44 ± 0.10 0.45 ± 0.08
Multitask-Net 0.70 ± 0.30 0.30 ± 0.34

5.4.3 Results on Clinical Patient Data

Figure 5.5 presents the reconstructed cross-sectional image of absorption coefficients of
breast scans from 2 patients. The probe is placed above the identified lesion in the cancer-
ous breast and at the same location on the opposite healthy breast for each patient (Fig. 5.5-
A). We compare with the analytical [229], NCG [18], MLP [84], and FC-CNN [285] meth-
ods, reporting visual results in Fig. 5.5- B,C and quantitative results in Table 5.3. As a
partial ground truth, both patients underwent ultrasound scans to obtain estimated le-
sion dimensions, showing irregular masses measuring 22 × 21 × 23 mm for the first patient
and 19 × 16 × 18 mm for the second patient, with biopsies confirming that the lesions are
cancerous.

In healthy tissue (Fig. 5.5-B:i, C:i), only background signal is reconstructed by almost
all methods. In cancerous tissue, all competing approaches and our proposed method detect
the lesion. The small artifacts (false positives) in healthy patient data reconstructed by
MLP, FC-CNN and Multitask-Net (Fig. 5.5-B:i,C:i) can be attributed in part to the shift in
distribution between training and test dataset. While the transfer learning module reduces
this gap, it cannot eliminate this gap to the real patient data distribution completely. We
observed that such artifacts could be removed by post-processing, e.g., via thresholding, by
a qualified clinical operator. At the same time, these failure cases highlight the need for
more real-life patient data to better train the transfer learning module. Consistent with the
results on phantom data, the analytical, NCG, and MLP methods have a rough approximate
outline of the tumor, whereas methods only partly agree with the approximate center of
the predicted lesion.

Table 5.3 reports the average of reconstructed area ratio with respect to the ground
truth lesion size over different probe sweeps for each patient. Areas of thresholded regions
(> 80% binary threshold), given the pixel dimensions of the image, were compared to the
real ground truth area. We observe that, in contrast to the other approaches, our method is
able to reconstruct the lesions more faithfully with respect to their relative sizes for patient
I while it underestimates lesion size for patient II. In addition, our method obtains a more
precise delineation of the lesions.
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Table 5.4: Sensitivity study: The effect of β on performance.

β
Loc. Error

(pixel, < is better)
PSNR

(dB, > is better)
SSIM

(> is better)
Fuzzy Jaccard

(> is better)

0 17.8 27.88 0.90 0.71
0.2 13.8 27.84 0.92 0.72
0.4 12.5 27.73 0.96 0.77
0.6 13.1 27.82 0.92 0.72
0.8 13.5 27.79 0.94 0.74
1 14.1 27.69 0.95 0.77

Table 5.5: Performance impact of varying number of network layers.
Loc. Error

(pixel, < is better)
PSNR

(dB, > is better)
SSIM

(> is better)
Fuzzy Jaccard

(> is better)

Shallow 17.74 24.38 0.87 0.58
Baseline 14.01 25.87 0.94 0.68

Deep 14.51 25.61 0.93 0.69

While the transfer learning network bridges the gap to some extent between phantom
(training) data and real world data, the results on real world data illustrate that high
variability in, e.g., illumination and noise levels can still mislead the network. Given that no
two tumors are alike, tumor heterogeneity leads to markedly different acquisition signatures
that are not necessarily present in the training data.

5.4.4 Multitask versus Single-task

We first tested how the combination of different loss functions influences reconstruction and
localization performance. We used L = LMSE + βLloc and explored different values for β

∈ [0,1]. Table 5.4 shows the reconstruction performances as well as the localization error
on the test set of 80 images for different values of β. Overall, we observed that learning
with multiple losses improved both reconstruction and localization performance. In fact, we
observed an up to 18% decrease in localization error when using a combination of LMSE and
Lloc compared to using LMSE in isolation, with increases in SSIM by 6% and Fuzzy Jaccard
by 7% using the best weight. Table 5.2 clearly shows that multitask-learning obtains optimal
results for all metrics except a marginal drop in Fuzzy Jaccard of 1%.

5.4.5 Network Depth Trade-off: Complexity versus Performance

Increasing the dimensions of the network can allow for improved performance, yet results in
larger hardware and training time requirements. With our application domain in hand-held
devices, it is critical to evaluate the trade-off between network dimensions and performance.
With an exhaustive architecture search beyond the scope of this work, we limit ourselves to
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Table 5.6: Variation of the model performance over different number of channels.
Loc. Error

(pixel, < is better)
PSNR

(dB, > is better)
SSIM

(> is better)
Fuzzy Jaccard

(> is better)

8 channels 14.92 25.62 0.88 0.63
16 channels 13.65 25.75 0.92 0.66
32 channels 14.02 25.87 0.94 0.69
64 channels 13.95 25.86 0.93 0.67

varying the number of layers and channels. Table 5.6 and 5.5 show experimental performance
results that were performed on the in silico dataset.

First, we test the variation of model performance over different depths of the network.
We use our proposed model as a baseline and constructed a shallower and a deeper model by
adding and subtracting two residual blocks with 32 channels from the baseline, respectively.

While the deeper model performs better compared to a shallower network (Table 5.5),
performance did not improve (∼ 1% variation in all metrics) by adding more residual
attention layers compared to the baseline model at the price of more parameters and risking
overfitting. A lighter architecture would be more convenient for the deployment in handheld
devices with small power requiring a fine balance between accuracy and latency.

Note that the fully connected layer, used to back project the sensor data in the image
domain, non-linearly increases the memory requirements of the neural network, thereby
limiting the maximum number of additional convolution layers. This layer is deemed com-
pulsory for an inverse scattering problem where direct analytical reconstruction is not well-
defined, unlike in magnetic resonance imaging or computed tomography where a well-defined
inversion exists using Fourier transform or Radon transform [171].

To observe the dependency on the number of convolution channels, we additionally
trained the network with a varying number of channels. We observed marginal variations
of the network performance beyond 32 channels: a variation of 1% and 1.5% in SSIM and
Fuzzy Jaccard metrics, respectively, beyond 32 channels (Table 5.6). This can be explained
by the size and shape of lesions that are generally small, when compared to the background,
and smooth objects, therefore they can be easily fitted by a small number of feature maps.

5.4.6 Effect of Varying the Number of Sensors

Given that our probe only has 2 light sources and 128 sensors (detectors), we tested the
robustness of our model to the variation of the number of sensors (co-linear equi-spaced
detectors) by reducing it gradually from 128 to 16. To train the network for different source-
detector configurations, we generated different sets of training data and changed the input
sizes of the network accordingly while maintaining the overall network structure. While it
is out of the scope of this work to test the results using the DOB-Scan probe (requiring
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Figure 5.6: Effect of varying number of detectors, while keeping the same number of probe
sources’, on the Multitask-Net qualitative results’ over different lesions sizes, locations, and
absorption coefficients (a-c). While the model is still able, in most cases, to detect lesion
presence, lesion size and correct localization are impacted by the reduction in the number
of sensors and the increase in sparsity of the collected signal.

new hardware design, testing, and manufacturing), we reported experimental performance
results for the in silico dataset in Table 5.7 and visual inspection results in Fig. 5.6.

Note the high contrast between the background and the lesion area, despite the increased
difficulty of accurately recovering lesion size and location in sparse signal conditions (smaller
number of detectors). The results are on par with qualitative results Table 5.7 where we
notice an increase in localization error while we observe a slight decrease in SSIM.

5.5 Discussion

5.5.1 Attention-directed Lesion Reconstruction

Table 5.7: Trade off between probe complexity and model performance on the synthetic test
set.

Loc. Error
(pixel, < is better)

PSNR
(dB, > is better)

SSIM
(> is better)

Fuzzy Jaccard
(> is better)

128 sensors 14.03 25.87 0.94 0.69
64 sensors 16.98 21.56 0.92 0.48
32 sensors 17.78 21.53 0.88 0.46
16 sensors 18.66 21.45 0.88 0.45
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DOT reconstruction leverages the fact that healthy tissue has optical coefficients that are
near uniform, whereas lesions have optical coefficients that diverge markedly and are char-
acterized by high variability. The encoding of a highly variable signal (lesion) requires more
information or computational complexity than a near uniform signal. The high variance
is explained in part due to high inter-tumor heterogeneity, a leading cause preventing ef-
fective treatment or prognosis [28]. Furthermore, for the clinician, it is sufficient that the
network correctly recognizes that certain areas are healthy tissue without requiring precise
pixel-wise reconstruction. In contrast, the lesion needs not only to be detected, but located
and reconstructed precisely in order to enable diagnosis, prognosis, and successful treat-
ment recommendation. Therefore, employing network attention on the lesion is one way of
dedicating more computational power where it is required without sacrificing detection of
healthy tissue.

