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Abstract

It is known that the James-Stein estimation method outperforms the Maximum Likelihood
Estimation method when we estimate a p−dimension independently distributed random
variable with p ≥ 3. In this project, an explicit formula based on a modified James-Stein
estimation is first derived to forecast a p−dimension random variable. Then the modified
James-Stein estimator is applied to forecasting of mortality rates for 10, 20 and 30 years
for six populations (both genders of the U.S., the U.K., and Japan). Moreover, some un-
derlying mortality models (the Lee-Carter model, the Cairns-Blake-Dowd model, the M6
and M7 models, and the Renshaw-Haberman model) are also used in the forecasting of
mortality rates to compare their forecast performances with the modified James-Stein esti-
mation method. The results show that the modified James-Stein estimation method has the
lowest overall average estimation error compared to all other mortality models. Finally, the
shrinkage effect of the modified James-Stein estimate is studied with numerical illustrations
for six populations and three forecasting years.

Keywords: James-Stein estimator; Shrinkage; Mortality model; Lee-Carter model; CBD
model
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Chapter 1

Introduction

1.1 Overview

Mortality rate is one of the key factors in determining the premiums and reserves of life
insurance and annuity products. Modeling mortality rates is important to life insurers and
annuity providers because the forecasting results directly affect their profitability and sol-
vency. Therefore, developing an accurate and effective mortality model can help life insurers
and annuity providers better manage mortality risk from life insurance (insureds die ear-
lier than expected) and longevity risk from annuity products (annuitants live longer than
expected), respectively.

The Lee-Carter [7] and Cairns-Blake-Dowd [5] models are the two most widely used and
cited mortality models in actuarial literature. The LC model is highly cited due to its simple
decomposition nature such that the logarithm of central death rate is split into a mortality
trend and two age-specific mortality parameters, and the CBD model gains its popularity
due to its excellence in predicting mortality rates for seniors. However, the two models have
drawbacks. For instance, the LC model forecasts mortality rates for seniors poorly, and the
CBD model does not give good predictions of the mortality rates for younger people. More
discussions on the extensions of these two mortality models and other models are covered
in Chapter 2.

The James-Stein (JS) estimator is a biased estimator that achieves an outstanding per-
formance when estimating the means of three or more random variables, and it is proposed
by Stein [19] and later improved by James and Stein [13]. Maximum likelihood estimation
and Bayesian estimation are the two most popular statistical inference methods, but the
JS estimation method uses the empirical Bayes approach and achieves admissibility under
high-dimensional mean estimation. In other word, there is no other estimation method that
is always better than the JS method for a high number of random variables, and this finding
has shocked the statistical community when the proof is proposed by James and Stein [14].
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This project applies a modification of the JS estimation method to mortality rate forecasting
to demonstrate its superiority compared to some underlying mortality models.

1.2 Motivation

To develop a mortality model, We are given a mortality data set composed of mortality rates
indexed by age and year. Since a mortality rate for age x and year t is treated as a random
variable, modeling mortality rates with a given mortality data set involves an estimation
problem in two-dimensional random variables. Tsai and Lin [20] propose a mortality model
with a very good forecasting performance, based on non-parametric credibility estimator,
where the credibility estimator for age x is a weighted average of the sample mean for that
age and the true mean, where the true mean can be estimated by the average of the sample
means for all ages. We find that a modification of James-Stein estimator has the same
function form as the credibility estimator, where the modified JS estimator (a shrinkage
estimator) for an age, under a mortality rate forecasting context, is a weighted mortality
rate estimate of the sample mean over years for that age and the overall mean of the entire
mortality data.

Therefore, the original James-Stein estimator is modified and applied to the mortality
rate forecasting in this project. The ultimate goal of this project aims to use the modified
James-Stein estimation method to forecast mortality rates for a range of ages, and show that
the modified James-Stein estimator outperforms the underlying mortality models, including
the Lee-Carter (LC) model, the Cairns-Blake-Dowd (CBD) model, the M6 and M7 models
(two extensions of the CBD model), and the Renshaw-Haberman (RH) model.

1.3 Outline

This project starts with a literature review on some of the popular mortality models, as
well as the formulation of the James-Stein estimation method in Chapter 2. Next, Chapter
3 provides a detailed mathematical derivation of the JS method and a modification of
the JS method used under a mortality rate forecasting context. Chapter 4 gives numerical
illustrations in the application of the modified JS estimator to forecasting of mortality rates
for three countries, and compares the forecasting performance of the JS model with some
underlying popular mortality models, which are evaluated by three error metrics. Moreover,
we define and calculate the shrinkage amount of the modified JS estimates. Finally, the
project is finished with a conclusion in Chapter 5.
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Chapter 2

Literature Review

2.1 Mortality Models

Mortality forecasting is a widely studied topic for pricing and reserving of life insurance
and annuity products, which need mortality rates for a wide range of years to calculate the
expected payout in each future year. Under the actuarial equivalent principle, the present
value of all expected payouts should equal to the present value of all premiums collected
from the insureds. Furthermore, the death benefit is a big lump sum of money payable to
the beneficiary when the insured passes away. An accurate mortality model can help the
life insurer set up a sufficient amount of reserve to prepare for the future payout. Therefore,
building an accurate mortality forecasting is essential to life insurers. This section reviews a
good deal of mortality forecasting models that are widely used, along with the advantages
and weaknesses of these models.

The first model is the Lee-Carter model, proposed by Lee and Carter [7], which forecasts
the natural logarithm of the central death rate for a range of ages. It is the most popular
and cited mortality model in actuarial literature, where the natural logarithm of the central
death rate is modeled by a mortality time trend and two age-specific mortality parameters
which can be estimated through singular value decomposition (SVD). However, the draw-
back of the Lee-Carter model is that it often under-estimates the life expectancy at older
ages due to the insensitivity of the natural logarithm of the central death rate at each of
age-specific mortality parameters [1]. The Lee-Carter model is further improved by the RH
model, proposed by Renshaw and Haberman [17], to capture similarities within cohorts and
enhance the mortality predictions by adding a cohort factor to the LC model.

The second widely cited mortality model is the Cairns-Blake-Dowd (CBD) model that
forecasts the logit function of the one-year death probability with an intercept and a slope
as two time trend parameters [5]. The two time trend parameters can be estimated by
the simple least square method. Furthermore, the slope time trend parameter provides
exponential dynamics for older ages and makes the CBD model an excellent mortality
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model for longevity insurance products [5]. Thus, the CBD model may not be the best
model to forecast the mortality rates for younger ages.

Next, the CBD model is further extended to the M6 and M7 models. The M6 model
includes a cohort effect term that is adopted from the RH model to improve the mortality
rate estimations for younger ages on top of excellent older age mortality predictions by the
CBD model [6]. The M7 model is also an extension to the CBD model that has a quadratic
term in addition to the cohort effect term [6]. The quadratic term captures the potential
curvature in the historic logit function of one-year death probability.

Finally, Tsai and Yang [22] propose the linear relational (LR) model that utilize the
relationship between a target mortality sequence and a base mortality sequence to predict
future mortality rates. The intercept and slope parameters for the two time trend parameters
in the LR model can be estimated through the simple linear regression or the random walk
(RW) with drift, and they are called the LR-LR model and the LR-RW model, respectively.
Moreover, Tsai and Lin [21] incorporate the Bühlmann credibility theory into the LC, CBD,
and LR mortality models to further improve their performances in mortality prediction. See
Appendix A for the detailed formulas for each of the LC, CBD, RH, M6 and M7 mortality
models.

2.2 Non-Actuarial Applications of the James-Stein Estima-
tion Method

James and Stein [14] propose a biased estimator for the mean of high-dimension random
vectors, called James-Stein estimator (a shrinkage estimator), which performs better than
the maximum likelihood estimator when the dimension of the random vector is more than
or equal to 3. The James-Stein estimation method has been applied to a wide range of
topics and achieved great results. The followings are three applications of the James-Stein
method to high-dimension estimation problems.

