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Abstract

Increasingly, logistic regression methods for genetic association studies of binary phenotypes
must be able to accommodate data sparsity, which arises from unbalanced case-control ra-
tios and/or rare exposures. Sparseness leads to maximum likelihood estimates (MLEs) of
log odds-ratio parameters that are biased away from their null value of zero and tests with
inflated type I errors. Different penalized-likelihood methods have been developed to miti-
gate sparse-data bias. We study penalized logistic and conditional regression using a class
of log-F priors indexed by a shrinkage parameter m to shrink the biased MLE towards
zero. The thesis is organized in three parts. First, we propose a two-step methodology for
implementing log-F penalization for inference of regression parameters from logistic regres-
sion, with application to genome-wide association studies. In the first step we estimate the
shrinkage parameter, and in the second step we use the penalized regression estimator to
estimate single-variant associations across the genome. Next, we explore log-F penalization
for inference of regression parameters from conditional logistic regression, with application
to data from matched case-control and case-parent trio studies. In the first two projects
we use simulation to study the statistical properties of our methods and make comparisons
to methods that use Firth penalization. Finally, we apply log-F -penalized logistic regres-
sion to data from the UK Biobank, to investigate the method’s feasibility for genome-wide,
biobank-scale data. The complexity and size of biobank data present unique challenges,
and we make modifications to our methodology to increase its flexibility and adaptability
to such datasets.

Keywords: rare-variant analysis; penalized logistic regression; conditional logistic regres-
sion; sparse-data bias; empirical Bayes; UK Biobank
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Dedication

It is not our abilities that show what we truly are.
It is our choices.

- J.K. Rowling, Harry Potter and the Chamber of Secrets
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Chapter 1

Introduction

1.1 Overview

In this thesis we study penalized likelihood estimators for dealing with sparse data bias in
inference of regression parameters from logistic and conditional logistic regression. Sparse
data bias is a bias of the maximum likelihood estimator that arises when there are small
numbers of cases or controls for some combination of the explanatory variables [16]. For
example, in logistic regression analysis, when the case-control ratio is unbalanced or the
exposure is rare [18], standard logistic likelihood-based inference can have an inflated Type
I error [60] and biased maximum likelihood estimator (MLE) of the odds ratio (OR) [10].
Genome-wide association studies (GWAS) often encounter sparse data bias due to the rarity
of certain genetic variants. This challenge can make it difficult to detect significant asso-
ciations between genetic factors and diseases or traits of interest. A related issue arises
in conditional logistic regression, which is commonly used to analyze binary outcomes in
stratified or matched sampling designs with numerous small strata or matched sets [23]. In
this situation, the conditional MLE of regression coefficients may also be biased away from
zero [15, 17, 23]. Moreover, when separation occurs — meaning that one or more predictor
variables perfectly predict the outcome — the MLE becomes infinite [1]. These concerns em-
phasize the importance of using appropriate statistical techniques and methods to mitigate
the effects of sparse data bias in logistic and conditional logistic regression analysis. Such
techniques may include penalized regression methods, Bayesian approaches, or alternative
estimators that are less sensitive to sparse data.

Firth logistic regression is a widely used method for addressing sparse-data bias in logistic
regression analysis [10]. Software tools such as EPACTS and REGENIE incorporate testing
and effect estimation based on Firth logistic regression [10, 24]. Furthermore, Heinze and
Puhr [23] developed point- and interval-estimators of ORs for conditional logistic regression
following Firth’s approach [10]. Firth’s method employs penalized-likelihood inference, with
the penalty term derived from the Jeffreys prior [27]. However, this prior is data-dependent
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and not considered a true subjective prior, as it relies on the observed data [13, 19].

Various alternative penalties have been proposed for logistic regression, offering different
degrees of shrinkage compared to the Jeffreys prior [14]. Greenland and Mansournia intro-
duced a penalized logistic regression approach based on a class of log-F priors, indexed by a
shrinkage parameter m [19]. This parameter determines the degree of penalization applied
to the regression coefficients, allowing for more flexible control over the bias-variance trade-
off. By selecting an appropriate shrinkage parameter, researchers can select the amount
of regularization applied to the model. In our context, log-F (m, m) penalization amounts
to assuming that the log-OR parameter β of interest has a log-F (m, m) distribution with
density

f(β∣m) = 1
B(m

2 , m
2 )

exp(m
2 β)

(1 + exp(β))m , (1.1)

where B(⋅, ⋅) is the beta function (see Figure 1.1 for plots of log-F (1, 1) and log-F (10, 10)
density curves). In the log-F penalization approach, maximizing the posterior density is
equivalent to maximizing a penalized likelihood obtained by multiplying the logistic re-
gression likelihood by the log-F (m, m) prior. In Chapter 3 we develop log-F -penalized
conditional logistic regression and show that it is an extension of existing methods for the
analysis of sparse matched pairs data.

Figure 1.1: Comparison of log-F , standard normal and Cauchy distributions. The log-
F (m, m) density is symmetrically bell-shaped with a single peak at zero, and its variance
decreases as increasing m. As m→∞, the distribution tends toward a point mass at zero.

Comparing log-F and Firth approaches is not straightforward due to their different penaliza-
tion strategies. The log-F approach penalizes selectively, whereas the Jeffreys prior used in

2



Firth penalization is a function of the Fisher information matrix for all coefficients, includ-
ing the intercept. However, some understanding can be derived by comparing approaches for
matched pairs data and a single binary exposure. For matched pairs, the standard analysis
employs conditional logistic regression, which eliminates intercept terms from the likelihood.
It can be demonstrated that when the model only include a single binary exposure, Firth
conditional logistic regression equals log-F (1, 1)-penalized conditional logistic regression.
This equivalency can be achieved through Haldane correction, as described by Greenland
and Mansournia [19]. Appendix C.1 provides a detailed proof of the equivalence of these
two methods under a matched case-control study design.

The log-F penalization approach exhibits several desirable properties compared to the Firth
method. First, the log-F approach for logistic regression can be easily implemented through
simple data augmentation, as detailed by Greenland and Mansournia [19]. Penalization can
be implemented by adding pseudo-observations to the original dataset. Subsequently, ana-
lyzing the augmented data with standard logistic regression produces the desired penalized
estimates and corresponding standard errors. In contrast, the Firth method requires a more
complex iterative algorithm, which is computationally demanding. In Chapter 3 we develop
an analogous data augmentation scheme to implement log-F (m, m) penalization in condi-
tional logistic regression for even values of m. Second, Greenland and Mansournia [19] argue
against the Firth method from a Bayesian perspective, stating that the prior distribution
should be data-independent.

The major contributions of this thesis can be summarized as follows:

1. Develop a standard pipeline for implementing the log-F -penalized logistic regression
in GWAS of biobank data.

2. Extend the usage of the log-F method to conditional logistic regression that is com-
monly used in the matched case-control data from health and medical studies.

3. Advocate the log-F method as a more accessible alternative for researchers seeking to
implement penalized logistic regression.

1.2 Organization of this Thesis

Chapter 2 introduces a two-step log-F -penalized logistic likelihood method for rare variant
association studies. This chapter is a copy of the manuscript by Ying Yu, Siyuan Chen,
Samantha J Jones, Rawnak Hoque, Olga Vishnyakova, Angela Brooks-Wilson, and Brad
McNeney entitled Penalized Logistic Regression Analysis for Genetic Association Studies
of Binary Phenotypes which was published in Human Heredity [56]. The method is to use
a class of log-F (m, m) priors for penalized logistic regression analysis with m viewed as a

3



shrinkage parameter controlling the degree of penalization. The shrinkage parameter can
be estimated using an Empirical Bayes approach. For a given genetic marker, the method
assumes that the regression coefficient follows a log-F prior distribution, and a marginal
likelihood for m is obtained by integrating the regression coefficient out of the joint distri-
bution of the observed data and the regression coefficient. A composite likelihood is then
constructed by taking a product of marginal likelihoods over multiple variants. Since the
integrals cannot be solved analytically, the method relies on approximation techniques, such
as Laplace approximation or the Monte Carlo EM algorithm, to the marginal likelihoods.
The two-step procedure involves: estimating the shrinkage parameter m by maximizing the
approximate composite likelihood, and implementing the log-F penalization approach with
a simple data augmentation trick. The development of this method provides a standard
pipeline for applying log-F -penalized logistic regression in GWAS.

Chapter 3 is an application study where we implement the log-F -penalized method proposed
in Chapter 2 to the UK Biobank dataset. The UK Biobank dataset is a large-scale biobank
containing genetic and health data on half a million participants [51], which makes it an
ideal candidate for examining the feasibility of applying the log-F -penalized approach on a
genome-wide scale. To better adapt the log-F -penalized method to real-world biobank data
and improve its flexibility, we make three important updates: first, we incorporate poly-
genic effects estimated from a whole-genome regression into the logistic regression model
in order to account for population structure and hidden relatedness; second, we introduce
a frequency-specific parameter in log-F priors, allowing for different degrees of shrinkage
for each variant; lastly, we explore the properties of shrinkage parameter selection based on
phenotype characteristics, making the method better suited for various types of phenotypes.
This application demonstrates the potential of the proposed method for identifying genetic
associations within large-scale biobank data, while addressing some of the challenges faced
in traditional GWAS approaches.

Chapter 4 presents an workflow to adapt log-F -penalization to conditional logistic regres-
sion. This chapter is a copy of the manuscript by Ying Yu, Jiying Wen, Jinko Graham and
Brad McNeney entitled Log-F -penalized conditional logistic regression for sparse data. The
standard conditional maximum likelihood estimator is known to be biased away from zero
when the dataset is small or sparse. We develop point- and interval-estimation based on
maximizing the conditional likelihood penalized by a log-F distribution. The estimators can
be obtained from data augmentation and standard conditional logistic software. We com-
pare the log-F -penalized approach to Firth’s method in a simulation study. We also apply
these methods to data from a study of the effects of maternal exposure to dietheylstibestrol
on the risk of vaginal cancer in their daughters and a case-parent trio study of genetic risk
factors for type 2 diabetes. This extension allows researchers to utilize the advantage of the
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log-F method, such as computational efficiency, in matched case-control studies.
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Chapter 2

Penalized Logistic Regression
Analysis for Genetic Association
Studies of Binary Phenotypes

2.1 Introduction

Standard likelihood-based inference of the association between a binary trait and genetic
markers is susceptible to sparse data bias [18] when the case-control ratio is unbalanced
and/or the genetic variant is rare. In particular, when data are sparse, hypothesis tests
based on asymptotic distributions have inflated type I error [60] and the MLE of OR is
biased away from zero [10].

The relevance of sparse data bias to genetic association analysis is highlighted by recent
work on methods for genome-wide, phenome-wide association studies (PheWAS) of large
biobanks. Despite the potential of multivariate methods that jointly analyze phenotypes
(e.g., [63]), approaches for PheWAS of biobank-scale data typically reduce the problem
to inferences of association between single nucleotide variants (SNVs) and traits, adjusted
for population structure and relatedness among subjects via a linear mixed model (LMM)
[6, 60] or WGR [44]. For valid testing of associations between rare binary phenotypes and/or
SNVs, SAIGE [60], EPACTS [33] and REGENIE [44] implement an efficient saddle-point
approximation (SPA) to the distribution of the score statistic that yields correct p-values.
EPACTS and REGENIE also offer testing and effect estimation based on Firth logistic re-
gression [10, 24], a maximum-penalized likelihood method that uses the Jeffreys prior [28]
as the penalty. In addition to valid tests, the Firth logistic regression estimator of the odds-
ratio is first-order unbiased. Reliable effect estimates are important for designing replication
studies and polygenic risk scores, and for fine-mapping [36].

Greenland and Mansournia proposed an alternative penalized-likelihood approach in which
each log-OR parameter follows a class of log-F (m, m) priors, where m serves as the shrink-
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age parameter controlling the degree of shrinkage applied to the coefficient [19]. This method
assumes that each covariate of interest is independent and follows a log-F prior distribution.
The log-F -penalized logistic likelihood can be obtained by multiplying the logistic regression
likelihood by independent log-F prior densities (equation (1.1)). The explanatory variables
of the logistic regression may include other covariates such as age, sex, genetic principal
components (PCs) or the predicted log-odds of being a case from a WGR. In general, we
only penalize the SNV of interest but do not penalize other confounding covariates or the
intercept, as suggested by Greenland and Mansournia [19].

Limited simulation studies have shown that, for fixed m, log-F (m, m) penalized methods
outperform other approaches for case-control data [14]. Compared to Firth’s method, the
log-F approach is more flexible, since we can change the amount of shrinkage by changing
the value of m, and greater shrinkage may reduce MSE [19]. However, there is little guidance
on how best to select the value of m for a particular phenotype. As a shrinkage parameter,
m controls the bias-variance trade-off, with the variance of the log-OR estimator decreasing
and the bias increasing as m increases [19]. We follow the suggestion by Greenland and
Mansourinia of using an empirical Bayes method to estimate m [19].

Our interest is in fitting single-SNV logistic regressions over a genomic region, or over the
entire genome. A motivating example is the Super Seniors study [21] that compared healthy
"case" subjects aged 85 and older across Canada who had never been diagnosed with can-
cer, dementia, diabetes, cardiovascular disease or major lung disease to population-based
middle-aged "controls" who were not selected based on health status. The genetic data for
this study are described in detail in Section 2.4. After quality control, we have data available
for 2,678,703 autosomal SNVs on 427 controls and 617 cases [21]. A preliminary genome-
wide scan at a relatively liberal significance threshold of 5× 10−5 found 57 SNVs associated
with case-control status.

As in the Super Seniors data, the vast majority of SNVs have little or no effect, and a rela-
tively small set have non-zero effects. The prior used for penalization is the distribution of
log-ORs for SNVs with non-zero effects. We therefore propose to select K SNVs that show
some evidence of having non-zero effects in a preliminary scan, e.g., the K = 57 SNVs from
the preliminary scan of the Super Seniors data, and use these to estimate m. The intent is
to learn about the distribution of non-zero log-ORs adaptively from the data [62].

The main goal of this chapter is to employ log-F penalized logistic regression for analyz-
ing genetic variant associations in a two-step approach. First, we estimate the shrinkage
parameter m based on a set of variants that show evidence of having non-zero effect in a
preliminary scan. Second, we perform penalized logistic regression for each variant in the
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study using log-F (m, m) penalization with m estimated from step one. For a given m, the
log-F penalized likelihood method can be conveniently implemented by fitting a standard
logistic regression to an augmented dataset [19]. In addition to estimates of SNV effects,
confidence intervals and likelihood ratio tests follow from the penalized likelihood [24]. Cor-
rections for multiple testing in GWAS/PheWAS applications would involve standard GWAS
p-value thresholds, such as 5 × 10−8.

2.2 Models and Methods

We start by reviewing the penalized likelihood for cohort data, followed by the likelihood
for case-control data. We then introduce the penalized likelihood and derive a marginal
likelihood for the shrinkage parameter m based on data from a single SNV. Taking products
of marginal likelihoods from K SNVs yields a composite likelihood that we maximize to
estimate m. We conclude by reviewing how log-F -penalized logistic regression for the second-
stage of the analysis can be implemented by data augmentation.

2.2.1 Likelihood from Cohort Data

Inference of associations between a single-nucleotide variant (SNV) and disease status from
cohort data is based on the conditional distribution of the binary response Yi given the co-
variate Xi that encodes the SNV. For a sample of n independent subjects let Y = (Y1, . . . , Yn)
denote the vector of response variables and X = (X1, . . . , Xn) denote the vector of genetic
covarariates. The likelihood is

L(α, β) = P (Y ∣X, α, β) =
n

∏
i=1

exp(Yi(α +Xiβ))
1 + exp(α +Xiβ)

, (2.1)

where α is an intercept term and β is the log-OR of interest.

2.2.2 Likelihood from Case-control Data

The association between a single-nucleotide variant (SNV) and disease status can also be
estimated from case-control (i.e. retrospective) data, in which covariates Xi are sampled
conditional on disease status Yi for each individual i. Suppose there are n0 controls indexed
i = 1, ..., n0 and n1 cases indexed i = n0 + 1, ..., n, where n = n0 + n1 denoting the sample
size of the study. Qin and Zhang [46] expressed the case-control likelihood in terms of a
two-sample semi-parametric model as follows

L(β, g) = P (X ∣Y , β, g) =
n0

∏
i=1

P (Xi∣Yi = 0, g)
n0+n1

∏
i=n0+1

P (Xi∣Yi = 1, β, g)

=
n0

∏
i=1

g(Xi)
n0+n1

∏
i=n0+1

c(β, g)exp(Xiβ)g(Xi),
(2.2)
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where c(β, g) is a normalizing constant and g(X) is the distribution of the covariates in
controls, considered to be a nuisance parameter. The potentially infinite-dimensional distri-
bution g makes the case-control likelihood L(β, g) difficult to derive and maximize to find
the MLE of β. Therefore, we rewrite the case-control likelihood as a profile likelihood [45]:

L(α∗, β) =
n0

∏
i=1

1
1 + exp(α∗ +Xiβ)

n0+n1

∏
i=n0+1

exp(α∗ +Xiβ)
1 + exp(α∗ +Xiβ)

=
n

∏
i=1

exp(Yi(α∗ +Xiβ))
1 + exp(α∗ +Xiβ)

,

(2.3)

where α∗ = α+log (n1
n0
)−log (P (D=1)

P (D=0)), α is the intercept term in the logistic regression model
for P (Y = 1∣X), and P (D = 1) and P (D = 0) are the population probabilities of having
and not having the disease, respectively [48]. The profile likelihood L(α∗, β) for case-control
data is of the same form as the prospective likelihood. The MLE of β under the case-control
sampling design can be obtained by maximizing L(α∗, β) as if the data were collected in a
prospective study [45, 46]. In what follows we write the likelihood as in equation (2.3) with
the understanding that α∗ = α for cohort data.

2.2.3 Penalized and Marginal Likelihoods

The penalized likelihood is obtained by multiplying the likelihood by a log-F (m, m) distri-
bution (equation (1.1)):

Lp(α∗, β, m) = L(α∗, β)f(β∣m). (2.4)

Integrating out the latent log-OR β gives a marginal likelihood of α and m:

L(α∗, m) = ∫ Lp(α∗, β, m)dβ = ∫ L(α∗, β)f(β∣m)dβ. (2.5)

In the above likelihood, the smoothing parameter m is the parameter of interest, while the
intercept α∗ is a nuisance parameter.

We expect very little information about m in data from a single marker, because this
represents a single realization of β from the log-F (m, m) prior. In fact, empirical experiments
(not shown) suggest a monotone, completely uninformative likelihood roughly 60-70 percent
of the time. We therefore consider combining information across markers.

