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Abstract 

The set M,(&) of n x n matrices over a commutative field & is a semigroup with respect to 

matrix multiplication. This thesis focuses on subsemigroups of Mn(&). 

Let 0 be the n x n zero matrix. A collection {Si : i E A) of sets in Mn(&) is a 0-meet 

collection if SiSj = 0 whenever i # j. Since a 0-meet collection F = {Si : i E A )  of com- 

pletely simple semigroups is finite, it is unambiguous to define 

for any subset I of A. It turns out that U sf (the union of sums of Si) is a semigroup, 
I c A  

which is called a C-semigroup. 

For convenience, the symbol 0 is used to represent certain varieties of normal ortho- 

groups. The objective of this thesis is to show that each semigroup in W is contained in a 

smallest C-semigroup which is in GY v U, where 88 is the variety of semilattices. Con- 

sequently, each maximal semigroup in GY v 82 is a C-semigroup. 
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Chapter I 

Semigroups 

This chapter contains background material, most of which can be found in Howie. Sec- 

tions 2 to 6 contain definitions and properties of several types of semigroups which we 

will encounter in Chapter 11. Section 7 describes how these semigroups relate in the con- 

text of varieties, while Section 8 discusses properties of matrix semigroups. 

1.1 Notation 

Throughout this thesis, let N denote the set of positive integers and let Nm denote the set 

of the first m positive integers. If A, B are subsets of a ring R, then: 

A + B = { U + ~ : U E A , ~ E B ) ;  . A \ B = { ~ E A : ~ P B ) ;  

A B = { u ~ : u E A , ~ E B ) ;  Am = {alaz. .-a, : ai E A, 1 I i I m); 

( A )  = {ala2. -.a, : ai E A, 1 I i I r, r E N). 

In addition, we abbreviate A{b) to Ab and {a)B to aB. If {Aj : i E I) is a collection of 

subsets of R, then we denote their cartesian product by nid A, and write a typical ele- 

A, x A2 x -.. x Am and (ai : i E I) as (al, a2,. . . , urn). 
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1.2 Introduction 

A semigroup is a non-empty set S with an associative binary operation . , which we often 

call multiplication. We abbreviate a-b to ab for any elements a, b of S. Associativity al- 

lows products of any finite length in a semigroup to be written unambiguously without 

the need for parentheses. Hence if A, B, C are subsets of a semigroup, then (AB)C = 

A(BC). 

A semigroup with only one element is called a trivial semigroup. A semigroup with 

an identity element is called a monoid. If a semigroup S has no identity element, an extra 

element 1 can be adjoined to S to form the monoid S u (1 ) with the obvious multiplica- 

tion ( la  = a1 = a for all a in S). Hence it is convenient to define 

S if S has an identity element s1 = {  
s u  (1) otherwise. 

A zero of a semigroup S is an element z of S such that S # {z) and zS = Sz = {z). The 

condition S z {z) is added to the usual definition of a zero so that the only element of a 

trivial semigroup is an identity element and not a zero. 

Let S be a semigroup. A non-empty subset T of S is called a subsemigroup of S if it is 

closed under multiplication, i.e. if T* c T. A subsemigroup which is also a group is called 

a subgroup. An element e of S is an idempotent if e2 = e, and the set of idempotents of S 

is denoted by E(S). A semigroup consisting entirely of idempotents is called a band, and 

a commutative band is called a semilattice. For any idempotents e, f of S, we shall write 

e 2 f if ef = fe =J; and write e > f if e 2 f and e +J: It is straightforward to show that 2 is 

a partial order on E(S). Note that if S contains an identity element ls and a zero Os, then 

ls 2 e 2 Os for all e in E(S). 

Let S, T be any semigroups. A map 4 : S + T is a homomorphism if 

for all a, b in S. A bijective homomorphism is called an isomorphism. If 4 : S + T is an 
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isomorphism, then we say S and T are isomorphic and write S z T. The direct product of 

semigroups S, (i E I) is the semigroup with the cartesian product niE, S, as its underly- 

ing set and componentwise multiplication: (si : i E I)(t; : i E I )  = (s,ti : i E I )  for all S i ,  ti in 

Si . 

1.3 Semilattices of Semigroups 

Recall that a semilattice Y is a commutative semigroup of idempotents, i.e. a = a and 

ap = pa for all a ,  p in Y. 

Lemma 1.3.1 I f 4  is a homomorphism from a semigroup S onto a semilattice Y, then: 

(1) @-'(a) is a subsemigroup of S for each a in Y; 

(2)  {@-'(a) : a E Y) is apartition of S; 

( 3 )  4 - ' ( a ) 4 - ' ~ )  c 4-'(ap) for all a ,  pin  Y. 

Proof (1) If a, b E 4-'(a), then 4 (a) = a = 4 (b). Hence 4 (ab) = 4 (a)$ (b) = a2 = a ,  

which implies that ab E 4-'(a). 

(2) It is trivial that each element of S belongs to some $-'(a). If a E 4-'(a) n $-I(,@, 

then a = 4(a)  = p, and so #-'(a) = 4-'(13). Consequently, {$-'(a) : a E Y) is a disjoint 

collection of subsets of S. 

(3) Suppose a E #-'(a) and b E 4-'(13). Then @(a) = a and 4 (b) = /3. Hence 4 (ab) = 

4(a)4(b) = ap, fiom which we deduce that ab E $-'(a/?). 

In Lemma 1.3.1, if we denote 4 -'(a) by Sa, then S is the disjoint union of the sub- 

semigroups Sa ( a  E Y) and 

SaSp c Sap, 

where ap is the product of a and P in the semilattice Y, We call S a semilattice of semi- 
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groups and write S = (Y; Sa). Knowledge that a semigroup S is a semilattice of its sub- 

semigroups Sa may give us a useful decomposition of S, but it provides no information on 

how elements from different S, multiply. We now introduce a construction where multi- 

plication is specified by a collection of homomorphisms. 

Let Y be a semilattice and let (Sa : a E Y) be a collection of disjoint semigroups. For 

each pair of elements a ,  p of Y such that a 2 p ,  let : S, + SF be a homomorphism 

and suppose that: 

(1) 4a,a is the identity map of Sa for each a in Y; 

(2) 4p,y~4a,p = for every a ,  P, y in Y such that a 2 P 2 y. 

Let S = U S, and define a multiplication on S by the rule that if a, E Sa and bp E Sp, 
a d  

then 

aabp = ( 4a,ap aa)( $p, ap bp). 

It is not difficult to show that S is a semigroup. Furthermore, each Sa is a subsemigroup 

of S such that S,Sp E Sap. Hence S is certainly a semilattice of semigroups. We shall 

write S = (Y; S, ; and call it a strong semilattice of semigroups. 

1.4 Green's Equivalences 

Definition 1.4.1 Let a, b be elements of a semigroup S. Then: 

(1) d b  if there exist x, y in S' such that xu = by yb = a; 

(2) am if there exist x, y in S' such that ax = by by = a;  

(3) a%b if d b  and a@&; 

(4) a@ if there exist u, v, x, y in S' such that uav = by xby = a. 

It is straightforward to show that 8, @, % and are equivalence relations on a semi- 

group, which are called Green's equivalences. Note that ;7e = B n 02 and B u @ E @. 
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Denote the A-class containing a by La, and define the sets Ra , Ha and Ja similarly. The 

following result is Theorem 2.2.5 of Howie. 

Theorem 1.4.2 I f H  is an %-class of a semigroup S, then either H* n H = 0, or H~ = H 

and H is a subgroup of S. rn 

Consequently, each 25-class of a semigroup S can contain at most one idempotent, 

and if e is an idempotent of S, then He is a subgroup with identity element e. We shall end 

this section with a lemma, the proof of which is routine. 