Hausser and Strimmer [12] use a modified James-Stein shrinkage estimator to estimate
the entropy values in gene expressions, which estimates the amount of information carried by
the gene. The shrinkage estimator utilizes a weighted average of the shrinkage target and the
maximum likelihood estimate to produce the James-Stein estimator. The simulation results
show that the James-Stein estimator achieves the lowest mean squared errors among the
other nine proposed estimators, including maximum likelihood estimator, Miller-Madow
estimator, Bayesian estimator, NSB estimator, and Chao-Shen estimator. Moreover, the
James-Stein estimator performs surprisingly well when the sample size is small, whereas
the other proposed estimators deteriorate drastically as the sample size shrinks. Thus, the
modified James-Stein estimator is proved to be an efficient and easy-to-compute method to
work well for high-dimension and large scale estimation problems.
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Jorion [15] applies the Bayes-Stein estimator to portfolio selection problems, such that
Stein’s estimator is embedded within the empirical Bayes’ posterior distribution to estimate
stock returns. The simulation results show that the Bayes-Stein estimator achieves the lowest
empirical risk compared to the other proposed estimators, including certainty equivalence,
Bayes diffuse prior, and minimum variance estimation methods. It’s because the Bayes-Stein
estimator puts more weight on the overall sample mean than the individual sample means
when the sample size is small and the variation of stock returns is large. Thus, the shrinkage
behavior of the Bayes-Stein estimator improves estimation accuracy.

Finally, Efron and Hastie [9] use the James-Stein method to predict the score success
rate of eighteen baseball players in a tournament, and compare the predictions between
the James-Stein method and the maximum likelihood estimation method against the true
observations. The result again shows that the sum of squared errors from the James-Stein
method is a half of that from the maximum likelihood estimation method. Thus, the James-
Stein estimation method has achieved great successes in the non-actuarial applications.

2.3 Actuarial Applications of the James-Stein Estimation
Method

There are few past studies on actuarial applications of the James-Stein estimation method.
Marshall [16] applies the James-Stein shrinkage estimator to estimation of infant mortality
rates in Auckland, New Zealand. A modified empirical Bayes James-Stein type estimator
achieves a lower estimated standard error than the maximum likelihood estimator through
shrinkage, such that the regions with high mortality rate estimates are shrunk towards
the mean and the regions with low mortality rate estimates are brought up towards the
mean. Moreover, the study compares local and global James-Stein type estimators, where
the estimated mortality rates are shrunk toward a local neighborhood mean or the overall
mean, respectively. The main goal of Marshall [16] is to estimate human mortality rates
due to different diseases on a map. Thus, the disease simulation study shows that the
local James-Stein estimator performs better when the disease is common but has different
spread pattern geographically, whereas the global James-Stein estimator works well when
the disease is rare but affects a large region uniformly.

The applications, with the James-Stein estimation method, in Marshall [16] intend to
create mortality maps resulting from diseases, whereas this project intends to modify the
James-Stein estimator to forecast mortality rates for a wide range of ages. Furthermore, this
project also has a goal to develop an effective mortality model which will benefit life insurers
and annuity providers. Therefore, this project is the first article to apply the James-Stein
estimation method to the human mortality data, and expect to achieve better forecasting
results than the other underlying mortality models.
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2.4 Credibility Theory Inspiration

Credibility theory is consolidated by Braverman [3] to help casualty actuaries weight his-
torical and observed loss data for a fair insurance premium rate. The classical credibility
formula takes the following form,

RP = Z D + (1 − Z) M,

where the credibility premium equals to the weight Z (credibility factor) times the observed
loss data D plus the weight (1−Z) times the historical manual loss value M . The credibility
factor Z acts like a regulation factor to control the amount of influences that the new set
of observations bring. Bühlmann [4] proposes a parametric Bühlmann credibility model,
where the credibility factor Z is calculated as the number of claims divided by the sum
of the quotient and the number of claims, and the quotient equals the expected value of
the process variance over the variance of the hypothetical mean; the observed loss data D

is replaced by the sample mean of past claims; and the historical manual loss value M is
replaced by the true mean of claims.

Although credibility theory is mainly used in casualty insurances, it can apply to the
life insurance. For instance, Tsai and Lin [21] incorporate Bühlmann credibility to the
Lee-Carter model, the Cairns-Blake-Dowd model, and a linear relational (LR) model to
forecast mortality rates and achieve lower estimation errors than without incorporation of
the credibility theory. Recently, Bozikas [2] uses the credibility theory framework to price
life annuity products when the historical mortality data information is scarce, and achieves
great results with Greece mortality data. Bozikas [2] also proposes a concern on the current
mortality rate estimation methods used by insurance companies and government agencies. It
gives longevity risk to annuity products because people are living longer nowadays than past.
Credibility theory framework updates the mortality rate estimates continuously through
the credibility factor to have a more up-to-date mortality rate forecast to better price life
insurance and annuity products.

Thus, the credibility theory can apply to not only casualty insurance but also life in-
surance through pooling. The James-Stein estimator will be explained further in details in
the next chapter, and the proposed modified James-Stein estimator has an explicit form
which is very alike to the above credibility formula, and thus has similar implications, such
that the mean of mortality data for an age is pooled as the observed data D for that age,
and the overall mean of the entire mortality data for all ages is similar to the historical
manual value M . Therefore, the application of the James-Stein estimation to mortality rate
estimation is inspired by the credibility theory.
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Chapter 3

Models and Methods

In this chapter, the James-Stein estimator is introduced along with the Stein’s paradox and
derivation of the James-Stein estimator in an explicit form. Moreover, a multivariate form of
the James-Stein estimator is presented to ease the estimations in the future mortality rates
across different ages. Lastly, the application of the James-Stein estimation in estimating the
future mortality rates is described in details.

3.1 James-Stein Estimator

3.1.1 Introduction to the James-Stein Estimator

When estimating the mean of a population, it is natural to use the average of the sampled
data. For example, the mean of a population can be estimated through taking the mean of a
sample collected. This simple averaging method is also called the maximum likelihood esti-
mation (MLE) method when the distribution of the sample measurements is approximately
normal, because the probability that the sample mean equals the true mean is maximized
at the average value. Therefore, the MLE method is the gold standard and proved to be an
admissible estimator, such that there is no other estimator better than it when estimating
population averages [18]. The James-Stein (JS) estimation method is proposed by Charles
Stein in 1956 and achieves a lower estimation error than the MLE method when estimating
the true means for a high dimension problem. Thus, the JS method could be better than
the MLE method because it shrinks the sample mean towards a better central point.

To better understand how the JS shrinkage works, Efron and Morris [11] use the JS method
to estimate the batting abilities of eighteen major-league baseball players. The batting av-
erage is calculated as a percentage of hits out of 45 times at the bat. Figure 3.1 shows the
observed batting averages shrink toward the grand batting average of 0.265 for each base-
ball player. It is important to note that the players with extremely low or extremely high
observed batting averages experience a higher shrinkage in estimates than the players with
batting averages around the grand average. Moreover, the high-performance players expe-
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rience a positive shrinkage towards the grand average, while the low-performance players
experience a negative shrinkage towards the grand average. Thus, the JS estimator shrinks
and adjusts all the estimated values toward a better central point to achieve a better overall
estimation than the simple averaging method.

Figure 3.1: James-Stein estimation shrinkage chart, showing all estimates shrink toward the
grand average of 0.265 Note. Reprinted from p. 121 in Efron and Morris [11].

Furthermore, Efron [8] shows a schematic diagram on how the James-Stein estimator learns
from others to update the estimates under a high dimension environment. Figure 3.2 shows
that if there are N population means need to be estimated, then the "other" normal statis-
tics (M̂, Â) produced by (N −1) sample means can be used as prior distributions for Case 1
mean estimation. Thus, the Case 1 James-Stein estimator learns from other samples in the
data set and itself to create the estimate for Case 1. In conclusion, the JS estimation method
takes a portion of the other sample estimates in the set and a portion of its own observed
average to shrink the observed average towards the global mean. This concept begins to
sound like the inspiration from credibility theory introduced in Chapter 2, such that the
credibility premium equals to a portion of the historical loss value and the remaining por-
tion of the observed loss value. The next few subsections explain the JS estimator through
more detailed mathematical expressions and derivations, and the similarities between the
credibility theory and the JS estimator will be discussed later again.