5.5.2 Network Generalization

The generalization capability of our network is illustrated by the fact that training occurs
on simulation data, yet performance is strong on phantom and real data. Moreover, unlike
the analytical approach that requires a reference measurement of healthy tissue to compute
the inverse image, our network, similar to Yoo et al.[285], is designed to directly learn from
the collected measurement and does not require any reference or prior conditions that might
bias the search space. In a clinical setting, such as breast cancer screening, such reference
measurement from a homogeneous background may be nontrivial to obtain. Therefore, our
model can generalize better to unseen conditions without additional pre- or post-processing
techniques. In this work, we obtained good results when trained only on in silico data. We
expect improved results as more real data from phantoms and patients is collected. Finally,
we used model architecture and implementation details described in Section. 5.2, with good
initial results. However, it is likely that other architectures can be found that will yield
improved results, e.g., via neural architecture search [79].

5.5.3 Limitations

Although this study provides a proof of concept of the potential advantages of using mul-
titask deep learning for DOT image reconstruction, it suffers from some limitations. First,
reconstruction of deep lesions, with a location deeper than 35 mm, remains a challenging
task in DOT. When one uses a handheld probe, with a colinear sources-detectors place-
ment, it can be even harder to differentiate the lesions specific signal from tumor-free tissue
signal. As a result, the reconstructed image can be biased towards tumor-free tissue. Sim-
ilarly, while our model is able, in most cases, to detect lesion presence, reconstruction of
multiple lesions exhibits some weakness, as shown in Fig. 5.7. Specifically, occluded lesions
and lesions situated at the border of the probe can be mis-reconstructed, where only one
lesion is reconstructed, lesion location deviates, or tumor-free tissue is reconstructed (false
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Figure 5.7: Reconstruction of multi-lesions with different sizes and proximity (a-c). (A)
While the model is able, in most cases, to detect lesion presence, occluded, edge located
and deep lesions can be mis-reconstructed. (B) Some failure reconstruction examples where
only one of the lesions is reconstructed.

negative). This problem is mainly due to the weaknesses of the collected signal given the
limited angle condition. While multiple sweeps or variations in the scanning angle can help
in the latter case, they are unlikely to help in the case of deep lesion(s). Second, since the
real dataset only contains 2 patients with few sweeps, it is not an exhaustive list of all cases,
and therefore the proposed method requires validation on larger and more diverse datasets.
However, this is not a technical limitation of the model since more tests can be done as
more real data becomes available.

5.6 Conclusion

We present the first work to effectively leverage reconstruction guided localization multitask
learning by combining an appearance similarity loss and a reconstruction loss along with
a spatial attention mechanism for DOT-reconstruction, with application to reconstructing
lesions in breast cancer tissue. We demonstrated improvement in localization error over
the state of the art and presented a step forward in DOT image reconstruction and the
usage of machine learning in image reconstruction. Leveraging physics-based simulators of
light propagation to generate realistic synthetic datasets provided an alternative source
of large and diversified training dataset. The critical addition of transfer learning ensures
our method is not limited by inherently small real-world datasets. At the same time it is
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still capable of performing at high accuracy on such datasets where more complex sources
of artifacts and noise are present. Nevertheless, we noted some performance differences in
real world data. As more patient data is collected, it will be critical to better understand
and address the causes of such differences. Finally, we show that our method is sufficiently
fast enough to ensure real time processing, enabling in situ deployment in clinical settings.
In the next Chapter, we will focus on multifrequency fusion and the patient diagnosis
outcome prediction, which remains the most crucial measure in the medical image domain
for evaluating image reconstruction results.

5.7 Disclaimer

In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of Simon Fraser University or educational entity’s products
or services. Internal or personal use of this material is permitted. If interested in reprint-
ing/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to

http : //www.ieee.org/publicationsstandards/publications/rights/rightslink.html

to learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or
ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.
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Chapter 6

End-to-End Diagnosis via Deep
Orthogonal Multi-frequency Fusion

In this Chapter, we explore the diagnostic capability of breast cancer lesions with a portable
DOT device. Early detection of breast cancer lesions is crucial, and while a portable DOT de-
vice can aid in this process, the challenge lies in accurately distinguishing between malignant
and benign lesions. Thus, our investigation focuses on evaluating diagnostic performance
using multi-frequencies collected signal1.

6.1 Introduction

Breast cancer pre-screening is usually carried out using self-breast examinations, which can
suffer from high false-positive rates, or clinical breast examinations [63]. Although breast
lumps are often benign, such as lipoma, cyst, or hamartoma, lesion malignancies may appear
with a non-palpable sign; hence, regular screenings are critical [254]. Identifying breast
cancer lesions with a portable DOT device can improve early detection, while avoiding
otherwise unnecessarily invasive, ionizing, and more expensive modalities such as CT, as well
as enabling pre-screening efficiency. Critical to this capability is not just the identification
of lesions but rather the complex problem of discriminating between malignant and benign
lesions. Fig. 6.1-A shows a typical breast screening in the medical workflow.

To accurately capture the highly heterogeneous tissue of a cancer lesion embedded in
healthy breast tissue with non-invasive DOT, a combination of multiple frequencies can
be employed to optimize signal penetration and reduce sensitivity to noise. Through the
utilization of distinct frequencies, the DOT system can more precisely measure the tis-
sue’s response to light at various depths. Additionally, interactions between light and tissue
properties like absorption and scattering exhibit wavelength-dependent variations. The in-
tegration of multiple frequencies empowers the DOT system to selectively target different

1The content of this Chapter heavily relies on our published research [32]. Reproduced with permission
from Creative Commons Attribution (CC BY) license
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Figure 6.1: Typical breast cancer screening workflow. (A) Images reconstructed by an inverse
model, from signals collected by the acquisition hardware, are analyzed for assessment, diag-
nosis, and treatment prognosis. (B) Screening pipelines can be divided into two paradigms:
(i) Accurate reconstruction followed by image based classification. (ii) A direct prediction
model omits image reconstruction to focus solely on the ultimate task and can help over-
come sub-task errors, e.g., reconstruction induced false positives, marked by red triangles
in this scenario, in paradigm (i).

chromophores, resulting in a more accurate reconstruction of the tissue’s internal charac-
teristics.

Notably, alterations in chromophore concentrations captured through this process yield
information about vital functional events within the brain’s vasculature, facilitate the as-
sessment of tissue oxygenation, and facilitate the characterization and ongoing monitoring of
breast lesions [76]. Exploiting this wavelength sensitivity, optical spectra can be meticulously
analyzed, and images of exposed tissue can be reconstructed, serving diagnostic purposes.
However, these responses share variable overlap in the absorption spectra of the major tissue
constituents in the red-near infrared range [245] potentially capture common information,
and correlate (Fig. 3.2). We investigate multi-frequency DOT fusion for improved recon-
struction and more accurate end-to-end identification of malignant versus benign lesions.

6.1.1 Regularization Approaches in DL-reconstruction Methods

Recent studies, e.g., [33, 282, 285, 178], have shown image reconstruction and classification
are faster and more accurate when deep learning algorithms are used instead of conventional
reconstruction methods. One advantage deep learning based algorithms have over classical
reconstruction methods is that they can exploit implicitly learned feature encodings from
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Table 6.1: Regularization approaches in state-of-the-art DL-reconstruction methods.
D: design approach; FF: feed-forward, I: iterative unrolled based model; M: multi-
modal/frequency; S/P: in silico/phantom data; and C: clinical patient data.

D M S/P C Approach to mitigate ill-posedness

[213, 30, 186] FF × ✓ × CNN learns the nonlinear end-to-end mapping
[33] FF × ✓ × Promote appearance similarity
[178, 177] I × ✓ × Augment Gauss-Newton algorithm with deep learning
[187] FF ✓ ✓ × Micro-CT structural prior
[285] FF × ✓ × Model based on Lippmann-Schwinger equation
[82] FF × ✓ × Reflection model as sum of features from different depths
[303] I × ✓ × Data-driven unrolled network promoting appearance similarity
[310, 154, 311] FF ✓ ✓ ✓ Multi-modal representation learning (US+DOT)
[282] FF × ✓ ✓ Deep spatial-wise attention network
Ours FF ✓ ✓ ✓ Orthogonal multi-frequency representation learning

the DOT sensor data, whereas classical reconstruction algorithms can exploit only priors
encoded by human designers [31]. Recent advances tackle the problem of ill-posedness in
a variety of ways. We summarize the closely related approaches in a tabulated overview
(Table 6.1), and refer the interested reader to [22, 234] for a more in-depth review.

6.1.2 Multi-frequency DOT

The primary motivation for multi-frequency DOT is to exploit the different but comple-
mentary responses of chromophore, tissue components, to multi-frequency excitation, given
that chromophores absorb photons at different rates at different wavelengths [100]. A multi-
spectral image can be obtained using several LEDs or lasers of multiple wavelengths as illu-
mination. The different LEDs are used consecutively to capture an image per wavelength or
combined as one multi-spectral image [226]. The captured multi-frequency data can provide
more spatial and contextual information, enabling more robust and accurate identification
and discrimination of disease-correlated biological anomalies[166].

