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Abstract 

In this thesis, I explore legged agility with a primary focus on controlling external ground 

reaction forces produced by our legs. I conduct empirical studies and develop models to 

understand how we control external forces and develop innovative means to measure 

them. My research consists of four aims, each contributing to our understanding of human 

performance and driving potential advancements in sports, robotics, and rehabilitative 

technologies. In Aim 1, I characterize the control of leg external forces (n=14). To achieve 

this, I construct a mechanical system and a real-time visual feedback system to capture 

force magnitudes and positions exerted by my leg. Using system identification, I gain 

insights into the control of leg external forces across different magnitudes and positions. 

In Aim 2, I examine the effects of neuromuscular fatigue on our nervous system's capacity 

to control leg external forces (n=18). I hypothesize that heightened fatigue results in a 

decrease in both the responsiveness and accuracy of leg force control. My results reveal 

a significant reduction in mean maximum force production, leading to a substantial decline 

in my leg force control responsiveness. These findings enhance our understanding of how 

fatigue influences agility and may guide strategies to sustain performance in the presence 

of fatigue. In Aim 3, I set out to understand the limit of vertical jumping by studying the 

external forces generated during jumping (n=10). I develop physics-based models of 

varying complexity to predict external forces during vertical jumps and identify the simplest 

model that accurately predicts human-like forces. This model, capable of simulating jumps 

from different depths, highlights the significance of force-velocity properties and maximal 

force as limiting factors for jump height. In Aim 4, I develop a novel approach to estimate 

the external forces generated by each leg during vertical jumps. Using a transformer-

based neural network and video data (n=30), I demonstrate that the model accurately 

predicts each leg's external forces, offering a new tool for measuring jump height and 

forces from video. My work aims to make biomechanical analysis accessible, a task 

typically confined to laboratory settings. In summary, this thesis investigates the control of 

leg external forces, the effects of fatigue, and the development of predictive models. It 

underscores the potential of machine learning in biomechanical analysis, contributing to a 

broader understanding of human performance and paving the way for new technological 

advancements 

Keywords:  legged agility; ground reaction forces; neuromuscular fatigue; vertical 

jumping; pose estimation; mathematical modeling; biomechanics    
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Chapter 1.  
 
Introduction 

1.1. Agility  

Our bipedal capabilities are remarkable. The ability to execute a jump, maneuver a swift 

pivot, or tackle an obstacle displays the intricacy of our movement. We thrive in diverse 

environments like bustling city sidewalks and rugged mountain trails. This versatility is a 

testament to our evolution as a species and the biomechanics and neurophysiology that 

underpin our movement. 

The Oxford Dictionary defines agility as the ability to “move quickly and easily” but leaves 

‘quickly’ and ‘easily’ undefined [1]. Sports scientists define agility as the ‘ability to change 

direction rapidly,’ a definition criticized for omitting crucial aspects of agile performance 

[2]. Such elements include swift motor control in response to stimuli, cognitive abilities like 

visual scanning and decision-making, physical strength and conditioning, and 

biomechanical skills necessary for quick changes in direction across various terrains [2]–

[4]. A more comprehensive definition may be: “a rapid whole-body movement with change 

of velocity or direction in response to a stimulus” [2]. In this thesis, I frame agility as swift, 

controlled, and deliberate redirection or reorientation of the body in response to an 

environmental trigger. 

Agility is integral to movement-based excellence. It forms a key aspect of numerous 

athletic events and team sports, including badminton, squash, basketball, soccer, and 

rugby. Players demonstrate rapid footwork and abrupt directional changes in these 

contexts while maintaining balance on the court or field [5]. Coaches often assess an 

athlete’s agility using specific movement tasks, such as the Four Corners, Hexagon, and 

5-0-5 Agility Test [6]. These tasks demand quick, accurate navigation around lines or 

pylons. Speedier completion signals higher agility [5]. Athletes are also judged on their 

sprint speed on a track [7], jumping ability [4], and time-constrained navigation of obstacle 

courses [8]. These assessments hint at an individual’s agility.  

Excelling in sprinting, high jumping, and quick direction changes requires our legs to 

generate controlled external ground reaction forces within a specified time frame. Our 

https://paperpile.com/c/hr6y2J/hXMPE
https://paperpile.com/c/hr6y2J/eIz5L
https://paperpile.com/c/hr6y2J/eIz5L+o7IOa+xQdF0
https://paperpile.com/c/hr6y2J/eIz5L+o7IOa+xQdF0
https://paperpile.com/c/hr6y2J/eIz5L
https://paperpile.com/c/hr6y2J/YIbMg
https://paperpile.com/c/hr6y2J/wHhbM
https://paperpile.com/c/hr6y2J/YIbMg
https://paperpile.com/c/hr6y2J/7oI8g
https://paperpile.com/c/hr6y2J/xQdF0
https://paperpile.com/c/hr6y2J/ggNP4
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nervous system must control leg external forces under environmental and physiological 

factors, including fatigue. Specifically, our nervous system must control the external 

forces’ magnitude and positions. This control of external forces is a critical component of 

agility, illustrating the vital role of forces in physical performance. 

The li’its of our nervous systems' control of leg external forces (Aim 1) and the changes in 

control when our muscles become fatigued (Aim 2) are questions I explore in this thesis. 

Another aspect of my research is studying what restricts our ability to generate larger 

magnitude external forces in constrained time frames when jumping (Aim 3). Finally, 

developing new technologies that leverage machine learning to estimate external forces 

(Aim 4) is my final avenue of investigation.  

This thesis begins a journey where I explore the subtle interplay of forces and control that 

underpin our visible agility. In the process, I develop mathematical models and novel 

machine-learning tools that enable an intimate exploration of kinetics. As I unveil the 

mechanisms that transform our bodies into skillful performers, I aim to provide insights 

into the extraordinary capabilities of the human body and showcase technologies that can 

help us measure movement and improve our lives. By studying leg external force control, 

my research strives to contribute to the broader understanding of human performance and 

pave the way for advancements in sports, robotics, and rehabilitative technologies. 

1.2. Leg external ground reaction forces 

Our legs often play the role of a primary interface with the ground in our engagement with 

the environment, generating external forces that dictate our movements. The forces that 

our feet apply to the ground are reciprocated back, pushing against our bodies and 

propelling our center of mass (Figure 1-1) [9]. Control of this reciprocating external force 

is vital in agility-demanding activities such as high jumps [10], fast running  [11], or quick 

alterations in movement direction [12]. These external forces are vector quantities, 

requiring meticulous control for agile performance. Throughout this thesis, I will use the 

term ‘force-magnitude’ to refer to the control of the magnitude of the vertical external 

ground reaction force and ‘force-position’ to denote the location where this force is applied 

to the ground via the foot contact point or center of pressure. Generating a larger vertical 

force magnitude within a specific timeframe can augment performance in certain 

movement activities. Concurrently, a rapid shift in force position can modify the resultant 

https://paperpile.com/c/hr6y2J/AEXsF
https://paperpile.com/c/hr6y2J/7buHx
https://paperpile.com/c/hr6y2J/3lXNv
https://paperpile.com/c/hr6y2J/imEGh
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external force vector acting on our bodies, facilitating longer jumps [13]  or faster body 

reorientations in gymnastic maneuvers  [14]. 

Effective control of both force magnitude and force position is critical to agile performance 

[15]. Our nervous system controls muscle forces, which, in turn, controls the resultant 

external force vector under our legs. However, before the nervous system comes into play, 

our body’s inherent mechanical properties, or preflexes, provide an initial response to 

changes in force or position [16]. These preflexes, found in our muscles and tendons, 

react within a few milliseconds, an order of magnitude faster than neural reflexes, serving 

as our body’s first line of control against unexpected changes [17]. While preflexes are 

faster than the reflexes controlled by our nervous system, they are less adaptable, 

responding in a fixed way based on the physical properties of the muscle or tendon. In 

contrast, reflexes can be adjusted based on the specific situation or task. 

The crucial role in governing the external forces generated by our legs falls to our nervous 

system, working in tandem with preflexes. This collaboration operates through an intricate 

network of sensors and feedback mechanisms that align our limb positions and manage 

the forces our muscles generate. How our body interacts with its environment is informed 

by exteroception, our sensitivity to external stimuli, and proprioception, our self-awareness 

of body and joint movements and positions. Combined with the swift response of preflexes 

and the adaptable nature of reflexes, this understanding empowers our nervous system 

to form suitable forces for various movements [16]. Acting as our body's central controller, 

the nervous system collaborates with preflexes to guarantee quick and effective 

responses, significantly enhancing agility [18]. 

In any leg configuration, the muscles and the resultant joint torques in our legs control the 

external forces generated on the ground [19]. When our muscles contract and generate 

force, the force acting on a moment arm results in a joint torque. When our foot makes 

contact with the ground, this gives rise to external force vectors at the point of contact with 

our foot and the ground. For instance, in a static posture like standing upright, our feet 

exert force against the ground to maintain balance, with the external force vector 

manipulated to help support this equilibrium [20], [21]. To enable dynamic movement, the 

nervous system uses feedback mechanisms to generate suitable muscle forces and joint 

torques with appropriate external forces to allow desired movements.  

https://paperpile.com/c/hr6y2J/FrZlC
https://paperpile.com/c/hr6y2J/eaCFV
https://paperpile.com/c/hr6y2J/YmunK
https://paperpile.com/c/hr6y2J/dL18
https://paperpile.com/c/hr6y2J/RzzI
https://paperpile.com/c/hr6y2J/g3rVg
https://paperpile.com/c/hr6y2J/LovJ5
https://paperpile.com/c/hr6y2J/hQ4J+vmJp
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Feedback serves as a crucial component of the central and peripheral nervous system. 

Sensory signals originate from muscle spindles and force sensing from Golgi tendon 

organs [22], [23]. Activated during muscle contraction or passive stretching, these sensory 

receptors, including muscle spindles and Golgi tendon organs, transmit feedback signals 

via spinal mono-and polysynaptic pathways. This process modulates the commanded 

neural activity and the mechanical output of the muscle, such as force, stiffness, 

impedance, and work [24]. One can perceive this control process as a closed-loop control 

system [25]–[27]. However, inherent delays in the sensorimotor control system may limit 

the speed at which an individual can sense and respond to a stimulus, potentially curtailing 

the speed and accuracy of leg external force control. 

 

Figure 1-1. Illustration of the external ground reaction force vector and its components. 
The diagram highlights three orthogonal force magnitudes moving in 
vertical, anterior/posterior, and medial/lateral directions, complemented by 
two perpendicular force positions oriented in anterior/posterior and 
medial/lateral axes. 

https://paperpile.com/c/hr6y2J/CWWc1+zO4hr
https://paperpile.com/c/hr6y2J/MDJRZ
https://paperpile.com/c/hr6y2J/Gk0wn+lYwpm+lKsRA
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1.3. Limits to agility imposed by our motor control system 

Information transmission in nerves and muscles is slow, limited by a maximum conduction 

velocity [28]. For instance, when you push your foot against the ground, the cutaneous 

afferents from the leg provide exteroceptive information about the onset of stimuli, such 

as ground pressure. This triggers a feedback response from the sensorimotor system 

(Figure 1-2). The minimum time required to generate peak muscle force at the ankle 

between the stimulus and response is around 120ms, equivalent to when your foot is in 

contact with the ground while sprinting [9]. The conduction velocity in muscle fibres 

depends on several factors, such as the diameter of the fibre, the temperature, and the 

type of muscle (fast twitch or slow twitch). On average, the conduction velocity in human 

skeletal muscle fibres ranges from about 3 to 5 meters per second. However, in larger 

motor neurons that innervate muscles, the conduction velocity can be much faster, up to 

70-120 m/s, due to myelination, which speeds up the conduction of the electrical signals 

along the neuron. [29], [30] 

Sensorimotor delays can significantly impact the control of leg external forces. In a muscle, 

the response time between the onset of a stimulus and the peak muscle force is known 

as the total delay, which comprises several component delays. These component delays 

include sensing delay, nerve conduction delay, synaptic delay, neuromuscular junction 

delay, electromechanical delay, and muscle force generation delay [31], [32].   

The sensing delay, the first component delay, is the time from the onset of the stimulus to 

the generation of an action potential in a sensory receptor at the foot. The action potential 

is transmitted along the sensory and motor nerve fibres, known as the nerve conduction 

delay, which is proportional to the signal's travel distance [31]. The signal then transfers 

from the sensory nerve fibre to the motor nerve fibre at the synapse in the spinal cord, 

referred to as the synaptic delay. From the motor nerve fibre, the signal transfers to the 

muscle fibre at the neuromuscular junction in the muscle, known as the neuromuscular 

junction delay. Upon reaching the muscle, the time taken for the action potential to be 

conducted along muscle fibres and to activate molecular mechanisms involved in cross-

bridge formation is called the electromechanical delay. Once the muscle begins to 

contract, a force generation delay is associated with the time to peak force. Muscle force 

generation delay can be attributed to several factors. This includes the time it takes for the 

action potential (nerve signal) to propagate along the motor neurons, the time it takes for 

https://paperpile.com/c/hr6y2J/fa1bM
https://paperpile.com/c/hr6y2J/AEXsF
https://paperpile.com/c/hr6y2J/vbot+NxbF
https://paperpile.com/c/hr6y2J/78kdo+F3vVB
https://paperpile.com/c/hr6y2J/78kdo
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calcium ions to be released and bind to the contractile proteins within the muscle fibres, 

and the time it takes for the cross-bridges between actin and myosin filaments to form and 

generate force [31]–[33]. 

Component delays play a crucial role in constraining the speed of muscle force generation, 

while intrinsic muscle properties can constrain the magnitude of force produced. The 

primary function of a muscle is to generate force, serving as an actuator. Ideally, an 

actuator should be capable of producing variable force magnitudes and seamlessly 

transitioning between different force levels, irrespective of its state. However, muscles 

deviate from this ideal scenario as they possess intrinsic properties that, alongside 

sensorimotor delays, introduce and limit the instantaneous generation of force, depending 

on the muscle's state. These intrinsic properties include the force dependency of the 

muscle on properties such as excitation and kinematic variables like muscle velocity and 

length [34]–[36]. Additionally, muscle-tendon characteristics and the physiological 

properties of the muscle itself further contribute to the limitations in force generation. 

 

https://paperpile.com/c/hr6y2J/F3vVB+78kdo+1jLB
https://paperpile.com/c/hr6y2J/kwOU+9rLR+cYFq
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Figure 1-2  The nervous system plays a crucial role in controlling the leg's external 
ground reaction force vector by forming a closed-loop control system. This 
system involves transmitting commands to muscles and receiving 
feedback from sensors. Feedback mechanisms include force feedback 
from the Golgi tendon organ and length and velocity feedback from muscle 
spindles, which travel along the peripheral and central nervous systems. 
Subsequently, appropriate neural commands are sent to activate the 
muscles, producing torques and generating external force vectors. The 
capability to control and generate these external force vectors is 
constrained by the functional capacities of the nervous system and the 
muscle actuators that generate joint torques. 

Muscle is composed of muscle fibres, and a bundle of these fibres innervated by a single 

motor neuron is known as a motor unit. When a motor unit receives a neural signal 

resulting in an action potential (depolarization of the cell membrane), all muscle fibres 

within the motor unit become excited (depending on the external load, the muscle may 

shorten). Muscle force depends on the number of excited motor units. Maximal contraction 

occurs when all motor units are excited, realizing the muscle's maximum force potential 
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[37]. Motor units can be large, containing many muscle fibres, or small, with few fibres. 

Small motor units tend to be composed of slow-twitch fibres (designed for long-duration 

motion and slow to fatigue), and large motor units consist of fast-twitch fibres (for quick, 

powerful movements but prone to rapid fatigue) [37].  

The proportion of slow and fast-twitch motor units determines muscle force dependence 

on muscle velocity. As the muscle shortens and the shortening velocity varies, the 

muscle's force depends on this velocity. As muscle velocity increases, the muscle 

produces less force until it reaches a maximal velocity (Vmax), generating no force [37].  

The force a muscle can generate also depends on its length. Experiments on isolated 

muscles suggest a parabolic relationship between force and muscle length; an optimal 

muscle length maximizes the force, and deviating from this optimal length results in a 

decline in muscle force [37], [38]. Muscles connect to bones via a spring-like tendon, 

which, like a spring, exerts more force as its length increases. The tendon's force-length 

relationship is commonly considered first-order  [39]. Lastly, muscle force depends on the 

muscle's material properties, with passive force produced as the muscle progressively 

stiffens when it lengthens [37]. This passive stiffness can increase exponentially as the 

muscle lengthens, but the passive properties of the muscle can vary depending on its 

function [38], [40]. Taken together, these intrinsic properties of muscles limit the force a 

muscle can generate and slow the rate at which muscle force is generated, as it cannot 

be generated instantaneously. 

1.4. Neuromuscular fatigue  

Muscle fatigue is a type of perturbation to the nervous system that can impact force control 

and lead to widespread changes in movement performance. When someone is fatigued, 

sensorimotor control is temporarily impaired, often resulting in modifications in leg stiffness 

and step characteristics [41]. This fatigued state may also prolong muscle reaction time, 

slowing the response to stimuli  [42]. At the same time, muscular activation tends to 

decrease, undermining the overall strength and reactivity of the muscles [43]. Changes 

such as altered proprioception, distorting the body's perception of self-movement and 

position [44], as well as challenges in maintaining specific positions or executing precision-

required movements, are often observed with fatigue [45], [46]. Body balance might also 

be compromised, increasing the risk of instability and potential falls that lead to injury  [47]. 

https://paperpile.com/c/hr6y2J/RKQDW
https://paperpile.com/c/hr6y2J/RKQDW
https://paperpile.com/c/hr6y2J/RKQDW
https://paperpile.com/c/hr6y2J/kQ0UK+RKQDW
https://paperpile.com/c/hr6y2J/CVdFk
https://paperpile.com/c/hr6y2J/RKQDW
https://paperpile.com/c/hr6y2J/62StJ+kQ0UK
https://paperpile.com/c/hr6y2J/Dng9o
https://paperpile.com/c/hr6y2J/OVMiP
https://paperpile.com/c/hr6y2J/3ffi9
https://paperpile.com/c/hr6y2J/YNZOT
https://paperpile.com/c/hr6y2J/cRvQI+Ij1jv
https://paperpile.com/c/hr6y2J/Xz3LR
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Fatigue significantly disrupts force control, affecting many motor skills and physical 

functions. 

 

Exercise-induced fatigue falls into two categories: central fatigue and peripheral fatigue. 

The former originates in the central nervous system (CNS) and reduces the neural drive 

to the muscle, lowering voluntary activation [48]. Peripheral fatigue, often called muscle 

or neuromuscular fatigue, originates from the neuromuscular junction and beyond, 

impacting neuromuscular transmission, excitation-contraction coupling, or muscle 

bioenergetics [49]. This often results in decreased muscle force or power output [50]. The 

duration and intensity of exercise can determine the balance between central and 

peripheral fatigue. Short, high-intensity exercises result in peripheral fatigue reducing the 

maximum voluntary contraction (MVC), while longer, moderate-intensity exercises tend to 

lead to central fatigue [51]. The type and intensity of the exercise can also influence the 

proportion of central and peripheral fatigue experienced [49]. Low-force, prolonged 

isometric contractions likely induce central fatigue, while short, high-force contractions 

tend toward peripheral fatigue [48]. Illustrating a complex and often difficult-to-objectively-

measure interplay between central and peripheral factors during various muscle 

contractions. As in this thesis, I am interested in how fatigue affects leg external force 

control. I focus primarily on peripheral fatigue and will refer to it throughout the remainder 

of this thesis as neuromuscular fatigue or just fatigue. 

 

Fatigue can impact athletic performance, affecting muscle function and neuromuscular 

control. Fatigue leads to decreased muscle force generation, slower muscle contraction, 

and reduced mechanical power output [52]. This power decrease hinders athletic 

performance, especially in activities requiring high forces over short durations, such as 

vertical jumping, where athletes jump to lower heights or shorter distances when fatigued 

[53]–[55]. Fatigue slows muscle reaction time [42], alters proprioception [44], and delays 

neuromuscular control, potentially compromising the body's center of mass stability [56]. 

For instance, sprinters often show speed reductions in the final meters of a race [57]. In 

sports like soccer, where players frequently transition between jumping, sprinting, and 

tackling, fast-twitch muscle fibre fatigue can lower muscle activations and performance 

[58]–[60]. Fatigued soccer players also struggle to maintain balance on unstable surfaces 

[61]. 

 

https://paperpile.com/c/hr6y2J/Zvv4b
https://paperpile.com/c/hr6y2J/5p5aE
https://paperpile.com/c/hr6y2J/AaduZ
https://paperpile.com/c/hr6y2J/qz6Zz
https://paperpile.com/c/hr6y2J/5p5aE
https://paperpile.com/c/hr6y2J/Zvv4b
https://paperpile.com/c/hr6y2J/1MayG
https://paperpile.com/c/hr6y2J/cNaKE+4tkvF+trrq1
https://paperpile.com/c/hr6y2J/OVMiP
https://paperpile.com/c/hr6y2J/YNZOT
https://paperpile.com/c/hr6y2J/ychAU
https://paperpile.com/c/hr6y2J/wG6V0
https://paperpile.com/c/hr6y2J/z4kDC+XYV8L+Zxr8I
https://paperpile.com/c/hr6y2J/5BoKv


10 

These fatigue-induced performance changes, impacting the control of the center of mass 

through external leg forces, have widespread implications for various sports. Sports like 

cross-country skiing [62], long-distance running [63], and basketball, requiring quick 

changes of direction, are particularly susceptible to fatigue-related agility reductions [12], 

[64], [65]. One mechanism that may explain the decline in agility post-fatigue could be a 

deterioration in the nervous system's control of external ground reaction forces.  

1.5. Mathematical models to study leg external forces  

Mathematical models and simulations provide practical tools for studying legged 

movement, allowing biomechanists to explore areas that are challenging or impossible to 

investigate with human subjects. These models typically incorporate link segments, joints, 

and Hill-type muscle actuators to form mathematical representations of the human legs 

and other body segments [10], [66]–[68]. By hand or using computer software, equations 

of motion can be derived to mathematically capture the system's behaviour. With 

computational complexity quickly becoming overwhelming with increases in segments or 

features in multibody dynamic systems, computers are commonly the primary tool for 

deriving equations of motion. 

 

Mathematical models frequently utilize optimal control, which determines an optimal set 

of model parameters that minimize an objective function over time. In biomechanics, a 

common objective function aims to minimize the squared difference between an 

empirically observed, physiologically meaningful variable and the equivalent variable 

determined by the model. This approach is often referred to as least-squares optimization. 

For instance, one might compare the external ground reaction force generated by a model 

with the same force empirically determined by a human. Without empirical signals from 

physiology, an objective function can simulate the goal of the nervous system in the task. 

For example, in walking, the objective function might aim to optimize energy usage [69]. 

In contrast, in jumping, the objective function might focus on maximizing the model's take-

off velocity [10]. 

 

Phenomenological models often estimate the forces a muscle actuator generates during 

contraction. A popular mechanical model, the Hill-based muscle model, aptly represents 

the intrinsic force properties of muscles and is widely employed in biomechanics to actuate 

https://paperpile.com/c/hr6y2J/9x2Vo
https://paperpile.com/c/hr6y2J/4u1gY
https://paperpile.com/c/hr6y2J/vFncu+t4DbS+imEGh
https://paperpile.com/c/hr6y2J/vFncu+t4DbS+imEGh
https://paperpile.com/c/hr6y2J/7buHx+x3Fzx+wkOpg+c3IE7
https://paperpile.com/c/hr6y2J/uU6K8
https://paperpile.com/c/hr6y2J/7buHx
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biomechanical models simulating human movement. A typical 3-element Hill-type muscle 

model comprises a parallel contractile element (CE), a parallel elastic element (PE), and 

a series elastic element (SEE) [37], [40] (Figure 1-3). 

  

https://paperpile.com/c/hr6y2J/62StJ+RKQDW
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Figure 1-3  An example Hill-type muscle model illustrating the series elastic element 
(𝑺𝑬𝑬), contractile element  (𝑪𝑬), parallel elastic element (𝑷𝑬), muscle-
tendon unit length (𝑳𝑴𝑻𝑼), and total muscle length (𝑳𝑻). This model 
represents the mechanical behaviour of skeletal muscles and provides 
insights into muscle force generation. The force generated by the muscle-
tendon unit (𝑭𝒎𝒕𝒖) can be calculated using the equation 𝑭𝒎𝒕𝒖 =
 𝑭𝒎𝒂𝒙 [ 𝒂(𝒕) 𝑭𝒗(𝒗𝒎) 𝑭𝑳(𝑳𝒎) + 𝑭𝒑(𝑳𝒎)] ∗ 𝒄𝒐𝒔(𝜽) , where 𝒂 represent the 
activation of the muscle from 0 (inactive) to 1 (fully active),  𝑭𝒎𝒂𝒙  
represents the maximal force of the contractile element   (𝑪𝑬) and theta is 
the pennation angle of the muscle. The series elastic element  (𝑺𝑬𝑬) 
represents tendons and other compliant structures that store and release 
energy during muscle contraction. It exhibits properties where the tension 
increases as length extends beyond a predefined slack length (𝑳𝒔𝒍𝒂𝒄𝒌). The 
contractile element (𝑪𝑬) generates force and has force-length and force-
velocity properties. Force declines when muscle length deviates from an 
optimal length (𝒚𝒐𝒑𝒕), and force decreases with increasing shortening 
velocities up to 𝑽𝒎𝒂𝒙. The parallel elastic element (𝑷𝑬) represents the 
passive elastic component contributing to muscle stiffness. It stiffens as 
muscle lengthens away from 𝒚𝒐𝒑𝒕. The Hill-type muscle model enables 
simulations and analysis of muscle function by capturing the essential 
characteristics of muscle behaviour, including force production, energy 
storage, and mechanical properties. Understanding the interplay between 
the 𝑺𝑬𝑬, 𝑪𝑬, and 𝑷𝑬 is crucial for studying muscle function, biomechanics, 
and optimizing performance. Figure adapted and modified from [70]. 

 

https://paperpile.com/c/hr6y2J/8HJB
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The model's Contractile Element (CE) represents the force dependency of muscle fibres 

on their kinematic state. For instance, as a muscle actuator shortens rapidly, the force it 

generates declines up to a point at maximum shortening velocity (Vmax), where force 

generation ceases. When the muscle actuator is isometric with no velocity, it can 

theoretically generate maximum force (Fmax). 

The force generation of a muscle actuator depends on its length, with a parabolic 

relationship indicating an optimal length (𝑦𝑜𝑝𝑡) at which maximal force (Fmax) is generated. 

Beyond this optimal length, force generation decreases. The parabolic width of this 

relationship varies among muscles serving different purposes and is determined within the 

model [37], [40]. 

Furthermore, the model captures the muscle actuator's force dependence on the degree 

of muscle contraction, often called 'muscle activation.' This activation level measures how 

much the muscle fibres contract in response to the nerve signals they have received, 

termed 'excitation.' Excitation is when a nerve signal or action potential is sent to a muscle 

fibre, triggering a series of events that lead to muscle contraction. The activation values 

range from 0, representing a state of no contraction or inactivity, to 1, representing 

maximum contraction or full activity. This activation value is then multiplied by the output 

force of the Contractile Element (CE) output force to modify further the force that the CE 

generates. It is important to note that in this context, 'activation' describes the state of the 

muscle fibres after they have been excited by a nerve signal, with the degree of activation 

determining the force of muscle contraction. 

The model also considers the passive properties of muscles, represented by the Parallel 

Elastic Element (PE). The Contractile Element (CE) represents the actual muscle fibres 

capable of actively generating force and changing length, and the PE change length 

simultaneously as they are arranged in parallel. The Series Elastic Element (SEE) 

represents the tendon, which, while not actively contracting, behaves like a spring to store 

and release energy when stretched. The series tendon length (SEE) is predefined as a 

proportion of the total muscle length (LTotal), with a force-length curve describing the 

SEE's behaviour as it stretches. It's important to note that if the length is too short, it could 

result in a slack muscle and potentially destabilize the mathematical model [36]. In reality, 

the muscle and the tendon have both passive and active properties, and various factors 

can influence their behaviour. The Hill-type muscle model is a valuable tool for 

https://paperpile.com/c/hr6y2J/62StJ+RKQDW
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understanding and predicting muscle behaviour, but it simplifies the complex reality of 

muscle and tendon mechanics. Parameters for Hill-type muscle models can be extracted 

from existing literature [71], or deduced via mathematical optimization, as I will show later 

in this thesis.  

Evaluating a mathematical model's effectiveness requires solving differential equations 

describing the segment's kinematics actuated by Hill-type muscle actuators. In forward 

dynamics, these equations are numerically integrated over time, considering 

environmental factors such as gravity and inertia and optimal muscle actuator properties. 

This allows for the prediction of the model's behaviour under defined conditions. 