8



Figure 3.2: Diagram of James-Stein estimation, showing that Case 1 learns from the other
(N − 1) cases to estimate the mean of Case 1 Note. Reprinted from p. 11 in Efron [8].

3.1.2 Stein’s Paradox

Stein [19] has proved that the maximum likelihood estimator (MLE) for the mean of a p-
dimension random vector with all p entries being independent of each other is admissible for
p = 1, 2 and inadmissible for p ≥ 3. Specifically, an admissible estimator is the best possible
estimator that has the lowest squared error loss among all the other estimators, while an
inadmissible estimator is not the best estimator and there exists some other estimator
with a lower squared error loss than it. Thus, Stein [19] has proved that there exist better
estimators than the MLE when the estimated random vector has three or more dimensions.
This finding is astonishing, because the MLE for the mean of p-dimension random vector
simply takes the mean of each entry in the random vector independently, and this naive
method has been working well in the past studies. Thus, Stein’s paradox explores the fact
that when three or more independently distributed entries in a random vector are estimated
simultaneously, there is an estimator that is better than the naive method. Furthermore,
James [14] has joined Stein’s exploration and both find an inadmissible estimator in the
explicit form that has a lower expected risk than the MLE when p ≥ 3.

Let the MLE be µ̂(MLE) = z, where z is a p-dimension normal random vector with all
entries being independent of each other, such that z ∼ Np(µ, I) and I is a p × p identity
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matrix. The famous James-Stein estimator is

µ̂(JS) =
(

1 − p − 2
∥z∥2

)
· z, (3.1)

where (1−(p−2)/∥z∥2) is a shrinkage factor, and ∥z∥2 = z′z measures the magnitude of z.
If the magnitude ∥z∥2 is large, then the shrinkage factor is close to 1, and the James-Stein
estimator µ̂(JS) is almost indifferent to the MLE z = µ̂(MLE). However, if the magnitude ∥z∥2

is small then the shrinkage factor is close to 0 and the shrinkage of z towards the origin
is large. The reason to shrink z is that samples from a high dimensional random vector
are likely to be more scattered away from the origin compared to the true mean of the
distribution, and the shrinkage of z towards the origin can decrease the expected squared
error loss [14]. Therefore, the James-Stein estimator works better with small-magnitude
sample values, and standardization is important in the data step to ensure appropriate
shrinkage.

The method of shrinking means towards the origin is the central idea of James and
Stein [14], which also introduces a bias to the James-Stein estimator. However, a little
sacrifice in bias can exchange an improvement in variance reduction according to the bias-
variance trade-off theory. Thus, the biased James-Stein estimator has lower total squared
error than the maximum likelihood estimator due to the reduced variance benefiting from
the shrinkage, such that

E(∥µ̂(JS) − µ∥2) < E(∥µ̂(MLE) − µ∥2).

3.1.3 Derivation of the Original James-Stein Estimator by Empirical Bayes

The empirical Bayes estimator can be used to visualize the formation of the original James-
Stein estimator [8]. Let µi be a normal random variable with mean 0 and variance A, and
zi given µi be a normal random variable with mean µi and variance 1 for i = 1, . . . , p.
Specifically, µi ∼ N (0, A) and zi|µi ∼ N (µi, 1). Then it can be shown easily by the Bayes
theorem that the posterior distribution of µi given zi is normally distributed with mean
B · zi and variance B, that is, µi|zi ∼ N (B · zi, B), where B = A/(A + 1). The marginal
distribution of zi can be obtained by integrating the joint density of zi and µi (the product
of the density of µi and the density of zi|µi) with respect to µi to get zi ∼ N (0, A + 1).

Now let µ = (µ1, . . . , µp)′ be a p-dimension random vector that is normally distributed
with mean vector 0 and covariance matrix A ·I, such that µ ∼ Np(0, A ·I), where I is a p×p

identity matrix. Next, let z = (z1, . . . , zp)′ given µ be p-dimension normally distributed,
such that z|µ ∼ Np(µ, I), where the (µi, zi) pairs for i = 1, . . . , p are independent of each
other. By the Bayes theorem, the posterior distribution of µ given z can be expressed as
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follows:
µ|z ∼ Np(B · z, B · I),

where B · z is the Bayes estimator, denoted by µ̂(Bayes), for a p-dimension random vector
with unknown A from µ’s covariance matrix A · I, that is,

µ̂(Bayes) = B · z = A

A + 1 · z =
(

1 − 1
A + 1

)
· z.

Next, we will show that the unknown fraction 1/(A+1) in µ̂(Bayes) can be replaced with
(p − 2)/∥z∥2. First, the marginal distribution of z, z ∼ Np(0, (A + 1) · I), which implies
z/

√
A + 1 ∼ Np(0, I) and

∥z∥2/(A + 1) = ∥z/
√

A + 1∥2 = (z2
1 + z2

2 + · · · + z2
p)/(A + 1) ∼ χ2

p.

Second, it is known that the expectation of the inverse of χ2
p (a chi-squared random variable

with p degrees of freedom) is the inverse of p − 2, such that

E

[ 1
(A + 1) · χ2

p

]
= 1

(A + 1) · (p − 2) .

Finally, the expected value of (p − 2)/∥z∥2 can be expressed as

E

[
p − 2
∥z∥2

]
= p − 2

(A + 1) · (p − 2) = 1
A + 1 ,

which explains the replacement of 1/(A+1) in the Bayes estimator µ̂(Bayes) by (p−2)/∥z∥2.
Therefore, the original James-Stein estimator can be re-expressed as

µ̂(JS) =
(

1 − p − 2
∥z∥2

)
· z =

(
1 − 1

A + 1

)
· z = B · z = µ̂(Bayes).

3.1.4 Estimate the Mean of a Multivariate Normal Random Vector

Since the James-Stein estimator leads to a lower squared error loss than the MLE when the
dimension of the underlying multivariate normal random vector is equal or more than 3, it
is a good estimator to estimate the means of many independently distributed multivariate
random vectors. Specifically, modeling of mortality rates involves many independent random
vectors for a wide range of study ages and years. Therefore, the JS method needs to be
modified under a multivariate setting. Fortunately, Jorion [15] provides an alternate form
of the James-Stein estimator that can be applied directly to multivariate random vectors.

Let Y t = (Y1, t, . . . , Yp, t)′, t = 1, . . . , T , be a sample of T random vectors from a p-
dimension normal distribution with unknown mean µ and known covariance matrix Σ. The
problem is to estimate the unknown mean µ. Let y = (y1, . . . , y

T
) be a realization of the
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random sample Y = (Y 1, . . . , Y T ). When p is equal or larger than 3, Efron and Morris
[10] show that the maximum likelihood estimator µ̂MLE(y) = ȳ, also the vector of sample
means (specifically, ȳ = µ̂MLE(y) = (1/T )·

∑T
t=1 y

t
), is inadmissible subject to the following

quadratic loss function

L[µ̂, µ̂(y)] = [µ̂ − µ̂(y)]′ · Σ−1 · [µ̂ − µ̂(y)]. (3.2)

Then, the James-Stein estimator µ̂JS(y) for this setting, called a modified James-Stein
estimator, can be expressed as

µ̂JS(y) = (1 − ŵ) · ȳ + ŵ · y0 · 1, (3.3)

where 1 is a (p × 1) unit vector; y0 is the overall mean over all entries in the matrix of the
entire random sample y, that is,

y0 = 1
p · T

·
p∑

n=1

T∑
t=1

yn, t;

and
ŵ = min

[
1,

(p − 2)/T

(ȳ − y0 · 1)′ · Σ−1 · (ȳ − y0 · 1)

]
.