Lemma 1.4.3 Let S be a semigroup. Then: 

( 1 )  (Va, b, c E S) a8b  a a d b c ;  

(2) (Va, b, c E S) a@b cac;Rcb. 

1.5 Completely Simple Semigroups 

An element a of a semigroup S is regular if axa = a for some x in S, and S is regular if all 

its elements are regular. Bands and groups are examples of regular semigroups. Note that 

if axa = a, then ax and xa are idempotents. Hence a regular semigroup contains at least 

one idempotent. 

Let e, f be idempotents of a semigroup S. Recall that e 2 f if and only if ef=fe =J: A 

nonzero idempotent e of S is said to be primitive if it is minimal in the set of nonzero 

idempotents of S with respect to the partial order 2 ,  i.e. i f f  is nonzero in E(S) and e 

then e =J: 

A semigroup S is called simple if B = S x S, or equivalently, if S is the only @class of 

itself. A simple semigroup S does not have a zero; for if 0s is a zero of S, then {Os} is a @ 

class different from S. A simple semigroup is completely simple if it contains a primitive 

idempotent. The following result is Theorem 3.3.1 of Howie. 
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Theorem 1.5.1 Let G be a group, let I, A be non-empty sets and let P = [pn,]  be a A x I 

matrix with entries in G. Let S = I x G x A, and define a multiplication on S by 

Then S is a completely simple semigroup. 

Conversely, each completely simple semigroup is isomorphic to a semigroup con- 

structed in this way. 

The semigroup in Theorem 1.5.1 is called the Rees matrix semigroup and is denoted 

by &[G; I, A; PI. 

Lemma 1.5.2 I fS  is a completely simple semigroup with a primitive idempotent e, then: 

( 1 )  S is regular; 

(2)  L, = Se and Re = eS; 

(3) every %-class of S is a subgroup. 

Proof (1) For any a E S, we have a@ since S is simple. Hence there exist u, v, x, y E S' 

such that a = uev and e = xay. Let f = evyexue. Then 

f = evyex(ueev)yexue = evye(xay)exue = evyexue =f 

Thus f E E(S), and it is obvious that e 2J: Consequently, e = f for e is primitive. Now 

a = uev = ufi = (uev)yex(uev) = a(yex)a, 

which shows that a is regular. 

(2) It suffices to show Le = Se. If x E L, , then x = ye for some y E sl. SO x = ye E ~ ' e  

= Se u {e }  = (S u {e})e = Se. 

Conversely, if xe E Se, then egxe because S is simple. Hence there exist u, v E S' 

such that e = uxev. Now let f = eveuxe. Then 

f = eve(meev)euxe = eveuxe = f and ef = fe =f 

Therefore f is an idempotent such that e 2f It follows that e = f because e is primitive. 
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Thus e = (eveu)xe, which implies that xe E L,. 

(3) If a E S, then there exist u, v E S' such that a = uev for S is simple. Hence a2 = 

auev. Since ue, aue E Se, we deduce that u&ue by (2). By Lemma 1.4.3(1), we have a 

= (ue)v&(aue)v = a2. The proof of a2@a is similar. It follows that a2%a. 

Now if H is an %-class of S, then we have a2 E ff2 n H for any a E H. Therefore H 

is a subgroup (Theorem 1.4.2). 

A consequence of Lemma 1.5.2 is 

Corollary 1.5.3 Each completely simple semigroup is a disjoint union of groups. 

We now present some alternate characterizations of completely simple semigroups. 

Theorem 1.5.4 The following conditions on a semigroup S without zero are equivalent. 

( 1 )  S is completely simple; 

(2)  S is regular and weakly cancellative, i.e. for all a, b, c, d in S, 

(ac = bc & da = db) a = b; 

(3)  S is regular and every idempotent of it is primitive. 

Proof ( 1 )  s (2). Let S be a completely simple semigroup. By Lemma 1.5.2, S is regular. 

We may assume that S =  M[G; I, A; PI (Theorem 1.5.1). Let a = (i, x, A), b = ( j ,  y, p), c = 

(k, z, y), d = ( I ,  w, q), and suppose that ac = bc and da = db. Then 

from which we deduce that i = j, A = p and x = y. Hence a = b as required. 

(2)  > (3). Let e, f be idempotents of S such that e 2f Then ef =ff and fe =fJ: There- 

fore we obtain e = f by the weakly cancellative property of S. 

(3)  3 ( 1 ) .  For any a E S, there exists b E S such that a = aba because S is regular. 

Then ab is an idempotent such that a@b. Hence each @class of S contains an idempo- 

tent. Now suppose J, , J f  are any @classes of S, where e, f E E(S). Choose any idempo- 
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tent g E Jef. Then g = xefi for some x, y E s'. Let u = efyge.  Then 

u2 = efig(xeefi)gxe = eJLgxe = u and eu = ue = u. 

Hence e 2 u. But since every idempotent is primitive, it follows that e = u. Consequently, 

g = xefi and e = efigxe, 

which implies @. Therefore Jg = J, . Similarly, if we consider the idempotent v =JLgxef; 

we can deduce that J, = J f .  Hence J, = Jg = J f .  In conclusion, S contains only one @class, 

and so it is simple. 1 

The remainder of this section introduces all the completely simple semigroups which 

we will encounter in Chapter 11. 

Recall that a trivial semigroup contains only one element and so is obviously com- 

pletely simple. A semigroup S is called left zero if ab = a for all a, b in S. A right zero 

semigroup is analogously defined. Note that a left (right) zero semigroup is a band, there- 

fore we may also call it a left (right) zero band. A semigroup S is called a rectangular 

band if aba = a for all a, b in S. The following justifies why 'band' is being used in 

naming rectangular bands. 

Proposition 1.5.5 The following conditions on a semigroup S are equivalent. 

( 1 )  S is a rectangular band; 

(2)  (Va, b, c E S) a2 = a & abc = ac; 

(3) S is a direct product of a left zero band and a right zero band; 

(4)  S is a completely simple band. 

Proof (1) z (2). Suppose aba = a for all a, b E S. Then certainly a3 = a for all a E S. 

Hence a4 = a2 and so a2 = a4 = aa2a = a. 

Next, for any a, b, c E S, we have 

abc = ab(cac) = (abca)c = ac. 

(2)  z (3). Choose any element c from S. Let L = Sc and R = cS. Then for any x = uc 
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andy=vcinL, 

and so L is a left zero band. Similarly, R is a right zero band. Define a map 4 : S + L x R 

by #(x) = (xc, cx). Then 4 is one-one; for if (xc, cx) = (yc, cy), then 

Also, 4 is onto, since for all (ac, cb) E L x R, we have 4(ab) = (abc, cab) = (ac, cb). Fi- 

nally, 4 is a homomorphism because for all x, y E S, 

Hence 4 is an isomorphism and S E L x R. 

(3) (4). Suppose S E L x R for some left zero band L and right zero band R. Then S 

is trivially a band and so is regular. Let e, f E S. We may assume e = (x, y) and f = (z, w) 

for some x, z E L and y, w E R. If e 2J; then 

Therefore every idempotent of S is primitive. It follows by Theorem 1.5.4 that S is com- 

pletely simple. 

(4) 3 (I). Let S be a completely simple band. If a, b E S, then a, aba are idempotents 

such that a 2 aba. Consequently, a = aba because every idempotent of S is primitive 

(Theorem 1.5.4). 

It is not difficult to show that left zero and right zero bands are special cases of rec- 

tangular bands, so they must also be completely simple. 

A regular semigroup is called orthodox if its set of idempotents is a subsemigroup. A 

band is orthodox, but the converse is not generally true. For example, a non-trivial group 

is an orthodox semigroup which is not a band. 