Simulations of muscle-actuated forward dynamics can highlight relationships between 

muscles' intrinsic properties and movement performance. For instance, a four-segment, 

16-Hill-type muscle actuator model was recently used to explore the constraints on 

sprinting speeds imposed by muscles' intrinsic properties. The group simulated sprinting 

behaviour under altered muscle intrinsic properties—a near-impossible experiment to 

perform on humans. They found that removing muscle force dependence on muscle 

velocity or length can increase sprinting speed. Their model achieved running speeds up 

to +15% and +4% faster when leg muscle properties were modified [11], [72]. 

https://paperpile.com/c/hr6y2J/lRT9e
https://paperpile.com/c/hr6y2J/3lXNv+aq9z4
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Figure 1-4  Example jumping models from the literature. Jumping is a highly suitable 
movement task for modelling due to its clear objective of maximizing the 
take-off velocity of the center of mass, which correlates with other agile 
movements. Literature on jumping models encompasses a range of 
approaches, including single-segment and multi-segment models and 
models utilizing hill-type muscle activation or torque generation. While 
complex models offer detailed insights, fundamental understanding often 
arises from simpler models that gradually incorporate complexity when 
necessary 1. [73] 2. [74] 3. [75] 4. [76] 5. [77] 6.[78] 7. [68] 8. [79] 9. [80] 
10. [81] 11. [10] 12. [66] 

While simple models contribute valuable insights, they have yet to emphasize accurate 

estimates of the external forces that humans generate during jumping. Developing a 

simple model that can jump from many positions and accurately reproduce the external 

forces developed during jumping can provide insights into developing larger magnitude 

forces for higher jumping and more agility. Complex models composed of many muscles 

may be able to reproduce external forces better, but none have focused on this specifically 

[10], [66], [83].  

https://paperpile.com/c/hr6y2J/D3uf
https://paperpile.com/c/hr6y2J/YevY
https://paperpile.com/c/hr6y2J/xLub
https://paperpile.com/c/hr6y2J/hHt7
https://paperpile.com/c/hr6y2J/ONeU
https://paperpile.com/c/hr6y2J/7H5z
https://paperpile.com/c/hr6y2J/c3IE7
https://paperpile.com/c/hr6y2J/8zFo
https://paperpile.com/c/hr6y2J/y0qgs
https://paperpile.com/c/hr6y2J/1lT9i
https://paperpile.com/c/hr6y2J/7buHx
https://paperpile.com/c/hr6y2J/x3Fzx
https://paperpile.com/c/hr6y2J/7buHx+q2K3c+x3Fzx
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1.6. Machine learning for biomechanics  

The continuous evolution of algorithms and models pave a path toward a more unified 

understanding of our complex motor control system. Machine learning, a branch of 

artificial intelligence, concentrates on creating statistical models and algorithms that equip 

computers to learn and predict autonomously without explicit programming. This process 

can involve using a specific dataset to train a model, which is then deployed to make 

predictions or draw inferences from new, unseen data. Human physiological and 

biomechanical data, often time series in its nature, provides an excellent source of training 

for machine learning models and may lead to novel discoveries or new tools for sports 

and medicine to improve our lives. Perhaps such algorithms can even be deployed to 

progress the estimation of external forces and power tools that are not currently available.  

 

Inspired by the structure and function of the human brain, artificial neural networks are 

computational models composed of interconnected nodes, or neurons, arranged in layers 

(Figure 1-5). A branch of machine learning known as deep learning utilizes deep neural 

networks, which contain multiple hidden layers between the input and output layers. The 

depth of these networks enables them to discern intricate patterns and learn hierarchical 

representations. During training, the network adjusts weights assigned to inputs iteratively 

to minimize a defined loss function. Optimization algorithms, such as stochastic gradient 

descent, utilize mathematical techniques to update the weights gradually and converge 

toward an optimal solution. Deep neural networks can incorporate multiple layers, each 

performing a mathematical transformation on the input data. These transformations are 

mathematically represented as matrix multiplications followed by applying activation 

functions. By building a hierarchical structure, artificial neural networks can learn 

increasingly abstract and intricate representations of the input data through these 

mathematical operations. Integrating mathematics with the architecture of neural networks 

is pivotal in leveraging the power of these algorithms. This synergy allows for the 

development of sophisticated models capable of capturing complex dynamics. 



17 

 

Figure 1-5 :  Illustration of a deep neural network architecture inspired by the human 
brain. The network consists of an input layer (blue), three hidden layers 
(red), and an output layer (green). Deep neural networks leverage the 
interconnectedness of neurons in multiple hidden layers to extract intricate 
patterns and learn hierarchical representations. During the training 
process, the network iteratively adjusts the weights assigned to inputs to 
minimize a defined loss function. Deep neural networks can capture 
complex dynamics and provide accurate estimations by incorporating 
multiple layers and performing mathematical transformations on the input 
data.  

Enabling computers with the ability to comprehend and analyze visual information from 

the environment, computer vision is a key subfield of machine learning. Its scope includes 

image and video recognition, object detection, segmentation, and tracking. Computer 

vision aims to train computers to process images and videos similarly to human vision. 

The advent of deep learning has substantially advanced this field, bypassing traditional 

techniques that relied heavily on hand-crafted features and shallow learning algorithms 

that operate on a few layers and often struggle to handle the complexity of real-world 

visual data. Recently, advancements in computer vision are enabling biomechanists to 

gather data more rapidly and in greater volumes than ever before. In a recent study, 

biomechanical videos of 405 participants were recorded, analyzed, and studied, with each 

participant filming themselves sitting and standing up using their smartphones in their 

homes [84]. One of the major challenges in extracting biomechanical data from videos has 

always been the time-consuming and inefficient process of manually labelling anatomical 

landmarks or key points in video frames [85], [86]. By leveraging computer vision to identify 

these landmarks on the human body, deep neural networks present a practical solution to 

this problem, reducing the time and effort involved in video analysis. 

 

https://paperpile.com/c/hr6y2J/rRRf
https://paperpile.com/c/hr6y2J/fmxWL+ncXe4
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Key point detection or ‘pose estimation’ is a computer vision tool that detects key features 

of the human body in video data (Figure 1-6). Algorithms such as DeepLabCut and 

OpenPose use deep learning to visualize features and predict key landmarks in RGB 

video frames. For instance, DeepLabCut, an open-source software that employs a pre-

trained neural network architecture based on the ImageNet database, is widely used in 

research and education for its scalable and efficient tools [87]. Tracking movement data 

from video to study the behaviour and conservation of animals such as cheetahs, spiders, 

and gazelles enables many scientific and technological advancements from otherwise 

challenging animals to work with [87]–[89].  Whereas libraries like OpenPose enable the 

prediction of human poses from video [90]. This is paving a future of markerless motion 

capture, where kinematic data, typically measured using expensive and constrained 

motion labs, can now be easily and flexibly collected directly from video  [91], [92]. 

  

https://paperpile.com/c/hr6y2J/jeZCE
https://paperpile.com/c/hr6y2J/VB5In+MA6zu+jeZCE
https://paperpile.com/c/hr6y2J/qHvgS
https://paperpile.com/c/hr6y2J/kauN8+0slkB
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Figure 1-6:   Example output of OpenPose, an open-source computer vision tool for 
human pose estimation [90]. OpenPose detects and tracks key body joints 
and body parts using computer vision, representing human movement (B.). 
In this example, the skeletonized representation of a person's pose is 
shown from the side view (A.) and the frontal view (C.), with key joints and 
body parts identified and connected by lines. OpenPose enables a 
markerless approach to studying human movement, offering valuable 
insights for various applications, including sports science, rehabilitation, 
and human-computer interaction. 

The combination of standard RGB video and deep neural networks holds immense 

potential for the future of our field. Videos are a low-cost and widely available resource, 

with smartphones offering easy and broad access. Traditional biomechanical tools like 

force plates for kinetic measurements and motion capture systems for kinematics are 

costly and environment-bound. Coupling these tools with machine learning could 

revolutionize physiological measurements of motion. For example, recent work named 

OpenCap utilizes two smartphone video cameras, leveraging computer vision and 

machine learning techniques, to analyze video data and provide insights into movement 

dynamics [93]. To demonstrate its practical utility, OpenCap was tested in a field study 

involving 100 subjects to demonstrate its practical utility. The results were promising, as 

a clinician using OpenCap could estimate movement dynamics 25 times faster than 

traditional laboratory-based approaches while costing less than 1% of the traditional 

https://paperpile.com/c/hr6y2J/qHvgS
https://paperpile.com/c/hr6y2J/c2bv
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methods.  As biomechanical variables extracted from human motion are time series data, 

it is crucial to consider the appropriate machine learning frameworks that could be 

designed to work with this data. Here I will focus on two neural network architectures: 

Bidirectional LSTMs and transformer-based models.  

 

LSTM models are widely used for time series analysis because they capture temporal 

dependencies. Kinematic and kinetic variables often exhibit complex and changing 

patterns over time; consider joint angles, muscle forces, or ground reaction forces. LSTM 

models excel at capturing long-term dependencies by utilizing memory cells that store and 

propagate information across different time steps [94]. This enables such models to learn 

the relationships and patterns within the time series data, making them practical for tasks 

like predicting joint angles [95]–[97] and estimating external ground reaction forces from 

kinematic data [98]. This is possible by leveraging data from wearable sensor data [99], 

load cells [100], and pressure insoles in shoes [101]. LSTMs can handle variable-length 

sequences commonly found in biomechanical data, accommodating movements of 

different durations or sampling rates. 

Bidirectional LSTMs extend the capabilities of LSTM models by processing input 

sequences in both forward and backward directions. By incorporating information from 

past and future observations simultaneously, Bidirectional LSTMs capture more 

comprehensive temporal dependencies [102]. In biomechanics, this can be particularly 

useful for analyzing kinematic and kinetic variables, as both past and future events often 

influence movements. This suggests that Bidirectional LSTMs may be more powerful in 

situations where future information is relevant for accurate predictions or analysis. By 

incorporating future context, Bidirectional LSTMs can better model the dynamics of 

biomechanical movements and improve the accuracy of predictions. However, it is also 

essential to consider that Bidirectional LSTMs may introduce some challenges related to 

real-time prediction or applications where future information is unavailable. 

On the other hand, Transformers models, while primarily known for their success in natural 

language processing, show great use in time series data analysis. Transformers operate 

on the principle of self-attention, allowing them to capture relationships between different 

elements within a sequence [103]. This attention mechanism enables the model to focus 

on relevant patterns and dependencies, making it highly suitable for capturing complex 

temporal relationships in time series data [104]–[106]. Additionally, Transformers have the 

https://paperpile.com/c/hr6y2J/fJPi
https://paperpile.com/c/hr6y2J/xBILH+ClKWO+F2ino
https://paperpile.com/c/hr6y2J/l1x5O
https://paperpile.com/c/hr6y2J/8AVKQ
https://paperpile.com/c/hr6y2J/73gaS
https://paperpile.com/c/hr6y2J/Lmb72
https://paperpile.com/c/hr6y2J/Gxqe
https://paperpile.com/c/hr6y2J/861va
https://paperpile.com/c/hr6y2J/n5IiG+xqLRr+4yybx
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advantage of parallelization. They can process the entire time series sequence in parallel, 

making them efficient for handling large-scale datasets. This parallel computation across 

the sequence allows for faster training and inference times, which is particularly beneficial 

when working with substantial amounts of data. DeepLabCut, for example, utilizes 

Transformers for its kinematic key point prediction algorithms [107]. A recent study using 

wearables sensors to estimate vertical ground reaction forces during walking and running 

showed that a transformer model could reduce prediction errors by 25% compared to an 

LSTM architecture [108]. Transformers provide an understanding of the data by 

considering each element in relation to the entire sequence. This holistic approach 

enables them to capture intricate relationships, potentially revealing hidden patterns in 

data that may not be readily apparent with other models.  

Bidirectional LSTMs and Transformer models offer distinct technical advantages for 

predicting time series data in biomechanics. Bidirectional LSTMs models excel at 

capturing long-term dependencies, handling variable-length sequences, and managing 

time lag. They are beneficial for modelling complex biomechanical patterns that span 

multiple time steps. On the other hand, Transformers provide parallelization, attention 

mechanisms, contextual understanding, and the potential for greater transfer learning. 

They can efficiently capture intricate relationships in biomechanics data and reveal hidden 

patterns, which may be an appropriate choice for developing new technology to estimate 

external forces during movement.  

1.7. Thesis Aims  

In this thesis, my primary goal is to investigate the boundaries of leg external force control 

and develop technologies that utilize machine learning and computer vision to estimate 

kinetics from video footage. To accomplish this, I conduct empirical studies involving 

human participants who exert controlled external force vectors of varying magnitudes and 

positions. I use system identification to characterize their control performance (Aim 1). I 

examine the effect of fatigue on the control of external force (Aim 2) and use mathematical 

models of legs and muscles to gain a deeper understanding of the limitations and 

capabilities of leg force control (Aim 3). Finally, I developed a machine learning 

methodology to estimate leg external forces from video data (Aim 4). These four 

interconnected projects aim to explore the neuromechanical mechanisms that enable 

https://paperpile.com/c/hr6y2J/LIDA
https://paperpile.com/c/hr6y2J/ImJyh


22 

force control and improve our ability to estimate the external ground reaction forces that 

drive our movements. 

 

Aim 1: To characterize the control of leg external forces. The ability to modulate the 

force that a leg applies to the ground, and the position of that force, is a crucial factor in 

agility. My goal is to measure the performance of the human leg in controlling external 

ground reaction force magnitudes and positions and compare this performance to the 

control of agile robotic legs. To accomplish this, I designed and constructed a mechanical 

system restricting the body while allowing one leg to push isometrically on a force plate. I 

also developed a real-time visual feedback system that provides target force magnitudes 

or positions the leg should exert against the ground. I recruited 14 participants who tracked 

step changes in target leg force-magnitude (or force-position). I used system identification 

to characterize how well participants’ leg force control matched the target steps. Finally, I 

modelled the empirical response using a 2nd order system and found that this model 

effectively explained leg external force control in humans. The insights gained from this 

work could potentially inform the design of more agile prosthetics and exoskeletons, 

improving mobility for individuals with physical disabilities and enhancing performance in 

athletes. 

 

Aim 2: To determine the effects of neuromuscular fatigue on the nervous system's 
capacity to rapidly and accurately control leg external forces. Neuromuscular fatigue 

can impair our agility by inducing physiological changes, such as slowing our muscle 

reaction time, altering our proprioception, and delaying our neuromuscular control in ways 

that affect the control of our muscles. I hypothesized that increased leg fatigue would result 

in a decline in both responsiveness (how quickly a system responds to changes in its 

inputs) and accuracy of leg force control. To test this, I used the apparatus I previously 

constructed in Aim 1, which allowed participants to exert controlled vertical external forces 

using one leg pushing against a force plate while immobilizing the rest of their bodies. I 

recruited 18 participants and asked them to control their leg external force to best match 

step targets presented to them on a screen. I then induced fatigue by having participants 

hold submaximal leg forces at 25% of their maximum voluntary external force and 

measured their leg force control performance between fatigue trials. Understanding the 

effects of fatigue on leg force control may help to develop strategies and technologies to 

maintain agile performance even in the presence of fatigue. 
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Aim 3: To understand how muscle actuator properties enhance vertical jump height 
and influence the corresponding external forces. I developed and optimized simple 

physics-based models that predicted vertical external forces during jumps from various 

initial starting depths. The optimized model utilized a single set of optimal actuator 

properties, enabling it to jump from various depths while aligning the external force with 

empirical data. I recruited 10 participants to perform vertical squat jumps from five different 

initial starting depths, during which I collected data on their external leg forces using a 

ground-mounted force platform. Subsequently, I created and evaluated vertical jumping 

models of increasing complexity. I applied simulation and optimization techniques to align 

the model's predicted vertical external forces with the empirical data from each jump. 

Ultimately, I created a model that could jump from various depths and generate vertical 

external forces that closely aligned with the empirical data, all while using a single set of 

optimal actuator properties. With this model, I investigated how incremental changes in 

muscle actuator properties affected the vertical external forces generated and how this 

impacted the height of a vertical jump. Finally, I aimed to use this model to determine the 

factors contributing to a jump's preferred depth when jumping maximally. Understanding 

the biomechanical factors that contributed to vertical jumping performance provided 

insights into athletic training, rehabilitation programs, and technologies developed to 

optimize jump height. 

Aim 4: To develop a new method for estimating external forces during vertical 
jumping using video and machine learning. I combined video data with computer vision 

and machine learning techniques to bring the capabilities of a laboratory into the 

convenience of a smartphone. I recruited 30 participants to perform a series of vertical 

jumps while simultaneously capturing their movements through video recording and 

measuring the external ground reaction forces. I processed the video data using an open-

source pose estimation tool to extract kinematic landmarks for each participant's body 

during each jump. I used these extracted data to train a transformer-based neural network 

that predicted the external ground reaction forces. Next, I evaluated the model's 

performance using a leave-one-participant-out cross-validation method. The outcomes of 

this research potentially eliminated the need for sophisticated equipment in estimating 

external forces during movement by harnessing the power of readily available technology 

such as video and machine learning algorithms.
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Chapter 2.  
 
Characterizing the performance of human leg external 
force control 

2.1. Abstract  

Our legs act as our primary contact with the surrounding environment, generating external 
forces that enable agile motion. To be agile, the nervous system has to control both the 
magnitude of the force that the feet apply to the ground and the point of application of this 
force. The purpose of this study was to characterize the performance of the healthy human 
neuromechanical system in controlling the force-magnitude and position of an externally 
applied force. To accomplish this, we built an apparatus that immobilized participants but 
allowed them to exert variable but controlled external forces with a single leg onto a 
ground-embedded force plate. We provided real-time visual feedback of either the leg 
force-magnitude or position that participants were exerting against the force platform and 
instructed participants to best match their real-time signal to prescribed target step 
functions. We tested target step functions of a range of sizes and quantified the 
responsiveness and accuracy of the control. For the control of force-magnitude and for 
intermediate step sizes of 0.45 bodyweights, we found a bandwidth of 1.8±0.5 Hz, a 
steady-state error of 2.6±0.9%, and a steady-state variability of 2.7±0.9%. We found 
similar control performance in terms of responsiveness and accuracy across step sizes 
and between force-magnitude and position control. Increases in responsiveness 
correlated with reductions in other measures of control performance, such as a greater 
magnitude of overshooting. We modelled the observed control performance and found 
that a second-order model was a good predictor of external leg force control. We discuss 
how benchmarking force control performance in young healthy humans’ aids in 
understanding differences in agility between humans, between humans and other 
animals, and between humans and engineered systems. 

2.2. Introduction  

Agility is an important aspect of movement performance. This is true in athletics, where 

success can be determined by how high a volleyball player jumps when blocking a hit or 

how quickly a soccer player redirects their motion when taking evasive action from an 

oncoming defensive player. This is also true in the wild, where to survive, animals must 

chase down their prey, evade predators, and negotiate variable terrain [109], [110]. And 

in robotic systems, agility will be necessary for legged robots to provide fundamental 

services to society that currently only humans can provide. For example, agile robots may 

assist in complex mountain rescues with rough and varied terrain, move payloads while 

avoiding obstacles in construction sites, and deliver mail [111].  

https://paperpile.com/c/hr6y2J/FbTCy+w2kNh
https://paperpile.com/c/hr6y2J/rRCHa
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Aspects of agility are measured in several ways. In athletics, agility has been quantified 

by sprint speed [112], jump height [4], and time to complete an obstacle course [113], 

[114]. Scientists have quantified the agility of different animals and sometimes compared 

agility across species, by measuring maximum sprint speed [115], maximum jump height 

[116], and minimum turning radius [117], [118]. To accomplish any of these agility tasks—

running fast, jumping high, or changing direction rapidly—requires generating well-

controlled forces against the environment (external forces). In turn, the resulting reaction 

force from the environment accelerates our bodies. In principle, legged animals and robots 

can push against the ground with any part of their body, but we most commonly do this 

using our legs to push our feet against the ground. 

To be agile, the nervous system has to control both the magnitude of the force that the 

feet apply to the ground, as well as the point of application of this force. The external force 

beneath each foot is a vector quantity. The magnitude of three orthogonal components of 

force must be controlled—we refer to this as force-magnitude control. As is a convention, 

we represent these force components as forward and backward in the horizontal plane (or 

anterior and posterior), side to side which is also in the horizontal plane (or medial and 

lateral), and upward and downward in the vertical direction. The nervous system may use 

a decomposition that is different from this convention. Modulating the magnitude of each 

component will change the acceleration of the body along that component’s direction. An 

accelerating sprinter selectively increases the forward component, a maximum height 

vertical jumper selectively increases the vertical component, and a runner changing 

direction may need to modulate all three components [119]. Our nervous system also 

needs to control the point of force application of the external force vector—we refer to the 

control of this point as force-position control. By selectively controlling the force-position, 

and components of the force-magnitude, a gymnast can change angular acceleration to 

initiate an aerial front flip by generating a rotational moment of force about their center of 

mass [120]. To control the force beneath each foot our nervous system must 

synergistically coordinate leg muscle activations [121], [122]. In general, the selective 

linear and angular acceleration of the body required for agile motion requires the rapid 

and accurate control of force-magnitude and force-position.  

Given the importance of well-controlling external force vectors to generate agile motion, 

we know remarkably little about how well this is accomplished by legged biological and 

engineered systems. One approach to characterizing the performance of a control system 

https://paperpile.com/c/hr6y2J/MGx5Z
https://paperpile.com/c/hr6y2J/xQdF0
https://paperpile.com/c/hr6y2J/jHV0k+s2uNo
https://paperpile.com/c/hr6y2J/jHV0k+s2uNo
https://paperpile.com/c/hr6y2J/u3ARx
https://paperpile.com/c/hr6y2J/SWFNR
https://paperpile.com/c/hr6y2J/34q96+itXeq
https://paperpile.com/c/hr6y2J/2dugE
https://paperpile.com/c/hr6y2J/c2He7
https://paperpile.com/c/hr6y2J/6Cos2+dsWZC
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is to evaluate the system's ability to rapidly and accurately change from one commanded 

state to a new target state, known as the step response [123]. The response to a step-

change in commanded external force has been evaluated in several engineered-legged 

systems. For example, the MIT Cheetah robot is able to step-change from zero vertical 

force beneath the feet to 1/3 of its body weight within milliseconds and does so with almost 

zero error [124], [125]. Similarly, a state-of-the-art foot prosthesis demonstrates 

millisecond-scale control of torque, allowing the prosthesis to accurately track rapidly 

changing commanded torques [126]. However, force control performance is not routinely 

measured in engineered systems, and to our knowledge, has never been quantified in 

humans or other legged animals.  

The purpose of our study was to characterize the performance of the human leg in 

controlling external force-magnitude and force-position. We focused here on the control 

of sub-maximal forces generated by a single leg in a posture similar to how a runner 

actuates their motion during a run. To accomplish this purpose, we built a custom 

apparatus that constrained participants' bodies from moving so that their legs maintained 

a constant posture while allowing them to change force-magnitude and force-position. To 

quantify the step response, we instructed participants to best match visually displayed 

step changes in ground force magnitude by pushing more or less against a ground-

mounted force plate (force-magnitude control), or step changes in ground force position 

by shifting the pressure beneath their foot forwards and backwards, or side to side (force-

position control). We evaluated control performance by how quickly and accurately 

participants could match their force magnitude and force position to the commanded 

changes. 

2.3. Methods  

2.3.1. Participants  

We recruited fourteen participants for the study (female: n = 4; male: n = 10; body mass: 

72.2±6.1 kg; age: 28±2 years; foot length: 0.25±0.2m; mean±std). The Office of Research 

Ethics at Simon Fraser University approved the study, and the methods were performed 

in accordance with the relevant guidelines and regulations. All participants provided 

written and verbal informed consent before participating in our study.  

https://paperpile.com/c/hr6y2J/EFSSf
https://paperpile.com/c/hr6y2J/gQK0o+he8D1
https://paperpile.com/c/hr6y2J/kqU0f
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2.3.2. Experimental Design    

To characterize the performance of human leg force control, we tested the step response 

of participants selectively controlling leg external force. To do this, we built an apparatus 

that vertically and horizontally constrained participants standing over top of a ground-

embedded force plate (Bertec Corporation, Ohio, USA). The apparatus was rigidly 

attached to the ground around the force plate, but not to the force plate itself. The force 

plate beneath the participant’s foot sampled at a frequency of 1000 Hz and was connected 

to a data acquisition unit (USB-6229, National Instruments Corporation, Texas, USA), 

which interfaced with our computer. Although the control of all three orthogonal 

components of the external force vector is important, our work here focused on the 

characterization of the vertical component. The constraints imposed by the testing 

apparatus allowed participants to exert a variable but controlled vertical external force onto 

the ground by selectively pushing more or less against the ground with their leg (i.e. force-

magnitude control) or selectively shifting the center of pressure beneath their foot 

anteriorly/posteriorly (forward/backward) or medially/laterally (side-to-side) (i.e. force-

position control). We built the testing apparatus using 1.5”x1.5” T-Slotted aluminum bars 

(80/20 Inc., Indiana, USA). We mounted four adjustable scissor jacks onto the apparatus 

to secure and immobilize the participant to the apparatus (Figure 2.1). Two of the scissor 

jacks pushed down against the shoulders, and two pushed up against the forearms. An 

adjustable padded bar supported the leg that was not pushing on the ground. On all points 

where the participant came in contact with the apparatus, we secured high-density 

padding to reduce discomfort.  

To command target step changes in force-magnitude and position, we used visual 

feedback to allow participants to compare their target and actual force-magnitude or 

position. We provided real-time visual feedback using a computer monitor mounted in front 

of the participants (Figure 2-1). Our custom software (MATLAB 2019a, MathWorks) 

displayed both real-time feedback of either the vertical force-magnitude or force-position 

signals that the participant's foot exerted onto the force plate and of the target step function 

that the participant tried to best match. We filtered the raw force signal using a zero-lag 

low-pass fourth-order Butterworth filter with a cut-off frequency of 10 Hz. For force-

magnitude control, we then normalized the real-time signal to each participant's 

bodyweight and zeroed the force platform such that zero force was equivalent to one 

bodyweight. For the real-time force-position signal, we calculated the medial-lateral and 
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anterior-posterior centers of pressure and filtered the raw force signal using a zero-lag 

low-pass fourth-order Butterworth filter with a cut-off frequency of 5 Hz [127]. We then 

mathematically shifted the axes of the center of pressure on the force platform to originate 

beneath the participant's foot that was in contact with the force plate. To perform this shift, 

we had each participant stand in a comfortable position on each leg in the rig (Figure 2-

1). We then recorded the values of the center of pressure while participants stood on each 

leg and programmed a shift of the force plate axes to originate directly below the foot the 

participant was standing on. We programmed all the candidate real-time signals to display 

at the center of the screen and constrained this signal to only vertically move up and down 

as the participant pushed more or less against the force plate (force-magnitude control) 

or as they displaced their force-position anteriorly/posteriorly or medially/laterally beneath 

their foot (force-position control). Finally, we programmed the target step functions to slide 

past the real-time signal providing participants with time to view upcoming changes in the 

step function before they occurred (Figure 2-1). 

We provided each participant with instructions and motivation to enable them to maximize 

their performance in matching their real-time force-magnitude or position signal to the 

targets. We instructed participants to keep their foot firmly mounted to the force platform. 

Our instructions to them were “your goal in this experiment is to try and match the real-

time signal to the target line that you will see on your screen. For force-magnitude control, 

that is pushing with force against the ground. This will mean pushing down or reducing 

the amount you push down, as quickly and accurately as you can to match the sliding 

target wave moving along the screen. For force-position control, this will mean changing 

the pressure beneath your foot side-to-side or forward/backward to match the sliding 

target wave as quickly and accurately as possible. I will notify you if it will be side-to-side 

or forward/backward shifting” Due to the repetitive nature of the experiment and the 

possibility of both physical and mental fatigue, we provided participants with 15-second 

intermissions between trials (trials are explained below). During this intermission, we 

displayed a countdown on their screen to notify them when the next trial was beginning 

and a scoreboard showing them the total error incurred during each trial. We calculated 

this error as the total root mean square error between the empirical response and the 

target step function to encourage both speed and accuracy when rising and falling to new 

target forces and positions. We informed participants that a perfect score was 0 error. We 

https://paperpile.com/c/hr6y2J/3czEW
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encouraged all participants to minimize this error by best matching their real-time signal 

to the step targets appearing on their screen. 

 

 

Figure 2-1  Apparatus to characterize external force control. The apparatus 
constrained the vertical and horizontal motion of each participant’s torso 
using adjustable scissor jacks that pushed down on their shoulders and 
pushed up against their forearms, and a stiff aluminum frame securely 
mounted to the ground. The participants stood in a posture resembling the 
stance phase of a run and could selectively push more or less or shift the 
pressure beneath their foot against the ground-embedded force plate. The 
real-time feedback displayed to the participants the real-time force-
magnitude or position signal that they were exerting onto the ground as 
well as the target step function they were to try and best match  
 

2.3.3. Experimental Protocol  

We characterized external force control over two sessions. We performed the sessions in 

a randomized order and on different days. In each session, we fitted participants into the 

experimental apparatus. When fitting participants into the apparatus, we used an analog 

goniometer to enforce a 15-degree knee flexion angle to approximate a posture similar to 

that assumed by a runner at the start of stance [128]. While maintaining this posture, we 

adjusted the horizontal positions of the arm and shoulder constraints such that the 

https://paperpile.com/c/hr6y2J/WMQXJ
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participant was unable to shift horizontally within the apparatus. Next, we adjusted the 

vertical arm and shoulder constraints by vertically shifting the scissor jacks to apply 

downward pressure on the participant’s shoulders. Finally, we adjusted the height of the 

padded bar that supported the leg that was not pushing on the ground. In the force-

magnitude session, we recorded each participant’s mass by having them stand on a force 

plate.  

In one session, we characterized force-magnitude control. This session contained five 

conditions—one training and four testing. The training condition came first, and we 

designed it to familiarize participants with the experiment. It consisted of 12 trials, totalling 

six on each leg, with a single target step function size of 0.85 bodyweights. For reference, 

in these experiments, we made 0 bodyweights equivalent to the participant standing on 

the force plate. We choose to focus on a single target step function size in order to get 

many trials where a participant can practice all the aspects of the task including being 

comfortable in the apparatus and acquainting themselves with the visual display without 

the added complexity of changing the target size. In all trials, the target step function 

consisted of a square wave of ten matching-size target steps, each four seconds in 

duration, with three seconds between steps (totalling 73 seconds per trial). The four testing 

conditions followed the training condition. Each of these testing conditions contained a 

target step function size of either 0.25, 0.45, 0.85, or 1.25 body weights. Our selection of 

these target step sizes was based on our interest in submaximal forces that were achieved 

comfortably in our device. In pilot experiments, we determined that on the top range, this 

was 1.25 bodyweights of vertical force-magnitude and on the bottom range, this was 0.25 

bodyweights. We had participants perform each of these testing conditions in random 

order. Testing conditions consisted of 6 trials, totalling three per leg. In all cases, 

participants switched the leg in contact with the ground after each trial to ameliorate the 

effects of fatigue.  

In another session, we characterized force-position control. This session contained five 

conditions—one training and four testing—for anterior-posterior control and the same five 

conditions for medial-lateral control. In random order, we first evaluated either the 

conditions within anterior-posterior control or the conditions within medial-lateral control. 