Note that firstly, the modified James-Stein estimator (also called a shrinkage estimator)
with the explicit form (3.3) has an extra term compared to the expression (3.1) for the
original James-Stein estimator. Secondly, the explicit form (3.3) equals a weighted average
of the vector of sample means (ȳ) and the vector of overall mean with a shrinkage factor
(1 − ŵ), which takes a value between 0 and 1. Thus, the modified James-Stein estimator
equals the vector of overall mean (the vector of sample means), as an estimate of the
unknown mean µ, when ŵ = 1 (ŵ = 0). Thirdly, if ȳ is closer to y0 · 1 (that is, the sample
means in all entries of ȳ are closer to y0), which implies L[ȳ, y0 · 1] (the deviation measured
by the quadratic loss function between ȳ and y0 · 1 in (3.2)) is smaller, then ŵ is larger and
a more weight is placed on y0 · 1 (the vector of overall mean). On the contrary, if ȳ is far
away from y0 ·1 (that is, the sample means in some entries of ȳ are far away from y0, or the
deviation is big), then ŵ is small and a large weight is placed on ȳ (the vector of sample
means). Finally, if T is large (small), that is, more (less) y

t
is sampled, then ŵ is small

(large) and a heavy (light) weight is placed on ȳ, which is consistent with the intuition that
more (less) sampled data give a more (less) reliable/accurate estimate for the unknown true
mean µ.

It is also interesting to note that the expression for the modified JS estimator µ̂(JS) is
almost identical to the credibility theory formula for the risk premium (RP) introduced in
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(a) U.S. Males (b) U.S. Females

Figure 3.3: Downward time trends of ln(mx, t) from t = 1951 to t = 2020 for six ages

Section 2.4 as
RP = Z · D + (1 − Z) · M,

where the historical manual loss value M is replaced by y0 (the overall mean of the sample
data); the observed loss value D is replaced by a vector of means, over all t = 1, . . . , T in
the random sample, for each entry; and the credibility factor Z is replaced by the shrinkage
factor (1 − ŵ). Therefore, adopting the modified James-Stein estimator is inspired from the
credibility theory both conceptually and mathematically.

3.2 Application of the James-Stein Estimator

In order to apply the modified James-Stein estimator to the mortality data, it is important
to understand the underlying random variables. In this project, the mortality rate for each
age x is considered a random variable and the mortality rate for that age is measured
repeatedly throughout the entire fitting years. The ultimate goal is to predict the mortality
rates for each age over the forecasting years.

The famous Lee-Carter model adopts ln(mx, t) (the natural logarithm of central rate
for age x in year t) to predict mortality rates. Historical data from the Human Mortal-
ity Database (www.mortality.org) show that there is a downward time trend in ln(mx, t),
which makes the mortality data ln(mx, t) non-stationary, and it is essential to eliminate the
downward trend before forecasting using a decrement processing. For instance, Figure 3.3
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exhibits that ln(mx, t)s for both genders of the U.S. for six selected ages (25, 45, 55, 65,
75, 84) from 1951 to 2020 display a decreasing trend in the past 70 years except a slight
increase in 2020 largely due to Covid-19 pandemic.

In this project, the mortality data mx, ts are obtained from the Human Mortality Database.
In order to apply the modified James-Stein estimator to the mortality rate forecasting
problem, the first step is to eliminate the downward time trend of ln(mx, t)s, we take the
first-order difference on ln(mx, t)s with respect to t, that is,

Yx, t = ln(mx, t+1) − ln(mx, t), x = xL, . . . , xU , t = tL, . . . , tU − 1,

where [xL, xU ]× [tL, tU ] is the fitting age-year window. Note that Yx, t can be interpreted as
the mortality decrement (mortality improvement) for age x in year t. To apply the modified
James-Stein estimator (3.3), let

Y = (Y 1, . . . , Y T ) =


YxL, tL . . . YxL, tU −1

... . . . ...
YxU , tL . . . YxU , tU −1


p×T

,

where p = xU − xL + 1 and T = tU − tL. To satisfy the normal assumption for the modified
James-Stein estimator, that is, Yx, t, t = tL, . . . , tU − 1, are assumed to be identical and
independent normal random variables with unknown mean µx to be estimated for x =
xL, . . . , xU . It is essential to check the normality of Yx, t, t = tL, . . . , tU − 1. Figure 3.4
displays the Q-Q plots of Yx, t, t = tL, . . . , tU − 1 for x = 45 years old against the standard
normal quantiles for all six populations. The Q-Q plots show that the Yx, t, t = tL, . . . , tU −1
quantiles form straight lines when plot against the standard normal quantiles for all six
populations. Therefore, it is reasonable to assume the random variables Yx, t, t = tL +
1, · · · , tU are normally distributed.

Furthermore, the variance σ̂2
x and the covariance σ̂xi, xj (xi ̸= xj) in the p × p variance-

covariance matrix of YxL, t, . . . , YxU , t,

Σ =


σ̂2

xL
. . . σ̂xL, xU

... . . . ...
σ̂xL, xU . . . σ̂2

xU

 ,

can be estimated by

σ̂2
x = 1

T − 1

tU∑
t=tL

(Yx, t − Ȳx)2, x = xL, . . . , xU ,
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(a) US Male (b) US Female

(c) Japan Male (d) Japan Female

(e) UK Male (f) UK Female

Figure 3.4: Q-Q plots for Yx, t with x = 45
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and

σ̂xi, xj = 1
T − 1

tU∑
t=tL

(Yxi, t − Ȳxi) · (Yxj , t − Ȳxj ), xi, xj = xL, . . . , xU , xi ̸= xj ,

where Ȳx = (1/T ) ∑tU
t=tL

Yx, t.

Note that each row vector (Yx, tL , . . . , Yx, tU −1) in Y is an individual sequence of yearly
mortality decrements for age x, and (1/p) ∑xU

x=xL
(Yx, tL , . . . , Yx, tU −1) is the group sequence

of average yearly mortality decrements for all ages. In the context of mortality rates, the
vector of the sample means, Ȳ = µ̂MLE(Y) = (1/T ) ·

∑T
t=1 Y t, in (3.3) is the vector of the

averages of annual mortality decrements; and Y0, in the vector of the overall mean, Y0 · 1,
which takes the average over all entries of Y is the overall annual mortality decrement for
the group sequence. Therefore, the modified James-Stein estimator in (3.3) gives a weighted
average of the average annual mortality decrement for each age-specific individual time
sequence and the average of annual mortality decrement for the group time sequence. If ŵ

is larger (smaller) than 0.5, implied by that T is smaller (bigger) or the sample means for
all ages are more (less) centered around the overall mean), then a heavier (lighter) weight
is placed on the overall mean Y0; that is, the group time sequence contributes its average
annual mortality decrement to the estimated annual mortality decrement more (less) than
each age-specific individual time sequence.

Once the annual mortality decrement for age x is estimated from the modified James-
Stein estimator (3.3), the natural logarithm of central death rate for year tU + n (n years
away from the last fitting year tU ) can be predicted as

ln(m̂x, tU +n) = ln(mx, tU ) + n × Ŷx, n = 1, 2, . . . , T0

where Ŷx is the entry for age x in the vector of the modified James-Stein estimator µ̂JS(Y) =
(1 − ŵ) · Ȳ + ŵ · Y0 · 1, and T0 is the number of forecasting years.

Finally, the natural logarithm of the predicted central death rate for year tU + n,
ln(m̂x, tU +n), is converted back to the predicted one-year death probability by first tak-
ing the exponential on ln(m̂x, tU +n) to get m̂x, tU +n and then

q̂x, tU +n = 1 − exp (−m̂x, tU +n).

The equality above is based on the assumption of the constant force of mortality (CF)
within a year, that is, µx, t = µx+s, t+s for s ∈ [0, 1), which is interpreted as the force of
mortality µx, t is constant within a year for each integer age x and integer year t. Then

qx, t = 1 − px, t = 1 − exp (−
∫ 1

0
µx+s, t+s ds) = 1 − exp (−µx, t),
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and

mx,t = qx, t∫ 1
0 spx, t ds

= qx, t∫ 1
0 e−

∫ s

0 µx+r, t+r drds
= qx, t∫ 1

0 e−s µx, tds
= qx, t

(1 − e−µx, t)/µx, t
= µx, t.

