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Abstract 

Despite advances in treatment and disease management, Mantle Cell 

Lymphoma (MCL) remains an incurable disease where patients typically succumb to the 

disease within 5 years of diagnosis. MCL is clinically and genetically a heterogenous 

disease which is reflected by the fact that there are two recognized subtypes: 

conventional MCL (cMCL) and non-nodal leukemic MCL (nnMCL), each thought to 

represent distinct evolutionary paths to lymphoma. Conventional MCL is also genetically 

and clinically heterogeneous where varying frequencies of simple somatic mutations, 

copy number variations and structural variations are observed across tumours. 

Conventional MCL can be robustly divided into three risk groups based on patient and 

histopathological parameters using the MIPI score, or by measuring gene expression of 

proliferation associated genes. In both cases, however, the underlying genetic cause for 

these clinical differences is largely unknown. In this thesis, I will begin by describing the 

integrative analysis where I used targeted sequencing, whole-genome sequencing, and 

RNA-sequencing to uncover novel driver genes. From analysing newly sequenced 

exomes along with published exomes, I uncovered recurrent mutations in HNRNPH1, 

EWSR1 and DAZAP1, thus implicating RNA-metabolism in MCL carcinogenesis. 

Furthermore, we validated the hypothesis that HNRNPH1 mutations serve to increase 

HNRNPH1 protein concentration by disrupting splicing of its own transcript. Next, using 

whole-genomes and RNA-sequencing, I found recurrent gains/amplifications and 

structural variations on chromosome 10 that served to increase ABI1 expression. With 

this expanded catalogue of the genetic landscape of MCL, I applied non-negative matrix 

factorization to dissect cMCL and nnMCL cases into more refined subgroups. This 

resolved five genetic clusters that were prognostic for overall survival, progression-free 

survival, and disease-specific survival. This included the observations that within cMCL, 

patients with aberrant somatic hypermutation exhibited superior prognosis. In contrast, 

patients with harboured TERT amplifications, TP53 alterations or CCND1 3’UTR 

mutations had worse prognosis. This work has uncovered new genes that may form the 

basis for therapeutic intervention and delineates genetically-defined clinical subsets that 

could form the basis for applying personalized medicine in MCL. 
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Chapter 1.  
 
Introduction 

Although the term Mantle Cell Lymphoma (MCL) was first coined in 1992 by the 

International Lymphoma Study Group, the disease was described in one form or another 

by various groups dating back to the 1970s1. Improvements in tools and techniques in 

the fields of pathology, histology, and genomics spanning five decades have brought into 

focus a clinically heterogeneous collection of mature B-cell cancers that are today called 

mantle cell lymphoma. 

 

1.1. Histological characteristics of Mantle Cell Lymphoma 

1.1.1. Cell-of-origin of MCL 

Initial descriptions of MCL were made by Lennart et al, in the 1970s and was 

described as a non-Hodgkin lymphoma (NHL) comprising of small cells with irregular 

and cleaved nuclei with a diffuse morphology2. Termed diffuse germinocytoma and later 

centrocytic lymphoma (CCL), Lennart distinguished CCL from other non-Hodgkin 

lymphomas by the lack of “lymphoblasts and prolymphocytes” (centroblasts) which were 

common in follicular lymphomas, and the lack of proliferation centres commonly seen in 

chronic lymphocytic leukemia (CLL). Electron microscopy of CCL cells led Lennart to 

declare that these cells originate from “germinocytes” (centrocytes) owing to their 

similarity to cells within reactive germinal centres.  

Berard et al3 described a group of NHL tumours that could not easily be classified 

or were poorly differentiated leading to the researchers dubbing these lymphoma as 

“lymphocytic lymphoma of intermediate differentiation” (IDL). In lymph node sections, 

IDL resembled CCL with cells displaying either diffuse or nodular architecture around 

germinal centres comprising of small- to medium-sized cells with irregularly shaped or 

cleaved nuclei4. Immunologic studies of IDL and CCL showed a striking similarity 

between both diseases5–7. While most B-cell lymphomas show  surface 

immunoglobulins, the majority of IDL cases expressed  light chains8. IDL tumour cells 
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expressed pan B-cell markers typical of NHLs. Tumours also expressed T-cell marker 

CD5, a trait unique to IDL and CCL. Membrane alkaline phosphatase (ALP) activity was 

observed in 50% of IDL and CCL tumours. This enzyme is mostly expressed in normal 

lymphoid cells residing in primary follicles and the mantle zones of secondary follicles, 

which suggested that these tumours derive from a cell residing in this region, in contrast 

to the centrocytic origin proposed by Lennart.  

Molecular studies revealed a common cytological characteristic within IDL and 

CCL tumours, which was the t(11;14)(q13;q32) translocation. This translocation was first 

discovered in the 1970s and was thought to be a rare occurrence in non-Hodgkin B-cell 

lymphomas but was discovered to recurrently occur in IDL and CCL tumours9. Similar 

rearrangements were discovered in other B-cell lymphomas which resulted in joining an 

oncogene and the highly active heavy chain immunoglobulin (IGH) locus on 14q3210. It 

was soon revealed the oncogene in question was a novel gene encoding a cyclin protein 

which was later dubbed cyclin D1 (CCND1)11,12. Constitutive activation by the IGH 

regulatory elements leads to high expression of CCND1 mRNA and protein in both IDL 

and CCL11. 

Histological, immunological, and cytogenetic evidence all suggested commonality 

between IDL, CCL and other related B-cell malignancies as well as a possible cell-of-

origin in the follicle mantle. This eventually led to the unification of these lymphomas into 

a single entity that was named mantle cell lymphoma with diagnostic criteria for MCL 

initially established in 199413. Typical morphology/cytology or typical immunophenotype 

were required for making an MCL diagnosis. MCL cytological characteristics included 

small- or medium-sized cells with irregular nuclei, fine and condensed chromatin, small 

or absent nucleoli, pale or scant cytoplasm, rare or absent centroblasts and typically low 

mitotic rate. MCL morphology was highly variable and could include a nodular growth 

pattern with or without residual germinal centres (GC) or diffuse morphology with or 

without residual GC. Typical MCL immunophenotype included common B cell, T cell 

markers CD5 positivity, increased prevalence of  light-chain compared to  light chains, 

BCL2 positivity and BCL6 negativity. Owing to the t(11;14)(q13;q32) translocation, 

CCND1 mRNA and protein overexpression is observed in >95% of MCLs. Notably, a 

small subset of MCL patients are negative for CCND1 and t(11;14)(q13;32), but are 

indistinguishable from CCND1::IGH positive MCL in terms of genetics, clinical 

presentation and evolution14,15. These cases are often observed with cyclin D2 (CCND2) 
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or cyclin D3 (CCND3) overexpression and an associated translocation event involving 

heavy chain or light chain immunoglobulin loci14,16–20. SOX11, a neuronal transcription 

factor, was found to be overexpressed in the nucleus and is unique to MCL but the 

expression of SOX11 varies within MCL21–24. 

1.1.2. MCL subtypes

It was recognized early on of the variable presentation of mantle cell lymphoma 

in terms of morphology and cytology. The apparent differences were later established to 

represent clinically important subsets of MCL25,26 (Figure 1-1). Two aggressive MCL 

variants have been officially recognized by the World Health Organization (WHO) which 

are the blastoid and pleomorphic variants27–29. Tumours of both variants exhibit high 

proliferation rates but differ in terms of morphology and cytology. Blastoid cells resemble 

lymphoblasts with dispersed chromatin. Pleomorphic variant cells vary in shape, size,

and staining (pleomorphism), but many are large cells with oval to irregular nuclei, pale 

cytoplasm, and prominent nucleoli in a small subset of the cells. 

Figure 1-1 History of classification in MCL from 1970 to 2016. Created with 
Biorender.com
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In contrast to the aggressive MCL variants, the recently defined subtype of non-

nodal leukemic MCL (nnMCL) is often associated with low proliferation and indolent 

disease23,30. Patients with nnMCL present with peripheral blood, bone marrow and 

occasionally splenic involvement without significant adenopathy, and remain localized to 

the mantle zone of lymphoid follicles31,32 (Table 1-1). CCND1::IGH translocation is 

observed in nearly all cases of nnMCL but the genomes of these lack many of the other 

common genetic mutations or aberrations characteristic of MCL33. They also generally 

lack expression of SOX11 and are more likely to be CD5 negative23,33. In contrast to 

conventional MCL (cMCL), nnMCL is often observed with somatic hypermutation of the 

immunoglobulin heavy chain variable regions, suggesting germinal centre experience of 

the originating cell population34. While nnMCL is associated with longer overall survival 

and progression-free survival, these patients may acquire further genetic mutations 

resulting in transformations to more aggressive variants35,36. 

Table 1-1 Clinical and pathological differences between nnMCL and cMCL 

Clinical and pathological variable nnMCL cMCL 

B-symptoms33,37 Rare Common 

Performance status33  2 Uncommon Common 

Nodal presentation23,33,38 Uncommon Common 

CD532 Positive Positive 

SOX1123 Low-Negative Positive 

IGHV33,34 Mutated Unmutated 

nnMCL, non-nodal leukemic MCL; cMCL, conventional MCL; IGHV, immunoglobulin heavy chain variable region 

 

Defining these morphological variants have provided a better understanding in 

MCL oncogenesis and have produced a plausible model of MCL development (Figure 1-

2). Rearrangement of CCND1 and IGH commonly occurs early in B-cell development 

during the pro-B cell stage within the bone marrow. Neoplastic cells may or may not 

express SOX11 and this expression is dependent on whether the cells remain in the 

mantle zone, resulting in the conventional MCL variant, or enter the germinal centre to 

form nnMCL. In the evolutionary path to cMCL, additional genetic aberrations are 

acquired whereas the non-nodal leukemic variant has a more restricted landscape of 

secondary driver mutations.  
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Figure 1-2 Schematic diagram of MCL subtypes and model of tumour 

development 
Abbreviations: IGHV-U, unmutated immunoglobulin heavy chain variable region; IGHV-M, 
mutated immunoglobulin heavy chain variable region. Created with BioRender.com 

 

1.2. Epidemiology and Aetiology 

MCL accounts for 3-10% of NHL diagnoses25 with an age-standardized incident 

rate of 0.8 per 100,000 individuals in the United States between 2011 and 201239. At 

diagnosis, patients range from between 60 and 70 years old with the median age of 65 

years25. MCL disproportionately affects male individuals with a male-to-female ratio of 

3:125.  

Evidence of non-molecular risk factors in MCL is either inconclusive or lacking 

compared to other B-cell lymphomas partly due to the relative rarity of the disease40. 

Factors related to occupation, lifestyle, infectious agents, or immune suppression have 

not been confidently established as risk factors in MCL40. Family history may contribute 

to increased NHL risk including MCL41. In a pooled case-control analysis of 10,211 NHLs 
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and 11,905 controls, Wang et al41 showed a four-fold increase in MCL risk if any first-

degree male relative was diagnosed with any NHL and two-fold risk if either parent was 

diagnosed with NHL.  

 

1.3. Genetics of Mantle Cell Lymphoma 

1.3.1. Primary Aberration: CCND1::IGH 

CCND1::IGH translocation is the primary driver event in MCL and is thought to 

occur from aberrant breakages during VDJ recombination42. B-cell development is a 

multi-step process involving the bone marrow and lymphoid organs and each stage is 

associated with progressive completion towards a working immunoglobulin protein43,44. 

Immunoglobulins are comprised of two heavy chain (IGH) and two light chain (IGK or 

IGL) peptides. Heavy chains are further subdivided into variable (V), diversity (D) and 

joining (J) segments. Multiple copies of segments are present on chromosome 14 and 

must be joined together into a single gene prior to transcription. This rearrangement 

process, called V(D)J recombination, is the basis for generating antibody diversity of the 

immunoglobulin protein.  

Beginning in the bone marrow, hematopoietic stems cells differentiate into early 

pro-B cells which involves rearrangement of D and J heavy chain segments followed by 

the formation of the late pro-B cell whereby a V segment is joined with the DJ segments 

to produce the final IGH gene. A similar process occurs involving light chain V and J 

segments to produce a viable light chain. Completion of the light chain marks the 

progression from pro-B cell to pre-B cell. Lastly, the rearranged chains are associated 

with the IgM constant domain gene and expressed on the B cell surface waiting for 

antigen activation. Immature B cells that fail to undergo auto-antigenic reactions exit the 

bone marrow and enter circulation where they are now classified as a mature, naïve B 

cell.  

Mistakes during VDJ recombination provide a unique opportunity for aberrant 

rearrangements due to the formation of double stranded breaks in DNA. The precise 

moment when CCND1 and IGH are juxtaposed in MCL cases can be inferred by the 

examining which V, D or J segments are involved in the rearrangement45. Cases were 
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often found with either D or J gene segments next to CCND1 suggesting translocation 

occurring at the pro-B cell stage during D-J joining.  

The proto-oncogene CCND1 was first discovered in part due to its involvement in 

CCND1::IGH translocation observed in MCL46,47. Characterization of the proto-oncogene 

revealed its nature as an important cyclin protein involved in regulating transition from 

G1 to S-phase. CCND1 is not expressed in normal B cells but is found overexpressed in 

virtually all MCL tumours due to the juxtaposition of CCND1 gene to the constitutive 

action of the IGH enhancer elements48–50.  

CCND1 role in regulating cell cycle progression involves binding to kinases 

CDK4/6 in a dose-dependent fashion51. The cyclin D1 kinase complex serves as a 

positive regulator of the transcription factor E2F by phosphorylating and releasing 

retinoblastoma (RB1) protein from binding E2F. Upon releasing from the inhibitory effect 

of RB1, E2F enters the nucleus to control the transcription of a variety of S-phase genes. 

Additionally, CDK4/6 and CCND1 further promotes transition into the S-phase by 

increasing the activity of cyclin E/CDK2. 

 

1.3.2. MCL Drivers Beyond CCND1::IGH 

While CCND1::IGH translocation is the most frequently observed mutation in 

MCL, the rearrangement alone is insufficient in inducing B-cell lymphomas according to 

transgenic mice studies whereby CCND1 is overexpressed52. This suggested that other 

genetic alterations were required for complete transformation and progression.  

Mutations affecting TP53 had been discovered in other B-cell malignancies and 

were often associated with progression into aggressive variants and poorer survival in 

CLL53 and FL54. Mutations and over-expression of TP53 were soon found associated 

with blastoid MCL morphology and were predictive of shorter overall survival55. Given 

the importance of CCND1 in MCL, it was hypothesized that other cell-cycle control 

genes were involved. Recurrent 9p12 deletions suggested the involvement of CDKN2A 

in MCL56. Deletions and mutations of both TP53 and CDKN2A are thought to act in 

conjunction with CCND1 to inhibit apoptosis and bypass cell-cycle checkpoints57. 
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Involvement of other tumour suppressors were suspected as evidenced by recurrent 

deletions on chromosome 11q and 13q58. 

FISH experiments localized deletions on 11q to a region less than 1Mbp 

containing the ATM gene (ataxia telangiectasia mutated)59. Mutations in ATM are 

causative for a familial disease ataxia telangiectasia. The role of ATM as the candidate 

tumour suppressor deleted in this region stems from the observation that patients with 

ataxia telangiectasia are more likely to develop lymphoid malignancies and was shown 

to be inactivated in a subset of T-prolymphocytic leukemia and B-cell chronic 

lymphocytic leukemia60–62. ATM encodes a phosphoprotein containing a PI3K kinase 

domain. Like other PI3K containing proteins, ATM functions in DNA damage repair, cell-

cycle checkpoints, and apoptosis. TP53 becomes phosphorylated and activated by ATM 

in response to DNA strand breakages leading to cell-cycle arrest. It is therefore likely 

that ATM inactivation works synergistically with CCND1 overexpression to overcome 

cell-cycle checkpoints resulting in increased genomic instability and evasion of 

apoptosis63.  

The next generation sequencing revolution have provided greater insights into 

the full spectrum of mutated genes in MCL and beyond. By providing unbiased 

nucleotide-level resolution of genetic mutations, exome sequencing studies have 

implicated several other genes in MCL oncogenesis64–66. ATM was determined to be the 

most frequently mutated gene in MCL and often harboured truncating and deleterious 

type mutations and, consistent with recurrence of 11q deletions found previously, 

suggested a tumour suppressor role in MCL64–66. Sequencing studies have implicated 

another putative tumour suppressor in 11q: BIRC3 which was observed to contain 

similarly inactivating single nucleotide variations and indels66. BIRC3 plays a pivotal role 

in regulating apoptosis and cellular survival as an inhibitor of apoptosis (IAP) protein 

family member. Specifically, BIRC3 functions by regulating caspase activation and NF-

kB signaling67. Inactivating BIRC3 may promote tumour development by stabilizing 

BCL2, an anti-apoptotic target, and the primary NF-kB signaling kinase, MAP3K1467. 

The latter mechanism is highly relevant with regards to treatment resistance to inhibitors 

of BTK such as ibrutinib68. Mutations and deletions of BIRC3 while infrequently observed 

in CLL, are predictive of poor prognosis a trait consistent with MCL cases69. 
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Recurrent deletions within 9p are thought to inactivate the CDKN2A gene which 

uniquely encodes for two tumour suppressors: INK4A (p16) and ARF (p14)70. These 

proteins are involved in deregulating already important pathways in MCL involving TP53 

and CCND1. INK4A encodes a potent cyclin D CDK inhibitor that, when lost, likely 

serves to increase CCND1-CDK4/6 activity70. Simultaneously, loss of ARF encoded 

protein p14 will cause destabilization of the p53 leading to evasion of cell-cycle arrest in 

response to DNA damage and evasion of apoptosis70. Alterations involving CCND1, 

CDKN2A, ATM and TP53 represent an important axis by which aspects of normal 

cellular processes are circumvented leading to tumour transformation and progression.  

Additional genes have been found altered in MCL, but an understanding of the 

effect on tumour cells is not entirely clear. One such gene is S1PR1 encoding for a G-

protein coupled receptor which binds sphingosine-1-phosphate64. Frequent losses of 1p 

locus containing S1PR1 and recurrence of truncating mutations suggest a role of tumour 

suppressor in MCL. S1PR1 is described to play a role in cellular adhesion and the loss 

of this gene may promote migration and effacement of normal lymphoid structure.  

KMT2D is the third most altered gene according to exome sequencing studies 

behind CCND1 and ATM. In the same studies, NSD2 (WHSC1, MMSET) was found 

recurrently mutated in MCL66. Together KMT2D and NSD2 represent the limited number 

of histone modifiers found mutated in MCL. KMT2D encodes a histone 

methyltransferase which add methyl groups to histone 3 lysine residues (H3K4) and is a 

marker of transcriptionally active chromatin. In MCL, and other B-cell lymphomas, 

KMT2D is predominately observed having truncating mutations and an infrequent 

number of missense mutations of unknown consequence65,66. NSD2 mutations on the 

other hand were mostly missense mutations and affected two residues (p.E1099K and 

p.T1150A). NSD2, like KMT2D, encodes a histone methyltransferase but catalyzes 

methyl addition onto lysine 36 (H3K36). Of the B-cell lymphomas, NSD2 mutations 

appear unique to MCL, but translocations involving NSD2 and IGH have been observed 

in plasma cell myeloma. Overexpression of NSD2 due to this translocation results in 

increase of H3K36 and decrease in H3K27 methylation genome wide. 
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1.4. Current Treatment Strategies 

No established standard of care exists for treating MCL and treatment strategies 

vary between institutions. With the recognition of nnMCL as a distinct entity, an 

important consideration when treating MCL is the identification of patients with nnMCL 

as these patients can safely be given a “watch-and-wait” approach or given less 

intensive therapeutic regimens71–74. Forgoing or delaying treatment may also be suitable 

for asymptomatic patients with low-volume disease and tumours which lack high-risk 

factors such as high proliferation rate75,76. 

After ruling out indolent disease or nnMCL and confirmation of symptomatic, 

high-volume disease and/or high-risk factors, treatment considerations include patient 

age, fitness, and serious co-morbidities. Younger and healthy patients are assessed for 

their eligibility to receive autologous stem cell transplantation (ASCT) and are given 

high-intensity induction therapy77. Induction therapies for these patients include rituximab 

plus hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone 

(R-HyperCVAD) alternating with rituximab plus methotrexate and cytarabine (R-MA)78, or 

alternating therapies of R-CHOP or modified R-CHOP (rituximab plus maximum-strength 

cyclophosphamide, vincristine, doxorubicin, and prednisone) or R-DHAP (rituximab plus 

dexamethasone, cytarabine, cisplatin) followed by high-dose cytabarine treatment79–81. 