In either case, the training condition came first, and we designed it to familiarize 

participants with the experiment. It consisted of 12 trials, totalling six on each leg, with a 

single target step function of size 2.5 centimeters anterior for anterior/posterior control 
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trials and a target step size of 1.0 centimeters for the medial/lateral control trials. Again, in 

all trials, the target step function consisted of a square wave of ten target steps, each four 

seconds in duration, with three seconds between steps. The four testing conditions 

followed the training condition. Each of these four conditions contained a single target step 

function size of either +2.5, +4.0, -1.0, -2.5 centimeters for the anterior (+)/posterior (-) 

control conditions or +1.0, +0.5, -0.5, -1.0 centimeters for the medial (+)/lateral (-) control 

conditions. As for force-magnitude control, we had participants perform each of these 

testing conditions in random order. Testing conditions consisted of 6 trials, totalling three 

per leg and in all cases, we asked participants to swap the leg in contact with the ground 

after each trial.  

To determine whether visual feedback slowed the participant’s ability to control external 

force, we eliminated visual feedback for some of the step responses in each trial. We 

randomly omitted the visual feedback from two of every ten steps in every trial for each 

condition throughout all of our experiments including the training conditions. We did this 

by momentarily taking away the real-time visual feedback of the force the participant is 

exerting onto the ground, while the target step function remains on the screen. We 

removed visual feedback starting from when the target steps up to when it steps back 

down again.  

To determine how quickly force could rise when the speed of the response was prioritized 

over the accuracy, we had one participant perform a force-magnitude control experiment 

stepping up to a step target size of 0.85 bodyweights (male; body mass = 80.6 kg; foot 

length = 26.6 cm). Similar to the main protocol, he performed three trials with the left leg 

and three trials with the right leg. We instructed him that the priority was to step up as 

quickly to the target as they could and that it was unnecessary to match or hold the steady-

state force level after stepping up to the target.  

2.3.4. Data Analysis 

For each step response within each trial, we evaluated the responsiveness and accuracy 

in controlling external force. To accomplish this, we took the results from each trial and 

segmented them into ten individual step responses such that each segmentation 

consisted of a six-second single-step response, with one second before the step-up and 

1 second after the step-down (Figure 2-2). For each step response, we evaluated the rise 
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time (in units of milliseconds) as the time for the signal to go from 10% to 90% of the target 

step size value. We calculated the upper limit of bandwidth (in units of Hz) by dividing 0.35 

by rise time [129] and assumed the lower limit was 0 Hz. The bandwidth measures the 

frequency range at which a target signal can change and still be accurately tracked by the 

controller. We quantified fall time (in units of milliseconds) as the time for the signal to go 

from 90% to 10% of the target step size value as the participant steps-down. In this 

chapter, we use the term responsiveness to refer to rise time, fall time, and bandwidth—

a responsive system has a short rise time, a short fall time, and a high bandwidth. Next, 

we quantified overshoot by taking the peak value reached by the signal, subtracting the 

value of the target step, dividing this by the size of the step, and multiplying by 100. In this 

way, we expressed overshoot as the percentage that the signal exceeds the target step 

size value. If the signal did not surpass the target step value resulted in a negative value 

for the overshooting. A large overshoot can indicate under-damping in the controller—it 

will take longer for the system to settle and reach its target step size. We restricted our 

evaluation of the rise time, bandwidth, and overshoot of the response to the time interval 

of 0.5 seconds before the step target stepped up and up to one second after the step-up 

occurred. We quantified steady-state error by calculating the mean value of the signal 

between 2-3 seconds, subtracting the value of the target step size, and taking the absolute 

value. We divided this by the value of the target step size and multiplied this by 100 to 

express the steady-state error as a percentage of the target value. The steady-state error 

informs us how much error the control system has once it has reached the target size 

value and settled in its new state. A large error can be indicative of poor control as the 

system is not able to well match the target value. We quantified steady-state variability by 

calculating the standard deviation of the signal between 2-3 seconds, dividing this by the 

steady-state mean and multiplying this value by 100. The steady-state variability, 

expressed as a percentage of the steady-state mean, informs us how variable the system 

is once it has reached and settled on its new state. In this thesis, we use the term accuracy 

to refer to overshoot, steady-state error, and steady-state variability—an accurate system 

has small overshoot, small steady-state error, and small steady-state variability. We 

evaluated the fall time between four to six seconds (Figure 2-2). We collectively refer to 

the rise time, bandwidth, overshoot, steady-state error, steady-state variability, and fall 

time as the step response characteristics. 

https://paperpile.com/c/hr6y2J/Cqw9V
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Figure 2-2  Step response characteristics. The empirical response (red line) and the 
step target (blue) line are shown for a single segmented target step 
response six seconds in length. For force-magnitude control, the step 
target size is in bodyweights and for force-position control, the step target 
size is in centimeters. The evaluated control characteristics include rise 
time (s), bandwidth (Hz), overshoot (%), steady-state error (%), steady-
state variability (%), and fall time (s). 

We used exclusion criteria to remove step responses that may poorly describe leg external 

force control. We used the following criteria: 1) the control response is in the opposing 

direction of the target step, 2) the response does not step up within 0.5 seconds after the 

target step function steps up, and 3) the response is already greater than 10% of the target 

step size value the 0.5 seconds leading up to the step-up. We removed the step responses 

that meet these exclusion criteria from all subsequent analyses.  

2.3.5. Statistical Analysis  

To estimate the fastest control performance for each participant and condition, we 

calculated means of step response characteristics using the five trials with the fastest rise 

times. We then calculated the mean and standard deviation across participants for each 

step response characteristic. To determine if there were differences in characteristics 

between different step sizes (i.e., conditions), we performed a repeated-measures 

analysis of variance within the force-magnitude, the medial-lateral force-position, and the 

anterior-posterior force-position experiments. If a difference existed, we performed 

pairwise comparisons between the group means to evaluate which conditions produced 

similar step response characteristics adjusting p-values for multiple comparisons using 

Bonferroni corrections [130]. We calculated the partial eta squared (ηp
2) correlation ratio 

https://paperpile.com/c/hr6y2J/CINDq
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as a measure of effect size for each step response characteristic by dividing the sum of 

squares between conditions from the aforementioned repeated-measures analysis of 

variance by the total sum of squares. To understand if there were relationships between 

step response characteristics within each condition, we used data from every included 

step response, not just the five fastest responses. We used linear mixed-effects models 

to identify these relationships. This approach allowed for individual y-intercepts for each 

participant while finding a single best-fit parameter describing the slope between the two 

variables. We assessed the strength of a relationship using the slope magnitude, the 

probability that the slope is different from zero, and the R2 value. In all cases, we used 

MATLAB’s statistical analysis toolbox and accepted p<0.05 as statistically significant. 

2.3.6. System modelling  

To further describe the step response characteristics of leg force control, we modeled the 

system dynamics and used system identification to estimate the unknown parameters. As 

a starting point, we modelled the relationship between the commanded step response of 

the input, 𝑋, and the measured step response of the output, Y, as a single dynamic 

process comprising a time-delayed second-order linear ordinary differential equation. We 

modeled this system using a second-order representation as the biological response 

displays overshooting, which cannot be accounted for with a simpler first-order system. 

The mathematical representation of the proposed model takes the form:  

 

Equation 2-1   𝒀(𝒔) =
𝑲

(𝝉∙𝒔)𝟐+(𝟐∙𝒁∙𝝉∙𝒔)+𝟏
∙ 𝒆−𝑻𝒅 ∙𝒔 𝑿(𝒔) 

 

where s denotes representation in the frequency domain. 𝐾 is the gain describing the 

steady-state value of the output Y induced by a unit change in the input 𝑋, 𝑍 is the damping 

constant, 𝜏 is the time constant characterizing the rate of change of Y in response to a 

change in 𝑋, and 𝑇𝑑 is the time delay (or lead time) which corresponds to the time delay 

(or lead time) of when the system first begins to respond. We used the five fastest step 

responses for each participant and each experimental condition, used only the step-up 

response, and fit the model to each of those step-up responses. We normalized the 

magnitude of each trial to unity to allow for comparisons between different step sizes. To 
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accomplish this normalization, we divided each step response by the size value of each 

step target. To fit this model to our data, we solved the unknown model parameters by 

using a system identification approach. This consisted of using constrained numerical 

optimization (fmincon, MATLAB 2019a) to minimize the squared difference between the 

model predicted and actual empirical response (our objective function). To estimate model 

step response characteristics and system parameters, we followed the same statistical 

procedures as with the experimental step responses. That is, we determined the step 

response characteristics for each model fit, averaged across step responses for each 

participant within each condition and then averaged again across participants within a 

condition. We used a repeated-measures analysis of variance within the force-magnitude, 

the medial-lateral force-position, and the anterior-posterior force-position models and 

assessed the goodness-of-fit of the estimated best-fit parameters using R2 values.  

2.4. Results  

2.4.1. Step response characteristics were similar between force-
magnitude and position control  

When controlling the force-magnitude of the leg's external force, participants were 

quickest to reach the smallest target step size. At the smallest step size of 0.25 

bodyweights, participants stepped up to the target at a rise time of 178±69 ms and 

stepped down with a fall time of 399±122 ms (Table 2-1, and Figures 2-3 & 2-4). This rise 

time equated to a bandwidth of 2.2±0.6 Hz. Once participants did reach the commanded 

target step size, they did so by overshooting it by 31.6±15.8%. Upon settling at the target, 

participants did so with a steady-state error of 3.9±0.4% and a steady-state variability of 

4.4±1.5%. As the force-magnitude target step size increased, participants took longer to 

reach the target resulting in decreases in bandwidth (Table 2.1). Participants also overshot 

the target less and were, in general, more accurate and less variable during steady-state 

(Table 2-1). Fall times were always longer than rise times (p<0.001), and we observed no 

changes in fall times with increasing target step size.  

The characteristics of force-position control were comparable to force-magnitude control. 

When participants shifted their force-position anteriorly or posteriorly, or when they shifted 

their force-position medially or laterally, they did so with a rise time and bandwidth that 

was similar to when controlling for force-magnitude. Fall times were similar to those found 
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for force-magnitude control and also did not change with changes in target step size for 

both anterior-posterior and medial-lateral control (Figures 2-3 & 2-4). As in force-

magnitude control, participants overshoot the target less and were in general, more 

accurate and less variable during steady-state with increases in target step size in force-

position control (Table 2-1) 

 

Figure 2-3  The average step-up response from each participant at each target step 
size (color  lines) and the average of the average response (bolded color 
lines). The vertical line represents when the target step function steps up 
from its base value of 0.05 bodyweights for force-magnitude control or 0 
cm for force-position control to a new target step size (dashed lines). 
Participants could anticipate when the step target would step up to a new 
target size therefore the response could precede the visual step change. 
Here the first second before the step-up and the two seconds after are 
shown. Within this time frame, we evaluated the rise time, bandwidth, 
overshoot, steady-state error, and steady-state variability. 
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Figure 2-4  The average step-down response for each participant at each target step 
size (colour lines) and the average of the average response (bolded 
coloured lines). The vertical line represents when the step function steps 
down from the current step target size (dashed lines) to 0.05 bodyweights 
for force-magnitude control or 0 cm for force-position control (base values). 
Here the two seconds before the step-down are shown and the one second 
after the signal returns to its base value. Within this timeframe, we 
evaluated the fall times as participants stepped down from the step target 
size back down to the base value. 
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Table 2-1  Average control characteristics for force-magnitude and force-position 
control. P-values from repeated measures analysis of variance for each 
control metric and effect sizes (ηp

2) are presented 
Vertical Force-magnitude control 

Target step size                                          

( bodyweight) 
Rise time (ms) Fall time (ms) 

Bandwidth 

(Hz) 
Overshoot (%) SSE (%) SSV (%) 

0.25 177.6 ± 69.3 399.2 ± 121.9 2.2 ± 0.6  25.3 ± 12.7 3.2 ± 1.0 3.5 ± 1.2 

0.45 204.7 ± 63.5 373.8 ± 99.8 1.8 ± 0.5   17.1 ± 9.5 2.6 ± 0.9 2.7 ± 0.9 

0.85 242.9 ± 92.3 389.8 ± 112.1 1.6 ± 0.5     9.8 ± 5.6 2.4 ± 1.3 2.1 ± 0.4 

1.25 266.0 ± 90.5 405.5 ± 99.0 1.4 ± 0.4     7.4 ± 3.3 2.6 ± 1.3 2.5 ± 0.7 

p-value <0.001 0.8 <0.001 <0.001 0.26 <0.001 

ηp
2 0.704 0.029 0.740 0.651 0.104 0.379 

       
Anterior (+) Posterior 

(-) 
Force-position control 

Target step size                                          

(cm) 
Rise time (ms) Fall time (ms) 

Bandwidth 

(Hz) 
Overshoot (%) SSE (%) SSV (%) 

-1.0 181.1 ± 29.0 377.3 ± 155.1 2.0 ± 0.3 45.0 ± 17.8 13.9 ± 4.7 8.3 ± 2.8 

-2.5 225.9 ± 47.6 417.6 ± 111.3 1.6 ± 0.3 19.4 ± 9.2 6.2 ± 2.1 3.8 ± 2.3 

2.5 217.4 ± 42.6 411.8 ± 128.0 1.7 ± 0.3 20.8 ± 10.9 6.7 ± 3.3 5.0 ± 2.0 

4.0 244.2 ± 46.8 423.3 ± 100.7 1.5 ± 0.3 15.8 ± 11.1 4.9 ± 2.3 4.8 ± 2.4 

p-value <0.001 0.76 <0.001 <0.001 <0.001 <0.001 

ηp
2 0.5666 0.0296 0.6320 0.6186 0.6460 0.5062 

  
Medial (+) / Lateral (-) Force-position control 

Target step size                                         

(cm) 
Rise time (ms) Fall time (ms) 

Bandwidth 

(Hz) 
Overshoot (%) SSE (%) SSV (%) 

0.5 200.4 ± 59.6 377.5 ± 103.1 1.9 ± 0.4 36.0 ± 14.1 9.1 ± 3.4 6.1 ± 2.4 

-0.5 192.4 ± 39.0 312.2 ± 140.9 1.9 ± 0.3 32.1 ± 16.3 10.0 ± 4.2 5.4 ± 2.0 

-1 229.4 ± 37.0 349.0 ± 115.4 1.6 ± 0.2 15.6 ± 6.2 5.5 ± 2.2 3.3 ± 1.1 

1 230.6 ± 45.7 382.1 ± 114.5 1.6 ± 0.3 19.0 ± 12.8 5.9 ± 3.7 4.2 ± 2.5 

p-value <0.001 0.3 <0.001 <0.001 <0.001 0.001 

ηp
2 0.2554 0.0843 0.3821 0.4440 0.3650 0.3266 

2.4.2. A faster response correlated with reductions in other measures 
of control performance  

On average, trials with higher bandwidth where faster presenting with a larger overshoot 

(Figure 2-5). For force-magnitude control, the relationship between the bandwidth of the 

response and overshooting the target was significant for all conditions (p<0.001). The 
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strongest relationship had a linear fit with an R2 of 0.51 for target step sizes of 0.45 

bodyweights, having a slope of +15.4% overshoot/Hz; the weakest relationship had a 

linear fit with an R2 of 0.36 for target step sizes of 1.25 bodyweights, and a slope of +8.5% 

overshooting/Hz. For force-position control, this relationship was also significant for all 

conditions (p<0.001) with an average fit R2 of 0.34±0.1, and an average slope of 

+17.2±3.6% overshooting/Hz (representative conditions are shown in Figure 2-5). With 

increasing bandwidth, participants tended to be less accurate and more variable as 

demonstrated by increased steady-state error and variability, but these relationships were 

weak and not significant for most of the conditions. Finally, there were significant 

correlations between increases in steady-state variability and increases in steady-state 

error (p<0.001) for all the conditions for both force-magnitude and force-position control, 

but the fits were weak with R2 values at best 0.34 and at worst 0.05. We found no other 

significant correlations between other measures of control performance.  

 

Figure 2-5  Representative findings from force-magnitude control (0.45 bodyweights), 
and force-position control (2.5 cm anterior and 1.0 cm medial). We fit a 
linear mixed-effects model to the data and plot the resultant linear fit as the 
black line. Each data point corresponds to the results from a single-step 
response while each color corresponds to a different participant. The R2 
value for the fit is shown alongside the p-value and equation of the line. 
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2.4.3. Leg external force control as a second-order control system  

A second-order model well described the step-up control characteristics found for the 

control of leg external forces (Figure 2-6). Best-fit R2 values for all step target sizes in both 

force-magnitude and position control were above 0.85 (Table 2-2). We chose the second-

order model because the overshooting observed in the data was not a feature that could 

be described using a first-order model, and a third-order model was unnecessary given 

how well the second-order model described the observed behaviour. The second-order 

controller for controlling leg external force can be well approximated using the following 

control parameters: K (process gain) = 1, τ (time constant) = 100 ms, Z (damping constant) 

= 0.5, and Td (time delay or lead time) = -100ms. A controller with these parameters has 

a rise time of 165 ms, a bandwidth of 2.0 Hz, overshoots by 16.3%, a settling time of 1.7s, 

and no steady-state error or steady-state variability.  

 

Figure 2-6 Representative modeling results for select force-magnitude and force-
position target step size conditions. We plotted the second-order model 
using the average of the best-fitted parameters (black line) against the 
average of each participant's response to each step target magnitude 
(coloured lines). The vertical line represents when the step function steps 
up from zero to the normalized target value of one. The horizontal dashed 
line is the target step size value of 1. The R2 value shown is the average fit 
of the model for that condition 
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Table 2-2  Average best fitting system modelling parameters describing leg force 
control as a second-order system. The R2 represents the fit, K is the gain 
used to determine error (1 being no error in the system), τ is the time 
constant characterizing the rate of change of how rapidly the system 
changes state, Z is the damping constant where a value of < 1 indicates an 
underdamped system, and Td is the time delay (or lead time) which is the 
time delay of when the system first begins to respond (a negative value 
indicates the system is predicting and responding before the step target 
steps up). 

Force-magnitude control 

Target step size 
(bodyweights) 

R2 K τ (ms) Z Td (ms) 

x0.25 86 ± 5 1.04 ± 0.05 110.6 ± 29.5 0.5 ± 0.1 -96.4 ± 87.8 

x0.45 90 ± 3 1.02 ± 0.03 103.6 ± 22.1 0.6 ± 0.1 -70.7 ± 100.5 

x0.85 93 ± 2 0.99 ± 0.02 101.4 ± 17.5 0.7 ± 0.1 -56.2 ± 68.4 

x1.25 93 ± 1 0.98 ± 0.03 110.7 ± 31.2 0.7 ± 0.1 -73.6 ± 104.4 

Force-position control 

Target step size 
 (cm) 

R2 K τ (ms) Z Td (ms) 

Anterior (+) / Posterior (-) 

-1.0 80 ± 7 1.07 ± 0.09 120.6 ± 24.4 0.4 ± 0.1 -111.1 ± 110.4 

-2.5 89 ± 4 1.02 ± 0.05 116.7 ± 28.2 0.6 ± 0.2 -161.0 ± 119.0 

2.5 87 ± 4 1.00 ± 0.06 116.2 ± 23.3 0.5 ± 0.1 -92.6 ± 115.4 

4.0 89 ± 4 1.00 ± 0.04 119.0 ± 19.9 0.6 ± 0.1 -118.2 ± 125.7 

  

Target step size 
 (cm) 

R2 K τ (ms) Z Td (ms) 

Medial (+) / Lateral (-) 

0.5 85 ± 5 1.07 ± 0.08 118.8 ± 20.8 0.5 ± 0.1 -124.9 ± 100.7 

-0.5 85 ± 5 1.05 ± 0.09 112.6 ± 17.1 0.5 ± 0.1 -160.8 ± 94.4 

-1 91 ± 1 1.02 ± 0.04 107.5 ± 13.9 0.6 ± 0.1 -135.1 ± 101.1 

1 89 ± 6 1.03 ± 0.05 118.4 ± 21.9 0.6 ± 0.1 -112.1 ± 80.9 
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2.4.4. Practice trials were effective at training participants to perform 
the task 

To determine whether the amount of training was sufficient for participants to reach state-

state, we compared the performance of their last 15 practice steps to the 15 steps 

immediately prior. We found no significant improvements in the rise times when comparing 

these two sets of trials in either the force-magnitude task trials (average difference of 

17±275 ms, p=0.40) or the force-position control in the anterior/posterior direction 

(average difference of 2±392 ms, p=0.93) and the medial/lateral direction (45± 377 ms, 

p=0.09). The allotted practice appears sufficient for participants to have reached a steady-

state level of performance.  

2.4.5. Removing visual feedback resulted in specific and modest 
increases in performance  

To test whether the task’s reliance on visual feedback affected force control performance, 

our protocol periodically eliminated the step that was displayed on the screen, removing 

the participant’s ability to use visual feedback. For force-magnitude control, we found that 

participants were indeed faster without visual feedback. When comparing the rise times 

that participants stepped up to the step target without visual feedback to that with visual 

feedback participants were on average 19% faster (p=0.02) for a step target size of 0.25 

bodyweights, 15% faster (p=0.04) for a step target size of 0.45 bodyweights, 13% faster 

(p=0.02) for a step target size of 0.85 bodyweights, and 10% faster (p=0.13) for a step 

target size of 1.25 bodyweights. This increase in speed with the removal of visual feedback 

did not carry over to force-position control—we found that participants were, if anything, 

slower at controlling external force-position for either the anterior/posterior and 

medial/lateral control at all target step sizes.  

2.4.6. Prioritizing speed over accuracy increased control 
responsiveness but reduced accuracy  

To determine how quickly force could rise when the speed of the response was prioritized 

over the accuracy, one participant performed a force-magnitude control experiment 

stepping up to a target step size as fast as possible under instructions that removed the 

need to hold an accurate steady-state force level. Under these conditions, this participant 

had a rise time of 121±28 ms, a bandwidth of 3.0±0.49Hz and overshot the target by 
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50.7±19.5%. This rise time was ~100% faster than when completing it under the previous 

instructions (rise time of 243±92 ms) where we emphasized the need for both speed and 

accuracy. We observed a more than five-fold increase in overshooting the target value 

over completing this task under previous instructions (overshot by 9.8±5.6%) indicating a 

reduction in the accuracy. 

2.5. Discussion  

Here we characterized people’s ability to control leg external forces. We found that people 

could control the vertical magnitude of the force that they applied to the ground, and the 

position of that force, by responding to and closely matching commanded step changes. 

For both force-magnitude and position control, we observed similar control performance 

in terms of responsiveness and accuracy. We also observed that increases in 

responsiveness correlated with reductions in other measures of control performance, such 

as a greater magnitude of overshooting. We modeled the observed control performance 

and found that a second-order model was a good predictor of external leg force control. 

On its own, this model could be used to make predictions about step sizes that we didn’t 

test experimentally, or the tracking of targets that are not simple step functions (e.g., a 

sine wave) 

Our study has several limitations. One limitation is that compliance—both within our 

participants’ bodies and within the apparatus itself—may have slowed the change in 

measured force-magnitude and position. To address this, we designed the apparatus 

using high-density padding at the contact points and adjustable scissor jacks that allow us 

to tightly secure each participant within the apparatus. We also reduced the possible 

bending of the apparatus itself by using stiff aluminum for the frame and bolting the rig 

securely to our laboratory floor. While it is impossible to entirely remove the effect of 

compliance, we aimed for our design to render the effect small.  

A second limitation is that reliance on visual feedback may have slowed measured control 

performance. Visual feedback loops have longer loop delays when compared to spinal 

reflex loops, and spinal reflexes are perhaps sufficient for the neural control of leg force 

during tasks like running [131], [132]. Consequently, in part of our experimental design, 

we tested to see if control without visual feedback would be significantly faster. Indeed, 

we found that trials that did not rely on visual feedback were modestly faster suggesting 

https://paperpile.com/c/hr6y2J/Z9eZy+ZERpO
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that our measurements are a reasonable but slightly slow approximation of control 

performance when controlling leg external forces with faster spinal reflexes.  

A third limitation is that our experiment may not adequately capture the control approach 

our nervous system is using when having to rapidly control leg external forces. In support 

of this possibility, sprinters run with a step frequency above 4 Hz [133] whereas our 

experimental results suggest that force control bandwidth should not exceed about 2 Hz. 

One mechanism for faster control is to not rely on visual or even spinal reflex loops but 

instead for the nervous system to estimate the motor commands in advance and execute 

them in a feedforward manner. To test whether force control could indeed be performed 

more rapidly when the need for feedback is removed, we instructed a single participant to 

prioritize leg force control responsiveness over accuracy when following commanded step 

changes in force. We found an increase in responsiveness of ~100% but a five-fold 

decrease in accuracy suggesting that controlling external forces in a feedforward manner 

can be considerably faster than when relying on feedback control but is much less 

accurate. As feedback is essential for accurate performance in the face of uncertainty, this 

observed increase in performance is likely an overestimate of the combined feedforward 

and feedback approach our control system likely employs under most situations [134],[28]. 

Future experiments are required to better support these hypotheses.  

Sensorimotor delays may limit responsiveness of leg external force control. An inherent 

property of biological control systems is that there are neural delays associated with 

sensing and transmitting neural information, and muscular delays associated with force 

generation. Neural delays arise from the times required to sense a stimulus, transmit 

neural signals along the length of nerves, and cross synapses [31], [32]. Muscular delays 

arise from the times required for conducting action potentials along muscle fibres, 

generating muscle force, and muscle shortening to stretch tendons that act in series [31], 

[32]. Using scaling relationships from other terrestrial mammals, we estimate the human 

delays to be approximately 1 ms for sensing, 20ms for sensory nerve conduction delay, 1 

ms for crossing a single synapse in the spinal cord, 20 ms for motor nerve conduction 

delay, 1ms for crossing the neuromuscular junction, 10 ms for the electromechanical 

delay, and 40 ms for the force generation delay [31], [32]. This equates to an estimate of 

the total human sensorimotor delay of ~90 ms, which corresponds well to estimates 

derived from human measurements [135]–[137]. Both feedback and feedforward control 

of leg external force must contend with the presence of sensorimotor delays which may 

https://paperpile.com/c/hr6y2J/QwxzA
https://paperpile.com/c/hr6y2J/r0k4m
https://paperpile.com/c/hr6y2J/fa1bM
https://paperpile.com/c/hr6y2J/F3vVB+78kdo
https://paperpile.com/c/hr6y2J/F3vVB+78kdo
https://paperpile.com/c/hr6y2J/F3vVB+78kdo
https://paperpile.com/c/hr6y2J/78kdo+F3vVB
https://paperpile.com/c/hr6y2J/H9Ged+Uc48w+5X6Jm
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set limits to responsiveness. In the feedback control approach, if the delays grow too large 

relative to the period of the movement, this could destabilize the system as the control 

signals become outdated, and the motor commands generated are no longer appropriate. 

To remain stable, a delayed feedback controller must use low gains resulting in low 

generated forces and a responsiveness that is potentially much slower than the delay 

itself. This may explain why a 90 ms sensorimotor delay results in controlled step changes 

in force that we measured here, which have a minimum period of ~500ms (2Hz 

bandwidth). Feedforward control of external force can generate faster responses because 

delays do not affect its stability. But the rate at which our muscle actuators can change 

between different force levels is still slow thus also limiting the bandwidth of feedforward 

control.  

Sensorimotor noise may limit leg external force control accuracy. Like delays, there are 

many sources of noise in our neuromechanical system with contributions from both neural 

and muscular sources. Neural sources of noise arise during the processes associated with 

determining movement-appropriate motor commands. These include but are not limited 

to noise in the uncertainty of sensory feedback, and probabilistic behavior of both cellular 

and synaptic signal transduction [138], [139]. Muscular sources of noise arise during the 

transformation of motor commands to the contraction of muscles. Variability in the 

temporal structure of the motor commands and in the recruitment properties of motor units 

result in muscular noise [140]. Even when motor commands are perfectly timed, there is 

natural variability in the muscle forces arising from the stochastic nature of the contraction 

of sarcomeres within muscle tissue [138]. The net effect of this sensorimotor noise is that 

for a fixed command to the muscles, there is variability in force output. This sensorimotor 

noise is believed to limit performance in various human motor control tasks. For example, 

in goal-directed arm movements, variability in the endpoint position has been shown to be 

related to sensorimotor noise in the execution of the movement [139]. In isometric force 

production of the fingers, increases in external force magnitude show increases in force 

variability [140]. As with these other tasks, sensorimotor noise may limit the accuracy of 

leg external force control to the levels we measure here.  

Measurements of force control performance may help in understanding differences in 

agility between humans and engineered systems, between humans and other animals, 

and between humans and other humans. The effective control of leg external forces in 

humans appears to be much slower and less accurate when compared to some legged-

https://paperpile.com/c/hr6y2J/PcgyR+aZFaA
https://paperpile.com/c/hr6y2J/MKBKp
https://paperpile.com/c/hr6y2J/PcgyR
https://paperpile.com/c/hr6y2J/aZFaA
https://paperpile.com/c/hr6y2J/MKBKp
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engineered systems [111]. For example, the legs of the MIT cheetah robot have a force-

magnitude bandwidth of ~100 Hz—about 50x faster than what was found in our 

experiment—and nearly no steady-state error or steady-state variability [124], [141]. 

Wearable devices such as foot prostheses and leg exoskeletons demonstrate millisecond-

scale control, enabling accurate and rapid control of force [126], [142]. Yet the agility of 

humans continues to be greater than that of state-of-the-art legged robots suggesting that 

human agility is achieved not through a greater control of leg forces, but by a greater 

understanding of what forces to apply. This may not hold true for comparing humans to 

other agile animals, such as gazelles or cheetahs, which may understand what forces to 

apply to the ground as well or better than humans. And in some cases, better control of 

external forces may be responsible for the greater agility of some animals over other less 

agile animals. The same may hold true for more agile athletes over less agile athletes, 

and for the changes in agility that come with fatigue, injury, disease, and age. Our work 

here is a benchmark for force control performance in young healthy humans to better 

enable these future comparisons. 

https://paperpile.com/c/hr6y2J/rRCHa
https://paperpile.com/c/hr6y2J/2y6If+gQK0o
https://paperpile.com/c/hr6y2J/if3OI+kqU0f
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Chapter 3.  
 
Neuromuscular fatigue reduces responsiveness when 
controlling leg external forces. 