2.2.4 Composite Likelihood for Estimating m with K Markers

Suppose there are K SNVs available for estimating m (see subsection 2.2.4). For each SNV
we specify a one-covariate logistic regression model. Let X denote a design matrix con-
taining all K SNVs, and X.k, k = 1, . . . , K, denote the genotype data on the kth SNV.
Let Lp(α∗k, βk) denote the likelihood (2.3) for the kth log-OR parameter βk. Here α∗k is the
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intercept term from the kth likelihood, considered to be a nuisance parameter.

A composite likelihood [26, 37, 53] for α∗=(α
∗

1 ,...,α∗K)T and m is the weighted product

LCL(α∗,m)=∏
K
k=1 L(α∗k,m)wk . (2.6)

The corresponding composite log-likelihood is

lCL(α∗,m)=∑
K
k=1 wkl(α∗k,m), (2.7)

where l(α∗k, m) is the marginal log-likelihood contribution from the kth variant obtained by
integrating βk out of the joint distribution of observed data and the parameter. Our estimate
of m is the value that maximizes the composite log-likelihood equation (2.7). Following the
notion that common variants should tend to have weaker effects and rare variants should
tend to have stronger effects, we set √wk = 1/

√
MAFk(1 −MAFk) so that wk is inversely

proportional to the MAF of the kth SNV [55]. The idea is to up-weight rarer variants of po-
tentially greater effects and down-weight more common SNVs that may have smaller effects.

Maximization is done in two stages:

1. For fixed m, we maximize lCL(α∗,m).The form of the composite likelihood when m is
fixed, as a sum of terms involving only a single parameter, implies that to maximize
lCL(α∗,m) we maximize each l(α∗k, m) over α∗k. Let α∗k(m) be the value of α∗k that
maximizes l(α∗k, m), α̂∗(m)=(α̂

∗

1(m),...,α̂∗K(m)), and lCL(α̂∗(m),m)=∑
K
k=1 wkl(α̂∗k(m),m).

2. Maximize lCL( ˆα∗(m), m) over m. To keep computations manageable, we restrict
m to a grid of values, m = 1, 2, ..., M . One may optionally smooth the resulting
(m, lCL(α̂∗(m),m)) pairs and maximize this smoothed curve to obtain the estimate
m̂. Smoothing is preferred if one seeks a more precise estimate of m, but the level
of precision in m does not substantially impact the resulting log-OR based on our
experiments.

For a fixed value of m and k, the estimate α̂∗k(m) can be obtained by maximizing l(α∗k, m)
with respect to α∗k. However, it is difficult to evaluate the integral ∫ L(α∗k, βk)f(βk∣m)dβk

in (2.5). We discuss two approximate approaches. The first (Section 2.2.5) is a Monte Carlo
EM algorithm [9], and the second (Section 2.2.5) is a Laplace approximation to L(α∗k, m)
followed by derivative-free optimization of the approximation.

Selecting variants for the composite likelihood

Using variants with no effect in the composite likelihood leads to large estimates of m, which
correspond to strong shrinkage toward zero. Over-shrinkage biases the log-F -penalized es-
timator towards zero, and reduces power in the second stage of analysis. In the extreme,

10



the use of weakly-associated variants in the first stage can lead to a monotone marginal
likelihood in m (results not shown).

To avoid over-shrinkage we select SNVs with large marginal effects (i.e., small p-values)
from a genome-wide scan, similar to the SNV-selection process used by FaST-LMM-Select
[40]. For example, we can conduct a preliminary GWAS on all markers, or a thinned set of
markers, and choose the SNVs with p-values below a multiple-testing-corrected threshold
(refer this as Level 0 of Step 1). We then use the chosen SNVs to estimate m (Level 1 of
Step 1).

Adjustment for confounding variables and offsets

We conclude this subsection by noting that it is possible to generalize the marginal likelihood
approach for estimating m to incorporate non-genetic confounding variables, denoted Z, and
known constants in the linear predictor, or "offset" terms, denoted b. As confounders, Z will
be correlated with the SNV covariates Xk, and such correlation may differ across SNVs. We
therefore introduce coefficients γk for the confounding variables in the logistic regression on
the kth SNV. Offset terms can be used to include estimated polygenic effects in the logistic
regression [44]. Expanding the α∗k component of the logistic model to α∗k +Zγk + b, the kth
likelihood is now

L(α∗k, γk, βk) =
n

∏
i=1

exp(Yi(α∗k +Ziγk + bi +Xikβk))
1 + exp(α∗k +Ziγk + bi +Xikβk)

(2.8)

and the composite log-likelihood for estimating m is

lCL(α∗,γ,m) =
K

∑
k=1

wkl(α∗k, γk, m)

=
K

∑
k=1

wk log∫ L(α∗k, γk, βk)f(βk∣m)dβk.

(2.9)

For fixed m we maximize lCL(α∗,γ,m) by maximizing the component marginal likelihoods
l(α∗k, γk, m) over the nuisance parameters (α∗k, γk). We then maximize the resulting expres-
sion over m to obtain m̂. Though the generalization to include confounding variables and
offsets is conceptually straightforward, we omit it in what follows to keep the notation as
simple as possible.

2.2.5 Maximization Approaches

Monte Carlo EM Algorithm

To maximize l(α∗k, m), we first consider an EM algorithm, which treats βk as the unobserved
latent variable or missing data. For a fixed value of m and k, the EM algorithm iterates
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between taking the conditional expectation of the complete-data log-likelihood given the
observed data and the current parameter estimates, and maximizing this conditional expec-
tation. The conditional distribution of βk given the observed data is a posterior distribution
that is proportional to the likelihood L(α∗, βk) times the prior f(βk∣m). Thus, at the (p+1)th

iteration, the E-step is to determine

Q (α∗k ∣α∗k
(p)

, m)∝ ∫ log[L(α∗k, βk)f(βk∣m)]L(α∗k
(p)

, βk)f(βk∣m)dβk (2.10)

and the M-step is to set

α∗k
(p+1) = argmax

α∗
k

jQ (α∗k ∣α∗k
(p)

, m) . (2.11)

The E-step (2.10) is complicated by the fact that the integral cannot be solved analytically.
We therefore approximate the integral numerically by Monte Carlo (MC); that is, we use a
Monte Carlo EM (MCEM) algorithm [54]. The MC integration in the E-step is obtained by
sampling from the prior distribution f(βk∣m) [54, 38]. Based on a sample βk1, ..., βkN from
the distribution f(βk∣m), the MC approximation to the integral is

Q (α∗k ∣α∗k
(p)

, m) ≈ QMC (α∗k ∣α∗k
(p)

, m)

= 1
N

N

∑
j=1

log[L(α∗k, βkj)f(βkj ∣m)]L(α∗k
(p)

, βkj)

= 1
N

N

∑
j=1
(log[L(α∗k, βkj)] + log[f(βkj ∣m)])L(α∗k

(p)
, βkj).

(2.12)

Note that log[f(βkj ∣m)] is independent of the parameter α∗k, so maximizing (2.12) in the
M-step is equivalent to maximizing

1
N

N

∑
j=1

log[L(α∗k, βkj)]L(α∗k
(p)

, βkj). (2.13)

For a discussion of computational approaches to the M-step see the online Supplementary
Material.

Maximization of a Laplace Approximation

An alternative to the EM algorithm is to make an analytic approximation, L̃(α∗, m),
to L(α∗, m) = ∫ L(α∗k, βk)f(βk∣m)dβk and maximize this approximation. We considered
Laplace approximation because it is widely used for approximating marginal likelihoods
[52]. The Laplace approximation of an integral is the integral of an unnormalized Gaussian
density matched to the integrand on its mode and curvature at the mode. Letting β̂k denote
the mode of L(α∗k, βk)f(βk∣m) and cp(α∗k) minus its second derivative at β̂k, the Laplace
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approximation to L(α∗k, m) is

L̃(α∗k, m) = L(α∗k, β̂k)f(β̂k∣m)
¿
ÁÁÀ 2π

cp(α∗k)
. (2.14)

Each β̂k is the root of the derivative equation ∂log(L(α∗k, βk)f(βk∣m))/∂βk = 0; this can be
shown to be a global maximum of L(α∗k, βk)f(βk∣m). An expression for cp(α∗k) is given in
Appendix A of [7]. Figure 2 shows the quality of the LA for one simulated dataset generated
under m = 4. The approximate marginal likelihood L̃(α∗k, m) may be maximized over α∗

using standard derivative-free optimization methods, such as a golden section search or the
Nelder-Mead algorithm.

Figure 2.1: Natural logarithms of estimates of the marginal likelihood L(α∗k, m) for one
simulated dataset generated under m = 4. Estimates are obtained by LA and Monte Carlo.
Log-likelihood estimates are plotted over the grid m = (1, 1.5, ..., 10) with α∗k = −3.

2.2.6 Implementing log-F Penalization by Data Augmentation

Penalization by a log-F (m, m) prior can be achieved by standard GLM through data aug-
mentation suggested by Greenland and Mansournia [19]. Here, we provide some details. The
logistic likelihood penalized by a log-F (m, m) prior (equation (2.4)) is:

LP (α∗, β) =
n

∏
i=1

exp(Yi(α∗ +Xiβ))
1 + exp(α∗ +Xiβ)

×
exp(m

2 β)
(1 + exp(β))m

=
n

∏
i=1

exp(Yi(α∗ +Xiβ))
1 + exp(α∗ +Xiβ)

× [ exp(Xiβ)
1 + exp(Xiβ)

]
m
2

[ 1
1 + exp(Xiβ)

]
m
2

,

(2.15)
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Figure 2.2: Illustration of data augmentation in the implementation of log-F (m, m) penal-
ization.

where Xi = 1. Thus, the penalized likelihood Lp(α∗, β) is equivalent to an unpenalized
likelihood obtained by adding m pseudo-observations to the response with no intercept and
covariate one, in which m/2 are successes and m/2 are failures (even if m is an odd number).
In our analyses (see Section 2.3), we analyze one SNV at a time using the log-F penalized
logistic regression, adjusting for other confounding variables. The data augmentation ap-
proach is illustrated in Figure 3. Let X denote the allele count of a SNV and Zj , j = 1, ..., p,
denote other confounding variables for adjustment. In the augmented dataset, the response
is a two-column matrix with the number of successes and failures as the two columns. The
m pseudo-observations are split into m/2 successes and m/2 failures. We only penalize the
coefficient associated with the SNV, so we add a single row to the design matrix consisting
of all zeros except for a one indicating the SNV covariate. Analyzing the augmented dataset
with standard logistic regression yields the penalized MLE and its standard errors, as well
as penalized likelihood ratio tests and penalized-likelihood-ratio-based confidence intervals.
We conclude by noting that, for fixed m, the influence of the m pseudo-observations on the
fitted logistic regression diminishes as the sample size increases. In other words, for any m,
the extent of penalization decreases with sample size.

2.3 A Simulation Study

The empirical performance of the methods introduced in Section 2.2 was evaluated in a
simulation study. The proposed two-step log-F -penalized method (LogF) was compared
with the standard MLE and the following methods:

• Firth logistic regression (FLR) was first proposed by Firth [10], where the logistic
likelihood is penalized by ∣I(β)∣1/2 with I(β) = −E [ ∂2

∂β2 l(β)] defined as the Fisher
information. FLR is implemented in the R function logistf of the package logistf
[22].
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• Penalization by Cauchy priors (CP) was proposed by [13]. The input predictors are
rescaled to have a mean of 0 and a standard deviation of 0.5. All predictors are
penalized by a Cauchy prior with center 0 and scale 2.5, whereas the intercept is
penalized by a weaker Cauchy prior with center 0 and scale 10. CP is implemented in
the R function bayesglm of the package arm [13].

All simulations were performed using R (Version 4.1.2) [47] on the Compute Canada clus-
ter Cedar. We restricted m to a grid of values between 1 and 10, and we used parallel
processing that splits the computation of the composite likelihood for each m ∈ [1, 10]
over different cores. Each node on the cluster has at least 32 CPU cores and we allo-
cated 10G to each core. For detailed description of its nodes’ characteristics please refer to
https://docs.computecanada.ca/wiki/Cedar#Node_characteristics.

We set the sample size to 500, 1000 and 1500, and 100 data sets were generated in each
scenario. For each data set, we first estimated m based on a set of SNVs which show non-zero
effects in a preliminary scan (Step 1), and then implemented the log-F penalized likelihood
method to test single-variant association for each SNV by the data augmentation approach
(Step 2). For the MLE and CP approaches we used Wald tests for SNV effects and Wald
confidence intervals for the SNV coefficient. For FLR and the LogF approaches tests we
used likelihood-ratio tests (LRTs). For a penalized log likelihood lP (α, β), the likelihood
ratio statistic [24] is

T = 2[lP (α̂, β̂) − lP (α̂0, 0)] (2.16)

where (α̂, β̂) is the maximum of the penalized likelihood function and α̂0 is the maximum
of the penalized likelihood when β = 0. The p-value is computed from the χ2

1 distribution.
For penalized logistic method, profile penalized likelihood (PPL) confidence intervals have
shown to have better empirical properties than standard Wald-based confidence intervals
[24]. A PPL confidence interval can be obtained by inverting the LRT, i.e., by finding all
values of β̂0 such that 2[lP (α̂, β̂)−lP (α̂0, β̂0)] ≤ χ2

1,1−α gives a 100(1−α)% confidence interval
for β.

2.3.1 Data Generation

To keep computations manageable, we simulate preliminary datasets of 50 causal and 950
null SNVs. Null SNVs were used to assess the Type I error performance and the power was
estimated using the set of causal SNVs. The data was simulated according to a case-control
sampling design, where covariates are simulated based on disease status. For a given SNV,
let Xj denote the allele count (i.e. 0, 1 or 2) of SNVj and βj be the corresponding log-OR
parameter. Following [46], the conditional density function for Xj in the controls and cases
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are
P (Xj = x∣Y = 0) = g(x) and

P (Xj = x∣Y = 1) = h(x) = c(βj , g) exp(xβj)g(x).
(2.17)

We assume that the distribution of X in controls, g(x), is Binomial(2, p), where p is the
MAF of the SNV. Then the distribution of X in cases, h(x), is proportional to

gz(x) exp(xβj) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − p)2 x = 0

2p(1 − p) exp(βj) x = 1

p2 exp(2βj) x = 2

, (2.18)

which has normalizing constant (1 − p)2 + 2p(1 − p) exp(βj) + p2 exp(2βj).

We simulated data in the presence of population stratification. We create population-disease
and population-SNV associations as follows. To create population-disease association we
introduced a population main effect on disease risk by taking population-stratum log-OR, γ,
to be 1. To create population-SNV association we selected different SNV MAFs in different
populations. Let Z denote a binary indicator of one of the two population strata. The
respective frequencies in controls of the two populations are f0 and f1, respectively. Then
the distribution of Z in controls is P (Z = z∣Y = 0) = fz, and the distribution of Z in cases is
P (Z = z∣Y = 1)∝ fz exp(zγ) [59]. In our studies, we set f0 = f1 = 0.5. Now suppose that the
MAF for a given SNV differs by sub-population, with pz denoting the MAF in population
z. Let gz(x) denote the distribution of Xj in controls of population z, i.e., P (Xj = x∣Z =
z, Y = 0) = gz(x) ∼ Binomial(2, pz). The joint distribution of Xj and Z in controls is then
P (Xj = x, Z = z∣Y = 0) = fzgz(x). If logit[P (Y = 1∣Z = z, Xj = x)] = α + zγ + xβj , the joint
distribution of X and Z in cases is P (Xj = x, Z = z∣Y = 1)∝ fzgz(x) exp(zγ +xβj) [46]. We
then have

P (Xj = x∣Z = z, Y = 1) = P (Xj = x, Z = z∣Y = 1)
P (Z = z∣Y = 1) ∝ fzgz(x) exp(zγ + xβj)

fz exp(zγ) = gz(x) exp(xβj).
(2.19)

To summarize, we first assigned population status for each subject using

P (Z = z∣Y = 0) = fz,

P (Z = z∣Y = 1)∝ fz exp(zγ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f0 z = 0

f1 exp(γ) z = 1

(2.20)
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Then using (2.18), we simulated the genotype data of each SNVj , for j = 1, ..., 1000, condi-
tional on population status by sampling from

P (Xj = x∣Z = z, Y = 0) = gz(x) ∼ Binomial(2, pz),

P (Xj = x∣Z = z, Y = 1)∝ gz(x) exp(xβj) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 − pz)2 x = 0

2pz(1 − pz) exp(βj) x = 1

p2
z exp(2βj) x = 2

(2.21)

MAFs, pz, for different populations were obtained from 1000 Genomes Project [8]. Here we
consider two populations: Caucasian (CEU) and Yoruba (YRI) subjects, and we sampled
MAFs of SNVs from a 1 million base-pair region on Chromosome 6 (SNVs with MAF = 0
have been removed). Data from the 1000 Genomes Project was downloaded using the Data
Slicer (https://www.internationalgenome.org/data-slicer/). The effect sizes of causal
SNVs were assumed to be a decreasing function of MAF, which allows rare SNVs to have
larger effect sizes and common SNVs to have smaller effect sizes. We set the magnitude of
each βj = log 5

2 ∣ log10 MAFj ∣ [55], where MAFj is the pooled-MAFs (p0 + p1)/2 of the SNVj .
We took into account the effects of mixed signs, multiplying βj by -1 for some j, in which
are 50% positive and 50% negative. This process gives the maximum OR = 6.44 (∣βj ∣ = 1.86)
for SNVs with pooled-MAF = 0.0048 and the minimum OR = 1.40 (∣βj ∣ = 0.4) for SNVs
with pooled-MAF = 0.38 (Supplementary Figure 2 B).

2.3.2 Results

We first evaluated the performance of the two different log-F methods described above.
Over 100 simulation replicates, the mean estimates of m obtained by MCEM and LA are
4.77 (SD = 1.27) and 4.76 (SD = 1.18) respectively for n = 500, and are 3.88 (SD = 1.56)
and 3.83 (SD = 1.33) respectively for n = 1000. The scatterplots (Figure 2.3) show good
agreement between the two methods. Figure 2.4 compares the LA- and MCEM-based like-
lihood curves of m for the first 20 simulated data sets. These likelihoods were plotted with
m of grid values from 1 to 10 on the x-axis, and each was smoothed by a smoothing spline.
The likelihood curves are of similar shape, though shifted because the MCEM approach es-
timates the likelihood up to a constant (compare equations (2.12) and (2.13)). The compute
time of LogF and FLR is given in Table 2.1. We see that LA is 160× and 300× faster than
MCEM in elasped time for Step 1 when analyzing 1000 SNVs of sample size 500 and 1000,
respectively. Although MCEM is computationally more expensive than LA, the accuracy
of its approximation can be controlled by the number of Monte Carlo replicates, whereas
the accuracy of LA cannot be controlled. We used N = 1000 Monte Carlo replicates in the
MCEM throughout, which gives reasonably good accuracy. The agreement of the MCEM
and LA approaches for smaller sample sizes validates the accuracy of LA. MCEM results
are not available for the largest sample size of n = 1500, because our current implementation
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fails due to numerical underflow. As expected, once m is selected, LogF is computationally
efficient as only a simple data augmentation approach is used in Step 2. Combining Step 1
(with LA) and Step 2, along with the preliminary scan, which is of the same order of com-
putation time as Step 2, the combined computation time of the LogF approach is roughly
half that of FLR.