Definition 1.5.6 Let S be a completely simple semigroup. Then: 

(1) S is a rectangular group if it is orthodox; 
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(2) S is a left group if E(S) is a left zero band; 

(3)  S is a right group if E(S) is a right zero band. 

Note that a group satisfies all requirements of being a left, right and rectangular group 

because it is completely simple and contains only one idempotent. We shall characterize 

these orthodox semigroups in the next section. 

1.6 Completely Regular Semigroups 

Let a, x be elements of a semigroup S. Then x is an inverse of a if axa = a and xax = x, 

and the set of inverses of a is denoted by V(a). Note that an element with an inverse must 

be regular. On the other hand, every regular element has an inverse; for if axa = a, then 

xax is an inverse of a. 

Let S be a semigroup. An element a of S is completely regular if there exists x in V(a) 

such that ax = xa, and S is completely regular if all its elements are completely regular. 

Clearly, a completely regular element is regular. Therefore a completely regular semi- 

group is also regular. 

Lemma 1.6.1 Let a be an element of a completely regular semigroup. I f x  is an inverse of 

a such that ax = xa, then: 

( 1 )  e = ax is an idempotent; 

(2) a Z x Z e ;  

(3) x is unique. 

In particular, x is the inverse of a in the group Ha. 

Proof To verify ( 1 )  and (2)  is straightforward. To prove (3), suppose y is an inverse of a 

such that ay = ya. Then by (1) and (2), ay is an idempotent of Ha = He, and so ay = e be- 

cause He is a group (Theorem 1.4.2). Therefore 
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In the light of Lemma 1.6.1, it is reasonable to adopt the following convention: if a is 

a completely regular element of a semigroup and x is the inverse of a such that ax = xu, 

then we write a-' = x and a0 = ax. Hence if a is an element of a completely regular semi- 

group S, then we have: 

Since any element a of a completely regular semigroup S is contained in the subgroup 

Ha, S is a disjoint union of its subgroups. Conversely, any disjoint union of groups form- 

ing a semigroup can easily be seen to be completely regular. Therefore we have proved 

Theorem 1.6.2 A semigroup is completely regular ifand only if it is a disjoint union of 

groI.ips. 

It follows from Corollary 1.5.3 that a completely simple semigroup is a disjoint union 

of groups, and so must be completely regular. In fact we have 

Theorem 1.6.3 A semigroup is completely simple if and only if it is completely regular 

and simple. 

Proof It suffices to prove the converse of the theorem. Suppose S is a completely regular 

and simple semigroup. We shall show that every idempotent of S is primitive. If e, f E 

E(S) and e >_f, then there exist u, v E S' such that e = ufi because S is simple. Therefore 

we have 

(euf = (euf )-'euf = [(euf )-'euf ] f 

= (euf )of= (euf )Oe2f= (euf )'eufif 

= e(ufi) f = e2f=f: 

Hence, 
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f =fe2 = (euf )Oe2 = (euf )Oeufi = e(uJL> = e2 = e. 

By Theorem 1.5.4 the proof is complete. 

A semilattice of completely simple semigroups is a disjoint union of groups, and 

therefore is a completely regular semigroup. But the converse is also true by Howie 

(Theorem 4.1.3). 

Theorem 1.6.4 Each completel;/ regular semigroup is a semilattice of completely simple 

semigroups. 

Whenever we have a completely regular semigroup (Y; Sa), it is understood that S, is 

a completely simple semigroup for each a in the semilattice Y. Furthermore, note that 

each Sa is a gclass  of S. 

We shall prove the following lemma before characterizing the rectangular groups in- 

troduced in the previous section. 

Lemma 1.6.5 Let S, T be completely simple semigroups and let 4 : S + T be a homo- 

morphism. Then 4 (xO) = $ (xlOfor all x in S. 

Proof If x E S, then 4 (xO) is an idempotent of T because 4 (x0)q4 (xO) = 4 (xOxO) = 4 (xO). 

Next, we have 

4 (xO) 4 (4' = [4 (xO> 4 (41 q4 (XI-' = 4 4 (XI-' = 4 (4 4 W' = 4 WO. 

Similarly, we can show 4 (x)O4 (xO) = 4 (XI'. Hence we deduce 4 (xO) 2 4 (x)'. But since 

every idempotent of the completely simple semigroup T is primitive (Theorem I.5.4), we 

also have +(xO) = 4(x1•‹. 

Proposition 1.6.6 The following conditions on a completely regular semigroup S are 

equivalent. 

(1) S is a rectangular group; 
0 0 0 -  0 0. (2)  (Va, b, c E S) a b c - a c , 
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Proof (1)  (2). Let a, b, c be elements of a rectangular group S. Since E(S) is regular 

and all its elements are primitive, E(S) is completely simple (Theorem 1.5.4). It follows 
0 0 0 -  0 0  that E(S) is a rectangular band (Proposition 1.5.5). Hence a b c - a c as required. 

(2) = (3). This is trivial. 

(3) => (1). Suppose a0 = aObOaO for all a, b E S. Let e, f E E(9.  Then 

from which we deduce that ef E E(S). Hence S is orthodox. Furthermore, if e 2f; then 

So each idempotent of S is primitive. By Theorem 1.5.4, S is completely simple. 4 

Corollary 1.6.7 Let S be a completely regular semigroup. Then: 

(1) S is a left group ifand only ifabO = a for all a, b in S; 

(2) S is a right group ifand only ifaOb = b for all a, b in S; 

(3) S is a group ifand only ifao = b0 for all a, b in S. 

Proof ( 1 )  If S is a left group, then E(S) is a left zero band. Thus 

abO = aaObO = aao = a. 

Conversely, suppose abo = a for all a, b E S. Then we certainly have aOboaO = a'. 

Hence S is a rectangular group (Proposition 1.6.6). Now if e,  f E E(S), then ef = efo = e. 

So E(S) is a left zero band, which implies that S is a left group. 

(2) This is symmetrical to the proof of (1). 

(3) The identity element of a group is the only idempotent. Therefore every group 

satisfies the identity a0 = bO. 

Conversely, suppose aO = b0 for all a, b E S. Then S contains only one idempotent, 

say E(S) = {e). To show that S is group, it suffices to show that the inverse of each ele- 

ment a E S is unique. Let x, y E V(a). Then since ax, xu, ay, ya are idempotents, we must 
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have ax = ay = e = xa = ya. Hence 

Lemma 1.6.8 Define a binary relation 2 on a semigroup S by 

a 2 b if ae =fa = b for some e, f in E(S). 

I fS is completely regular, then the binary relation 2 is a partial order on S. 

Proof For any a E S, we have aao = aoa = a. Thus a 2 a, which implies that 2 is reflex- 

ive. To show that 2 is antisymmetric, suppose a 2 b and b 2 a. Then ae = b and a = f b  for 

some e, f E E(S). It follows that fa = ffb = f b  = a and so 

Finally, to show that 2 is transitive, suppose a 2 b and b 2 c. Then ae = f a  = b and bg = 

hb = c for some e , f ,  g, h E E(S). Note that 

c = hb = h(hb) = hc = hbg 

= hfag = hf( fa)g = hf(bg) = hfc 

and that c = bg = aeg. Hence 

a-'ca-'c = dlhba-'c = a-'hf(aa-'a)eg 

= aW'hf(aeg) = aP1(hfc) = a-'c, 

which implies that a-'c E E(S). Now 

a ( d l c )  = (aa-'a)eg = aeg = c. 

By a symmetrical argument, we can show that ( c d l ) a  = c where ca-' E E(S). Therefore 

we may conclude that a 2 c. 