3.1. Abstract 

In legged movement, our legs push against the ground, generating external force vectors 
that enable agile movements. Neuromuscular fatigue can reduce agility by causing 
physiological changes, such as slowing muscle reaction time, altering proprioception, and 
delaying neuromuscular control. Fatigue may deteriorate the nervous system's control of 
leg external forces, contributing to reductions in agility. In this study, we investigated the 
effect of fatigue on the nervous system's performance in controlling the vertical component 
of leg external force ground reaction forces. We hypothesized that increased leg fatigue 
would lead to declines in both the responsiveness and accuracy of leg force control. To 
test this hypothesis, we used an apparatus that allowed participants to exert controlled 
vertical forces with one leg against a force plate while immobilizing the rest of their bodies. 
Participants adjusted their leg external force to match step targets displayed on a screen. 
We induced fatigue by having participants maintain submaximal leg forces, and we 
measured leg force control performance between fatigue trials. Results showed a 
significant 26% reduction in mean maximum force production, leading to a substantial 
decline in leg force control responsiveness, as evidenced by a 23% increase in rise time 
and a 25% narrowing of bandwidth. However, fatigue did not significantly reduce leg force 
control accuracy. Understanding the effects of fatigue on leg force control can inform the 
development of strategies and technologies to sustain agile performance, even in the 
presence of fatigue. 

3.2. Introduction  

One-way legged animals, including humans, demonstrate agility is through effectively 

controlling external leg forces. We can push against the ground with any part of our bodies, 

but we often do this using our legs to push our feet against the ground. The resulting 

environmental reaction force, a vector quantity, accelerates our bodies. Here we consider 

the rapid and accurate control of the external force vector to be agility [15]. Examples of 

legged agility include accelerating from a standstill, jumping high and far over obstacles, 

and quickly changing movement direction, all of which require effective control of our leg's 

external forces. 

Neuromuscular fatigue reduces agility. Fatigue leads to a decline in muscle force-

generating capabilities [52] and reductions in maximum muscle shortening velocities [143], 

[144]. As mechanical power is the product of both force and shortening velocity, fatigue 

https://paperpile.com/c/hr6y2J/YmunK
https://paperpile.com/c/hr6y2J/1MayG
https://paperpile.com/c/hr6y2J/VsqRm+bk4R7
https://paperpile.com/c/hr6y2J/VsqRm+bk4R7
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reduces maximum muscle power [52]. The effect of fatigue on muscle power and agility is 

well-documented in sports performance, particularly in rapid change-of-direction sports 

like soccer and basketball [12], [64], [65]. For example, fatigue reduces power in jumping, 

leading to jumps of shorter distances and lower heights [53]–[55], [145], [146]. A second 

example is sprinting, in which high performance relies on fast-twitch muscle fibres. These 

same fibres are also the most susceptible to fatigue, leading to declines in speed in the 

final meters of a 100-m race [57]–[60]. Other physiological changes that may arise from 

fatigue include slowing of muscle reaction time [42], altering of proprioception [44], and 

delaying our neuromuscular control in ways that reduce the control of muscles [56]. The 

physiological changes described are some of the mechanisms that may explain reductions 

in agility and deteriorate the nervous system's control of the leg's external forces. In 

support of this idea, soccer players show a reduced ability to complete legged balancing 

tasks on unstable surfaces when fatigued  [61].  

Our study aimed to characterize the effect of fatigue on the nervous system's ability to 

rapidly and accurately control vertical external leg forces. We hypothesized that increased 

leg fatigue would deteriorate the leg's control of submaximal vertical external forces, 

characterized by reduced responsiveness and accuracy. We refer to responsiveness as 

to how quickly a person can control the magnitude of leg vertical external force when 

presented with a target force level, while we refer to accuracy as how close and variable 

their controlled force is to and around an intended target value. To test this hypothesis, 

we built a custom apparatus that constrained participants' bodies from moving, allowing 

their legs to maintain a static posture while controlling the external vertical force magnitude 

below their feet. We fatigued participants by having them hold submaximal vertical leg 

forces equal to 25% of their maximum voluntary external force and measured the leg’s 

force control performance between fatigue trials in matching commanded changes in 

force. We quantified fatigue as reductions in vertical force during maximal voluntary leg 

contractions, increases in force variability, and a shift to lower mean frequencies in leg 

muscle activity. To quantify force control performance, we instructed participants to best 

match visually-displayed target step changes in vertical force magnitude by pushing more 

or less against a ground-mounted force plate. We evaluated control performance based 

on how responsive and accurate participants were in matching their leg's external force 

vertical magnitude to the commanded target changes in vertical force. 

https://paperpile.com/c/hr6y2J/1MayG
https://paperpile.com/c/hr6y2J/vFncu+t4DbS+imEGh
https://paperpile.com/c/hr6y2J/cNaKE+4tkvF+trrq1+vbDcO+KQiVe
https://paperpile.com/c/hr6y2J/z4kDC+XYV8L+Zxr8I+wG6V0
https://paperpile.com/c/hr6y2J/OVMiP
https://paperpile.com/c/hr6y2J/YNZOT
https://paperpile.com/c/hr6y2J/ychAU
https://paperpile.com/c/hr6y2J/5BoKv
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3.3. Methods   

3.3.1. Participants  

We recruited 18 participants for the study (identifying as female: n = 11, identifying as 

male =7; age: 26.5±3.8y; body mass:74±16 kg; height: 171±12 cm; shoe size: 9+2 US 

sizing; mean±std). The Office of Research Ethics at Simon Fraser University approved the 

study. Participants provided us with verbal and written informed consent before 

participating.  

3.3.2. Experimental Design    

To characterize human leg force control, we tested the step response of participants as 

they selectively controlled external leg force. We used a custom apparatus (Figure 3-1) 

that we had previously built [15]. The apparatus consisted of a ground-embedded force 

plate (Bertec Corporation, Ohio, USA) that participants stood on, constrained in both the 

vertical and horizontal directions. The force plate was connected to a computer through a 

data acquisition unit (USB-6229, National Instruments Corporation, Texas, USA), which 

sampled data at 1000 Hz. Participants could exert a variable but controlled external force 

vector onto the ground by selectively pushing down with their leg. Our device has rigid 

supports that constrain participants at the shoulders and forearms, preventing vertical and 

horizontal movement of their upper body. Although control of force-position in the medial-

lateral and anterior-posterior directions (i.e., center of pressure control) and control of all 

three orthogonal force magnitude components of the external force vector is important, 

our work here focused only on controlling vertical force magnitude. In our prior work, we 

characterized the control of different step sizes of medial-lateral and anterior-posterior 

force positions and the control of a range of sub-maximal vertical force magnitudes. We 

found negligible differences in control characteristics for these different components of the 

external force vector [15]. By focusing on only the vertical component of force, we believe 

our findings will represent the range of control characteristics for all aspects of controlling 

the external force vector at submaximal forces and any control changes resulting from 

fatigue. 

https://paperpile.com/c/hr6y2J/YmunK
https://paperpile.com/c/hr6y2J/YmunK
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Figure 3-1 Apparatus used to characterize external force control and fatigue 
participants. The setup consisted of adjustable scissor jacks that 
constrained the vertical and horizontal motion of the participants' torso, 
pressing down on their shoulders and against their forearms, and a stiff 
80/20 aluminum frame securely mounted to the ground. Each participant 
stood on their right leg in a posture resembling the mid-stance phase of a 
run and applied a vertical force to the ground by pushing down with their 
foot onto a force platform. The real-time feedback displayed to the 
participants showed the vertical force they were applying to the ground, as 
well as the target they were trying to match. There were four different tasks 
with four distinct visual targets: A. the MVC Task, which involved pushing 
down maximally for 10 seconds while trying to reach a motivating but 
unattainable target (5.0 BW); B. the Hold Task, which required participants 
to match a target equivalent to 1.4 times their body weight (1.4 BW) for 73 
seconds; C. the Step Task, which involved rapidly and accurately 
controlling vertical force to match 10 upcoming step targets in 73 seconds; 
and D. the Pulse Task, which required participants to rapidly match 10 
upcoming step targets in 73 seconds by changing their vertical force to 
match a target force that approximated a pulse. 

To objectively quantify fatigue, we recorded electromyography (EMG) from the leg 

muscles of each participant. We placed wireless EMG sensors (Delsys, Natick, USA) on 

the middle of the muscle belly on the vastus medialis, vastus lateralis, rectus femoris, 

bicep femoris, gastrocnemius medialis, and gastrocnemius lateralis of the right leg 

muscles of each participant. Before placing the sensors, we prepared the location by 

removing any excess hair using a razor and rubbing it down with an alcohol swab. We 

synchronized our EMG system with our force plate using a custom code, which triggered 
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the collection of both force plate and EMG data. We used an EMG sampling rate of 2000 

Hz.  

After placing the EMG sensors, we fitted participants into the experimental apparatus. 

When fitting participants, we adjusted the apparatus such that participants maintained an 

approximately 15-degree knee flexion angle in their right leg, a posture similar to that 

assumed by a runner at the start of the stance phase [15], [128]. In this fitting process, we 

moved components of the apparatus to push down on the participant's shoulders and up 

on their arms by manually rotating four scissor jacks (Figure 3.1). Our goal was to ensure 

that we fixed participants tightly within the apparatus and were unable to move side-to-

side or vertically.  

To assess the effects of leg fatigue on the control of leg external force, we commanded 

four types of force control tasks. Participants stood on their right leg in all tasks unless 

otherwise instructed. We used visual feedback to allow participants to compare their actual 

vertical force magnitude to a target that we instructed them to match. We provided real-

time visual feedback using a monitor, where our custom-developed software displayed 

both the real-time feedback of the vertical force magnitude signal that the participant's foot 

exerted onto the force plate and the target that the participant tried to rapidly and 

accurately match. For visual display, we normalized the real-time signal to each 

participant's body weight and filtered the raw force signal using a low-pass fourth-order 

Butterworth filter with a cut-off frequency of 10 Hz. We programmed the real-time signal 

to display at the center of the screen and constrained it to only move up and down as the 

participant pushed more or less against the force plate. We programmed the target to slide 

past the real-time signal, giving participants time to view any upcoming changes in the 

target before they occurred. 

In the first force control task, the Maximum Voluntary Contraction Task (MVC Task), we 

evaluated the maximum effort of voluntary force that the leg could exert on the ground. To 

collect the MVC Task, we asked participants to push down against the ground as hard as 

possible and try to reach an unattainable target of 5 times their body weight (5.0 BW) 

displayed on the screen. From pilot experiments, we found that providing participants with 

a target to reach, even if it was not attainable, motivated them to push harder to try and 

reach it. Each MVC Task lasted 10 seconds as participants pushed down with their foot 

against the ground as hard as they could. 

https://paperpile.com/c/hr6y2J/WMQXJ+YmunK
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We designed the second force control task, the Hold Task, to fatigue each participant's 

right leg. In the Hold Task, we asked participants to match and hold a target equal to their 

body weight plus 25% of their pre-fatigue maximum voluntary contraction, as determined 

in the MVC Task before the onset of any leg fatigue [147]. This type of sustained voluntary 

contraction progressively recruits more motor units and leads to muscle fatigue in the 

active muscles [147], [148]. For each Hold Task, we asked participants to hold their force 

level to the best of their ability to match the target for 73 seconds, the same duration as 

the third leg force control task. 

In the Step Task, the third leg force control task, we probed force control characteristics 

by commanding target step changes in leg vertical force magnitude. Because both initial 

speed to the new target and steady-state accuracy around the new target are objectives, 

we anticipate that the nervous system will depend on feedback control to accomplish this 

task. In a single Step Task, the target step function consisted of a square wave of ten 

matching size target steps, each 4 seconds long, with 3 seconds between steps (totalling 

73 seconds per task). The lower value of the step target was 1.0 BW (i.e. standing upright 

on one leg), and the upper value (i.e., the size of the target) was 1.4 BW. We selected the 

target step size based on a previous experiment where we studied step responses by 

commanding a range of target step sizes, both smaller and larger than the magnitude 

chosen here [15]. We observed minor changes in control characteristics between targets 

of varying step sizes, so we chose an intermediate step size for this experiment. 

In the fourth force control task, which we called the Pulse Task, we aimed to probe rapid 

force control by asking participants to respond as rapidly as possible to changes in the 

target. Because this task emphasizes the initial speed of response over steady-state 

accuracy, we anticipate that the nervous system will emphasize feedforward control over 

feedback control when accomplishing this task [149]. The target in this task resembled a 

pulse, changing momentarily for 0.05s from 1.0 BW to the target step size of 1.4 BW (the 

same step size as in the Step Task). In a single Pulse Task, we programmed the target 

pulse to go from body weight to the target step size ten times over 73 seconds. 

3.3.3. Experimental Protocol 

We conducted the experiment in a single session. The session included five conditions: 

Training, Pre-Fatigue, Fatigue-1, Fatigue-2, and Fatigue-3 (Figure 3-2). We started the 
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study with the Training condition to familiarize participants with the experiment. In this 

condition, we explained and demonstrated how the visual feedback and force plate 

pushing worked. Then, we asked each participant to perform two repetitions of the MVC 

Task followed by three repetitions of the Step Task. From our previous work, we believe 

this is enough training in the apparatus to eliminate any learning effects. After the Training 

condition, we gave participants a 1-minute break to stand freely on both feet in the 

apparatus. Next, in the Pre-Fatigue condition, we had participants perform two repetitions 

of the MVC Task followed by a 1-minute break, then three Step Tasks followed by a 1-

minute break, and then two Pulse Tasks. We then gave participants a 1-minute break to 

rest before the next condition. Next, we started the sequence of three fatigue conditions. 

Each Fatigue condition consisted of a Hold Task followed by an MVC Task, which was 

repeated three times within each Fatigue condition. After the third and final MVC Task in 

each Fatigue condition, we immediately had each participant perform three repetitions of 

the Step Task to probe force control. For each Fatigue condition, we repeated this same 

sequence of tasks. On the third Fatigue condition and after the final Step Task, participants 

performed two Pulse Tasks. We gave participants a 1-minute break between Fatigue 

conditions. 
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Figure 3-2  A schematic of the experimental protocol, which consisted of 5 conditions: 
Training, Pre-Fatigue, First Fatigue, Middle Fatigue, and Final Fatigue. 
Each condition was composed of a combination of our force control tasks: 
Maximum Voluntary Contraction MVC Task, Hold Task, Step Task, and 
Pulse Task. The progression within each condition is shown as going from 
left to right, and the progression of conditions goes from top to bottom, 
starting from Training and finishing with Final Fatigue.     
 

3.3.4. Data Analysis 

For each MVC Task, we evaluated the mean vertical force output as one objective 

measure of fatigue (Figure 3-3-A). We quantified the mean vertical force output by taking 

the average of the signal during the midway point of the MVC Task between the 4-8 

second time interval.  

For each Hold Task, we evaluated the force variability of the response (Figure 3-3-B). We 

segmented each Hold Task data into one-second segments to quantity changes over time. 

We omitted any further analysis from the first 5 seconds of this signal as participants 

adjusted their vertical force to match the target during this time frame. For each 1-second 

segment, we then quantified force variability by calculating the standard deviation of the 

signal during each 1-second segment, dividing this by the mean of the signal during that 

time frame and multiplying this value by 100. This expresses variability as a percentage 

of the force magnitude. 

For each step response, within each Step Task, we evaluated the responsiveness in 

controlling leg external force (Figure 3-3-C). To accomplish this, we took step data from 



55 

each Step Task and segmented it into ten individual step responses such that each 

segmentation consisted of a six-second single-step response, with one second before the 

step-up and one second after the step-down. For each step response, we evaluated the 

rise time (in units of milliseconds) as the time for the signal to go from 10% to 90% of the 

target step size value [15]. We calculated bandwidth (in units of Hz) by dividing 0.35 by 

the rise time [129]. The bandwidth measures the maximum frequency at which a target 

signal can change and still be accurately tracked by the controller. We remind readers that 

as we calculate bandwidth using rise time, bandwidth is not an independent measure of 

responsiveness but depends on any changes in rise time. We restricted our evaluation of 

the rise time and bandwidth of the response to the time interval of 0.5 seconds before the 

step target stepped up to its high value and up to one second after the step-up occurred. 

Finally, we quantified fall time (in units of milliseconds) as the time for the signal to go from 

90% to 10% of the target step size value. We evaluated the fall time between four to six 

seconds when the step signal stepped down from the target step size to 1 BW.  In this 

chapter, we use the term responsiveness to refer to rise time, bandwidth, and fall time. In 

robotic systems, and how we think of responsiveness in this thesis, a responsive system 

that is capable of high-fidelity tracking of a target possesses a short rise time, a wide 

bandwidth, and a short fall time [150].  

For each step response, within each Step Task, we evaluated the accuracy of controlling 

leg external force (Figure 3-3-C). We quantified overshoot by taking the peak value 

reached by the signal, subtracting the value of the target step, dividing this by the size of 

the step, and multiplying by 100. We expressed overshoot as the percentage that the 

signal exceeds the target step size value. A large overshoot can indicate under-damping 

in the controller—it can take longer for the system to settle into a steady state, but it may 

be faster to reach its target step size [15]. We restricted our evaluation of the overshoot of 

the response to the time interval of 0.5 seconds before the step target stepped up and to 

one second after the step-up occurred. Next, we quantified steady-state error by 

calculating the mean value of the signal between 2-4 seconds, subtracting the value of 

the target step size, and taking the absolute value. We divided this by the value of the 

target step size and multiplied it by 100 to express the steady-state error as a percentage 

of the target value. The steady-state error informs us how much error the control system 

has once it has reached the target size value and settled in its new state. A large error can 

be indicative of poor control as the system is not able to well match the target value. We 
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quantified steady-state variability by calculating the standard deviation of the signal 

between 2-4 seconds, dividing this by the steady-state mean and multiplying this value by 

100. The steady-state variability, expressed as a percentage of the steady-state mean, 

informs us how variable the system is once it has reached and settled on its new state. 

From pilot studies, we found that using the 2-4 second interval to measure steady-state 

error and steady-state variability was a sound assumption as participants had at this point 

reached a steady state. In this chapter, we use the term accuracy to refer to overshoot, 

steady-state error, and steady-state variability—an accurate system has small overshoot, 

small steady-state error, and small steady-state variability. We collectively refer to the rise 

time, bandwidth, overshoot, steady-state error, steady-state variability, and fall time as the 

step response characteristics. 

For each Pulse Task, we evaluated the responsiveness of the response (Figure 3-3-D). 

To accomplish this, we took the data from each Pulse Task and segmented it into ten 

individual step responses such that each segmentation consisted of a 3-second single-

step response, with 1.5 seconds before the step-up and 1.5 seconds after the step-down. 

Following the same definitions of responsiveness as for the Step Task, we quantified the 

rise time, bandwidth, and fall time for each step in every Pulse Task.  
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Figure 3-3 A visual analysis of the four leg force control tasks evaluated during the 
experiment. A. In the MVC Task, we evaluated the mean force of the signal 
between 4-8 seconds.  B. In the Hold Task, we omitted any analysis during 
the first 5 seconds but calculated force variability for each 1-second interval 
for the duration of the task. C. We evaluated the responsiveness (rise time, 
fall time, bandwidth) and accuracy (overshoot, steady-state error, steady-
state variability) for each step response in the Step Task. D. For each Pulse 
target in the Pulse Task, we evaluated the responsiveness. 

We analyzed the EMG data to quantify changes in muscle frequency, one objective 

measure of fatigue. We used a fourth-order zero-lag Butterworth filter for bandpass 

filtering between 30 and 400 Hz, effectively reducing non-muscular noise and motion 

artifacts [29]. Next, we used a bandstop filter between 57–63 Hz to eliminate any lingering 

60 Hz powerline interference. Following the filtering process, we transitioned to frequency 

analysis by calculating the EMG median frequencies, an acknowledged metric of local 

muscle fatigue [151]. To enable this calculation, we transformed the time-domain signal 

into the frequency domain using fast-Fourier analysis, which permitted us to compute the 

power spectrum. Subsequently, we calculated out the median frequency [152], [153]. A 

trend of decreasing median frequencies over time is typically regarded as a sign of local 

muscle fatigue, although it may also signify other changes, such as changes in motor unit 

recruitment [152], [154]. 

We used exclusion criteria for the Step Tasks and Pulse Task to remove responses that 

may poorly describe the measured response. For the Step Task, we used the following 
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criteria: (1) the response steps up 0.5s before the target step function steps up, (2) the 

response does not step up within 0.5s after the target step function steps up, (3) the 

response is already greater than 10% of the target step size value during the 0.5s leading 

up to the step-up (4) the response steps down 1s or more before the target step function 

steps down.  For the Pulse Task, we used the following criteria: (1) the response rises up 

0.25s before the pulse target steps up, and (2) the response does not fall down until 

greater than 0.25s after the pulse target steps down. We removed the step responses that 

meet these exclusion criteria from all subsequent analyses. 

3.3.5. Statistical Analysis  

To determine the effects of our protocol on fatigue, we evaluated several objective 

measures. The first measure we evaluated was changes in mean force magnitude during 

the maximum voluntary contraction (MVC) task. A decrease in maximum vertical force is 

one indicator of fatigue [148]. To calculate this measure, we compared the mean force 

values from the final MVC tasks completed in each condition for each participant. Our 

second measure was force variability during each of the consecutive Hold Tasks in each 

fatigue condition. Increased force variability as fatigue progressed is an indicator of local 

muscle fatigue [155], [156]. To calculate this measure, we compared the mean force 

variability for the final ten seconds of each Hold Task repeated in each fatigue condition 

for each participant. To estimate force variability before the onset of fatigue (referred to as 

"Pre-Fatigue"), we also calculated the mean force variability for the first ten seconds of the 

Hold Task in the first Fatigue-1 condition. Our third measure was reductions in median 

EMG frequency. As with force variability, we compared the mean of the median EMG 

frequencies determined for the first ten seconds before the onset of fatigue and the final 

ten seconds of each fatigue condition. To evaluate the effects of our protocol on leg 

external force control, we next determined step response characteristics. For all 

conditions, we took the mean value of each step response characteristic for the first five 

Step Task responses for each participant immediately following the final MVC task. We 

used the same approach to characterize step response characteristics for the Step Task 

and the Pulse Task. To determine if there were differences in mean values between 

conditions, we performed a repeated-measures analysis of variance. If a significant 

difference was found, we conducted post hoc pairwise comparisons between the group 

means to identify which conditions produced similar mean values. We adjusted p-values 

https://paperpile.com/c/hr6y2J/nam8i
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for multiple comparisons using Bonferroni corrections. In all cases, we used MATLAB’s 

statistical analysis toolbox and accepted p<0.05 as statistically significant.  Unless 

otherwise stated, we present all data in the text as mean± standard deviation 

3.4. Results  

3.4.1. Participants fatigued during the protocol  

 

Figure 3-4  Representative data for one participant comparing the Pre-Fatigue (grey) 
and Final Fatigue (blue) conditions for the A. MVC Task, B. Hold Task, C. 
Step Task, and D. Pulse Task. For C. and D., the first five responses 
immediately following the final MVC Task in each condition are shown. As 
the participant progressed through the protocol, they exhibited fatigue, as 
indicated by a reduction in force for the MVC task and increased force 
variability during the Hold Task. 

Objective measures of fatigue demonstrated that participants were fatigued during the 

protocol. Task data for a representative participant are shown in Figure 3-4.  Fatigue was 

demonstrated by a reduction in the mean maximum MVC force (Figure 3-4A). As 

participants progressed through the protocol conditions, they exhibited significant 
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reductions (p=1.3e-12) in the mean force magnitude during the MVC Tasks (Figure 3-5-

A). During Pre-Fatigue, participants on average exerted a vertical mean leg force of 

2.95±0.58 BW and by the final fatigue condition, participants exerted a mean force of 

2.20±0.47 BW, a significant (p=4.7e-6) reduction of 26% in mean maximum force 

production. Next, we found significant increases in force variability (p=0.002) as 

participants progressed through Fatigue conditions executing the Hold Tasks (Figure 3-5-

B). During Pre-Fatigue, participants had a mean force variability of 0.61± 0.31% and by 

the final condition, participants had a mean force variability of 2.83±2.93%, a significant 

(p=0.027) increase of 368%. Finally, we found significant reductions in the mean, median 

frequency for several muscles, specifically the gastrocnemius lateralis (p=0.002), 

gastrocnemius medialis (p=0.0019), and the bicep femoris (p=0.003) (Figure 3-5-C). 

Comparing the Pre-Fatigue to the final fatigue condition, the gastrocnemius lateralis 

medialis exhibited a significant (p=0.016) reduction of 10% in frequency reducing from 

126±24 Hz to 113±27 Hz; the gastrocnemius medialis exhibited a significant (p= 0.048) 

reduction of 10% reducing in frequency from 133±28Hz to 119±34Hz; and the bicep 

femoris exhibited a reduction of  11% reducing in frequency from 90±12Hz to 79±13Hz, 

but this only approached but did not reach significance between these two conditions 

(p=0.074).  The other three muscles (vastus lateralis, vastus medialis, and rectus) showed 

no significant changes in EMG median frequency.  
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Figure 3-5 Objective measures of fatigue. As participants progressed through the 
protocol (Fatigue 1-3), they demonstrated A. A decline in Mean MVC 
vertical force, B. An increase in force variability, and C. A reduction in the 
median EMG frequency of several of the measured leg muscles. If we 
found the repeated measure ANOVA to be significant, we show any 
significant pairwise comparisons indicated with an asterisk. The legend on 
the top left explains the values shown in the box and whiskers plots 

3.4.2. Fatigue led to reductions in leg force control responsiveness  

As participants grew fatigued, their responsiveness decreased, demonstrated by a 

significant increase in rise time (p = 0.0011) and a decline in bandwidth (p = 0.0014). 

However, this decrease in responsiveness wasn't reflected in changes in fall time (p = 

0.109) (Figure 3-6-A). Comparing the rise time of 303 ± 100 ms in the Pre-Fatigue 



62 

condition to 373 ± 94 ms in the final fatigue condition, we observed a significant (p = 

0.0006) increase of 23%. Simultaneously, bandwidth decreased significantly (p = 0.04831) 

from 1.33 ± 0.6 Hz to 1.00 ± 0.25 Hz, a reduction of 25%. Despite these changes, we did 

not observe any alteration in force control accuracy between these two conditions (Figure 

3-6-B). 

 

 

Figure 3-6   We assessed force control responsiveness by examining rise time, 
bandwidth, and fall time changes. B. We evaluated force control accuracy 
through alterations in overshoot, steady-state error, and variability. In cases 
where we found the repeated measure rANOVA significant, we displayed 
significant pairwise comparisons, denoted by an asterisk *. 
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3.4.3. The Pulse Task was resilient to the effects of fatigue  

As participants grew fatigued, they did not exhibit changes in responsiveness during the 

Pulse Task (Figure 3-7), evidenced by the absence of significant changes in rise time 

(p=0.9722), bandwidth (p=0.9147), or fall time (p=0.7830). Since the primary objective of 

the Pulse Task was responsiveness, we did not evaluate accuracy. 

 

Figure 3-7  Pulse Task responsiveness, assessed by rise time, bandwidth, and fall 
time, comparing the Pre-Fatigue condition to the final fatigue condition, 
Fatigue-3. We did not evaluate the accuracy of the Pulse Task, as its 
primary objective was responsiveness. When the need for accuracy was 
removed from the objective, participants exhibited greater responsiveness 
compared to the Step Task, which required both responsiveness and 
accuracy. 

3.4.4. Participants exhibited higher responsiveness in the Pulse Task 
compared to the Step Task 

We observed that participants demonstrated greater responsiveness in the Pulse Task 

than in the Step Task across all measures. In comparing the Pre-fatigue responsiveness 

of the two tasks, participants in the Pulse Task had a rise time of 148 ± 64 ms, a bandwidth 

of 2.88 ± 1.47 Hz, and a fall time of 299 ± 68 ms. In contrast, participants in the Step Task 

had a rise time of 303 ± 100 ms, a bandwidth of 1.33 ± 0.60 Hz, and a fall time of 531 ± 

199 ms. During Pre-Fatigue, the Pulse Task exhibited a 51% faster rise time (p = 6.8e-6), 

a 116% wider bandwidth (p = 4.0e-4), and a 42% faster fall time (p = 6.0e-4) than the Step 

Task. 
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3.5. Discussion    

In this study, we investigated the impact of fatigue on the ability to control the vertical 

component of leg external ground forces, finding that fatigue led to a decrease in force 

control responsiveness (speed). Our protocol successfully fatigued participants, as shown 

by several objective measures, including a decrease in mean maximum voluntary 

contraction force during the MVC Task, increased force variability during the Hold Tasks, 

and reductions in median EMG frequency in multiple lower leg muscles. Consistent with 

our hypothesis, we observed that fatigued participants demonstrated a significant decline 

in responsiveness, marked by a 23% increase in rise time and a corresponding 25% 

reduction in bandwidth. However, contrary to our hypothesis, we found that fatigued 

participants did not exhibit significant changes in leg force control accuracy. Furthermore, 

we found that in the Pulse Task—a task in which participants displayed overall greater 

responsiveness when compared to the Step Task—control was resilient to the effects of 

fatigue. 

There are several limitations to our study. One limitation is that mechanical compliance, 

both within the participants' bodies and within the testing apparatus, may have influenced 

the measured force. To minimize this potential issue, we used stiff materials and securely 

fixed the participants in the apparatus, as described in [15]. Another limitation is that we 

only evaluated force control at a single sub-maximal vertical force level. In real-life 

situations, leg external forces vary widely depending on the task. However, previous 

research suggests that aspects of force control might not differ significantly at different 

sub-maximal force levels of up to 60% of MVC when fatigued  [15], [157]. A third limitation 

is that our study results may not generalize to other populations, such as older adults or 

individuals with chronic conditions. These groups could exhibit different control 

characteristics even before the onset of fatigue [158]. [159], [160]. Lastly, our study used 

a standardized fatigue protocol that might not accurately reflect real-world conditions in 

which fatigue occurs. For example, real-world conditions can involve not only physical but 

also cognitive demands, both of which may affect motor control and be subject to fatigue 

[161]. Our study targeted fatigue at the neuromuscular level and did not actively 

investigate the separate effects of physical and cognitive fatigue [162]. 