Induction therapy is consolidated with ASCT followed by optional rituximab maintenance. 

In older patients who are not eligible for ASCT or high-intensity therapies, a 

variety of regimens are available for treatment82. Induction therapy for these patients 

include R-CHOP followed by rituximab maintenance83, or rituximab plus bendamustine 

(R-BR)84–86, or modified R-CHOP with vincristine substituted for the proteasomal inhibitor 

bortezomib87. 

Advances in treatment have shown modest improvements in patient outcome 

and/or reduced toxicity88, but most patients will eventually relapse or were refractory to 

initial treatments and will require salvage therapy. Several novel therapies have been 

investigated or approved for usage in relapsed-refractory (RR) MCL. These include 

bortezomib89, mammalian target of rapamycin (mTOR) inhibitor temsirolimus90, 

phosphatidylinositol 3-kinase (PI3K) inhibitors idelalisib91, Bcl-2 inhibitor venetoclax, and 

Bruton’s tyrosine kinase (BTK) inhibitors such as ibrutinib92–94, zanubritinib95,96, 
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acalabrutinib97. Although approved for use In RR MCL, these therapeutics are not 

curative with complete response rates ranging between 19-71%98. 

 

1.5. Risk stratification 

1.5.1. Prognostic indices 

Since its classification as a separate malignancy, various characteristics about 

MCL have been described and published. An important feature observed in clinical trials 

was the wide variation in clinical course among MCL patients, but also the general 

unsatisfactory results of treatment regimens99–101. A prognostic index for MCL was 

required for better stratification of patients during clinical trials. Application of 

International Prognostic Index (IPI) and Follicular Lymphoma International Prognostic 

Index (FLIPI) indices on MCL patients proved to contain serious limitations and therefore 

an MCL specific prognostication index was required29,102. The MCL International 

Prognostic Index (MIPI) was developed to fulfill this need and was found superior to IPI 

in predicting clinical outcome103,104. MIPI utilizes patient age, ECOG performance status, 

white blood cell count (WBC) and lactate dehydrogenase (LDH) to separate patients into 

three groups with differential survival: low-, intermediate- and high-risk. High proliferation 

rate was identified early on as a marker of poor prognosis29,102,105. Proliferation as 

measured by the proportion of Ki67 positively staining cells was found independently 

prognostic of MIPI score in anti-CD20 immunochemotherapy treated patients and is 

included during MCL patient stratifications forming a separate metric called biologic MIPI 

(MIPI-b)106.  

Although many genetic factors have been nominated for having prognostic 

impacts on MCL survival, TP53 and CDKN2A aberrations have consistently shown to 

predict inferior survival. TP53 aberrations such as 17p deletion, TP53 mutation, a 

combination of both, or p53 expression have been evaluated for prognostic value107–109. 

In a study involving 365 patients, the European Mantle Cell Network separated patients 

based on p53 immunohistochemistry expression into low-, intermediate-, and high-

expression categories110. In both univariate and multivariate analysis, high p53 

expression was associated with poor overall survival and inferior time-to-treatment 
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failure compared to low p53 expression independent of MIPI score and Ki67 index. In 

addition to TP53, CDKN2A aberrations are consistently associated with poor 

prognosis111–113. TP53 deletions and/or CDKN2A deletions were additively prognostic for 

poor overall survival in young MCL patients treated with high-dosage cytarabine 

treatment prior to myeloablative radio-chemotherapy and ASCT113. 

 

1.5.2. Gene expression-based classifications 

In 2003, Rosenwald et al16 demonstrated that a proliferation gene expression 

signature was associated with overall survival in MCL. Using a supervised training 

approach, 48 genes were found linearly correlated with length of survival and were 

highly expressed within tumours of patients with the shortest survival. Of the 48 genes, 

28 were proliferation related genes involved in DNA replication, cell-cycle progression 

and metabolic proteins required for proliferating cells. Focusing on the top one-third most 

variably expressed genes of the 48 gene set, 38 genes – 20 of which were proliferation-

related – were used to construct a proliferation score by averaging the expression of 

these genes. Subsequent analyses demonstrated that tumours with high average 

proliferation signature expression were associated with higher CCND1 expression, 

expression of the shorter CCND1 isoform which lacked 3’UTR possibly containing an 

RNA-destabilizing element114,115, and CDKN2A deletions. 

Due to the difficulties related to using microarray-based technologies and 

requirement of fresh frozen (FF) tissues, gene expression-based classification has not 

been made routine within the clinic. To improve usability and expand the applicability of 

expression based classification in a clinical setting, Scott et al116 developed the MCL35 

assay for use in both FF and formalin-fixed paraffin-embedded (FFPE) tumours. 

Beginning with 80 FF tumour samples from Rosenwald et al16, Affymetrix U133 plus 2.0 

microarrays were used to find genes that correlated with both the proliferation signature 

and OS. Sixty-nine genes including 30 housekeeping genes were selected for 

subsequent assay development. Expression was quantified for these 99 genes within 47 

FFPE samples using the NanoString platform and within 39 matching FF samples using 

Affymetrix microarrays. The final set of genes included 17 proliferation-associated genes 

and 18 housekeeping genes which were selected based on high correlation between 
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NanoString and Affymetrix platforms and high expression in the NanoString data for 

proliferative genes, and low-variance and moderate-to-high expression for housekeeping 

genes which are included for normalization. Patients were categorized into low-, 

intermediate-, and high-risk groups based on expression of the selected proliferation 

genes after normalizing for housekeeping gene expression. The MCL35 assay was 

prognostic in patients treated with R-CHOP with median OS reaching 8.6, 2.6, and 1.1 

years for low-, intermediate-, and high-risk patient categories, respectively. Like the 

original proliferation signature, common high-risk features were associated with the high-

risk MCL35 group including an enrichment of aggressive MCL variants 

(blastoid/pleomorphic), TP53 protein positivity, and 3’UTR truncated CCND1. Gene 

signature-based risk stratifications demonstrate a link between the clinical variability in 

MCL and an underlying genetic explanation. However, the genetic aberrations which 

contribute to the observed variability, especially with respect to low- and intermediate-

risk MCLs is unknown.  
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1.6. Problem statement 

In the decades since the recognition of MCL as an entity, significant progress has 

been made in understanding the MCL pathogenesis and have improved clinical 

prospects for many patients. However, the disease remains largely incurable. I will 

explore the use of genome-wide analysis to aid in enhancing our understanding of the 

molecular and genetic nature of MCL, its driver mutations and combinations thereof, and 

the relationship between these and outcome.  

This thesis will be guided by two main hypotheses: (1) that driver mutations 

remain to be discovered in MCL, and (2) MCL can be subdivided into molecular (or 

genetic) groups beyond the current divisions of conventional MCL and non-nodal 

leukemic MCL. To address the first hypothesis, this thesis will aim to identify recurrent 

driver mutations using a varied and comprehensive bioinformatic approach, including the 

identification of SNVs, CNVs and SVs. These analyses and results will be detailed in 

chapters 2 and 3. In Chapter 4, I will address the second hypothesis by combining 

results from the previous chapters and perform un-supervised clustering using non-

negative matrix factorization to identify potential MCL subgroups. 
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Chapter 2.  

Coding and non-coding drivers of mantle cell lymphoma 
identified through exome and genome sequencing 

Data presented in this chapter were previously published. Pararajalingam P*, Coyle 

KM*, Arthur SE, Thomas N, Alcaide M, Meissner B, Boyle M, Qureshi Q, Grande BM, 

Rushton C, Slack GW, Mungall AJ, Tam CS, Agarwal R, Dawson SJ, Lenz G, 

Balasubramanian S, Gascoyne RD, Steidl C, Connors J, Villa D, Audas TE, Marra MA, 

Johnson NA, Scott DW, Morin RD. Coding and noncoding drivers of mantle cell 

lymphoma identified through exome and genome sequencing. Blood. 2020 Jul 

30;136(5):572-584. doi: 10.1182/blood.2019002385. PMID: 32160292; PMCID: 

PMC7440974. * Contributed equally. 

Contributions: PP analyzed and interpreted the data; SEA, MA performed library 

preparation; KMC and NT analyzed CLIP-seq and RNA-sequencing data; KMC 

performed cell-based and FFPE-based assays; MA performed sequencing and analysis 

targeted sequencing; BMG provided bioinformatic support and interpreted the data; BM, 

MB, GS, AM, and QQ performed nucleic acid extractions and sample quality control; 

GWS performed TMA scoring; DV and DWS provided clinical data and reviewed the 

cases; DWS, TEA, MAM, NJ, RG, CS, JC, SB, GL, CST, RA and RDM interpreted data, 

designed the study, and with PP and KMC, wrote the manuscript. 

 

2.1. Abstract 

Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma 

(NHL) that is incurable with standard therapies. The genetic drivers of this cancer have 

not been firmly established and the features that contribute to differences in clinical 

course remain limited. To extend our understanding of the biological pathways involved 

in this malignancy, we performed a large-scale genomic analysis of MCL using data from 

51 exomes and 34 genomes alongside previously published exome cohorts. To confirm 

our findings, we re-sequenced the genes identified in the exome cohort in 191 MCL 

tumours, each having clinical follow-up data. This allowed me to confirm the prognostic 
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association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent 

non-coding mutations surrounding a single exon of the HNRNPH1 gene. In RNA-seq 

data from 103 of these cases, MCL tumours with these mutations had a distinct 

imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated 

with inferior outcomes in MCL and showed a significant increase in protein expression 

by immunohistochemistry. We describe a functional role for these recurrent non-coding 

mutations in disrupting an auto-regulatory feedback mechanism, thereby deregulating 

HNRNPH1 protein expression. Taken together, these data strongly implicate a role for 

aberrant regulation of mRNA processing in MCL pathobiology. 

 

2.2. Introduction 

The present study describes driver mutations in MCL and nominates the 

perturbation of mRNA processing as an important feature of MCL biology. Specifically, I 

report novel recurrent mutations affecting genes that encode three RNA-binding proteins 

HNRNPH1, DAZAP1, and EWSR1, including intronic mutations affecting exon 4 splicing 

in HNRNPH1. We demonstrate that select mutations in HNRNPH1 alter this splicing and 

are associated with higher HNRNPH protein expression in patient tissues. Our functional 

characterization in MCL patient samples and cell lines indicate that HNRNPH1 splicing is 

regulated by the HNRNPH1 protein via a negative feedback loop leading to exclusion of 

exon 4 in the alternative transcript.  

 

2.3. Results 

2.3.1. Resolving the frequency of SSMs and recurrently mutated 
genes in MCL 

Several genes have previously been implicated as recurrent targets of simple 

somatic mutations (SSM) in MCL64–66,117, though the relevant genes and their mutation 

incidence has varied considerably between these studies118. This can be attributed both 

to genetic heterogeneity in this malignancy and the limiting cohort sizes included in each 

study. To address this, we sequenced paired tumour/normal exomes from 51 MCLs 
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diagnosed in Canada and analyzed these data alongside available paired exome data. 

Three of the 87 available samples exhibited significantly higher mutation burden (median 

5112; range 1621-14959) and were excluded due to hypermutation on the detection of 

drivers. In the remaining “discovery cohort”, comprising 84 cases, tumour exomes 

harboured an average of non-silent SSMs affecting 76 genes (range 30-219; 

Supplemental Figure A.1). 

Through our analysis of this cohort, 16 genes were deemed recurrently mutated 

by two or more algorithms used to identify driver genes. Three of the algorithms found 

each of ATM, BIRC3, TP53, S1PR1, and B2M to be significantly mutated, and each of 

MEF2B and WHSC1 were identified by two methods (Table 2-1). Notably, CCND1, often 

affected by somatic hypermutation, was identified by OncodriveCLUST, which relies on 

spatial clustering of mutations. Of the candidate MCL genes, those frequently mutated 

were ATM, CCND1, TP53, WHSC1, and KMT2D, each gene having been previously 

nominated by other studies. Three genes not previously attributed to MCL were also 

identified by at least two methods, namely HNRNPH1, DAZAP1, and EWSR1. Each of 

these three genes encode RNA-binding proteins that play a role in regulating RNA 

maturation including alternative splicing119,120. 
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Table 2-1 Recurrently mutated genes in MCL exomes. 

Gene # of 
Tools 

Mutated 
cases 
(%) 

MutSigCV Oncodrive-
FML 

OncodriveFM Oncodrive-
CLUST 

EWSR1 4 3 (3.6) 1 1 1 1 

ATM 3 37 (44) 1 1 1 0 

B2M 3 3 (3.6) 1 0 1 1 

BIRC3 3 8 (9.5) 1 1 1 0 

DAZAP1 3 3 (3.6) 1 1 1 0 

KMT2D 3 10 (12) 1 1 1 0 

NOTCH2 3 4 (4.8) 0 1 1 1 

S1PR1 3 6 (7.1) 1 1 1 0 

TP53 3 9 (11) 1 1 1 0 

UBR5 3 6 (7.1) 1 1 1 0 

HNRNPH1 2 3 (3.6) 1 0 1 0 

MEF2B 2 8 (9.5) 1 0 1 0 

SP140 2 5 (6) 1 0 1 0 

SPEN 2 3 (3.6) 0 1 1 0 

WHSC1 2 13 (15) 0 1 1 0 

Mutated case percentages calculated from discovery cohort (N=84) 
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2.3.2. Novel mutation patterns in MCL 

Based on these results and prior studies, we performed targeted sequencing of 

the coding exons of 18 genes in 191 additional MCLs and separately performed WGS on 

34 cases to broadly resolve the exonic and intronic mutation patterns (Figure 2-1; 

Supplemental Data 1). I consolidated variants across all samples sequenced by more 

than one approach and used the resulting non-redundant variants from 272 cases for 

subsequent analyses. Mutation patterns and prevalence in established MCL genes were 

largely consistent with prior reports (Figure 2-2). Each of NOTCH1, MEF2B and CCND1 

have been shown to have mutation hot spots in MCL and other cancers but the pattern 

of MEF2B mutations in MCL was distinct from that seen in other cancers121–124 

(Supplemental Figure A.2).  

 
Figure 2-1 Overview of patient samples utilized in individual samples. 
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Figure 2-2 Recurrent mutations in combined MCL cohort.  
Mutations observed across 272 MCL samples in 18 candidate MCL genes. Mutations shown here 
are limited to non-silent mutations for all genes except for HNRNPH1. For this gene, intronic and 
silent mutations affecting or immediately surrounding exon 4 are included. 

 

Unsurprisingly, the incidence of non-silent mutations in newly identified genes 

was generally lower than those of established MCL genes. EWSR1 was mutated in 8 

cases (3%) and DAZAP1, in 13 cases (5%) (Figure 2-2). EWSR1 predominantly 

harboured frameshift or nonsense mutations in MCL and exhibited a similar pattern at a 

lower prevalence in a larger compendium of DLBCLs (0.3%) (Figure 2-3A). This 

suggests that EWSR1 has an unappreciated tumour suppressor function in MCL and 

possibly DLBCL. DAZAP1 had a distinctive pattern with mutations clustered near the C-

terminus in a region containing a nuclear localization signal (p.G383-R407)125 and 

proline-rich protein-binding domain (Figure 2-3B)126,127. Nine cases harboured putative 

truncating mutations with each predicted to remove or disrupt the nuclear localization 

signal while leaving most of the open reading frame intact. Non-synonymous mutations 

in this region mainly affected highly conserved residues (i.e., p.F402, p.R406, p.R407). 

Previous work indicates that substitution of these residues causes cytoplasmic 

accumulation of DAZAP1 in human kidney epithelial (293T) and simian (COS7) cell 

lines125. 
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Figure 2-3 Spatial distribution of mutations in DLBCL and MCL of EWSR1, and 

DAZAP1. 
(A) EWSR1 and (B) DAZAP1 amino acid changes and corresponding genetic mutation variant 
classification. Vertebrate conservation of DAZAP1 amino acids where changes alter protein 
cellular localization (F402, R406, R407). 
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2.3.3. HNRNPH1 intronic mutations disrupt HNRNPH1 binding motifs 

HNRNPH1 was mutated in 26 cases (10%) when both coding and non-coding 

mutations are considered, placing it as the eighth most mutated gene overall (Figure 2-

2). Despite limited coverage of introns by our sequencing assay, intronic variants were 

the most common type of SSM detected in this gene, particularly in the regions 

surrounding exon 4 (Figure 2-4A). Paired tumour/normal sequencing confirmed that all 

recurrent variants were somatic and the WGS data confirmed the pattern was restricted 

to this exon and the immediate flanking regions (Figure 2-4B). HNRNP proteins are 

widely involved in regulating splicing by binding to pre-mRNA at specific motifs and 

either promoting or inhibiting usage of nearby splice sites. Distinct from other hnRNPs, 

HNRNPH1 (and its paralog HNRNPH2) preferentially binds RNA at poly-G motifs128. 

Strikingly, 73% (19/26) of patients with HNRNPH1 mutations had mutations affecting a 

poly-G motif within or near this exon. Each of the affected bases are deeply conserved in 

the homologous region of all available vertebrate genomes, supporting their functional 

importance.  
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Figure 2-4 HNRNPH1 mutations in MCL cluster near exon 4 in poly-G motifs.  
(A) Somatic mutations found in genomic sequencing cases, and targeted sequencing coverage of 
a representative sample. The prevalence and pattern of mutations in HNRNPH1 is compared 
between DLBCL (top) and MCL (bottom). (B) Splice site and intronic mutations observed 
surrounding exon 4 affecting poly-G motifs. (C) HNRNPH1 iCLIP binding peaks around exon 4 
(Refseq isoform NM_001257293). (D) Sashimi plot of splicing events in HNRNPH1. Canonical 
splicing events shown in blue and exon 4 skipping shown in green. (E) RNA-seq splicing ratios of 
mutated and unmutated HNRNPH1 cases. RNA-seq splicing ratio was calculated by the summing 
reads supporting the alternative event, divided by total reads supporting the canonical splicing 
event. (F) Digital PCR splicing ratios of mutated and unmutated HNRNPH1 cases. 

 

Further confirming the recurrence of this event, I found additional mutations in 

this region of HNRNPH1 by re-analyzing published and unpublished exomes from two 
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recent studies. Specifically, I noted mutations consistent with the same pattern in three 

of 16 (18.8%) relapsed/refractory MCL exomes sequenced from a recent clinical trial129 

and four of 24 (16.7%) exomes from another recent study130 (Supplemental Data 2). We 

also sequenced this gene in diagnostic tumour tissue from 145 patients treated with 

either ibrutinib or temsirolimus on a recent clinical trial (NCT01646021)94 and found 

mutations in 11 (7.5%) of these cases. Among the available WGS data from Burkitt 

lymphoma131 (n = 106), DLBCL (n = 153), chronic lymphocytic leukemia (CLL; n = 144) 

and follicular lymphoma (n = 110), I only identified two DLBCL patients with HNRNPH1 

mutations in this region (1.3%), suggesting the potential for these to be driver mutations 

with a highly specific function in MCL biology132. This highly reproducible mutation 

pattern provides strong evidence that these mutations have a regulatory function, most 

likely affecting the expression and/or splicing of HNRNPH1 mRNA. 

There is a growing list of splicing regulators, including multiple HNRNP family 

members, that modulate splicing of their own mRNA to tightly regulate expression133,134. 

Taken in consideration along with the prevalence of HNRNPH1 mutations in sequence 

contexts resembling HNRNP motifs led us to speculate that HNRNPH1 protein regulates 

its own expression by modulating the splicing of the HNRNPH1 transcript. We re-

analyzed HNRNPH1 iCLIP-seq data from Uren et al128 and confirmed multiple sites of 

interaction between HNRNPH1 and its pre-mRNA including exon 4 (Figure 2-4C), 

supporting a model of direct association at the region affected by mutation. 