While higher frequencies allow for a better separation of optical properties, such as
absorption and scattering coefficients, as well as a better detection of small and shallow
objects, the limit of the signal-to-noise ratio (SNR) decreases with increased frequency [248,
144], and penetration decreases as frequency increases. Utilizing multi-frequency data for
improving DOT image reconstruction and diagnosis has been an active field of research,
illustrating that the accuracy of the optical coefficient can be improved using measurements
with multiple frequencies [130, 181, 226, 11]. Recent studies, summarized in a tabulated
overview (Table 6.2) have shown that using measurements with multiple frequencies can
improve the recovery of optical coefficients and provide higher SNR and lower error [52, 226].
Improvement, however, depends on frequencies selection scheme and utilized instrument
given the specific noise impact [11]. This finding is supported by Zimek et al.[309], who
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Table 6.2: Multi-Frequency DOT for Image Reconstruction and Diagnosis. Di: dimension;
Freq: frequency range; D: dataset, S: simulation, P: phantom, C: clinical; and MF:Multi-
Frequency.

Leveraging different frequency schemes DI Freq
(MHz)

D

[52] Improve joint optical coefficients recons. 2D 100-250 S
[226] Enhance fused MF image quality 2D 100-1000 S
[160] Compensate physiological and noise interference in recons. 3D 361-382 P
[141] Frequency shifting for reduced recons. ill-posedness 2D 100+5*i, ∀i ∈ {0, .., 100} S
[198] Minimize the effect of phase data and improve contrast 2D {78, 141, 203} P
[11] Evalutate the impact of frequency selection 2D 50-500 S
[245] Discrimination between malignant and benign tissue 2D 283-472 C

reported that adding dimensions can harm discriminative potential if those dimensions do
not improve the signal-to-noise ratio.

Augmenting DOT with ultrasound is finding recent adoption as well, an example of
multi-modal fusion [200, 73],[8]. The aforementioned art is based on conventional recon-
struction algorithms. To the best of our knowledge, no deep learning-based method has
explored the merit of exploiting multiple frequencies in DOT-reconstruction and diagnosis.

6.1.3 Multi-frequency as Data Fusion

Data fusion models mimic higher cognitive abstraction in the human brain by synthesiz-
ing information from multiple sources for improved decision-making. While data fusion
is non-trivial, the resulting contribution of multiple data sources or multimodal data can
significantly improve the performance of deep learning models [300, 109]. The underlying
motivation for collecting multi-modal data is to learn the optimal joint representation from
rich and complementary features of the same object or scene. In the context of combining
multiple information sources to learn more powerful representations, the terms ‘early’ and
‘late’ fusion are commonly used [195]. Early fusion refers to concatenating input data from
multiple sources in separate channels before presenting it as input to the network, while
late fusion involves processing each input data individually and aggregating their output.
Mid-fusion restricts cross-data flow to later layers of the network, allowing early layers to
specialize in learning and extracting data-specific patterns [182].

Attention mechanisms have been shown to be suitable for the fusion of features that
usually suffer from confounding issues such as conflicting or cancelling information, corre-
lation, and noise. Attention provides an approach to learn to select informative subsets of
the data, as well as the relationship between data streams, before fusing them into a single
comprehensive representation [109, 57]. Transformer based models, based on a multi-head
attention architecture, have recently gained increased adoption [42, 182]. However, the high
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computational cost and complexity, scaling adversely with input sequence length, remain a
significant challenge, especially given the real-time requirement.

Self-supervised learning (SSL) based on a joint embedding architecture, driven by the
maximization of the information content of the network branches’ embedding, opened the
door to the application of joint-embedding SSL to multi-modal signals [25]. The idea is
to produce independent embedding variables, removing confounding effects such as partial
correlation and avoiding modal collapse between data streams by encouraging architecture
diversity between branches, using loss based normalized cross-correlation matrix [292] or
explicit variance-preservation term for each embedding [25].

Imposing orthogonal constraints in linear and convolutional neural network layers can
act as a form of regularization that can help improve task performance and be beneficial
for the network’s generalization [24, 123]. Orthogonality in feature space was proposed to
encourage intra-class compactness and inter-class separation of the deep features, and has
shown improvement in classification tasks [204]. Multi-modal orthogonalization has been
used to force uni-modal embeddings to provide independent and complementary information
to the fused prediction [43]. Another advantage is that an orthogonal encoding can enforce
the learning of a more sparse correlation-free representation. The resulting smaller encoding
can reduce architecture dimensions, and serve as an implicit regularization.

6.1.4 Towards Direct Medical Image Analysis in DOT

Traditional computational pipelines in biomedical imaging involve solving tasks sequentially
(Fig. 6.1-B.i, e.g., segmentation followed by classification or detection). Although each of
these two tasks is usually solved separately, the useful clinical information extracted by
the second task is highly dependent on the first task’s results. While a ‘joint’ or multi-
stage model where different tasks are lumped together, for example, image reconstruction
then classifying diagnosis, can benefit from feature sharing and joint parameters tuning for
both tasks, significant computational resources are required to optimize sub-tasks that may
not necessarily lead to end-task improvements. In contrast, in the direct medical image
analysis [305] (DMIA) paradigm, end task results are directly inferred from raw/original
data (e.g., raw sensors or whole image/volume) as illustrates Fig. 6.1-B.ii. Therefore, the
model can focus solely on the end task, reclaiming some of the computational resources
for improved results while requiring fewer resources. For instance, Wu et al.[270] trained a
neural network for joint reconstruction and lung nodule detection from raw acquisitions and
showed performance improvement compared to a two-stage approach. Hussain et al.[127] had
shown that a segmentation-free kidney volume estimation can help overcome segmentation
errors and limitations and reduce the false-positive area estimates. In a similar perspective,
Taghanaki et al.[244] investigated a segmentation-free tumor’s volume and activity estima-
tion in PET images. Recently, Abhishek et al.[2] illustrated that, in the context of cancerous
skin lesions, predicting the management decisions directly can be a simpler problem to ad-
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dress than predicting the diagnosis followed by management decisions, as one action can be
prescribed to multiple subsets of disease classes.

6.1.5 Contributions

We make the following contributions in this paper:
(i) We investigate the benefit of multi-frequency data on the quality of DOT reconstruc-

tion and breast lesion diagnosis. Previously, many works have addressed the multi-frequency
reconstruction problem or diagnosis, albeit using conventional methods. Despite the im-
portance of multi-frequency acquisition for chromophore reconstruction, no deep learning
framework has investigated multi-frequency fusion nor joint reconstruction and diagnosis
to date. Here, we present a novel approach designed to recover the optical properties of
breast tissue from multi-frequency data with a deep orthogonal fusion model followed by a
diagnosis.

(ii) To the best of our knowledge, this is the first deep learning-based method that
investigates the merits of tackling the diagnosis prediction task from raw sensor data di-
rectly without image reconstruction in DOT (direct prediction 2). Results with and without
reconstruction are contrasted using a modular pipeline, highlighting the potential of the
raw-to-task model for improved accuracy, while reducing computational complexity.

(iii) We extend a fusion network [57] by training models using an orthogonalization
loss function [204] to maximize the independent contribution of each frequency data and
emphasize their collective strength, with improved predictive performance compared to a
single frequency model.

Section 6.2, introduces our proposed model for multi-frequency DOT fusion and defines
the two prediction pipelines (raw-to-task and joint reconstruction and diagnosis). Physics-
based computational simulation and real patient datasets are detailed in Section 6.3.1. In
silico performance results are presented in Section 6.3.2 and results on real-world data in
Section 6.3.3. We conclude the paper by discussing insights and limitations on interpretabil-
ity, speed, and adaptive dynamic treatment in Section 6.4.

6.2 Methodology

Solving the inverse problem in DOT recovers the spatial distribution of a tissue’s optical
properties x ∈ RW ×H based on the measured boundary data yi ∈ RS×D×N , from S sources
(emitters) with D sensors (detectors) at different frequencies i ∈ {1, N}. The learned inverse
function F−1(·) maps the raw measurements y to an image estimate x̂ while remaining

2While our direct prediction contribution omits the ‘tomogram‘ part of DOT, and thus works directly on
near-infrared (NIR) sensor data, our fusion contribution applies both to tomogram reconstruction as well as
tomogram-free reconstruction. Thus, we continue to use DOT throught the paper instead of NIR.
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faithful to the underlying physics constraints. Learning the inverse function F−1(·) is carried
out by solving:

θ∗ = argmin
θ

L
(
F−1(yi; θ); x

)
+ λR(F−1(yi; θ)) , (6.1)

where L and R are the network loss function and the regularization, θ are the optimized
network weights that parameterize F−1. The reconstruction of an image based on the fu-
sion of all raw signals from diverse frequencies is considered as well by using the fusion
network described in Section 6.2.1. While reconstructing an accurate 2D/3D image/volume
from collected measurements has been the mainstream task in DOT, in a clinical setting,
the ultimate purpose is not necessarily obtaining the image itself but rather making an in-
formed clinical diagnosis or management decision, such as lesion detection and classification
into predefined classes. To compare the impact of omitting the reconstruction and directly
predicting the end task, we implemented two architectures: The first, FuseNet, reflects clas-
sical approaches, i.e. a classification module is appended to the output of the reconstruction
layer to make a prediction, where the result of the multi-spectral reconstruction is used to
supervise the classification task (Section 6.2.2). Whereas the second, Raw-to-Task, uses the
same classification module to make a prediction based on the fused raw data directly, i.e.
no reconstruction is considered in between. The ultimate goal is to study the ability of deep
learning to provide superior prediction based on the raw signal only while reducing model
complexity and computational cost (Section 6.2.3).