We further examined the accuracy of effect sizes from LogF-MCEM, LogF-LA, FLR and
CP. All variants were binned based on the pooled-MAF in five bins: (0%, 1%), [1%, 5%),
[5%, 10%), [10%, 25%) and [25%, 50%], and there were 51, 128, 213, 401, and 207 SNVs
in each bin. The causal variants can be either deleterious or protective (i.e. βj is either
positive or negative), so we define the bias of effect size estimates as the signed bias,
E[sign(βj)(β̂j − βj)]; positive values indicate bias away from zero, while negative values
indicate bias towards zero. We also evaluated the SD of effect size estimates as the standard
deviation of β̂j across 100 simulation replicates, and the mean squared error (MSE) as the
sum of squared bias and squared SD. MAF-binned results are shown in Table 2.2 and Figure
2.5. In the Figure, results for the MLE obscure those for the other methods and are not
shown. We find that for variants of MAF 1% or greater, all methods are comparable. How-
ever, for rare variants of MAF < 1%, the SD of LogF is much smaller than other methods.
In addition, the signed bias of the LogF is more concentrated around zero compared with
other methods, though this tendency about zero is counteracted by some extreme negative
signed biases that suggest over-shrinkage in some cases. The MAFs of the three SNVs that
lead to these extreme negative signed biases (Figure 2.5) are 0.0048, 0.0072, and 0.0074, re-
spectively. We note that 0.0048 was the smallest MAF in our simulated datasets. Combining
bias and SD results in a much smaller MSE for the LogF than other methods. Comparing
the results under samples sizes of 500, 1000, and 1500, one can see that penalization makes
less of an impact as the sample size increases.

Through simulations, we also investigated the Type 1 error and power of the test of SNV
effects from the different approaches (Figure 2.6). Although all the methods provide good
control of Type 1 error, we found that LogF approaches result in a relatively smaller false
positive rate. All the methods had similar power, with slightly less power from LogF ap-
proaches. We believe that the increased power of the FLR and Cauchy approaches can be
partly attributed to their bias away from zero for rare variants.
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Figure 2.3: Scatterplot comparing the estimated values of m using the two methods over
100 simulation replicates. Values estimated by LA are on x-axis, and values estimated by
MCEM are on y-axis. Red line is y = x.

Method Step
Elapsed time (s)

Min. 1st Qu. Median Mean 3rd Qu. Max.
n = 500

LogF 1 0.35 0.49 0.54 0.74 0.58 13.22
LogF 2 3.53 3.66 3.69 3.78 3.92 4.31
FLR NA 10.48 10.94 11.09 11.18 11.36 12.36

n = 1000
LogF 1 1.02 1.51 1.68 1.79 1.82 3.73
LogF 2 4.38 4.46 4.55 4.59 4.66 5.17
FLR NA 17.04 17.60 17.79 17.85 18.00 19.48

n = 1500
LogF 1 2.42 2.66 2.75 2.78 2.89 3.73
LogF 2 5.21 5.30 5.37 5.39 5.39 5.94
FLR NA 23.45 23.96 24.35 24.33 24.61 25.35

Table 2.1: Computation time (elapsed time in seconds) of LogF and FLR when analyzing
1000 SNVs with sample size 500, 1000 and 1500 using 100 simulated data sets. No results
are available for LogF-MCEM when n = 1500 due to numerical underflow.
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Figure 2.4: Comparison of profile log-likelihood curves obtained by the two different methods
described in text, for the first 20 simulated data sets (n = 1000). In each case the likelihood
curve was generated based on K SNVs selected in a preliminary genome-wide scan, and was
smoothed by smoothing spline. The red line connecting triangles is based on LA, whereas
the black line connecting dots corresponds to MCEM.
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Estimate Method MAF
(((0%, 1%))) [[[1%, 5%))) [[[5%, 10%))) [[[10%, 25%))) [[[25%, 50%]]]

n = 500

Bias (×1000)

MLE 69 -4 3 1 0
CP -8 -4 3 0 -0

FLR -6 -4 3 1 0
LogF-MCEM -41 -10 0 -0 -0

LogF-LA -40 -10 0 -0 -0

SD (×1000)

MLE 4832 487 267 187 147
CP 909 405 263 184 145

FLR 881 404 261 184 145
LogF-MCEM 476 339 244 179 143

LogF-LA 473 339 244 179 143

MSE (×1000)

MLE 27275 376 74 36 22
CP 852 178 71 35 21

FLR 799 177 71 35 22
LogF-MCEM 259 122 62 33 21

LogF-LA 256 122 62 33 21

Coverage* (×1000)

MLE 992 957 952 950 950
CP 990 960 953 951 951

FLR 967 951 950 950 950
LogF-MCEM 983 965 958 952 952

LogF-LA 984 965 958 952 952
n = 1000

Bias (×1000)

MLE 51 4 -0 -0 -1
CP 7 3 -1 -0 -1

FLR 8 3 -1 -0 -1
LogF-MCEM -14 0 -2 -1 -1

LogF-LA -15 0 -2 -1 -1

SD (×1000)

MLE 1542 290 187 130 104
CP 663 283 185 129 103

FLR 661 282 185 129 103
LogF-MCEM 491 263 180 128 103

LogF-LA 489 263 180 128 103

MSE (×1000)

MLE 3590 92 36 17 11
CP 462 87 36 17 11

FLR 456 87 35 17 11
LogF-MCEM 257 74 34 17 11

LogF-LA 254 74 34 17 11

Coverage* (×1000)

MLE 976 953 951 951 946
CP 974 954 951 952 946

FLR 955 951 950 951 946
LogF-MCEM 974 956 952 952 946

LogF-LA 975 956 952 952 946
n = 1500

Bias (×1000)

MLE 27 2 1 -0 -1
CP 0 2 1 -0 -1

FLR -0 2 0 -0 -1
LogF-LA -11 0 -0 -0 -1

SD (×1000)

MLE 782 236 151 106 83
CP 518 233 151 106 82

FLR 522 232 150 106 83
LogF-LA 447 225 149 105 82

MSE (×1000)

MLE 1060 61 24 12 7
CP 279 59 23 12 7

FLR 283 59 23 12 7
LogF-LA 207 54 23 11 7

Coverage* (×1000)

MLE 968 949 950 950 952
CP 971 951 951 950 953

FLR 959 948 950 950 952
LogF-LA 970 951 951 950 952

Table 2.2: MAF binned averages of bias, SD, MSE and CI coverage probability of effect
size estimates across 100 simulated data. * Coverage probability of two-sided nominal 95%
confidence intervals for log-OR coefficient. Wald CIs were used for MLE and CP, whereas
profile likelihood-based CIs were used for FLR, LogF-MCEM and LogF-LA. No results are
available for LogF-MCEM when n = 1500 due to numerical underflow.
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Figure 2.5: MAF binned boxplots of bias, SD and MSE of effect size estimates for LogF
and other competing methods on simulated data. Each boxplot represents the distribution
of the estimated quantity across 100 simulation replicates. MAF bins are: 1 = (0%, 1%),
2 = [1%, 5%), 3 = [5%, 10%), 4 = [10%, 25%) and 5 = [25%, 50%]. No results are available
for LogF-MCEM when n = 1500 due to numerical underflow.
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Figure 2.6: Type 1 error and power performance over simulated data sets. (A). Each box-
plot represents the distribution of empirical type 1 error rates at nominal level 0.05 (red
dashed horizontal line) across 100 simulation replicates computed at null SNVs. (B). Power
computed at causal SNVs. No results are available for LogF-MCEM when n = 1500 due to
numerical underflow.

2.4 Data Application

The Super Seniors data from the Brooks-Wilson laboratory was collected to investigate the
association between genetic heritability and healthy aging of humans. The ’super seniors’
are defined as those who are 85 or older and have no history of being diagnosed with the
following 5 types of diseases: cardiovascular disease, cancer, diabetes, major pulmonary dis-
ease or dementia. In this study, 1162 samples of 4,559,465 markers were genotyped using
a custom Infinium Omni5Exome-4 v1.3 BeadChip (Illumina, San Diego, California, USA)
at the McGill University/Genome Quebec Innovation Centre (Montreal, Quebec, Canada)
[31]. The data underwent extensive quality control after genotyping, including re-clustering,
removal of replicate and tri-allelic single nucleotide polymorphisms (SNPs), and checking
for sex discrepancies and relatedness. We also removed SNPs with MAF < 0.005, call rate
< 97%, or Hardy-Weinberg equilibrium p-value < 1 × 10−6 among controls. After a series
of filtering steps, our final study includes 1044 self-reported Europeans, of which 427 are
controls and 617 are cases (super seniors), and 2,678,703 autosomal SNPs.

A preliminary genome-wide scan identified 98 SNPs with p-values < 5 × 10−5. Of these, the
57 SNPs with no missing values were used to estimate the value of m. Our marginal like-
lihood approach for estimating m incorporates sex and the first 10 principal components
as confounding variables. The m estimated by MCEM and LA are 7.01 and 6.89, respec-
tively. To analyse 2,678,703 SNPs, the LogF approach (Step 2) takes 14 hours, which is 30×
faster than FLR (437 hours). Manhattan plots (Figure 2.7) show very good agreement for
the association detected between methods. Figure 2.8 shows the QQ-plot of p-values when
applying MLE, LogF-LA (results of LogF-MCEM are close to LogF-LA, and are shown in
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Supplementary Figure 5-7) and FLR to the Super Seniors data. All methods are close to the
dashed line of slope one, though the FLR p-values veer up slightly above the line at − log10
p-values near 5. Figure 2.9 compares the parameter estimates of the MLE, FLR and LogF.
Other than cases where the MLE appears grossly inflated (e.g., ∣β̂∣ > 5), the estimates from
the MLE and FLR are in surprisingly good agreement. The LogF estimates are shrunken
more towards zero than those of FLR, and that the shrinkage is more pronounced for rare
variants than for variants of frequency greater than 0.01. Figure 2.10 and Table 2.3 compare
the p-values of the different approaches. The points below the dashed line of slope one in
both panels of Figure 2.10 indicate that the FLR p-values are systematically lower than
those of the MLE and LogF. This is also reflected in the confusion matrices of Table 2.3,
which show that FLR flags more SNVs as significant at the 5 × 10−5 level than the other
two methods. Taken together, these results suggest that the LogF approach may impose
too much shrinkage on the SNV effect estimates.

Figure 2.7: Manhattan plots comparing association results from different methods on Super
Seniors data. The red horizontal line represents the liberal genome-wide significance thresh-
old (P = 5 × 10−5) used to select SNPs in the preliminary scan. For LogF-LA, 57 SNPs
(green points) below the threshold are used to estimate m in Step 1.

Figure 2.8: QQ-plot comparing p-values from different methods on Super Seniors data. The
p-value for FLR and LogF-LA was obtained using the likelihood ratio test with a χ2

1 test
statistic.
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Figure 2.9: Scatterplots comparing effect size estimates from different methods for Super
Seniors data. The plotting colors represents variant categories based on minor allele fre-
quency (MAF) threshold of 1%.

Figure 2.10: Scatterplots comparing p-values from different methods on Super Seniors data.
The plotting colors represents variant categories based on minor allele frequency (MAF)
threshold of 1%. For FLR and LogF-LA, the p-value for each variant was obtained by the
likelihood ratio test with a χ2

1 test statistic.

MLE LogF-LA LogF-MCEM
0 1 0 1 0 1

FLR
0 2678557 1 2678558 0 2678558 0
1 42 97 45 94 46 93

Table 2.3: Confusion matrices comparing association results from different methods on Super
Seniors data, where ’1’ indicating the number of SNPs below the genome-wide significant
threshold of 5 × 10−5 and ’0’ otherwise.
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2.5 Discussion and Conclusion

We have proposed a method for single rare variant analysis with binary phenotypes by
logistic regression penalized by log-F priors. Our approach consists of two steps. First, we
select K markers that show evidence of association with the phenotype in a preliminary
scan and use these to estimate m. The value of m is the maximizer of a composite of K

marginal likelihoods obtained by integrating the random effect out of the joint distribu-
tion of the observed data and the random effect. Our maximization algorithm contains two
approximate approaches: (1) a hybrid of an EM algorithm and brute-force maximization
of Monte Carlo estimates of the marginal likelihood; and (2) a combination of a Laplace
approximation and derivative-free optimization of the marginal likelihood. The two meth-
ods give similar results, with LA being faster for all sample sizes and more numerically
stable for large sample sizes. Second, log-F penalties are conveniently implemented with
standard logistic regression by translating the coefficient penalty into a pseudo-data record
[19]. Our method requires extra computation time up front for the preliminary scan and
selection of the shrinkage parameter m, but once selected, LogF approach (using LA in Step
1) is faster than Firth logistic regression (Table 2.1). Our simulation studies suggest that
the proposed LogF approach has slightly lower bias and substantially lower MSE than the
other methods considered for variants of frequency less than 5%, and similar bias and MSE
for variants of frequency greater than 5%. However, the power results of our simulation
study and the analysis of the Super Seniors data suggest that our current implementation
of log-F penalization has a tendency to over-shrink estimates of truly-associated SNVs. We
discuss generalizations of the penalization approach that might correct such over-shrinkage
in what follows.

Penalization can be generalized by allowing the prior distribution to depend on characteris-
tics of the SNV, such as MAF or annotation information. A straightforward extension is to
stratify selection of the shrinkage parameter by, e.g., MAF. That is, we might allow the prior
distribution to be indexed by a variant-frequency-specific parameter instead of a common
parameter for all variants. The idea could be as simple as multiplying the global shrinkage
parameter m by a frequency-specific parameter αk; i.e., a variant in frequency bin k could
have prior distribution log-F (αkm, αkm). We can choose the αk values such that the distri-
bution of common variants has a smaller variance and a larger variance for rare variants. In
the context of heritability estimation [50] argue against stratified approaches and instead
recommend modeling the variance of the SNV effects as proportional to [fi(1 − fi)]1+α

for MAF fi and a power α. Their analyses of real data suggested the value α = −0.25.
This corresponds to standardizing each SNV covariate by dividing by [fi(1 − fi)](1+α)/2

before analyses. In the context of modelling quantitative traits [58], proposing a double-
exponential prior on SNV effects and a log-linear model for the scale parameter of the
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double exponential distribution allows the scale to depend on SNV characteristics such as
annotation information. We plan to investigate the properties of both standardization and
modelling of the shrinkage parameter on data from the UK Biobank. We also plan to use
the UK Biobank data to investigate how the shrinkage parameter depends on phenotype
characteristics such as prevalence and heritability. Application of the logF approach to data
from the UK Biobank will also confirm that the methods scale to biobank-sized datasets.
Please see Chapter 3 for the application of logF approach to the UK Biobank with the
combination of REGENIE method.

It should be noted that in our simulations we used a simplified, binary confounding variable
to represent population stratification. By contrast, the analysis of the Super Seniors data
used an expanded set of confounding variables that included sex and 10 principal compo-
nents. We have also mentioned adjustment for relatedness and population stratification by
inclusion of an estimated polygenic effect as an "offset" in the model. Another extension
of interest is to use log-F penalization for a SNV covariate of interest in a model that
uses LMMs to correct for confounding due to population structure and genetic relatedness
[32, 39]. LMMs can be viewed as regression with correlated errors, using a kinship matrix
derived from anonymous SNVs to model correlations. It should be straightforward to extend
this regression approach to include log-F penalization of the SNV of interest through data
augmentation. Investigation of the properties of our approach in conjunction with LMMs
is an area for future work.

In practice, identifying rare genetic causes of common diseases can improve diagnostic and
treatment strategies for patients as well as provide insights into disease etiology. Recent
studies have found that patients with low genetic risk scores (GRS) are more likely to carry
rare pathogenic variants [42]. Although GRS are currently based on common variants, our
method might be of use in extending GRS methods to include low-frequency or even rare
variants of large effect sizes.

Our focus has been on single-SNV logistic regression, but log-F penalization generalizes
to multiple-variant logistic regression. In general, we multiply the likelihood by as many
log-F distributions as there are covariates whose coefficient we wish to penalize. This can
also be implemented by a generalization of the data augmentation procedure described in
Section 2.6 [19, 57]. Such an approach may be useful for performing the kinds of gene- or
region-based tests that are commonly performed for rare variants, and investigation of its
properties is ongoing.

In Section 2.2.4, we used the concept of composite likelihood to formulate the marginal like-
lihood of m by multiplying individual components of marginal likelihoods for each variant.
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The composite likelihood serves as a "pseudo-likelihood" that inherits numerous desirable
properties of inference derived from the full likelihood function. Notably, it does not require
the assumption of independence between variants. Therefore, the methodology described
in Section 2.2 allows for linkage disequilibrium (LD) between variants. For example, in
the application study of the Super Seniors data, the 57 SNPs chosen do not appear to be
independent. In the presence of LD, it is expected that adjacent variants will have simi-
lar strength of association to the outcome. When incorporating variants with LD into the
shrinkage parameter estimation procedure, redundant information about the prior distri-
bution of the log-OR is introduced. One may penalize such variants with high correlation
by adjusting the corresponding weights in the composite likelihood. Currently, this form of
adjustment is being explored and such investigation is a part of future work.
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Chapter 3

Whole-genome regression analysis
with log-F penalization:
application to UK Biobank

3.1 Introduction

GWAS continue to grow in terms of sample size, the number of phenotypes, and the num-
ber of variants being analyzed. Standard methods, such as those employed in programs
like PLINK, which use simple linear or logistic regression, have become outdated due to
their inability to account for population structure and underlying genetic relatedness. To
address this issue, LMMs and WGR models are now commonly used to account for popula-
tion structure and relatedness. For example, the fastGWA LMM approach models genetic
correlations within the sample using a sparse representation [29]; SAIGE utilizes a logistic
mixed model approach with p-values obtained by a saddle-point approximation (SPA) to
the distribution of the Wald test statistic [61]; BOLT-LMM and LEMMA are WGRs which
assume non-Gaussian priors for SNP effect sizes [41, 34]; and BGENIE is able to process
multiple quantitative phenotypes simultaneously and the entire genetic data are read only
once [5]. These advances have improved the accuracy and efficiency of GWAS by accounting
for population structure and relatedness in their analyses.