HNRNPH1 has multiple alternative isoforms including several transcripts that 

result from skipping of exon 4, which are predicted to be targets of nonsense-mediated 

decay (NMD) (Figure 2-4D). Although they do not directly affect canonical splice signals, 

we hypothesized that the mutations in these poly-G motifs impact the splicing or skipping 

of exon 4. We analyzed RNA-seq data from 103 cases with known HNRNPH1 mutation 

status to evaluate splicing differences between mutated (n = 15) and unmutated (n = 88) 

tumours. By comparing the number of reads supporting the exon skipping event to reads 

supporting inclusion of exon 4, we found mutated cases exhibited a ratio of isoforms that 

favours inclusion of exon 4 (P = 1.13 x 10−5, Wilcox rank sum; Figure 2-4E). We 

implemented a custom ddPCR assay to separately quantify canonical and alternative 

HNRNPH1 transcripts. Using this assay, we corroborated these findings in selected 

cases (P < 0.001; Figure 2-4F), which showed a strong correlation (R = 0.66, P < 0.01) 

with splicing ratios determined from RNA-seq data from the corresponding cases (Figure 
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2-5A). These results support the notion that HNRNPH1 mutations favour the inclusion of 

exon 4, or suppress the skipping of this exon, promoting the formation of the full-length 

transcript (Figure 2-5B). Based on our model, these mutations disrupt the binding of 

HNRNPH1 to poly-G motifs surrounding exon 4 and dampen the normal feedback 

inhibition (Figure 2-5C). 

 
Figure 2-5 HNRNPH1 mutations influence expression of HNRNPH1.  
(A) Exon-skipping ratios between RNA-seq and a custom ddPCR assay. (B) Total HNRNPH1 
mRNA expression in mutated and unmutated cases. (C) Proposed model for HNRNPH1 
autoregulation suggests that productive splicing and translation of an mRNA including exon 4 
generates HNRNPH1 protein, while the presence of excess HNRNPH1 causes exon 4 skipping 
and leads to nonsense-mediated decay. The observed mutations proximal to exon 4 disrupt this 
balance and lead to decreased rates of exon 4 skipping. 

 

2.3.4. HNRNPH1 splicing is associated with inferior outcomes in MCL 

I next examined whether any mutations identified in this study were associated 

with patient outcome. This entailed two separate analyses, first using all cases with 

available survival data and separately within the subset of cases who received R-CHOP. 
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In univariate comparisons, mutations in NOTCH1 (HR = 2.05; Q-value = 8.6 x 10-2) or 

TP53 (HR = 3.38; Q-value = 2.8 x 10-7) were associated with shorter OS in the complete 

cohort. Consistent with previous reports, there was also a significant prognostic 

association of NOTCH1 (HR = 2.38; Q-value = 3.6 x 10-2) and TP53 (HR = 3.53; Q-value 

= 8.4 x 10-6) mutations in patients treated with R-CHOP. Notably, while KMT2D 

mutations have been recently implicated as a prognostic feature in MCL135, our analysis 

did not reproduce this result (Supplemental Figure A.3). Additionally, in R-CHOP treated 

cases EWSR1 was associated with shorter OS (HR = 8.71; Q-value = 3.5 x 10-3), 

although the number of mutated cases was small. In contrast, a significant association 

was not observed when these patients were stratified by mutation status of other genes, 

including HNRNPH1. I separately evaluated the effect of HNRNPH1 mutation status in 

the relapsed/refractory MCL patients treated with either ibrutinib or temsirolimus. Due to 

the limited number of mutated cases, patients on both arms of the trial were considered 

together in this analysis. In contrast to the R-CHOP cohort, patients with HNRNPH1 

mutations had significantly shorter PFS (Figure 2-6A) and may contribute to increased 

aggressiveness of the disease within relapsed/refractory MCL. 

Given the strong association between HNRNPH1 alternative splicing and 

mutation status, we rationalized that the proportion of HNRNPH1 mRNAs containing 

exon 4 could be used as a proxy for HNRNPH1 protein expression. We selected a 

conservative threshold to assign cases with “mutant-like” exon skipping based on the 

median value in all cases with HNRNPH1 mutations (as shown in Figure 2-4E). In 

patients with RNA-seq data available, this stratification revealed significantly shorter OS 

in patients with mutant-like splicing of HNRNPH1 (Figure 2-6B; HR = 2.50; P = 0.00388). 

Supporting the utility of this information, the splicing ratio was also significantly 

associated with OS when treated as a continuous variable. In a multivariate analysis, 

TP53 mutations, HNRNPH1 mutant-like splicing, and blastoid morphology were each 

independently associated with shorter OS (Figure 2-6C). We conclude that the mutant-

like splicing pattern of HNRNPH1, which favours the productive isoform, is a novel 

biomarker of inferior outcome in MCL and is independent of established prognostic 

genetic features and morphology.  
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Figure 2-6 HNRNPH1 splicing is independently associated with survival in 

MCL. 
(A) Progression-free survival difference between mutated and unmutated HNRNPH1 cases. (B 
Overall survival difference between wlid-type and mutant-like splicing ratio HNRNPH1 cases. 
Splicing ratio was calculated for RNA-seq cases. (C) Multivariate survival analysis using Cox 
proportional hazard on RNA-seq MCL cases. 
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2.3.5. Mutations and alternative splicing influence HNRNPH1 protein 
expression in MCL 

We hypothesized that HNRNPH1 mutations in poly-G tracts disrupt an 

autoregulatory negative feedback loop, which predicts a higher HNRNPH protein 

expression in HNRNPH1-mutant tumours. To address this directly, we evaluated 

HNRNPH expression in 170 MCL tumours by immunohistochemistry (Figure 2-7A). Of 

these cases, all had at least one type of sequencing data available and 79 had RNA-seq 

performed. Consistent with our hypothesis, tissues with strong HNRNPH staining 

intensity were significantly enriched for HNRNPH1 mutations (P = 0.0007214, Fisher’s 

exact test). Tissues with strong staining were also enriched for cases with mutant-like 

splicing (P = 0.001251, Fisher’s exact test) and the distribution of splicing ratios was 

significantly different between tissues with moderate and strong staining (Figure 2-7B). 

Based on the RNA-seq data, the total mRNA level of HNRNPH1 was not significantly 

higher in cases with strong staining (Figure 2-7C). This suggests that the relative 

proportion of canonical transcripts, rather than the total mRNA abundance, is more 

directly related to HNRNPH1 protein expression. Our initial finding showing an 

association between productive splicing and survival is consistent with the trend 

observed here, namely the association between strong HNRNPH staining and shorter 

survival. 
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Figure 2-7  Evaluating HNRNPH expression by tissue microarray.  
(A) Representative images of tumour cores scored as weak, moderate, or strong HNRNPH 
staining. (B) HNRNPH1 splicing ratio stratified by TMA staining categories. (C) Total HNRNPH1 
mRNA expression stratified by TMA straining categories. 

 

2.3.6. Common HNRNPH1 mutations disrupt productive splicing and 
translation 

The correlation between HNRNPH1 isoform usage and increased protein levels 

only indirectly implicates NMD in this process. To substantiate the role of NMD in vitro, 

we inhibited this process using the eukaryotic translation inhibitor cycloheximide. 

Cycloheximide is a widely used indirect inhibitor of NMD, owing to the essential role of 

translation in the NMD process136–139. In 3 MCL cell lines (JVM2, REC-1, and Z-138) and 

in HEK cells, we demonstrate that cycloheximide treatment causes a significant and 

dose-dependent increase in the alternative non-productive HNRNPH1 transcript 

compared to total HNRNPH1 transcript (alternative plus canonical) (Figure 2-8A). This 

was consistent with the change in splicing pattern observed in SRSF3, which has 

alternative isoforms that are targeted to NMD due to inclusion of a poison exon (Figure 

2-8B)136. These results suggest that the HNRNPH1 isoforms lacking exon 4 are 

degraded in an NMD-dependent manner in MCL cells.  

To functionally demonstrate that mutations found in MCL disrupt regulation of 

alternative splicing, we constructed a minigene containing the genomic sequence for 

HNRNPH1 from exons 2 through 6 (HNRNPH1_ex2_6), including all intronic sequences. 

Productive splicing of the minigene creates a full-length in-frame peptide containing the 

hemagglutinin (HA) tag at the C terminus. Unproductive splicing, resulting from skipping 
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of exon 4, forces the C terminus out-of-frame and causing translated peptides to lack the 

terminal HA tag. We first transiently transfected the minigene in HEK cells along with a 

vector bearing the cDNA for HNRNPH1 tagged with EGFP. Ectopic expression of 

HNRNPH1 notably impaired expression of the HA tag, suggesting a HNRNPH1-

dependent switch from productive to unproductive splicing of the minigene (Figure 2-

8C). Subsequently, we separately generated three distinct mutants of this minigene by 

site-directed mutagenesis (Figure 2-8D), and transiently transfected each mutant into 

HEK cells. The presence of any one of the three mutations tested markedly increased 

abundance of the HA-tagged peptide, confirming a shift towards productive splicing 

(Figure 2-8E). This suggests that all three poly-G tracts are individually essential for 

proper regulation of HNRNPH1 splicing and adds further support to a model in which 

these mutations disrupt the autoregulatory feedback cycle and favour HNRNPH1 protein 

expression. 
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Figure 2-8 Mutations in HNRNPH1 prevent negative regulation via nonsense-
mediated decay.  

We separately quantified canonical and alternative (A) HNRNPH1 and (B) SRSF3 transcripts by 
digital PCR in MCL cells (REC1, JVM2, Z138) and HEK cells cultured with cycloheximide (an 
indirect inhibitor of NMD). This revealed an increasing proportion of the alternative transcript 
(skipped exon 4 in HNRNPH1) with increasing concentrations of cycloheximide. (C) Output from 
the minigene reporter is represented schematically. Differential splicing of the transcribed pre-
mRNA results in inclusion or exclusion of HNRNPH1 exon 4. The out-of-frame transcript (on right) 
results in the introduction of a premature termination codon (PTC) in exon 5 and translation of a 
truncated peptide. Translated peptides are represented in cartoon form. (D) HA tag abundance 
from wildtype HNRNPH1 minigene is detected by Western blotting. HA expression, representing 
productive splicing, is lost in the presence of HNRNPH1 overexpression. (E) The 3 independent 
G>T mutations introduced into the HNRNPH1 minigene are schematically represented in relation 
to the patient-identified mutations. (F) Expression of the HA tag from wildtype and mutant 
HNRNPH1 minigenes are detected by Western blotting. HA expression, again representing 
productive splicing, is substantially higher when mutated minigenes are transfected into HEK cells 
as compared to the wildtype minigene. 

 

2.4. Discussion 

Using 272 MCL cases, I have described the incidence and pattern of recurrence 

of mutations in genes with known relevance to MCL, including ATM, KMT2D, TP53, 

CCND1, and NOTCH1, focusing on those which could be identified from exome 

sequencing. Using clinical data available for the bulk of these cases, I confirmed the 

prognostic association of mutations in both TP53 and NOTCH1. NOTCH1 was not 

independently prognostic in a multivariate model that included TP53 mutations. Notably, 

in the current data, WHSC1 mutations were also not associated with OS, in contrast to 

another study140, which may attributed to the limited sample size of that study or 

differences in the patient cohorts. Motivated by the putative role of mutations in 

HNRNPH1, I also identified a strong association between HNRNPH1 splicing and 

outcome. Although the likely consequence of an imbalance of HNRNPH1 isoforms is an 

increase in HNRNPH1 protein abundance, I found a stronger association between the 

splicing ratio and patient outcome. This can be attributed to a limited dynamic range 

available for scoring HNRNPH expression by immunohistochemistry. In the absence of 

other methods for quantifying this protein in tissues, our results indicate that direct 

measurement of splicing may be a robust biomarker for HNRNPH activity. 

Although the incidence was low, I consider the mutation pattern of EWSR1 as a 

notable finding. EWSR1 is an established cancer gene that is typically discussed in the 
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context of the FLI1::EWSR1 fusion oncoprotein that drives Ewing sarcoma141. The 

pattern of mutations observed here implies a separate tumour suppressor role of this 

gene in MCL. Notably, EWSR1 has been implicated in regulating CCND1 by promoting 

formation of the less oncogenic CCND1a isoform relative to the shorter CCND1b 

isoform142. Although the targets of EWSR1 have not been established in MCL, our data 

are consistent with the notion that loss of EWSR1 activity alters RNA metabolism and 

splicing of genes relevant to MCL. 

The DAZAP1 mutations described here are similar to previous reports in a subset 

of DLBCLs132,143. Based on previous mutagenesis experiments125, I hypothesize that the 

more common DAZAP1 mutations cause reduced nuclear occupancy and affect 

interactions with other proteins. This could disrupt several processes, including 

transcription, alternative splicing, mRNA transport and translation119,127,144. 

While HNRNPH1 has been identified as overexpressed in other cancer types145–

147, our description of regulatory mutations in HNRNPH1 is novel and suggests an 

unappreciated role for HNRNPH1 in B-cell development and/or lymphomagenesis. 

HNRNPH1 is a member of the HNRNPH/F family of heterogeneous nuclear 

ribonucleoproteins148 and binds to various cis-regulatory elements that, depending on 

the sequence context and interacting proteins, can promote or suppress the use of 

nearby splice sites149. Our data supports a model wherein HNRNPH1 protein normally 

limits its own accumulation by favouring the skipping of exon 4, thus directing its mRNA 

to NMD. Self-regulation by modulating unproductive splicing and translation is an 

emerging theme among other RNA binding proteins, including HNRNPA2B1, HNRNPL, 

and SRSF3134,150,151,133,152. We show using RNA-seq and ddPCR that tissues with 

mutations near exon 4 have a biased representation of the productive isoform containing 

this exon. The effect of this on protein expression was confirmed through 

immunohistochemical analysis of tumour tissue. Similar to the predicted effects of other 

RNA binding proteins with a multiplicity of targets153–155, increased expression of 

HNRNPH1 is expected to have widespread effects on the splicing landscape in 

MCL128,149. The relative paucity of mutations in this region in other B-cell NHL is 

consistent with a more important role of HNRNPH1 in MCL biology. This warrants further 

exploration of the suite of genes and splicing events regulated by HNRNPH1 in MCL.  
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The concurrent identification of three novel MCL-related genes (EWSR1, 

DAZAP1, and HNRNPH1) with related function is compelling as it may implicate mRNA 

maturation, splicing and/or trafficking as a general feature of lymphomagenesis in MCL. 

Accordingly, there is growing evidence relating alterations in RNA-binding proteins and 

splice factors in numerous cancers, including other B-cell lymphomas, to various aspects 

of cancer cell biology156–158. Specifically, small changes in RNA-binding proteins can 

have large downstream effects on gene expression and can thus impact multiple 

hallmarks of cancer159. For example, the splicing factor SF3B1 was identified as 

recurrently mutated in CLL160–162 and further detailed investigations have identified 

widespread alternative splicing affecting multiple cellular pathways163,164. The 

identification of pleiotropic effects downstream of SF3B1, including DNA damage 

response, apoptosis, and Notch signaling, indicate that widespread disruptions to RNA 

processing can enhance cancer cell survival by multiple pathways163,165; further work will 

identify these downstream effects in MCL.  

In summary, through genomic analysis of 273 MCL tumours, I delineated several 

novel recurrently mutated genes with a range of mutation incidences. This result 

implicates an important role for RNA-binding proteins and RNA processing in MCL as 

compared to other B-cell lymphomas, suggesting that RNA metabolism and splicing 

have a specific role in MCL pathology. Our functional data attributes the common 

mutations in HNRNPH1 to disruptions in HNRNPH1 autoregulation, leading to increased 

HNRNPH1 protein expression in MCL. Further work which links these mutations to 

dysregulation of specific RNA molecules will highlight the relevance of RNA processing 

in MCL. 
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2.5. Methods 

2.5.1. Study design and sequencing 

I assembled a discovery cohort of paired fresh-frozen (FF) tumour-normal exome 

sequencing from 51 novel Canadian cases and 33 previously published cases (Bea, 

Wu). Our validation cohort consisted of targeted sequencing performed on Formalin-

Fixed Paraffin-Embedded (FFPE) material representing 191 diagnostic tumour samples 

from BC (170 unique cases). Sixteen validation samples and 18 additional FF biopsies 

from BC underwent whole genome sequencing (WGS). We performed RNA-seq on a 

subset of the BC cases (103 total). This study was approved by the BC Cancer REB and 

all patients provided informed consent unless the requirement for consent was waived 

by the REB. 

 

2.5.2. Exome data analysis 

For in-house exomes, we used the Agilent SureSelect Human All Exon kits for 

library preparation and HiSeq2000 instruments (Illumina) for sequencing. We separately 

obtained exome data from 29 patients described in Bea et al66, which we downloaded 

from the European Genome-Phenome Archive (EGAS00001000510) in BAM format, 

extracted to FASTQ and validated for data integrity using BamHash (v1.1)66,166. FASTQ 

files for tumour and matched normal exomes (7 patients) described in Wu et al were 

kindly provided by the authors64. For cases with sequence data from more than one 

tumour biopsy, I included the earliest sample in our analysis. External cases were only 

included if a matching normal sample was available. Default settings were used for all 

software unless otherwise stated. I used BWA (v0.7.6a) to map reads to the GRCh38 

human reference lacking alternate contigs167 and subjected these BAM files to soft-

clipping of overlapping read pairs using bamUtils clipoverlap (v1.0.13)168. For each BAM 

file, I applied GATK mark duplicates (v3.4.0), and adjusted alignments for putative indels 

using GATK indel realigner (v3.4.0)169. I utilized Strelka (v1.0.14)170 to detect simple 

somatic mutations (SSMs) including single nucleotide variants (SNVs) and indels and 

annotated these variants using Variant Effect Predictor (Ensembl release 83)171 and 

vcf2maf. 
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2.5.3. Recurrence analysis 

As genes important for lymphomagenesis can exhibit a variety of mutational 

patterns, I employed a voting strategy involving four separate algorithms to identify 

recurrently mutated genes and hot spots. Several algorithms to infer genes that are 

recurrently mutated in cancer cohorts have been described and each of these relies on a 

variety of features such as predicted functional impact172,173, spatial clustering174, and 

mutation rates175. I identified significantly mutated genes using a combination of 

MutSigCV175, OncodriveFM172, OncodriveFML173 and OncodriveCLUST174 using a false 

discovery rate threshold of 0.1 for each algorithm. I nominated genes identified by two or 

more methods for further sequencing in an extended cohort. Additionally, NOTCH1, 

CARD11, NFKBIE were included due to their importance in MCL and other B-cell NHL 
64,122,176. 

 

2.5.4. Targeted sequencing, whole genome sequencing and data 
consolidation 

DNA extracted from 191 formalin-fixed paraffin-embedded (FFPE) diagnostic 

MCL tumour biopsies was used to generate libraries that were enriched for exons 

corresponding to a set of putative MCL-related genes using a hybridization-based 

capture approach involving complementary DNA oligonucleotides132. These were pooled 

and sequenced using a MiSeq (Illumina). Paired 150-nt reads were generated, 

demultiplexed, and mapped to the GRCh38 human reference using Geneious (v9.1.5). 

Variants with minor allele frequencies greater than 0.0001 in any gnomAD population 

were considered germline variants and removed177. I consolidated variants from cases 

sequenced by more than one method using a tiered approach. Variants found in exomes 

and genomes were combined per patient. In targeted sequenced tumours for which a 

normal exome or genome data was available, I considered variants with more than one 

read support in the normal to be germline variants and removed from analysis. Variants 

from targeted sequencing cases that did not overlap with exome or genome cases were 

included in the final variant set. 
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2.5.5. Whole genome sequencing library construction and 
sequencing 

Whole genome sequencing (WGS) libraries were constructed from MCL fresh 

frozen tumour and constitutive DNA collected from patients in British Columbia, Canada. 

To minimize library bias and coverage gaps associated with PCR amplification of high 

GC or AT-rich regions we have implemented a version of the TruSeq DNA PCR-free kit 

(E6875-6877B-GSC, New England Biolabs), automated on a Microlab NIMBUS liquid 

handling robot (Hamilton). Briefly, 500 ng of genomic DNA was arrayed in a 96-well 

microtitre plate and subjected to shearing by sonication (Covaris LE220). Sheared DNA 

was end-repaired and size selected using paramagnetic PCRClean DX beads (C-1003-

450, Aline Biosciences) targeting a 300-400 bp fraction. After 3’ A-tailing, full length 

TruSeq adapters were ligated. Libraries were purified using paramagnetic (Aline 

Biosciences) beads. PCR-free genome library concentrations were quantified using a 

qPCR Library Quantification kit (KAPA, KK4824) prior to sequencing with paired-end 150 

nucleotide reads on the Illumina HiSeqX platform using V4 chemistry according to 

manufacturer recommendations. 