There are several mechanisms through which fatigue can affect responsiveness. One way 

is through the inhibition of feedforward connections from the brain to the muscles or neural 
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drive. Neural drive refers to the intensity or strength of the feedforward signals sent from 

the central nervous system to the muscles [48]. This reduction in neural drive may be due 

to a decrease in the release of neurotransmitters, an alteration in the firing patterns of 

motor neurons, or a reduction in the sensitivity of muscle fibres to neurotransmitters [48]. 

When an individual is fatigued, the intensity of these feedforward signals may be reduced, 

leading to a decrease in muscle force-generating capabilities [163], [164]. It may also be 

the case that fatigue leads to a reduction in the sensory feedback gains involved in the 

control of muscle force. In a feedback control system, responsiveness is determined, in 

part, by the ratio between output (e.g., muscle force) and sensory input (e.g., muscle 

length or velocity), known as feedback gains. Sensory feedback gains can be adjusted 

dynamically to achieve task success [165]. As feedback gains decrease, the control 

system becomes less responsive [166]. A comparison of the responsiveness results from 

the Step Task—which relied on feedback control and was affected by fatigue—and the 

Pulse Task—which relies more on feedforward control and is not affected by fatigue—

suggests that in our experiment, fatigue primarily affected sensory feedback pathways 

and not neural drive.  

The distinction between the effects of fatigue on feedback and feedforward control is 

important for understanding how the nervous system adapts to fatigue and could inform 

the development of interventions to maintain or improve motor performance under fatigued 

conditions [167]. For example, targeted interventions could focus on enhancing 

feedforward control through training programs [168] or provide external sensory feedback 

to optimize performance in the presence of fatigue [167]. The ability of individuals to 

maintain optimal performance in fatigued conditions is critical, particularly for athletes. 

Therefore, identifying and developing effective interventions can significantly impact their 

ability to perform at their best, even when fatigued. 

Our observed reductions in leg force control responsiveness are large enough that they 

could negatively impact agile performance. Agile performance relies on quickly and 

accurately responding to environmental changes. A decrease in responsiveness can 

increase the time needed for the system to respond accurately to these changes, leading 

to a decline in performance. This has been illustrated in simulation experiments using 

robotic legs, where reductions in responsiveness, as indicated by increases in rise time 

and narrowing of bandwidth, were observed when the controller time delay was increased 

[169]. And in hardware experiments with legged robots— narrowing bandwidth and 

https://paperpile.com/c/hr6y2J/Zvv4b
https://paperpile.com/c/hr6y2J/Zvv4b
https://paperpile.com/c/hr6y2J/lAQdC+3eJLO
https://paperpile.com/c/hr6y2J/dgmK5
https://paperpile.com/c/hr6y2J/Q9saB
https://paperpile.com/c/hr6y2J/3cdyn
https://paperpile.com/c/hr6y2J/qkyDJ
https://paperpile.com/c/hr6y2J/3cdyn
https://paperpile.com/c/hr6y2J/BF4xY


66 

increasing controller time delay resulted in the robot failing to land properly during a drop 

landing task [169]. However, as observed in our study, the consequences of a 25% 

reduction in responsiveness on a system's or individual's agility may depend on their 

specific abilities and the task. For instance, the MIT Cheetah, a highly agile-legged robot, 

has a leg force responsiveness that is 100 times faster than that measured in humans—

a 25% reduction in responsiveness may not significantly affect its performance [124], 

[170]. On the other hand, humans already exhibit comparatively slow rise times and 

narrow bandwidths, suggesting that a 25% decrease in responsiveness is more likely to 

impair agile performance. Indeed, fatigue-induced temporal changes in humans affect 

agile performance—fatigued athletes exhibit prolonged drop landing contact times [61] 

and decreased running speed [171].  

Fatigue reduces leg force control responsiveness, potentially raising the risk of injury 

during physical activities. Individuals may compensate for these decreases by altering 

their body mechanics to preserve performance. For example, fatigued athletes land from 

jumps with more flexed knees or shift their load from plantar flexors to knee extensors 

[64]. Such fatigue-induced changes in body mechanics can compromise stability and 

heighten injury risk by placing extra stress on specific joints or muscles not typically 

engaged or active during certain movements [172], [173]. In men's collegiate soccer 

matches, for example, players sustained approximately 50% more injuries in the second 

half compared to the first half [174].  

In our experiment, we developed a method for fatiguing participants and benchmarking 

the impact of fatigue on leg force control performance, laying the groundwork for studying 

interventions that address fatigue and enhance agility. Potential interventions, such as 

strength training or exoskeletons, could be explored in diverse populations, including 

athletes, military personnel, and older adults. By understanding the effects of fatigue on 

leg force control responsiveness and accuracy, it may be possible to develop targeted 

strategies that mitigate the consequences of fatigue and optimize agility across various 

tasks and populations. This research will help with future work focused on identifying, 

assessing, and implementing effective interventions that cater to the unique needs of 

individuals relying on leg force control for optimal performance. 
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Chapter 4.  
 
Studying the limits of vertical jumping using a 
physics-based model that predicts external ground 
reaction forces  

4.1. Abstract  

To understand better the fundamental principles governing vertical jumps, we developed 
a physics-based model that accurately predicts vertical external forces during jumps from 
various initial depths using a single set of optimally determined actuator properties. The 
model achieved a mean R2 of 0.89±0.10 and a RMSE of 0.45±13 body weights across all 
depths. Our findings highlight the importance of force-velocity properties and maximal 
force (𝐹𝑚𝑎𝑥) in determining jump height. When we eliminated the force-velocity relationship 
or when we increased 𝐹𝑚𝑎𝑥 by 1000%, we observed substantial increases in jump height, 
averaging 300% and 416%, respectively. Furthermore, our model accurately predicted 
preferred jumping depths, aligning with empirical data. We found that participants 
optimized their jumping performance by balancing the goals of maximizing jump height 
and minimizing jump duration, achieving large speed improvements with minimal losses 
in jump height. Our simplified model provides a clear understanding of the fundamental 
principles governing vertical jumps. The insights from this study have potential 
applications in athletic training, rehabilitation, and developing technologies to augment 
jump height.  

4.2. Introduction 

Vertical jumping is a fundamental form of movement in legged bipeds, such as humans. 

It involves the rapid application of a downward force against the ground, generating 

external ground reaction forces. These forces propel the jumper's body upward until the 

legs fully extend and lose contact with the ground, enabling the jumper to become 

airborne. The magnitude of the upward acceleration produced by the external ground 

reaction forces during this process plays a crucial role in determining the vertical take-off 

velocity of the jumper and, ultimately, the height that can be achieved in a jump. 

Two primary physical factors play a crucial role in maximizing the vertical take-off velocity 

(𝑣𝑡𝑜) and, consequently, the height of a jump. The first factor is the length of the leg's 

extension on the ground [175]. Human legs have inherent limitations in extension, but 

longer extensions can generally facilitate the generation of more force, thereby enabling 

higher jumps [68]. The extent of leg extension influences the distance over which force 
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can be applied to generate acceleration. The second factor influencing jump height is the 

average magnitude of the vertical ground reaction force (𝐹𝑣𝐺𝑅𝐹) that exceeds the force of 

gravity (mg) exerted by the jumper against the ground throughout the jump's duration 

[175]. By generating larger magnitude forces, the jumper can produce more energy to 

accelerate their body's center of mass, increasing vertical take-off velocity and higher jump 

heights. Therefore, to maximize jump height within the constraints of a specific allowable 

leg extension, it becomes essential to maximize the magnitude of the vertical external 

force (𝐹𝑣𝐺𝑅𝐹) throughout the jump's duration.  

Maximizing the magnitude of external force generated during a jump while the legs are in 

contact with the ground is fundamentally a product of the mechanics of biological muscle 

contractions. During a jump, muscles serve as actuators, generating force that is 

transmitted through our skeletal system to push against the ground. In response, the 

ground exerts an equal and opposite force (as per Newton's third law), propelling us 

upwards. Thus, our muscles play a crucial role in enabling us to jump. However, muscles 

are not perfect actuators; they cannot produce force infinitely and instantly [176] The 

properties of muscle actuators impose limitations on force production as the muscle's state 

changes. One such muscle actuator property is the relationship between muscle force and 

its kinematic state, i.e. its velocity and length. As the velocity of a shortening muscle 

increases, the force it can generate decreases. At a certain maximum velocity, the muscle 

ceases to produce any force [37]. Additionally, muscles exhibit a roughly parabolic 

relationship with their length. They generate maximum force at an optimal length, and the 

force decreases when the length deviates from this optimal range [37], [38]. Furthermore, 

muscles operate in conjunction with elastic tendons, which can store and release energy 

through moment arms, determining the resultant joint torques. These inherent properties 

of muscle actuators, along with their mechanical implications, are critical in determining 

the external forces generated during a vertical jump and, ultimately, the height of the jump 

[177]. Understanding the relationships between muscle force, velocity, and length is 

essential for maximizing the resultant magnitude of external forces and enhancing jump 

performance.  

Mathematical models can be invaluable for studying the intricate relationship between 

muscles and resultant movement. Mathematical models can be built to integrate 

morphological, physiological, and neuromuscular variables, providing a platform for 

studying the mechanics of biological systems [10], [66], [80], [81], [83], [178]. Simple 

https://paperpile.com/c/hr6y2J/OHRv0
https://paperpile.com/c/hr6y2J/hH8xN
https://paperpile.com/c/hr6y2J/RKQDW
https://paperpile.com/c/hr6y2J/kQ0UK+RKQDW
https://paperpile.com/c/hr6y2J/7IUM4
https://paperpile.com/c/hr6y2J/x3Fzx+7buHx+q2K3c+oZ7xu+y0qgs+1lT9i
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models, focusing on essential variables and relationships, have been instrumental in 

gaining insights into movement and, specifically, walking mechanics [179]–[181].  Vertical 

external forces result from the complex interplay between the body's muscular, skeletal, 

and nervous systems. Therefore, a model that can accurately predict these forces can 

offer insights into these systems' functioning during a jump. Humans, with a generally fixed 

set of muscle properties, can jump from various initial depths and positions, highlighting 

our muscular system's versatility and intricate control mechanisms. However, no existing 

jumping model has accurately estimated leg external forces across a range of jumps with 

varying initial starting depths [10], [66], [68], [83], [182]. Developing a simple model 

capable of generating external forces from any depth that aligns well with those observed 

during human jumps will enable a detailed study of how model actuator properties can 

limit or augment vertical jump height.  

Our objective is to characterize how muscle actuator properties augment vertical jump 

height. To achieve this, we first sought to develop a simple physics-based model capable 

of jumping from different initial starting depths while accurately predicting vertical external 

forces. Given that humans do not alter their muscle actuator properties to accommodate 

jumps of varying depths, we sought to design our model to also jump from various depths 

using a single set of optimal actuator properties. We recruited ten participants who 

performed vertical squat jumps from five different initial starting depths to develop such a 

model. During these jumps, we collected their external leg forces using a ground-mounted 

force platform. We then developed and assessed vertical jumping models of increasing 

complexity. By leveraging simulation and optimization techniques, we aligned the model's 

predicted vertical external forces with the empirical data for each jump. Eventually, we 

arrived at a model that could jump from various depths and generate vertical external 

forces that closely matched empirical data, all while using a single set of optimal actuator 

properties. We then used this model to probe how incremental changes in actuator 

properties affect the generated vertical external forces and how this impacts vertical jump 

height. Finally, we used this model to determine what factors contribute to preferred jump 

depth when participants jumped maximally.   

https://paperpile.com/c/hr6y2J/y1e8y+b1CCi+9uYPI
https://paperpile.com/c/hr6y2J/7buHx+q2K3c+x3Fzx+02ncB+c3IE7
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4.3. Methods and Models 

4.3.1. Participants  

We recruited ten participants for our study (one female, nine males; body mass: 67.6±9.3 

kg; age: 26.5 ±3.5 years; leg length: 94.6±3.3 cm; mean±standard deviation). The Office 

of Research Ethics at Simon Fraser University approved the study, and all experiments 

complied with relevant guidelines and regulations. Participants provided written informed 

consent before participating. 

4.3.2. Experimental Protocol   

We conducted two experiments to collect a wide range of external forces generated during 

jumping. In these experiments, participants performed squat jumps from various initial 

starting depths. A squat jump involves initiating a jump from a static position and 

accelerating the center of mass upward. We used a force plate from Bertec Corporation 

(Ohio, USA) to record participants' vertical ground reaction forces. In the first experiment, 

we focused on maximum-height vertical squat jumps. Participants performed jumps from 

five different initial squat depths, as shown in Figure 4-1. To ensure consistency in starting 

depths, we designed and used a simple device consisting of a flexible horizontal pole 

attached to a vertical stand. This device served as a visual reference and assisted 

participants in achieving the desired squat depth. We marked three additional depths on 

the simple device, creating a total of five starting depths. The shallowest and deepest 

starting depths were determined based on participants' ability to perform jumps without 

countermovement. After trial and error, we adjusted the pole to the desired starting 

positions between a shallow and deep jump. Each participant completed four maximum-

height jumps at each of the five initial depths, resulting in 20 jumps per participant. We 

randomized the order of depths to minimize potential bias or order effects. 

In the second experiment, we removed the guidance device and instructed participants to 

perform maximum-height vertical squat jumps from their chosen starting depths. In this 

experiment, we aimed to collect data on each participant's preferred starting depth, 

allowing us to investigate the factors influencing the choice of jump depth when aiming for 

maximum height. We gave each participant the following instructions: “We have now 

removed the guidance device. From your chosen initial position, please jump as high as 
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you can. The goal is to jump as high as possible without using a countermovement." We 

asked participants to perform 10 jumps like this, providing a one-minute rest between each 

jump to prevent fatigue. In both experiments, we instructed participants to tuck their arms 

into their chest during jumps to minimize the impact of arm swing on the jump [183]. 

 

Figure 4-1 Participants (n=10) performed vertical squat jumps from a range of five 
predetermined initial depths (experiment 1) as well as from their own self-
selected depths (experiment 2), with their arms tucked into their chests. 
Vertical ground reaction force 𝑭𝒗𝑮𝑹𝑭 profile for a range of initial depths for 
the range of shallow to deep depth jumps is shown for one representative 
participant. 

4.3.3. Data Preparation 

We curated the empirical data to support our model development. First, we trimmed the 

time-series data of the collected vertical ground reaction forces to begin when the 

participant started to vertically accelerate their center of mass and end at the instant they 

left the ground. Since participants were instructed to remain stationary at the start of the 

vertical jump, their ground reaction force was approximately equal to their body weight. 

We used a 3% change in vertical acceleration as a threshold to determine when the 

participant began to vertically accelerate, marking the beginning of their jump. From 

experimenting with different thresholds, we found that 3% was the minimum that worked 

for over 95% of our jumps. To confirm, we visualized all the marked predictions of the start 

of all the jumps. We adjusted any visually incorrect predictions by manually shifting where 

the jump-started. In these cases, the participants displayed movement fluctuations in their 

https://paperpile.com/c/hr6y2J/FtQoZ
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center of mass positions that the algorithm incorrectly marked as the start of the jump. We 

then trimmed the data to end at the instant the participant took off from the ground when 

the vertical force reached zero (𝐹𝑣𝐺𝑅𝐹 = 0). We excluded any jumps exhibiting a 

countermovement motion (i.e., the acceleration profile showed a downward acceleration 

followed by an upward acceleration as the jump began) from subsequent analyses. For 

all remaining jumps, we calculated the center of mass velocity by integrating the 

acceleration, assuming an initial velocity of zero. To determine the position of the center 

of mass, we integrated the velocity, assuming an initial position of zero. 

To ensure direct comparison across different individuals, we transformed our variables 

into dimensionless quantities. This normalization process involved several steps. Firstly, 

we normalized forces by dividing by the participant's body weight. Secondly, we 

normalized lengths by dividing by the participant's leg length (L). Thirdly, we normalized 

time by dividing it by the time it takes to fall to the ground from the height of the leg length 

under the influence of gravity sqrt (L/g) where (g = 9.81 m/s2). Lastly, to represent the 

position change of the center of mass as a percentage of the leg length, we subtracted 

the resultant value from 1. This adjustment established a reference point where the initial 

position corresponds to a certain percentage of the leg length, with take-off occurring at a 

position equivalent to 1 leg length. By transforming our variables into dimensionless 

quantities through these normalization procedures, we achieved a consistent and 

standardized framework for comparing our model's predictions across different 

individuals, allowing for more meaningful and reliable comparisons. 

4.3.4. Model Development  

Our goal is to create a simple physics-based model capable of performing jumps from 

varied initial starting depths while accurately predicting vertical external forces. As we aim 

for our model to accommodate jumps from different depths using a single set of optimal 

actuator properties, this section provides an overview of our modelling approaches, 

optimization techniques, and outlines the steps undertaken to reach this goal. Our models 

will be available on Zenodo through GitHub repository: 

https://zenodo.org/badge/latestdoi/697932895 
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Our approach to optimizing and evaluating the performance of all of our models involved 

a two-step process: initialization and optimization. As will be further described in the fourth 

coming paragraphs, each of our models has unknown parameters that needed to be 

optimized. To optimize unknown parameters in our models we initially generated 3000 

random initial guesses for each actuator property required in the model. The goal was to 

thoroughly explore the parameter space and increase the likelihood of finding the optimal 

actuator properties. Each of our models had different actuator properties, and the number 

of these properties varied with the models. The 3000 initial guesses for each combination 

of actuator properties were generated through uniformly distributed random number 

generation within reasonable bounds for each actuator property. After the initialization 

step, we optimized every model's actuator properties, starting with each of these initial 

guesses. We used MATLAB's (2022) constrained optimization function fmincon to do this. 

We set our optimization objective to minimize the differences between the model-predicted 

external forces and the depth-matched external ground reaction forces for five different 

depths ranging from the shallowest (i=1) to the deepest (i=5) simultaneously. 

Equation 4-1         ObjFunction =∑
(𝐹𝑖

𝑣𝐺𝑅𝐹 𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙
− 𝐹𝑖

𝑣𝐺𝑅𝐹 𝑚𝑜𝑑𝑒𝑙)2

𝑙𝑒𝑛𝑔𝑡ℎ(𝐹𝑖
𝑣𝐺𝑅𝐹 𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙

)
5
𝑖=1  

We use an objective function that optimizes a single set of actuator properties for multiple 

depths simultaneously, to enable the model to simulate jumps from a wide range of depths 

successfully. For each of the 3000 initial guesses, we optimize the actuator properties, 

refining and fine-tuning the model's predictions to achieve the closest alignment with the 

observed ground reaction forces. This approach enhances our confidence in the accuracy 

and reliability of the model's predictions. We ranked the 3000 solutions based on their 

objective function values after optimization. We observe that solutions with objective 

function values close to the smallest value also have similar parameter values. 

Consequently, we select the solution with the smallest objective function value as optimal, 

acknowledging that many near-optimal solutions with similar parameter values exist. 

However, no optimization process can guarantee a globally optimal solution, especially in 

complex, multi-dimensional spaces. There is always a possibility that a more optimal 

solution exists but was not found due to the inherent limitations of optimization algorithms 

or our lack of knowledge. While this may be true, we believe that our methodology, which 

involves generating a large number of initial guesses and then refining these through 

optimization, provides a good balance between searching the entire parameter space and 
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converging on promising solutions. Following this approach increases the likelihood of 

finding a broad range of high-quality solutions. 

4.3.5. Model A: A single-segment linear actuator  

In Model A, we simplify the musculoskeletal system and jumping to its most fundamental 

concepts. The model represents the body as a point mass (m) and includes a massless 

telescoping leg actuator attached to the ground (Figure 4-2). The actuator generates a 

force based on its kinematic states, such as velocity and length. For example, the force 

decreases as velocity increases and varies with deviations from the optimal length (𝑦𝑜𝑝𝑡) 

(see Figure 4-2 for details). Additionally, the actuator exhibits laggy activation dynamics 

𝑎(𝑡), requiring time for the force to reach its full output (again, see Figure 4-2). These 

resultant force characteristics are captured by Equation 4-2, which governs the actuator 

force in this model: 

Equation 4-2                     𝐹 =  𝐹𝑚𝑎𝑥 [ 𝑎(𝑡) ∗ 𝐹𝑣(𝑣) ∗  𝐹𝐿(𝐿)]               
 𝑎(𝑡)  =  𝐶𝑒(−𝑡/𝑡𝑎𝑢) + 1 

Where 𝑣 is the velocity of the actuator and 𝐿 is the length. We solve for the unknown 

parameter 𝐶 by considering the initial conditions for each jumper. This includes an initial 

velocity (𝑣𝑖) of 0 and an initial position (𝑦𝑖 ) of 0, and a known initial vertical force, which is 

approximately equal to the body weight.  In this model, then, there are five unknown 

actuator properties: maximal force (𝐹𝑚𝑎𝑥), optimal length (𝑦𝑜𝑝𝑡), maximal velocity (𝑉𝑚𝑎𝑥),  

parabolic force-length width (𝑤), and 𝑡𝑎𝑢 the rate constant for the activation dynamics. 

Our goal is to optimize these actuator properties to ensure that the model's external force 

data best align with empirical data. 



75

Figure 4-2 Our simplified jumping model (Model A), in which the body is represented 
as a point mass actuated by a massless actuator. The actuator force can 
be subject to properties that limit its ability to generate force, similar to a 
biological muscle. These actuator properties include length-dependent 
force limitations (F-L), velocity-dependent force limitations (F-V), and 
activation dynamics. An ideal force actuator, depicted as a gray line, would 
not face any force attenuation at any length or velocity, nor would it have 
any activation dynamics that delay its force generation. Conversely, an 
attenuated actuator, represented as a dark line, has properties that limit its 
force generation capabilities with changes in length and/or velocity. For 
instance, as the actuator's velocity increases, its force generation capability 
decreases, reaching a maximal velocity (𝑽𝒎𝒂𝒙) beyond which it can't 
generate any force. At an optimal length (𝒚𝒐𝒑𝒕), the actuator develops its 
maximal force (𝑭𝒎𝒂𝒙), and the force declines outside this optimal length. 
Lastly, the actuator's activation dynamics result in a lag in force generation, 
necessitating a time delay to reach full activation and full actuator force.
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4.3.6. Model B: A 2-link-segment model actuated by a torque 
generator  

In Model B, we introduce two segments and a rotary actuator at the joint where the 

segments intersect to increase the complexity of our model (Figure 4-3). By incorporating 

multiple segments, we can better mimic the musculoskeletal system and joints in the 

human body. The rotary actuator is a massless torque generator that produces joint 

torque, aiming to emulate the behaviour of muscles that cross a given joint [184]. Although 

the rotary actuator does not fully replicate biological muscles, similar to in Model A, we 

incorporate actuator properties that mimic muscle behaviour, including angle-dependent 

and velocity-dependent torque limitations and laggy activation dynamics (Figure 5-3).  

  

https://paperpile.com/c/hr6y2J/cSyzB
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Figure 4-3 Our two-segment point mass model (Model B) features a rotary actuator at 
the joint where the segments intersect. This actuator torque can mimic the 
properties of a biological muscle, including limitations that affect its ability 
to generate torque. These limiting properties can encompass angle-
dependent torque limitations, velocity-dependent torque limitations, and 
activation dynamics. An ideal torque actuator, illustrated by a gray line, 
would not experience any torque attenuation at any length or velocity, nor 
would it have any activation dynamics that would limit its ability to generate 
torques. Conversely, an attenuated actuator, depicted by a red line, has 
properties that restrict its torque generation capabilities with changes in 
length and/or velocity. For example, at an optimal length (𝒚𝒐𝒑𝒕), the actuator 
produces its maximum torque (𝑻𝒎𝒂𝒙), and the torque decreases outside 
this optimal length. As the actuator's velocity increases, its torque 
generation capability also increases, reaching a maximum velocity (𝑽𝒎𝒂𝒙) 
beyond which it cannot generate any torque. Lastly, the actuator's 
activation dynamics result in a delay in torque generation, requiring time to 
reach full activation.

In this model, there then are five unknown actuator properties: maximal torque (𝑇𝑚𝑎𝑥) , 

optimal angle (𝑦𝑜𝑝𝑡), maximal velocity (𝑉𝑚𝑎𝑥),  a parabolic torque-angle width (𝑤), and τ 

the rate constant for the activation dynamics. Our goal is to optimize these unknown 
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actuator properties to maximize the alignments between the model's external ground 

reaction force data with the empirical data over all jumping depths.  

4.3.7. Model C: 2-link-segment model actuated with a hill-type muscle-
tendon actuator 

In Model C, we enhance the previous model by incorporating a linear Hill-type muscle 

actuator, moment arms (Figure 4-4). Including the Hill-type muscle model allows for a 

more accurate representation of muscle contraction and force generation, considering 

factors such as stiffness, and elasticity in addition to force-velocity and force-length 

relationships, thus more closely resembling the behaviour of biological muscle-tendon unit 

[39]. In addition, we capture the mechanical advantage observed in the musculoskeletal 

system by incorporating moment arms, which represent the lever arms between the 

attachment points of the hill-type muscle actuator and the joint center. Importantly the 

actual force exerted by a muscle on the skeleton depends not only on the force generated 

by the muscle actuator but also on the geometry of its attachment providing a more 

realistic depiction of the functioning of the human body during jumping movements. 

This two-link-segment model is actuated by a linear actuator with a unique origin (Uo) and 

insertion point (Ui). As the actuator shortens, it generates a joint torque about the two link 

segments, simulating the muscle's contribution to the movement. This model incorporates 

nine free actuator properties elaborated upon in Figure 4-4. These properties include the 

origin (Uo) and insertion points (Ui) of the tendon-like actuator, the force-length (F-L) and 

force-velocity (F-V) properties and accompanying properties  𝐹𝑚𝑎𝑥,  𝑉𝑚𝑎𝑥, Yopt , 𝑤. 

Additionally, the model incorporates a series elastic element with a slack length  𝐿𝑠𝑙𝑎𝑐𝑘 , a 

stiffness force-strain stiffness (Ks), and a rate constant for the activation dynamics, τ.  

 

 
 
 
 
 
 
 
 

https://paperpile.com/c/hr6y2J/CVdFk
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Figure 4-4  Our two-segment jumping model is actuated by a Hill-type muscle actuator 
(Model C). There are nine free properties in this jumping model that need 
to be optimized. The two-link-segment model is actuated by a muscle-like 
actuator mimicking muscle behaviour, with a unique origin (Uo) and 
insertion point (Ui), which generates a moment arm at the knee joint. An 
example Hill-type muscle model illustrating the series elastic element 
(𝑺𝑬𝑬), contractile element (𝑪𝑬), muscle-tendon unit length (𝑳𝑴𝑻𝑼), and total 
muscle length (𝑳𝑻) is shown in the figure. This model represents the 
mechanical behaviour of skeletal muscles and provides insights into 
muscle force generation.  𝑭𝒎𝒂𝒙  represents the maximal force of the 
contractile element (𝑪𝑬). The series elastic element (𝑺𝑬𝑬) represents the 
elasticity of tendons and other compliant structures that store and release 
energy during muscle contraction. The SEE  exhibits properties where the 
tension increases as length extends beyond a predefined slack length 
(𝑳𝒔𝒍𝒂𝒄𝒌) and has a stiffness 𝑲𝒔. The contractile element (𝑪𝑬) is responsible 
for generating force and has force-length and force-velocity properties. 
Force declines when muscle length deviates from an optimal length (𝒚𝒐𝒑𝒕), 
and force decreases with increasing shortening velocities up to a maximal 
velocity (𝑽𝒎𝒂𝒙). By capturing these characteristics of muscle behaviour, 
including force production, energy storage, and mechanical properties, the 
Hill-type muscle model enables simulations and analysis of muscle 
function. 
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4.3.8. How does each model parameter limit jump height? 

To evaluate how changes to the optimal parameters influence the model's ability to 

generate external forces and consequently affect the predicted jump height, we performed 

a sensitivity analysis. We parametrized each participant's model using their individually 

optimized parameters and then sequentially increased each parameter that directly 

affected the contractile element's ability to generate force. This included changing  𝐹𝑚𝑎𝑥, 

 𝑉𝑚𝑎𝑥, and 𝑤 by +2.5%, +5%, and +25%, respectively. We documented how these 

modifications influenced external force generation and the corresponding changes in jump 

height. This approach helped us understand the implications of alterations in the modelled 

muscle parameters on performance. Additionally, to understand the contributions of these 

parameters further, we selectively removed the actuator limitations, transforming the 

model into an ideal actuator. We examined how eliminating muscle force dependencies 

influenced the generation of external force and, consequently, how this affected the 

model's jump height. To avoid introducing singularities into the simulation when doing this, 

we assigned high numeric values to the muscle parameters of interest, effectively 

nullifying their influence [11]. Specifically, we set  𝑉𝑚𝑎𝑥to a high value to negate the force-

velocity relationship, assigned a large value to  𝑤 to negate the force-length relationship 

and increased  𝐹𝑚𝑎𝑥 by up to 1000%.  

4.3.9. Optimal jump depth  

To compare the preferred depth of our model with the self-selected optimal jumping depths 

of the participants from Experiment 2, we configured another optimization task. We again 

used each participant-specific model. Each model was able to jump from various starting 

positions with the goal of maximizing jump height. As the nervous system's objective in 

maximizing jump height could also involve minimizing the movement duration on the 

ground [185], we introduced an extra term in our objective function to decrease jump 

duration and explore this idea. As we do not know the weight the nervous system may 

place on prioritizing movement time, we managed the objective of maximizing jump height 

and minimizing jump time using a weight parameter (𝑊). We carried out optimizations 

across a 𝑊 range from 0 to 1 in increments of 0.1, resulting in 10 distinct optimizations for 

each value of 𝑊. When we set 𝑊 to 0, the model solely aimed to jump as high as possible. 

Conversely, when we set 𝑊 to 1, the model optimized only for jump duration, thereby 

https://paperpile.com/c/hr6y2J/3lXNv
https://paperpile.com/c/hr6y2J/3QeCr
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reducing the time each jump took. For any value between 0-1, the model balanced the 

priority of jump height and jump time, as seen in Equation 4-3.  We tested each 

optimization from 100 different initial positions and again used fmincon to find the lowest 

value of the objective function.  