17



Chapter 4

Numerical Illustrations

The James-Stein estimation method is applied to the mortality data set for both genders
of the U.S., the U.K., and Japan. The goal is to use the modified JS estimator to forecast
mortality rates for 10, 20, and 30 years. The mean absolute error (MAE), the mean absolute
percentage error (MAPE), and the root mean square error (RMSE) are adopted to evalu-
ate the forecasting performance of the modified JS estimator against the other underlying
mortality models which are Lee-Carter (LC) model, Cairns-Blake-Dowd (CBD) model, M6
and M7 models (two extensions of CBD model), and Renshaw-Haberman (RH) model.

The mortality data used in this project is extracted from the Human Mortality Database
(HMD, www.mortality.org) with ages ranging from 25 to 84 and years ranging from 1951
to 2020. The training and test data sets are given in Table 4.1. Thus, there are in total 108
combinations to be implemented for two genders, three countries, three lengths of forecasting
years, and six mortality models.

Forecast Years Training Data Set Test Data Set
T0 [xL, xU ] × [tL, tU ] [xL, xU ] × [tU + 1, tU + T0]

10 years [25, 84]×[1951, 2010] [25, 84]×[2011, 2020]
20 years [25, 84]×[1951, 2000] [25, 84]×[2001, 2020]
30 years [25, 84]×[1951, 1990] [25, 84]×[1991, 2020]

Table 4.1: Training and test data sets used for mortality modeling

4.1 Prediction of Mortality Rates

The observed and predicted one-year mortality rates qx, t using six different mortality models
are illustrated in this section. First, a young age 37 and an old age 71 are selected to show
the differences in the predicted mortality rate qx, t among six mortality models. Figures
4.1 and 4.2 display the observed and predicted mortality rate qx, t curves for the forecast
year t from 2001 to 2020 for ages 37 and 71 respectively. Figure 4.3 also shows the average
observed and predicted mortality rate q̄t (= (1/p) ∑xU

x=xL
qx, t) curves for t = 2001, . . . , 2020.

The observations are summarized below:
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(a) U.S. Males (b) U.S. Females

(c) Japan Males (d) Japan Females

(e) U.K. Males (f) U.K. Females

Figure 4.1: q 37, t against t = 2001, . . . , 2020
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(a) U.S. Males (b) U.S. Females

(c) Japan Males (d) Japan Females

(e) U.K. Males (f) U.K. Females

Figure 4.2: q 71, t against t = 2001, . . . , 2020
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(a) U.S. Males (b) U.S. Females

(c) Japan Males (d) Japan Females

(e) U.K. Males (f) U.K. Females

Figure 4.3: q̄t = (1/60) ∑84
x=25 qx, t against t = 2001, . . . , 2020
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• The 37 years old individuals have lower observed and predicted mortality rates than
the 71 years old individuals in Figures 4.1 and 4.2. Moreover, the 37 years old U.S.
individuals experience deteriorating mortality rates since 2014 and on wards, while
the 71 years old U.S. individuals have steady mortality rate improvement from 2001 to
2020. Next, the 37 years old Japan individuals have improved mortality rates despite
the minor fluctuations in mortality rates from 2001 to 2020. Finally, both genders of
the 37 years old U.K. individuals experience flat mortality rates from 2001 to 2020
without much mortality rate improvement or deterioration, while both genders of the
71 years old U.K. individuals continuously get mortality rate improvement as time
passes by.

• The LC, CBD, and JS mortality models result in smooth downward prediction trends,
while the M6, M7, and RH models produce fluctuating and random mortality rate
predictions. Therefore, the former three models perform better when the observed
mortality rates are relatively stable, and the latter three models work better when the
observed mortality rates fluctuate drastically across years.

• The JS model predicts q 37, ts quite well for both genders of the 37 years old U.S. and
U.K. individuals compared to the other models, especially the pink JS prediction line
for U.K. males is very close to the black line for the observed values. Furthermore,
it is hard to conclude the best forecasting model for Japan male and female popula-
tions from Figure 4.1, and we need more performance evaluation metrics, which are
introduced in the next section.

• The JS model predicts q 71, ts very well for both genders of the 71 years old Japan
individuals and the 71 years old U.S. females compared to the other models. On the
other hand, the M7 model in cyan color, with an age-year cohort effect and especially
designed for older ages, predicts q71, ts quite well for U.S. males and U.K. males.
Finally, the RH model in yellow color, which has an age-year cohort effect, predicts
better q 71, ts for U.K. females than the other models.

• From Figure 4.3, we observe that the average observed q̄t curves have a sharp jump in
2020 for U.S. and U.K. It is interesting to observe that none of six mortality models
can catch these sudden mortality rate jumps, largely due to the Covid-19 pandemic
crisis.

• The average observed q̄t curves across six populations in Figure 4.3 look similar to
those for age 71 in Figure 4.2. This is because qx, ts increase steadily as age x increases,
and the older individuals have much higher qx, ts than the younger individuals. As a
result, the qx, ts for old individuals are closer to q̄t. Figure 4.3 for q̄t versus year t shows
that the James-Stein model works well for U.S. females and both genders of Japan on
average.
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Therefore, the plots of mortality rate qx, t against year t give a general idea of the
predictive performances of models; the James-Stein model predicts qx, ts for young U.S.
and U.K. populations better than the other models. However, more performance metrics
calculations are needed to quantitatively conclude the performance of each mortality model
at a wide range of ages for different populations.

4.2 Performance Metrics

Three performance metrics are used to summarize the differences between the observed and
forecast mortality rates across all study ages [xL, xU ] and forecasting years [tU +1, tU +T0].
They are the mean absolute error (MAE), the mean absolute percentage error (MAPE),
and the root mean square error (RMSE), which are defined as follows:

• Mean Absolute Error (MAE):

MAE = 1
T0 · (xU − xL + 1)

T0∑
n=1

xU∑
x=xL

|q̂x, tU +n − qx, tU +n|,

• Mean Absolute Percentage Error (MAPE):

MAPE = 1
T0 · (xU − xL + 1)

T0∑
n=1

xU∑
x=xL

∣∣∣∣ q̂x, tU +n − qx, tU +n

qx, tU +n

∣∣∣∣,
• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
T0 · (xU − xL + 1)

T0∑
n=1

xU∑
x=xL

(q̂x, tU +n − qx, tU +n)2,

where q̂x, t and qx, t are the predicted and observed mortality rates, respectively, for age x

in year t, tU is the last fitting year, and T0 is the last forecasting year.

4.3 Forecasting Performances

In this section, the performance metrics outputs are given in numerical form with Tables
4.2– 4.4 and in graphical form with Figures 4.4–4.7. The forecasting errors at different
ages and forecasting years are summarized into three performance metrics for each of six
populations. The observations from the performance metrics tables can be concluded as
follows:

• The James-Stein (JS) mortality model has the lowest average MAE, MAPE and RMSE
over all six populations and thus the best performance compared to the other five
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Average U.S.-M U.S.-F Japan-M Japan-F U.K.-M U.K.-F

MAE (10−3)
LC 0.7349 1.1942 0.8202 0.4957 0.3765 0.8820 0.6409

CBD 1.2471 1.8236 1.2219 0.9959 0.8413 1.5323 1.0673
RH 1.0864 0.7322 0.7981 1.5799 1.0158 1.2382 1.1543
M6 1.2334 0.7767 0.8045 2.2781 1.6968 1.1440 0.7002
M7 1.1700 2.0100 0.8812 0.4896 0.7338 2.4876 0.4179
JS 0.5818 0.9639 0.5926 0.5394 0.3450 0.5753 0.4747

MAPE (%)
LC 13.26 11.07 13.19 9.28 22.16 11.00 12.85

CBD 16.39 15.27 16.88 11.32 24.01 15.21 15.64
RH 9.01 5.63 8.99 13.09 11.34 6.92 8.11
M6 13.34 7.28 6.40 23.53 22.80 12.06 7.98
M7 13.95 9.78 15.83 6.81 20.12 18.87 12.30
JS 7.62 10.01 9.69 5.43 7.54 5.92 7.15

RMSE (10−3)
LC 1.3571 2.0200 1.7076 0.9051 0.4647 1.5093 1.5359

CBD 2.9863 4.2048 2.8468 2.5211 1.9387 3.7461 2.6602
RH 2.5388 1.8001 1.8293 3.2503 2.4666 3.1102 2.7763
M6 2.5363 1.6717 1.4923 4.3459 3.4064 3.0364 1.2652
M7 2.7052 5.0567 1.3620 1.1362 1.5045 6.4206 0.7510
JS 1.2417 1.9009 1.3877 1.0116 0.6063 1.4260 1.1175

Table 4.2: Forecasting performance metrics for forecasting 10 years

models when forecasting 10, 20, and 30 years. It’s interesting to notice that the JS
model is not always the best model for all six populations, but its performance metrics
outputs are always at lower levels for each population compared to the other models,
which allow the JS model to achieve the overall best forecasting performance.