Variants from the genome data were identified using Strelka2178, which we found 

to be more robust for identifying variants with low read support or low-level 

contamination of blood DNA with tumour cells (a feature of some MCLs). We removed 

variants with minor allele frequencies greater than 0.0001 in any gnomAD population177. 

 

2.5.6. Ribosomal RNA depletion RNA sequencing library construction 
and sequencing 

To remove cytoplasmic and mitochondrial ribosomal RNA (rRNA) species from 

total RNA NEBNext rRNA Depletion Kit for Human/Mouse/Rat was used (NEB, 

E6310X). Enzymatic reactions were set-up in a 96-well plate (Thermo Fisher Scientific) 

on a Microlab NIMBUS liquid handler (Hamilton Robotics, USA). 100ng of DNase I 

treated total RNA in 6 µL was hybridized to rRNA probes in a 7.5 µL reaction. Heat-

sealed plates were incubated at 95˚C for 2 minutes followed by incremental reduction in 

temperature by 0.1˚C per second to 22˚C (730 cycles). The rRNA in DNA hybrids were 

digested using RNase H in a 10 µL reaction incubated in a thermocycler at 37˚C for 30 
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minutes. To remove excess rRNA probes (DNA) and residual genomic DNA 

contamination, DNase I was added in a total reaction volume of 25 µL and incubated at 

37˚C for 30 minutes. RNA was purified using RNA MagClean DX beads (Aline 

Biosciences, USA) with 15 minutes of binding time, 7 minutes clearing on a magnet 

followed by two 70% ethanol washes, 5 minutes to air dry the RNA pellet and elution in 

36 µL DEPC water. The plate containing RNA was stored at -80˚C prior to cDNA 

synthesis. 

First-strand cDNA was synthesized from the purified RNA (minus rRNA) using 

the Maxima H Minus First Strand cDNA Synthesis kit (Thermo-Fisher, USA) and random 

hexamer primers at a concentration of 8 ng/µL along with a final concentration of 0.4 

µg/µL Actinomycin D, followed by PCR Clean DX bead purification on a Microlab 

NIMBUS robot (Hamilton Robotics, USA). The second strand cDNA was synthesized 

following the NEBNext Ultra Directional Second Strand cDNA Synthesis protocol (NEB) 

that incorporates dUTP in the dNTP mix, allowing the second strand to be digested 

using USERTM enzyme (NEB) in the post-adapter ligation reaction and thus achieving 

strand specificity. 

cDNA was fragmented by Covaris LE220 sonication for 130 s (2x65 s) at a “Duty 

cycle” of 30%, 450 Peak Incident Power (W) and 200 Cycles per Burst in a 96-well 

microTUBE Plate (P/N: 520078) to achieve 200-250 bp average fragment lengths. The 

paired-end sequencing library was prepared following the BC Cancer Agency Genome 

Sciences Centre strand-specific, plate-based library construction protocol on a Microlab 

NIMBUS robot (Hamilton Robotics, USA). Briefly, the sheared cDNA was subject to end-

repair and phosphorylation in a single reaction using an enzyme premix (NEB) 

containing T4 DNA polymerase, Klenow DNA Polymerase and T4 polynucleotide kinase, 

incubated at 20˚C for 30 minutes. Repaired cDNA was purified in 96-well format using 

PCR Clean DX beads (Aline Biosciences, USA), and 3’ A-tailed (adenylation) using 

Klenow fragment (3’ to 5’ exo minus) and incubation at 37˚C for 30 minutes prior to 

enzyme heat inactivation. Illumina PE adapters were ligated at 20˚C for 15 minutes. The 

adapter-ligated products were purified using PCR Clean DX beads, then digested with 

USERTM enzyme (1 U/µL, NEB) at 37˚C for 15 minutes followed immediately by 13 

cycles of indexed PCR using Phusion DNA Polymerase (Thermo Fisher Scientific 

Inc. USA) and Illumina’s PE primer set. PCR parameters: 98˚C for 1 minute followed by 

13 cycles of 98˚C 15 seconds, 65˚C 30 seconds and 72˚C 30 seconds, and then 72˚C 5 
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minutes. The PCR products were purified and size-selected using a 1:1 PCR Clean DX 

beads-to-sample ratio (twice), and the eluted DNA quality was assessed with Caliper 

LabChip GX for DNA samples using the High Sensitivity Assay (PerkinElmer, Inc. USA) 

and quantified using a Quant-iT dsDNA High Sensitivity Assay Kit on a Qubit fluorometer 

(Invitrogen) prior to library pooling and size-corrected final molar concentration 

calculation for Illumina HiSeq2500 sequencing with paired-end 75 base reads. 

 

2.5.7. HNRNPH1 variant calling in Rule et al.179, Agarwal et al.129 and 
Khodadoust et al.130 

DNA was extracted from 145 tumour biopsies (including 88 matched germline 

samples) from MCL patients enrolled in RAY trial (NCT01646021)94. Additionally, DNA 

was extracted from B cell line, CEPH-1328. Libraries were prepared using a 

hybridization-based capture approach of a panel of 176 known recurrently mutated 

lymphoma genes. Pooled libraries were sequenced on HiSeq2500 followed by de-

multiplexing and read mapping to human genome reference hg19 using bwa aln with the 

following parameters: -q 5, -l 32, -k 2, -o 1. Duplicate reads were marked using GATK 

MarkDuplicates and local indel realignment was performed using GATK IndelRealigner. 

Strelka2 was used for SNV and indel variant calling with matching germline DNA used 

as normal when applicable, and CEPH-1328 used in cases with no matching germline 

sample. Two filters were applied to remove potential germline variants. First, a panel of 

germline variants was found by running Strelka2 on the patient germline samples using 

CEPH-1328 cell line as a pseudo-normal. Variants with low allele frequencies (AF < 

0.15) were removed from the panel-of-normal variants with the reasoning that these 

could be infiltrating somatic variants due to tumour-in-normal contamination, while the 

remaining variants were considered true germline variants. Tumour somatic variants 

were removed if they overlapped this panel-of-normal variant list. Second, variants with 

minor allele frequencies greater than 0.0001 in any gnomAD population were removed 

as common variants. Variant calls were then converted to GRCh38 coordinates using 

CrossMap.py using default parameters. Diagnostic tumour and matched germline exome 

FASTQs (N = 16) from Agarwal et al129 were provided to us by the authors and 

underwent the same read alignment, post-processing, and variant calling as the BC 

exomes. The authors provided HNRNPH1 variant calls from 24 MCL exomes described 
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in Khodadoust et al130 to us. Variant coordinates were converted to GRCh38 using 

CrossMap.py using default parameters. 

 

2.5.8. RNA-seq analysis of MCL 

Reads were aligned with STAR (version 2.5.3a) followed by Picard 

MarkDuplicates (version 2.14.1)169,180. We used FeatureCounts (version 1.6.0) to 

separately quantify the reads mapping to the relevant HNRNPH1 splice junctions using 

the following parameters: juncCounts, countSplit, ignoreDup, requireBothEndsMapped, 

and minimum mapping quality >= 10. We defined the HNRNPH1 exon skipping ratio as 

the ratio of reads spanning the exon 4-6 junction to the sum of reads spanning the exon 

4-5 junction and 5-6 junction. RNA-seq samples were designated HNRNPH1 exon 4 

mutated or unmutated based on variants discovered in the matching DNA-sequencing 

sample. In cases where DNA-sequencing data was not available, we determined 

HNRNPH1 exon 4 mutation status by examining the exon 4 region in the RNA-

sequencing data in IGV. 

 

2.5.9. Protein-RNA interactions of HNRNPH1 

RNA-seq and iCLIP data from HeLa cells was provided by authors128. Using 

STAR, we aligned RNA-seq reads from untreated cells transfected with control siRNA 

(seq8 in Uren data) as described above. Here, we assigned counts using featureCounts 

with a flattened GTF file containing collapsed transcripts. For HNRNPH iCLIP reads, we 

pooled reads from two replicates and aligned each pool to GRCh38 with STAR. Peaks in 

iCLIP data were called by Piranha181 in 50 bp bins, accounting for RNA abundance with 

log converted RNA-seq counts used as a covariate. 
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2.5.10. Cell-based experiments 

We reconstituted cycloheximide (Sigma) in DMSO and added either 

cycloheximide or DMSO alone to cells for up to 6 hours. We then extracted RNA or 

protein, as appropriate, from pellets of 2 x 106 cells using the RNeasy mini kit (Qiagen) 

or RIPA buffer, respectively, and quantified protein using the Pierce BCA kit 

(ThermoFisher). Equal amounts of protein were used for SDS-PAGE, and we used 

Western blotting to observe HNRNPH (abcam ab10374, 1/10 000), histone H3 (Cell 

Signaling Technologies #9715, 1/10 000), and HA tag expression (abcam ab137838, 

1/500). 

 

2.5.11. Digital PCR 

RNA from FFPE samples was reverse transcribed with random hexamers 

(iScript, BioRad) according to manufacturer’s instructions. We pre-amplified cDNA using 

SsoAdvanced PreAmp SuperMix (BioRad) for 15 cycles with primers targeting 

HNRNPH1 (all), HNRNPH1 (canonical only), HNRNPH1 (alternative only), TBP, 

YWHAZ, and UBC (Supplemental Data 3). Following a 1 in 5 dilution of pre-amplified 

cDNA, we performed ddPCR on the QX200 system (BioRad) using the primers and 

probes described. In each sample, we calculated the normalized expression relative to 

the geometric mean of the expression of three reference genes (TBP, YWHAZ, and 

UBC). Cell line RNA was similarly reverse transcribed prior to ddPCR. We normalized 

expression relative to the geometric mean of three reference genes (ACTB, YWHAZ, 

and UBC). 

 

2.5.12. Plasmids 

The HNRNPH1 insert (exons 2-6) was amplified from human genomic DNA 

(Promega, G3041) using Q5® High-Fidelity DNA Polymerase (NEB, M0491) and primers 

indicated in the Supplemental Data 4. Subsequent nested PCR was used to introduce a 

3’ HA tag and BamHI/XhoI restriction sites surrounding the selected exons. The insert 

was ligated into the pcDNA3.1+ vector using the BamHI/XhoI restriction sites and 
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functionally confirmed in HEK cells. Mutations were generated by site-directed 

mutagenesis using the indicated primers (Supplemental Data 5). All mutant clones 

(HNRNPH1_ex2-6 ΔA, ΔB, ΔC) were confirmed by Sanger sequencing (GeneWiz, New 

Jersey USA). 

 

2.5.13. HEK transfections 

Approximately 2x106 cells were seeded in 60-mm dishes 24 h before 

transfection. 1 µg of each plasmid (combinations of HNRNPH1_ex2-6, pEGFP-C1, 

pEGFP-C1-HNRNPH1) was transfected into HEK cells using Lipofectamine 3000 

(Invitrogen). Cells were collected after 24h and RNA or protein purified as described. 

 

2.5.14. Tissue microarray and immunohistochemistry 

Tissue microarrays (TMA) were constructed using duplicate 0.6mm cores from 

formalin-fixed paraffin-embedded MCL tissue. HNRNPH (polyclonal, Abcam, dilution 

1:1000) immunohistochemistry was performed on 4μm TMA sections using routine 

protocols on a fully automated platform (Ventana Discovery XT). Protein expression 

intensity was assessed by one pathologist (GWS). Protein expression was uniformly 

expressed by all cells within each tumour but with variable intensity noted between 

cases, so tumours were scored in comparison to the on-slide control tonsil, which 

showed uniform moderate intensity expression in all lymphocytes. Tumours were 

assigned one of the following scores: 0 = absent/weak staining (less intense than tonsil); 

1 = moderate staining (equally intense as tonsil); 2 = strong staining (more intense than 

tonsil). 

 

2.5.15. Statistical analysis 

Associations between gene mutation status and binary clinical characteristics 

were assessed using Fisher’s exact test. Overall survival (OS) correlates were 



43 

separately tested in all patients regardless of treatment (N = 213) and in the subset of 

HSCT-untreated cases (N = 133) using univariate Cox proportional hazard modeling and 

P-values were corrected for multiple-hypothesis testing using Bonferroni-Hochberg. 

Corrected p-values less than 0.1 were considered significant. HNRNPH1 exon 4 

skipping ratio was derived from RNA-seq data and survival analysis using this ratio was 

limited to these cases (N = 102), using the median skipping ratio for all HNRNPH1 

mutated cases as a cutoff for “mutant-like” splicing. Multivariate survival associations 

were examined using Cox proportional hazard model on RNA-seq cases so that 

HNRNPH1 exon 4 skipping ratio could be included in the model (N = 102). The final 

tested multivariate model included TP53 and NOTCH1 mutations, HNRNPH1 mutant-

like splicing and morphology. 
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Chapter 3.  

Landscape of copy number and structural variations in MCL 

The following chapter details my investigation into the copy number and 

structural variation landscape in MCL. Results from this chapter were derived from a 

collaborative effort involving many members of the Morin lab that sought to analyze the 

genomes from multiple B-cell lymphomas subtypes. My contribution to this effort 

included the following: development and application of recurrent structural variation 

modeling across the B-cell lymphomas and identification of MCL-specific SVs, 

identification of the recurrently amplified and deleted segments in MCL, and integrative 

analysis of copy number variations and structural variations with gene expression.  

 

3.1. Introduction 

Chromosomal aberrations, which can be copy-neutral or affect copy number, are 

common in many of the B-cell lymphomas. Some entities are defined, in part, based on 

the presence of inter-chromosomal rearrangements, such as MYC::IGH in BL, 

IGH::BCL2 in FL. In the case of MCL, the CCND1::IGH translocation is observed in 

virtually all cases but is alone insufficient for oncogenic transformation. This is supported 

by the observation of t(11;14)(q13;q32) translocations in circulating blood of healthy 

individuals182. The acquisition of additional genetic aberrations within pre-malignant cells 

bearing this translocation is thought to be required for onset of MCL. These aberrations 

can roughly be divided into two types: copy-number variations (CNV) and structural 

variations (SV). CNVs change the total number of alleles of affected genes within the 

genome. In a diploid organism, deletions are a type of CNV that results in either the loss 

of one allele (heterozygous deletion) or loss of both alleles (homozygous deletion). 

Amplifications and gains increase gene copies within a genome and are distinguished by 

the degree of the increase. Gains refer to low-level increases in copy number while 

amplifications refer to large increases in copy number.  

The most common SVs lead to increased expression by placing an oncogene in 

proximity to a potent enhancer without changing the dosage of either sequence. CNVs 
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are, by definition, changes in copy number but also generally involve underlying 

structural variations unless they involve entire chromosomal gains or losses, which are 

rare.  By changing dosage of genes within the cell, CNVs may affect expression of 

genes in cis with amplifications and gains increasing and deletions causing reduced 

expression. CNVs and SNVs can also act synergistically through the loss-of-

heterozygosity (LOH) such that the mutant allele becomes the only viable copy within 

the cell.  

In Chapter 2, we demonstrated that cis regulatory mutations are an important 

under-appreciated component of the repertoire of drivers in MCL. This was facilitated by 

leveraging matched gene expression and genetic information. Several studies have 

examined the copy number landscape of MCL, relying on lower resolution methods 

including array-based technology or whole-exome sequencing. Since they alter gene 

dosage, any putative target of recurrent CNVs should manifest in altered gene 

expression of the genes within them. In general, previous studies lacked matching gene 

expression data, which could aid in the effect of CNV on gene expression183,184. In lieu of 

this information, the genes thought to be targeted by a set of CNVs have been largely 

based on proximity to or existence in the minimal common region.  

Only WGS offers the potential to provide an unbiased view of the genomic 

landscape, allowing the identification CNVs and their underlying breakpoints along with 

copy-neutral SVs at base-pair resolution. Until recently, there has been limited whole 

genome data for MCL partly due to the relative rarity of the lymphoma and partly due to 

cost. SV breakpoints can form at any location in the genome and only through WGS 

could these positions be hoped to be found. SVs accruing in a specific region may hint 

towards the presence of a nearby oncogene or tumour suppressor and evidence of 

positive selection for disrupting the region. Identifying these recurrently altered SV 

regions has only recently been explored in solid tumours but have not been 

accomplished in MCL. Besides translocation of CCND1 to IgH locus, no other recurrent 

structural variation has been described in MCL. If there exists uncharacterized recurrent 

SVs, these may represent MCL-associated drivers, some of which could facilitate the 

identification of new therapeutic strategies.  

In this chapter, I explore the MCL mutational landscape from the structural 

variation and copy number perspective. By leveraging whole-genomes from different B-



46 

cell lymphomas, I developed a background model of the SV rate across the entire 

genome. Applying this model to MCL, I identified a novel SV breakpoint cluster on 

10p12.1. The region also harboured recurrent amplifications and gains. Expression 

analysis indicates an increase in expression of only a single gene in this region (ABI1). 

Finally, I clarify the putative targets of other commonly mutated regions. 

 

3.2. Results 

3.2.1. Clinical and molecular characteristics of MCL tumours 

MCL cases in this chapter were part of a larger compendium representing some 

of the most common mature B-cell neoplasms. These are being analyzed within an 

internal project known as Genomic Analysis of Mature B-cell Lymphomas (GAMBL). The 

MCL cohort consisted of 160 tumours including 145 cMCL and 15 nnMCL. Cases were 

acquired from two sources: 103 cMCL genomes were sequenced locally from patients 

from British Columbia, Canada (the BC cohort) along with matching constitutive DNA for 

83 patient-samples (Supplemental Data 6). An additional 42 cMCLs and 15 nnMCLs and 

matching constitutive DNA were acquired from the recent study by Nadeau et al45 (the 

Barcelona cohort). A subset of the BC cohort (81 tumours) also underwent ribosomal 

RNA depletion RNA-seq. The original study containing the Barcelona cases did not use 

RNA-seq data and therefore none were available to be included. To facilitate 

comparisons between tumour and normal RNA data, I included six samples of naïve B 

cells, which are considered the hypothetical cell-of-origin of MCL185. 

Clinical and molecular characteristics are summarized in Table 3-1. Cases 

roughly follow the expected 3:1 male-to-female ratio (p > 0.05; one-sample proportions 

test). The median age within the BC cohort was 61 years old (range, 31 - 90). Similar 

proportions of cases were categorized as either low, intermediate, or high-risk according 

to MIPI index and MCL35 stratification. Both metrics indicate that majority of cases were 

considered low-risk - 63% and 56% using MIPI and MCL35, respectively. Most samples 

were derived from lymph node biopsies.  

All MCL cases were used in subsequent analyses. The remaining (non-MCL) 

genomes in GAMBL (n=1054) were utilized for building the background model for finding 
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regions of recurrent SVs. MCL and non-MCL genomes were subjected to the same 

bioinformatic pipelines for pre-processing, sequence alignment and variant detection. 