Equation 4-3    𝑚𝑖𝑛[(1 − 𝑊) ∗
1

𝐻𝑚𝑜𝑑𝑒𝑙
+ (𝑊 ∗ 𝑡𝑝𝑢𝑠ℎ−𝑜𝑓𝑓 )] 

 

Where 𝐻𝑚𝑜𝑑𝑒𝑙  is the jump height achieved by the model and and 𝑡𝑝𝑢𝑠ℎ−𝑜𝑓𝑓  is the total time 

spend on the ground generating external force.  

4.3.10. Statistics  

To assess the performance of our models, we used the coefficient of determination R² and 

root mean square error (RMSE) as our primary statistical metrics. We chose R² to provide 

an indication of the proportion of the variance that our model could explain and RMSE to 

offer an estimate of prediction error, indicating how closely our model's predictions in 

external force aligned with the observed empirical values of external force. The R² used 

in our analysis differs from the conventional R² used in regression analyses. Commonly, 

R² quantifies the proportion of the variability in the dependent variable that can be 

explained by the independent variables. However, in our approach, we calculated R² using 

the squared differences between each data point of the model and zero instead of the 

mean. This method, sometimes referred to as "uncentered" or "raw" R², is suitable for our 

analysis as it allows us to measure the total variability in the dependent variable (model 

predict external force) without factoring in the mean [186]. It's particularly beneficial when 

there is no meaningful or interpretable zero value, and the mean does not necessarily 

represent a typical or average value [186]. This is frequently the case in physiological and 

biomechanical studies, where relative differences or proportions are more informative than 

absolute differences from the mean. Despite the difference in the calculation, the 

interpretation of R² remains the same, where a higher R² value indicates a greater variance 

explained by our model and a better fit of our model to the data. We also used RMSE to 

calculate the average difference between the predicted and actual values, estimating 

prediction error. A model exhibiting a smaller RMSE demonstrates predictions closer to 

the observed values.  

https://paperpile.com/c/hr6y2J/PFcAX
https://paperpile.com/c/hr6y2J/PFcAX
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We performed a separate analysis using the jumping data from all participants and depths 

to investigate the relationship between model-predicted jump heights and empirical data 

across all jumping depths.  We leveraged two metrics to gauge the quality of the linear 

regression models: the correlation coefficient (r-value) and the standard error of the 

estimate (SEE). The r-value, ranging between -1 and 1, indicates the strength and 

direction of the relationship between the two variables. A higher absolute r value in our 

analysis suggests that the independent variable accurately predicts the dependent 

variable.  We used the SEE to assess the precision of our model predictions. The SEE 

estimates the standard deviation of the residuals, i.e., the differences between the 

observed and predicted values. A lower SEE in our research implies that our model is 

more precise, as the observed values closely align with the model's predictions. Finally, 

to compare point metrics such as peak vertical force, and jump height, we used a one-

tailed paired t-test. In all instances, we used Matlab’s statistical analysis toolbox and set 

p<0.05 as statistically significant. 

4.4. Results  

4.4.1. Evaluation of models   

After optimizing for actuator properties in Model A (𝐹𝑚𝑎𝑥, 𝑦𝑜𝑝𝑡,𝑉𝑚𝑎𝑥, 𝑤, and τ) , we converge 

on a separate model for each participant that can successfully perform jumps from a range 

of depths using a single set of optimal actuator properties. However, when comparing the 

model's predicted external forces (𝐹𝑣𝐺𝑅𝐹) to the empirical data, we observe a large 

variance (Table 4-1). The model's predictions do not align well with the observed forces 

during vertical jumping, especially for jumps from deeper depths. At the shallowest jumps, 

the model demonstrates a good fit with an R2 value of 0.93 ± 0.04 and an RMSE of 0.51 

± 0.16 body weights. However, as the jumper progresses to deeper depths, the model's 

performance deteriorates. At the deepest depth, the R2 value decreases to 0.26 ± 0.36, 

while the RMSE increases to 1.60 ± 0.73 body weights, indicating a large discrepancy 

between the predicted and empirical forces. This model fails to accurately capture the 

dynamics and variations in force generation during jumps from increasingly deeper 

depths. 

The model's simplicity may limit its ability to predict empirical forces during vertical jumping 

accurately. To understand why this is, we re-optimized the model using a modified 
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objective function that minimizes the difference between the model's external force and 

the measured data for only specific depths at a time. This approach enabled us to achieve 

good fits for each depth using depth-specific optimal parameters. While evaluating this re-

optimized model, we observe that to jump from deeper depths, the optimal parameters 

widen the force-length actuator properties. For instance, in the analysis of a representative 

participant, as the initial depth of the jumper increases, the optimal width of the force-

length relationship expands by 116%, 142%, 205%, and 262%, respectively. This 

expansion enables the model to generate force over the full duration of each jump, better 

aligning with the force production requirements for deeper jumps that necessitate a more 

extended leg extension. Furthermore, we conducted simulations using a model specifically 

optimized for the deepest jumps to evaluate its performance in shallower jumps. Although 

this optimized model can jump from shallower jumps, it falls short in accurately replicating 

the external force observed in the empirical data for shallower jumps. This discrepancy 

suggests that the model's capabilities are more suited for deeper jumps, where it 

demonstrates greater accuracy. In contrast, when simulating a model optimized solely for 

shallow jumps, it failed to generate sufficient force for the extended duration required in 

deeper jumps and was poorly aligned with the empirical data. These findings emphasize 

the limitations of Model A in capturing depth-dependent force generation.  

In the subsequent model (Model B), we will actively incorporate an additional segment into 

the leg to evaluate its impact on the model's behaviour. By decoupling the muscle actuator 

from the direct line of action with the external force and enabling the generation of torque 

around a joint, we aim to capture the intricate relationship between joint angles, muscle 

actuator force, and force generation during vertical jumps across various depths more 

accurately. This two-segment representation offers the potential to accommodate a wider 

range of leg extensions using a single set of optimal parameters, ultimately resulting in 

improved alignment between the model's predictions and the external force observed in 

empirical data. Indeed we find that model B  can jump using one set of optimal actuator 

properties for the range of different depths (Table 4-1). We find that the model performs 

reasonably well across all of the depths, with performance again deteriorating for the 

deepest jumps. Shallow jumps showed an R2 value ranging from 0.90± 0.008 and RMSE  

0.57± 0.17 body weights, while deep jumps 0.65± 0.23 and RMSE  0.81± 0.32 body 

weights (Table 4-1).  
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Despite Model B's improved performance over Model A and effectively accounting for a 

greater portion of the observed variance, it continues underperforming during deeper 

jumps. To probe this further, we employed a similar strategy as in Model A, re-optimizing 

our model with a revised objective function designed to minimize the discrepancy between 

the model's external ground reaction force and the recorded data for particular depths. 

Evaluating this re-optimized model revealed a trend toward the broadening of torque-angle 

actuator properties for increasing jump depths. For instance, in the analysis of a 

representative participant, we noted an expansion in the width of the torque-angle 

relationship by 270%, 870%, 3142%, and 3513% corresponding to each incremental 

increase in initial depth. This observation suggests that as the initial depth of the jumper 

increases, a wider torque-angle relationship becomes necessary, reflective of the greater 

joint angle changes required for deeper jumps and longer-duration external forces.  

Interestingly, we find that this re-optimized model, when optimized for deeper jumps, can 

still execute shallower jumps, though with compromised alignment between the model's 

external force and empirical data. In contrast, a model re-optimized specifically for shallow 

jumps fails to generate the necessary torque for deeper jumps. These observations hint 

that while a single set of parameters might not provide an exact fit for all jump depths, it 

nonetheless offers a useful approximation across a spectrum of depths. Thus, our model 

strikes a practical balance between depth-specific accuracy and broad applicability. To 

enhance its performance further, particularly for deeper jumps where previous models 

demonstrated deteriorating performance, we next plan to augment our model by 

introducing moment arms. This is important because the actual force exerted by a muscle 

on the skeleton depends not only on the force generated by the muscle actuator but also 

on the geometry of its attachment, particularly the muscle's moment arm. For a given 

muscle force, a larger moment arm will result in a larger joint torque and vice versa. 

Furthermore, moment arms change with joint angles, altering the force a muscle can exert 

at different points in a movement. 

Finally, after optimization of the Model C actuator properties, we observe that the model 

produces excellent fits between the predicted external force and the measured data (Table 

4-1). This level of agreement is evident when comparing the model outcomes to the 

measured data across a wide range of jumping depths (Figure 4-5 in the Results). 

Although there may exist even more optimal solutions within the framework, the remaining 

variance between the measured data and the model predictions is reasonable and does 



85 

not require further explanation. In comparison to Model A and Model B, this model explains 

a greater portion of the variance in the data and does not deteriorate across different 

jumping depths. Considering the balance between the fit and complexity of this model, we 

have decided to use it for further analysis in subsequent steps. 

Table 4-1  The group average R2 and root mean square error (RMSE, units: bw) 
values for three models (A, B, C) based on all the evaluated jumps for 10 
participants (4 jumps per depth, 5 depths). The table provides an overview 
of the model performance, showing the effectiveness and accuracy of each 
model in predicting vertical external forces across various depths using one 
set of optimized actuator properties per participant. 

 Model A  Model B  Model C 

𝑦𝑔𝑟𝑜𝑢𝑛𝑑 R2  sd  R2  sd  R2  sd 

Shallowest  0.93 ± 0.04  0.90 ± 0.08  0.90 ± 0.08 

 0.50 ± 0.30  0.70 ± 0.27  0.89 ± 0.08 

 0.24 ± 0.30  0.64 ± 0.24  0.86 ± 0.12 

 0.19 ± 0.31  0.65 ± 0.16  0.87 ± 0.10 

Deepest  0.26 ± 0.36  0.65 ± 0.23  0.90 ± 0.11 

Mean 0.43 ± 0.26  0.71 ± 0.20  0.89 ± 0.10 

            

 RMSE 
(bw)  sd  RMSE 

(bw)  sd  RMSE 
(bw)  sd 

Shallowest 0.51 ± 0.16  0.57 ± 0.17  0.54 ± 0.12 

 1.34 ± 0.56  0.92 ± 0.49  0.50 ± 0.11 

 1.68 ± 0.56  0.97 ± 0.35  0.42 ± 0.11 

 1.74 ± 0.62  0.91 ± 0.25  0.47 ± 0.15 

Deepest  1.60 ± 0.73  0.81 ± 0.32  0.33 ± 0.15 

Mean 1.37 ± 0.53  0.84 ± 0.32  0.45 ± 0.13 
 

Our approach here has led to the development of a model that incorporates a two-link-

segment system and a Hill-type muscle actuator to simulate the mechanics of vertical 

jumping from various depths (Model C). This model enables us to capture essential 

aspects of the musculoskeletal system and muscle behaviour during jumping. The 
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simplicity of this model allows us to analyze and comprehend the key factors influencing 

jump height and performance more effectively. With the simplest model in hand, we can 

now conduct controlled and systematic investigations into various aspects of vertical 

jumping. We can study the interplay between muscle actuator properties and external 

forces. In the continued methods sections, we provide further details of our approach 

before presenting the results.  

4.4.2. Predicting external forces and jump height  

Our physics-based jumping model is capable of predicting vertical external forces across 

a range of initial starting depths using one set of optimal model parameters. Among the 

models evaluated, Model C, which incorporates two link segments actuated by a hill-type 

muscle actuator, emerged as the most accurate. By optimizing the model actuator 

parameters, we achieved a high level of accuracy in replicating the empirical external 

ground reaction forces observed in the data. This is evident from the good correlations 

between the predicted vertical ground reaction forces (𝐹𝑣𝐺𝑅𝐹 ) of Model C and the actual 

measured forces, as demonstrated by the high R2 values (Table 4-1). Additionally, a visual 

comparison of the model-predicted forces with the empirical data (Figure 4-5) confirms the 

close alignment. The shallowest jumps had the highest RMSE error 0.54±0.12 BW while 

the deepest jumps had the lowest RMSE error 0.33±0.15 BW. 

When we examined the relationship between the model-predicted jump heights and the 

actual jump heights, we observed a strong linear fit with a correlation coefficient r of 0.92 

(0.89-0.94 95% CI) (Figure 4-6). While the r-value indicates a strong linear relationship, it 

is important to note that the alignment of the data points with the line of identity provides 

more meaningful insight. The closeness of the data points to the line of identity 

demonstrates how closely the predicted jump heights match the actual jump heights. Our 

analysis revealed that the model systematically but only slightly underestimated the 

vertical jump heights.  
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Figure 4-5 The results from Model C displaying a variety of jump depths. The empirical 
vertical ground reaction forces, 𝑭𝒗𝑮𝑹𝑭 (in black), and the model-predicted 
𝑭𝒗𝑮𝑹𝑭 (in red) are displayed for five representative participants from left to 
right with the initial jumping depth increasing from the top to the bottom of 
the figure. The R2 and root mean square error (RMSE, expressed in body 
weight, BW) values for each jump are provided, offering a comparative 
evaluation of the empirical and model-predicted jumps. This figure 
highlights the model's predictive performance across diverse jump depths 
and different individuals.

Our model converged on strong predictions of vertical external forces compared to the 

empirical data, but discrepancies exist. In our optimization, our objective function was for 

the model to best match the external force during the entire duration of each jump. 

Although we found good fits, variations were most noticeable for jumps initiated from the 

shallowest starting positions, as outlined in Table 4-2 and Figure 4-5. Notably, on average, 

the model's predictions for the peak vertical force for the shallow jumps were 21% lower 

than empirical measurements (p=0.001). The model predicted a peak force of 2.47±0.36 
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body weights (BW) for these jumps, compared to depth-matched peak forces of 3.14±0.35 

BW documented in the empirical data. For the deepest jumps, the model's predicted peak 

force was about 5% lower than the depth-matched empirical measurements (p=0.344). 

Nonetheless, these differences in peak vertical force did not result in significant 

differences in jump heights. The jump heights produced by the model for the shallowest 

jumps did not significantly differ from those recorded in the empirical data (p=0.99). This 

was also the case for jumps initiated from depths between the shallowest and deepest 

points (p=0.199) and the deepest depths (p=0.709).

Figure 4-6 Comparison between the vertical jump heights H of the empirical data and 
the model-predicted jump heights for all participants. Each participant is 
represented by a different colour dot. The figure includes the line of identity 
(dotted line) to demonstrate the ideal scenario where the predicted jump 
heights perfectly match the empirical data. The line of best fit (solid red line) 
is also shown, indicating the trend between the predicted and empirical 
jump heights. The shading on the best-fit line indicates the 95% confidence 
interval. The corresponding r-value and standard error of the estimate 
(SEE) statistically measure the goodness of fit between the predicted and 
empirical data
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Table 4-2  Comparing empirical and model peak vertical ground reaction forces, 
𝑭𝒗𝑮𝑹𝑭  (bw), and the jump heights, 𝑯 (leg length), across jump depths from 
shallow to deep jumps. Corresponding p-values from the t-test are shown. 
sd = standard deviation. 

𝑦𝑔𝑟𝑜𝑢𝑛𝑑 Empirical  Model p-value 

 Peak 𝐹𝑣𝐺𝑅𝐹  
(bw)  sd  Peak 

𝐹𝑣𝐺𝑅𝐹  (bw)  sd  

Shallow 3.14 ± 0.35  2.47 ± 0.36 0.001 

 2.91 ± 0.29  2.34 ± 0.34 0.002 

 2.47 ± 0.20  2.16 ± 0.30 0.069 

 2.27 ± 0.15  2.11 ± 0.27 0.134 

Deep 2.18 ± 0.19  2.08 ± 0.29 0.344 

         

 𝐻  sd  𝐻  sd  

Shallow 0.15 ± 0.08  0.15 ± 0.06 0.999 

 0.26 ± 0.08  0.20 ± 0.08 0.179 

 0.29 ± 0.07  0.26 ± 0.09 0.199 

 0.31 ± 0.07  0.28 ± 0.10 0.653 

Deep 0.31 ± 0.07  0.30 ± 0.09 0.709 
 

4.4.3. Force-velocity and maximal force  𝑭𝒎𝒂𝒙 limit jump height 
through the attenuation of external force  

Now that we have a model capable of accurately predicting jump height from various 

depths using a single set of parameters, we can analyze it to determine the factors that 

limit jump height (Table 4-3). By completely removing the force-velocity (F-V) relationship 

from our actuator in the model, we eliminated the dependence of the actuator's force on 

its velocity. This removal freed the actuator from the constraints imposed by its force-

velocity characteristics, allowing it to generate higher forces irrespective of its velocity. 

Consequently, jump heights increased, with average increments of 283±91% for shallow 

depths and 304±91% for the deepest depth (Table 4-3). On the other hand, increasing the 

maximal force (𝐹𝑚𝑎𝑥 ) involved enhancing the actuator's force-generating capacity. By 

increasing 𝐹𝑚𝑎𝑥 , the actuator could exert greater forces during the jumping motion. A 25% 
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increase in 𝐹𝑚𝑎𝑥 resulted in an average jump height increase of 20.1±5.1% for shallow 

jumps and 26.7±6.1% for deep jumps. Whereas a 1000% increase in 𝐹𝑚𝑎𝑥 led to large 

jump height improvements, with increases of 336±129% for shallow jumps and 416±201% 

for deep jumps. Conversely, removing the force-length (F-L) relationship had a minimal 

overall impact, yielding average increases of 4±3% for shallow jumps and 17±10% for 

deep jumps.

Eliminating the F-L and F-V relationships led to the largest increase in jump heights across 

all starting depths. However, these improvements were only modestly higher than those 

achieved by solely removing the F-V relationship, as illustrated in Figure 4-7. This outcome 

highlights the limitations imposed by the  F-V relationship and 𝐹𝑚𝑎𝑥 attenuating jump 

height.

Figure 4-7 A. Vertical external forces predicted for our optimal model (red), our model 
with +100Fmax (orange), F-L removed (yellow), F-V removed (green), and 
with both F-L and F-V removed. The force traces here are of one 
participant's optimal parameter set. B. Group mean and standard deviation 
(error bars) of the resultant jump heights of the optimal model and for each 
corresponding parameter change.
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Table 4-3 Sensitivity analysis of our optimal jumping model. Each participant's model 
was parameterized using their individually optimized parameters. We then 
sequentially increased each parameter ( 𝑭𝒎𝒂𝒙,  𝑽𝒎𝒂𝒙 ,and 𝒘) by +2.5%, 
+5%, and +25%. An increase in  𝑽𝒎𝒂𝒙 reduces the effects of the force-
velocity (F-V) relationship, while an increase in 𝒘 reduces the effects of the 
force-length (F-L) relationship. To study the individual effects of these 
constraints, we also removed the F-L and F-V properties and increased the 
value of  𝑭𝒎𝒂𝒙 up to 1000%. The table shows the resultant simulated 
changes in jump height with changes to model parameters. Jump height is 
shown in mean±std % change 

Force-Length (F-L) 

𝑦𝑔𝑟𝑜𝑢𝑛𝑑  + 2.5% 𝑤  + 5.0% 𝑤  + 25% 𝑤  𝑤 removed 

Shallow 0.2 ± 0.2  0.4 ± 0.3  1.6 ± 1.2  4.4 ± 3.3 

 0.3 ± 0.2  0.6 ± 0.5  2.3 ± 1.8  6.5 ± 4.8 

 0.6 ± 0.4  1.1 ± 0.8  4.2 ± 3.0  11.7 ± 8.2 

 0.7 ± 0.4  1.3 ± 0.8  5.2 ± 3.2  14.3 ± 8.5 

Deep 0.8 ± 0.5  1.6 ± 1.0  6.0 ± 3.8  16.6 ± 10.2 

Force-Velocity (F-V ) 

  + 2.5%  𝑉𝑚𝑎𝑥   + 5.0% 𝑉𝑚𝑎𝑥   + 25%  𝑉𝑚𝑎𝑥   𝑉𝑚𝑎𝑥 removed 

Shallow 2.7 ± 0.5  5.3 ± 1.0  25.1 ± 4.8  282.8 ± 91.1 

 2.7 ± 0.5  5.4 ± 0.9  25.2 ± 4.6  288.9 ± 89.6 

 2.7 ± 0.5  5.4 ± 0.9  25.4 ± 4.6  297.4 ± 91.1 

 2.8 ± 0.5  5.4 ± 0.9  25.5 ± 4.6  300.8 ± 89.5 

Deep 2.7 ± 0.5  5.4 ± 0.9  25.6 ± 4.5  303.7 ± 90.6 

F-V + FL  

  + 2.5% 𝑉𝑚𝑎𝑥 , 𝑤   + 5.0%  𝑉𝑚𝑎𝑥 , 𝑤  + 25%   𝑉𝑚𝑎𝑥 , 𝑤   𝑉𝑚𝑎𝑥 , 𝑤 removed 

Shallow 2.9 ± 0.5  5.8 ± 1.1  27.0 ± 5.2  296.6 ± 97.1 

 3.0 ± 0.6  6.0 ± 1.1  27.9 ± 5.5  307.6 ± 98.4 

 3.3 ± 0.7  6.5 ± 1.4  30.3 ± 6.8  330.7 ± 107.9 

 3.4 ± 0.7  6.8 ± 1.4  31.5 ± 6.6  341.6 ± 107.6 

Deep 3.6 ± 0.8  7.1 ± 1.5  32.7 ± 7.3  351.8 ± 111.8 

Increased  𝐹𝑚𝑎𝑥 

  + 2.5%  𝐹𝑚𝑎𝑥   + 5.0%  𝐹𝑚𝑎𝑥   + 25%  𝐹𝑚𝑎𝑥  +1000%  𝐹𝑚𝑎𝑥 

Shallow 2.2 ± 0.6  4.3 ± 1.1  20.1 ± 5.4  336.8 ± 129 

 2.3 ± 0.6  4.5 ± 1.1  21.3 ± 5.6  348.9 ± 130 

 2.5 ± 0.6  5.0 ± 1.1  23.8 ± 5.5  379.7 ± 154 

 2.7 ± 0.5  5.4 ± 1.1  25.2 ± 5.5  402.8 ± 191 

Deep 2.9 ± 0.6  5.7 ± 1.2  26.7 ± 6.1  416.4 ± 201 
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4.4.4. Participants preferred to jump at depths that balance 
maximizing jump height and minimize jump time.  

In Experiment 2, participants executed jumps from their preferred positions to maximize 

their jump heights. We then examined if each participant's optimized model could predict 

their preferred jumping depth without prior training on the data collected in Experiment 2. 

To achieve this, we adjusted the weight parameter (W) between 0 and 1 in our objective 

function to balance the goals of maximizing jump height and minimizing movement time. 

When solely focused on maximizing jump height (W=0), the models' predictions favored 

deeper starting positions (Figure 4-8). However, these predictions did not align with the 

observed vertical external forces from our experimental data (Figure 4-8). We further 

explored a range of W values to adjust the priorities in the objective function and identified 

model outputs that accurately matched the observed vertical external forces for each 

participant, even without prior training on the data collected in Experiment 2 (Figure 4-8). 
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Figure 4-8 Comparison between the preferred maximum vertical jump external forces 
for each participant (black) and the model-predicted optimal jumping 
depths external forces (red). Participants performed ten jumps from their 
preferred starting positions, and we optimized the starting depth of 
individual-specific models to simultaneously maximize jump height and 
minimize jump time. The objective function incorporated weights to 
prioritize jump height, jump time, or a balance of both. When the objective 
function focused solely on jump height (red dashed line), participants 
tended to select longer jump durations from deeper starting positions, but 
this did not align closely with the empirical data. In contrast, when the 
objective function balanced jump height and jump time with varying weights 
(W), the optimized models accurately predicted the empirically optimal 
starting positions for each participant, even without prior exposure to this 
data. This demonstrates the importance of considering both jump height 
and jump time in determining the ideal starting position for vertical jumping

Participants in our study demonstrated a preference for jumping in a manner that 

optimized both jump height and movement time. To examine this further, we plotted the 

relationship between the preferred jump height and a range of objective weight parameter 

values, representing the trade-off between prioritizing jump time (W=0) and jump height 

(W=1). The model that best fits the empirical data was placed on this line. From the 

analysis, we observed that when the model objective solely prioritized jump height, it 

achieved higher jumps. However, the model best fitting the empirical data showed a 

balance between jump height and time. We quantified the loss in jump height for this 

preferred model and calculated the ratio of speed improvements. The results revealed that 

most participants achieved speed improvements with minimal losses in jump height (Table 

4-4). This indicates that participants could optimize their jumping performance by 

increasing speed while maintaining satisfactory jump heights.
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Figure 4-9 Model jump height predictions for the full range of W values from 0 to 1. 
When the objective function prioritizes jump time (W=1), jumpers have the 
shortest duration of jumps and achieve the lowest height. Conversely, 
jumpers achieve the highest jumps when the model prioritizes jump height 
(W=0). The optimal model that fits the empirical data (represented by large 
circles) for each participant strikes a balance between maximizing jump 
height and reducing jump duration
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Table 4-4  Comparison of jump height reductions and speed improvements for each 
participant's optimal depth model 

 

Participant 
Jump Height  

Reduction (%) 
Speed 

 Improvement (x) 

P9 2.4 2.0 

P8 2.7 2.2 

P1 2.7 1.7 

P10 8.0 2.1 

P7 9.1 2.8 

P6 13.0 2.3 

P2 14.5 2.6 

P4 23.7 2.2 

P3 23.9 3.7 

P5 28.3 4.6 

4.5. Discussion  

Our study presents a physics-based model that accurately predicts the vertical external 

forces generated during vertical jumps from a range of initial depths using a single set of 

optimally determined actuator properties. Across all depths, our model could predict the 

vertical external forces with a mean R2 of 0.89±0.10 and an RMSE of 0.45±13 body 

weights. Our findings highlight the importance of the force-velocity relationship and the 

maximal force (𝐹𝑚𝑎𝑥) in determining jump height. Reducing the impact of the force-velocity 

relationship by increasing  𝑉𝑚𝑎𝑥 resulted in proportional increases in jump height relative 

to each participant's optimal parameters. A 5% increase in  𝑉𝑚𝑎𝑥 increased jump height by 

5% across all depths; removing  𝑉𝑚𝑎𝑥  all together had the largest increase of ~300%. We 

found a similar finding for increases in 𝐹𝑚𝑎𝑥, where the actuator showed a higher 𝐹𝑚𝑎𝑥 the 

model would jump higher. Reducing the effects of the force-length relationship by widening 

the parabola had only a small effect on improving  jump height. Our study also showed 

that when instructed to jump high from their own self-selected initial starting depths, 

participants demonstrated a preference for jumping in a manner that traded off between 

both jumping high and minimizing jump duration. By jumping quicker and not solely 

maximizing jump height, our model showed alignment with the experimental data with only 
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minimal reductions in jump height. For example, some participants demonstrated only 

~3% jump height reductions but gained ~2x speed improvements.  

Our study has several limitations, simultaneously serving as avenues for future research. 

First, we intentionally simplified the biomechanical processes. While this approach 

effectively captures the jump movement and aligns well with empirical data on resultant 

vertical external forces, it does not consider muscle coordination, which may be significant 

for maximizing jump height [187], [188]. However, our model's simplicity facilitates a 

focused analysis of the fundamental principles governing vertical jumps, a strategy proven 

effective for understanding bipedal locomotion using simplified walking models [179], 

[180]. Second, our model employs a single muscle actuator to signify the collective 

behaviour of all involved muscles, thereby not accounting for the role of bi-articular 

muscles, which span two joints and enhance jumping performance [187], [189], [190]. This 

simplification, while reducing some detail, effectively captures the overall resultant forces 

of the jump. The strength of starting with this simplified model lies in its clarity. The 

simplicity allows for a precise and focused understanding of vertical jumps' core principles. 

We could introduce more complexity to the model as we progress, such as incorporating 

bi-articular muscles or additional link segments. With each added layer of complexity, we 

can discern the specific value it brings, the insights it uncovers, and the degree to which 

it refines our understanding of vertical jumping mechanics. This iterative process allows 

us to appreciate the specific contributions of more intricate components like bi-articular 

muscles while maintaining a grounded understanding of the foundational principles. 

Lastly, while our model currently focuses on vertical jumping, our framework enables us 

to extend our study to other jumping movements, such as high and long jumps. This further 

demonstrates the utility of beginning with a simpler model and progressively adding 

complexity based on the specific goals of the research. 

Our findings align with those from a more sophisticated musculoskeletal model. Our model 

and the intricate model encompassing four-link segments actuated by eight Hill-type 

muscle actuators identify force-velocity properties as the primary constraint on jump height 

[81]. When we eliminated the force-velocity relationship in our model, jump height 

increased by 300%, echoing the 271% increase observed in the complex model. Both 

studies highlight the role of the maximum isometric force (𝐹𝑚𝑎𝑥) in maximizing jump height. 

Doubling 𝐹𝑚𝑎𝑥, in the complex model resulted in a 143% jump height increase, while in our 

model, the same action results in an 80% average increase across various starting depths. 

https://paperpile.com/c/hr6y2J/CbLCJ+VY8tp
https://paperpile.com/c/hr6y2J/b1CCi+y1e8y
https://paperpile.com/c/hr6y2J/b1CCi+y1e8y
https://paperpile.com/c/hr6y2J/CbLCJ+13l3J+XIvjH
https://paperpile.com/c/hr6y2J/1lT9i
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Both models also agree on the relatively minor influence of the force-length relationship 

on jump height, with our model showing up to a 17% increase and the complex model a 

29% increase when the force-length relationship width was doubled. Despite the 

complexity differences between the two models, they are not mutually exclusive but 

complementary. Each offers unique insights: the more intricate model provides data on 

coordination and 8 muscle actuators, while our simplified model facilitates a more direct, 

foundational examination.  

Optimizing for jump height while minimizing jump duration is a strategy that the nervous 

system may employ, with only minor losses in performance. Our findings suggest a slight 

decrease in performance when jumping faster, which is offset by a noticeable increase in 

speed. Other simulations have also shown minimal performance loss within a range of 

jump durations, provided that adjustments are made to the initial position and overall 

muscle activations [185]. Humans may make near-optimal adjustments with minimal 

practice by leveraging proprioceptive information from their initial posture  [191]. This may 

contribute to why similar vertical jump heights can be achieved from a range of initial 

starting positions [80]. The ability to generate force over longer periods potentially 

facilitates increased external force production and acceleration of the center of mass. 