6.2.1 Fusion Network

Given multi-frequency raw data paired with known diagnosis outcomes, the objective is to
learn a robust multi-frequency representation in a supervised learning setting. While many
fusion strategies have been proposed in computer vision, natural language processing, and
multimodal biomedical data, strategies for fusing data in multi-frequency DOT data remain
unexplored in deep learning-based approaches. Inspired by recent methods for multimodal
data fusion [57, 43], we adopt a similar attention-based mechanism to control the expres-
siveness of features from each input frequency before constructing the multi-frequency em-
bedding, while uniquely feeding the raw data directly with no further pre-processing. Let
Y ∈ RS×D×N×M be a training mini-batch including M tissue samples, each collected using
N frequencies such that Y = [Y1, Y2, ..., YN ] where for each frequency i, Yi = [yi

1, ...yi
M ]

includes data for M samples. When N > 1, input measurements from each frequency are
combined using the fusion branch (Fusion, Fig. 6.2). To reduce the impact of noisy input
features and compress the size of the feature space, each Yi is first passed through a fully
connected layer of length l, with ReLU activation, outputting Y s

i ∈ Rl×1×M , followed by an
attention mechanism that scores the relevance of each feature in Yi. We define frequencies ̸ i
as the set {j} such that j ∈ {1, .., N} \ {i}, i.e. for frequencies other than i. A linear trans-
formation WA of frequencies Y̸i, that would score the relative importance of each feature in
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i, is learned. WA is a learned weight matrix parameters for feature gating. The attention
weights vector ai is then applied to Y s

i , an element-wise product of scores and features, to
form the attention-weighted embedding Y s′

i ∈ Rl×1×M :

Y s′
i = ai ∗ Y s

i = σ (WA ∗ [Y ̸i]) ∗ Y s
i . (6.2)

Finally, attention-weighted embeddings are passed through a fully connected layer of length
l2, with ReLU activation, then combined through a Kronecker product between all frequency
embeddings to capture possible interactions. Each vector is appended by 1 to capture partial
interactions between frequencies [57]. The final fused embedding is then defined as:

F =
[

1
Y s′

1

]
⊗
[

1
Y s′

2

]
⊗ . . . ⊗

[
1

Y s′
N

]
. (6.3)

F ∈ Rl′×l′×l′×M , for N = 3 and l′ = l2 + 1, is a N-dimensional hypercube of all frequency
interactions.

6.2.2 Joint Multi-frequency Reconstruction and Diagnosis

The task is to recover tissue optical properties and diagnosis outcome given raw signal data.
While a single frequency model SF-JRD (Fig. 6.2-A), used as a baseline, relies on a single
frequency measurement to reconstruct spatially distributed optical coefficients and predict
diagnosis, a multi-frequency model (FuseNet) relies on a joint representation from multiple
frequency measurements (Fig. 6.2-B). The multi-frequency model, including a network with
multiple branches as shown in (Fig. 6.2-B), inputs N measurements of the same scanned
tissue at N frequencies. A multi-spectral image that combines all frequency measurements,
using the fusion branch encoding (Fig. 6.2-B.2), is reconstructed and passed to a classifica-
tion module for diagnosis prediction. Furthermore, a per-frequency image is reconstructed
using each modulated frequency signal. As depicted in (Fig. 6.2-B), the FuseNet model
outputs are xi

Rec ∀i ∈ {1, .., N}, xF usion
Rec , and ydiag which denote the per-frequency recon-

structed image (Fig. 6.2-B.1), the multi-spectral reconstructed image, and the predicted
diagnosis label (Fig. 6.2-B.2), respectively.

Using multiple inputs, per frequency network reconstruction branches (Fig. 6.2-B) learn
independent representations, where features derived from each input measurement (Yi) are
only useful for the corresponding output xi

Rec. Furthermore, given the differences in initial-
ization, the branches can converge to disconnected modes in weight space, thereby behaving
as independently trained neural networks. Empirically, we observe that they converge to
distinct optima. For this multi-task reconstruction and prediction model, we extend the
multi-task framework [282] and train a model to simultaneously reconstruct a per-frequency
image, localize the lesion, and predict the diagnosis.
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The reconstruction branch (Fig. 6.2) implements the design detailed in the multi-task
framework, proposed in Chapter 5 [282], with a fully connected layer, 128 × 128, followed
by a convolutional layer and 6 residual attention blocks with 32 channels, filters of size of
3 and ReLU activation, to produce the final reconstruction image. While the first and last
layers are shallow feature extractors, the attention blocks extract hierarchical attention-
aware features with modules of the form: two convolutions followed by squeeze and excite
modules. This deep spatial-wise attention network attends to the most important features by
reweighting features according to their interdependencies in feature space and filtering noisy
ones. In contrast to the difference approach, which uses a reference measurement of healthy
tissue to compute the contrasted inverse image, our reconstruction module is designed to
learn the mapping directly, from the measured data to the desired output, without the need
for any prior knowledge or references that can bias the search space. Furthermore, obtaining
such a reference measurement from a homogeneous background in a clinical setting, such
as a breast cancer screening, is not trivial; hence, we consider absolute imaging, where the
network learns the inverse mapping between sensor measurements and the image domain
directly.

The prediction branch (Fig. 6.2) includes 3 convolutional layers with max pooling and
two final classification layers. Raw data from different frequencies are passed to the recon-
struction branch except for the multi-spectral subnetwork, where raw data from different
frequencies are first fused via the fusion branch. The fused features are passed to the re-
construction branch, which outputs a multi-spectral image followed by a classification layer
to output the final classification prediction. The multi-task loss (LMULT I) encompasses all
three tasks: reconstruction, lesion localization, and diagnosis as a sum of losses for each task
is defined as follows:

LMULT I = LREC + LDIAG, (6.4)

where LREC and LDIAG denote the reconstruction loss and the diagnosis losses, respectively.

Reconstruction Loss

We adopt the reconstruction loss defined in Chapter 5. The mean square error loss LMSE

combined with the location loss LLOC guide the image reconstruction and lesion localization
of the network as per (6.5). LMSE recovers the pixel-wise representation of the image.

LREC = LMSE + β LLOC,

LLOC = ||DT (F−1(yi, θ), x) − DT (x)||,
(6.5)

where DT denotes the distance transform and computes the Euclidean distance between the
image pixel location and the lesion boundaries, θ denotes the parameters of the multi-task
model, and β ∈ [0, 1] is a hyper-parameter controlling the contribution of LLOC .
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Diagnosis Loss

The diagnosis loss, LDIAG, is a weighted sum of the categorical cross entropy loss LCE , and
the orthogonal projection loss LOP L:

LDIAG = LCE + γLOP L, (6.6)

where: LCE = LCE (x, ldiag | Θ)

= −
ndiag∑
j=1

ldiag,j · log
(
ϕ (x | Θ)j

)
,

LOP L = (1 − s) + |d|

s =
∑

i,j∈B
yi=yj

⟨fi, fj⟩ , d =
∑

i,k∈B
yi ̸=yk

⟨fi, fk⟩ ,

(6.7)

ndiag, ldiag denote the number of classes in the diagnosis prediction tasks and ground truth
label, respectively. ϕ(x|Θ)j denotes the predicted probability for the jth class by the model
parameterized by Θ. γ ∈ [0, 1] is a hyper-parameter balancing the contribution of the LOP L.
|x| is the absolute value operator, < x, y > the cosine similarity operator applied on two
vectors, and B denotes the mini-batch size.

The orthogonal projection loss LOP L, as defined in [204], is used to maximize separability
between classes by enforcing class-wise orthogonality in the intermediate feature space and
simultaneously ensuring inter-class orthogonality (d term) and intra-class clustering ((1-s)
term) within a mini-batch.

6.2.3 Direct Prediction: Raw to Task Model

The ultimate aim of DOT-based screening is the early identification and classification of
breast cancer lesions. Therefore, we investigate if focusing exclusively on the end task, at the
cost of omitting the reconstruction of a 2D image, can perform better or worse compared
to classification with the intermediate reconstruction. Without the need to reconstruct a
2D image, the architecture and computational complexity reduce significantly, leading to a
reduction in power consumption and data computation latency. The classification module is
used to make predictions based on the fused raw data, where combined features, extracted
from different frequencies using the fusion branch (Section 6.2.1), are passed to a convolu-
tional layer for the prediction task and a final classification layer with the associated loss
(Fig. 6.2-dashed lines). The diagnosis loss function, LDIAG, is used to train the model given
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Table 6.3: Summary of variants of our method architectures input and output details’. N:
number of frequencies; S: sources; D: detectors; H: height; W: width.