Table 3-1 Clinical and molecular characteristics of cMCL in the BC cohort 

Characteristic Level BC (N=103)  

Sex Male 77 (75%) 

 Female 26 (25%) 

Age group < 57 yr 25 (24%) 

 57 - 65 yr 30 (29%) 

 66 - 72 yr 23 (22%) 

 > 73 yr 25 (24%) 

Tissue biopsy FF 102 (99%) 

 FFPE 1 (1%) 

Treatment HSCT + RCHOP 39 (38%) 

 Rituximab + Bendamustine 29 (28%) 

 Rituximab + CHOP/CVP 11 (11%) 

 CHOP/CVP 7 (7%) 

 Observation 13 (13%) 

 Other 4 (4%) 

MIPI Low 65 (63%) 

 Intermediate 27 (26%) 

 High 11 (11%) 

Biopsy site Lymph node 90 (87%) 

 Spleen 4 (4%) 

 Tonsil 3 (3%) 

 Other 6 (6%) 

MCL35 (N=91) Low 51 (56%) 

 Intermediate 28 (31%) 

 High 12 (13%) 

Abbreviations: cMCL, conventional MCL; FF, fresh frozen; FFPE, formalin-fixed paraffin embedded; HSCT, 
hematopoietic stem cell transplant; RCHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; CHOP, 
cyclophosphamide, doxorubicin, vincristine, prednisone; CVP, cyclophosphamide, vincristine, prednisone; MIPI, mantle 
cell lymphoma international prognostic index 
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3.2.2. Recurrent structural variations in B-cell lymphomas 

While some hematological malignancies are characterized by a single common 

chromosomal rearrangement such CCND1 in MCL or MYC in BL, it is appreciated that 

these are not sufficient for lymphomagenesis, instead requiring the acquisition of 

secondary mutations. Akin to other mutation types, SVs can contribute to 

carcinogenesis, but a minority of SVs represent drivers with the remainder being 

passenger mutations. Since drivers provide a selective advantage, these events are 

expected to be observed in a population of cancers more frequently than expected by 

chance. Identifying SV drivers therefore requires finding SVs clustered in a region across 

multiple tumours above a background rate of the occurrence of SV within that region. 

The background SV rate in this case would be a model of neutral selection in the 

tumour, that is, provide no selective advantage to the tumour but occur because of 

external factors such as chromosomal fragility. 

To identify putative SV driver events in MCL, I began by creating a background 

model using SVs from MCL, DLBCL, FL, MM, CLL and BL. I split the genome into 100 

Kbp regions (bins) and tabulated the number of SVs that occur within each bin across all 

tumours. A generalized linear model was used to model the SV counts along with 

potential covariates that may influence the propensity of a region to acquire breaks. 

These covariates included genomic characteristics (GC content, mappability, repetitive 

elements, DNAse sites, common fragile sites, gene density) and regulatory elements 

(chromatin states from Roadmap, and regulatory regions from ENCODE). This model 

was then fit onto SV counts per lymphoma type and the model fit was assessed using 

lambda values. Lambda values ranged from 0.99 and 1.07 indicating the background 

model provides a good fit between the expected and observed counts (Figure 3-1). Bins 

that accrued SVs more than would be expected by chance were deemed significant 

(adjusted P < 0.1). Significant bins within 1 Mbp were merged, and each bin was 

annotated with a probable target using a lymphoma driver gene list.  
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Figure 3-1 Q-Q plots of model fits for BL, DLBCL, FL, CLL, MM and MCL
Assessment of model fit for various B-cell lymphomas. Red dotted line represents extrapolated 
slope between expected and observed negative log10 P-values. Black solid line represents slope 
between expected and observed negative log10 P-values when model perfectly predicts observed 
counts. Genomic inflation factor (lambda) measures the ratio between red, dotted, and black, 
solid lines, where values closer to one is better. Alpha value is the estimate of the shape 
parameter for the Gamma distribution chosen for the model, where higher is better.

Among the regions identified, physiologic rearrangements within the three 

immunoglobulin loci were the most frequently affected by SV. Common SVs associated 

with the various lymphomas were also identified by this method, supporting its ability to 

detect SV drivers (Figure 3-2). For example, inter-chromosomal rearrangements

affecting BCL2 were the most common rearrangement in DLBCL and FL and SV

involving MYC were the most common in BL and rearrangements upstream of CCND1

were the primarily seen in MCL. This approach is not restricted to detection of 

translocations as deletions affecting DLEU1 and RNASEH2B were the most frequent in 

CLL.
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Figure 3-2 Oncoplot of recurrently altered bins across DLBCL, FL, CLL, MCL, 

BL and MM 
 

3.2.3. CCND1::IGH rearrangements in MCL 

Unsurprisingly, rearrangements within 200 Kbp of CCND1 were the most 

common SV found within the MCL genomes. In the BC cohort, CCND1::IGH 

translocations were observed in 77 of 103 (75%) tumours (Figure 3-3; Supplemental 

Data 7). Three of these tumours also contained breakpoints between 33 kbp and 81 kbp 

telomeric of CCND1 and mapping to IGH indicating an insertion of CCND1 into the 

heavy-chain locus. Of the 77 cases with CCND1::IGH translocations, 68 (88%) tumours 

had breakpoints mapping to the IGH D-J gene cluster on chromosome 14. Tumours with 

D-J breakpoints were found to map to the 5’ flanking region upstream of the affected D/J 

gene within putative RSS motifs, suggesting that these breakpoints were RAG-mediated 

translocations occurring during D-J joining. Two tumours were found with breakpoints 

mapping to the IGHV gene cluster (3%). In one tumour, the breakpoint mapped in the 5’ 

of IGHV4-34 in an intergenic region, while in the second tumour, the breakpoint mapped 

to within the gene body of IGHV4-39. Four (6%) tumours had breakpoints mapping 
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centromeric of IGHJ gene cluster within the emu enhancer. The region lacked any RSS 

motifs and was telomeric of IGHM raising the possibility that these breakpoints occurred 

during class-switch recombination instead of V(D)J recombination. Lastly, additional two 

tumours (3%) mapped to within IGH constant gene cluster. 

 
Figure 3-3 CCND1::IGH rearrangements in BC cMCL tumours 
Detected rearrangements between CCND1 (chr11) and IGH (chr14) locus are coloured by 
location of IGH breakpoints: blue, IGHV region; beige, IGHJ and IGHD region; red, Emu 
enhancer; teal, IGHC region. 

 

I observed that some cMCLs acquired mutations within aberrant somatic 

hypermutation regions (aSHM) across the genome. Furthermore, mutations affecting 

CCND1 were localized to 5’ flanking, promoter and first exon regions which was 

characteristic of aSHM (detailed in Chapter 4). Given that breakpoints on chromosome 

11 varied in distance from CCND1, we investigated whether there existed a relationship 
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between CCND1 breakpoint distance and total aSHM counts. I hypothesized that 

tumours with breakpoints closer to CCND1 would have greater number of aSHM within 

the genome, a possible indication that proximal breakpoints were hypermutation-

mediated186. Although there was not clear relationship between distance and aSHM 

counts, I observed that chromosome 11 breakpoints of high aSHM count tumours were 

largely found within 100kbp of CCND1 start site (Figure 3-4). 

 
Figure 3-4 aSHM counts in relation to CCND1::IGH rearrangements in BC and 

Barcelona MCL tumours 
Detected rearrangements between CCND1 (chr11) and IGH (chr14) locus are coloured by total 
aSHM counts. Colour gradient from white to red correspond to 0 and 30 aSHM count, 
respectively. 
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Twenty-six tumours (25%) had undetectable CCND1::IGH translocations based 

on the WGS data. In some cases, MCL are known to harbour a translocation to one of 

the immunoglobulin light-chain loci rather than IGH14,17,187. Of these twenty-six tumours, 

only five had breakpoints linking the CCND1 locus and one of the light-chains. In all 

cases however, the resulting derivative chromosome would be place CCND1 several 

megabases away from the light-chain locus, leaving their relevance unclear. Besides 

translocations involving the light-chains, CCND1 negative MCLs have been reported to 

contain rearrangements affecting either CCND2 or CCND314. After searching for these 

specifically, I was unable to find evidence of these rearrangements among the 26 cases. 

The reasons for lack of detection could be due to several factors including reduced 

sensitivity by the Manta algorithm or the region may have undergone complex 

rearrangements involving more than two chromosomes. While I only used Manta for this 

analysis, application of other structural variant callers may be able to identify the missing 

rearrangements. Additionally, an in-depth investigation of complex structural variations 

may be warranted. Despite not detecting CCND1 rearrangements in these cases, these 

tumours appear to be MCLs by standard diagnostic criteria and other molecular 

evidence. MCL is associated with high CCND1 and, in the case of cMCL, high SOX11 

expression. Both SOX11 and CCND1 gene expression were elevated in all MCL cases 

including those lacking a detectable t(11;14) relative to normal B cells and other B-NHLs 

(Figure 3-5). Although there were some outliers, the MCLs as a whole have markedly 

higher MCL marker expression than the other samples.  
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Figure 3-5 CCND1 and SOX11 expression of B-cell lymphomas and naïve B 

cells 
MCL tumours were coloured red and green and are indicated by circles. Non-MCL B-cell 
lymphomas and naïve B cells are indicated by triangles. 

 

3.2.4. ABI1 frequently altered by structural variations in MCL 

Besides CCND1, I noted two additional regions were enriched for SVs in MCL. In 

the first, SVs upstream of MTF2 on chromosome 1p22.1 were part of intrachromosomal 

rearrangements spanning up to 1.2 Mbp on chromosome 1. These breakpoints were 

annotated as either deletions (5) or duplications (2) but a concomitant change in copy 

number was not supported by read-depth based copy-number analysis. Closer 

inspection of this region in IGV also failed to show characteristic changes in coverage at 

the boundaries of the events. While these may simply be rare events, due to the lack of 

corroborating read support, I excluded this region from subsequent analyses.  

The second region that was uniquely enriched for SV in MCL genomes was 

10p21.1. The region contained seven genes, with intra-chromosomal breakpoints 

overlapping ABI1 and PDSS1 observed in four unique tumours, and inter-chromosomal 

rearrangements upstream of PDSS1 in two different tumours (Figure 3-6). The 
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translocations in 10p21.1 both affected an intergenic region on 1q42.2 within 75 kbp 

centromeric of MAP10 in two different patients. Gains or amplifications affecting 10p21.1 

were found in 27 tumours (26%) including 7 cases with copy-states of 4 or more. Taken 

together, the existence of recurrent SVs, and increases in copy number indicate a 

selective pressure to increase the expression of one or more genes on 10p21.1 (Figure 

3-6A). 

To identify the gene(s) most affected by the observed SVs and CNVs, I utilized 

matching RNA-seq expression data (where available). First, I stratified tumours 

according to their SV status and/or copy number status and performed two separate 

comparisons. First, I compared expression between mutated, unmutated MCLs. I 

separately compared the expression of these genes within mutated MCLs to the 

expression within available naïve B cell samples. Of the 20 genes, that reside in the 

recurrently altered region determined by GISTIC, only two (EBLN1 and ABI1) exhibited 

differential expression between mutated (CNVs and SVs) and unmutated tumours (P < 

0.05, Mann-Whitney U-test; Figure 3-6C). Upon further investigation, EBLN1 expression 

was low across all three categories and the differences appear to be driven by outlier 

tumours. In contrast, ABI1 expression appears affected by CNVs overlapping the gene. 

Interestingly, ABI1 is normally expressed at lower levels in MCL relative to naïve B cells, 

where in the normal samples ABI1 expression appears to be tightly regulated (Figure 3-

6D). I speculate that ABI1 may be downregulated within MCL upon transformation, but in 

a subset of tumours, structural variations that increase ABI1 expression provide some 

survival benefit and are subjected to positive selection. 

Amplifications and gains in 10p21.1 region had been previously reported in MCL, 

however, the target gene nominated previously was BMI1. When performing the same 

comparison, BMI1 expression could not be differentiated between normal, unmutated 

and mutated tumours suggesting that this gene may not be the target of the structural 

variations (Figure 3-6E). 
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Figure 3-6 Chromosomal alterations affecting ABI1 on chromosome 10 
(A) Overlapping CNV gains and amplifications in 10p21.1. Black solid line shows location of ABI1 
relative to CNVs. Pink overlay shows boundaries of GISTIC2.0 peak. (B) Structural variations 
found overlapping and upstream of ABI1. (C) Gene expression values of genes within GISTIC 
peak stratified by CNV and SV status. (D) ABI1 and (E) BMI1 gene expression between mutated 
and unmutated tumours along with expression in naïve B cell normal samples. 

 

ABI1 (ableson interactor-1) encodes a major regulator of actin polymerization 

acting through the large macromolecular WAVE complex to influence cytoskeletal 

remodeling, lamellopedia protrusions, and micropinocytosis. It was originally identified as 

an interactor of the ABL1 kinase. ABI1 dysregulation has been observed in multiple 

cancer types and has an influence of prognosis, albeit with conflicting results. Some data 

supports its role as tumour suppressor, such as recurrent deletions and reduced 

expression of ABI1 in prostate cancer 188. In contrast, ABI1 was shown to positively 

regulate breast cancer cell proliferation, migration and invasion189,190, and ABI1 was 

found to sustain epithelial-to-mesenchymal transition in ovarian cancer cells by acting 

through the SOS1/EPS8/ABI1 complex to transmit signal from Ras to Rac191,192. 

Interestingly, the expression of ABL1 itself appears to be uniformly upregulated in 

MCL compared to naïve B cells, consistent with a potential role of ABI1 in this neoplasm. 

As a downstream target of ABL1, ABI1 has been suggested as having possible 

oncogenic function in ABL-driven malignancies such as chronic myeloid leukemia and 

acute myeloid leukemia. Oncogenic fusion protein ABL1::BCR was found to 

phosphorylate ABI1 within WAVE complex causing localization to the plasma membrane 

to induce actin polymerization193. Although ABL1 appears upregulated in MCL, the 

substrates of ABL1::BCR may not be entirely shared with wild-type ABL such that the 

regulation of ABI1 outside malignancies harbouring ABL1::BCR remains speculative. 

Given the success of targeted interventions in other lymphoid cancers, the confirmation 

of ABI1 deregulation and functional exploration of its role and possible interplay with 

ABL1 in MCL are warranted.  
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3.2.5. Integrative analysis of copy number variations 

By applying the GISTIC2.0 algorithm to all cases profiled by WGS, I identified 20 

significant regions affected by CNVs or “peaks” (Q-value < 0.1). All CNVs used in 

GISTIC2.0 are detailed in Supplemental Data 8. These were evenly split between 

regions affected by amplifications and those affected by deletions (Figure 3-7; Table 3-

2). Most of these intersect with recurrent CNVs that have previously been documented 

as features of MCL such as gains of 3q25, 7p22-22, 8q21, 10p11-12, 18q11-q23 and 

losses of 1p13-p31, 6q23-27, 8p21, 9p21-22, 9q21, 11q22-q23, 13q11-q13, 13q14-

q3445,111,184,194–200. Even among these established CNVs, many still lack a definitive gene 

that represents the functional target of the event, leaving their role in lymphomagenesis 

unclear. To address this, I performed a similar integrative analysis (using matched RNA-

seq) to determine which genes were most affected by CNV. For each gene within each 

peak peaks, tumours were stratified into mutated and unmutated groups based on the 

copy number status of the gene and gene expression values were compared 

(Supplemental Data 9). Additionally, expression from naïve B cells were included to 

assess the physiological expression of genes. 
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Figure 3-7 CNV incidence rates in MCL 
Amplification (red) and deletion (blue) incidences per 100kbp regions across 160 MCL tumour genomes. Recurrently altered regions identified by 
GISTIC2.0 are annotated with the putative target gene based on gene expression, or with GISTIC2.0 cytochrome band when putative target is 
absent. 
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Table 3-2 Recurrently amplified and deleted regions in MCL 

Type Bands Q-value 
Frequency  

(N = 160)  

Amp 3q22.3-3q29 2.81 x 10-3 70 (44%) 
Amp 5p15.33 5.22 x 10-3 11 (7%) 
Amp 6p25.3-6p22.3 2.97 x 10-3 18 (11%) 
Amp 7p22.3-7p12.2 1.38 x 10-2 26 (16%) 
Amp 8q24.13-8q24.23 8.64 x 10-8 26 (16%) 
Amp 10p12.31-10p12.1 1.30 x 10-2 13 (8%) 
Amp 11q13.3-11q13.4 1.38 x 10-2 18 (11%) 
Amp 15q21.2 1.76 x 10-4 15 (9%) 
Amp 17p13.3-17p11.2 9.49 x 10-4 10 (6%) 
Amp 18q21.32-18q22.1 2.97 x 10-3 16 (10%) 
Del 1p22.1-1p21.1 1.60 x 10-28 53 (33%) 
Del 3p12.3 1.86 x 10-4 15 (9%) 
Del 6q16.3-6q25.3 6.86 x 10-15 34 (21%) 
Del 8p23.3-8p21.2 1.96 x 10-2 15 (9%) 
Del 9p21.3 2.82 x 10-15 34 (21%) 
Del 9q21.31-9q31.1 1.58 x 10-5 30 (19%) 
Del 11q22.3-11q23.1 1.66 x 10-39 57 (36%) 
Del 13q14.2-13q14.3 2.05 x 10-7 50 (31%) 
Del 13q32.3-13q34 2.05 x 10-7 51 (32%) 
Del 17q25.3 4.13 x 10-3 18 (11%) 

 

Deregulation of RB1 via the CCND1-CDK4/6 axis 

The 11q13.3 amplification peak overlaps CCND1 and there was a total of 8 

genomes with focal amplifications of this gene. CCND1 expression was not significantly 

different between cases having and lacking this CNV. This is likely confounded by the 

influence of other cis regulatory mutations such as point mutations and structural 

variations (mostly deletions) affecting the 3’UTR. These can introduce a pre-mature 

polyadenylation signal via upstream truncating and frameshift mutations, or by physical 

loss of the 3’UTR due to deletions and structural variations thereby possibly removing 

RNA-destabilizing element115,201,202. Accordingly, structural variations and deletions were 

observed in 14 tumours that overlapped CCND1 3’UTR (Figure 3-8) with six tumours 

harbouring focal deletions within or spanning the UTR. Four tumours showed inversions 

overlapping the 3’UTR including one tumour with an inversion of the coding exons of 
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CCND1 that separates them from the 3’ UTR. Similarly, one tumour showed tandem 

duplication event overlapping the majority of CCND1 except for the UTR. Lastly, three 

tumours displayed inter-chromosomal breakpoints within the 3’UTR and mapping to 

chromosome 14. These effectively represent an insertion of CCND1 (lacking its 3’ UTR) 

into the IGH locus. When the 3’UTR mutated tumours are included, CCND1 expression 

was higher among the five tumours with any cis regulatory mutation than among the 

remaining tumours (P-value = 0.029; Mann-Whitney U-test).  

 
Figure 3-8 Structural variations overlapping CCND1 3’UTR in BC and Barcelona 

cohorts 
Manta derived SVs overlapping CCND1 3’UTR are displayed coloured by SV type. BND, 
inversion; DEL, deletion; DUP, tandem duplication. Inter-chromosomal SVs are denoted by an 
arrow and chromosome location of the matching breakpoint. CCND1 gene shown at the bottom. 

 

Common focal deletions on 9p21.3 were found in 34 tumours (21%) that affect 

both MTAP and CDKN2A. CDKN2A encodes for two structurally distinct tumour 

suppressor proteins: p16INK4A and p14ARF which inhibit CDK4 and TP53, respectively. It is 

reasonable to assume that loss of CDK4 could be advantageous to MCL given the 

central importance of CCND1. Surprisingly, CDKN2A expression was similar between 

deleted and non-deleted tumours. In contrast, MTAP expression was significantly 

reduced in cases with this deletion (Q-value = 9.3 x 10-4, Mann-Whitney U-test). MTAP 
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encodes a metabolic protein involved in catalyzing adenine and methionine salvage. 

MTAP was often co-deleted with CDKN2A leading to aggressive tumours with poor 

prognosis. Recently, MTAP loss was found to be synthetic lethal to MAT2A loss203–205 

and inhibiting MAT2A in MTAP-deleted tumours reduced proliferation of tumour cells206. 

Alternatively, PRMT5 encodes an arginine methyltransferase that interacts downstream 

of MTAP. Inhibition of PRMT5 in MCL led to restoration of cell-cycle regulation, 

apoptosis, and negative regulators of BCR signaling207. Importantly, wild-type TP53 and 

CDKN2A/MTAP deletions were positive prognostic indicators of response to PRMT5 

inhibition indicating synthetic lethal relationship between PRMT5 and CDKN2A/MTAP207. 

Lastly, deletion of 13q14.3 which encompass RB1 are observed in 50 tumours 

(31%) and RB1 expression was downregulated in deleted tumours (Q-value = 5.2 x 10-4, 

Mann-Whitney U-test). The variety of structural variations affecting components of the 

CCND1-CDK4/6-RB1 axis appears to be a common feature in MCL. Additionally, 

evaluation of chromosome 17 revealed several amplifications and gains encompassing 

the entirety of 17p. This deviated from the expectation that 17p would acquire deletions 

due to the presence of TP53 in this region. I examined whether these 17p amplifications 

affected TP53 expression and found that expression was not different between mutated 

and unmutated tumours. However, tumours with deletions were associated with reduced 

TP53 (P = 0.0016; Mann-Whitney U-test).  