In this chapter, we review a recently proposed machine-learning method called REGE-
NIE (https://rgcgithub.github.io/regenie/) [44]. This method adjusts for population
structure and hidden relatedness using a whole-genome regression (WGR) approach while
offering significant computational efficiency compared to existing techniques. REGENIE
operates in two main steps, applied one phenotype at a time (see Figure 3.1). In Step 1, we
split the set of SNPs into consecutive blocks, and the set of SNPs from each block is used
to fit a regression model. The model fits from each block are then aggregated into a single
prediction, which is further decomposed into 23 predictions using a leave-one-chromosome-
out (LOCO) scheme. These resulting predictions can be considered as estimated polygenic

29

https://rgcgithub.github.io/regenie/


effects of individual phenotype values based on the genetic data. In Step 2, the LOCO
predictions from Step 1 are utilized as an offset term in either linear or logistic regres-
sion, depending on the phenotype, to test each SNP in the genotyping array. This two-step
process allows for efficient analysis while accounting for population structure and hidden
genetic relatedness.

Figure 3.1: Overview of the REGENIE method, created based on Extended Data Figure 1
of [44].

This approach has several advantages over other competing approaches. First, the strategy
of splitting SNPs into blocks reduces the memory usage. In Step 1, only a subset of SNPs
is read at once for each block, which avoids the need to load the whole-genome into mem-
ory. This reduction in memory storage can lead to significant cost savings, particularly on
cloud-based platforms. Second, this method is capable of analyzing multiple phenotypes in
parallel. Files containing variants in both Step 1 and Step 2 can be reused instead of being
repeatedly generated for each phenotype, so the genotype data only needs to be read once
for all phenotypes, resulting in substantial gains in speed.

As discussed in Chapter 2, when dealing with phenotypes of extremely unbalanced case-
control ratios, the asymptotic test used in MLE does not perform well for testing rare variant
associations. REGENIE implements two solutions to address this issue in Step 2. The first
solution is to use Firth logistic regression, which is a penalized likelihood method having
the penalty based on the observed Fisher information matrix [10, 24]. The second solution
is to use a SPA test rather than a normal approximation to model the distribution of score
statistics. As previous approach we have proposed to control sparse data bias in single rare
variant analysis in Chapter 2, we plan to explore extending REGENIE to incorporate the

30



log-F -penalized logistic regression approach in its association testing step. Our simulation
studies (see Section 2.3) demonstrated that the log-F -penalized approach exhibits several
desirable properties. Although it initially requires extra computation time for the prelimi-
nary scan and the selection of the shrinkage parameter m, once the parameter is chosen, it
is nearly three times faster than Firth logistic regression. Furthermore, the log-F approach
is highly effective at controlling the bias and MSE of the log-OR estimates, particularly for
variants with a frequency less than 5%.

Although we have applied the log-F -penalized method to a motivating example from the
Super Seniors study in Section 2.4, it is worthwhile to explore its application to biobank-
sized datasets, such as the UK Biobank (UKBB). As discussed in Section 2.5, the objective
is to investigate the properties of modeling the shrinkage parameter in a more flexible way
and to understand how the shrinkage parameter depends on phenotype characteristics, such
as prevalence and heritability. More importantly, such an application would demonstrate
the method’s capability to scale to biobank-sized datasets. In Section 2.5, we also mentioned
the possibility of including an estimated polygenic effect as an offset in the model, which
leads to the idea of combining REGENIE with the log-F approach. Therefore, this chapter
aims to conduct an application study using the UKBB, in which we incorporate the log-
F penalization approach into REGENIE Step 2, and include REGENIE’s adjustment for
population stratification and hidden relatedness as an offset in the marginal likelihood for
estimating m. We refer to this approach as REGENIE-LogF. The chapter is organized as
follows: in Section 3.2, we introduce the workflow for combining the REGENIE and log-F
approaches; in Section 3.3, we describe the steps taken for quality control and ethnicity
checks of UKBB; we present our results in Section 3.4 and provide concluding remarks in
Section 3.5.

3.2 Methods

REGENIE proceeds in two main steps that are applied one phenotype at a time. In this
adaptation, we perform a whole-genome regression (WGR) identical to REGENIE Step
1. In Step 2, we use the log-F -penalized method for rare variant association testing. The
estimated polygenic effect from REGENIE is included as an offset in the likelihood for both
the estimation of the shrinkage parameter m and the association test. We introduce the
REGENIE method in Section 3.2.1 and describe three modifications we have made to the
log-F penalization approach to accommodate the UKBB data in Section 3.2.2.
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3.2.1 Two-step Scheme of REGENIE

Step 1: Fit a WGR to a set of SNPs from across the whole genome

Given a sample of N subjects, let y denote the phenotype vector, G represent the genotype
matrix, Gs be the standardized genotype matrix, comprised of columns of G centered by
their mean and scaled by their SD, and X denote the covariate matrix. The standardized
genotype matrix Gs are partitioned into blocks, each containing B consecutive and non-
overlapping SNPs such that that SNPs in the same block are from the same chromosome.
For each block i of B SNPs, we fit a ridge regression

ỹ = G̃iγ + ϵ with L2 penalty (3.1)

where ỹ = PXy and G̃i = PXGs
i are genotype and phenotype residuals by removing the

covariate effects using a projection matrix

PX = IN −X(XT X)−1XT . (3.2)

The estimate γ̂ can be viewed from a Bayesian framework as the maximum a posteriori
(MAP) estimator where a Gaussian prior is used for the marker effect sizes. The ridge regres-
sion penalty parameter can be written as a function of the SNP heritability λ =M(1−h2

g)/h2
g.

For each block, J different ridge parameters λ1, . . . , λJ are generated based on evenly spaced
h2

g values within the range of [0.01, 0.99]. Consequently, a set of J ridge regression predic-
tions are obtained from this Level 0 ridge regression.

The resulting Level 0 ridge regression predictors are re-scaled to have variance of one and
are stored in matrix W . The dimension of W should be much smaller than the number of
markers M , so that memory usage would be much lower than reading the whole genotype
matrix at once. For example, if M = 1, 000, 000, B = 5, 000 and J = 10 are used, then the
reduced dataset will have J ×M/B = 2, 000 predictors. For quantitative phenotypes, a ridge
regression is preformed on the lower dimensional matrix W

ỹ =Wη + ϵ with L2 penalty (3.3)

where the ridge regression parameter is chosen using K-fold CV scheme; this is referred to
as the Level 1 ridge regression. Let ŷ refer to the final predictions obtained from the Level 1
ridge regression. We further decompose the genome-wide polygenic effects, ŷ, into 22 LOCO
predictions, denoted as ŷLOCO. Using this LOCO scheme ensures that the resulting predic-
tions capture polygenic effects only on the chromosomes other than the one that contains
the SNP being tested.
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For binary phenotypes, we use exactly the same Level 0 ridge regression approach, but a
logistic ridge regression model is used at Level 1. We first fit a null model that only has
covariate effects

logit(pi) =XT
i α. (3.4)

Then the effects estimated from equation (3.4), denoted as α̂, is included as an offset in the
model

logit(pi) =XT
i α̂ +W T

i η with L2 penalty, (3.5)

where Wi is the Level 0 ridge regression predictions for the ith individual, and η = η1, ..., ηBR

with ηj ∼ N(0, 1/λ). In order to avoid an extremely unbalanced case-control ratio situation
in which one particular fold does not have cases, the LOOCV instead of K-fold CV is used
to choose λ. Similar to with quantitative phenotypes, a LOCO scheme is applied to split
resulting predictions into 22 predictions (denoted as ŷLOCO), which are then used for the
association test in Step 2.

Step 2: Linear/logistic regression for association test

REGENIE tests for association of phenotype with each single variant in Step 2. The asso-
ciation test is carried out using the LOCO scheme, where each SNP on a chromosome is
tested conditional on the Step 1 predictions ignoring the chromosome containing the SNP
being tested. For quantitative phenotypes, consider a simple linear regression model for a
variant g

ŷresid,LOCO = g̃β + ϵ̃, (3.6)

where ŷresid,LOCO = ỹ − ŷLOCO refers to the phenotype residuals, g̃ = PXg and ϵ̃ = PXϵ. The
key idea is that REGENIE fits a WGR once and includes estimated polygenic effect ŷLOCO

as an offset in the model.

To test a variant g = (g1, ..., gN) for association with a binary phenotype, we consider the
following model

logit(pi) =XT
i α + giβ + ŷi,LOCO, i = 1, ..., N (3.7)

where the polygenic effects predictions ŷLOCO stored from step 1 are included as a fixed
offset in the logistic model.
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When dealing with quantitative phenotypes, any individuals with missing values for any of
the phenotypes are eliminated during both the null-fitting and association testing steps. For
binary phenotypes, we replace any missing phenotypes by mean-imputed values in Level
0 ridge regression (equation (3.3)); however, all observations with missing phenotypes are
dropped when fitting Level 1 logistic ridge regression (equation (3.7)). The same approach
is followed during the testing step, where missing observations are removed when fitting the
logistic regression model and using Firth/SPA corrections.

The standard firth logistic regression is computationally demanding as it requires an iter-
ative algorithm. Given that difficulty, [44] have developed an approximate Firth regression
method that is much faster. The approach involves fitting a null model that only has covari-
ate effects and then include both the estimated covariate effects and the LOCO predictions
from Step 1 as offset terms in the Firth logistic regression test. When working with binary
phenotypes, REGENIE implements either Firth or SPA corrections when the p-value is
below some threshold. In our analysis, we set the threshold to be 0.05. To be more specific,
we will only implement LogF, Firth and SPA corrections to SNPs with p-value less than
0.05 in order to maintain consistency for comparison.

3.2.2 Modifications on log-F Penalization

The log-F -penalized regression method we have proposed in Chapter 2 consists of two major
steps: (1) The shrinkage parameter m is selected by maximizing a marginal likelihood that
constructed by K markers that show evidence of association with the phenotype. Our max-
imization algorithm uses either a Monte carlo EM approach or a Laplace approximation;
(2) Once m is selected, we implement the log-F penalty with standard logistic regression
by using a data augmentation approach. To optimize the application of the methodology
for practical biobank data usage and enhance its adaptability on a genome-wide scale data
such as UKBB, we have implemented three significant modifications.

First, as we discussed in Chapter 2 Section 2.2.4, it is possible to extend the marginal
likelihood approach for estimating m to include any non-genetic confounders and estimated
polygenic effects. Here we incorporate confounding variables and the LOCO predictions
ŷLOCO obtained from REGENIE Step 1 as an offset in the regression model. The extended
logistic regression likelihood is

L(α∗, γ, β) =
n

∏
i=1

exp (Y (α∗ +Ziγ + ŷLOCO +Xiβ))
1 + exp (α∗ +Ziγ + ŷLOCO +Xiβ)

, (3.8)

where α∗ is the logistic intercept, Zi is vector of confounders, and γ is a corresponding
confounding effects.
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Second, we allow the prior distribution to be indexed by a variant-frequency-specific pa-
rameter instead of a common parameter for all variants. We multiply the global shrinkage
parameter m by a frequency-specific parameter λk, so the kth variant effect has a log-
F (λkm, λkm) prior distribution. We choose λk = [MAFk(1−MAFk)]α so that rare variants
receive more shrinkage than common variants. To determine suitable α values, we conduct
a simulation study analyzing four values (-1/4, -1/3, -1/2, -3/4) and find that -1/4 provides
a better estimate than the standard log-F method with a common m, without causing
over-shrinkage in extreme cases (see Supplementary Figure B.1).

Lastly, analyzing the UKBB suggests that the shrinkage parameter selection also depends on
phenotype characteristics such as prevalence. The log-F -penalized method aims to mitigate
the sparseness of genetic covariates in the data, but the sparseness of outcomes also plays
an important role in the selection of m. For common phenotypes, such as glaucoma (case:
control = 1:23) and diabetes (case: control = 1:18), the likelihood of m is monotonically
increasing, suggesting an infinite value of m. This is potentially because most of the SNP
effects associated with common phenotypes are densely centered at zero (Figure 1.1 shows
the log-F (m, m) distribution tends towards a point mass at zero as m approaches infinity).
In situations where we are not able to obtain a finite estimate of m, we recommend setting
m = 1, which provides the least shrinkage to log-ORs. Though somewhat counter-intuitive
to set the value of m to minimal shrinkage when the data suggest maximal shrinkage, we
treat the monotone likelihood as a case where the estimator of m does not exist and choose
a default value that gives similar shrinkage to Firth’s method in our analyses (see Results
below).

3.3 Data Preprocessing

3.3.1 Select a High Quality Dataset by Setting Thresholds

The UKBB (https://www.ukbiobank.ac.uk/) is a large-scale observational database that
contains genetic and health records of about 500,000 UK individuals. The UKBB has already
undergone comprehensive quality control (QC) as described in [5]. However, some of the
results of this QC are provided as additional information along with the UKBB data. We
aim to obtain a high-quality subset by setting stricter thresholds:

1. Remove makers with missingness rate ≥ 0.02.

2. Remove individuals with missingness rate ≥ 0.02.

3. Remove imputed markers with imputed score ≤ 0.8.

4. Remove markers with Hardy-Weinberg equilibrium exact test p-value ≤ 1 × 10−7.

5. Remove markers with MAF < 0.01.
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3.3.2 Ethnicity Check

Differences in ancestral background can be a source of confounding that leads to inflated
p-values in GWAS. Therefore, we choose to analyze only a set of individuals with relatively
homogeneous ancestry, such as white British or European ancestry. Ancestry classification
of individuals can be established by performing principal component analysis (PCA) on the
combined genotype panel of the study data and a reference dataset with known ethnici-
ties. In this case, we use the 1000 Genomes Project [8] as the reference dataset and select
European ancestral samples from the UKBB. The major steps involved are:

1. Genetic variants in the study data (i.e. UKBB) are pruned in linkage disequilibrium
(LD) with an r2 > 0.2 in a 50kb window. We then filter the reference data (i.e. 1000
Genome Project) for the same list of pruned variants in the study data.

2. Study genotypes and reference data are merged. After removing problematic SNPs
(e.g., multi-allelic, mismatched, duplicate), a total of 214,599 SNPs are identified with
the same ID and extracted from both data sets.

3. We perform PCA on the merged data using PLINK 2.0. Identifying individuals of
divergent ancestry is implemented in R using check_ancestry() in package plinkQC.

4. After removing non-European samples, the final dataset contains 437,979 markers and
458,676 individuals, in which 209,686 males, 248,803 females, and 187 of unspecified
sex.
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Figure 3.2

3.4 Results

All of our analyses were conducted on the UK Biobank Research Analysis Platform (RAP),
which can be found at https://www.ukbiobank.ac.uk/enable-your-research/research-analysis-
platform. It is supported by DNAnexus technology (https://www.dnanexus.com/) and
driven by the power of Amazon Web Services (AWS). A variety of software environments
are pre-installed on this platform for research purposes. In the steps of data pre-processing,
we utilized PLINK (v1.90) and PLINK2 (v2.00). The steps involved are thoroughly detailed
in Appendix B.1. Our main analysis was performed using REGENIE (v3.1.1). Some of the
useful commands that we used during this step can be found in Appendix B.2. In REGENIE
Step 2, we wrote an R function that can be used as a PLINK plug-in to implement the log-F
penalization (see R plug-in commands in Appendix B.3).

In our analysis, we focused on four binary phenotypes, notably those with unbalanced case-
control ratios. The four binary traits are colorectal cancer (case:control = 1:60), thyroid
cancer (case:control = 1:83), glaucoma (case:control = 1:23) and diabetes (case:control =
1:18). REGENIE includes implementation of LogF, Firth and SPA corrections were applied
if p-value is less than 0.05. In the implementation of log-F penalization method, we selected
the value of m following the methodologies outlined in Section 4.2.2, which include updates
specific to the UKBB data. We incorporate the estimated polygenic effect from REGENIE
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Step 1 into the logistic likelihood as an offset, adjusting covariates such as age, sex, and the
first 10 UKBB PCs. For the colorectal and thyroid cancers, we estimated m to be 1.83 and
1.58 respectively, with each genetic variant receiving a degree of shrinkage equals to λkm

that varies based on the frequency of the variant - rarer variants receive more shrinkage
than common ones (see Supplementary Figure B.2). On the other hand, for glaucoma and
diabetes, a standard m value of one was assigned to all variants, as we were unable to obtain
a finite estimate of m due to the high prevalence of these phenotypes.

The association results of the four binary traits, each with various case-control ratios, are
plotted in the Manhattan plots shown in Figure 3.3. All three approaches demonstrated
very good agreement for the associations tested, but the LogF correction tends to inflate
some p-values beyond the typical threshold of 0.05 following penalization. Figure 3.4 shows
the QQ-plot of p-values from the three approaches. In the case of colorectal cancer, the
p-values from all methods closely follow the expected red line with a slope of one. However,
the p-values derived from the LogF correction exhibit a slight deviation below the line at
log10 p-values around 4.5. For other binary traits, the p-values have inflated tails, indicating
minor SNP effects.

Figure 3.5 and Figure 3.6 compare the p-values and effect size estimates of the three ap-
proaches, stratified by MAF. When comparing LogF with Firth penalization, rare variants
are more likely to receive a larger p-value, suggesting a decreased type I error. Overall, the
p-values for LogF and SPA are quite similar, especially for common variants. The estimated
effect sizes align well across the methods, although the LogF estimates show a greater degree
of shrinkage towards zero compared to the Firth estimates. This shrinkage is particularly
significant for rare variants compared to those with a frequency exceeding 0.05. Figure3.6
suggests that the LogF method may shrink negative estimates more than positive esti-
mates, but this may be due to the fact that there are more extreme negative estimates from
rare variants, which are shrunken more. Further investigation of any preferential shrinkage
for negative estimates is ongoing. In the cases of glaucoma and diabetes, the LogF results
closely match those obtained using the Firth method. This similarity suggests that the Firth
correction is somewhat analogous to the log-F (1, 1) penalization at a genome-wide scale.