Note that the partial order in Lemma 1.6.8 generalizes the partial order defined on 

E(S); for if a, by e, f are elements of E(S) such that ae =fa = b (i.e. a 2 b), then 

ab=a(ae)=ae=b and ba=( fa)a=fa=b.  
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In Chapter 11, our primary interest lies in completely regular semigroups that are 

strong semilattices of completely simple semigroups introduced in the previous section. 

Before we introduce these semigroups, first note that a band is completely regular and 

hence is a semilattice of its completely simple subsemigroups. But these subsemigroups 

are also bands, so by Proposition 1.5.5 they must be rectangular bands. Hence we have 

established the following, the converse of which is obviously true. 

Theorem 1.6.9 Every band is a semilattice of rectangular bands. 

Consequently, if we say (Y; Sa) is a band, then it is understood that Sa is a rectangular 

band for every a in the semilattice Y. 

Definition 1.6.10 Let S be a semigroup. Then: 

(1) S is a normal band if it is a strong semilattice of rectangular bands; 

(2) S is a left normal band if it is a strong semilattice of left zero bands; 

(3) S is a right normal band if it is a strong semilattice of right zero bands. 

There is no special name given to a strong semilattice of trivial semigroups because it 

is necessarily a semilattice. If we say (Y; Sa ; @,,p) is a normal (left normal, right normal) 

band, then each Sa is a rectangular (left zero, right zero) band. 

Proposition 1.6.11 The following conditions on a band S = (Y; Sa) are equivalent. 

(1) S is a normal band; 

(2) (Va, b, c E S) a2 = a & abca = acba; 

(3) (Va, by c, d E S) 2 = a & abed = acbd. 

Proof (1) 3 (2). Let S = (Y; Sa ; @a,p) be a normal band. For any a, b, c E S, we may as- 

sume that a E Say b E Sp, c E Sy for some a ,  p, r E Y. Certainly we have 2 = a for S is a 

band. Now let 7 = spy. Note that since @,,,a, @p,,b and @y,qc are elements of the rectan- 

gular band S,, we have 
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(2) 3 (3). Assume (2). Then 

abcd = a(bcdabc)d = (abca)(dbcd) 

= a(cbadcb)d = (acbd)(acbd) - acbd. 

(3)- (1) .  Supposea2pinYandleta  E Sa.Thenforanyx ,y~Sp,wehavexyx=x 

and yxy = y, and so 

axa = ax( yx)a = ayxxa = ay(yx)a = a(yxy)a = aya. 

Hence the element axa is independent of the choice of x in Sp . It follows that whenever 

a 2 p in Y, the map 4a,p : Sa + Sp defined by 

where x is any element of Sp, is well-defined. It is straightforward to show that $a,a is the 

identity map on Sa and that 4B,v~4a,p = #a,y whenever a 2 P 2 y To show 4a,p is a homo- 

morphism, let a, b E Sa and choose any x from Sp. Then 

4a,p (ab) = ab(xa)b = axabb = ax(xab)b 

= (axa)(bxb) = (4a,p a)( 4a,p b). 

Finally, for any a ,  P E Y, let a E S,, b E Sp. Choose any x from Sap. Then 

where the first equality holds because ab, x belong to the same rectangular band Sap. We 

may thus conclude that S= (Y; Sa; 4a,p) is a strong semilattice of rectangular bands. . 
Corollary 1.6.12 Let S be a band. Then: 

( 1 )  S is a left normal band ifand only ifabc = acb for all a, b, c E S; 

(2) S is a right normal band ifand only ifabc = bac for all a, b, c E S. 
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Proof It suffices to prove (I), for (1) and (2) are symmetrical. Let S = (Y; Sa ; @a,p) be a 

leftnormalband. I fa ,  b ,c  E S, thena E Say b E Sp,c  E Syforsome a,P, Y E  Y. Let q= 

aPy Since @,,,a, q!p,b, &,c belong to the same left zero band S,, we have 

Conversely, if abc = acb for all a, by c E S, then certainly we have abca = acba. 

Hence S is a normal band (Proposition 1.6.1 1). We may thus assume S = (Y; Sa ; #a,p) 

where each S, is a rectangular band. Now if a, b E Say then aba = a. Hence 

ab = a(ab) = aba = a. 

Therefore each Sa is a left zero band, which implies that S is a left normal band. H 

Definition 1.6.13 Let S be a semigroup. Then: 

(I) S is a normal orthogroup if it is a strong semilattice of rectangular groups; 

(2) S is a left normal orthogroup if it is a strong semilattice of left groups; 

(3) S is a right normal orthogroup if it is a strong semilattice of right groups; 

(4) S is a Clifford semigroup if it is a strong semilattice of groups. 

Analogous to normal bands, if we say (Y; Sa ; 4,p) is a normal (left normal, right 

normal) orthogroup, then it is understood that each Sa is a rectangular (left, right) group. 

Similarly, if (Y; Sa ; is a Clifford semigroup, then each S, is a group. 

Proposition 1.6.14 The following conditions on a completely regular semigroup S are 

equivalent. 

(1) S is a normal orthogroup; 

(2) (Va, b, c E S) abOca = acbOa; 

(3) (Va, by c, d E S) abOcd = acbOd; 

(4) E(S) is a normal band. 

Proof By Theorem IV.2.7 of Petrich and Reilly, (I), (2) and (4) are equivalent. Note that 
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in Petrich and Reilly a normal orthogroup S is defined to be a completely regular semi- 

group satisfying the condition in (4). Now assume (2), then 

Similarly, we have that acbod = abocd[(acbO)O(cbod)O]. So abOcd%cbOd. By duality we 

deduce abOc&cbOd. It follows that ab0cd;7eacb0d, which implies (abocd,' = (acboqo. 

Hence 

We thus have (2) s (3). It is trivial that (3) 2 (2). 

Corollary 1.6.15 Let S be a completely regular semigroup. Then: 

( 1 )  S is a leji normal orthogroup ifand only ifabOc = acbO for all a, by c in S; 

(2)  S is a right normal orthogroup ifand only ifabOc = bOac for all a, by c in S; 

(3)  S is a Clifford semigroup ifand only ifabO = boa for all a, b in S. 

Proof (1)  Let S = (Y; Sa ; qja,~) be a left normal orthogroup. If a, by c E S, then a E Say  

b E Sp ,c  E Syforsome a,p, Y E  Y.Letting q= a h w e h a v e  

where (a) holds by Lemma 1.6.5 and (b) holds because q5a,,,a, (4F,7b)0, h n c  belong to the 

same left group S, . 
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Conversely, if abOc = acbO for all a, b, c E S, then we also have abOca = acbOa. Hence 

S is a normal orthogroup (Proposition 1.6.14). Assume S = (Y; Sa; 4a,p). If a, b E Sa, then 

aObOaO = aO for E(Sa) is a rectangular band. Therefore 

0 0 0 -  0 0 0 -  abo = aa  (a b ) - a(a b a ) - aao = a, 

which implies that S, is a left group. 

(2) This is symmetrical to the proof of (1). 

(3) Suppose S = (Y; Sa ; 4a,p) is a Clifford semigroup. Let a, b E S. Then a E Sa , 

b E Sp for some a,  p E Y, and 

where (c) holds by Lemma 1.6.5 and (d) holds because hapa, (4p,aP b)' belong to the 

Same group Sap. 

Conversely, if abo = boa for all a, b E S, then we also have abOc = bOac. Hence S is a 

right normal orthogroup. Assume S = (Y; Sa ; @a,p). If a, b E Sa, then since E(Sa) is a right 

zero band, we have 

0 -  0 0 -  0 0 -  0 a - b a - a b - b .  

Thus Sa is a group by Corollary 1.6.7(3). rn 

Having introduced the required semigroups, we shall end this section by showing that 

the binary relation (partial order) 2 defined on a completely regular semigroup S in 

Lemma 1.6.8 has an easier characterization if S is a strong semilattice of completely sim- 

ple semigroups. 