Input Output
Direct prediction Joint reconstruction and diagnosis

Single-Freq Y1 ∈ RS×D
ydiag ∈ R

xRec ∈ RH×W

ydiag ∈ R
SF-DP SF-JRD

Multi-Freq Y ∈ RS×D×N
ydiag ∈ R

xi
Rec ∈ RH×W ∀i ∈ {1, .., N}

xF usion
Rec ∈ RHxW

ydiag ∈ R
Raw-to-Task FuseNet

the raw input measurement where:

LCE = LCE ((yi, .., yN ) , ldiag | Θ)

= −
ndiag∑
j=1

ldiag,j · log
(
ϕ (y | Θ)j

)
,

(6.8)

yi denotes the ith measurement of the raw data and ϕ(y(i)|Θ)j denotes the predicted proba-
bility for the jth class given an input y(i) by the model parameterized by Θ. The orthogonal
projection loss LOP L (6.7) is used to maximize separability between classes in the feature
space.

FuseNet, Raw-to-Task, SF-JRD and SF-DP models are trained separately while using
the same modules: fusion, reconstruction, and prediction modules. Table 6.3 summarises
different models input and output details.

6.2.4 Cross Domain Learning

Similar to Chapter 4, we use transfer learning to render an in silico trained network ap-
plicable to real world data and reduce the disparities between real-world acquisition yp

and in silico simulated data ys. A multi-layer perceptron (MLP) network is used to tackle
the domain shift by minimizes the transfer learning loss LT L over Np sets of real data
measurements obtained using a phantom solution and their corresponding tissue-equivalent
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Table 6.4: Optical coefficients distributions on the in silico dataset for wavelengths in 690-
850 nm spectrum [147]

Healthy tissue Benign Malignant

Absorption
νa(cm−1)

690 0.042 ± 0.013

0.08 ± 0.04

0.110 ± 0.066
750 0.046 ± 0.024 0.100 ± 0.060
800 0.052 ± 0.015 0.118 ± 0.096
850 0.032 ± 0.005 0.124 ± 0.089

Scattering
νs(cm−1)

690 12.9 ± 2.3

19.4 ± 8.4

13.5 ± 4.7
750 8.70 ± 2.2 11.6 ± 3.9
800 10.5 ± 1.2 12.2 ± 1.7
850 8.40 ± 0.4 9.10 ± 1.9

simulated data:

θ∗ = argmin
θ

LTL(θ),

where

LTL(θ) =
Np∑
i=1

||ϕ(yp
i ; θ) − ys

i ||

+ α

Np∑
i=1

D−w+1∑
j=1

||ϕ(yp
[j−w j+w]; θ) − ys

[j−w j+w]||,

(6.9)

w is the size of the sliding window, D is the number of detectors, α is a hyper-parameter that
is used to control the contribution of the windowed mean absolute error loss. At inference
time, the final reconstructed and diagnosis results are computed as:

x̂∗ = F−1(ϕ(yp)). (6.10)

6.3 Results

We present results on both in-silico and clinical data. Results were obtained by training the
model on the in-silico data. A transfer learning network, adapted from Chapter 4 and trained
on a phantom dataset, bridges the distributions shift that is unavoidable when switching
between in silico and real world data. A Gaussian noise was added to the signal, mimicking
real world signal fluctuation, to improve model robustness to sensor noise and mimic the real-
world drift of device characteristics on different clinics in between calibrations. This noise
model depicts the highly variable noise to each individual detector as caused by sensor
noise and interference of refracting light. Consistent with previous work [282, 285, 84],
we set σ = 10% of the maximum sensor value. Besides the simulated noise, the probe
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accounts for ambient light, the predominant source of noise, as well by capturing a frame
without any active emitters and then subtracting it from the actual data measurement, taken
during clinical tests, prior feeding it into our model. Performance evaluation captures image
reconstruction quality, diagnosis accuracy, and speed. The next section provides details.

6.3.1 Experimental Design

Dataset

Similar to Chapter 3, we simulate light propagation into tissue at different light wave-
lengths, 690, 750, 800, and 850 nm, illuminating the tissue sequentially, using the physics-
based Toast++ software [221]. We collect training samples from synthesized tissues with
known optical properties and labels. A set of 2D images with various lesion sizes, shapes,
and positions is synthesized. In order to mimic real breast tissue optical parameters’, we
base the optical properties on realistic optical coefficient values [147, 245] as summarized in
Table 6.4. A total of 4000 sample data pairs (256-D × 4 vectors, 2D image, label) are used
to train and test our method. Each sample includes the collected measurement vectors, one
for each frequency, the ground truth image, and the diagnosis label. Training dataset size
is chosen as a compromise between training time and in-silico performance. We focused on
the diversity of simulated scenarios while also being mindful of computational resources.
While we note that in silico and phantom data can result in very large datasets, we focused
on the diversity of simulated scenarios and adopted a dataset with various lesions number,
size, and depth to emulate realistic conditions where the optical properties of the anomaly
and surrounding tissues were taken from available in vivo breast tissue experimental data.

Our DOB-probe(Chapter 3, Section 3.2.2) [229, 101] was used to collect real patient
data to test our method. Note that the wavelengths share variable overlap in the spectrum
(Fig. 3.2) [245], motivating further the need for orthogonal encoding. To train the transfer
learning module breast-mimetic phantoms, with known inhomogeneity locations, and DOB-
probe were used to collect measurements (Chapter.3).

Following the ethics and institutional review board approval protocol, clinical data were
collected from 9 participants diagnosed with breast tumors [230]. In a normal clinical pre-
screening exam, a breast is usually divided into four quadrants, and different measurements
are collected on each quadrant. Given that the used probe is in clinical trials [229, 226, 282],
patients with known cancer localization are considered, and sweeps over the lesion location
and the opposite healthy breast are collected. This step was essential to proving that the
technology we introduced works well with human tissue. For each patient, height, weight,
age, and gender, as well as details of the subjects’ breast cancer, briefly summarized in
Table 6.5, were recorded. Patients were placed in a supine position, and scans at multiple
points over the lesion location and healthy breast were collected. On average, four different
measurements (scans) were taken on each breast. Even though no reconstruction ground
truth is available for real-world data, it is invaluable to detect robustness and real-world per-
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Table 6.5: Summary of clinical data
Tumor Position Tumor size (cm) Tumor Type

Patient 1 Left Breast 1 × 0.8 × 0.7 BI-RADS 72.5 × 0.8 × 0.8
Right Breast 1.1 × 0.8 × 0.7 Benign

Patient 2 Left Breast 2.2 × 1.7 × 1.7 BI-RADS 4
Patient 3 Left Breast 1 × 1 × 1 Non-invasive ductal
Patient 4 Left Breast 2.5 × 1.7 × 3.5 BI-RADS 5
Patient 5 Right Breast 2.4 BI-RADS 4
Patient 6 Right Breast 2.3 × 2.2 × 1.5 BI-RADS 4
Patient 7 Left Breast 1.7 × 1.4 × 1.2 BI-RADS 5
Patient 8 Left Breast 1.6 × 0.8 × 0.8 BI-RADS 5
Patient 9 Right Breast 2.2 × 2.1 × 2.3 Invasive ductal

formance, with partial ground truth known from other modalities on the same patients. The
precise location, size, and type of the tumor lesion were determined via mammography, ul-
trasound, or biopsy. Note that these details were only used for model performance evaluation
and metrics calculation, while raw sensor signal only was inputted to the model. Another
advantage of our direct prediction approach is that the absence of pixel-wise ground truth
is less problematic compared to reconstruction based classification, as only the diagnosis
label is required.

Implementation

Models were implemented in the Keras TensorFlow framework and trained for 100 epochs
on an NVIDIA Titan X GPU. By optimizing the model’s performance on the validation
set, we set all hyper-parameters as follows: batch size to 16, learning rate to 10−4, optimizer
set to Adam, and initialization to Xavier. Early stopping was used if the validation loss
had not improved within 10 epochs. The in silico data was divided in a 80/10/10% train-
ing/validation/test split, and hyper-parameters β (6.5), α and D (6.9), and γ (6.6) were set
to 0.2, 0.5, 4 and 0.5, respectively. The fully connected units for the fusion branch were set
to 32 and 16 for l and l2, respectively.

Evaluation metrics

To quantify the models’ robustness, we look at (i) lesion localization error (Loc. Error); (ii)
peak signal-to-noise ratio (PSNR); (iii) structural similarity index (SSIM); and (iv) Fuzzy
Jaccard for reconstruction quantification, while the balanced accuracy (BA), F1 score (F1),
precision P, recall R, Matthews correlation coefficient (MCC), and confusion matrix are
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Ground Truth R1 R2 R3 R4 RFusion
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Figure 6.3: Qualitative reconstruction performance of absorption coefficients using the
FuseNet++ on in silico samples with varying ground truth lesion sizes, locations, and num-
bers. Our multi-spectral results (RFusion) show an overall superiority in terms of generally
improved background/foreground contrast and a better differentiation between lesion sizes
and lesion localization compared to per-frequency reconstruction results (R1 to R4) at wave-
lengths 690, 750, 800, and 850 nm, respectively.

reported for the classification task quantification.