• The JS model outperforms the other forecasting models across all three performance
metrics when we are forecasting 10 years for U.K. males, 20 years for females of all
three countries, and 30 years for U.S. males, Japan females, and U.K. females. How-
ever, the RH model dominates the other mortality models when forecasting 30 years
for U.S. females. On top of this, there is no other forecasting model achieves the lowest
forecasting errors across all three performance metrics for any population. Therefore,
the JS model achieves the best forecasting results across all three performance metrics
for some selected populations.
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Average U.S.-M U.S.-F Japan-M Japan-F U.K.-M U.K.-F

MAE (10−3)
LC 1.4843 2.1903 0.8306 0.6608 0.8500 3.1998 1.1747

CBD 1.6259 2.1499 1.2840 1.3149 1.0491 2.6652 1.2924
RH 1.8844 2.4353 0.7525 3.6593 1.9739 1.6699 0.8153
M6 3.8704 3.1915 3.2812 6.5085 5.0713 1.8294 3.3403
M7 2.2209 2.6461 2.2495 1.3668 1.3388 3.9065 1.8175
JS 1.3520 2.2849 0.5979 0.8080 0.5859 3.0890 0.7463

MAPE (%)
LC 18.80 13.89 11.72 14.66 35.71 18.24 18.54

CBD 21.40 18.45 19.47 15.11 33.81 23.48 18.10
RH 17.04 18.11 11.50 18.39 20.12 21.28 12.82
M6 33.99 26.69 20.54 40.10 51.18 40.18 25.24
M7 30.04 26.51 23.72 13.50 32.88 66.95 16.65
JS 12.38 12.80 10.41 7.26 18.71 15.44 9.67

RMSE (10−3)
LC 2.2086 3.2551 1.3033 0.9682 1.1045 5.0002 1.6202

CBD 2.5252 3.0557 1.9372 2.6371 1.8480 3.6923 1.9807
RH 3.1994 3.0720 1.1912 6.9660 3.9161 2.4334 1.6176
M6 6.3903 4.2608 5.4217 11.6210 9.4235 2.2794 5.3356
M7 3.9190 4.9023 3.7796 2.5912 2.1756 6.8069 3.2583
JS 2.1621 3.6148 1.0902 1.4324 0.8123 4.7526 1.2702

Table 4.3: Forecasting performance metrics for forecasting 20 years

• All three metrics have lower (higher) error values when the forecasting year is shorter
(longer), which is consistent with intuition. This is because longer forecasting years
are more unpredictable compared to shorter forecasting years, and lead to higher
forecasting errors.

In conclusion, the best performing forecasting model for a population and a forecasting
year varies due to different mortality trends at different ages, but the JS model is the best
overall performing model based on the three performance metrics analyses.

Although the numerical results in Tables 4.2–4.4 give summarized forecasting perfor-
mance results from the six models, Figure 4.4 displays the box plots of MAPEs over all
60 study ages, forecasting years and six populations for six models, and Figures 4.5–4.7
exhibit the MAPEt curves against forecasting year t for forecasting 10, 20 and 30 years,
respective, where MAPEt is the MAPE for year t and calculated only across all study ages.
The following are the observations from these figures:

25



Average U.S.-M U.S.-F Japan-M Japan-F U.K.-M U.K.-F

MAE (10−3)
LC 2.7922 3.4509 2.1602 1.5443 1.8407 6.0328 1.7239

CBD 2.7055 3.5654 2.1269 1.8063 1.6097 5.5004 1.6242
RH 4.3511 4.6940 1.0507 10.2249 4.6734 4.1846 1.2790
M6 7.7354 5.0755 4.1334 13.7443 13.2380 3.2548 6.9667
M7 4.1549 6.5469 2.1567 3.4695 2.2692 7.8506 2.6364
JS 2.4431 3.3166 2.5073 2.4449 1.2392 3.9250 1.2255

MAPE (%)
LC 30.06 19.86 19.56 27.20 51.27 33.70 28.75

CBD 31.31 24.49 21.92 33.35 56.09 35.12 16.92
RH 35.50 48.95 15.48 45.20 49.49 37.56 16.35
M6 62.65 66.77 28.46 72.01 106.47 59.51 42.69
M7 53.46 75.01 28.40 31.93 48.63 113.77 23.03
JS 23.40 18.69 18.84 26.05 38.44 24.24 14.12

RMSE (10−3)
LC 3.4304 4.2548 3.0193 1.5200 2.3425 7.5688 1.8767

CBD 3.4474 4.1043 3.5449 2.3407 1.7703 6.7075 2.2169
RH 5.6247 4.4242 1.5162 14.4515 6.6458 4.6884 2.0223
M6 11.1262 4.6259 5.8970 21.3934 21.6742 3.1600 10.0066
M7 5.4530 8.0236 2.4172 5.6493 3.1144 9.5849 3.9288
JS 2.9714 4.0266 3.4556 2.7764 1.4990 4.4446 1.6262

Table 4.4: Forecasting performance metrics for forecasting 30 years

• The box plots of MAPEs from the JS model has the lowest median for all three
forecasting years in Figure 4.4, which means the JS model produces the least absolute
percentage prediction error compared to the other mortality models. Furthermore,
the box plot of MAPEs for the JS model does not overlap with those for the famous
LC and CBD models when forecasting 10 years; therefore, the JS model has much
better performances than the LC and CBD models based on the box plots. Finally,
the JS model has no extreme outliers when forecasting 10 and 20 years, while LC and
CBD methods have big MAPE outliers. When forecasting 30 years, the JS model has
the smallest interquartile ranges (IQR) and lowest median MAPE compared to all the
other methods. Thus, it can be concluded that the JS model has the lowest forecasting
error and is the best forecasting model among all selected mortality models.

• In Figure 4.5, the magenta MAPEt line for the JS model stays at the bottom of the
figures for both genders of U.K. and Japan when we forecast 10 years, which means the
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JS model leads to the lowest absolute percentage error compared to the other methods
for these four populations. On the other hand, the RH and M6 models are the best
forecasting models for males and females of U.S., respectively, as their MAPEt lines
stay at the bottom of the figures for most of 10 forecasting years.

• The JS model is the best forecasting model when we forecast 20 years because the
magenta MAPEt lines for the JS model are constantly at the bottom of all sub-figures
of in Figure 4.6 for all six populations. Finally, when we forecast 30 years, observation
from Figure 4.7 shows that the JS model is the best model for all populations except
U.S. females for which the RH model is the best one.