Lemma 1.6.16 IfS is a strong semilattice of completely simple semigroups, then 
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Proof Let S = (Y; S,; #a,p), and suppose a, b E S and a 2 b. Then there exist e, f E E(S) 

such that ae =fa = b. We may assume that a E Say b E Sp, e E Sy, f E Srl for some a ,  p ,  

y, 77 E Y. Since b = ae = (&aya)(&ay e), we have a y  = p (i.e. a 2 p )  and that 

b(4y3p e) = a)( &,I ~)(#Y,I e )  = (&p ~)(#Y,I el. 

Similarly, we can deduce that (4v,p f )b = ( q 5 ~  f by considering b =fa. Now q5,,pa, 

b, q$p e, &p f belong to the same completely simple semigroup Sp. Therefore b = a 

because Sp is weakly cancellative (Theorem 1.5.4). Hence 

abO = (&I  a)(41,p bO) = bbO = b = bob = (( A8 b0 )(4a,~ a) = boa. 

The converse is obvious. 

1.7 Varieties of Normal Orthogroups 

An algebra is an ordered pair (A, {f; : i E I)), where A is a non-empty set and is an 

n,-ary operation defined on A for all i in I. We may write (A,  fi, f2, ... , fm) if I = Nm . 

When the ni-ary operations f; are understood we shall write A rather than (A, { J ;  : i E I)). 

In this section, we are only concerned with the special case when A is a (2, 1)-algebra, 

i.e. a triplet (A, , ' ) where (x, y) H x-y is a binary operation and x I+ x' is a unary opera- 

tion. The reader is referred to Burris and Sankappanavar for the general case. 

If (A, . , ' ) is a (2, 1)-algebra, then a subalgebra of A is a (2, 1)-algebra (By . , ' ) such 

that: 

(1) B is a non-empty subset of A; 

(2) (Vx, y E B) x.y E B; 

(3)(Vx E B)xl E B. 

If (A, - , ' ), (B, + , A ) are (2, 1)-algebras, then a map @ : A + B is a homomorphism if 
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In addition, if 4 is onto, then B is said to be a homomorphic image of A. 

Let (A, , ' ) be a (2, 1)-algebra and let X be a set of symbols (an alphabet). Together 

with the symbols and ' , we define a word recursively as follows: 

(1) every element in X is a word; 

(2) ifp, q are words, thenpeg is a word; 

(3) i fp  is a word, thenp' is a word. 

The expression p = q is called an identity if p, q are words. If the identity p = q holds for 

any substitution of elements from A, then we say A satisfies the identityp = q. 

For any set of identities R, define [R] to be the class of all (2, 1)-algebras satisfying 

the identities in R. A class of (2, 1)-algebras K is an equational class if K = [R] for some 

set of identities R. 

Definition 1.7.1 Let K be a non-empty class of (2, 1)-algebras with the following prop- 

erties: 

(1) if A E K and B is a subalgebra of A, then B E K; 

(2) if A E K and B is a homomorphic image of A, then B E K; 

(3) if A ,  E K ( a  E A), then n A, E K. 
a eA 

Then we say K is a variety. If H and K are varieties such that H K, then we say H is a 

subvariety of K. 

The following is a specialization of a result (due to Birkoff) which can be found in 

Burris and Sankappanavar (Theorem 1 1.9). 

Theorem 1.7.2 A class of (2, 1)-algebras is a variety if and only if it is an equational 

class. 

In the light of Theorem 1.7.2, each variety of (2, 1)-algebras is of the form [R], where 
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R is a set of identities. If R = { p l  = ql, p~ = 92, . . . , Pm = qm), then we may write [R] sim- 

ply as [pl = ql,p2 =q2, - - 0  ,pm = qm]. 

Recall that the unary operation a I+ a-' is well-defined in a completely regular semi- 

group. Thus together with its multiplication, a completely regular semigroup S is a (2, 1)- 

algebra (S, . , -' ). It is a not difficult to see that a (2, 1)-algebra is a completely regular 

semigroup if and only if it satisfies the identities a(bc) = (ab)c, a = aa-la, (aF1)-' = a and 
-1 - -1 aa - a a. Hence the variety of completely regular semigroups is 

-1 - = [a(bc) = (ab)c, a = aaP1a, (a-')-l = a, aa - a-'a]. 

We often omit the identity a(bc) = (ab)c in varieties of (completely regular) semigroups 

for convenience. 

The following lists contain varieties of semigroups introduced in Sections 5 and 6. 

Since these varieties are subvarieties of 6372, we shall assume the identities for 6372 with- 

out further comment. We also write a0 = aa-'. 

List A (see Proposition 1.5.5): 

trivial semigroups B = [ a =  b]; 

left zero bands AQ = [ab =a]; 

right zero bands CEZ = [ab = b]; 

rectangular bands OW3 = [a2 = a, abc = ac] 

= [aba = a]. 

List B (see Proposition 1.6.1 1 and Corollary 1.6.12): 

semilattices 8& = [a2 = a, ab = ba]; 

left normal bands BCaZ = [a2 = a, abc = acb]; 

right normal bands 0202 = [a2 = a, abc = bac]; 

normal bands 02 = [a2 = a, abcd = acbq 

= [a2 = a, abca = acba]. 
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List C (see Proposition 1.6.6 and Corollary 1.6.7): 

groups $- = [a0 = bO]; 

left groups &@ = [ab" = a];  

right groups @@ = [a"b = b];  

rectangular groups ci9e@ = [a"bocO = aOcO] 
0 0 0 -  0 = [ a b a  - a ] .  

List D (see Proposition 1.6.14 and Corollary 1.6.15): 

Clifford semigroups &@ = [ab" = boa]; 

left normal orthogroups BlazO = [ab"c = acbO]; 

right normal orthogroups (SZlazO = [ab"c = bOac]; 

normal orthogroups /BZO = [ab"cd = acbOd] 

= [aboca = acbOa]. 

Following the practice of Petrich and Reilly, we denote the variety of Clifford semi- 

groups by &@ (strong semilattices of groups), where in Howie, it is denoted by tW. Note 

that Lists A and C contain varieties of completely simple semigroups. 

The intersection of a non-empty collection {[Ri] : i E I) of varieties is a variety; for a 

semigroup S belongs to n i d [ ~ , ]  if and only if the collection U. R, of identities is 
re1 

satisfied by S, i.e. n, re1 [ R i ]  = [U R,] .  For example, the intersection B n @ of the va- 
1 €1 

riety rll = [a2 = a] of bands and the variety @ = [ab = ba] of commutative semigroups is 

the variety &&? = [d = a, ab = ba] of semilattices. 

Define the join [R1] v [R2] of the varieties [R1], [R2] to be the intersection of the col- 

lection of all varieties containing [R1] and [R2]. The join of any arbitrary collection of 

varieties is similarly defined. Since every variety is contained in the variety [a = a] of all 

semigroups, the join of any collection of varieties exists. 

With respect to the operations n and v, the set of varieties of completely regular 



Chapter I Semigroups 24 

semigroups becomes a lattice with greatest element the variety [a = a] of all completely 

regular semigroups and least element the variety [a = b] of trivial semigroups. 

The following are lattice diagrams of varieties in Lists A, B, C and D. The justifica- 

tion of these diagrams can be found in Chapter 4.6 of Howie and Diagram V.5.6 of Pet- 

rich and Reilly. 

Figure 1.1 
The lattice of varieties in Lists A and B. 

Figure 1.3 
The lattice of varieties in Lists A and C. 

Figure 1.2 
The lattice of varieties in Lists C and D. 

Figure 1.4 
The lattice of varieties in Lists B and D. 
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Figure 1.5 
The lattice of varieties in Lists A, B, C and D. 