BA = 1
2( TP

TP + FN
+ TN

TN + FP
),

P = TP

(TP + FP ) ,

R = TP

(TP + FN) ,

F1 = 2 P ∗ R

P + R
,

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

.

(6.11)

True positive (TP) is the number of correctly predicted samples as positive, while false
positive (FP) is the number of wrongly predicted samples as positive. False negative (FN)
is the number of wrongly predicted samples as negative, while true negative (TN) is the
number of correctly predicted negative class samples over the number of classes in the
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 Matthews Correlation Coefficients

Precision Recall 

F1 Score 

Balanced Accuracy 

Multi-Frequency

FuseNetSingle Freq FuseNet++ Raw-to-TaskConcat-All Raw-to-Task++

Figure 6.4: Quantitative diagnosis performance of different models when one vs multi-
frequency are used. Overall results show improved prediction performances in multi-
frequency models. Note the significant improvement when FuseNet is used compared to
a simple concatenation (Concat-All). Results using the FuseNet++ enforce the benefit of
feature space orthogonality. Raw-to-task++, in which all network capacity is dedicated to
the end task, shows an overall performance gain.
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Table 6.6: Quantitative results on in silico test dataset.Losses are defined in Section 6.2-
B; Loc.error: lesion localization error; PSNR: peak signal-to-noise ratio; SSIM:structural
similarity index; BA: balanced accuracy; F1: F1 score. †: value not supported by method,
‡: image reconstruction skipped.

Loss Loc. Error
(pixel, ↓)

PSNR
(dB, ↑)

SSIM
(↑)

Fuzzy Jaccard
(↑)

Runtime
(ms, ↓)

BA
↑

F1
↑LREC LCE LOP L

Single-Freq ✓ ✓ † 17.7 ± 21.9 19.1 ± 4.8 0.80 ± 0.05 0.60 ± 0.17 23 0.65 0.65
Concat-All ✓ ✓ † 20.4 ± 18.4 19.6 ± 6.2 0.73 ± 0.17 0.61 ± 0.18 28 0.63 0.65
FuseNet ✓ ✓ - 17.6 ± 23.3 20.2 ± 4.1 0.88 ± 0.05 0.62 ± 0.19 31 0.72 0.72
FuseNet++ ✓ ✓ ✓ 15.7 ± 12.7 21.2 ± 4.4 0.89 ± 0.03 0.64 ± 0.18 32 0.74 0.74
Raw-to-Task † ✓ - ‡ 15 0.74 0.72
Raw-to-Task++ † ✓ ✓ ‡ 15 0.77 0.75

prediction tasks. Recall quantifies the number of positive class samples properly identified by
the model, while precision measures the number of correct positive predictions made by the
model. BA, used when quantifying performance on imbalanced data, measures the average
accuracy obtained from all classes. MCC measures the quality of multi-class classifications
and is informative in cases of skewed class distributions.

For the computational cost at inference, we quantify the forward pass of the model,
measured in ms per example.

To evaluate the performance of our models, we contrast the results when using one
frequency with many frequencies in the FuseNet and the Raw-to-task model. We present
results on in-silico data and clinical data.

6.3.2 Results on Synthetic Data

Trained on the in silico data and tested on a separate test set of 240 images, we compare the
reconstruction and prediction performance of our FuseNet and the prediction performance
with the Raw-to-Task counterpart.

Joint Reconstruction and Diagnosis

Figure 6.3, illustrates reconstruction results on selected in silico samples with different
lesion sizes, numbers, locations, and depths. In order to offer clinicians more details, re-
sults based on each frequency separately (Ri) as well as results that use all frequencies
are shown, with the latter showing more consistent performance. The joint model success-
fully exploits the presence of the different frequencies and generally shows an improved
background/foreground contrast. For example, the difference in signature for 3 small but
proximate lesions is marked in different frequency results (R1 to R4) (row c), while a more
accurately reconstructed sphere size is provided by the fusion result RFusion in row (d).
Detecting heterogeneity in lesions is critical for correct treatment estimation given that it is
a proxy indicator of evolutionary pressure in the lesion, selecting for more resistant cancer
sub-populations. Table 6.6 presents the quantitative results of the ablation study, where
the contribution of different losses and modular choices of the architecture to model per-
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Figure 6.5: Diagnosis prediction confusion matrices when (A) one vs (B) multi-frequency
inputs are used. Note the improvement in accuracy of unbiased lesion classification (benign,
malign) vs healthy when multiple frequencies are used, as illustrated by the higher values
along the diagonal. Results of FuseNet++ highlight the benefit of encouraging orthogonality
in enhancing benign vs malignant separability while reducing healthy false negative. Raw-
to-task++ further improves separability at the expense of minimal false negative (2%).
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 Matthews Correlation Coefficients 

Balanced Accuracy Precision Recall 

F1 Score 

Single Freq FuseNet++ Raw-to-Task++
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Figure 6.6: Quantitative diagnosis performance when one vs multi-frequency are used on
clinical dataset. Overall results show improved prediction performances in multi-frequency
models compared to single frequency and indicate that image reconstruction is not necessary
for unbiased classification and can even lead to biased results. Note the marked improvement
when Raw-to-task++ is used compared to FuseNet++.

formance are quantified. Rows 1 to 4 highlight the benefit of using multi-frequency fusion
on the reconstruction task. A naive multiple frequencies concatenation will not necessarily
improve results, which agrees with the findings reported by Applegate et al.[11], illustrating
the impact of adding noisy dimensions on performances. Nonetheless, we see improved re-
sults for FuseNet. When fusion branch and LOP L are used jointly (FuseNet++), the features
contribution from each frequency is maximized in contrast to simple features concatenation
(Concat-All) at the price of a minimal computational increase (only 9%).

Prediction performance highlighted in Table 6.6 and Fig. 6.4 show an overall improve-
ment when more input frequencies are available, with a boost in performance when FuseNet
and FuseNet++ are used. Confusion matrices (Fig. 6.5-A,B) show a clear discrimination
between healthy and lesion features when more data, in the form of more frequencies, is
available. Further, improved benign and malignant discrimination is observed when feature
orthogonality is leveraged (Fig. 6.5-B) as well as a reduction in healthy false negative.
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Direct Prediction

In Figure 6.5, similarly to the joint model, the direct prediction model results using a single
frequency input (SF-DP) (Fig. 6.5-A) are contrasted with raw-to-task prediction results
using multiple frequencies as input (Fig. 6.5-B). A clear discrimination between features is
apparent when more data, in the form of multiple frequencies, is available, especially when
discriminating between healthy and lesion; the primary application in DOT-based screening
deployments. Raw-to-task model significantly reduces computational complexity (Table 6.6-
Runtime), enabling lower latency and higher throughput in real medical settings. Next, we
tested the contribution of individual loss function terms and architecture component on
overall diagnosis performance. Figure 6.4 shows the diagnosis performance on the test set
for the best value of γ and highlights the benefits of the feature orthogonality constraint
in breast cancer diagnosis, where tumoral and non-tumoral breast lesion differentiation is
challenging. Contrasting FuseNet++ and Raw-to-task++ (Fig. 6.4-6.5) illustrates perfor-
mance gain when all network capacity is dedicated to the end task rather than intermediate
ones.

6.3.3 Results on Clinical Data

Figure 6.7 presents the reconstruction performance on breast scans from patients diagnosed
with breast tumors. The probe is placed close to the likely location of each identified lesion,
and a set of scans are made. The opposite healthy breast, for each patient, is scanned as
a contrastive reference. Weak labels were attributed to each set of scans regardless of the
probe’s closeness to the tumor localization. As a partial ground truth, patients underwent
mammography and/or Ultrasound scans to obtain estimated lesion dimensions and biopsies
to confirm tumor type. While lesions are accurately reconstructed in most cases, as shown
in Fig. 6.7, with clear foreground and background discrimination in RFusion as well as R1

to R4, healthy cases, capturing only background readings, highlight a better robustness of
orthogonal fusion, RFusion, to noise.

Figure 6.6 reports quantitative prediction performance on single vs. multi-frequency
data and highlights the overall improved performance when more frequencies are used.
Note the biased classification results when image reconstruction supervises the prediction
task, FuseNet++, compared to direct prediction from raw data, Raw-to-task++.