 

Integrative analysis of CNVs and expression 

The most frequent aberration was amp(3q26.1) spanning a 64 Mbp region 

between 3q22.2 to 3q29 and was gained in 44% (70/160) of tumours. In total, 161 genes 

were significantly over-expressed in amp(3q26.1) tumours compared to the remaining 

cases with no CNV in this region (Q-value < 0.01; Mann-Whitney U-test). 3q 

amplifications had been reported in other B-cell lymphomas where BCL6 is considered 

the target208–210. In MCL however BCL6 was not found upregulated due to CNVs (Q-

value = 0.11). Of the twenty within the region having the most extreme gene expression 

difference relative to normals (based on fold-change), PLCH1, MB21D2, and GP5 were 

most affected by gains and amplifications (Figure 3-9). Further supporting their 

relevance, each of these genes was highly expressed in MCL compared to naïve B cells 

and appear to be further up-regulated by the presence of gains or amplifications.  
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Figure 3-9 Variance-stabilized expression differences between amp(3q26.1) 

mutated, unmutated and normal samples. 
Displaying the top 20 of 161 significant genes based on fold-change between MCL count median 
and naïve B cell count median. Gene expression of each was normalized to the median 
expression of the gene within naïve B cell normal samples. 

 

Another common CNV was gains and amplifications affecting 6p22.3, which were 

observed in 11% (18/160). In this region, only two genes were significantly up-regulated 

at the mRNA level: MYLIP and PRPF4B. PRPF4B encodes for PRPF4, a pre-mRNA 

splicing factor containing Arg/Ser domain on its N-terminus, while the C-terminus domain 

shares homology with cyclin-dependent kinases and mitogen-activated protein 

kinases211. PRPF4 is an integral part of the U4/U6 small nuclear ribonucleoprotein212,213. 

Park et al214 showed that PRPF4 influenced cell growth, migration, invasion and 

apoptosis in breast cancer cells and Gao et al215 showed knockdown of PRPF4 in 

pancreatic and colorectal cancer cell lines reduced cancer cell viability and 

demonstrated that PRPF4 is amenable for pharmacological inhibition. Targeted 

overexpression of PRFP4 adds further support to the role of RNA-metabolism 

dysregulation in MCL. 

Twelve genes were significantly upregulated in 7p22.2 amplified region (Figure 3-

10). This region represents an arm-level event spanning 50Mbp and was observed in 
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16% (26) tumours. Among the 12 overexpressed genes, cytochrome oxidase C 

assembly factor 19 (COX19) showed increased mutant expression above both 

unmutated and normal cells (Q = 0.036; Mann-Whitney U-test). COX19 is an assembly 

component of cytochrome oxidase (COX), a terminal enzyme of the electron transport 

chain during oxidative phosphorylation. Due to its involvement in respiration, selective 

overexpression of COX19 may associated with increased respiratory need within the 

tumour cell. Interestingly, inhibition of COX19 by mir-21 in non-small cell lung cancer 

reduced cell proliferation and increased apoptosis216. Increased expression of COX19 

may play in attenuating apoptosis and increasing proliferation.  

Like COX19, Kelch-like Family Member 7 (KLHL7) displayed increased 

expression due to 7p22.2 gains and expression was overall higher in MCL tumours than 

in normal naïve B cells. KLHL7 encodes for a protein that complexes with Cullin3 (CUL3) 

and facilitates proteosomal degradation via ubiquitination of target proteins217. Increased 

KLHL7 protein expression has been observed in various cancers and may be a marker 

of poor prognosis218,219.  

 
Figure 3-10 Variance-stabilizied expression differences between amp(7p22.2) 

mutated, unmutated and normal samples. 
Gene expression of each was normalized to the median expression of the gene within naïve B 
cell normal samples. 
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Gains and amplifications around 8q24.21 were observed in 16% (26/160) of 

tumours. The amp(8q24.21) peak region spanned between 8q24.13 and 8q24.23 and 

was approximately 17 Mbp. This peak overlapped MYC and two genomes with focal 

amplifications surrounding this gene were noted. However, gene expression revealed 

that MYC is downregulated overall in MCL compared to naïve B cells (Figure 3-11). Only 

two genes within amp(8q24.21) were up-regulated: FBXO32 and MIR7874. FBXO32 

encoded for F-Box containing protein that functions as the substrate recognition 

component of SCF E3 ubiquitin-protein ligase and therefore directs target proteins for 

degradation via the proteosome. Interestingly, FBXO32 was shown to specifically target 

MYC for proteasomal degradation and inhibited MYC activity within HEK293T cell 

lines220. 

 
Figure 3-11 Variance-stabilizied expression differences between amp(8q24.21) 

mutated, unmutated and normal samples. 
Gene expression of each was normalized to the median expression of the gene within naïve B 
cell normal samples. 
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There were multiple regions where gene expression analysis did not reveal any 

significant gene expression differences affected by CNV. These regions included 

amplifications affecting 11q13.3 (11%; 18/160), 5p15.33 (7%; 11/160), 17p13.3-17p11.2 

(6%; 10/160), and deletions affecting 3p12.3 (9%; 15/160) and 17q25.3 (11%; 18/160). 

Deletions on 3p12.3 overlap ZNF717 and the first two exons of ROBO1, however, 

neither gene exhibited reduced expression in these cases. The 17q25.3 deletion peak 

was 1.2Mbp in size and overlapped 55 genes. 
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3.3. Methods 

Whole-genome sequencing data used in the validation cohort in Pararajalingam 

et al224 were incorporated with additional cases from BC Cancer patients, and whole-

genomes from Nadeu et al45 for this analysis. Cases which underwent whole-genome 

sequencing were selected for RNA sequencing with an additional 27 tumours 

undergoing only RNA-sequencing. In total, this analysis utilized 160 MCL cases whole-

genomes and 129 cases RNA-seq. 

 

3.3.1. Read mapping 

Whole genomes sequenced at the BC Genomes Sciences Centre were aligned 

to the human reference genome (GRCh38) lacking alternate contigs. Alignment was 

executed using BWA mem (version 0.7.6; parameters: -M)167. Aligned genomes from 

Nadeu et al45 in BAM format were downloaded from EGA (EGAD00001006025). 

 

3.3.2. Copy number variation analysis 

Regions containing copy number variations (CNV) were identified using 

Battenberg for cases with matched normal DNA, and Control-FREEC for cases without a 

matched normal225,226. Control-FREEC was run using a hard-masked reference file 

obtained from UCSC. The Battenberg R package was forked from the development 

version and modified to allow the usage of chromosome prefixed reference files. CNVs 

found by Battenberg were converted to SEG format using a custom Python script. To 

reduce noise, each seg file was filtered using CNVfilteR (version 1.6.1) to keep 

segments that were concordant with VAFs of overlapping SSMs227. Tumour SEG files 

were processed to fill in missing genomic regions with copy-neutral segments using a 

custom Python script and merged. The merged SEG file was as input for GISTIC2.0 

(parameters -genegistic 1 -broad 1 -conf 0.99 -gcm extreme -js 8 -qvt 0.5 -td 0.5 -

armpeel 1 -maxspace 5000 -v 30 -cap 2)228. GISTIC2.0 was run using an hg38 reference 

file supplemented with miRNA genes. Gains and amplifications were defined by 
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GISTIC2.0 where segments with absolute copy numbers between 3 and 4 were 

considered gains, and segments with copy numbers greater than 4 were considered 

amplifications. Heterozygous and homozygous deletions were not separated for 

analyses in this thesis. Resulting wide peaks were filtered to retain peaks greater than 

1Mbp and had Q-value less than 0.1. Any overlapping peaks were merged to prevent 

double counting in subsequent analyses. Peaks less than 20 Mbp in length were 

considered focal and were annotated using a curated lymphoma driver gene list. 

 

3.3.3. Structural variation analysis 

Large scale structural variations (SV) supported by paired and split-read 

evidence were discovered using Manta on default settings in tumour/normal mode with 

an hg38 reference file229 (Full list of MCL SVs detailed in Supplemental Data 10). Manta 

VCF outputs containing somatic SVs were converted to BEDPE format using svtools 

vcftobedpe (https://github.com/hall-lab/svtools). In addition to MCL tumours, Manta was 

run on tumour-normal pairs from diffuse large cell B-cell lymphoma (DLBCL), Burkitt 

lymphoma (BL), follicular lymphoma (FL), chronic lymphocytic leukemia (CLL), multiple 

myeloma (MM), and other B-cell lymphomas. Sequencing data for non-MCL cases were 

a combination of samples sequenced at BC Genomes Science Centre and data 

downloaded from public repositories. For non-MCL tumours that were aligned to a 

reference besides hg38, Manta was run using the appropriate reference file and the 

resulting SV BEDPE files were converted to hg38 coordinates with liftOver (version 

3.6.6) and “hg19tohg38” chain file provided by UCSC Genome Browser. 

Genomic regions containing SVs in multiple tumours may be evidence of positive 

selection, but such clusters are confounded by the presence of mapping and genomic 

artifacts. To distinguish between regions containing potential oncogenic drivers and 

passenger events, the region-specific background SV rate was estimated by fitting a 

negative binomial generalized linear model (GLM) using the fishHook R package 

(version 0.1) (https://github.com/mskilab/fishHook). The genome was split into 100kbp 

regions (i.e., bins) and the number of SVs per region per tumour was tabulated using 

SVs from all lymphoma types, thus providing the cohort-wide SV rate per bin. To prevent 

inflation of bin counts by highly rearranged tumours, each tumour could contribute a 
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maximum of one count per bin. Heterochromatin and genomic gap coordinates were 

downloaded from UCSC genome browser, and bins that overlapped these regions were 

excluded.  

The background SV rate of any given bin may be influenced by a variety of 

factors. To build an accurate model of the background SV rate, 28 covariates were 

initially selected for GLM fitting. From UCSC Genome Browser, SINE, LINE, LTR 

positions from the repeatmasker track, ENCODE CD20 DNAase positions, genomic GC 

content, genomic mappability, and candidate cis-regulatory elements were downloaded 

in BED format. Genomic fragile sites were downloaded from HumCFS database230. 

Predicted chromatin states from B-cell epigenomes were downloaded from RoadMap 

database231. Lastly, gene density within a 3 Mbp sliding window (1 Mbp offset) was 

included as a model covariate. Stepwise regression of the linear model using all 

covariates was performed and the model that achieved the highest AIC value was 

selected. The optimal model included 26 covariates. This model was then fit to each 

lymphoma type SV count separately and significantly enriched bins after multiple-testing 

correction were identified (Q-value < 0.1; Bonferroni). Bins that were within 1Mbp of 

another bin were merged and were annotated using a curated lymphoma driver gene. 

 

3.3.4. Quantification of gene expression 

Gene expression was quantified at the transcript level using salmon (version 

1.10)232. RNA-sequencing reads were pseudo-aligned to the human transcriptome 

(Gencode release 33). Transcript level counts were imported into R (version 4.1.3) using 

tximport (version 1.22.0) and summarised to gene counts233. Top 1000 most variably 

expressed were used to investigate batch effects by principal component analysis (PCA) 

in R. PCA components were visualized in R using ggplot2 (version 3.3.5). Batch effects 

associated sample storage were removed by including sample storage variable in the 

DESeq2 (version 1.34.0) model234. Corrected counts were then normalized for library 

size and heteroskedasticity was lessened using variance-stabilization DESeq2. The 

resulting transformed counts were used for all RNA-seq analyses and visualizations. For 

the integrative analysis, all genes with available RNA-seq expression data within 

GISTIC2.0 peaks were analyzed. 
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3.3.5. Statistical analyses 

R (version 4.1.3) was used to perform Mann-Whitney U-test and multiple testing 

correction using Bonferroni method where applicable. P-values below 0.05 and Q-values 

below 0.10 were considered significant. 
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Chapter 4.  

Consensus clustering reveals MCL genetic subgroups 

The following chapter builds on my prior findings by integrating the genetic 

features from chapters 2 and 3 to resolve the genetic heterogeneity in our MCL genome 

cohort. I performed and designed all analyses described in this section, including feature 

selection, model training, and data analysis.  

 

4.1. Introduction 

There is no international consensus for the standard treatment of MCL with 

decisions for specific treatments dependent on region, expertise, access to therapies 

and on clinical features such as patient age/frailty. The exploration of new treatment 

options or combinations that may extend survival of MCL patients is ongoing. The recent 

SHINE trial235 evaluated the efficacy of combining standard treatment with either ibrutinib 

or placebo in previously untreated, older MCL patients. While patients treated with 

ibrutinib showed modest increase in progression-free survival relative to the control arm, 

complete response rates between both arms remained the same. Furthermore, an 

exploration of the efficacy of ibrutinib within MIPI stratified patient groups showed that 

the ibrutinib treatment was not better than that of placebo within the high-risk patient 

population. These results highlight that generalized application of treatments are, at 

best, leading to modest improvements in patient outcome and highlight the need for 

superior approaches. One avenue of improvement may be the application of precision 

medicine whereby patients are treated based on the specific genetic characteristics of 

their respective tumours. Such an approach would enable future clinical trials to consider 

the interplay between a treatment’s mechanism of action and tumour genetics. 

Theoretically, this could enable the identification of patients with the greatest chance of 

benefiting from a particular treatment, thereby improving outcomes beyond the modest 

results achieved thus far in randomized controlled trials. 

The genetic landscape of MCL delineated in the preceding chapters represents a 

substantial expansion of our understanding of the genes and biological pathways that 
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are commonly perturbed in this neoplasm. While these mutations have advanced our 

knowledge into MCL aetiology, these results also affirm the notion of widespread genetic 

heterogeneity among patients. Although these results add further complexity to the study 

of MCL, the genetic diversity may provide an opportunity to form the basis for 

understanding the known clinical heterogeneity of the disease. Prior efforts to delineate 

clinical differences among MCL patients led to the current classification, which is based 

on putative cell-of-origin (i.e., cMCL and nnMCL). While this has cemented differential 

application of treatments between cMCL and nnMCL patients, due to the residual clinical 

heterogeneity within cMCL, clinical management is an ongoing challenge. As cMCL 

cases represent the majority (approximately 90% of new diagnoses)33,34,236 and cMCL 

have shorter survival in general, this subgroup requires further attention. 

Until recently, DLBCL has been conventionally divided into two subgroups. 

However, for nearly 20 years, clinical trials attempting to apply precision medicine to 

DLBCL have been unsuccessful. The two original molecular subgroups were termed 

germinal centre B-cell like (GCB) and, post-germinal centre B-cell like (ABC). In a 

research setting, these subgroups enabled greater understanding of oncogenic 

processes occurring in DLBCL including finding treatable genetic pathways unique to 

each subgroup. However, clinical trials of therapies exploiting these genetic features 

largely failed to improve patient outcome237. Using mutation, recurrent copy number and 

SV information, Schmitz et al143 and Chapuy et al238 showed that DLBCL comprised a 

more diverse collection of genetic subgroups. The eventual establishment of the 

LymphGen classifier by Wright et al239, extended nomenclature and subgroups by 

Schmitz et al143. LymphGen classified tumours into one of seven groups: MCD, BN2, 

EZB-MYC+, EZB-MYC-, ST2, A53, and N1.  

Each DLBCL subgroup has mutations in pathways that might indicate therapeutic 

vulnerabilities. For example, it has long been thought that ABC-DLBCL would be 

susceptible to inhibitors like ibrutinib which perturb BCR signaling240. Similarly, MCD 

tumours commonly feature MYD88L265P and CD79B mutations, which indicate reliance 

on pathways normally activated by B-cell receptor signalling. Based on the hypothesis 

that BCR signaling inhibition would benefit this subset of DLBCL patients, the PHOENIX 

trial was conducted to evaluate the efficacy of adding ibrutinib to R-CHOP in previously 

untreated DLBCL241. Evaluation of the PHOENIX through the lens of LymphGen 

classification groups showed improved performance of ibrutinib administered to MCD 
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tumour patients versus placebo242. This study demonstrated the feasibility and 

effectiveness of applying rational therapeutic approach for a non-Hodgkin lymphoma. 

This approach could be applied to other lymphomas such as MCL, but an understanding 

of the genetic subgroups is currently incomplete. 

Motivated by the potential benefits afforded by the recent transition of DLBCL 

classification from a cell-of-origin based scheme to genetic subgroups, I sought to 

explore whether a similar approach may be appropriate for MCL. Specifically, I 

hypothesize that the underlying complexity of MCL may be more adequately described 

through its genetic features, thereby informing on clinical and biological heterogeneity. 

Similarly, a recent study attempted to apply genetic subgrouping to MCL, demonstrating 

the potential utility of this approach. Yi et al243 used clustering to dissect the genetic 

heterogeneity of 134 MCLs. Their approach resembled that applied to DLBCL by 

Chapuy et al238 including the use of non-negative matrix factorization (NMF) clustering. 

Their features included SNVs within their candidate MCL driver genes, recurrent CNVs, 

and IGHV mutation status where IGHV was designated as being mutated in a tumour if 

the variable region shared less than 97% identity with the germline sequence. Their 

analysis resulted in four clusters (C1, C2, C3, C4). Interestingly, these clusters displayed 

differential clinical outcomes (overall survival and progression-free survival) with the 

largest difference between C1 and C4. Tumours in C1 had the most favourable 

prognosis and consisted primarily of indolent nnMCL cases, thereby recapitulating a 

known group. Unsurprisingly, one of the primary features associated C1 was IGHV 

mutation status, which is a feature of nnMCL. They also noted an enrichment of cases 

with mutations in CCND1 and amplifications affecting this locus (11q13). Patients 

assigned to clusters C2 and C3 had similar survival, with average OS intermediate to C1 

and C4 tumours. The majority of C2 cases harboured deletions 11q overlapping ATM 

and concomitant ATM SNVs. Furthermore, this group also harboured deletions of 

1p21.1, and while not stated in the study, overlapped S1PR1 which we had previously 

identified as an MCL driver gene in our exome analysis. Tumours in C3 harboured 

changes in multiple features without an obvious unifying set of driver mutations. The 

primary alterations in this group included amplifications in 3q21.1-29 which is commonly 

observed in MCL, and harboured deletions on 6q25.3-26. Importantly, C4 was enriched 

for patients with poor prognosis. Accordingly, MCLs in this group contained genetic 

features already known to be associated with high-risk disease such as deletions of 
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17p13.3 (TP53), TP53 mutations, deletions of 13q14.2 (RB1) and deletions of 9p21.3 

(CDKN2A/MTAP).  

The clusters identified by Yi and colleagues represent the first evidence of 

genetic subtypes in MCL. However, the genetic clustering approach may be further 

improved. For example, the number of features could be enhanced by incorporating SV 

information, or other known genetic changes associated with outcome201. Additionally, 

features that are predicted to affect the same gene could be consolidated where 

applicable. This is particularly relevant for C2 and C4 which are primarily associated with 

ATM mutations/deletions and TP53 mutations/deletions, respectively. Failing to combine 

similar features may be inflating the importance of a select few features in cluster 

formation. 

Notably, in the DLBCL literature the genetic subgroups are in flux, whereby 

different analytical and/or sequencing methods have led to genetic subgroups with only 

partial overlap237 and ongoing work in our lab is exploring how WGS data may lead to 

improvements and extension of existing classification systems. Notably, the study by Yi 

et al243 relied mainly on coding mutations from exome data and did not include other 

mutations that could be detected by WGS. Lastly, usage of IGHV mutation status as a 

feature may separate nnMCL from cMCL, but this may also prevent clustering of cMCLs 

with nnMCLs that would otherwise be genetically similar. To address these problems, I 

sought to determine whether a more comprehensive set of driver mutations and other 

mutational features could lead to a more robust set of clusters and possibly novel or 

more clinically meaningful subgroups in MCL. 