• It is interesting to note in Figures 4.5–4.7 that there is a sudden increase or de-
crease in MAPE2020 for most of the mortality models when forecasting mortality
rates for U.S. and U.K. populations, while MAPE2020 stays around the trend of
MAPEt for Japan populations. Figure 4.8 demonstrates that there is a sudden in-
crease in (1/60) ∑84

x=25 ln(mx, 2020) (the average of observed ln(mx, 2020)) for both gen-
ders of the U.S. and U.K., while the trends of (1/60) ∑84

x=25 ln(mx, t) remain stable
for the Japan populations because Covid-19 pandemic that started in early 2020 in-
creases the logarithm of central death rates for U.S. and U.K., but has not affected
Japan’s mortality trends. These sudden increases or decreases in MAPE2020 can be
explained as follows: the mortality models which overestimate the mortality rates in
2019 experience a sudden decrease in MAPE2020, while the mortality models which
underestimate the mortality rates in 2019 experience a sudden increase in MAPE2020

as the Covid-19 pandemic raises the mortality rates in 2020.

4.4 Explore the Shrinkage effect of the James-Stein Estima-
tion Method

The James-Stein Estimation method is compared with the other mortality rate estimation
methods in the previous section and achieves great results. The shrinkage behavior of the
JS estimator is explored in this section through comparing the JS method estimation out-
puts with the vector of sample means (average of observed annual decrements), Ȳ. The
baseball batting example in Figure 3.1 from Efron and Morris [11] shows that the baseball
players are ordered according to their observed batting performances, and the observed
batting averages are shrunk toward the JS estimation outputs as shrinkage effects of the JS
estimation. Specifically, the best and worst performing players experience the most shrink-
age effect towards the grant average (overall mean) of 0.265, Y0, and the JS estimation
method achieves lower estimation errors than the maximum likelihood estimation method
due to this shrinkage behavior. Moreover, the best performing player is predicted to play
worse than his historical batting average, while the worst performing player is predicted to
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(a) Forecasting 10 years

(b) Forecasting 20 years

(c) Forecasting 30 years

Figure 4.4: Box plots of MAPEs over all ages, years, and populations
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(a) U.S. Males (b) U.S. Females

(c) Japan Male (d) Japan Female

(e) U.K. Males (f) U.K. Females

Figure 4.5: MAPEt against t = 2011, . . . , 2020 (forecasting 10 years)
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(a) U.S. Males (b) U.S. Females

(c) Japan Males (d) Japan Females

(e) U.K. Males (f) U.K. Females

Figure 4.6: MAPEt against t = 2001, . . . , 2020 (forecasting 20 years)
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(a) U.S. Males (b) U.S. Females

(c) Japan Males (d) Japan Females

(e) U.K. Males (f) U.K. Females

Figure 4.7: MAPEt against t = 1991, . . . , 2020 (forecasting 30 years)
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Figure 4.8: (1/60) ∑84
x=25 ln(mx, t) (average of observed ln(mx, t)), t = 1991, . . . , 2020

play better than his historical batting average. Thus, the example in Efron and Morris [11]
demonstrates that the JS estimation method sacrifices forecasting accuracy at two extreme
ends to achieve the overall forecasting performance. Therefore, it is interesting to analyze
if the JS estimation method has the similar shrinkage behavior when we apply to the mor-
tality rate estimation problem, and how does the modified James-Stein estimator shrinks
the observed sample mean for all ages and populations.

An entry in the vector of averages of observed decrements, Ȳ, is the historical sample
mean of annual mortality rate improvements for an age, and the observed overall mean,
Y0, is the overall mean of annual mortality rate improvements for all ages in a population.
Figure 4.9 plots three curves of overall mean (black), ordered sample means (blue), and
corresponding James-Stein estimates (red), based on 49 U.S. males annual decrements Yx, ts
for each age x from the [25, 84] × [1951, 2000] training data set, against the ordered sample
means for all ages. It shows that all ages have mortality rate improvements, since all entries
of Ȳ are negative across all ages. Next, the JS estimated average decrements are also all
negative, and the ordered sample means (blue) are shrunk towards the corresponding JS
estimated means (red) across all ages. Specifically, the largest and smallest sample means
(averages of annual decrements) at the two extreme ends experience the largest amount
of shrinkage compared to the other sample means in the middle of the linear line. This
observation matches with the JS shrinkage behavior in the baseball batting average example
from Efron and Morris [11]. Because the modified JS estimation method uses the shrinkage
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Figure 4.9: Comparison of overall mean (black), ordered sample means (blue), and corre-
sponding James-Stein estimates (red) based on 49 U.S. males annual decrements Yx, ts from
the [25, 84] × [1951, 2000] training data set

factor (1 − ŵ) to get a weighted average of Ȳ (the sample means) and Y0 · 1 (the overall
mean) from the observed annual decrements, it leads to that the red plot (for the James-
Stein estimated means) falls between the blue plot (for the sample means) and the black
plot (for the overall mean). Moreover, the shrinkage factor neutralizes the JS estimates such
that the ages with higher historical mortality rate improvements (left side of Figure 4.9) are
shrunk upward towards the observed overall mean in black dashed line, while the ages with
lower historical mortality rate improvements (right side of Figure 4.9) are shrunk downward
towards the observed overall mean.

Furthermore, Figures 4.10–4.12 display the absolute shrinkage between the observed
sample means and the JS estimates on the left column, as well as the age-specific sample
means for each age on the right column. The shrinkage for annual decrement from the
observed sample means (averages of annual decrements) to the JS estimates for annual
decrement (used for forecasting outside the age-year fitting window (training data window)
is defined as follows:

shrinkage = JS estimates − observed sample means

=
[
(1 − ŵ) · Ȳ + ŵ · Y0 · 1

]
− Ȳ = ŵ · (Y0 · 1 − Ȳ).

So, the absolute value of shrinkage for age x equals ŵ times the difference between the
sample mean for x and the overall mean. A sample mean far away from the overall mean

33



produces a large absolute value of shrinkage, and a sample mean close to the overall mean
leads to a small absolute value of shrinkage.

The absolute values of shrinkage against the ordered sample means are plotted on the
left column of Figure 4.10–4.12, and the vertices of the absolute value graphs are the overall
means, Y0, which are plotted as horizontal dashed lines in the sub-figures of the unordered
sample means against age x on the right column of Figure 4.10–4.12. The sample means
(average of annual decrements) that are larger (smaller) than Y0 are shrunk downwards
(upwards), and thus the sample means close to the two extreme ends experience large ab-
solute values of shrinkage due to the James-Stein estimation process. Moreover, a wider
forecasting year normally has a higher absolute value of shrinkage, such that the absolute
value of shrinkage increases when moving from black dashed lines (for 10 years) to green
dashed lines (for 30 years) across all three populations. This is because a longer forecasting
window indicates a shorter fitting window (and thus, a smaller value of T ) which leads to
a higher value of ŵ that places a more weight on the overall decrement mean, Y0, than the
observed sample means, Ȳ. Thus, the absolute value of shrinkage is high when the fore-
casting window is wide. Next, all three female populations in Figures 4.10–4.12 have higher
historical mortality rate improvements than the male populations, since the horizontal lines
(the overall decrement mean) for females are lower than those for males.

Furthermore, the width of the absolute value of shrinkage graphs for U.S. and Japan
populations become wider when the forecasting window gets wider. For instance, Figure
4.10 (a) shows the green graph (for 30 years) is wider than the red (for 20 years) and black
(for 10 years) graphs. However, the case of U.K. does not follow the same situation as that
for the U.S. and Japan. Actually, the width of a graph for the ordered Ȳ in sub-figures (a)
and (c) is actually the vertical range of the unordered Ȳ in sub-figures (b) and (d).