The confusion matrix, Fig. 6.8, shows improved discrimination between healthy and
lesion features with the raw-to-task model. If we consider that a key feature of the recon-
struction based classification is the interpretable angle of such results, we note that the
raw-to-task model has the added advantage, in addition to improved performances, that
it omits potentially confounding explanations, where reconstruction artifacts can mislead
experts. Indeed, in recent work on explainable artificial intelligence, such confounding ex-
plainers were identified as a roadblock [131]. Table 6.7 reports raw-to-task model diagnosis
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Figure 6.7: Qualitative reconstruction results in clinical patients with benign and malignant
tumors. Approximate lesion sizes and locations were obtained with joint modalities (details
in Table 6.5). Note, in (A), the ability of FuseNet++ to reconstruct lesions, while, in (B-F),
the robustness of orthogonal fusion to noise (RFusion) compared to (R1 to R4) (healthy row)
is highlighted. 106



Table 6.7: Quantitative results on clinical dataset using Raw-to-Task++
Precision Recall F1-score Number of scans

Healthy 0.71 0.65 0.68 32
Benign 0.11 0.5 0.18 2

Malignant 0.78 0.68 0.73 44
Weighted-Avg 0.73 0.66 0.69 78
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Figure 6.8: Clinical data diagnosis prediction confusion matrices when (A) one vs (B)
multi-frequency inputs are used. Note the improvement in accuracy of lesion classification
in the Raw-to-Task model, despite the imbalance in the data.

performances on each data class to highlight the clinical data imbalance compared to a
balanced training data scheme.

In Figure 6.9, we illustrate some failure cases at the limit of detection capability, with
false positives (Fig. 6.9-A,B, marked with red triangles) and false negatives (Fig. 6.9-C).
For screening purposes, false negatives are more critical; false positives would eventually
be resolved by follow-up diagnosis. Note that the discriminatory power of the detection is
limited by tumor depth, shape, and noise level. It may require several scans over breast
tissue in order to be captured. The failure cases here are from a single scan measurement
only, not aggregated

Although the transfer learning network, trained using phantom data, bridges to some
extent the disparity between in silico (training) data and real-world data, its performance
on clinical data reveals that it can still be misled by significant real-world variations, such as
differences in illumination and noise levels. Additionally, since each tumor is unique, tumor
heterogeneity can result in distinct acquisition signatures that may not be present in the
training data. These failure cases highlight the need for more clinical data (patient data) to
better train the transfer learning module. Current results present a proof of concept, where
validation on larger and more diverse datasets is still required.
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Figure 6.9: Examples of reconstruction failure cases. (A,B) highlight false positive recon-
struction cases, marked with red triangles, that remain less critical than false negative cases
where a tumor is missed (C). Note the noisy reconstruction in R1 to R4, suggesting a quite
noisy input signal.

6.3.4 Effect of Lesion Localization on Accuracy

We quantify the effect of lesion location on lesion detection accuracy in Figure 6.10, where
we classify whether a lesion is present or not. The penetration depth into breast tissue is
approximately half the distance between the source and detectors [236], ∼2.5 cm for our
DOT probe. Our results confirm the expected reduction in lesion detection accuracy as the
lesions decrease in size or increase in depth.

6.4 Discussion

In order to be an effective tool in clinical settings, a clinician’s trust is essential. A com-
bination of good performance, as quantified by accuracy and other metrics, and an in-
terpretable model increases trust. Neither deep learning based reconstruction nor classical
iterative algorithms provide a path from pixel to sensor value in a way that a clinician can
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Figure 6.10: Effect of lesion depth and radius on model prediction accuracy. Note how the
more superficial (closer to the skin surface) and larger lesions are more accurately detected.

easily understand. While a reconstructed image may seem to increase interpretability, it
is typically not created in an interpretable way and is not necessarily causally related to
the classification decision. Omitting the reconstructed image, while increasing performance,
would not therefore reduce the trust a clinician has in our direct to task contribution.

Cancer treatment regimens, especially for treatment-resistant lesions, are shifting to-
wards adaptive or dynamic treatment models, such as the recent game theory-driven treat-
ment of resistant prostate tumor patients [268]. However, these require accurate, unbiased,
and specialized task-specific models. Our raw-to-task approach can be extended to develop
models specializing in multiple tasks, not just diagnostics. Examples are prediction of lesion
type, progression, localization, and tumor heterogeneity, all the way to successful treatment
regimens ahead of time, paving the way for adaptive personalized medicine and disease
management [2].

A key focus of this work was to leverage orthogonality in mitigating confounding factors
induced by multi-frequency fusion. However, as noted as early as 1936 by Fisher et al.[86],
orthogonal representations need not be informative, and thus, in a deep learning setting
can also lead to orthogonal or independent encodings that are less or uninformative, as
we encountered in our own experiments. The heterogeneity of lesions, especially malignant
ones, ensures that no two malignant lesions will likely be the same, thus driving the need
for diagnostic capability that focuses on identifying the diverse lesion types, not necessarily
the reconstructed image.
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6.5 Conclusion

We introduce deep learning based multi-frequency orthogonal fusion for diffuse optical to-
mography with end-to-end classification of malignancy of breast lesions. Orthogonal fusion
of multi-frequency improved both image reconstruction quality and accuracy of tumoral and
non-tumoral breast lesions’ discrimination. In addition, we show that raw-to-task learning
can improve classification without requiring reconstruction in a real time setting.
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Chapter 7

Conclusions, Limitations, and
Future Directions

7.1 Thesis Summary

Medical imaging is an invaluable resource in medicine as it enables scientists and physi-
cians to peer inside the human body and provides a wealth of information indispensable
for understanding, modelling, diagnosis, and treatment of diseases. Despite their impressive
advancements and their greater applicability, several improvements in medical imaging can
still be envisioned, such as reducing acquisition complexity and processing time to increas-
ing clinical accuracy and throughput, particularly given that total waiting times for medical
exams have at least doubled over the last two decades [174]. Furthermore, improving emerg-
ing less invasive imaging modalities and the deployment of biomedical imaging in low power
handheld devices can potentially reduce the burden on the healthcare system by prioritizing
more advanced or invasive diagnostics for acute cases, enable quick monitoring of patients,
and facilitate personalized medicine.

Throughout the presented studies in this Thesis, the emphasis was on developing novel
and efficient deep learning algorithms specifically tailored for DOT based breast cancer
screening, effectively addressing the ill-posed and highly nonlinear nature of the DOT in-
verse problem in real-time and resource constrained imaging device scenarios. Chapter 2
reviewed the literature on deep learning based methods in the domain of biomedical image
reconstruction in general and observed that several studies now report quality improvements
when compared to conventional reconstruction techniques, especially in the context of noisy
and limited data, and highlight how the field is moving toward producing higher quality
images and accurate diagnosis given the most constrained resource budget, scanning time,
scanner complexity, and lowest power consumption.

Chapter 3 presents the first published work to evaluate the performance of DL-based
method in DOT image reconstruction. While trained on in silico data, validation was con-
firmed on real-word phantom collected data, subject to sensors non-ideality and noise, and
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demonstrated improved performance compared to SOTA conventional approach. To over-
come the challenge of limited available data in DOT, data augmentation and transfer learn-
ing, tackling domain shift, were applied, with success, in Chapter 3 and Chapter 4. Deep
models were trained on large synthetic datasets generated using physics-based simulations
and fine-tuned for the specific DOT signal. This approach increased the diversity and size
of the training dataset, leading to improved generalization and robustness of the proposed
DL models.

Regularization techniques were incorporated in Chapter 4 and Chapter 5 to improve
the quality and accuracy of reconstructed images, particularly in limited-angle settings. To
improve lesion localization, in Chapter 5, we were the first to utilize distance transform
based regularization to promote spatial-wise similarity as well as attention mechanisms to
focus on important regions and features, enhancing the accuracy of image reconstruction.

A pathology-based optical signature was proposed in Chapter 6, where a direct clinical
prediction was learnt from the raw signal whilst skipping the image reconstruction model.
While multiple frequencies can be combined to optimize signal penetration and reduce
sensitivity to noise, they share some overlap in terms of the absorption spectra of the major
tissue constituents in the red-near infrared range. This potential overlap enables the capture
of common information and correlation. To enable better differentiation and quantification
of different tissue components and improve both image reconstruction and the accuracy
of discriminating tumoral and non-tumoral breast lesions, an orthogonal fusion of multi-
frequency data was proposed.

To assess the performance of the algorithms, we employed various image quality as-
sessment metrics such as PSNR and SSIM, as well as evaluated computational complexity.
Beyond using standard metrics, we emphasized the critical importance of clinical outcomes
by focusing on domain-specific metrics. The evaluation of our methods considered patient
diagnosis outcomes, which remain the most valuable measure in the medical imaging do-
main. We compared the reconstructed images with their in-silico counterparts and evaluated
their generalization to real acquired signals in phantom and clinical settings, subject to real-
world conditions. The accuracy of tumor and non-tumor breast lesion discrimination was
assessed for both the classical and direct prediction pipelines.

7.2 Limitations and Future Direction

The proposed deep learning algorithms have demonstrated notable improvements in both
speed and accuracy compared to conventional methods for DOT image reconstruction and
classification tasks. One key advantage of deep learning-based algorithms is their ability
to leverage implicitly learned feature encodings from the sensor data. However, some open
problem in DL remain, namely the requirement for a substantial amount of data to ensure
proper generalization, the time-intensive nature of training processes, and the difficulty
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of determining optimal hyperparameters for the networks, particularly in multi-objective
optimization settings [175]. Here, we summarize selected challenges of high interest, together
with promising future directions in this field.