38



(a) Colorectal cancer

(b) Thyroid cancer

(c) Glaucoma

(d) Diabetes

Figure 3.3: Manhattan plots comparing GWAS results from REGENIE using LogF, Firth
and SPA corrections for four binary phenotypes using UK Biobank European samples
for (a) colorectal cancer (case:control = 1:60), (b) thyroid cancer (case:control = 1:83),
(c) glaucoma (case:control = 1:23) and (d) diabetes (case:control = 1:18). SNPs with p-
values less than 0.05 are highlighted green, where 0.05 is the p-value threshold below which
LogF/Firth/SPA correction is applied. The orange horizontal line marks the genome-wide
significance P = 5 × 10−8.
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(a) Colorectal cancer

(b) Thyroid cancer

(c) Glaucoma

(d) Diabetes

Figure 3.4: Quantile–quantile plots comparing GWAS results from REGENIE using LogF,
Firth and SPA corrections for four binary phenotypes using UK Biobank European samples
for (a) colorectal cancer (case:control = 1:60), (b) thyroid cancer (case:control = 1:83), (c)
glaucoma (case:control = 1:23) and (d) diabetes (case:control = 1:18).
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Figure 3.5: Scatterplots comparing p-values from REGENIE using LogF, Firth and SPA
corrections for four binary phenotypes using UK Biobank European samples. The plotting
colors represents variant categories based on minor allele frequency (MAF) threshold of
5%. Only SNPs with p-values less than 0.05 are plotted, where 0.05 is the p-value threshold
below which LogF/Firth/SPA correction is applied.
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Figure 3.6: Scatterplots comparing effect size estimates β̂ from REGENIE using LogF and
Firth corrections or no correction (SPA) for four binary phenotypes using UK Biobank
European samples. The plotting colors represents variant categories based on minor allele
frequency (MAF) threshold of 5%. Only SNPs with p-values less than 0.05 are plotted,
where 0.05 is the p-value threshold below which LogF/Firth/SPA correction is applied.
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3.5 Discussion

In this chapter, our focus lies in the application of the log-F penalization method proposed
in Chapter 2 to the efficient whole-genome regression method REGENIE. We have intro-
duced the log-F penalty within its association testing step. To better adapt the method
to real-world biobank data and improve its flexibility, we have made several updates to
our approach described in Chapter 2. Firstly, similar to many existing mixed-model-based
approaches, REGENIE enables adjustment of genetic relatedness that exists within the
sample. We now include predictions obtained from its null model fitting step as an offset in
the likelihood calculation in order to account for population structure. Secondly, we have
introduced a more flexible approach by allowing for varying degrees of shrinkage for each
variant, rather than applying a common value of m for all variants. Lastly, we investigate
the properties of shrinkage parameter selection based on the phenotype’s prevalence, which
provides valuable insights into the adaptability of our method.

Analysis of large scale bio-bank data for which binary phenotypes often results in substantial
case-control unbalance, REGENIE provides Firth and SPA corrections under this scenario.
We propose to use log-F penalization as an alternative. Our study demonstrates compara-
ble results between the Firth, SPA, and log-F approaches. As expected, the log-F method
shrinks the coefficients more towards zero and leads to less significant p-values, especially
for rare variants. In our analysis of glaucoma and diabetes, we observed a monotonically
increasing likelihood of m. This finding indicates that there are a numerous casual variants
with relatively small effects to the phenotype, so the distribution of the regression coeffi-
cients are concentrated around zero, which suggests for a large or even infinite value of m.
When the likelihood for m is monotone the MLE does not exist and it is not possible to use
a data-informed prior. We instead choose to use a diffuse prior by setting m = 1, which we
observed to give similar shrinkage to Firth’s method. One item for future work is to select
SNVs for estimating m based on their estimated effect sizes from the preliminary GWAS,
rather than based on their p-values. Population-genetic principles suggest that rare variants
would tend to have larger effect sizes, but power to detect these effects for rare variants is
notoriously low. Thus, screening on p-values may miss large effect sizes and consequently
inflate estimates of m, leading to over-shrinkage. Conversely, screening on effect sizes is
likely to use estimates that are biased away from zero (the so-called "winner’s curse" [35]),
which could lead to under-shrinkage. Evaluation of different approaches to selecting SNVs
for estimation of m is an area of future work.

Interestingly, we show that the log-F (1, 1) is somewhat identical to the Firth correction,
illustrating the interchangeability between the two methods. A significant benefit of using
log-F is that it is almost three times faster than Firth, even though it requires extra time for
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the preliminary scan and parameter selection. It should be noticed that REGENIE-Firth
uses an approximate Firth regression approach, which is almost equivalent to the exact
Firth regression but much faster [44]. In REGENIE-LogF, since we perform the association
testing step using PLINK with R plug-in functions, we cannot compare the compute time
of it to REGENIE-Firth Step 2, which is implemented as a C++ program [44]. Therefore,
no proper conclusion can be made about the comparison of computational costs between
REGENIE-LogF and REGENIE-Firth in the current analyses. The equivalency between the
log-F (1, 1) and Firth methods implies that selecting m = 1 can be an alternative solution
in situations where we want to impose minimal shrinkage to log-ORs or when getting a
finite estimate of m is not feasible due to specific properties of the phenotype. This choice
ensures that the amount of shrinkage applied to the estimates is approximately equivalent
to that obtained using the Firth method, but may efficiently reduce the time of computation.

As discussed in Section 2.5, an extension worth considering is to include log-F penaliza-
tion within a LMM to adjust for population structure and genetic relatedness. Further
investigation suggested that such an extension is quite challenging due to the difficulty in
deriving the genetic relationship matrix within the random effect component in the presence
of pseudo-observations. Consequently, a more practical approach to account for population
stratification and relatedness is to include the estimated polygenic effect as an offset in the
model, which is exactly what we have done in this application. We also investigate the prop-
erties of centering and scaling the genotype data for the purpose of estimating m using data
from the UKBB, but found no advantage to doing so. After standardizing, we observe that
the majority of log-ORs tend to concentrate closely around zero, leading to a monotonically
increasing likelihood of m.

In conclusion, our study demonstrates the feasibility and adaptability of applying log-F pe-
nalization to the analysis of genome-wide, biobank-scale data. We have shown that this ap-
proach, while offering some advantages in terms of computational cost, remains competitive
compared to the well-established Firth method. However, the performance of REGENIE-
LogF and REGENIE-Firth is not completely understood without exact computing time
comparison between the two methods. Future work on implementing the log-F methodol-
ogy directly into the source code of REGENIE would be beneficial. This integration would
allow for a more optimized implementation of the log-F method within the REGENIE
framework. In addition, given the limitations of time and computing resources, our in-
vestigation only focuses on four binary phenotypes from the UKBB dataset. We should
acknowledge that these phenotypes may not be representative of all phenotypes. Therefore,
repeating our analyses with a broader range of phenotypes could be helpful to gain a more
comprehensive understanding of the properties of our approach. Furthermore, an area for
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future work would be to explore the relationship between the shrinkage parameter and the
heritability of each phenotype.
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Chapter 4

Log-F-penalized conditional
logistic regression for sparse data

4.1 Introduction

Conditional logistic regression (CLR) is used for the analysis of binary outcomes when sub-
jects are obtained by stratified or matched sampling with many small strata or matched sets
[23]. Conditioning on sufficient statistics for stratum-specific nuisance parameters eliminates
them from the likelihood and allows consistent maximum likelihood inference of the regres-
sion parameters of interest [3]. Matching is especially useful when a measurable matching
variable, such as school or family, acts as a surrogate for confounders that are difficult to
measure, such as environmental exposures, socioeconomic factors or genetic ancestry [43].
In such cases, an unconditional logistic regression analysis that incorporates confounders
may not be possible and conditional logistic regression analysis may be the only option [4].

Conditional logistic regression also arises in other contexts, such as studies involving ge-
netic data on children affected with a disease and their parents. The analysis of data from
such case-parent trio studies is typically conditional on the parental genotypes. For a given
genetic marker, conditioning on parental genotypes creates a matched set comprised of the
alleles transmitted to the affected child and "matched" pseudo-controls that represent other
possible combinations of alleles that the parents could have transmitted.

For small or sparse datasets, the conditional maximum likelihood estimator (CMLE) of
regression coefficients is known to be biased away from zero [15, 17, 23] and is infinite when
there is separation [1]. Here sparse means small numbers in categories of a categorical expo-
sure or confounding variable [17], and separation means that there is a linear combination
of covariates that can perfectly differentiate between cases and controls. Separation is il-
lustrated by the data of Herbst et al. [25]. These authors sought to identify exposures that
might explain a cluster of vaginal cancers in young women in Boston in the late 1960s. This
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Exposure Cases Controls OR
yes 7 0 NA
no 1 32

Table 4.1: Data on DES exposure in cases and controls from Herbst et al. [25, Table 2]. The
odds ratio is estimated without regard to matching.

was the first study to identify maternal treatment with diethylstilbesterol (DES) as a risk
factor for vaginal cancer in exposed daughters. The study follows a matched case-control
design. Using hospital records, patients were matched to four controls based on birth date
and type of room (ward versus private). The matching was intended to provide control for
unmeasured socioeconomic factors. The DES exposure data are summarized in Table 4.1.
Coding DES exposure as one for exposed and zero for unexposed, all cases have DES ≥ 0
and all controls have DES ≤ 0, and hence the CMLE of the DES effect is infinite. Stan-
dard conditional logistic regression software reports a lack of convergence when applied to
these data. We say that near separation occurs when a linear combination of the covariates
nearly, but not perfectly, distinguishes cases from controls (e.g., this linear combination of
covariate vectors tends to be greater in cases than in controls, though there is some overlap
between the two groups). Separation and near separation can also occur with continuous
exposures. The bias of the CMLE from near separation is illustrated in the simulation study
of Section 4.3.

For matched pairs data, there is a simple data-augmentation approach to reducing bias and
avoiding possibly infinite CMLEs. To illustrate the approach, Table 4.1 shows DES expo-
sure status for a subset of the data of Herbst et al. that includes all eight matched sets, but
only one control per matched set. The CMLE of the OR for DES exposure from these data
is the ratio of the case-exposed/control-unexposed to case-unexposed/control-exposed cells
[3], which is 7/0 =∞. The data-augmentation approach is to add an arbitrary number k to
each cell of Table 4.1, and optionally re-scale the numbers in each cell so that the augmenta-
tion does not change the table total [2]. Adding k = 1/2 is known as Haldane’s method and
adding k = 1 is Laplace’s method [17]. In the example, and without re-scaling, Haldane’s
method yields an estimated OR of 7.5/0.5=15 and Laplace’s method yields an estimate of
8/1=8. We show in section 4.2 that Haldane’s and Laplace’s methods are penalized con-
ditional logistic regression estimates that use the log-F (1, 1) and log-F (2, 2) distributions,
respectively, for the penalty term. Greenland and Mansournia [19] have developed log-F -
penalized likelihood methods for unconditional logistic regression. This approach has the
advantage of being easily implemented by applying standard logistic regression to a dataset
augmented with m pseudo-observations per penalized regression coefficient. Greenland and
Mansournia suggest choosing the degrees of freedom of the log-F distribution such that the
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Control
exposed unexposed

Case exposed 0 7
unexposed 0 1

Table 4.2: DES exposure status for the eight cases and a single matched control

spread of the prior corresponds to the research’s prior belief about the plausible range of
coefficient values.

Heinze and Puhr [23] developed point- and interval-estimators of odds-ratios from matched
case-control data following Firth [10]. Firth’s method is penalized-likelihood inference, where
the penalty term derives from the Jeffreys prior [27], a data-dependent distribution and
hence not a true subjective prior [13, 19]. Heinze and Puhr found that the conditional
Firth-penalized likelihood (CFL) point estimator had lower bias and the associated interval
estimator better coverage than other methods in their study.

In this chapter, we investigate the use of log-F -penalized likelihood methods for conditional
logistic regression and compare them to Firth-penalized and unpenalized conditional logis-
tic regression. Such an approach adapts the unconditional logistic-regression method of [19]
to conditional logistic regression, or alternatively the Haldane and Laplace estimators for
matched-pairs data to more general strata, and to continuous exposures and confounding
variables. In Section 4.2 we develop point and interval estimators based on a log-F -penalized
conditional logistic likelihood. In Section 4.3 we conduct a simulation study of the statis-
tical properties of the log-F -penalized method and compare to conditional logistic and
Firth-penalized conditional logistic regression. In Section 4.4 we apply the log-F -penalized
approach to the DES data of Herbst et al. [25] and case-parent trio data on children with
type 2 diabetes from Frayling el al. [11]. Section 4.5 gives concluding remarks and items for
future work.

4.2 Methods

4.2.1 Conditional Logistic Regression

Suppose we have data sampled from I strata, indexed i ∈ (1, ..., I). For notational simplicity
we assume that each stratum contains one case and Mi controls. Let j ∈ (0, ..., Mi) index
subjects within strata, with the case having index j = 0 and controls j = 1 . . . , Mi. Then let
Xi

j denote the random covariate vector for the jth individual in the ith stratum, and xi
j

the vector of observed values. The parameters of interest are the log-ORs β = (β1, ..., βK)T

corresponding to risk factors X1, ..., XK . Following [46], we can get the profile likelihood
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derived from the stratified retrospective likelihood for the matched case-control data

L(α∗, β) =
I

∏
i=1

exp (α∗i + xiT
0 β)

1 + exp (α∗i + xiT
0 β)

Mi

∏
j=1

1
1 + exp (α∗i + xiT

j β)

=
I

∏
i=1

Mi

∏
j=0

exp (yij (α∗i + xiT
j β))

1 + exp (α∗i + xiT
j β)

, (4.1)

where α∗i is the ith stratum effect in the stratified logistic regression [14]. There are K + I

parameters in the unconditional logistic regression likelihood, with I increasing as we col-
lect more matched sets. Consistency of the MLE fails because the number of parameters
increases with the sample size [3].

Stratum effects can be eliminated from the likelihood by conditioning on their sufficient
statistics. We describe the conditioning approach for a single matched set, and then use
the product of conditional likelihoods over the I matched sets for inference about β. For
matched set i, the sufficient statistic for β is Ti = ∑Mi

j=0 yijXi
j and the sufficient statistic

for the nuisance intercept is the values of the covariate vectors in the matched set [3]. The
distribution of Ti given the covariate vector values is of the form [3].

Li(β) = f(Ti = ti∣β) =
C(t) exp(tT

i β)
∑C(t∗i ) exp(t∗T

i β)
(4.2)

with ti = ∑Mi
j=0 yijxi

j is the observed value of Ti, t∗i = ∑
Mi
j=0 y∗ijxi

j , yi∗ = (y∗i1, ..., y∗iMi
) a permu-

tation of yi, and C(t∗) denotes the number of permutations of yi∗ that lead to the particular
value t∗i . The sum in the denominator is over all t∗i that can be obtained in this way. This
distribution varies over permutations of the disease-status vectors yi = (yi1, ..., yiMi) within
each matched set.

Notice that yi consists of a single one at yi0 and Mi zeros elsewhere, so that t = xi
0 and

exp(tT β) = exp(xiT

0 β). Therefore, the conditional logistic likelihood for matched set i is

Li(β) =
exp(xiT

0 β)
∑Mi

j=0 exp(xiT
j β)

. (4.3)

Therefore, the likelihood and log-likelihood over all strata can be written as

L(β) =
I

∏
i=1

exp(xiT
0 β)

∑Mi
j=0 exp(xiT

j β)
and (4.4)
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l(β) =
I

∑
i=1

⎡⎢⎢⎢⎢⎣
xiT

0 β − log
⎛
⎝

Mi

∑
j=0

exp(xiT
j β)

⎞
⎠

⎤⎥⎥⎥⎥⎦
, (4.5)

respectively. The conditional MLE, β̂, is the argument that maximizes (4.4). The conditional
logistic likelihood has the same form as the Cox proportional hazards model [3], and Cox
regression software is often used to maximize the conditional likelihood.

4.2.2 log-F Penalized Likelihood Method

The log-F penalized likelihood method was proposed by Greenland and Mansournia [19] for
unconditional logistic regression. In this paper, we adapt it to conditional logistic regression.
Penalization is by a class of log-F priors indexed by shrinkage parameter m. In this method,
the log-OR parameters, β1, . . . , βK , are assumed to be independent and have a log-F (m, m)
prior distribution with density

f(βk∣m) =
1

B(m
2 , m

2 )
exp(m

2 βk)
(1 + exp(βk))m

, k = 1, . . . , K,

where B(⋅, ⋅) is the beta function. When m = 2 this is the standard logistic distribution
[30]. The penalized conditional logistic likelihood is obtained by multiplying the likelihood
by the product of K independent log-F (m, m) densities, leading to the following penalized
conditional likelihood and log-likelihood:

L∗(β) = L(β) ×
K

∏
k=1

f(βk∣m) =
I

∏
i=1

exp(xiT
0 β)

∑Mi
j=0 exp(xiT

j β)
×

K

∏
k=1

exp(m
2 βk)

(1 + exp(βk))m
(4.6)

l∗(β) =
I

∑
i=1

⎡⎢⎢⎢⎢⎣
xiT

0 β − log
⎛
⎝

Mi

∑
j=0

exp(xiT
j β)

⎞
⎠

⎤⎥⎥⎥⎥⎦
+

K

∑
k=1
[m

2
βk −m log(1 + exp(βk))] (4.7)

With 1:1 pair matching, the data can be summarized into a 2 × 2 contingency table (see
Table 4.1). Haldane’s method adds 1/2 to each cell of the table. Apart from the constant,
the augmented (penalized) likelihood then equals

[1
2
]

a

[ exp(β)
1 + exp(β)]

b

[ 1
1 + exp(β)]

c

[1
2
]

d

× [ exp(β)
1 + exp(β)]

1
2

[ 1
1 + exp(β)]

1
2

. (4.8)

Note that the augmenting factor exp(1
2β)/1+exp(β) is proportional to a log-F (1, 1) density

for β. Similarly, the augmenting factor for Laplace’s method is exp(β)/(1+exp(β))2, which
is proportional to a log-F (2, 2) density for β. Thus, Haldane’s and Laplace’s methods are
special cases of penalized conditional logistic regression using log-F (1, 1) and log-F (2, 2)
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distributions, respectively, for the penalty term.