Nonetheless, our research suggests that force-velocity properties may limit the possibility 

of substantial enhancements in jump height, even with prolonged jump durations. This 

necessitates maintaining a careful balance between maximizing limb forces and extending 

the time these forces apply to the ground [192]. The constraints imposed by force-velocity 

properties could result in diminishing returns in force generation. Bearing that the nervous 

system may prioritize energy optimization, a trade-off may exist between jump height and 

duration aimed at conserving energy [193]. This notion is supported by another jumping 

model that, using reinforcement learning to prioritize energy efficiency, achieved a slightly 

lower jump height but was 18% more energy-efficient than the model that solely prioritized 

jump height [194]. While further study is needed with human participants, it's plausible that 

the nervous system might concurrently optimize jump height, duration, and energy 

efficiency.  

Understanding how biology circumvents force-velocity constraints could offer valuable 

insights for developing technology to enhance human jumping performance. For example, 

humans can attain greater vertical jumps through countermovement jumping, a feat partly 

credited to the increased stiffness of tendinous tissues. This stiffness is believed to reduce 

https://paperpile.com/c/hr6y2J/3QeCr
https://paperpile.com/c/hr6y2J/gOHHf
https://paperpile.com/c/hr6y2J/y0qgs
https://paperpile.com/c/hr6y2J/uxFHT
https://paperpile.com/c/hr6y2J/WTovs
https://paperpile.com/c/hr6y2J/BDxGT
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the contraction velocity of muscle fibers, thereby increasing the resultant force [189], [195], 

[196]. Specialized jumping animals have evolved unique adaptations to overcome the 

constraints of the force-velocity relationship. Kangaroos, for example, have elongated 

limbs that allow for a larger acceleration distance, reducing the need for rapid muscle 

contractions and enabling higher force generation [68]. Insects have developed a different 

strategy, generating significant force through slow muscle contraction and storing this 

energy in elastic structures within their bodies [197], [198]. This approach capitalizes on 

the force-velocity relationship, allowing high force production at low velocities. Insects 

gradually contract their muscles, storing the generated force as potential energy in elastic 

structures. Upon release, this stored energy propels them into action. Fleas use it to leap 

impressive distances, mantis shrimps employ it for exceptionally fast punches, and click 

beetles rely on it to catapult themselves into the air.  

Looking ahead, our model has the potential to offer person-specific insights valuable for 

both training and rehabilitation. By optimizing a model's actuator properties to correspond 

with a specific athlete's external forces, coaches could monitor changes in muscle actuator 

properties and resultant external forces. For instance, a coach could modify parameters 

such as the maximum isometric force         (𝐹𝑚𝑎𝑥) and force-velocity relationship in the 

model to anticipate an athlete's potential improvement in jump height during strength 

training. This would enable them to prescribe and assess the effectiveness of training and 

plyometric exercises, which are known to boost the force and velocity of movements [199]. 

Similarly, following ACL surgery or other musculoskeletal injuries, the model could be a 

valuable tool for monitoring recovery progress during rehabilitation. On a practical level, 

the model could help shape training program design and potentially guide equipment 

development to enhance jump performance. Nevertheless, these applications would 

necessitate further research to verify the model's predictive accuracy and efficacy in these 

contexts. The model's utility could even extend to the field of robotics, potentially 

influencing the mechanics of jumping robots, although such a broad application would 

require additional study. 
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Chapter 5. Estimating ground reaction forces and 
vertical jump height from video using pose estimation 
and machine learning 

5.1. Abstract 

Video data presents an opportunity that is widely accessible for taking biomechanical 
measurements out of the lab and into the field. In this study, we introduce a new method 
for predicting external ground reaction forces during vertical jumps using video data. We 
recruited 30 participants, capturing their movements on video from front and side views 
as they performed a series of vertical jumps. Simultaneously, we recorded each leg's 
ground reaction force using force plates. We processed the video data using OpenPose 
to extract kinematic landmarks of each participant's body during the jump. We then 
inputted these landmarks into a transformer-based neural network, which we trained to 
predict external ground reaction forces. The network achieved high accuracy, with an 
average R2 of 0.94 ± 0.05 and an RMSE of 0.12 ± 0.05 bw when using front-view video. 
We found that video perspective significantly impacts prediction accuracy, with front-view 
videos consistently outperforming side view. When using our measured external forces to 
predict jump height, we observed small group mean differences ranging from -0.63 to 0.14 
cm when using front-view videos and -1.63 to 1.1 cm when using side-view videos. The 
front view videos showed a standard error of the estimate of 1.8 cm (range: 1.69 - 1.95 
cm), with a correlation coefficient (r) of 0.68 (95% CI: 0.62-0.70). Implementing our 
approach could improve the accessibility of detailed biomechanical analysis, allowing for 
more available and convenient tracking of an individual's movements outside the 
traditional lab settings. 

5.2. Introduction 

Our ability to move is rooted in how we manipulate the forces when our feet contact the 

ground. Well controlling external ground reaction forces enables is one reason we can 

move in many different ways and environments [15], [200]. Accurate measurement of 

external forces is critical for assessing performance and is a key tool in preventing, 

diagnosing, and treating injuries related to movement [201]. External force measurements 

require specialized equipment, such as force platforms, designed to quantify the forces 

exerted by the body precisely [127]. However, the reliance on this type of sophisticated 

and sensitive equipment poses a challenge, as it restricts accurate force estimation to lab 

environments, limiting the scope of practical applications and real-world context. 

Efforts to estimate ground reaction forces outside of the laboratory have led to various 

innovative solutions, one of which includes the use of wearable sensors. These portable 

devices can deduce biomechanical movement parameters using physiological data and 

https://paperpile.com/c/hr6y2J/YmunK+H9ZN
https://paperpile.com/c/hr6y2J/edYSH
https://paperpile.com/c/hr6y2J/3czEW
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gravitational accelerations. Researchers have achieved reliable external force estimation 

by integrating this sensor data with machine learning algorithms. For instance, placing 

accelerometers on the hip and shoe is effective in accurately estimating continuous 

vertical ground reaction forces during varied speeds and gradients of running  [99], [202]–

[204] Other wearable technologies like pressure sensors embedded in shoe insoles and 

inertial measurement units for tracking whole-body movement have also demonstrated 

efficacy in predicting external forces across different activities [101], [205], [206]. However, 

wearable sensors are not without challenges; correct sensor placement is crucial, and 

users must be willing to acquire, remember to use, and regularly charge these devices 

[207], [208].  

The ubiquitous integration of video cameras into smartphones enables easy video 

capture, creating opportunities to leverage video for performance monitoring and 

healthcare applications. Researchers can predict detailed movement biomechanics 

without needing a laboratory by merging video data with computer vision and machine 

learning techniques [92], [209]. Using computer vision techniques like markerless motion 

capture, in-depth human movement tracking is possible without physical markers or 

specialized equipment [210], [211]. These advancements can simplify biomechanical 

analyses and broaden data accessibility to a broader population equipped with cameras 

[85], [86]. With continued advances in computer vision, portable systems incorporating 

smartphone video capture capabilities enable large-scale biomechanical analysis beyond 

the limitations of traditional lab environments [93]. Using video presents exciting 

opportunities for laboratory-level biomechanical analysis with minimal patient interaction 

and time commitment [92]. Although initial efforts in estimating external forces from videos 

show promise [212], [213], this area remains an emerging topic. 

Our work aims to address this gap by developing a machine-learning approach capable 

of accurately estimating external ground reaction forces from RGB video. To do this, we 

recruited 30 participants to perform vertical jump tasks. Here we focus on a single task, 

vertical jumping, where we use RGB video to predict the leg's external ground reaction 

forces during the duration of the ground phase of the jump and then use this to estimate 

vertical jump performance and peak vertical forces. We first simultaneously recorded each 

participant's ground reaction forces using a ground-mounted force plate and front and side 

plane videos using hardware-triggered cameras. We then applied a pose estimator, 

OpenPose, to each video to extract 25 kinematic landmarks of each participant's body 

https://paperpile.com/c/hr6y2J/Pw6nq+wlpMa+8AVKQ+4lQlu
https://paperpile.com/c/hr6y2J/Pw6nq+wlpMa+8AVKQ+4lQlu
https://paperpile.com/c/hr6y2J/Lmb72+ap8dq+LBGt2
https://paperpile.com/c/hr6y2J/95qCO+ZbGHE
https://paperpile.com/c/hr6y2J/0slkB+HgaYd
https://paperpile.com/c/hr6y2J/O50id+CcuqR
https://paperpile.com/c/hr6y2J/fmxWL+ncXe4
https://paperpile.com/c/hr6y2J/c2bv
https://paperpile.com/c/hr6y2J/0slkB
https://paperpile.com/c/hr6y2J/VRHzj+suQfu
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performing the jump. We then input these predicted kinematics into a transformer-based 

neural network, testing different combinations of training inputs for model performance. 

Finally, we evaluated the model's performance against the gold standard lab-collected 

ground reaction forces.  

5.3. Methods  

5.3.1. Participants  

We recruited 30 participants for our study (n=18 identifying as female, n=11 identifying as 

male, and n=1 identifying as non-binary). The participants' demographic data is as follows: 

age, 33.0±9.5 years; body mass, 68±12 kg; height, 171±11 cm (mean±std). Simon Fraser 

University's Office of Research Ethics approved the study, ensuring all experiments 

complied with relevant guidelines and regulations. Before participating, all participants 

provided informed written consent. We requested participants to wear form-fitting t-shirts, 

shorts, and their preferred running shoes for the study. 

5.3.2. Experimental Setup   

We instrumented our lab to collect gold-standard ground reaction force data with time-

synchronized RGB videos. We incorporated two force plates (Bertec Corporation, Ohio, 

USA) connected through a USB DAQ board (National Instruments USB-2289), sampling 

at 800Hz. We then installed two hardware-triggered video cameras (Blackfly-S, FLIR) to 

collect video data from the sagittal and frontal perspectives. We positioned the cameras 

2.5 meters from the force plates, ensuring they adequately captured the desired volume 

of interest. We established a hardware trigger to synchronize the force plates with our 

cameras and the cameras with each other. This trigger responded to a +5V square wave, 

activating each camera at a frequency of 80Hz. We configured the hardware trigger using 

a GIPO connection to the camera, adhering to the manufacturer's recommended protocol. 

5.3.3. Data Collection  

We asked participants to execute vertical squat jumps. We recorded external ground 

reaction forces from both legs during these tasks and simultaneously captured the 
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associated videos (Figure 5-1). We randomized the task sequence. However, this paper 

focuses solely on the jumping task as a proof of concept for our system.

For the jump task, we instructed participants to perform squat jumps, which begin from a 

stationary position at a predetermined depth from the ground, followed by rapid upward 

acceleration. We used a flexible horizontal pole on a vertical stand for the initial fifteen 

jumps to guide participants to start from specific depths. This approach allowed us to 

collect data for five different jumping depths three times each. After that, we removed the 

pole device, allowing participants to select their preferred squat depth for the next five 

jumps. We asked participants to maximize jump height while keeping their hands firmly on 

their hips throughout all jumps.

Figure 5-1 Experimental setup. We recorded RGB video from the front and side views 
as participants performed jumps in the laboratory. We used an 
instrumented force platform to capture each leg's external ground reaction 
force vectors for each leg. We achieved synchronization between the force 
platform and cameras through a hardware trigger. Following video capture, 
we employed OpenPose, a computer vision module, to predict the 2D 
positions of 25 body landmarks for each frame in the video. We used 
subsets of these landmarks as inputs to train a neural network model to 
predict the vertical external forces based on the kinematic inputs.
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5.3.4. Data Preparation 

We began by extracting kinematic features from each video frame by frame using a 

computer vision approach called pose estimation. We processed all videos using 

OpenPose, a commonly used neural network-based software for predicting human poses 

in video frames [90]. For every participant in each video frame, OpenPose identifies the 

2D position of 25 body landmarks: the nose, neck, midpoint of the hips, bilateral shoulders, 

elbows, wrists, hips, knees, ankles, eyes, ears, first metatarsals, fifth metatarsals, and 

heels. We applied OpenPose to each video frame, maintaining the original frame rate of 

80 Hz at which we collected the videos. This methodology proved effective as we did not 

have to drop video frames from any of our participant's jumping data. One major reason 

for this success is the static nature of our cameras and the excellent views of each 

participant in each camera's view.  

Next, we prepared this kinematic data to train our machine-learning model. The 

preparation involved gap-filling, filtering, and normalization. First, we implemented a gap-

filling method to fill any gaps in the pose data [92]. We then converted any missing 

observations not gap-filled as NaN in our input data. We then filtered the data using a 4th-

order Butterworth filter that handled missing data [92]. Finally, we reformatted the 

kinematic data by centering and normalizing each landmark. We did this by subtracting 

the coordinates of the right hip and then scaling all values by dividing by the Euclidean 

distance (measured in pixels) between the right hip and the right shoulder. We did this to 

help with generalization across participants of heights and sizes [92]. We later addressed 

gaps in our data marked as NaN within our machine learning architecture by implementing 

a mask in the neural network that would ignore this data as missing and not use it for 

training [214]. 

Next, we prepared our kinetic data collected from the force plates. This included the 

vertical left and right leg ground reaction forces. First, we down sampled the data to 80Hz 

to match the kinematic data by resampling every tenth frame. We then used a dual-filtering 

approach involving a notch filter and a Butterworth low-pass filter. Here we used a Nyquist 

frequency of 400 Hz and a cutoff frequency of 30 Hz for the Butterworth filter. We designed 

the notch filter to eliminate specific noise at 60 Hz. The initial step involved the removal of 

the 60 Hz noise from the raw data using the notch filter. Subsequently, we applied the 

Butterworth filter to the notch-filtered data to suppress frequencies above 30 Hz.  

https://paperpile.com/c/hr6y2J/qHvgS
https://paperpile.com/c/hr6y2J/0slkB
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https://paperpile.com/c/hr6y2J/0slkB
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Finally, we trimmed the kinetic data to end at the period when the participants' feet left the 

ground and the left and right external force readings on the force plates were 

approximately zero. Due to equipment noise, this value typically hovered around zero but 

was never zero. We implemented a simple threshold algorithm to trim the data, which was 

detected when the ground reaction force dropped below 0.001 body weights. Once we 

detected this threshold, we set the subsequent value for the force to zero, marking the 

completion of the ground phase of the jump. We then trimmed the kinematic data to also 

stop at this point.  

5.3.5. Machine learning model 

We trained a neural network architecture tailored for time series tasks. Initially, we 

constructed a bidirectional Long Short-Term Memory (LSTM) architecture. We began with 

a framework that had previously succeeded in a similar task [99], and from there, we 

optimized the hyperparameters, such as the number of LSTM layers, the number of LSTM 

units per layer, and the learning rate, using Keras-Tuner [215]. We employed the Adam 

gradient descent optimization algorithm, set the mean squared error as the loss function, 

and selected hyperparameters that minimized the root mean squared error (RMSE) on the 

validation set. We then incorporated a TransformerBlock with multi-head attention 

mechanisms, which, as per our pilot testing, improved the neural network predictions. 

Our model used a Transformer-based architecture central to a custom class called 

TransformerBlock. This class integrates several elements of Transformer functionality, 

including a multi-head attention mechanism, a feed-forward neural network, two-layer 

normalization processes, and two dropout layers. After the attention calculation, we 

implemented a dropout layer to mitigate overfitting [216]. The outputs of the attention 

mechanism were then subjected to LayerNormalization and added back to the original 

inputs through a residual connection [217]. This technique addresses the vanishing 

gradient problem, which can hinder learning in the earlier layers of deep neural networks 

compared to the later ones [19]. We applied the same approach—residual connections 

and normalization—to the outputs of the feed-forward network, ensuring that the entire 

network benefits from these techniques. We set the TransformerBlock parameters—an 

embedding size of 64, two attention heads, and a hidden layer size of 32 for the feed-

forward network—based on the requirements of our data and from pilot testing with 

different combinations of parameters. We then passed the processed inputs through the 

https://paperpile.com/c/hr6y2J/8AVKQ
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TransformerBlock, and the outputs through additional dropout and dense layers, with Relu 

activation functions applied. The final layer of the model is a Dense layer with two neurons, 

one for each leg, using a linear activation function to generate continuous output 

predictions. We optimized this Transformer model to learn effectively from the provided 

data through optimization and trial and error pilot testing.  

We used the kinematic data from OpenPose as inputs to our models and the kinetic data 

(external force) from the force plate as the output. Our approach involved data reduction 

to determine the optimal set of kinematic data inputs to predict the output kinetics. We 

began with a comprehensive set of body landmarks predicted by OpenPose, which we 

call Major. This set comprises the landmarks for the bilateral shoulders, elbows, wrists, 

hips, knees, ankles, and heels. In the next iteration, Core, we reduced the data to include 

only bilateral shoulders, hips, knees, and ankles. Finally, in Reduced, we further 

streamlined the data to include bilateral shoulders and hips. In all cases, each of these 

landmarks provided two dimensions of data - the 'X' and 'Y' coordinate values, 

representing horizontal and vertical positions, respectively. Therefore, for each participant 

and each jump, we acquired a time series of vectors, each with a dimensionality of 

#landmarks*2 (for example, eight landmarks, each having 'X' and 'Y' coordinates, resulting 

in a 16-dimensional vector). The length of the time series varied with the duration of the 

jump. This high-dimensional, time-series data served as the input to our neural networks. 

Through training, we optimized the networks to learn and predict the dynamic motion 

characteristics intrinsic to human jumping, as described by the coordinated movement of 

these key anatomical landmarks. 

5.3.6. Data Analysis  

To test our networks' accuracy and generalizability, we employed the leave-one-

participant-out (LOPO) cross-validation method. As a variation of K-fold cross-validation, 

LOPO divides the dataset by participant [218]. In each iteration, we reserved one 

participant's data for testing and used the remaining data to train the network. We repeated 

this process until we tested the network with each participant's data, creating an ensemble 

of networks and their accuracy metrics. There is an inherent computational demand for 

LOPO cross-validation necessitating as many rounds of network training and testing as 

there are participants (n = 30). Still, this approach enables us to produce the best set of 

https://paperpile.com/c/hr6y2J/306WU
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accuracy metrics. We avoid artificially inflated accuracy reports by not including the same 

participant's data in training and testing subsets [219]. 

Next, we assessed our model's accuracy in predicting jump heights by comparing the 

model's predicted outcomes to the empirical data. We calculated the jump height based 

on the impulse-momentum principle using the vertical ground reaction force (GRF) data 

gathered from force plates and the model predictions. This GRF data consisted of the 

normalized left (𝐹𝑙𝑒𝑓𝑡) and right (𝐹𝑟𝑖𝑔ℎ𝑡) ground reaction force values in body weight units. 

We converted these normalized forces back to kilograms by multiplying by each 

participant's mass 𝑚 and gravitational force 𝑔 =9.81 m/s², allowing us to output jump 

height in meters. We then determined each jump's time variable for integration, allowing 

us to integrate the force numerically. By doing this, we obtained the impulse for each leg 

from the beginning of the jump 𝑡𝑖  to the moment of take-off from the ground 𝑡𝑓 :  

Equation 5-1   ∫ 𝐹𝑙𝑒𝑓𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑡𝑓

𝑡𝑖
𝑚𝑔 𝑑𝑡 + ∫ 𝐹𝑟𝑖𝑔ℎ𝑡𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑡𝑓

𝑡𝑖
𝑚𝑔 𝑑𝑡 − ∫ 𝑚𝑔𝑑𝑡

𝑡𝑓

𝑡𝑖
= 𝑚𝑣𝑡𝑜 

 
We rearranged Equation 5-1 to find the vertical take-off velocity 𝑣𝑡𝑜. We can understand 

the relationship between jump height and take-off velocity 𝑣𝑡𝑜 by applying the law of 

conservation of mechanical energy to both the ground and flight phase of the jump. 

Assuming negligible air resistance and considering the changes in kinetic energy and 

gravitational potential energy of the center of mass between the instant of takeoff from the 

ground and the instant the jumper's center of mass reaches the peak of the jump (at which 

point velocity is 0), we can use the following equation: 

Equation 5-2   1/2𝑚𝑣𝑡𝑜
2 + 𝑚𝑔𝑦𝑡𝑜 = 1/2𝑚𝑣𝑝𝑒𝑎𝑘 + 𝑚𝑔𝐻 

If we define the final position at the take-off of the center of mass to be 𝑦𝑡𝑜 = 0 and the 

velocity at the peak of the jump to being  𝑣𝑝𝑒𝑎𝑘= 0, we can solve for jump height:  

Equation 5-3    𝐻 = 𝑣𝑡𝑜
2/2𝑔 

Jump height (𝐻) is directly proportional to the square of the take-off velocity (𝑣𝑡𝑜), and 

inversely proportional to twice the gravitational acceleration (𝑔). Finally, we assessed our 

model's accuracy in predicting peak vertical force magnitude. Here we took the peak value 

of the vertical external force for each empirical force data and the model predicted force 

data. 

https://paperpile.com/c/hr6y2J/0m4sZ
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5.3.7. Statistics   

We used R2 (coefficient of determination) and RMSE (root mean square error) to evaluate 

the accuracy of the predictions made by the deep learning model in comparison to the 

empirical data for the left, right, and total (left+right) external ground reaction force 

magnitudes. We used the jumping data from all participants and depths to investigate the 

relationship between model-predicted jump heights and empirical data across all jumping 

depths. To do this we used linear mixed-effects models. We leveraged two critical metrics 

to gauge the quality of the linear regression models developed: the correlation coefficient 

(r-value) and the standard error of the estimate (SEE). The r-value, ranging between -1 

and 1, indicates the strength and direction of the relationship between the two variables. 

A higher absolute r value in our analysis suggests that the independent variable accurately 

predicts the dependent variable. Alongside the R-value, we used the SEE to assess the 

precision of our model predictions. The SEE estimates the standard deviation of the 

residuals, i.e., the differences between the observed and predicted values. A lower SEE 

in our research implies that my model is more precise, as the observed values closely 

align with the model's predictions. Additionally, we calculated descriptive statistics, 

including the mean, standard deviation, and the percentage difference between the 

means, to summarize the differences in jump heights. 

5.4. Results 

5.4.1. Accurate estimates of vertical ground reaction forces during 
vertical jumping  

In our leave-one-participant-out (LOPO) cross-validation, the predictions from our model 

for the time series of the combined (left+right combined) vertical ground reaction force 

waveforms of each participant were robust. Using the front view video and the Core 

landmarks for training, we found an average R2 of 0.94 ± 0.05 and an RMSE of 0.12 ± 

0.05 (Table 5-1). We found promising results for the side view videos trained on the Core 

landmarks set, with an average R2 of 0.83 ± 0.12 and an RMSE of 0.20 ± 0.07 (Table 5-

1). The front view camera was consistently better than the side view camera, resulting in 

higher R2 values and lower RMSE for all landmark sets used in training, including Major, 

Core, and Reduced landmarks. We did not observe notable differences across the models 

in predicting external forces when trained on different data sets for the front-view video. 
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The side view videos, on the other hand, showed the best overall performance when using 

the reduced marker set for training with an average R2 of 0.91 ± 0.08 and an RMSE of 

0.14 ± 0.06 (Table 5-1). 

Table 5-1 The R2 and RMSE values for the model  predictions obtained from the front 
and side view videos. The estimates include vertical force for the leg, right 
leg, and combined force. The values are mean ± standard deviation (sd). 

Front View Video 

Training Data Right Leg Force  Left Leg Force  Combined Force 

 R2  sd  R2  sd  R2  sd 
Major 0.91 ± 0.07  0.91 ± 0.07  0.93 ± 0.05 

Core 0.92 ± 0.06  0.91 ± 0.07  0.94 ± 0.05 

Reduced 0.89 ± 0.08  0.88 ± 0.10  0.92 ± 0.06 

            

 RMSE 
(bw)  sd  RMSE (bw)  sd  RMSE 

(bw)  sd 

Major 0.07 ± 0.03  0.07 ± 0.03  0.12 ± 0.05 

Core 0.07 ± 0.03  0.07 ± 0.03  0.12 ± 0.05 

Reduced 0.08 ± 0.03  0.08 ± 0.03  0.13 ± 0.06 

Side View Video 

 Right Leg Force  Left Leg Force  Combined Force 

 R2  sd  R2  sd  R2  sd 

Major 0.83 ± 0.10  0.82 ± 0.12  0.86 ± 0.10 

Core 0.80 ± 0.13  0.80 ± 0.15  0.83 ± 0.12 

Reduced 0.87 ± 0.12  0.87 ± 0.10  0.91 ± 0.08 

            

 RMSE 
(bw)  sd  RMSE (bw)  sd  RMSE 

(bw)  sd 

Major 0.10 ± 0.04  0.10 ± 0.04  0.18 ± 0.07 

Core 0.11 ± 0.04  0.11 ± 0.04  0.20 ± 0.07 

Reduced 0.08 ± 0.04  0.08 ± 0.03  0.14 ± 0.06 
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5.4.2. Our model captured trends across distinct jumps and 
participants.  

The predictions of vertical ground reaction forces, closely mirroring the characteristics of 

the observed empirical data, further substantiate this capability (Figure 5-2 and Table 5-

1). Although our models, on average, accurately predicted the overall vertical forces, the 

prediction distribution had some degree of variability (Figures 5-3 and 5-4). The model 

exhibited a strong performance across all three training sets for the front-view videos, with 

most of the R2 values exceeding 0.9 (Figure 5-3). Conversely, the distribution for side-

view videos was somewhat more dispersed, with most R2 values falling within the 0.8 to 

0.9 range. The side-view videos exhibited a higher error rate than the front-view videos 

(Table 5-1, Figure 5-4). 
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Figure 5-2 Representative data for five participants, comparing predicted and 
empirical vertical ground reaction forces. The figure demonstrates the 
alignment between the model predictions and the observed empirical data. 
Each jump includes the corresponding R² and RMSE values, quantitatively 
measuring the model's predictive accuracy.
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Figure 5-3 Histogram distributions of R2 (left) and RMSE Values (right) for model 
predictions using the front view videos. Three different model training 
datasets were evaluated: Major (blue), Core (yellow), and Reduced 
(green), representing datasets with decreasing numbers of kinematic 
landmarks. Vertical dotted lines indicate the mean value for each 
distribution.
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Figure 5-4 Histogram distributions of R2 (left ) and RMSE Values (right) for Model 
Predictions Using the side view videos. Three different model training 
datasets were evaluated: Major (blue), Core (yellow), and Reduced 
(green), representing datasets with decreasing numbers of kinematic 
landmarks. Vertical dotted lines indicate the mean value for each 
distribution.

We compared jump heights predicted by our model against empirical data, finding only 

negligible discrepancies (Figure 5-5). We used video data and machine learning to 

estimate leg external ground reaction forces and predict jump height. In contrast, we 

obtained the empirical data by directly measuring these forces with force plates. According 

to empirical data, the participants' average jump height was 17.51± 4.8cm. When we used 

the front view video trained on different subsets of training data (Major, Core, Reduced), 

the predicted jump heights deviated from the empirical data by 0.8%, 3.6%, and 0.1%, 

respectively. Even when we used side view videos trained on various data subsets (Major, 

Core, Reduced), the predicted jump heights differed from the empirical data only by -9.3%, 
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-0.3%, and +6.1%, respectively. These differences, though present, were slight, ranging 

from 0.05-1.63 cm (Figure 5-5). 

We observed negligible differences in the peak vertical forces our model predicted 

compared to the empirical data (Figure 5-5). The empirical data showed an average peak 

force of 2.07±0.3 body weight (bw) across the group. Using front-view video data and 

different training data subsets (Major, Core, Reduced), our model deviated from the 

empirical data by 0.6%, 0.12%, and 0.5%, respectively. Conversely, using side view video 

data with different training subsets (Major, Core, Reduced), our model's predicted peak 

forces differed from the empirical data by 2.3%, 3.8%, and 0.1%, respectively. 
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Figure 5-5: Comparison of jump height and peak vertical force differences between our 
empirical estimates and the predictions made by our model. We evaluated 
these predictions using either front-view or side-view videos. We tested 
three different model training datasets: Major (blue), Core (yellow), and 
Reduced (green). These datasets decreased the number of kinematic 
landmarks used for each subsequent set. The error bars represent 95% 
confidence intervals.

Our examination of the linear relationship between the model-predicted jump heights and 

actual jump heights revealed a modest linear fit, evidenced by a correlation coefficient (r) 

of 0.68 (0.62-0.7, 95% CI) (Figure 5-6). Although the r-value suggests a moderate linear 
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relationship, it is the alignment of data points with the line of identity that yields more 

profound insights. The proximity of data points to this line reflects the extent to which 

predicted jump heights correspond to actual jump heights. Our analysis indicated a 

standard error of estimate (SEE) of 1.8 cm, which indicates the typical difference between 

model-predicted jump heights and actual measurements. Thus, the actual jump height is 

typically about 1.8 (1.69-1.95) cm away from the model's prediction. Lastly, the line of best 

fit suggests that for every unit increase in predicted jump height, the actual jump height 

increases by 0.63 cm. 

The same analysis between the model-estimated peak vertical forces and actual peak 

vertical forces revealed a strong linear fit, denoted by a correlation coefficient (r) of 0.84 

(0.8-0.86, 95% CI). Our analysis found a standard error of estimate (SEE) of 0.003 (0.003-

0.004) bw, signifying a negligible typical difference between the model's estimated peak 

vertical forces and actual measurements. Finally, the line of best fit suggests a perfect 

one-to-one relationship, meaning for every unit increase in estimated peak vertical force, 

the actual peak vertical force also increases by one unit. 
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Figure 5-6: Comparison between the vertical jump heights of the empirical data and 
the model-predicted jump heights (left) and between the peak vertical 
forces of the empirical data and the model-predicted jump peak vertical 
forces for all participants (right). These results are for using the front view 
camera trained on the Core training set. A different colour dot represents 
each participant. The figure includes the line of identity (dotted line) to 
demonstrate the ideal scenario where the predicted jump heights or peak 
force perfectly match the empirical data. The line of best fit (solid red line) 
is also shown, indicating the trend between the predicted and empirical 
jump heights. The shading on the best-fit line indicates the 95% confidence 
interval. The corresponding r-value and standard error of the estimate 
(SEE) statistically measure the goodness of fit between the predicted and 
empirical data

5.5. Discussion

We used video data to predict the external ground reaction forces during vertical jumps 

and investigated the impact of different kinematic inputs on our transformer-based neural 

network. Our analysis revealed a strong correlation (R² values exceeding 0.9) between 

the predicted and actual vertical ground reaction forces. We observed variations in 

performance based on the camera perspective, with front-view videos yielding higher 

accuracy than side-view videos. The superior performance of front-view videos extended 

to jump height prediction, as the external forces were also better predicted using these 

videos. In contrast, side-view videos tended to underestimate jump height when trained 

on the Major marker set and overestimate it when trained on the Reduced set. 