1.8 Matrix Semigroups 

Let k be a commutative field. We denote the vector space of n x 1 matrices over k by k" 

and denote the ring of n x n matrices over k by M,(k). If a is a matrix of any size, then let 

aT, Im(a) and rank(a) denote the transpose of a, image of a and rank of a respectively. 

The reader is referred to Lancaster and Tismenetsky for other concepts in linear algebra. 

In this section, we consider subsemigroups of (Mn(k), . ) where is the usual matrix mul- 

tiplication. Our goal is to show that the number of @classes in a completely regular sub- 

semigroup of Mn(k) is finite. 
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Lemma 1.8.1 I fa ,  b are any elements of Mn(&), then rank(ab) 5 rank(a) and rank(ab) 5 

rank(b). 

Proof Since Im(ab) Im(a), it follows that rank(ab) I rank(a). Similarly, we have 

lm(bTaT) c lm(bT), which implies that rank(bTaT) 5 rank(bT). Therefore 

Corollary 1.8.2 I f a ,  b are any elements of a subsemigroup S of M,(&) such that a m ,  

then rank(a) = rank(b). 

Proof I f  a, b E S and a@, then there exist u, v, x, y E S' such that a = ubv, b = xay. By 

Lemma 1.8.1, we have rank(a) = rank(ubv) I rank(bv) I rank(b). To show rank(b) I 

rank(a) is a similar task. 

Corollary 1.8.3 Every element of a simple subsemigroup of Mn(/&) has the same rank. . 
W e  need the following result from Putcha (Lemma 1.6) to prove the main theorem o f  

this section (which is actually a special case o f  Theorem 1.7 o f  Putcha). 

Lemma 1.8.4 I f E  is an infinite set of idempotents in M,(&) of rank r, then there exist 

distinct e, f in E such that rank(ef) = rank( fe) = r. 

Theorem 1.8.5 I f S  = (Y; Sa) is a completely regular subsemigroup of M,(&), then Y is 

finite. Consequently, the number of @classes of S is finite. 

Proof Seeking a contradiction, suppose that Y is infinite. Then we can choose an idem- 

potent from each Sa to form the infinite subset E o f  E(S). Hence we have 

(Ve, f E E) e g  f 2 e =J 

The set E, = {e  E E : rank(e) = r }  is infinite for some r E N,. By Lemma 1.8.4, there ex- 

ist e, f E E, such that e ;t f and rank(ef) = rank(@) = r. Since ef ~ ( e f ) ' ,  we have rank(ef) 
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= rank[(ef )'I by Corollary 1.8.2. Note that (ef )'k" and ekn are subspaces of kn such that 

(ef )'k" = ef (ef )-'k" c_ ek". Therefore together with 

we have (ef )'kn = ekn. Now for any x E kn, there exists y E kn such that ex = (ef loy. 

Hence (ef )'ex = (ef )'(ef )'y = (ef loy = ex, from which we deduce that e = (ef )'e because 

x is arbitrary in fe". Thus e = (ef )-'e&. Similarly, if we consider the dual fez( fe)', we 

obtain f = ($3)-tfe$ It follows then that e g J  which implies the contradiction e =$ . 
Corollary 1.8.6 Every subsemilattice of Mn(k) is finite. 
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This chapter introduces the definition and properties of a C-semigroup. Since we consider 

only subsemigroups of Mn(k) with respect to matrix multiplication . , every semigroup in 

this chapter is a subsemigroup of (Mn(&), . ). We reserve the symbol W to represent any 

variety in Lists A, B, C or D, and we reserve the symbol W to represent any variety of 

completely regular semigroups in general. For convenience, if we say S is a W-semigroup 

(W-semigroup), we mean that S is a semigroup in the variety 0 (W). Also, let 0 denote 

the n x n zero matrix and let 1 denote the n x n identity matrix. 

11.1 Introduction 

Let F = {Si : i E A) be a finite collection of sets in Mn(&) such that Si z (0) for all i in A. 

We say F is a 0-meet collection if Si$ = (0) whenever i z j. For any finite subset I of A, 

define 

In this section, we will construct a semigroup using a 0-meet collection F of com- 

pletely simple semigroups. But first note that if F = {Si : i E A) is such a collection in 

Mn(&), then A must be finite; for if A is infinite, then choosing an idempotent from each 

S, will generate an infinite subsemilattice of Mn(k), which contradicts Corollary 1.8.6. 

2 8 
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Hence whenever we consider a 0-meet collection of completely simple semigroups, it is 

understood that it is a finite collection. Next, note that S,S, = (0) whenever i # j. So if 

CIE, x, , xcJ y, exist in sf, S: respectively, then 

For the following three lemmas, let F = {Si : i E A) be a 0-meet collection of com- 

pletely simple W-semigroups. 

Lemma 11.1.1 For any subset I of A, each element of S: is uniquely represented, i.e. if 

there exist x, , yi in S, and I, J A such that x x, = zicJ y, , then I = J and xi = y, for 
rcl 

all i in I. Consequently, i f e  = El=, e, is an idempotent of S: , then ei is an idempotent of 

Si for all i in I. 

Proof Suppose xi, yi E S, and I, J A such that x x, = ziEJ Y , .  For any j E I, choose 
re1 

any element a, from 4. Then 

Since ajxj # 0, we must have a,x, = ajx and I c J. By symmetry, we obtain xjaj =%a, and 

J c I. Hence xj = yj (for S, is weakly cancellative by Theorem 1.5.4) and I = J. 

Lemma 11.1.2 For each subset I of A, define a map a,  : S: + nIeI S, by 

( for example, if I = {1,2,3), then a,  (xl + x2 + x3) = (xl , x2, x3)). 

Then a, is an isomorphism and sf is a completely simple W-semigroup for each sub- 

set I of A. 
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Proof Let I E A and let x = xi , y = x yl be elements of S: . To show a, is well- 
re1 1 €1 

defined, suppose x = y. Then by Lemma 11.1.1, x, = y, for all i E I. Hence 

It is not difficult to see that a, is a bijection. To show that a, is a homomorphism, first 

note that xy = zjd x, y, . Therefore 

a, (XY) = (xiy; : i E I )  = (x; : i E I)(yi : i E I )  = a l  (x)o, (y ) .  

Hence 01 is an isomorphism, i.e. S: 2 n S, . It suffices now to show that n Sl is 
I€, re1 

a completely simple W-semigroup. But a direct product of completely simple semigroups 

is certainly completely simple, and a direct product of W-semigroups is a W-semigroup 

(see Definition 1.7.1). Hence nleI Sl is a completely simple 70-semigroup as required. 

Lemma 11.1.3 For any subsets I, J of A such that I2 J,  define a map 41, J : SF + S: by 

( for  example, i f  I =  {1,2, 3) andJ= {1,2), then 41,J(~l +x2 +x3) =xl  +x2). 

Then: 

(1) QlzI is the identity map of SF ; 

(2) 4 1, J is a homomorphism; 

(3) $1, J, Kare subsets o fAsuch that I2 Jz, K, then 4J,K0(bI,J= $I,K. 

Proof Let I, J be subsets of A such that I z, J. To show that $1, J is well-defined is a rou- 

tine application of Lemma 11.1.1. To prove (1) and (3) is straightforward. As for the proof 

of (2), note that 41, = a,' O ~ I ,  J a, , where a, , aJ are isomorphisms defined in Lemma 

11.1.2, and ~ L J  is the projection homomorphism from nleI S, onto niEJ S, . Hence ~ I , J  

is a homomorphism. 
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We are now ready for the following semigroup construction. 

Theorem 11.1.4 If F = {S, : i E A) is a 0-meet collection of completely simple W- 

semigroups, then S = UIcA SF is a strong semilattice of completely simple W-semi- 
- 

groups. 