The log-F -penalized estimator, β̂F , is obtained by solving the K modified score equations

∂l∗(β)
∂βk

=
I

∑
i=1

⎡⎢⎢⎢⎢⎣
xi

0k −
∑Mi

j=0 xi
jk exp(xiT

j β)
∑Mi

j=0 exp(xiT
j β)

⎤⎥⎥⎥⎥⎦
+ m

2
− m exp(βk)

1 + exp(βk)
= 0 (4.9)

for k = 1, ..., K. Standard errors of β̂F can be obtained from the the inverse of the observed
Fisher information

[I(β̂F )]−1 = [−∂2l∗(β)
∂β∂βT

∣
β̂F

⎤⎥⎥⎥⎥⎦

−1

. (4.10)

Specifically, the standard error for β̂F k is the square-root of the kth diagonal element of
[I(β̂F )]−1. Level α confidence intervals are based on the profile penalized conditional like-
lihood (PPCL) by solving 2[l∗(β̂F ) − l∗(β̃F ∣βk)] = χ2

1,1−α for βk, where l∗(β̃F ∣βk) is the
penalized conditional log-likelihood maximized over β−k, holding βk fixed, and χ2

1,1−α is the
1 − α quantile of the chi-square distribution with one degree of freedom.

Figure 4.1: Summary of a matched paired case-control study with two simple data-
augmentation approaches.

4.2.3 Implementation of log-F Penalization by Data Augmentation

We can maximize the penalized likelihood by solving the modified score equations, but for
even m there is a convenient data augmentation approach that can use well-tested CLR
software. In unconditional logistic regression, the log-F penalization can be implemented
by translating each coefficient penalty into a pseudo-data record [19]. The same idea can
be adapted to conditional logistic regression, but restricting to an even degree of freedom
m. We start with a simple case where we only penalize the kth covariate. The resulting
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penalized likelihood is

L∗(β) = L(β) ×
exp(m

2 βk)
(1 + exp(βk))m

= L(β) × [ exp(βk)
1 + exp(βk)

]
m/2
× [ 1

1 + exp(βk)
]

m/2

= L(β) ×
m/2
∏

exp(βk)
1 + exp(βk)

×
m/2
∏

1
1 + exp(βk)

(4.11)

Notice that the log-F penalty can be transformed into a likelihood over m pseudo-observations.
In particular, penalizing the conditional logistic likelihood by a log-F (m, m) prior is equiv-
alent to adding m matched-pairs (1 case and 1 control) for each covariate of interest, such
that:

1. in m/2 strata, the case has a 1 at the covariate of interest and 0 elsewhere, and the
control has 0 at all covariates, and

2. in m/2 strata, the case has 0 at all covariates, and the control has a 1 at the covariate
of interest and 0 elsewhere.

Analyzing the augmented dataset with standard conditional logistic regression will give us
the penalized CMLE and the corresponding standard errors. For odd values of m, we obtain
the log-F -penalized estimator by solving equations (4.9) and the corresponding standard
errors through the inverse of the observed Fisher information presented in (4.10). The
optimization can be achieved using optim() function in R.

4.3 A Simulation Study

We compared the empirical performance of the log-F estimators for conditional logistic
regression presented in Section 4.2 in a simulation study. We simulated data under differ-
ent numbers of matched sets, exposure types (continuous or binary), exposure effect sizes
and number of covariates included in the conditional logistic regression. For each simulated
dataset we fit regular CMLE (Section 4.2.1), CFL [23], and log-F -penalized conditional
logistic regression with (1,1), (2,2) or (3,3) degrees of freedom. Each estimator has an as-
sociated 95% confidence interval (which were derived by PPCL described in Section 4.2.2)
and 5% significance test. We summarize the simulations with the number of simulations in
which the estimator failed to converge, the bias, SD, and MSE of the estimator, the coverage
of the confidence interval and the power of the test.

We first simulate a population of size 100,000 with a disease prevalence between 5-10% and
then draw 10, 50 or 100 matched case-control sets from the population. The population
data consists of a hidden variable H, exposure E, covariates Z and binary disease status
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D. Strata are defined by the hidden variable H that confounds the association between the
exposure and disease status. We think of the hidden variable as an unmeasured confounder
that is relatively homogeneous within matched sets defined by a matching variable M that
we can observe. For example, H could be an unmeasured environmental exposure that is
relatively homogeneous within families, which we can observe and match on. Without in-
formation on H, we can use an analysis matched on M to control confounding.

We simulate H from a standard normal distribution. The exposure E depends on H and
is either continuous or binary. For continuous E, we simulate E∣H from a linear regression
with slope 1 and intercept 0; i.e., E∣H = h ∼ N(µh = h, 1), where µh is not set to impose
any constraint on the population mean of the exposure. For binary E, we simulate E∣H
from a logistic regression with slope 1 and intercept β0 = −3.37, −2.56 or −1.65; i.e., E∣H =
h ∼ Bernoulli(ph) where logit(ph) = β0 + h and the β0’s were chosen to achieve target
exposure prevalences (unconditionally) of 1/20, 1/10 and 1/5, by simulation. Disease status
D depends on both E and H. D is a Bernoulli random variable with a logistic regression
for the success probability

logit[P (D = 1∣E = e, H = h)] = β0 + βEe + βHh.

The exposure effect βE is chosen to be 0.5, 1 or 1.5. We set βH to be 2 to mimic a fairly
strong confounder. We set β0 to be −5. Empirically, this gives a disease prevalence between
5.4% and 8.4% in our simulations with continuous E and a prevalence between 3.4% and
5.8% in our simulations with binary E. The covariates Z are independent of H, E and D,
and are also independent of each other and have standard normal distributions. We simulate
0, 1 or 5 covariates with the exposure. Figure 4.2 shows exposure and hidden variable values
for cases and controls from 10 simulated matched sets simulated under an exposure effect
size of 1.5 and a single covariate. As an aside we note that eight of 10 cases have exposure
value > 1.5 and nine of 10 controls have exposure < 1.5; thus an exposure value of 1.5 nearly
separates cases from controls. Increasing the exposure effect to 3 tends to produce complete
separation (results not shown).

Table 4.3 shows the simulation results for continuous exposure of 10 matched case-control
sets. In most settings, bias is proportional to the true parameter value and decreases in
magnitude as the sample size increases (see Supplementary Material Tables). As expected,
as the "events per variable" decrease with more covariates, the bias will increase [20]. When
βE becomes large, there is a substantial proportion of simulated datasets with separation,
leading to infinite CMLEs. Thus, the simulation results for CMLEs were calculated based
on datasets where CMLEs are finite out of 1000 replications. Overall, log-F and CFL esti-
mates outperform CMLEs in all settings, and they could be obtained in all samples even in
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Figure 4.2: Plot of exposure E versus hidden variable H for one simulated dataset of 10
matched sets, with exposure effect 1.5. Matched sets are indicated by the integers 0,...9,
with the case plotted in red and the matched control plotted in black. H is used only to
spread the matched sets out in the horizontal direction on the plot.

situations of infinite CMLEs, although CFL may fail in case of non-convergence in extreme
datasets. There is small bias in the log-F and CFL estimates when βE is small, whereas
the bias increases for large βE . As anticipated from theory, log-F estimates exhibit greater
shrinkage of the coefficient parameters as m increases, resulting in larger bias but smaller
variance. Compared to CFL, it is remarkable that log-F (2, 2) and log-F (3, 3) estimates
achieve smaller variance in exchange for a slight increase in bias, leading to a substantial
reduction in MSE, especially for small sample sizes. In some settings, the lowest MSE ob-
tained by log-F estimates could be twice as small as the MSE obtained by CFL.

For binary exposure, the same pattern was observed. We show the simulation results for bi-
nary exposure of 10 matched case-control sets in Table C.10. When we change the exposure
prevalence from 0.05 to 0.20, the MSE slightly decreases for CFL and log-F estimates. We
see that CFL and log-F (1, 1) generate the same results in all the combinations of simulation
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parameters. Mathematically, under balanced case-control ratios, CFL for a single-binary-
covariate model is equivalent to imposing a log-F (1, 1) prior. The algebraic identity of these
two models is given in the Appendix C.1.

The coverage probabilities of two-sided 95% confidence intervals based on the PPCL are
reasonable in all settings. The power for log-F estimates is slightly higher than the Firth
estimates for continuous exposure, and the power increases with βE , sample size, and binary
exposure prevalence. In both scenarios, log-F (3, 3) estimates are less powerful compared to
other competing methods. This is potentially because over-shrinkage of estimates towards
zero leads to a lower probability of excluding zero within the confidence interval.
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ncov⋆ Method
βE = 0.5 βE = 1.0 βE = 1.5

Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0

CMLEϕ 30 156 252 941 187 65 207 469 958 525 73 236 611 979 776
CFL§ 4 67 46 958 127 2 76 58 965 413 -15 76 61 964 685

log-F(1,1) 12 68 47 948 175 18 70 53 974 516 7 69 48 979 776
log-F(2,2) 4 54 29 963 160 0 52 27 971 476 -20 47 26 977 753
log-F(3,3) -1 47 22 972 137 -11 43 19 968 444 -36 37 27 964 721

1

CMLEϕ 28 120 152 943 190 64 196 423 963 485 69 214 507 979 700
CFL§ 1 67 44 972 120 -4 70 49 964 372 -27 72 59 949 600

log-F(1,1) 15 75 58 956 186 26 75 64 975 518 15 70 52 977 743
log-F(2,2) 5 58 34 976 159 3 54 29 971 475 -18 47 25 969 702
log-F(3,3) 0 50 25 978 144 -9 44 21 970 440 -35 37 26 956 681

5

CMLEϕ 6 119 141 971 46 24 131 178 957 118 32 145 220 973 216
CFL§ -8 62 39 982 25 -37 53 41 977 71 -79 42 80 978 128

log-F(1,1) 35 89 92 971 152 39 77 75 989 328 18 63 42 992 499
log-F(2,2) 14 63 42 984 109 6 54 29 992 289 -21 43 23 987 458
log-F(3,3) 5 52 27 985 82 -10 44 20 988 248 -40 35 28 984 422

Table 4.3: Simulation results for continuous exposure of 10 matched case-control sets.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ncov = number of covariates.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ncov = 0, the number of infinite datasets is 17, 47 and 138 for βE = 0.5, 1.0
and 1.5, respectively; when ncov = 1, the number of infinite datasets is 58, 156 and 320 for
βE = 0.5, 1.0 and 1.5, respectively; when ncov = 5, the number of infinite datasets is 827,
907 and 963 for βE = 0.5, 1.0 and 1.5, respectively.
§ CFL failed in case of non-convergence. When ncov = 1, the number of fails is 2 for βE = 1.0;
When ncov = 5, the number of fails is 14, 11 and 6 for βE = 1.5, 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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ExpPrev⋆ Method
βE = 0.5 βE = 1.0 βE = 1.5

Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ -29 67 54 1000 0 -54 66 73 980 6 -80 64 105 971 8
CFL -13 102 106 978 7 -17 95 94 970 28 -29 87 84 981 91

log-F(1,1) -13 102 106 978 7 -17 95 94 970 28 -29 87 84 981 91
log-F(2,2) -23 72 58 997 7 -39 68 61 970 28 -61 63 76 958 91
log-F(3,3) -28 58 41 997 2 -51 54 55 970 3 -77 51 86 958 31

0.10

CMLEϕ -18 76 61 997 7 -37 73 67 960 40 -53 64 69 980 101
CFL 2 97 94 981 31 -11 91 83 966 78 -12 85 74 988 216

log-F(1,1) 2 97 94 981 31 -11 91 83 966 78 -12 85 74 988 216
log-F(2,2) -13 72 54 992 31 -31 68 56 966 78 -43 63 58 969 216
log-F(3,3) -19 59 39 992 12 -43 56 49 966 31 -61 51 63 969 114

0.20

CMLEϕ -19 78 65 995 15 -29 73 62 957 47 -48 64 64 965 137
CFL -3 93 86 982 39 -5 90 81 965 118 -15 86 76 977 249

log-F(1,1) -3 93 86 982 39 -5 90 81 965 118 -15 86 76 977 249
log-F(2,2) -14 71 52 991 39 -25 68 52 965 118 -44 64 60 952 249
log-F(3,3) -20 59 38 992 16 -37 56 45 965 59 -61 52 64 952 130

Table 4.4: Simulation results for binary exposure of 10 matched case-control sets with no
covariate.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 402, 461 and 517 for
βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.10, the number of infinite datasets is
238, 281 and 413 for βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.20, the number
of infinite datasets is 173, 241 and 341 for βE = 0.5, 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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4.4 Data Application

4.4.1 DES

Our method is examined using real data and compared with the CFL regression proposed
by [23]. The data aims to examine the effect of diethylstilbestrol (DES) exposure during
pregnancy on the subsequent development of vaginal cancer in daughters [25]. The study
consists of eight young women with vaginal cancer, each matched with four controls. The
matching is intended to reflect socioeconomic factors. The use of DES by their mothers
during pregnancy is compared to see if DES treatment is more prevalent among mothers
of the cases. Among the mothers of the eight cases, seven were exposed to DES during
pregnancy, while none of the mothers of the controls had received DES treatment. The data
on DES exposure and maternal smoking are summarized in Table 4.5.

We aim to examine the effect of DES exposure using conditional logistic regression, ad-
justing for the effect of maternal smoking. As mentioned earlier, separation occurs in the
data because the DES covariate effectively separates cases from controls: DES ≥ 0 for all
cases and DES ≤ 0 for all controls. A standard conditional logistic regression analysis of
these data using the clogit() function from the survival package in R warns that the
DES coefficient has not converged, resulting in infinite Conditional Maximum Likelihood
Estimation (CMLE) (see Figure 4.3 (a)).

Exposure Level Cases Controls OR

DES
yes 7 0

NA
no 1 32

Maternal smoking
yes 7 21

3.57
no 1 11

Table 4.5: Data on cases and controls in the Herbst et al. study reconstructed from their
Table 2. Odds ratios are estimated by conditional logistic regression.

The results are presented in Table 4.7. These findings align with our simulation results,
which demonstrated that the estimator of log-F penalized logistic regression is pulled to-
wards zero even more than the CFL estimators for large values of m. In terms of shrinkage
of the point estimate towards zero, the log-F (1, 1) penalty shrinks the least, and the log-
F (3, 3) penalty shrinks the most. As expected, the standard errors and confidence interval
lengths are ordered inversely to the amount of shrinkage, with log-F (1, 1) having the largest
spreads, and log-F (3, 3) having the smallest spreads. Figure 4.7 displays the Firth- and
log-F -penalized profile log-likelihoods for the DES effect. The log-F penalized likelihood es-
timate is shrunken more towards the origin as m increases, while the standard error, which
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measures the curvature of the log-likelihood function at its maximum, decreases with m.

As suggested in [19], we can choose a prior based on what we believe are plausible values
for the effect. For example, an F (1, 1) prior gives a 95% probability of the OR falling
between 1/648 and 648, which extends to an order of magnitude beyond effects typically
seen in health studies. In contrast, the exact 95% prior intervals for the ORs from the
corresponding F (2, 2) and F (3, 3) distributions are (1/39, 39) and (1/15, 15) respectively.
These ranges would still be considered plausible prior ranges for the OR, providing a more
reasonable basis for analysis and interpretation.

4.4.2 Case-parent Trio Data

Another application we would like to showcase is a study that investigates genetic risk
factors for type 2 diabetes. We applied the log-F penalized approach to case-parent trio
data on children with type 2 diabetes, aiming to estimate genotype relative risks of a
polymorphism known as the GCK1 Z+2 allele [11]. The trio data were reconstructed from
Table 4 in [11]. The data, presented in Table 4.6, display the number of affected children with
each genotype, stratified by the parental mating type. This analysis allows us to examine
the potential association between the GCK1 Z+2 allele and the risk of developing type 2
diabetes in children, taking into account the genetic background of their parents. We denote
the informative mating types by

Gp =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 × 1 if one parent is heterozygous, and one parent is homozygous for the alternative allele,

1 × 1 if if both parents are heterozygous,

1 × 2 if one parent is heterozygous, and one parent is homozygous for the reference allele.
(4.12)

We can reconstruct Table 4.6 into a matched case-control dataset, where the cases are
children affected by the disease, and the matched pseudo-controls are all possible combina-
tions of alleles not transmitted from parents to their children, conditional on the parents’
genotypes. The likelihood for the genotype effect on disease risk comes from the conditional
probability of the child’s genotype given the parents’ genotypes. To utilize conditional logis-
tic regression for estimating GRR, an offset term should be incorporated into the model. The
explicit use of an offset is provided in Table 1 of [49]. The results are summarized in Table
4.7 and Figure 4.3 (b). We cannot obtain results for CFL because coxphf() issues a non-
convergence warning. We are currently investigating the reason for this non-convergence.
In Figure 4.3, we observed that the use of the penalized method did not yield substantial
improvement over CMLE. However, the amount of shrinkage increases as the degrees of
freedom increase, demonstrating the influence of penalization on the final estimates.
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Parental mating type (Gp)
Genotype (g)
0 1 2

0 × 1 10 15 NA
1 × 1 1 1 0
1 × 2 NA NA NA

Table 4.6: Summary of case-parent trio data

Method
DES Case-parent trio data

OR estimate (95% CI) Std. err OR estimate (95% CI) Std. err

CFL 35.49 (5.58, 4150.47) 1.291 NA NA
log-F (1, 1) 50.86 (6.04, 6634.92) 1.467 1.22 (0.60, 2.55) 0.367
log-F (2, 2) 24.80 (4.37, 465.99) 1.074 1.21 (0.60, 2.48) 0.361
log-F (3, 3) 16.17 (3.47, 155.07) 0.900 1.20 (0.60, 2.46) 0.355

Table 4.7: Estimates, standard errors, and 95% confidence intervals for the OR in both
DES and case-parent trio data, using different penalized conditional logistic regression ap-
proaches.

(a) Penalized profile conditional log-likelihoods
for the effect of exposure of DES, adjusting for
the effect of maternal smoking.

(b) Penalized conditional log-likelihoods for
the genotype relative risk of GCK1 Z+2 allele
on type 2 diabetes.

Figure 4.3: Conditional log-likelihoods curves with Firth and log-F penalties. The corre-
sponding maximum penalized-profile-likelihood estimators are indicated by vertical long-
dashed lines.
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4.5 Discussion

In this paper, we present a novel approach for small sample conditional logistic regression
analysis by using a class of log-F penalties. Our proposed approach improves on existing
methods in several ways. First, it provides finite OR estimates in cases where the CMLE
is not defined. Second, the log-F -penalized estimator has smaller MSE than the CFL esti-
mator proposed by [23] in most scenarios. Third, the log-F -penalized method is simple to
implement using data augmentation and standard software.

The choice of shrinkage parameter, m, is crucial for the log-F -penalized method. Although
large values of m will result in smaller MSE, our simulation results show no advantages in
preferring large values of m for inference of large ORs. When we include binary covariates
in the model, the log-F estimator shows larger bias than than the CFL estimator as m

increases, but is superior in terms of SD and MSE. Overall, our simulation results suggest
that the log-F (2, 2) penalty is a good choice, providing a substantial decrease in MSE with-
out over-shrinking estimates towards zero. In addition, the log-F (2, 2)-penalized estimation
can be implemented by a simple data augmentation approach that is more computationally
efficient than CFL estimation.