 

4.2. Results 

4.2.1. Somatic hypermutation in MCL 

Successful application of any machine learning approach, including clustering, 

depends on the features selected for inclusion. For this analysis, I included the full extent 

of protein-coding mutations in significantly mutated genes and recurrent copy number 

aberrations that were described in Chapter 3. Mutations in WGS were identified using a 

consensus variant calling pipeline developed for the GAMBL project (Figure 4-1; 
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Supplemental Data 11). I was also interested in improving our ability to distinguish cMCL 

from nnMCL using genome-wide features. Given the nature of nnMCL and that these 

tumours likely undergo germinal centre reaction during its development, I hypothesized 

that the inclusion of suspected passenger mutations resulting from somatic 

hypermutation (SHM) and aberrant somatic hypermutation (aSHM) may be informative 

for this separation. We applied the same methods used to find DLBCL and BL aSHM 

regions to MCL, however the only result was the promoter region of CCND1. We 

hypothesized that MCLs undergoing germinal centre reaction may share aSHM 

mutational pattern to that of other post-germinal centre lymphomas and so we 

supplemented this analysis with DLBCL and BL derived aSHM regions. The specific set 

of regions were comprehensively determined in previous analyses of DLBCL 

genomes132 and were subsequently shown to be affected by aSHM in other B-cell 

lymphomas such as BL131. These regions of high mutation burden were hypothesized to 

be the result of off-target activity of cytidine deaminase (AID), which is active during 

physiological B-cell development to increase antigen variability within immunoglobulin 

variable regions.  

 
Figure 4-1 Algorithmic view of SSM variant calling pipeline for MCL genomes 
Maroon boxes indicate variant calling tools; teal boxes are variant filters used; light-blue box 
indicates consensus calling software used to finalize variant calls.  
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In addition to the regions documented as hypermutated in DLBCL and BL, I also 

sought to find any non-coding regions uniquely mutated in MCL. Inspection of the SNV 

distribution affecting CCND1 including 500 bp flank regions, I found that CCND1 

exhibited a mutational pattern akin that of other aSHM regions (Figure 4-2A). 

Interestingly, there were examples of each of nnMCL and some cMCL with mutations in 

the 5’ UTR and first exon regions of CCND1, which could suggest that at least some 

cMCL cases may undergo germinal centre reactions (Figure 4-2A). Examining the 

degree to which aSHM regions were mutated across the MCLs revealed that majority of 

DLBCL/BL aSHM targets had fewer than two mutations in each MCL tumour (Figure 4-

2B; Supplemental Data 12). One reason for this difference could be that the off-target 

potential of an aSHM site may be dependent on the transcriptional activity and chromatin 

state of the site when AID is active244. Since the cell of origin for MCL and DLBCL are 

distinct, they would be expected to have different sets of active regulatory regions. In 

contrast, CCND1 was highly mutated in MCL which coincides with the fact that CCND1 

is highly expressed in MCL and is translocated within the IGH locus, which provides 

opportunity for mutation by AID. 
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Figure 4-2 Putative aSHM in MCL 
(A) Mutation burden of CCND1 in cMCL (red) and nnMCL (blue). Yellow highlight indicates the 
region of CCND1 that contained the bulk of mutations derived from aSHM and were used in NMF 
clustering. (B) Mutation count across GC lymphoma aSHM sites and CCND1 aSHM regions 
(hg19 coordinates). Point size indicates number of MCL tumours with a given aSHM count per 
region. Tumours with zero aSHM mutations were omitted. 
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4.2.2. Genetic clustering in MCL 

To identify genetic subgroups in MCL based on shared biological features, I 

applied a non-negative matrix factorization (NMF) clustering to 39 genetic alterations 

identified in chapters 2 and 3 along with mutated aSHM targets (Figure 4-3A). Genetic 

features which could potentially be affecting the same driver gene were consolidated into 

single features to reduce the chance of overfitting clusters and avoid double-counting of 

redundant events. After consolidation and removal of tumours that had fewer than three 

features, a total of 158 tumours were viable for clustering. We used a standard 

methodology for performing NMF which relies on testing multiple possible solutions and 

selecting the rank which maximizes cophenetic and silhouette values (Figure 4-3B). The 

optimal solution converged on five genetic subgroups with robust genetic features 

associated with each cluster. 

 
Figure 4-3 NMF clustering schematic and rank selection metrics 
(A) SSMs of MCL driver genes, recurrent CNVs and SVs, CCND1 3’ UTR and somatic 
hypermutation regions were consolidated into tumour-feature matrix. Consensus clustering on 
feature matrix was performed using NMF. (B) Ranks between 2 and 10 were tested using nsNMF 
algorithm and silhouette and cophenetic constants were used to select optimal NMF rank. 

 

Evaluation of survival characteristics of these five genetic subgroups reveals 

distinct survival outcomes for each cluster. When considering cMCL and nnMCL cases 

together (i.e., the entire cohort), the clusters differed significantly in overall survival (OS) 

(P < 0.0001; Figure 4-4A). Patients in cluster 1 had the best outcomes compared to 

other clusters (median OS not reached) and were significantly longer than all other 

clusters except cluster 2. Patients in both clusters 2 and 3 had intermediate OS with 

median OS of 12.8 years and 13.3 years, respectively, and were not significantly 
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different (P = 0.6; log-rank test). Patients in clusters 4 and 5 did not differ in OS (P = 

0.15; log-rank test) and had median OS of 5.89 years and 3.07, respectively. Although 

cluster 1 patients had the best OS, 41% of tumours were nnMCL (13/31) which could 

explain the apparent increase in overall survival for this group. Considering this 

confounder, I omitted all nnMCL tumours from cluster one and re-evaluated overall 

survival. After this, overall survival remained significantly different from other clusters (P 

< 0.0001; median OS not reached; Figure 4-4B). In other words, patients with cMCL 

tumours that group within cluster 1 tended to perform better in terms of survival.  

Besides OS, clusters were also had significant differences in progression-free 

survival (PFS) and disease-specific survival (DSS) in only cMCL tumours. Median PFS 

of clusters four and five were lower compared to remaining clusters (Figure 4-4C). 

Disease-specific survival followed a similar pattern in cMCL tumours (Figure 4-4D). 

 
Figure 4-4 Survival impact of NMF clusters 
(A) Overall survival (OS) of cMCL and nnMCL tumours stratified by cluster membership. (B) OS 
of cMCL tumours stratified by clusters. (C) Progression-free survival (PFS) of cMCL tumours 
stratified by clusters. (D) Disease specific survival (DSS) of cMCL tumours stratified by clusters. 
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Characteristics of MCL Cluster 1 

MCL Cluster 1 (MC1) had the highest representation of SHM features, with the 

most common mutations affecting the CCND1 and IGLL5 loci (Figure 4-5). This cluster 

contained nearly all nnMCL tumours except for one case in cluster 4. In addition to 

nnMCL tumours, cluster 1 also contained 18 cMCL tumours. These cMCLs assigned to 

Cluster 1 also had genetic aberrations affecting other genes that were shared with the 

other clusters. In other words, the distinguishing feature of Cluster 1 cMCLs is the 

presence of mutations associated with aSHMs, a feature they share with the nnMCLs. 

Owing to the unexpected presence of SHM-associated mutations, the cMCL 

tumours in this cluster may represent MCLs that have experienced the germinal centre 

at some point prior to, or during, lymphomagenesis. Evidence of germinal centre 

reactions may be inferred through the usage of signature analysis where it is expected 

that mutations generated by hypermutation processes can occur both within and outside 

SHM regions. To investigate the mutational processes occurring in MCL and to 

determine whether mutational processes differed within SHM regions, I performed 

signature analysis using all mutations and separately using mutations only within SHM 

regions including 1 kbp region containing CCND1 promoter. After decomposing de novo 

signatures into known COSMIC signatures, signatures SBS9 and SBS84 were prevalent 

within cluster 1, but were enriched separately in cMCL versus nnMCL tumours. As 

expected, there was strong evidence of SBS9 in cluster 1 nnMCL cases, which suggests 

mutations arising from repair by the error-prone polymerase eta (POLH). In contrast, the 

SBS84 was more common in cluster 1 cMCL, which implies canonical AID activity 

without repair by POLH. It appeared that while mutational processes associated with 

germinal centre development occurred in both MCL subtypes in cluster 1, the two 

tumour types undergo distinct development.  
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Figure 4-5 Heatmap of tumour and mutational features of NMF genetic clusters 
Top barplot: total count per tumour of mutations within aSHM regions. Left stacked barplot: 
Frequency of mutations for a given feature within each cluster. Left barplot: Fisher’s test -log10Q 
values for a feature’s assigned cluster. Abbreviations: IGHV, immunoglobulin heavy-chain 
variable; IGK, immunoglobulin light-chain lambda; IGL, immunoglobulin light-chain kappa; SBS9, 
COSMIC signature 9; SBS84, COSMIC signature 84. 

 

Characteristics of MCL Cluster 2 

The second cluster of patients (MC2) contained several predominant genetic 

features. The most abundant were large gains around spanning between 7p22.3 to 

7p12.1 with peak at 7p22.2, present in 41% of cluster 2 tumours (17/41). Apart from 

these amplifications, this cluster also featured deletions and mutations that encompass 

ATM or S1PR1. Although not significant (P = 0.051, Fisher’s exact test), ATM and 

S1PR1 mutations and deletions were nearly two-times more likely to co-occur in the 
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same tumour than not (OR = 1.92). Both aberrations were observed in other cluster 

tumours especially ATM. Another common feature was deletions spanning 6q16.3 to 

6q25.3 and a peak at 6q22.31 which was observed deleted in 21 cluster 2 genomes 

(51%). This cluster also had the highest representation of amplifications and structural 

variations of ABI1, collectively found in 29% of cluster 2 genomes (12/41).  

Characteristics of MCL Cluster 3 

MCL Cluster 3 (MC3) had the lowest number of unique genetic features, with an 

amplification peak at 3q26.1 being the most predominant, followed by large 

amplifications spanning 3q22.2 and 3q29. Copy number gains across this region have 

been extensively reported in MCL in prior studies. However, as previously discussed, the 

target of this event is unclear even after my search for cis regulatory effects on gene 

expression.  

Characteristics of MCL Cluster 4 

MCL Cluster 4 (MC4) represents the first group enriched for patients with inferior 

prognosis. The most prominent features of this cluster are amplifications 8q24.1 and to a 

lesser degree 13q14.3 deletions. Interestingly, many tumours in this cluster also contain 

aberrations in features associated with cluster 5 such as 9p21.3 deletions, 9q23.33 

deletions and TP53 deletions and mutations.  

Characteristics of MCL Cluster 5 

The cluster of patients with the worst clinical outcomes is MCL Cluster 5 (MC5). 

The most prominent features in this cluster are many of the known aberrations for poor 

prognosis including deletions of 9p21.3 (CDKN2A/MTAP), TP53 mutations and 

deletions, 5p15.33 amplifications (TERT) and CCND1 3’UTR mutations.  
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4.3. Methods 

4.3.1. Detecting Simple Somatic Mutations  

Simple somatic mutations (SSM), consisting of SNVs and indels, were identified 

from WGS data for all tumour/normal pairs using a consensus calling approach. This 

pipeline relies on votes from four somatic variant calling algorithms: Strelka2, LoFreq, 

SAGE and Mutect2245–247. Candidate variants were first individually identified using 

Strelka2, LoFreq and Sage. Strelka2 (version 2.9.10) variants were post-filtered to 

remove variants with GnomAD population allele frequencies (AF) greater than 0.0001, 

SomaticEVS score and depth less than 10. LoFreq (version 2.1.5) and SAGE (version 

2.6) variants post-filtered to remove variants with GnomAD AF greater than 0.0001248. 

Candidate variants from Strelka2 and LoFreq were combined and subsequently used as 

candidate variant positions for running Mutect2 (version 4.1.8.1). Variants called by 

Mutect2 were filtered to remove variants with GnomAD AF greater than 0.0001, read 

depths less than 10, less than four reads supporting the alternate allele, and variant 

allele frequency less than 0.1. Variants from all four variant callers were intersected by 

position using Starfish (version 0.2.2) and variants that were found by at least three 

callers were retained making up the final call set. Variants were annotated and 

converted to MAF format using vcf2maf (version 1.6.18) and Variant Effect Predictor 

(release 86)171. Canonical variants were selected during variant annotation except in 

cases where more non-synonymous mutations outnumbered in a non-canonical gene 

isoform. 

Regions affected by aberrant somatic hypermutation (aSHM) were examined in 

MCL using the presence of SSMs. Specifically, variants within a curated set of DLBCL 

aSHM regions along with variants within the first exon, 500 bp upstream the first exon, 

and the first intron of CCND1 were counted per tumour. Tumours that had at least two 

variants within a given aSHM region were considered hypermutated for that region. 
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4.3.2. SSM mutational signature analysis 

De novo and COSMIC single base substitution (SBS) mutational signatures were 

extracted from the SSM data using the SigProfiler software suite (version 1.1.0)249. First, 

a matrix of tri-nucleotide mutational contexts was tabulated using 

SigProfilerMatrixGenerator and hg38 human reference. De novo mutation signatures 

were extracted using a two-phase approach. In the first phase, SigProfilerExtractor was 

run for each rank between 2 and 25 with iterations set to 30. Next, the optimal number of 

signatures from the previous step was obtained and SigProfilerExtractor was run again 

with the optimal signature rank and number of iterations set to 200. De novo signatures 

were then “decomposed” to COSMIC signatures (version 3.1) with SigProfilerExtractor. 

COSMIC signature activity values per sample were then processed in R and used for all 

analyses. 

 

4.3.3. Immunoglobulin gene usage 

MiXCR (version 4.3.2) and IgCaller (version 1.2) were used for immunoglobulin 

clonotyping250–252. Since MiXCR considers expressed immunoglobulin transcripts for 

assessing dominant clonotypes, MiXCR results were selected over IgCaller in cases 

where both were available. For both MiXCR and IgCaller results, clonotypes were 

considered mutated if the variable region sequence shared less than 98% similarity to 

the aligned germline sequence corresponding to the CLL germline sequence threshold. 

MCL RNA-seq was run using MiXCR ‘analyze shotgun’ command. Resulting 

FASTQ files containing assembled clonotypes were queried against a local copy of the 

igblastn databse (version 1.17.1) and the highest matching queries were retained for 

each clonotype. Dominant clonotypes were selected for each sample by considering 

only productive clonotypes that had the highest clone fraction and were supported by at 

least 50 reads. IgCaller results were used for cases where RNA-seq was unavailable. 

IgCaller was run with default settings and references in paired or unpaired mode 

depending on availability of matching normal samples. Results were further filtered to 

remove low scoring clonotypes (score < 10) and to remove clonotypes predicted to 
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produce unproductive transcripts. In cases where more than one viable clonotype was 

observed in a sample, the clonotype with the highest score was retained. 

 

4.3.4. Consensus clustering using non-negative matrix factorisation 

Genetic subgroups were discovered using non-negative matrix factorization 

(NMF) using the NMF package (version 0.31.1) in R (version 3.6.3). First, a feature 

matrix of mutations and tumours was created. Non-synonymous somatic mutations in 

MCL driver genes identified in Chapter 2 were encoded as 1 if a mutation was present in 

a sample and 0 otherwise. Mutations affecting HNRNPH1 also included synonymous 

mutations if they overlapped splice regions flanking exon 4. GISTIC2.0 peaks identified 

in Chapter 3 were used for copy number variations. High copy amplifications (CN > 3.7) 

and homozygous deletions (CN < 0.8) were encoded as 2, low-copy gains (2.1 < CN < 

3.7) and heterozygous deletions (1.4 > CN > 0.8) were encoded as 1, absence of CNVs 

were encoded as 0. Structural variations affecting ABI1 and 3’UTR of CCND1 identified 

in Chapter 3 were encoded as 1 if present and 0 if absent. Somatic hypermutation 

regions were encoded as 1 if present and 0 if absent. Deletion of TP53 (17p) and non-

synonymous mutations affecting TP53 were encoded as 1 if present and 0 if absent. 

Mutation features that were shown to likely affect the same gene were collapsed into a 

single feature which included: 10p12.1 copy gains/amplifications and ABI1 SVs, 11q23.1 

deletions and ATM mutations, and 1p21.1 deletions and S1PR1 mutations. Features 

were included for clustering if they were observed in at least 3 tumours overall. 

The optimal NMF rank and NMF algorithm was selected by testing NMF solutions 

using ranks between 2 and 10 for each algorithm and selecting the rank and algorithm 

that achieved the highest silhouette and cophenetic metrics after 30 iterations. An 

optimum of 5 ranks using the nsNMF algorithm were used for the final model. NMF was 

subsequently run again with algorithm set to nsNMF, rank set to 5 and iterations set to 

100. Heatmaps of clustered mutations and tumours were made using pheatmap (version 

1.0.12) in R. 
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4.3.5. Survival Analyses 

Kaplan-Meier curves were used to assess survival differences between NMF-

derived patient-genetic clusters. The survival R package (version 3.1-8) was used to 

estimate progression-free survival (PFS), overall survival (OS) and disease-specific 

survival (DSS) depending on survival variable availability. Kaplan-Meier survival curves 

visualized using survminer R package (version 0.4.8). Log-rank test was used to quantify 

the difference between groups where a P-value below 0.05 was considered significant. 

OS was defined as the time between diagnosis and time of any death, PFS was the time 

interval from diagnosis to the first instance of disease progression or death, and DSS 

was the time between diagnosis and time of death due to disease or acute toxicity of 

treatment. All Kaplan-Meier curves produced using right-censored data. OS data was 

available 144 samples including samples belonging to the Barcelona cohort. PFS and 

DSS values were only available for patients belonging to the British-Columbia (BC) 

cohort. 
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Chapter 5.  

General Discussion 

5.1. Summary of Research Findings 

The first two data chapters (Chapters 2 and 3) aimed at comprehensively 

delineating the pattern and frequency of known and novel genetic alterations in MCL 

with the goal to expand the current knowledge of MCL oncogenesis. In Chapter 4, I 

identified genetic clusters of MCLs based on the patterns of these mutations. The 

genetics of each cluster might imply distinct natural histories and biological features. The 

patients in some of these genetic clusters had distinct clinical outcomes, indicating the 

potential prognostic utility of this result beyond current approaches. 

In Chapter 2, I describe a meta-analysis of previously published MCL tumour 

exomes along with extended analysis using newly sequenced exomes and matching 

RNA-seq data. I employed a highly accurate in-house SNV variant calling approach and 

multiple driver gene discovery tools to enhance our power to detect significantly mutated 

genes. This afforded the identification of novel recurrent mutations, such as those 

affecting RNA-binding proteins, in a subset of MCL tumours. This revealed a previously 

undescribed mechanism of RNA-metabolism as a target for mutations.  

Among the novel genes identified herein, we highlight each of DAZAP1, EWSR1 

and HNRNPH1 as genes encoding RNA-binding proteins with putative functions in MCL. 

The frequency of deleterious mutations along the length of EWSR1 gene suggests a role 

as tumour suppressor in MCL. EWSR1 plays a multifunctional role in non-malignant cells 

where it regulates transcription and RNA splicing253. Recently, the role of EWSR1 was 

explored in mature B cells using conditional knockout mice254. From this study, 

researchers learned that attenuating EWSR1 in B cells caused an expansion of pre-

germinal centre B cells. It is conceivable that reduced EWSR1 protein achieved through 

loss-of-function mutations as seen in MCL may similarly cause proliferation of pre-

germinal centre B cells. In DAZAP1, we identified a highly recurrent pattern of missense 

or truncating mutations near the C terminus, with the latter predicted to remove only the 

terminal region of the protein including signal peptides. DAZAP1 C-terminus was shown 

to contain a putative nuclear localization domain that may be disrupted by these 
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mutations255. As a member of the large group of hnRNP proteins, DAZAP1 regulates 

mRNA splicing256, transport into the cytoplasm257, and translation258. Sequestration of 

DAZAP1 into the cytoplasm via loss of the nuclear localization domain will likely hinder 

DAZAP1 ability to carry out these essential functions. HNRNPH1, another hnRNP 

protein, accrued non-coding mutations primarily within intronic poly-G motifs upstream of 

exon 4. Given the existence of alternative isoforms whereby exon 4 was excised out, this 

led to the hypothesis that the intronic mutations may alter splicing of HNRNPH1. 

Mutated HNRNPH1 tumours were observed with increase abundance of full-length 

isoform relative to the alternative isoform lacking exon 4.  