Proof We may write S = UlEYs:, where Y = 2" (the set of all subsets of A) is the 

semilattice with n as binary operation. Hence for any I, J E Y, 

I 2 J e  I z J a  I n J = J .  

Let x, y E S. We may assume x E sf and y E s:. Then there exist xi, yi E S, such 

that x = x  6 €1 x, and y = z l e J y i .  Now 

Hence together with Lemma 11.1.3, we deduce that S = (Y; S F ;  4 I, J). But by Lemma 

11.1.2, SF is a completely simple W-semigroup for all I E Y. Therefore S is a strong 

semilattice of completely simple W-semigroups. 

Definition 11.1.5 We call the semigroup S introduced in Theorem 11.1.4 the C-semigroup 

with foundation F. More generally, by a C-semigroup S we mean a semigroup for which 

there exists a 0-meet collection F = {Si : i E A) of completely simple semigroups such 

that S is the C-semigroup with foundation F. 

In Definition 11.1.5, since F is a 0-meet collection and each Si cannot contain 0, we 

must have Si n ,!$ = 0 whenever i + j. Also, we allow F to be empty, which gives the 

C-semigroup S = (0). In addition, we have 

Corollary 11.1.6 Each C-semigroup is a strong semilattice of completely simple semi- 

groups. Consequently, each C-semigroup is completely regular. rn 
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If S is a semigroup, then the smallest C-semigroup containing S, if it exists, is called 

the C-closure of S and is denoted by s". Not every semigroup has a C-closure (Example 

II.3.3), but every 69-semigroup has a C-closure and there is a procedure to obtain it. Sec- 

tion 3 introduces the concepts (the +closure and -closure of a semigroup) which are cru- 

cial in calculating the C-closure of a W-semigroup. Furthermore, we can show that if S is 

a W-semigroup, then S" is a semigroup in the variety @I v U. 

11.2 Characterization of C-Semigroups 

Let a ,  p be elements of a semilattice Y. We say a covers p and write a + p if a > p and 

there is no yin Y such that a > y > p. 
Let S be a semigroup. We define S to be closed under + if it contains 0 and 

In addition, we define S to be closed under - if 

where 2 is defined in Lemma 1.6.8 and - is the usual matrix subtraction. Note that a com- 

pletely regular semigroup S closed under - necessarily contains 0 because a 2 a for all a 

in S. Hence whenever we say that a completely regular semigroup S = (Y; S,) is closed 

under - (or contains 0), we may assume that Y contains 0 and So = (0). 

In this section we will show that necessary and sufficient conditions for a completely 

regular semigroup to be a C-semigroup are precisely being closed under + and -. We 

need the following three lemmas to prove the main theorem of this section. 

Lemma 11.2.1 IfS = (Y; S,) is a completely regular semigroup and a 2 P in Y, then 

(VX E Sa)(Vy E SP) x 2 (X~) 'X.  
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Proof Let e = (xyx)' and f = x - ' ( xy~ )~x .  Then e, f are idempotents of S such that ex = 

(xyx)Ox and 

xf = xx- l ( X ~ X ) ~ X  = xOxyx(xyx)-'x = X ~ X ( X ~ X ) - ~ X  = (xyx)Ox. 

Hence x 2 (xyx)Ox. 

Lemma 11.2.2 Let S = (Y; Sa) be a completely regular semigroup closed under - and let 

F = {S, : a E Y, a > 0 ) .  Then S is contained in the C-semigroup with foundation F. 

Proof First, it is not difficult to see that F is a 0-meet collection. By Theorem 1.8.5, Y is 

finite. So if Y = {0 ) ,  then F = 0 and we are done. Otherwise we may assume { a  E Y : 

a > 0 )  = N, . Suppose x E Sa where a E Y \ { O )  . Since i covers 0  for each i  E N, , exactly 

one of a 2 i , a i  = 0  is true. We may therefore assume, without loss of generality, that 

a 2 i  if l s i l r  and ai=O if r + l S i l m .  

For each i E N,, choose a representative y, from S,. By Lemma 11.2.1, x 2 (XY,X)'X 

whenever 1 5 i 5 r. By hypothesis and since x 2 ( ~ y ~ x ) ~ x ,  we have x - (xylx)Ox E S. But 

e = (xy2x)0 and f = X - ' ( X ~ ~ X ) ~ X  are idempotents of S such that 

and 

0 -1 
[X - ( X ~ ~ X ) ~ X ]  f = X X - ~ ( X ~ ~ X ) ~ X  - (xy,x) XX (xy2x)R = (xy2x)R - 0 = (xy2x)Ox. 

Therefore x - (xylx)Ox 2 (xy2x)Ox, which implies that x - (xy1x)Ox - (xy2x)Ox E S. Con- 

tinuing, we have x - xr (xyl x)' x E S. Assume x - = (xy, x)' x E SF for some P E Y. 
1=1 1=1 

For each i E N,, define 

Note that each zi belongs to S,, and it is not difficult to show z,(x -XI=, (xy1x)'x) = 0 
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for all j E N, . Hence PN, = 0, from which we deduce that P = 0 because N, contains 

all the covers of 0. Consequently, x - zr 1=1 ( X ~ , X ) ~  x = 0, i.e. x = xr I = I  (xy,x)O x E S: . We 

may thus conclude that S z U SF. IGN", 

Lemma 11.2.3 Let S be a C-semigroup with foundation F = {S,  : i E A).  Let x = xlEI x, 

and y = CEJ y, , where x i ,  y, exist in S, and I, J A. I f x  t y, then I ?  J and x, = y, for 

all i in J. 

Proof I f  x 2 y, then there exist idempotents e, f of S such that ex = xf = y. We may as- 

sume e = C E K e l  E S: for some Kc_ A. Now 

Thus by Lemma 11.1.1, K n I = J ( I  2 J )  and eixi = yi for all i E J. By the same lemma, 

since e = x l E K e I  is an idempotent of s;, ei is also an idempotent of S, for all i E K. 

Hence 

e.x. = e.(e.x.) = e .  . 
1 1  1 1 1  1Yl. 

Similarly, we may suppose f = zeLf, for some L r A and deduce that x& = y,J for all 

i E J. Therefore, by Theorem 1.5.4, xi = yi for all i E J. H 

Having the required lemmas, we are ready to characterize C-semigroups. 

Theorem 11.2.4 A completely regular semigroup is a C-semigroup i f  and only if it is 

closed under + and -. 

Proof Let S = (Y; S,) be a completely regular semigroup. 

Suppose S = UIcA SF where F = {S,  : i E A) is its foundation. Let x, y E S. We may 
- 
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assume x = = , ~ , x ,  E S :  and y = E L E J y , ~ s :  f o r s o m e I , J ~ A . I f x y = O , t h e n O = x y  

= x, yl E SFn J ,  which implies I n J = 0. Hence x + y E S: + S: = SF,, c S. If 
rdnJ 

x z y ,  thenbyLernma11.2.3,1~Jandxl=ylforall i E J. Thusx -y=  ~ , E 1 , J x ,  E s:~ 

c S. Therefore S is closed under under + and -. 

Conversely, suppose S is closed under + and -. Let F = {S, : a E Y, a > 0), which we 

may assume to be (S ,  : i E N,). By Lemma 11.2.2, S c U SF. To show the reverse 
/EN, 

containment, let x E U SF. Then x = Z. x, for some xi E Si and I c N, . Note that 
I d ,  rsl 

xixj = 0 whenever i + j. Without lost of generality assume I = N,. Now ~1x2 = 0, so XI  + x2 

E S. But (XI + x~)x,  = 0, so xi + x2 + xl E S. Continuing, we deduce that x = x, E S. 
re1 

Hence U S: c S. In conclusion, S is a E-semigroup with foundation F. 
I d ,  

11.3 The +Closure and -Closure of a Semigroup 

The following are some consequences of Theorem 11.2.4. 