Class imbalance: Medical datasets often exhibit imbalances in the number of samples
between different classes and various disease categories, leading to biased training and sub-
optimal results, especially for the minority class. The imbalanced distribution of samples
across different classes can lead to biased model training and a tendency to favor the ma-
jority class, neglecting the minority class. Potential approaches to tackle class imbalance
include data augmentation techniques to create synthetic samples and exploring techniques
like transfer learning. Additionally, using class weights during model training can also help
alleviate the impact of class imbalance [23, 49]. Careful evaluation of the model’s perfor-
mance using appropriate metrics [206] can provide a more comprehensive understanding of
its effectiveness in handling class imbalance and its overall predictive capability.

Generalization to out-of-distribution data: DL-based DOT models presented in
this thesis are trained on in-silico datasets and therefore may not fully capture the wide
range of variations and complexities present in real-world scenarios. As a result, when
exposed to data that significantly differs from the training distribution, for example if a
specific pathology or rare feature is underrepresented or not adequately captured in the
training data, or if the data collection exhibits diverse clinical practices, variation in clinical
devices or difference in data population, the performance of deep learning-based methods
may be degraded. Due to ethical and resource constraints, the real-world patient based
dataset size remains limited, and real-world tumor heterogeneity [28] can lead to markedly
different acquisition signatures that are unlikely to be present in the simulated training
data. Increasing clinical dataset size and testing on carefully curated benchmarks can be a
potential remedy to better test DL-based DOT methods and their generalization to out-
of-distribution data, although increased data set size does not necessarily ensure improved
unbiased performance on minority cases which can have important medical implications.
Another trend present in recent art is moving towards self-supervised learning [153] and
unsupervised [311] approaches. Additionally, exploring domain generalization techniques
like learn domain-invariant features [95], learning from Fourier Transform phase informa-
tion [275], or improving shortcut learning and feature suppression by measuring feature
culpability [26]. Hybrid learning, the concept of reconstructing an image using a secondary
modality as prior [187], and continual learning, adapting to changing environments and
learning from new data while retaining previous knowledge [71, 199], show promise in this
regard as well.

Hallucination: Deep learning models can be prone to artifacts in the reconstructed
image. Hallucinations can be especially problematic when dealing with sparse or noisy
input data. Although hallucinations, within the context of synthesizing natural images,
may be deemed acceptable and even desirable for certain applications such as art, gaming,
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and entertainment, particularly in the realm of generative AI, where the emphasis is on
artistic, imaginative, or visually pleasing elements rather than strict realism [190, 194], it
is crucial to recognize the potential risks in other critical domains. Specifically, in medical
applications like tumor diagnosis, where hallucinations can lead to erroneous diagnoses and
misleading interpretations [62], and traditional error maps can be insufficient for visualizing
and detecting specific hallucinations [35]. The real-world consequences of misdiagnoses can
be substantial, impacting patient outcomes and healthcare decisions. While this remains
an ongoing challenge, one potential solution is to shift focus away from interpretability by
omitting intermediate results, as demonstrated in end-task-specific learning, as proposed in
Chapter 6. The potential for reduced trust by the end user is offset by ‘trust by results’ : if
a diagnosis is more accurate without a reconstructed image, is the image needed at all?

Benchmarks and reproducibility: While deep learning methods in DOT show promise,
the lack of open benchmarks and open-source code hinders the evaluation and reproducibil-
ity of results. There is a growing need for researchers to embrace open science practices,
which encompass encouraging the open sourcing of code [155] and datasets linked to their
studies, all while preserving patient privacy [128, 188]. Additionally, creating standardized
benchmarks and evaluation metrics can accelerate fair comparisons between different meth-
ods and promote advancements in the field [168].

Interpretability and confidence estimation: Deep learning models are often con-
sidered black boxes, which limits their adoption in medical imaging applications. Future
research can focus on developing methods to enhance the interpretability and explainability
of deep learning-based DOT models. This involves visualizing and understanding the learned
representations, attributing the model’s decision-making process, and providing confidence
measures or uncertainty estimates to enhance the trustworthiness of the results. Models
based on the iterative unrolling paradigm show promise in this regard [177, 303]. Being
able to understand and trust the model’s decisions is essential in clinical decision-making
and patient care [135, 136]. Uncertainty estimation methods can also be used to generate
additional confidence information for end users [54, 214].

Computational complexity: Deep learning frequently require computationally pow-
erful hardware (GPU) to provide real-time results. Network pruning and sparsifying, re-
cently proposed for computer vision tasks [6, 4, 126], presents a promising direction yet to
be explored on image reconstruction tasks in order to allow DL-based model processing on
CPU and mobile devices. This will be of great interest to emergent mobile scanners (e.g.,
DOT [228], US [92], CT [212], MRI [113]). Reducing the encoding size in bits of network
weights without altering the quality of the prediction has been demonstrated on several
reference deep learning image processing networks [239]. A reported decrease in training
time of 30-60% is only one benefit. By reducing network weights from 64 or 32 bits to 8
or smaller (i.e. weight quantization) the network requires a smaller memory footprint. As
a result, networks that are, at the time of writing, too large to fit on a single GPU can

114



be reduced to fit on a single GPU. Conversely, networks too large to be deployed on edge
devices (handheld scanner, mobile phones, etc.) can become easily deployable in the field
without changing their architecture.

Enhanced architecture design: Combining the ideas presented in this thesis with
the latest advances in architecture design allows for further improvements and offers an-
other avenue to enhance our contributions to breast cancer prescreening using DOT. For
instance, neural architecture search (NAS) enables an automated design of neural network
architectures tailored to the specific tasks [288]. The application of NAS ensures that the
architecture is finely tuned for modality’s unique requirements, especially in the context of
resource-constrained and energy-sensitive [165], thereby maximizing its potential in med-
ical imaging. Another possible suggestion is to leverage the diffusion process, which can
capture the spatial dependencies and improve the quality of reconstructed images [61, 304].
Moreover, Transformer-based architectures, well-suited for modeling temporal dynamics and
handling multi-modal information, hold promising prospects, particularly in light of the re-
duced data-hungry constraint[46, 77]. Transformers’ attention mechanisms enable them to
effectively capture complex spatial dependencies and long-range interactions within the
data, leading to potential improvements in the overall diagnostic performance.

Multimodal data fusion: Joint multi-modal image reconstruction, such as DOT/CT
[21] and PET/MRI [257], has been proposed on several iterative approaches to take ad-
vantage of both imaging modalities and led to improving the overall imaging performance,
especially avoiding the spatio-temporal artifacts due to scanning with different devices at
different times and positions. The idea relies on leveraging the information provided by
feature similarity between multiple modalities and complementary information for more ac-
curate and robust end task. While this direction has great interest, it has only just begun
to receive consideration [65, 154, 187, 311] and remains a direction for further exploration.
Another option is to guide the training of an inferior modality, such as DOT, by a superior
modality like CT [167]. Collecting suitably calibrated and registered data on hybrid multi-
modality imaging systems remains a key challenge as well. Furthermore, language models
present a unique opportunity for expanding multi-modal learning by effectively leveraging
existing medical image and text report datasets [202, 264]. This avenue holds great promise
in enhancing the fusion of information across modalities and represents a novel direction
for exploration.

Adaptive sampling: Attention driven sampling received increasing interest recently
especially in a limited data representation context. While adapting the sampling to the re-
construction algorithm showed improved image quality compared to conventional sampling
strategies [134], it could be computationally more expensive with uncertain convergence
behavior. The development of efficient sampling learning algorithms would be a promising
research direction. Recently proposed neural fields-based models open new perspective to-
wards adaptive sampling by moving from classical discretization of the object area/volume
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into pixels/voxels at a pre-determined resolution, for modelling diffuse light propagation, to
continuous encoding of the optical parameters. This transition opens up new possibilities
for adaptive sampling by enhancing the spatial resolution of the reconstruction [207]. This
direction presents an exciting opportunity to advance adaptive sampling techniques in the
realm of diffuse optical tomography.

Domain specific metrics: The majority of performance evaluation metrics are often
oriented towards computer vision tasks, which can render them inadequate for the complex
landscape of biomedical imaging. These metrics may lack the ability to capture the true
diagnostic accuracy, improved explainability [135], enhanced patient management, efficient
triaging, cost-effective screening [167], and more that are integral to the medical domain.
We advocate a shift toward medical-oriented evaluations [1, 2, 264] given that reconstructed
images are primarily used for a specific diagnosis or treatment purpose. While such measures
may be expensive, especially if they require human expert feedback, they will be critical in
creating algorithms that can advance the biomedical imaging practice.

It is fascinating to witness how the progress in deep learning has a broad impact across
various applications and disciplines, ranging from domain generalization and explainable AI
(XAI) to continual learning, neural architecture search (NAS), and more. These advance-
ments hold the potential to greatly enhance research on DOT reconstruction and analysis
beyond the scope of this thesis. Moreover, we believe that the contributions made in this
thesis will serve as a source of inspiration for further extensions and innovations in other
application areas as well. By leveraging these cutting-edge techniques and insights, we an-
ticipate a significant advancement in the field of DOT and its potential to positively impact
numerous domains.
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