Nevertheless, both left, and right vertical forces showed consistent predictions with R² 

values ranging from 0.80 to 0.87. The obstruction of landmarks in the side-view videos, 
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caused by the silhouette of the opposite side, could have contributed to the reduced 

accuracy. Despite these challenges, our study is the first to use video data to predict each 

leg's vertical forces during vertical jumps. 

Our study has limitations. The first limitation is using OpenPose. While a reliable tool for 

pose estimation and markerless motion capture, OpenPose may not provide the desired 

level of accuracy required in biomechanical research. Small discrepancies and 

inaccuracies in estimating body landmarks could introduce downstream errors in our 

kinetic measure analysis [92], [93]. One group has sought to improve accuracy by using 

machine learning to augment OpenPose's predictions of landmarks to better align with 

those commonly used in biomechanical research [93]. How this would lead to 

improvements in our study is worth investigating further. Despite any accuracy concerns 

with OpenPose, pose estimation enabled us to gather and analyze movement data in a 

way that's both accessible and scalable. However, our dependence on 2D pose estimation 

limits the complexity of movements we can examine. While 3D motion capture systems 

might produce more comprehensive kinematic data [220], they generally demand two 

cameras, which affects practicality. As we refine our methods and benefit from 

technological advancements, we anticipate improving our approach's accuracy and 

applicability. 

The focus of our study, confined to squat jumps, is a limitation that may restrict the 

applicability of our findings to other types of jumps or movements. Untrained external 

forces from different movements could lead to inaccurate predictions [221]. However, our 

research paves the way for broader exploration. We plan to incorporate diverse locomotive 

movements in our subsequent work and aspire to develop a comprehensive model that 

includes several major movements.We acknowledge that the performance of our model 

largely depends on the quality and diversity of the training data. If the data set does not 

comprehensively represent the range of variations in human jumping, it could restrict the 

model's generalization ability. In this study, despite using a relatively small sample of 30 

participants, we ensured a wide variety of attributes. The participants varied in age (19-55 

years), height (156-195 cm), weight (49.01-91.21 kg), and shoe size (US Size 4.5-12), 

thereby covering a broad range of human diversity. This diversity, even within a small 

sample size, strengthens our model's capacity to generalize across a wider population. To 

further mitigate the limitations of a smaller dataset, we implemented a leave-one-

participant-out (LOPO) analysis to evaluate our model's performance. We avoid artificially 

https://paperpile.com/c/hr6y2J/c2bv+0slkB
https://paperpile.com/c/hr6y2J/c2bv
https://paperpile.com/c/hr6y2J/8mauZ
https://paperpile.com/c/hr6y2J/phZIT
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inflated accuracy reports by not including the same participant's data in training and testing 

subsets [219]. This approach led to robust outcomes, enhancing our confidence that our 

model can yield reliable results when applied to new participants. 

Our approach demonstrated encouraging results in predicting vertical ground reaction 

forces from RGB video, reporting an average R² value ranging from 0.83 to 0.94 and an 

RMSE of 0.12 to 0.20 body weights (bw), depending on the view and training dataset. In 

the analysis of front-view videos, we observed an R² of 0.94±0.05 and an RMSE of 

0.12±0.05. We contextualize these results with other studies in the field, each employing 

their own focus and methods. Research using wearable sensors to estimate external 

forces during running and walking reported RMSE ranges of 0.21-0.39 body weights  

[202], [203]. Another study predicting continuous vertical ground reaction forces during 

running at different slopes indicated an RMSE of 0.12-0.20 body weights [99]. A different 

study used pressure sensors in shoe insoles to predict vertical forces during running and 

reported an RMSE of 0.15 body weight [101], [205]. In a comparison with a study that 

employed an RGB video-based mathematical model to estimate vertical GRF [222], our 

approach showed correlation coefficients within the same range (R² = 0.83 - 0.94 versus 

R² = 0.87-0.92) without the need for an extra mathematical model. Additionally, our model 

yielded results comparable to a study predicting stance phase ground reaction forces 

during running directly from RGB video data, which achieved an R² of over 0.878 for the 

vertical GRF component [223]. These comparisons are meant to highlight the performance 

of our transformer-based neural network in predicting vertical ground reaction forces from 

video data within the context of current research.  

Our jump height estimation results align well with those of other established methods. 

Commercial software like Kinovea, which estimates jump height from impulse 

measurements, generated results with a systematic bias of -0.22±2.2cm and mean 

differences of -0.22 ± 1.15cm. Kinovea had a standard error of estimate (SEE) of 1.15cm 

[224]. In this context, SEE represents the standard deviation of the error measurements, 

showing the average variation of the observed error from the mean. In our study, we found 

group mean differences ranging from -0.63 to 0.14 cm for front-view videos and -1.63 to 

1.1 cm for side-view videos. The SEE in the case of front-view videos was 1.8 (range: 

1.69-1.95) with a correlation coefficient (r) of 0.68 (95% CI: 0.62-0.70). Previous research 

using smartphone inertial sensors to estimate jump height reported average accuracies of 

4cm with a SEE of 6.3cm [225]. An alternative system based on inertial measurement 

https://paperpile.com/c/hr6y2J/0m4sZ
https://paperpile.com/c/hr6y2J/Pw6nq+wlpMa
https://paperpile.com/c/hr6y2J/8AVKQ
https://paperpile.com/c/hr6y2J/Lmb72+ap8dq
https://paperpile.com/c/hr6y2J/hmcea
https://paperpile.com/c/hr6y2J/fh5Mu
https://paperpile.com/c/hr6y2J/uceUX
https://paperpile.com/c/hr6y2J/gDp40
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units achieved an accuracy of around 1 cm  [226]. Studies leveraging smartphones and 

OpenPose to predict jump height from kinematics found a jump height bias of -2 to 2cm 

[227]. Commercial mats measuring changes in pressure have reported jump height 

measurement errors of 1.9cm [228]. Although these comparisons show our method's 

results are similar to those of existing techniques, it's important to clarify that similarity 

doesn't imply identical. Different studies have varying focuses and techniques, which may 

impact the results. Our approach was beneficial in the context of certain metrics (such as 

the prediction of vertical ground reaction forces from RGB video). At the same time, other 

methods outperformed ours in different aspects (like bias in jump height estimation Figure 

5-6, y = 0.63x + 6.3). Recognizing this, we see room for improvement and anticipate that 

with continuous refinement of our predictive algorithms, we can further enhance our 

method's precision and utility. 

Our work introduces a new approach that harnesses video data and transformer-based 

neural networks to accurately predict external ground reaction forces. We determined the 

external vertical forces for each leg separately, enhancing the depth of our biomechanical 

analysis during vertical jumps. After training our models on a diverse dataset of 30 

participants, we found our models matched or surpassed current methodologies' 

performance. Importantly, we found the camera's perspective impacted prediction 

accuracy, highlighting the value of strategic camera placement in future applications. Our 

work not only opens avenues for more in-depth biomechanical studies but also holds 

promise for several practical applications. This method's adaptability and cost-

effectiveness could dramatically improve sports and healthcare injury prevention and 

rehabilitation strategies by enabling individualized analyses outside of traditional 

laboratory environments. Additionally, this approach could facilitate performance 

optimization in athletic training by providing real-time, actionable feedback to athletes and 

coaches. As technology continues to evolve, we envision a future where our method could 

be integrated with smartphones bringing professional-level biomechanical analysis into 

the hands of everyday fitness enthusiasts. By using machine learning and video 

technology, we could enable access to detailed biomechanical data, revolutionizing the 

ways people train, recover, and understand their bodies. 

 

https://paperpile.com/c/hr6y2J/uRVzn
https://paperpile.com/c/hr6y2J/ucvnL
https://paperpile.com/c/hr6y2J/rNh4i


120 

Chapter 6.  
 
Concluding Discussion 

6.1. Summary 

In this thesis, my work focused on leg external forces.  I developed new methods, 

mathematical models, and technologies to study, control and estimate these forces from 

video.  

In Chapter 2, "Characterizing the performance of human leg external force control," I used 

system identification to characterize the control of leg external forces in 14 participants. 

To achieve this, I designed and implemented a unique apparatus that immobilized 

participants but allowed them to exert variable but controlled external forces with a single 

leg onto a ground-embedded force plate. I provided real-time visual feedback of either the 

leg force-magnitude or position that participants were exerting against the force platform. 

I instructed participants to best match their real-time signal to prescribed target step 

functions. I tested target step functions of a range of sizes and quantified the 

responsiveness and accuracy of the control. My results suggest a high control 

performance across various conditions, with similar control performance in 

responsiveness and accuracy across step sizes and between force-magnitude and 

position control. I found that a second-order model effectively explained the observed 

control performance. This work enriches our understanding of human agility and provides 

a valuable reference for comparing animal and engineered systems.  

In Chapter 3, "Neuromuscular fatigue reduces responsiveness when controlling leg 

external forces," I explored the impact of neuromuscular fatigue on controlling leg external 

forces. In this study, I conducted experiments with 18 participants, fatiguing their leg and 

observing the effects of this fatigue on the performance of leg external force control. As 

hypothesized, the onset of fatigue resulted in a significant reduction in responsiveness, 

characterized by a 23% increase in rise time and a 25% narrowing of bandwidth. However, 

interestingly, fatigue did not significantly affect the accuracy of leg force control. These 

findings provide insights into the role of fatigue in the control of leg external forces and its 

implications for agility. More importantly, this work lays the foundation for developing 
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strategies to maintain agility in the face of fatigue and introduces novel metrics for 

evaluating force control under fatigue conditions.  

In Chapter 4, "Studying the limits of vertical jumping using a physics-based model that 

predicts external ground reaction forces," I developed a physics-based model to predict 

vertical jump heights and corresponding external forces across a range of initial starting 

depths. The model accurately tracked real-life jumping across a range of depths, as 

demonstrated by high R2 values when comparing model-predicted and empirical vertical 

external forces, and showed a strong capability to predict jump heights for a range of jump 

depths. This work highlights the roles of the force-velocity (F-V) relationship and the 

maximal force (Fmax) in determining jump height. Reducing the impact of the F-V 

relationship or increasing Fmax most augmented jump height. In contrast, minimizing the 

force-length (F-L) relationship led to only minor increases in jump height, suggesting that 

Fmax and the F-V relationship exert more substantial constraints on jump performance. 

I observed a distinct relationship between maximizing jump height and minimizing jump 

time that closely matched the empirical data. This finding suggests that the nervous 

system adopts a dual performance objective to balance jump height and duration during 

vertical jumps. This balance was evident across a diverse range of participants. For 

example, certain participants experienced a minimal decrease in jump height of 

approximately 3% while jumping roughly twice as fast. The robustness of my physics-

based model provides valuable insights into the biomechanical constraints and strategies 

underlying vertical jumping. My work illustrates the power of simple models in shedding 

light on complex physical phenomena. It opens avenues for further exploration of the 

interplay between biological constraints and motor performance in jumping. 

Finally, in Chapter 5, "Estimating ground reaction forces and vertical jump height from 

video using pose estimation and machine learning," I introduced a new method for 

predicting external ground reaction forces during vertical jumps using video data. I 

recruited 30 participants, capturing their movements on video from front and side views 

as they performed a series of vertical jumps. Simultaneously, I recorded each leg's ground 

reaction force using force plates. The transformer-based neural network model I 

developed predicted vertical ground reaction forces from RGB video with an impressive 

average R² ranging from 0.83 to 0.94 and an RMSE of 0.12 to 0.20 body weights, 

depending on the view and the training data set. At best, using the front view video, we 
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achieved an R² of 0.94±0.05 and an RMSE of 0.12±0.05. My findings highlight the use of 

video perspective on prediction accuracy, emphasizing the need to consider camera 

placement in future applications carefully. Despite limitations and further work, my work 

provides a groundwork for using video technology in biomechanics for external force 

prediction. By using the capabilities of machine learning and the ubiquity of video 

technology, I believe this work can lead to a step forward for laboratory-level 

biomechanical analysis outside the constrained lab environment.  

Each chapter of this thesis represents a contribution to biomechanics and engineering. 

The insights gained from this work deepen our understanding of human agility, present 

new technology, and provide a foundation for future research in sports, robotics, and 

rehabilitative technologies. As I continue this journey, I will keep exploring these areas, 

leveraging the power of ever-evolving technology to expand our knowledge and 

capabilities. My work in characterizing, modelling, and predicting leg external forces has 

the potential to impact our approach to enhancing physical performance and developing 

new technologies.  Each chapter brings us closer to a deeper understanding of 

biomechanics, setting the stage for potential technological advancements and improved 

physical performance. 

6.2. Limitations  

Despite the comprehensive nature of the four studies I presented in this thesis, there are 

overarching limitations. Inherent in human participant research is a high degree of 

variability. Individual differences in force control, fatigue response, and jumping 

performance can influence my findings—the experimental designs and sample sizes used 

in this work aimed to mitigate these limitations. 

I performed the force control and fatigue studies under controlled laboratory conditions, 

which may not reflect real-world situations. For example, I immobilized participants during 

the force control experiments, which did not fully mimic the conditions during actual 

movement or sports performance. While this controlled environment was necessary for 

the precision and accuracy of the experiments, it's essential to consider how these 

conditions might differ from real-world scenarios when interpreting the results. While my 

work provides insights into the control of leg external forces and the effects of fatigue, 
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translating these findings into dynamic and complex real-world movements should be 

approached cautiously. 

The approach I used to fatigue participants may only reflect some types of fatigue 

experienced in different sports or physical activities. I focused on acute, experimentally 

induced fatigue, and the findings may not apply to chronic fatigue or fatigue resulting from 

other types of exertion, which have been shown to alter performance [162]. My study did 

not investigate the potential recovery dynamics following fatigue and how they might 

influence force control. It is possible that participants recovered during bouts outside of 

the isometric fatigue holds, and this would affect my results  [229], [230]. 

The mathematical models I developed in this research, used to predict external ground 

reaction forces during vertical jumping, are simplified representations of a complex 

biomechanical system and may include only some relevant factors. The motor control 

system's intricacy surpasses current models' capabilities, and simplified representations, 

such as the Hill-type muscle models used, serve as approximations [231]. Furthermore, 

the optimization process I used, while rigorous in my approach, may have yet to converge 

to a globally optimal solution. Despite my best efforts to find a global optimum using known 

techniques and practices, it is always possible other methods or approaches I should have 

investigated could yield better performance, such as machine learning or genetic 

algorithms. However, it is essential to note that the impact of the force-velocity (F-V) 

relationship and maximal force (Fmax) was magnitudes greater than that of the force-length 

(F-L) relationship. Even with potential improvements in optimization, the conclusions 

regarding the influence of F-V and Fmax would likely remain the same. 

6.3. General Implications  

The implications of this thesis extend far beyond the academic ecosystem, reaching 

various sectors that directly impact the public. The insights from this research can 

transform our daily lives, from how we exercise to how we interact with technology. 

The exploration of agility mechanisms, as presented in this thesis, holds potential for 

advancing the field of robotics, particularly in developing more agile-legged robots. These 

robots, which use leg-like appendages for movement, are typically constructed from metal, 

wires, sensors, microprocessors, and motors and rely on stored energy from batteries. 

https://paperpile.com/c/hr6y2J/P8bWC
https://paperpile.com/c/hr6y2J/jeYW+0UT6
https://paperpile.com/c/hr6y2J/RQmX
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Despite their advanced construction, they still struggle to match humans' agility and 

movement capabilities, who have evolved to use bones, nerves, sensory cells, brains, and 

muscles and derive energy from food [232]. Current state-of-the-art legged robots, 

including models like Minitaur [233], SpotMini [234], MIT Cheetah [124], HyQ [235], 

StarlETH [236], and ATRIAS [237], demonstrate impressive abilities such as running, 

jumping, and backflipping. However, their movements are often limited and need more 

versatility of human agility. To achieve human-level agile behaviour, a key objective is a 

precise control of the robot's motion and the external forces the robot's legs apply to the 

environment [238]. This control requires the integration of force sensors and feedback 

mechanisms in the robot's controller, enabling the generation of external forces that 

facilitate desired movements. 

The insights gained from studying human biomechanics and external force control, as 

presented in this thesis, can inform the design of more agile-legged robots. By 

understanding how humans generate and control external forces during agile movements, 

researchers can develop improved control strategies and mechanisms for legged robots. 

These advancements can enhance the robots' ability to rapidly change directions and 

generate forces with high bandwidth, mirroring the agility seen in human movements. This 

thesis contributes to the broader field of legged robot design by providing valuable insights 

into force control mechanisms and their implications for agile locomotion. The approach 

and data gained from this research can serve as a benchmark for evaluating the 

performance and capabilities of legged robot systems. By incorporating these findings into 

future legged robot design endeavours, researchers can strive to create robots that 

approach humans' remarkable agility and movement capabilities. This work holds 

significant implications for the future of robotics, potentially leading to the development of 

robots that can more closely mimic human agility and versatility in movement. 

My research represents an innovative step in technology and personal fitness, having 

developed an approach that uses video to predict external force. The potential implications 

of these findings could be important for biomechanics. Fitness trackers and wearable 

devices rely heavily on sensors such as inertial measurement units or insoles to monitor 

movement. However, I foresee a future where your smartphone could be employed to 

study your biomechanics, enhancing the accuracy and comprehensiveness of health and 

fitness data by tracking additional kinematic and kinetic variables. This growing research 

space may be the future of biomechanics, where research is moved from outside the lab 

https://paperpile.com/c/hr6y2J/oW044
https://paperpile.com/c/hr6y2J/HzswC
https://paperpile.com/c/hr6y2J/b2umQ
https://paperpile.com/c/hr6y2J/gQK0o
https://paperpile.com/c/hr6y2J/tbSR7
https://paperpile.com/c/hr6y2J/A2bh4
https://paperpile.com/c/hr6y2J/nzYAA
https://paperpile.com/c/hr6y2J/iiwqp
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into the field [93]. My research, merging video technology with machine learning to predict 

ground reaction forces, is advancement and opens new possibilities for understanding 

and predicting human movement. I envision a future where high-quality biomechanical 

analysis is not confined to specialized labs but is accessible to everyone through their 

smartphones. Such an evolution would herald a new personal fitness and health 

monitoring era. 

6.4. Future Directions 

My Ph.D. research lays the foundation for numerous exciting research avenues in 

biomechanics. I organize these into three idea pillars: 1) fundamental science, 2) 

modelling integration, and 3) technology development. 

The first pillar of future directions is fundamental science. Fatigue is a crucial factor that 

can change movement biomechanics and lead to injury [239]. Subsequent studies could 

explore how changes in leg force control due to fatigue increase the injury risk in different 

situations. These investigations could deepen our grasp on movement physiology. Integral 

to this pillar is also the development of real-time monitoring technology. I envision creating 

systems capable of tracking changes in leg force control as they occur. This will enable 

immediate feedback, adjustment, and intervention, transforming how we study, train for, 

and perform physical activities. Such technology will bridge the gap between theory and 

application, making our understanding of biomechanics directly accessible and 

immediately relevant. 

The second pillar, modelling integration, revolves around refining and expanding upon the 

mathematical model I proposed in Chapter 4 of my research. While promising, these 

simple models harbour room for further enhancement. By integrating additional factors 

such as muscle fatigue or individual muscle strength and flexibility variations, I believe I 

could improve the models' accuracy and applicability, enabling them to cater to a broader 

spectrum of individuals and movements. In pursuing comprehensive systems, merging 

these simple mathematical models with machine learning presents an exciting frontier. By 

weaving together methods from computer vision, mathematical musculoskeletal models, 

and machine learning, I see a future where we can develop tools that offer real-time 

feedback on an individual's movement. Such systems could revolutionize how we monitor 

and improve performance, provide personalized training recommendations, and even 

https://paperpile.com/c/hr6y2J/c2bv
https://paperpile.com/c/hr6y2J/X5ME
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predict and prevent injury. By leveraging models, the data gathered from video and 

machine learning can be further reinforced to make more personalized predictions about 

people's movements. Such tools would benefit athletes and those in physically demanding 

occupations and open new rehabilitation and personal fitness horizons. 

The third pillar, technology, involves broadening the video-based approach from Chapter 

5. I demonstrated the capacity of video to predict ground reaction forces during vertical 

jumps. However, the horizon of potential applications extends far beyond this. For 

example, recently, researchers demonstrated the concept of predicting EMG using 

computer vision [240]. I plan to expand my approach in Chapter 5 to include other 

movements or activities in future efforts. This venture may necessitate the development 

of novel machine-learning models or the exploration of advanced computer vision 

techniques. Another aspect worth investigating is how various camera types or lighting 

conditions influence force estimation accuracy. There is also an aspiration to develop 

open-source tools that provide comprehensive external force monitoring across multiple 

movements, even in 3D. By doing so, the aim is to open the accessibility of high-level 

biomechanical analysis, pushing it beyond the boundaries of specialized laboratories and 

into the hands of athletes, trainers, rehabilitation specialists, and individuals. This vision 

highlights the transformative potential of this technology, bringing a new level of 

sophistication to personalized health and performance monitoring. 

6.5. Final Remarks  

In this Ph.D. thesis, I have explored the intricate domain of biomechanics, focusing on 

controlling and estimating leg external forces. I shed light on the interaction with the 

ground beneath us and the complex nature of the external forces. My research 

characterizes how our neuromechanical system controls the magnitude and application 

point of externally applied forces beneath our feet, both rapidly and accurately. Although 

fatigue impacts control, I found that our nervous system is remarkably adaptable and 

allows us to maintain a high level of performance, even when fatigued. The mathematical 

models I developed, capable of accurately predicting external ground reaction forces 

during vertical jumping, highlight the power of merging physics-based principles with 

empirical optimization. This work broadens our understanding of the limitations and 

potential enhancements in vertical jumping performance, directly impacting athletic 

training and performance enhancement. Finally, working with external forces inspired me 

https://paperpile.com/c/hr6y2J/yINaP
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to develop innovative methods for predicting these forces using machine learning and 

video data. One day my work may replace the force plate. I believe these findings could 

revolutionize how we approach training and rehabilitation in sports science and have 

significant implications in prosthetics, robotics, and wearable technology. 

However, my work has its limitations. Variability among participants, the confines of 

controlled experimental conditions, and potential shortcomings of the mathematical 

models and the video-based approach highlight the complex nature of human 

biomechanics and the inherent challenges in my studies. 

Despite these hurdles, the implications of my work span a broad range, potentially 

impacting diverse fields such as sports science, physical therapy, prosthetics, robotics, 

wearable technology, computer vision, machine learning, and personal fitness. Each 

discovery and innovation marks a step forward in our understanding and equips us with 

new tools to improve human performance and well-being. 

The journey of this thesis has been challenging. But it has been fun, exciting, and 

rewarding. I look forward to seeing how my findings may be applied and built upon to 

advance our understanding of human movement further. My work is a foundation for future 

research and development in biomechanics and machine learning. And to the dedicated 

reader, I commend you for making it this far. I now leave you and this thesis with a quote 

from Dr. Richard Feynman, "You can know the name of a bird in all the languages of the 

world, but when you're finished, you'll know absolutely nothing whatsoever about the bird... 

So let's look at the bird and see what it's doing -- that's what counts." 

Paweł Kudzia 
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Appendix  

 
Table 2-A: The determined modelling predictions using a second-order system  

Force-magnitude 

Step (x bodyweight) Rise time 
(ms) 

Bandwidth( 
Hz) SSE (%) SSV (%) Settling Time (ms) Overshoot (%) 

x0.25 179 ± 65 2.0 ± 0.5 4.8 ± 4.4 0.0 ± 0.0 1941.1 ± 352.7 21.3 ± 8.5 

x0.45 190 ± 53 1.9 ± 0.4 2.4 ± 2.4 0.0 ± 0.0 1693.3 ± 192.5 14.3 ± 7.1 

x0.85 210 ± 72 1.8 ± 0.5 1.8 ± 1.2 0.0 ± 0.0 1588.6 ± 88.9 8.7 ± 4.3 

x1.25 233 ± 73 1.6 ± 0.4 2.2 ± 2.5 0.0 ± 0.0 1555.8 ± 210.1 5.6 ± 2.5 

rAnova (p-value) 1.61e-05 1.18e-05 0.05  8.02e-05 5.37e-09 

Force-position 

Step (cm) Anterior (+) / Posterior (-)    
-1.0 186 ± 31 1.9 ± 0.3 8.1 ± 8.4 0.0 ± 0.0 2399.0 ± 671.7 25.8 ± 7.3 

-2.5 216 ± 55 1.7 ± 0.4 4.5 ± 2.4 0.0 ± 0.0 1754.1 ± 315.4 14.0 ± 6.4 

2.5 194 ± 35 1.8 ± 0.3 5.0 ± 2.7 0.0 ± 0.0 1857.0 ± 308.5 17.5 ± 6.4 

4.0 217 ± 38 1.6 ± 0.3 3.6 ± 2.4 0.0 ± 0.0 1800.3 ± 389.3 13.9 ± 7.0 

rAnova (p-value) 6.67e-03 2.93e-03 0.04  7.54e-03 1.57e-05 

Step (cm) Medial (+) / Lateral (-)    
0.5 194 ± 38 1.8 ± 0.3 7.8 ± 7.6 0.0 ± 0.0 2067.1 ± 502.5 20.4 ± 6.1 

-0.5 183 ± 34 1.9 ± 0.3 7.4 ± 6.4 0.0 ± 0.0 1851.5 ± 254.5 20.7 ± 6.8 

-1 207 ± 32 1.7 ± 0.2 3.6 ± 2.3 0.0 ± 0.0 1573.6 ± 202.5 10.4 ± 4.6 

1 222 ± 40 1.6 ± 0.3 4.5 ± 4.0 0.0 ± 0.0 1780.1 ± 490.0 12.5 ± 9.0 

rAnova (p-value) 0.027139 0.031862 0.077315  4.73e-04 9.35e-07 

 
 


	Declaration of Committee
	Ethics Statement
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Published Studies
	Chapter 1.   Introduction
	1.1. Agility
	1.2. Leg external ground reaction forces
	1.3. Limits to agility imposed by our motor control system
	1.4. Neuromuscular fatigue
	1.5. Mathematical models to study leg external forces
	1.6. Machine learning for biomechanics
	1.7. Thesis Aims

	Chapter 2.   Characterizing the performance of human leg external force control
	2.1. Abstract
	2.2. Introduction
	2.3. Methods
	2.3.1. Participants
	2.3.2. Experimental Design
	2.3.3. Experimental Protocol
	2.3.4. Data Analysis
	2.3.5. Statistical Analysis
	2.3.6. System modelling

	2.4. Results
	2.4.1. Step response characteristics were similar between force-magnitude and position control
	2.4.2. A faster response correlated with reductions in other measures of control performance
	2.4.3. Leg external force control as a second-order control system
	2.4.4. Practice trials were effective at training participants to perform the task
	2.4.5. Removing visual feedback resulted in specific and modest increases in performance
	2.4.6. Prioritizing speed over accuracy increased control responsiveness but reduced accuracy

	2.5. Discussion

	Chapter 3.   Neuromuscular fatigue reduces responsiveness when controlling leg external forces.
	3.1. Abstract
	3.2. Introduction
	3.3. Methods
	3.3.1. Participants
	3.3.2. Experimental Design
	3.3.3. Experimental Protocol
	3.3.4. Data Analysis
	3.3.5. Statistical Analysis

	3.4. Results
	3.4.1. Participants fatigued during the protocol
	3.4.2. Fatigue led to reductions in leg force control responsiveness
	3.4.3. The Pulse Task was resilient to the effects of fatigue
	3.4.4. Participants exhibited higher responsiveness in the Pulse Task compared to the Step Task

	3.5. Discussion

	Chapter 4.   Studying the limits of vertical jumping using a physics-based model that predicts external ground reaction forces
	4.1. Abstract
	4.2. Introduction
	4.3. Methods and Models
	4.3.1. Participants
	4.3.2. Experimental Protocol
	4.3.3. Data Preparation
	4.3.4. Model Development
	https://zenodo.org/badge/latestdoi/697932895

	4.3.5. Model A: A single-segment linear actuator
	4.3.6. Model B: A 2-link-segment model actuated by a torque generator
	4.3.7. Model C: 2-link-segment model actuated with a hill-type muscle-tendon actuator
	4.3.8. How does each model parameter limit jump height?
	4.3.9. Optimal jump depth
	4.3.10. Statistics

	4.4. Results
	4.4.1. Evaluation of models
	4.4.2. Predicting external forces and jump height
	4.4.3. Force-velocity and maximal force , 𝑭-𝒎𝒂𝒙. limit jump height through the attenuation of external force
	4.4.4. Participants preferred to jump at depths that balance maximizing jump height and minimize jump time.

	4.5. Discussion

	Chapter 5. Estimating ground reaction forces and vertical jump height from video using pose estimation and machine learning
	5.1. Abstract
	5.2. Introduction
	5.3. Methods
	5.3.1. Participants
	5.3.2. Experimental Setup
	5.3.3. Data Collection
	5.3.4. Data Preparation
	5.3.5. Machine learning model
	5.3.6. Data Analysis
	5.3.7. Statistics

	5.4. Results
	5.4.1. Accurate estimates of vertical ground reaction forces during vertical jumping
	5.4.2. Our model captured trends across distinct jumps and participants.

	5.5. Discussion

	Chapter 6.   Concluding Discussion
	6.1. Summary
	6.2. Limitations
	6.3. General Implications
	6.4. Future Directions
	6.5. Final Remarks

	References
	Appendix