In conclusion, the JS model achieves better results than the other mortality models
because it takes account of both the average annual decrement for each age and the overall
annual decrement for all ages. In this mortality rate application problem using the modified
JS estimator, by observing Figure 4.9, the age with small (see a blue bullet in the upper-right
part) historical annual mortality rate improvement is moved down and predicted to have a
bigger (see the corresponding red bullet in the upper-right part) future annual mortality rate
improvement, whereas the age with big (see a blue bullet in the lower-left part) historical
annual mortality rate improvement is moved up and predicted to have a smaller (see the
corresponding red bullet in the lower-left part) future annual mortality rate improvement.
Therefore, the JS estimator is indeed a biased estimator as indicated in Efron and Morris
[11], such that it sacrifices a bit of accuracy at the ages with extremely high or low historical
annual mortality rate improvements to achieve a better overall prediction performance.
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(a) U.S. Males (b) U.S. Males

(c) U.S. Females (d) U.S. Females

Figure 4.10: (a) and (c): absolute value of shrinkage against ordered Ȳ. (b) and (d): un-
ordered Ȳ against age x for the U.S.
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(a) Japan Males (b) Japan Males

(c) Japan Females (d) Japan Females

Figure 4.11: (a) and (c): absolute value of shrinkage against ordered Ȳ. (b) and (d): un-
ordered Ȳ against age x for Japan
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(a) U.K. Males (b) U.K. Males

(c) U.K. Females (d) U.K. Females

Figure 4.12: (a) and (c): absolute value of shrinkage against ordered Ȳ. (b) and (d): un-
ordered Ȳ against age x for the U.K.
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Chapter 5

Conclusions

The James-Stein estimation method shocks the statistical world with its ability to achieve
a better prediction than the maximum likelihood estimation when predicting under the
multivariate environment. In order to apply the JS method to the mortality rate forecast
problem, the original JS estimator, inspired by the credibility theory, is modified to pool
information from each individual mean and the overall mean to achieve a weighted average
of these two means by using a shrinkage estimator.

The JS estimation method is compared with five mortality models including Lee-Carter
(LC) model, Cairns-Blake-Dowd (CBD) model, M6 and M7 models (two extensions of the
CBD model), and Renshaw-Haberman (RH) model. Historical mortality data for the U.S.,
the U.K., and Japan are used for the numerical illustrations and comparisons. The JS
model outperforms all other models and achieves the lowest average errors across all three
performance metrics, including mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean square error (RMSE) when predicting mortality rates for 10, 20,
and 30 years. Moreover, the JS model predicts the mortality rates exceptionally well for
U.K. males when forecasting 10 years, females of all three countries when forecasting 20
years, and U.S. males, Japan females and U.K. females when forecasting 30 years, where the
JS model leads to the lowest error at each of three performance metric for those populations.
Therefore, although the JS model is not the best mortality model for each single population,
it ultimately leads to the lowest average error over all six populations. Thus, the James-
Stein estimator sacrifices the accuracy at some ages and in some populations to achieve a
better overall prediction performance than the other five mortality models.

Finally, the shrinkage effect of the JS estimation method is explored in the last section
of the previous chapter. The JS model achieves a better estimation performance than other
mortality models by shrinking the ages with extremely high or low average of annual mor-
tality rate improvements toward the overall annual mortality rate improvement. One thing
to note is that the JS estimation method has not replaced the MLE method in most of
applications due to a major drawback mentioned in Efron [8] that the JS method results
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in a high prediction error with a genuine outlier prediction. For instance, the score for an
excellent player is shrunk drastically towards the average score for all players under the JS
estimation method in the baseball player example from Efron [8], which leads to a high
prediction error compared to the MLE method. Therefore, the JS method cannot handle
the outlier cases very well, and it uses the accuracy for the outlier cases as trade-offs to
achieve a better overall accuracy across different variables. In the example for numerical
illustration, the JS model tends to shrink the ages with high annual mortality rate im-
provements downwards and shrink the ages with low annual mortality rate improvements
upwards, which leads to biases at some ages. However, it is rare that a very different annual
mortality rate improvement for an age is treated as an outlier case. Thus, application of the
JS estimation method to the mortality estimation problem has no of this drawback.

Therefore, although the James-Stein estimation method obtains a better prediction per-
formance than the other widely used mortality models, it needs to be improved to have a
better prediction without shrinking too much at the both ends of the averages of annual
mortality rate improvements. For future studies, regularization factors and Bühlmann cred-
ibility analysis can be used to perform penalty-based shrinkage to regularize the size of
shrinkage to prevent over-shrinkage at ages with extremely high or low annual mortality
rate improvements.
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Appendix A

Mortality Models

A.1 Lee-Carter Model

ln(mx, t) = αx + βx κt + ϵx, t, (A.1)

for x = xL, . . . , xU and t = tL, . . . , tU , where

• mx, t is the central death rate for an individual aged x in year t;

• αx is the average age-specific mortality;

• κt is the time trend factor in year t;

• βx is the age-specific reaction to the time trend factor; and

• ϵx, t, t = tL, . . . , tU , are the i.i.d. residual errors that are not captured by the model.

Two constraints:

•
xU∑

x=xL

βx = 1, and

•
tU∑

t=tL

κt = 0.

A.2 Renshaw-Haberman Model

ln(mx, t) = αx + β(1)
x κt + β(0)

x γt−x + ϵx, t, (A.2)
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for x = xL, . . . , xU and t = tL, . . . , tU , where

• mx, t is the central death rate for an individual at x age and t year;

• αx is the average age-specific mortality;

• κt is the time trend factor in year t;

• β
(1)
x is the age-specific reaction to the time trend factor;

• γt−x is the age-year trend cohort factor;

• β
(0)
x is the age profile change in reaction to the age-time trend cohort factor; and

• ϵx, t, t = tL, . . . , tU , are the i.i.d. residual errors that are not captured by the model.

Four constraints:

•
xU∑

x=xL

β(1)
x = 1,

•
xU∑

x=xL

β(0)
x = 1,

•
tU∑

t=tL

κt = 0, and

•
∑
c∈C

γc = 0, where C = {t − x : t = tL, . . . , tU ; x = xL, . . . , xU }.

A.3 Cairns-Blake-Dowd Model

ln
(

qx, t

1 − qx, t

)
= κ

(1)
t + κ

(2)
t (x − x̄) + ϵx, t, (A.3)

for x = xL, . . . , xU and t = tL, . . . , tU , where

• qx, t is the probability that an individual aged x in year t will die within one year;

• x̄ is the average age over x = xL, . . . , xU ;

• κ
(1)
t and κ

(2)
t are the time trend factors in year t; and

• ϵx, t, t = tL, . . . , tU , are the i.i.d. residual errors that are not captured by the model.

No constraint.
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A.4 CBD Model with a Cohort Effect Term (M6)

ln
(

qx, t

1 − qx, t

)
= κ

(1)
t + κ

(2)
t (x − x̄) + γt−x + ϵx, t, (A.4)

for x = xL, . . . , xU and t = tL, . . . , tU , where

• qx, t is the probability that an individual aged x in year t will die within one year;

• x̄ is the average age over x = xL, . . . , xU ;

• κ
(1)
t and κ

(2)
t are the time trend factors in year t;

• γt−x is the age-year cohort trend factor; and

• ϵx, t, t = tL, . . . , tU , are the i.i.d. residual errors that are not captured by the model.

Two constraints:

•
∑
c∈C

γc = 0, and

•
∑
c∈C

c γc = 0, where C = {t − x : t = tL, . . . , tU ; x = xL, . . . , xU }.

A.5 CBD Model with Cohort Effect and Quadratic Terms
(M7)

ln
(

qx, t

1 − qx, t

)
= κ

(1)
t + κ

(2)
t (x − x̄) + κ

(3)
t ((x − x̄)2 − s2

x) + γt−x + ϵx,t, (A.5)

for x = xL, . . . , xU and t = tL, . . . , tU , where

• qx, t is the probability that an individual aged x in year t will die within one year;

• x̄ is the average age over x = xL, . . . , xU ;

• κ
(1)
t , κ

(2)
t , and κ

(3)
t are the time trend factors in year t;

• s2
x is the average value of (x − x̄)2 over x = xL, . . . , xU ; and

• γt−x is the age-year cohort trend factor; and

• ϵx, t, t = tL, . . . , tU , are the i.i.d. residual errors that are not captured by the model.
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Three constraints:

•
∑
c∈C

γc = 0,

•
∑
c∈C

c γc = 0, and

•
∑
c∈C

c2 γc = 0, where C = {t − x : t = tL, . . . , tU ; x = xL, . . . , xU }.
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