Our recommendation of a log-F (2, 2)-penalized estimator is based on limited simulation re-
sults and the convenience of its implementation. An alternative is to choose the prior based
on what the analyst believes is a plausible range of values for the odd-ratio coefficient [19].
For example, a log-F (1, 1) distribution puts 95% of coefficients between 1/648 and 648 and
a log-F (2, 2) distribution puts 95% of coefficients between 1/39 and 39. Another alternative
is to adopt the Jeffreys prior as in CFL. However, authors such as [19] argue against such
a data-dependent prior. Among other objections, the Jeffreys prior has the disadvantage of
changing the marginal prior for a given log-odds-ratio as covariates are added to the model
[13]. Regardless of the prior, we echo the sentiment of [12] that penalization is under-utilized
in medical statistics and penalized likelihood methods such as the one we have proposed
should be considered.

In Chapter 2, we have developed an EB method to estimate the shrinkage parameter m in
the log-F prior. The EB approach operates under the assumption that we can effectively
estimate the parameter of the random effects distribution if we have multiple independent
and identically distributed realizations (i.i.d) of random effects. In the context of genetic epi-
demiology, we have data from a single case-control study involving multiple genetic variants.
In this scenario, we can assume the genetic variants are independent, and the regression
coefficient of each genetic variant are i.i.d realizations from the common log-F prior distri-
bution. However, for conditional logistic regression, we only have data from one matched
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case-control study with a single exposure variable. To implement the EB approach, we need
multiple independent studies sharing identical outcome and exposure variables, and then
we could combine data from these studies to estimate m. This would be one area of future
work.

62



Chapter 5

Conclusion

In this thesis, we investigate penalized likelihood methods using a class of log-F (m, m)
priors to address the issue of sparse-data bias in logistic and conditional logistic regres-
sion analysis, with applications to genetic epidemiology. To start with, we developed log-F
penalized logistic regression in Chapter 2. This includes the construction of a marginal
likelihood for the shrinkage parameter m, and its maximization using approximate maxi-
mization algorithms. Once m is determined, a standard logistic regression can be used on
an augmented dataset to implement the log-F penalization approach. Finally, we provide
simulation studies and a real data application to understand the properties of the proposed
method and illustrate its performance relative to existing approaches.

In Chapter 3, we present an application of the log-F penalization method combined with
the REGENIE approach to the UK Biobank data. We integrate the log-F penalty into
REGENIE Step 2, and include the polygenic effect estimated from REGENIE Step 1 as
an offset in the logistic likelihood. We allow for various degrees of shrinkage for different
variants by introducing a frequency-specific parameter into the log-F density function. Our
findings reveal that using a conservative approach by assuming m = 1 for minimal shrink-
age yields similar results as that obtained by the Firth correction. This suggests that the
log-F (1, 1) penalty can be a viable option that ensures approximately the same amount of
shrinkage achieved through the Firth method while taking the advantage of computational
efficiency.

In Chapter 4, we extend the log-F penalization method to conditional logistic regression
for the analysis of stratified data, such as data from matched case-control studies. Penaliza-
tion can be implemented by adding pseudo-observations into the original dataset only if m

is even. We demonstrate the equivalence between conditional Firth logistic regression and
log-F (1, 1) penalization in a matched-pair case-control study with a single binary exposure
covariates. Based on our findings, we recommend the log-F (2, 2) penalty because it is easily
implemented using a data augmentation approach and has substantially lower MSE than
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other estimators without over-shrinkage.

In conclusion, in this thesis we have expanded the scope of log-F -penalized regression, by
adapting the penalization method to conditional logistic regression, investigating methods
for selecting the shrinkage parameter for logistic regression, and exploring the feasibility
and properties of log-F -penalized logistic regression on large-scale biobank data. We have
primarily concentrated on single-covariate logistic regression, but the concept of log-F pe-
nalization can be extended to multi-covariate logistic regression, which might be useful for
performing the gene- or region-based tests typically employed for rare variants. The essence
of such an extension is to incorporate one log-F density into the likelihood function for each
covariate that we intend to penalize. This can be implemented by a generalization of the
data augmentation procedure outlined in Section 2.6. Research on the properties of this
extension is ongoing.
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Appendix A

Supplementary Material for
Chapter 2

A.1 Computational Considerations for MCEM

We use the weighted logistic regression approach to maximize equation (2.13) over α∗k. This
equation is a weighted average of logistic regression likelihoods, with weights given by the
density values f(X.k∣α∗k

(p), βkj). Each likelihood is itself a sum over the n subjects in the
dataset. Our approach is to write equation (2.13) as a weighted likelihood comprised of
N × n observations and use standard logistic regression software to maximize over α∗k. One
way to do this is to "stack" the response vector and covariates N times over as illustrated in
Supplementary Figure A.1 and associate with each observation in this augmented dataset
a weight and an offset. The weight for each observation in the jth replicate of the dataset
is the weight f(X.k∣α∗k

(p), βkj) from the weighted average in equation (2.13). The offsets
account for known quantities in the logistic model. In particular, the linear prediction in the
logistic model for observation i in the jth replicate of the dataset is α∗k +xikβkj , where βkj is
drawn from the log-F (m, m) distribution and is considered fixed in equation (2.13). Thus
the term xikβkj is a known offset. By constructing the augmented dataset in Supplementary
Figure A.1, maximizing equation (2.13) over α∗k is equivalent to estimating the intercept of
a logistic regression and we can use standard logistic regression software, such as glm() in
R, to do this.
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Figure A.1: Y(Nn×1) is a vector containing N replicates of y and X(Nn×1) is a vector con-
taining N replicates of x. W stands for the weights for each Monte Carlo replicate such
that Wj = f(X.k∣α∗k

(p), βkj) and the offset term O = {xβkj}Nj=1.

A.2 Useful Links

The source code and scripts for the methods presented in Chapter 2 can be found at
https://github.com/SFUStatgen/logistlogF.
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A.3 Supplementary Figures

Figure A.2: A. Histogram of 1000 SNV-effect-sizes used for data simulation, in which are
5 casual SNVs and 950 null SNVs. B. Histogram of effect sizes of causal SNPs, where
βj = log 5

2 ∣ log10 MAFj ∣.

Figure A.3: Effect sizes of 1000 SNVs generated used for data simulation by minor allele
frequency. Red dots indicate casual SNVs and blue dots indicate non-casual SNVs.
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Figure A.4: Manhattan plots showing association results from LogF-MCEM on Super Se-
niors data. The red horizontal line represents the liberal genome-wide significance threshold
(P = 5 × 10−5) used to select SNPs in the preliminary scan. 57 SNPs (green points) below
the threshold are used to estimate m in Step 1.

Figure A.5: QQ-plot showing p-values from LogF-MCEM on Super Seniors data. The p-
value was obtained using the likelihood ratio test with a χ2

1 test statistic.
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Figure A.6: Scatterplots showing effect size estimates from LogF-MCEM for Super Seniors
data. The plotting colors represents variant categories based on minor allele frequency
(MAF) threshold of 1%.

Figure A.7: Scatterplots comparing p-values from different methods on Super Seniors data.
The plotting colors represents variant categories based on minor allele frequency (MAF)
threshold of 1%. For FLR and LogF-MCEM, the p-value for each variant was obtained by
the likelihood ratio test with a χ2

1 test statistic.
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Appendix B

Supplementary Material for
Chapter 3

B.1 PLINK Useful Commands

Step 1: Combine all autosomal SNPs

plink --merge-list data_by_chr/all_my_files.txt \
--make-bed \
--out qc/chr1-22

Step 2: Select a high quality dataset by setting thresholds

1. Remove markers with missingness rate ≥ 0.02.

plink --bfile qc/chr1-22 \
--geno 0.02 \
--make-bed \
--out qc/chr1-22_v1

2. Remove individuals with missingness rate ≥ 0.02.

plink --bfile qc/chr1-22_v1 \
--mind 0.02 \
--make-bed \
--out qc/chr1-22_v2

3. Remove imputed markers with INFO ≤ 0.8. Resource 1967 (Imputation MAF and in-
formation scores) on https://biobank.ctsu.ox.ac.uk/crystal/search.cgi con-
tains MAF and info score for each of the markers in the imputed data. The file
imp_exclude_snp.txt lists all imputed markers with INFO ≤ 0.8.
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plink --bfile qc/chr1-22_v2 \
--exclude imp_info_score/imp_exclude_snp.txt \
--make-bed \
--out qc/chr1-22_v3

4. Remove markers with Hardy-Weinberg equilibrium exact test p-value ≤ 1 × 10−7.

plink --bfile qc/chr1-22_v3 \
--hwe 1e-7 \
--make-bed \
-out qc/chr1-22_v4 \

5. Remove markers with MAF < 0.01.

plink --bfile qc/chr1-22_v4 \
--maf 0.01 \
--make-bed \
--out qc/chr1-22_v5

Step 3: Ethnicity check
Ethnicity check was done using commands from https://cran.r-project.org/web/packages/
plinkQC/vignettes/AncestryCheck.pdf. Below are the summarized steps:

1. Define bash variables and the directory of study and reference data.

qcdir='qc'
refdir='1000gp'
name='chr1-22_v5'
refname='1kg_phase1_all'

2. Match study genotypes and reference data.

(a) Filter non A-T or G-C SNPs in reference and study data, and remove them from
both the datasets.
qcdir='qc'
refdir='1000gp'
name='chr1-22_v5'
refname='1kg_phase1_all'

awk 'BEGIN {OFS="\t"} ($5$6 == "GC" || $5$6 == "CG" \
|| $5$6 == "AT" || $5$6 == "TA") {print $2}' \
$qcdir/$name.bim > \
$qcdir/ethnicity_check/$name.ac_gt_snps

awk 'BEGIN {OFS="\t"} ($5$6 == "GC" || $5$6 == "CG" \
|| $5$6 == "AT" || $5$6 == "TA") {print $2}' \
$refdir/$refname.bim > \
$qcdir/ethnicity_check/$refname.ac_gt_snps
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plink --bfile $refdir/$refname \
--exclude $qcdir/ethnicity_check/$refname.ac_gt_snps \
--make-bed \
--out $qcdir/ethnicity_check/$refname.no_ac_gt_snps

plink --bfile $qcdir/$name \
--exclude $qcdir/ethnicity_check/$name.ac_gt_snps \
--make-bed \
--out $qcdir/ethnicity_check/$name.no_ac_gt_snps

(b) Prune variants in linkage disequilibrium (LD) with an r2 > 0.2 in a 50kb window.
plink --bfile $qcdir/ethnicity_check/$name.no_ac_gt_snps \

--indep-pairwise 50 5 0.2 \
--out $qcdir/ethnicity_check/$name.no_ac_gt_snps

plink --bfile $qcdir/ethnicity_check/$name.no_ac_gt_snps \
--extract $qcdir/ethnicity_check/$name.no_ac_gt_snps.prune.in \
--make-bed \
--out $qcdir/ethnicity_check/$name.pruned

(c) Filter the reference data by using the list of pruned variants obtained from the
study data.
plink --bfile $qcdir/ethnicity_check/$refname.no_ac_gt_snps \

--extract $qcdir/ethnicity_check/$name.no_ac_gt_snps.prune.in \
--make-bed \
--out $qcdir/ethnicity_check/$refname.pruned

(d) Check that variants in the reference data have the same chromosome number as
in the study data.
awk 'BEGIN {OFS="\t"} FNR==NR {a[$2]=$1; next} \
($2 in a && a[$2] != $1) {print a[$2],$2}' \
$qcdir/ethnicity_check/$name.pruned.bim \
$qcdir/ethnicity_check/$refname.pruned.bim | \
sed -n '/^[XY]/!p' > $qcdir/ethnicity_check/$refname.toUpdateChr

plink --bfile $qcdir/ethnicity_check/$refname.pruned \
--update-chr $qcdir/ethnicity_check/$refname.toUpdateChr 1 2 \
--make-bed \
--out $qcdir/ethnicity_check/$refname.updateChr

(e) Update variants positions and possible flip alleles.
awk 'BEGIN {OFS="\t"} FNR==NR {a[$2]=$4; next} \
($2 in a && a[$2] != $4) {print a[$2],$2}' \
$qcdir/ethnicity_check/$name.pruned.bim \
$qcdir/ethnicity_check/$refname.pruned.bim > \
$qcdir/ethnicity_check/${refname}.toUpdatePos

awk 'BEGIN {OFS="\t"} FNR==NR {a[$1$2$4]=$5$6; next} \
($1$2$4 in a && a[$1$2$4] != $5$6 && a[$1$2$4] != $6$5) {print $2}' \
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$qcdir/ethnicity_check/$name.pruned.bim \
$qcdir/ethnicity_check/$refname.pruned.bim > \
$qcdir/ethnicity_check/$refname.toFlip

plink --bfile $qcdir/ethnicity_check/$refname.updateChr \
--update-map $qcdir/ethnicity_check/$refname.toUpdatePos 1 2 \
--flip $qcdir/ethnicity_check/$refname.toFlip \
--make-bed \
--out $qcdir/ethnicity_check/$refname.flipped

(f) Remove alleles that do not match after allele-flips.
awk 'BEGIN {OFS="\t"} FNR==NR {a[$1$2$4]=$5$6; next} \
($1$2$4 in a && a[$1$2$4] != $5$6 && a[$1$2$4] != $6$5) {print $2}' \
$qcdir/ethnicity_check/$name.pruned.bim \
$qcdir/ethnicity_check/$refname.flipped.bim > \
$qcdir/ethnicity_check/$refname.mismatch

plink --bfile $qcdir/ethnicity_check/$refname.flipped \
--exclude $qcdir/ethnicity_check/$refname.mismatch \
--make-bed \
--out $qcdir/ethnicity_check/$refname.clean

3. Merge genotypes of study data and reference data.

plink --bfile $qcdir/ethnicity_check/$name.pruned \
--bmerge $qcdir/ethnicity_check/$refname.clean.bed \

$qcdir/ethnicity_check/$refname.clean.bim \
$qcdir/ethnicity_check/$refname.clean.fam \

--make-bed \
--out $qcdir/ethnicity_check/$name.merge.$refname

4. Perform PCA on the merged data using PLINK 2.0.

plink2 --bfile $qcdir/ethnicity_check/$name.merge.$refname \
--pca approx \
--out $qcdir/ethnicity_check/$name.$refname

5. Check ancestry. We use the .eigenvec file generated from last step to estimate the
ancestry of the study data, which is implemented in R using check_ancestry() in
package plinkQC. Currently, this function only supports the identification of European
ancestry.

library(plinkQC)

indir <- "/mnt/project/qc"
qcdir <- "/mnt/project/qc/ethnicity_check"
name <- 'chr1-22_v5'
refname <- '1kg_phase1_all'
prefixMergedDataset <- paste(name, ".", refname, sep="")

78



exclude_ancestry <-
evaluate_check_ancestry(indir = indir, name = name, qcdir = qcdir,

prefixMergedDataset = prefixMergedDataset,
defaultRefSamples = "1000Genomes",
legend_text_size = 12,
legend_title_size = 15,
axis_text_size = 12,
axis_title_size = 15,
title_size = 15,
studyColor = "#2c7bb6",
interactive = TRUE)

fail_ancestry <- exclude_ancestry$fail_ancestry
write.table(fail_ancestry,file="fail_ancestry.txt",quote=F,row.names=F)

6. Remove non-European samples.

plink --bfile qc/chr1-22_v5 \
--remove qc/ethnicity_check/fail_ancestry.txt \
--make-bed --out qc/chr1-22_v6

B.2 REGENIE Useful Commands

The developers of REGENIE provide comprehensive documentation online at their GitHub
pages https://rgcgithub.github.io/regenie/, which includes information on how to
install and use the program along with various practical examples. Here are some example
commands that we used:

1. Fitting the whole-genome regrssion:

regenie-3.1.3 \
--step 1 \
--bed plink_data \
--phenoFile example.pheno \
--covarFile example.cov \
--bsize 1000 \
--loocv \
--bsize 1000 \
--lowmem \
--out regenie_step1

In this command, plink_data is your input file in PLINK binary format, example.
pheno is your phenotype file, example.cov is your covariate file, --bsize1000 is the
block size for fitting Level 0 ridge regression and --loocv flags to use leave-one out
cross validation scheme. We recommend to use option --lowmem to reduce memory
usage when analyzing more than 10 traits.

2. Running the association test:
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regenie-3.1.3 \
--step 2 \
--bgen plink_data.bgen \
--sample plink_data.sample \
--phenoFile example.pheno \
--covarFile example.cov \
--bsize 1000 \
--firth --approx --pThresh 0.05 \
--pred regenie_step1_pred.list \
--out regenie_firth

In this command, plink_data.bgen is your input file in BGEN format, plink_data.
sample is your sample file, --firth --approx --pThresh 0.05 flags to use approxi-
mate Firth regression for computational speedup with p-values less than the threshold
of 0.05, and regenie_step1_pred.list is the list of predicted phenotype files gener-
ated from Step 1. To use SPA correction for p-values less than the threshold, we can
use option --spa.

B.3 PLINK R Plug-in Commands

PLINK enables the extension of its basic functionality by using the R-based ’plug-in’ func-
tions. PLINK uses the Rserve package to communicate with R. Here is the commands for
basic usage of R plug-ins:

plink --bfile plink_data \
--pheno example.pheno \
--covar example.cov \
--R myscript.R \
--out output_file

In this command, myscript.R is the file containing the R code with a standard format
specifically for the purpose of PLINK plug-in. For details of how to define a R plug-in
function, please refer to https://zzz.bwh.harvard.edu/plink/rfunc.shtml.

B.4 UKBB Useful Links

For phenotype information in the UKBB data, please refer to https://biobank.ctsu.ox.
ac.uk/crystal/search.cgi.