Chapter 3 further examines the MCL mutational landscape by focussing on large 

chromosomal changes such as CNVs and SVs. Here, I relied on WGS data generated 

from an expanded cohort, which was also used for all subsequent analyses. The use of 

WGS was necessary for comprehensive identification of breakpoints and accurate 

resolution of the boundaries associated with CNVs. Although tools already exist for 

finding recurrent CNVs, at the time of this analysis, tools for inferring recurrent SV 

targets were not available. To address this deficiency, I developed a model for 

estimating background SV rate across genomic space using unrelated genomes as a 

background. This model was applied to a variety of B-cell lymphomas and, supporting its 

utility, it identified many of the regions that accumulate SVs in DLBCL, BL, CLL, and FL. 

While I only focused on MCL for this thesis, the additional recurrent SVs identified in 

other the lymphomas can be the subject of further exploration. In MCL, besides the SVs 

located centromeric to CCND1, the only other region of significant recurrence was the on 

chromosome 10. This same region harboured amplifications and gains centred around 

the gene ABI1. Using matching RNA-seq expression, I found that only ABI1 mRNA 

levels were significantly elevated in the presence of either CNV or SV. Together, these 

results appear to suggest that ABI1 was the relevant target gene for these chromosomal 

variations. While the region had previously identified wherein BMI1 was attributed as the 

target gene, in this analysis the expression level of BMI1 mRNA was not associated with 

the presence of SVs or CNVs.  

Our dataset of both genomic and expression data enabled greater exploration of 

genes targeted by common copy number events. In total 10 regions affected by 

recurrent amplifications/gains and 10 regions affected by recurrent deletions were 

identified here. While many of these regions have already been described in earlier 
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studies in MCL, these results were the first to leverage expression data on a large MCL 

tumour cohort. Consistent with prior studies, the most observed amplification affected 

3q26.1. Owing to the extent of the minimal common region, the relevant target gene(s) 

of this event have not yet been definitively ascertained. Here, I attempted to determine 

the genes with deregulated expression, but this led to a list of 161 genes. Based solely 

on the genes that displayed the highest differential expression between mutation 

statuses, three genes: PLCH1, MB21D2 and GP5, were the best candidates. While the 

issue of gene target for these amplifications remains unresolved, these results could 

allow for more targeted studies on a smaller list of possible genes. In other cases, my 

analysis highlighted potential cis regulatory targets of other recurrently amplified and 

gained regions.  

Using our new compendium of potential drivers in MCL, I combined these and 

applied machine learning to search for robust genetic subdivisions. This analysis also 

included other possibly informative features such as aSHM/SHM regions and CCND1 

3’UTR. A comparison of clinical outcomes (OS) across the five resulting genetic clusters 

displayed distinct trajectories (MC1-MC5). The genetics of each cluster were unique and 

align with known biomarkers of clinical outcome.  

MC1 tumours were mostly devoid of common MCL alterations but were enriched 

for SHM mutations and consisted of nearly all nnMCLs. Importantly, a subset of cMCL 

tumours were also assigned to MC1 and these cMCLs had the longest OS of all 

tumours. Although grouped with nnMCLs, these cMCLs differed in many important ways 

such as lack of IGHV hypermutation and presence common MCL alterations (i.e., ATM 

mutations/deletions). However, unlike other cMCLs, cluster one cMCLs acquired 

mutations in SHM regions particularly in the CCND1 promoter region. These differences 

may be useful in identifying patients with good clinical outcomes and can allow for the 

application of a wait-and-observe strategy. MC2 patients had intermediate OS and this 

cluster was enriched for tumours with CNVs and SVs affecting ABI1, aberrations 

involving ATM and S1PR1, and amplification of 7p22.2. As previously described, 

multiple genes were overexpressed because of gains and amplifications on 7p22.2 and 

COX19 and KLHL7 displayed higher expression in MCL overall compared to normal 

counterparts. Altogether it appears that multiple pathways may be affected by these 

changes which include respiration, apoptosis, DNA repair, cell-cycle control, and 

cytoskeleton regulation. MC3 also displayed intermediate OS but unlike cluster two, the 
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genetic features of this cluster are not well characterized. Specifically, the main feature 

of this cluster was amplifications of 3q26.1. In addition to this large region not having a 

clear target gene, the amplifications/gains observed were common amongst tumours in 

other clusters. This cluster appears to be defined by what features are absent rather 

than the features that occur. MC4 and MC5 consisted of the worst performing MCL 

patients, and the features associated with these reflect that observation. TP53 

deletions/mutations, CDKN2A/MTAP deletions, RB1 deletions, TERT amplifications and 

CCND1 3’UTR mutations were observed in both clusters, but especially in cluster five 

tumours. In contrast to cluster five, cluster four tumours acquired additional CNVs. 

Integrative analysis of these regions has nominated some possible gene targets within 

these CNVs such as FBXO32, MIR7874 and BCL2L10. 

 

5.2. RNA-splicing dysregulation 

A variety of cancers have been observed with splicing abnormalities which 

include intron retention, abnormal expression of isoforms, and splicing errors of tumour 

suppressors or oncogenes259,260. Perturbation of splicing can occur through a variety of 

mechanisms. These include alteration of key trans-acting RNA splicing proteins or 

RNAs162,261–265, altered expression of splicing factors266–271, and mutations of cis-splicing 

elements224,272. In MCL, three genes that encode RNA-binding proteins (DAZAP1, 

EWSR1 and HNRNPH1) acquired recurrent SNVs, while PRPF4 was found 

overexpressed due to 6q22.3 amplifications and gains. These results contribute to an 

emerging theme of splicing dysregulation in B-cell malignancies. As splicing factors, 

alteration of concentrations or functions of these genes are predicted to have 

widespread changes to either splicing landscape and/or expression of a variety of genes 

including ones that are apart of cellular processes considered hallmarks of cancer273. In 

glioblastoma, for example, high concentrations of HNRNPH/F was found to maintain 

DNA-damage response genes in a linear form facilitating translation of these genes, and 

resistant to chemo- and radiotherapy274. 
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5.3. Towards a new classification scheme for MCL 

Genetics-based classification schemes have been of substantial interest to the 

lymphoma community recently. Prior to this work only one study explored the existence 

of genetic subgroups in MCL. In their study, Yi et al243 described a clustering solution 

with four candidate genetic subgroups numbered between C1 and C4 (Figure 5-1). 

Although aspects of their subgroups are shared with my own results, there are also 

some key differences. Of the similarities, MC1 and C1 were both able to capture long-

lived MCL patients consisting of nnMCLs and cMCLs. In contrast with C1, our MC1 

included a greater proportion of cMCL tumours and those cMCLs harboured a similar 

mutation repertoire to other cMCLs (i.e., ATM and S1PR1 mutations/deletions). Unlike 

their approach, my analysis did not rely directly on IGHV mutation status for cluster 

assignment, instead leveraging information from additional sites affected by SHM. This 

difference may explain why MC1 included a mixture of cMCLs and nnMCLs. These 

nnMCL shared genetic features with cMCLs including SHM mutations in CCND1 and 

IGLL5. An interesting similarity was that MC2 and MC3 in my results paralleled the C2 

and C3 reported by Yi et al243, respectively. Both C2 and MC2 featured ATM and S1PR1 

mutations and deletions, while C3 and cluster 3 contained 3q26.1 amplifications.  

Despite differences in sequencing methodology, feature selection and clinical 

samples, the genetic clusters from the Yi study share similarities with the five-cluster 

solution described herein. This supports the existence of bona fide distinct genetic 

substructure amongst MCL patients but leaves the exact identity and number of clusters 

unresolved. The greatest difference between their result and the clusters described here 

was the single C4 roughly corresponded to two clusters (MC4 and MC5) in my results. 

Unsurprisingly, each of C4, MC4 and MC5 represented poorly performing patients and 

contained high-risk variants such as TP53 mutations/deletions, CDKN2A/MTAP 

deletions and RB1 deletions. However, MC4 tumours were also characterized by several 

CNVs that were not reported in Yi et al243, possibly due to a more restricted sets of 

features utilized by their analysis or the decision to leave similar genetic aberrations as 

separate features. These CNVs separate high-risk MCLs into two genetically distinct 

tumour populations that may rely on unique oncogenic mechanisms. The differences 

observed between my results and those reported by Yi et al243 could be further explored 
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since both studies used tumour genetic data from Nadeu et al45, however, cluster 

membership information from the Yi study was not published. 

 
Figure 5-1 MCL NMF clustering described by Yi et al.243 
(A) Heatmap of tumours and features of four genetic subgroups (C1 to C4). (B) PFS and (C) OS 
of genetic subgroups in months. Repurposed here from Yi S, Yan Y, Jin M, et al. Genomic and 
transcriptomic profiling reveals distinct molecular subsets associated with outcomes in mantle cell 
lymphoma. J Clin Invest. 132(3):e153283, which is distributed under the terms of Creative 
Commons Attribution 4.0 International License. 
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5.4. Future Directions 

5.4.1. From Clusters to a Classification System 

The genetic subgroups detailed in this thesis and similar results reported recently 

by Yi et al243 highlight the existence of subgroupings within MCL that can be reproducibly 

identified based on the presence of recurrent genetic features. Some of these clusters 

are enriched for patients with significantly longer (MC1) or shorter (MC4, MC5) survival. 

Interestingly, the group of tumours with the best prognosis was marked by evidence of 

germinal centre involvement (IGHV mutations in Yi et al243, and SHM activity in my 

results). Whereas in Yi et al243, this group largely comprised nnMCLs, my results showed 

a greater representation of cMCLs within this indolent group, which may indicate the 

existence of a subset of cMCL with germinal centre experience and a more indolent 

clinical course. Mutations in IGLL5 and 5’ region of CCND1 may be useful for detecting 

cMCL patients with better prognosis, which could affect clinical management decisions 

such as treatment timing and intensity. Whether membership in this (and the other 

clusters) can be adequately assigned using data from a targeted sequencing panel 

remains to be determined.  

Translation of genetic clusters into a clinical setting will require additional work. 

Using an unsupervised clustering approach such as NMF has revealed organic 

groupings of MCL tumours based on similar genetic aberrations, however, classification 

of new tumours is not easily accomplished using NMF. The next step, using the genetic 

cluster assignments as labels, would be to train a classifier using a supervised machine 

learning algorithm such as random forest or neural network239. Development of a 

classifier would enable quick identification of new tumours that could be used in future 

clinical trials. 

Risk-adapted clinical trial design may be a useful tool in the ongoing attempt to 

improve outcomes for MCL patients. For example, in the recent WINDOW-2 trial275, 

patients were given an induction regimen of ibrutinib/rituximab/venotclax followed by 

either observation or consolidation therapy based on patient and tumour characteristics. 

Patients that displayed low Ki-67 index, low MIPI score, small tumour sizes, and lacked 

high-risk features including TP53, NSD2, NOTCH1/2 mutations, complex karyotype, 17p 

deletions, MYC positivity, large tumour size, blastoid/pleomorphic histology or partial 
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response to induction therapy were assigned to the observation arm. All other patients 

were given high intensity immunochemotherapy. Good clinical outcomes were reached 

with high ORR (96%) and median OS and PFS not reached after median follow-up of 24 

months. Incorporation of additional biomarkers into such trial designs, such as the 

genetic clusters presented herein, could provide more meaningful risk stratification within 

this type of clinical trial.  

While targeted therapies in MCL has largely focused on inhibitors of BTK 

(ibrutinib179, acalabrutinib97, zanubrutinib95), some new therapeutics are currently being 

investigated. For example, Venetoclax, a BH3 mimetic targeting the BCL2 and the 

intrinsic apoptotic pathway has shown some efficacy in R/R MCL in combination with 

ibrutinib in phase II trials276. In Chapter 3, I described the recurrence of copy number 

gains and focal amplifications of BCL2 (18q21.32) and BCL2L10 (15q21.2) with 

BCL2L10 showing higher expression due to CNVs. BCL2 and BCL2L10 amplifications 

were features designated specifically to MC4 and were largely absent in MC5. The 

presence of these CNVs could indicate increased dependence of apoptotic inhibition in 

MC4 tumours and therefore may be amenable to inhibition by venetoclax or other BH3 

mimetics. 

Inhibition of the cell-cycle is hypothesized to improve clinical outcome in MCL 

patients because of MCL tumour reliance on CCND1. Phase I clinical trials of CDK4/6 

inhibitors, either as single-agents or in combination therapy, in relapse-refractory MCL 

has so far yielded moderate responses with overall response rates between 18 and 67% 

and complete response rates between 6 and 37%277–281. MC4 and MC5 clusters include 

several aberrations related to cell-cycle deregulation, namely loss of CDKN2A/MTAP, 

RB1 and TP53. Clinical trial designs incorporating genetic subgroups may reveal insight 

into the efficacy of targeted therapeutics such as CDK4/6 inhibitors including which 

patients do and do not benefit.  

 

5.4.2. CRISPR screens for essential genes 

With the additional recurrent driver mutations defined in this thesis, including 

multiple genes involved in RNA maturation, there is additional opportunity for the 
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identification of completely new therapeutic strategies. Chapter 3 highlights several 

recurrent CNVs and nominated some putative cis regulatory targets associated with 

these. The number of candidate genes with elevated expression associated with gains 

and amplification could be as low as two or up to 161, in one case (3q26.1). Additionally, 

there were five regions where no gene was found over- or under-expressed due to 

CNVs. In both situations, additional data and functional experiments will be needed to 

determine the biologically meaningful targets affected by these CNVs (i.e., the 

oncogene). One approach currently being investigated in our lab is to use proteomics 

from MCL tumours to identify genes in amplified regions that exhibit elevated protein 

levels. We should expect that genes within elevated copy regions would display greater 

concentration of the associated protein. Using mass-spectrometry, isoform 

concentrations in a large cohort of MCL tumours could be determined and associated 

with any relevant genetic changes including copy number events. 

Another approach for identifying genes of relevance to MCL biology would utilize 

a targeted CRISPR screen to determine which of the CNV-affected genes are essential 

in MCL cell lines282. Using CRISPR dropout screens, this would involve introduction of a 

pooled library of guide RNAs (gRNAs) targeting candidate genes in these regions, which 

could be informed by the list of putative targets found in Chapter 3. After introduction of 

the CRISPR-cas9, individual cells with guides that cause mutation (loss) of essential 

genes would be lost, causing drop-out of those guides from the library. Such functional 

genomics experiments, guided by the results described herein, may allow the delineation 

of new oncogenes with relevance to MCL, thereby leading to new and potentially 

“druggable” vulnerabilities.  

 

5.4.3. RNA-binding proteins in MCL and B-cell lymphomas 

Several ongoing projects in the Morin lab have been initiated because of the 

findings described in Chapter 2. Although the splicing landscape was not explored in this 

thesis, our current data set which includes ribosomal depleted RNA-seq would enable a 

comprehensive survey of changes in splicing in MCL due to mutations affecting RNA-

binding proteins and has been performed. Initial results showed altered splicing in 

specific genes when comparing tumours with and without mutations affecting RNA-
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binding proteins although a pattern of splicing changes has not emerged. This may be 

attributed to difficulties in detecting some aberrantly spliced products that do not reside 

within the cell for long, or that aberrantly spliced products may exist at low 

concentrations compared to more common isoforms and therefore are less likely to 

sequenced.  

Beyond splicing, RNA-binding proteins can regulate mRNA expression, transport, 

and translation. Multiple ongoing projects are investigating these functions in various 

lymphoma subtypes including MCL. For example, HNRNPU was frequently truncated in 

BL and high-grade B-cell lymphomas with BCL2 translocations; both lymphomas rely on 

MYC driven oncogenesis. Functional characterization of HNRNPHU within BL, liver 

cancer and myelogenous leukemia cell lines showed that HNRNPU expression 

positively correlated with MYC expression suggesting a role as modulator of MYC 

(unpublished). Loss of HNRNPU within these lymphomas may be to reduce MYC-

induced apoptosis and proliferative stress. In the Morin laboratory, there are ongoing 

experiments involving RNA-binding proteins to find and characterize binding targets of 

these proteins using targeted pull-down protocols and investigate changes in binding 

ability and specificity of these RNA-binding proteins due to mutations.  

 

5.4.4. Indolent MCL 

In this thesis, I had focused primarily on cMCLs and the differences within this 

MCL subtype. Although beyond the scope of the current analysis, it was possible to 

compare cMCLs to nnMCLs. While I did not perform a comparative analysis between 

MCL subtypes, many previous studies have focused on this topic23,33,45,283. 

From the clustering results I showed that a subset of cMCLs group together with 

nnMCLs in cluster MC1 and exhibit prolonged overall survival. While these cMCLs 

shared putative aSHM features with nnMCLs in the same cluster, these tumours also 

resembled non-MC1 cMCLs. A better understanding of the reason for these differences 

would improve our knowledge about MCL development and possibly reveal ways to 

intervene. Given the genetic similarity between MC1 and non-MC1 cMCLs, the cause for 

the differential patient outcomes observed may be due to non-genetic causes, i.e., 
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epigenetics. To investigate this hypothesis, I propose that tumours of both MCL 

subtypes undergo ATAC-seq (assess chromatin accessibility), CHIP-seq (determine 

histone regulatory markers), and bisulfite-sequencing (assess chromatin methylation 

patterns). With this dataset, a comparative analysis can be performed examining the 

differential methylation and regulatory markers between MCL cell-of-origin subtypes, and 

between tumours assigned to different genetic clusters. Prior investigations into 

epigenetic landscape of MCL have focused mostly on the differences between nnMCL 

and cMCL subtypes185, but with evidence of genetic differences between cMCLs 

described in this thesis, an expanded epigenetic survey is warranted.  
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Appendix A. 

Chapter 2 Supplemental Figures 

Figure A.1 Recurrent mutations are identified in MCL exomes 
Non-synonymous, silent, intronic and splicing mutations observed across MCL tumour exomes in 
18 candidate MCL genes. When considering coding and non-coding mutations in all candidate 
MCL genes, HNRNPH1 was mutated in 10% of cases and were predominately splicing and 
intronic mutations within or immediately flanking exon 4. 
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Figure A.2 MEF2B Mutation Pattern in MCL and DLBCL exomes
The pattern of mutations in MEF2B is distinct between MCL and DLBCL. In MCL, K23R was the 
predominant mutation whereas this mutation was only observed in a single DLBCL case.

Figure A.3 Overall survival of KMT2D truncated MCL tumours
Left: overall survival of MCL tumours stratified by KMT2D truncating mutations. Right: overall 
survival of MCL tumours stratified by KMT2D truncating mutations restricted to only R-CHOP 
treated patients.
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Appendix B. 

Supplemental Data File 

Description: 

Supplementary Data 1. Mutation Frequency of MCL genes in tumour exomes. Mutation 

counts of panel genes. “Paired Total” is the number of mutations found in tumour-normal 

paired analyses (i.e., exomes and/or genomes). 

Supplementary Data 2. HNRNPH1 mutations identified in newly sequenced cases (BC) 

and published cohorts (Wu et al., Bea et al., Agarwal et al., Khodadoust et al., Rule et 

al.). 

Supplementary Data 3. Digital PCR primers and probes for HNRNPH1 (canonical and 

alternative isoforms), TBP, YWHAZ, UBC, ATCB. 

Supplementary Data 4. HNRNPH1 plasmid primers. 

Supplementary Data 5. Site-directed mutagenesis primers for HNRNPH1. 

Supplementary Data 6. Patient metadata of MCL genomes. MCLs from Nadeau et al. 

or Pararajalingam, Koyle, et al. not re-published here. 

Supplementary Data 7. CCND1 structural variations in MCL genomes. Obtained from 

Manta and converted to BEDPE format. 

Supplementary Data 8. Copy number variations in MCL genomes in SEG format. 

Derived from Battenberg and Control-FREEC. 

Supplementary Data 9. Differentially expressed genes (FDR < 0.1) within GISTIC2.0 

wide peaks.  

Supplementary Data 10. Structural variations in MCL genomes. Obtained from Manta 

and converted to BEDPE format. 
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Supplementary Data 11. Simple somatic mutations in MCL genomes in MAF format. 

Mutations restricted to coding and splicing mutations. 

Supplementary Data 12. aSHM/SHM regions derived from BL/DLBCL genomes and 

including putative CCND1 hypermutation region.  

Filename:  

PararajalingamPrasath_Supplemental_data.xlsx 
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