B.5 Supplementary Figures
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Supplementary Figure B.1: MAF binned boxplots of bias, SD and MSE of effect size esti-
mates on simulated data. Each boxplot represents the distribution of the estimated quantity
across 100 simulation replicates. MAF bins are: 1 = (0%, 1%), 2 = [1%, 5%), 3 = [5%, 10%),
4 = [10%, 25%) and 5 = [25%, 50%].
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Supplementary Figure B.2: Distribution of the estimated shrinkage parameter λm in the
log-F prior density for colorectal and thyroid cancers, where λ = [f(1− f)]−1/4 varies based
on the minor allele frequency f of the variant.
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Appendix C

Supplementary Material for
Chapter 4

C.1 The Algebraic Identity of the CFL and log-F (1, 1)-penalized
Logistic Regression

Let us assume a matched-pair (Mi = 1) case-control study with a single binary exposure
covariate. The penalized log-likelihood with a log-F (1, 1) prior is

lLogF
∗(β) = l(β) + 1

2
β − log(1 + exp(β)) +Constant. (C.1)

According to [23], applying Firth’s penalization method to (4.4) leads to Firth-type penal-
ized conditional log-likelihood

lF irth
∗(β) = l(β) + 1

2
log(∣I(β)∣)

(C.2)

where the observed information matrix I(β), which is the minus of the second derivative of
the conditional log-likelihood, is given by

I(β) =
I

∑
i=1

(xi
0 − xi

1)2 exp(xi
0β + xi

1β)
(exp(xi

0β) + exp(xi
1β))2

. (C.3)

Note that if the ith pair of matched set is discordant on the exposure indicator, we have
(xi

0−xi
1)2 exp(xi

0β+xi
1β)

(exp(xi
0β)+exp(xi

1β))2 =
exp(β)

(1+exp(β))2 ; otherwise, (x
i
0−xi

1)2 exp(xi
0β+xi

1β)
(exp(xi

0β)+exp(xi
1β))2 = 0. Thus, I(β) = I0

exp(β)
(1+exp(β))2 ,

where I0 is the number of discordant pairs within data. This suggests that solving the score
equations of lLogF

∗(β) and lF irth
∗(β) results in the same estimate of β.
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C.2 Supplementary Tables

ncov⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0

CMLEϕ 5 25 7 943 713 8 35 13 958 995 17 63 43 941 1000
CFL 2 24 6 952 687 1 32 10 965 994 3 48 23 957 1000

log-F(1,1) 4 24 6 946 707 5 33 11 959 995 8 47 22 953 1000
log-F(2,2) 4 24 6 950 703 3 30 9 967 995 1 40 16 965 1000
log-F(3,3) 3 23 5 951 700 0 29 8 966 994 -5 36 13 962 1000

1

CMLEϕ 5 26 7 938 722 11 38 16 941 996 26 88 84 936 1000
CFL 1 24 6 949 693 1 33 11 954 996 3 53 29 961 1000

log-F(1,1) 4 25 6 942 719 7 35 12 948 996 13 51 28 959 1000
log-F(2,2) 3 24 6 944 716 4 32 10 952 996 5 43 19 968 1000
log-F(3,3) 3 24 6 949 712 2 30 9 956 996 -2 38 14 975 1000

5

CMLEϕ 12 32 12 928 693 28 53 36 892 986 66 118 182 862 1000
CFL 2 26 7 955 630 2 35 12 954 981 5 57 33 967 1000

log-F(1,1) 10 30 10 938 686 21 43 23 914 985 39 68 62 913 1000
log-F(2,2) 8 29 9 942 679 16 38 17 938 985 23 51 32 950 1000
log-F(3,3) 7 27 8 946 677 11 34 13 948 984 13 43 20 979 1000

Table C.1: Simulation results for continuous exposure of 50 matched case-control sets.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ncov = number of covariates.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ncov = 5, the number of infinite datasets is 15 for βE = 1.5.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.

ncov⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0

CMLE 2 17 3 941 930 4 23 6 943 1000 7 32 11 955 1000
CFL 0 17 3 946 922 1 22 5 952 1000 1 30 9 963 1000

log-F(1,1) 1 17 3 942 927 3 23 5 947 1000 4 30 9 959 1000
log-F(2,2) 1 17 3 944 926 2 22 5 948 1000 1 28 8 964 1000
log-F(3,3) 1 17 3 944 926 1 22 5 954 1000 -2 27 7 966 1000

1

CMLE 3 17 3 947 940 6 24 6 944 1000 10 34 13 943 1000
CFL 1 16 3 952 932 1 22 5 939 1000 1 31 10 953 1000

log-F(1,1) 2 17 3 952 938 5 23 6 943 1000 6 32 10 953 1000
log-F(2,2) 2 17 3 949 938 4 22 5 943 1000 3 30 9 960 1000
log-F(3,3) 2 17 3 952 936 2 22 5 943 1000 0 28 8 961 1000

5

CMLE 5 18 4 927 938 11 26 8 930 1000 22 44 25 912 1000
CFL 1 17 3 947 925 0 23 5 960 1000 1 34 12 935 1000

log-F(1,1) 4 18 4 926 937 9 25 7 936 1000 17 39 18 927 1000
log-F(2,2) 4 18 3 929 937 7 24 6 947 1000 12 36 14 941 1000
log-F(3,3) 4 18 3 933 936 6 23 6 955 1000 8 33 11 946 1000

Table C.2: Simulation results for continuous exposure of 100 matched case-control sets.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ncov = number of covariates.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ -18 116 138 984 10 -37 122 163 977 32 -70 114 179 963 20
CFL -11 116 135 984 13 -14 114 131 974 46 -33 107 125 961 94

log-F(1,1) -10 99 98 985 8 -15 96 95 965 31 -34 93 98 973 77
log-F(2,2) -22 72 57 993 4 -38 72 66 980 19 -65 69 90 953 49
log-F(3,3) -26 56 38 999 2 -49 55 55 965 6 -81 54 94 946 25

0.10

CMLEϕ -4 118 140 974 27 -27 106 119 968 42 -34 131 182 970 101
CFL -3 107 114 971 40 -12 108 118 973 86 -10 104 109 972 216

log-F(1,1) -5 94 89 973 28 -14 93 88 960 71 -13 87 78 982 220
log-F(2,2) -15 74 56 980 13 -33 72 62 970 47 -43 68 65 966 155
log-F(3,3) -21 58 38 987 3 -45 56 52 960 27 -62 53 66 960 99

0.20

CMLEϕ -8 137 189 968 32 -14 126 160 958 73 -23 110 126 965 142
CFL -4 109 118 966 45 -3 106 112 966 131 -9 98 97 969 230

log-F(1,1) -6 93 86 977 35 -5 94 89 952 111 -12 86 75 975 238
log-F(2,2) -15 75 58 986 28 -25 75 62 965 95 -41 65 60 961 164
log-F(3,3) -21 59 39 989 12 -38 58 48 952 59 -59 52 62 958 136

Table C.3: Simulation results for binary exposure of 10 matched case-control sets with one
covariate.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 389, 467 and 544 for
βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.10, the number of infinite datasets is
221, 289 and 428 for βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.20, the number
of infinite datasets is 168, 270 and 375 for βE = 0.5, 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.

ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ -16 198 396 986 0 -24 249 624 970 15 -84 197 459 960 10
CFL -20 165 276 989 10 -24 143 209 989 18 -53 130 198 980 24

log-F(1,1) -10 98 97 986 6 -14 95 92 966 38 -25 86 79 981 74
log-F(2,2) -27 72 60 994 1 -45 71 71 991 10 -74 67 99 981 11
log-F(3,3) -26 55 38 994 0 -49 55 53 966 8 -75 50 82 960 24

0.10

CMLEϕ 3 212 448 972 23 -20 199 399 969 25 -36 164 281 964 18
CFL -12 132 176 985 10 -25 126 165 985 26 -45 109 138 977 51

log-F(1,1) -4 99 98 970 29 -12 94 91 952 80 -14 88 80 965 219
log-F(2,2) -19 78 65 989 10 -38 75 71 987 18 -54 71 79 979 56
log-F(3,3) -21 61 41 989 11 -44 58 53 952 30 -63 53 68 944 101

0.20

CMLEϕ -15 188 355 988 6 -1 207 429 979 21 -29 177 321 988 12
CFL -9 126 159 984 5 -28 116 143 976 34 -40 98 112 992 60

log-F(1,1) 1 96 91 976 41 -5 92 84 960 120 -8 85 73 981 261
log-F(2,2) -14 78 63 992 8 -33 76 68 981 34 -47 70 72 990 74
log-F(3,3) -17 60 39 989 12 -37 57 47 960 56 -57 51 59 962 143

Table C.4: Simulation results for binary exposure of 10 matched case-control sets with five
covariates.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 861, 865 and 901 for
βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.10, the number of infinite datasets is
824, 837 and 888 for βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.20, the number
of infinite datasets is 829, 856 and 914 for βE = 0.5, 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ 5 67 45 921 179 11 63 41 950 502 10 62 40 977 803
CFL 1 61 38 932 144 5 62 39 946 469 2 65 42 964 799

log-F(1,1) 1 62 38 932 145 5 62 39 946 469 2 65 42 964 799
log-F(2,2) -3 55 31 935 125 -4 54 29 956 440 -11 54 30 961 779
log-F(3,3) -7 51 26 940 109 -11 48 25 957 415 -21 47 27 954 759

0.10

CMLEϕ 2 51 26 937 202 5 52 27 949 616 9 56 32 964 931
CFL -1 48 23 944 178 -1 48 23 957 574 0 53 28 960 920

log-F(1,1) -1 48 23 944 178 -1 48 23 956 574 0 53 28 960 920
log-F(2,2) -3 45 20 948 170 -6 44 20 965 564 -9 47 23 950 918
log-F(3,3) -6 42 18 952 151 -11 41 18 962 518 -16 43 21 945 907

0.20

CMLEϕ 7 45 21 944 245 7 49 24 949 665 7 54 29 956 943
CFL 4 44 19 958 227 1 46 21 958 632 -1 50 25 958 937

log-F(1,1) 4 44 19 958 227 1 46 21 958 632 -1 50 25 958 937
log-F(2,2) 1 41 17 962 225 -4 42 18 963 629 -9 45 21 953 935
log-F(3,3) -1 39 15 968 200 -8 40 16 965 612 -16 41 20 942 928

Table C.5: Simulation results for binary exposure of 50 matched case-control sets with no
covariate.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 3, 16 and 36 for βE = 0.5,
1.0 and 1.5, respectively; when ExpPrev = 0.10, the number of infinite datasets is 1, 1 and 8
for βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.20, the number of infinite datasets
is 1, 1 and 4 for βE = 0.5, 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.

ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ 8 63 40 951 173 11 68 47 937 474 12 67 46 960 817
CFL 3 57 33 958 157 0 60 36 948 450 3 69 47 936 802

log-F(1,1) 2 57 32 957 154 1 60 36 947 464 2 68 46 933 813
log-F(2,2) -1 52 27 967 150 -7 54 30 951 431 -9 58 34 938 783
log-F(3,3) -5 47 22 969 129 -14 48 25 946 417 -22 50 29 930 776

0.10

CMLEϕ 7 51 26 953 218 12 58 35 936 644 12 58 36 948 931
CFL 3 47 22 963 196 4 52 27 951 613 1 56 32 952 919

log-F(1,1) 3 47 22 958 197 3 51 26 948 616 1 55 30 955 925
log-F(2,2) 1 45 20 968 186 -1 48 23 957 596 -6 50 25 953 917
log-F(3,3) -2 41 17 966 161 -8 44 20 955 577 -16 43 22 952 907

0.20

CMLEϕ 5 45 21 952 230 8 51 26 949 661 15 59 37 944 949
CFL 2 42 18 962 212 1 47 22 955 637 1 52 27 960 940

log-F(1,1) 1 42 17 961 215 1 47 22 958 637 1 51 26 956 949
log-F(2,2) 0 40 16 967 207 -3 44 19 961 628 -5 47 22 962 935
log-F(3,3) -3 38 14 970 186 -9 40 17 962 601 -14 42 20 955 934

Table C.6: Simulation results for binary exposure of 50 matched case-control sets with one
covariate.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 4, 5 and 42 for βE = 0.5,
1.0 and 1.5, respectively; when ExpPrev = 0.10, the number of infinite datasets is 1, 1 and
12 for βE = 0.5, 1.0 and 1.5, respectively; when ExpPrev = 0.20, the number of infinite
datasets is 2 and 2 for βE = 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ 12 74 56 931 183 22 72 57 949 485 30 79 71 951 803
CFL 1 61 37 959 147 4 63 39 963 419 4 70 49 967 764

log-F(1,1) -1 56 31 958 142 4 60 36 958 478 2 65 42 964 813
log-F(2,2) 0 58 33 960 135 1 57 33 966 421 0 62 38 973 768
log-F(3,3) -8 47 23 968 108 -12 47 24 960 408 -22 48 27 959 777

0.10

CMLEϕ 10 59 36 936 213 20 64 46 924 604 34 72 63 924 926
CFL 1 50 25 958 177 1 53 28 955 547 5 59 35 948 902

log-F(1,1) 0 47 22 954 192 0 49 24 954 585 2 55 30 955 918
log-F(2,2) 2 50 25 958 182 3 52 27 956 567 7 55 31 951 909
log-F(3,3) -5 41 17 961 165 -11 42 18 957 546 -16 7 43 21 951 901

0.20

CMLEϕ 12 56 32 936 240 18 64 44 918 650 30 72 60 919 930
CFL 3 47 22 955 196 1 56 31 947 598 0 55 30 961 913

log-F(1,1) 1 43 19 955 196 -1 49 24 951 629 -2 51 26 964 93
log-F(2,2) 4 47 23 953 205 3 53 28 950 617 4 53 28 967 918
log-F(3,3) -4 39 15 965 178 -10 42 18 957 606 -17 42 20 948 933

Table C.7: Simulation results for binary exposure of 50 matched case-control sets with five
covariates.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 14 and 36 for βE = 1.0
and 1.5, respectively; when ExpPrev = 0.10, the number of infinite datasets is 1 and 11 for
βE = 1.0 and 1.5, respectively; when ExpPrev = 0.20, the number of infinite datasets is 4
and 4 for βE = 1.0 and 1.5, respectively.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.

ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ 3 41 17 951 269 5 45 20 947 765 6 51 27 942 980
CFL 1 39 16 958 261 1 42 17 951 759 -1 47 22 938 979

log-F(1,1) 1 39 16 958 261 1 42 17 951 759 -1 47 22 937 979
log-F(2,2) -1 38 14 962 250 -3 39 16 956 749 -8 43 19 933 978
log-F(3,3) -3 36 13 962 238 -7 37 14 951 741 -13 40 18 928 977

0.10

CMLEϕ 3 34 12 940 355 4 38 14 936 887 6 38 15 951 1000
CFL 2 33 11 945 345 1 36 13 948 884 1 36 13 958 1000

log-F(1,1) 2 33 11 945 345 1 36 13 948 884 1 36 13 958 1000
log-F(2,2) 0 32 10 945 336 -2 34 12 948 877 -4 34 12 962 999
log-F(3,3) -1 31 10 953 331 -5 33 11 950 874 -8 32 11 960 999

0.20

CMLEϕ 3 33 11 938 426 5 34 12 944 923 4 38 15 944 1000
CFL 2 32 10 940 424 3 33 11 955 923 0 36 13 949 1000

log-F(1,1) 2 32 10 940 424 3 33 11 954 922 0 36 13 949 1000
log-F(2,2) 1 31 9 950 413 0 32 10 956 917 -4 34 12 950 1000
log-F(3,3) 0 30 9 951 413 -2 31 10 959 914 -8 33 11 948 1000

Table C.8: Simulation results for binary exposure of 100 matched case-control sets with no
covariate.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 1 for βE = 1.5.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ 6 43 19 937 285 6 43 19 951 782 11 51 27 943 992
CFL 3 41 17 946 269 0 40 16 962 763 2 46 21 959 990

log-F(1,1) 3 41 17 946 267 0 40 16 960 768 2 46 21 956 993
log-F(2,2) 2 39 15 950 253 -3 38 14 963 755 -3 43 18 962 989
log-F(3,3) -1 37 14 957 236 -7 36 13 960 741 -10 39 16 952 991

0.10

CMLEϕ 4 34 12 950 378 4 36 13 944 894 8 43 19 937 997
CFL 2 32 11 956 361 0 34 12 955 888 1 40 16 932 997

log-F(1,1) 2 32 10 957 364 0 34 12 956 891 1 39 16 940 997
log-F(2,2) 1 32 10 962 353 -2 33 11 957 887 -2 38 14 941 997
log-F(3,3) 0 30 9 965 352 -5 32 10 956 886 -7 36 13 943 997

0.20

CMLEϕ 4 32 10 943 425 4 34 12 952 918 8 38 15 949 999
CFL 2 31 10 952 410 1 33 11 954 916 2 36 13 953 999

log-F(1,1) 2 31 9 951 415 1 33 11 959 919 3 36 13 955 999
log-F(2,2) 1 30 9 952 408 -1 32 10 959 911 0 34 12 954 999
log-F(3,3) -1 29 8 954 401 -4 31 10 962 908 -5 32 11 959 999

Table C.9: Simulation results for binary exposure of 100 matched case-control sets with one
covariate.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.

ExpPrev⋆ Method βE = 0.5 βE = 1.0 βE = 1.5
Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡ Bias SD MSE CP† Power‡

0.05

CMLEϕ 7 44 20 949 278 12 48 25 925 780 14 52 30 927 971
CFL 2 40 16 959 255 3 43 19 943 750 0 46 22 941 961

log-F(1,1) 2 39 15 963 262 2 42 18 948 775 -1 45 20 947 974
log-F(2,2) 2 40 16 960 254 3 42 18 944 750 -1 45 20 945 963
log-F(3,3) -2 36 13 961 245 -6 38 15 953 756 -12 39 17 947 973

0.10

CMLEϕ 4 36 13 950 350 10 41 18 925 885 17 47 25 920 997
CFL 0 33 11 957 325 1 37 14 938 872 3 41 17 942 996

log-F(1,1) -1 32 10 952 328 1 36 13 942 891 2 39 16 949 999
log-F(2,2) 1 34 11 955 331 3 37 14 938 875 5 41 17 942 996
log-F(3,3) -3 31 9 957 310 -4 33 11 949 886 -7 35 13 942 999

0.20

CMLEϕ 6 35 13 934 410 9 39 16 930 902 16 43 21 928 997
CFL 2 32 11 944 380 1 35 12 938 893 2 38 15 943 997

log-F(1,1) 2 32 10 940 405 0 34 11 941 914 2 37 14 940 998
log-F(2,2) 4 33 11 943 387 3 36 13 942 899 5 38 15 943 997
log-F(3,3) 0 30 9 948 383 -5 31 10 942 908 -6 34 12 943 998

Table C.10: Simulation results for binary exposure of 100 matched case-control sets with
five covariates.
Bias, SD and MSE ×100, CP and Power ×1000.
⋆ ExpPrev = exposure prevalence.
ϕ Estimate was calculated based on the datasets where CMLEs are finite out of 1000 repli-
cations. When ExpPrev = 0.05, the number of infinite datasets is 1 for βE = 1.5.
† Coverage probability of two-sided nominal 95% confidence intervals based on PPCL.
‡ Relative frequency of confidence intervals for log-OR coefficient excluding 0.
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