Theorem 11.3.1 I f &  is a  collection of C-semigroups, then od is a  C-semigroup. Fur- 

thermore, ifeach semigroup in & is a  W-semigroup, then (be is also a W-semigroup. 

Proof If & is a collection of C-semigroups, then (ld is non-empty because every S E d 

contains 0. Since every S E & is closed under + and - (Theorem II.2.4), od is also 

closed under + and -. Hence od is a C-semigroup. It is obvious that if every S E d is a 

W-semigroup, then r(dt is a W-semigroup. 

Corollary 11.3.2 I fa completely regular semigroup S is closed under -, then S' exists. 
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Proof If S is a completely regular semigroup closed under -, then S is contained in some 

C-semigroup (Lemma 11.2.2). Hence the collection U•’ of all C-semigroups containing S is 

non-empty. But any intersection of C-semigroups is a C-semigroup (Theorem 11.3.1). 

Therefore (-)& is a C-semigroup. It follows that S~ = (-)&. 

By Corollary 11.1.6, every C-semigroup is completely regular. But an arbitrarily given 

completely regular semigroup may not be contained in any C-semigroup, as we shall see 

in the following example. 

Example 11.3.3 Consider the subband B = (1, x, y) of M2(&) where 

Then B is a completely regular semigroup that is not contained in any C-semigroup. 

Proof Suppose S = U[LA s,! is a Z-semigroup containing B. Since 1 t x, 1 2 y and S is 

closed under - (Theorem II.2.4), we have 1 - x, 1 - y E S. It is straightforward to show 

that {x, y) is a left zero band and that (1  - x, 1 - y) is a right zero band. Therefore we 

have xgy and (1 - x)@l - y), which implies that x, y E S; and 1 - x, 1 - y E S: for 

s o m e I , J ~ A . N o w O = x ( l - x )  E S~S: = Thus = {O).But( l -x)y=y-x 

# 0 is a contradiction. 4 

We now present the main concept of this section. 

Let S be a semigroup. We define the +closure of S to be the smallest semigroup 

closed under + containing S and denote it by S' . Note that S' is just the intersection of 

all semigroups closed under + containing S. We will show how to generate S' by the 

following construction. 

Fori=O, 1, ..., define 
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It is straightforward to show that S'(0) c S'(1) is a chain of semigroups, and that 

U , 2 0  
S' (i) is a semigroup closed under +. Indeed, U, S+(i)  is the smallest semigroup 

120 

closed under + containing S; for if T is any semigroup closed under + containing S, then T 

must contain every S' (i). Hence S' = U. S+ (i). 
120 

Similarly, for any semigroup S, we define the -closure of S to be the smallest semi- 

group closed under - containing S and denote it by S - .  We can also show that S- = 

if i = O  
S- (i) = 

( a - b : a , b  ~ s - ( i - l ) , a t b )  if i t l .  

Hence we have 

Theorem 11.3.4 The +closure and -closure of a semigroup S are given by 

S' = U 120 S' (i) and S = U 120 S-(i), 

where S' (i) and S- (i) are defzned in (11.3.1) and (11.3.2) respectively. 

Lemma 11.3.5 IfS is a completely simple semigroup, then 

S+ = s- = S u ( 0 ) .  

Consequently, ifS is a completely simple rO-semigroup, then both S' and S- belong to 

the variety rO v sB. 

Proof Since a completely simple semigroup S different from (0) does not contain 0, we 

can easily deduce that S' = S u (0) because S u (0) = S' (0) = S' (1) = .. . Now if x 2 y 

in S, then xe =Jjc = y for some idempotents e, f of S. Thus we have xe =ye and Jjc =fi. It 



Chapter I1 C-Semigroups 3 8 

follows by Theorem 1.5.4 that x = y. Hence we again have S v (0) = S- (0) = S -  (1) = . . a ,  

which implies that S- = S u (0). 1 

For the next two sections, we will prove the analogy of Lemma 11.3.5 for non- 

completely simple W-semigroups. 

11.4 The +Closure of a @-Semigroup 

For the following lemmas, let S be a non-completely simple W-semigroup (i.e. semi- 

groups in the varieties of Figure 1.4) and let 

Lemma 11.4.1 I f x  = a + b is an element of C (where a, b E S such that ab = ba = O ) ,  

then x is a completely regular element of M,(k) such that: 

( I )  x-' = a-' + b-'; 

(2)  x0 = a0 + bO. 

Furthermore, the elements x-', x0 belong to C. 

Proof Let S = (Y; Sa). Then a E Sa and b E Sp for some a ,  P E Y. Since ab = 0, we have 

aP= 0, i.e. SaSb u SpSa = (0). Because a-', aO E So and b-', b0 E Sp, we have a-'b-' = 

b-'ap' = 0 = aObO = boao. Therefore a-' + b-', a0 + b0 E C. It is not difficult to show that 
- 1  a + b-' is an inverse of x that commutes with it, and that (a + b)(a-' + b-') = a0 + bO. For 

example, to show the latter result: 

Consequently, we have x-' = a-' + b-' and x0 = aO + b0 (see Lemma 1.6.1 and the remark 

following it). 1 
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Lemma 11.4.2 For any x, y, z, w in C: 

( l ) ~ ~ = ~ a n d x ~ = ~ x i f W = & & ? ;  (2)x2 = X  andxyz =xzy if 0 = & 0 2 ;  

( 3 ) ~ ~ = x a n d x ~ z = ~ x z i f ( Z , = ~ ,  ( 4 ) x 2 = x a n d x y z w = x z y w i f O = ~ ,  

(5) xyO = yOx if 0 = &@; (6) xyOz = xzyO if (Z, = &020; 

(7) xyOz = yOxz if W = cSZ020; (8) xyOzw = xzyOw if cU = 020. 

Proof (8) Let W =  020 and let x,y, z, w E C. Thenx = a + b, y =  c + d, z = e +J; w = 

g +  hfor somea, b, c ,d,e,Jg,  h E S. F o r a n y u , ~  E S, we have 

where (a) holds by Lemma 11.4.1 and (b) holds by Proposition 1.6.14. Hence 

xyOzw = (a + b)~Oz(~  + h) = ayOzg + ayOzh + byOzg + byOzh 
0 

= azyog + a$h + bzyog + bzyOh = (a + b)zyO(g + h) = xzy w. 

(5) Replace '(aZO ' by '&@ ', 'Proposition 1.6.14' by 'Corollary I.6.15(3)', and remove 

'x', 'w', 'u', 'v' in the proof of (8). 

(6) Replace '020 ' by 'B020 ', 'Proposition 1.6.14' by 'Corollary I.6.15(1)', and re- 

move 'w', 'v' in the proof of (8). 

(7) Replace '(aZO ' by 'cSZ020 ', 'Proposition 1.6.14' by 'Corollary 1.6.15(2)', and re- 

move 'x', 'u' in the proof of (8). 

(4) Let W = 02 and let x = a + b E C. Since S is a band, we have, by Lemma 11.4.1, 

that x0 = aO + b0 = a + b = x. Hence every element of C is an idempotent, and so x2 = x for 
0 0 all x E C. Now S is also a normal orthogroup. Therefore by (8), xy zw = xzy w for all x, y, 

z, w E C, which is equivalent to xyzw = xzyw because yo = y in C. 

(1) Replace '02 ' by '82 ', 'normal orthogroup' by 'Clifford semigroup', '(8)' by 

' ( 5 ) ' ,  and remove 'x', 'w' in the proof of (4). 

(2) Replace '02 ' by 'B02 ', 'normal orthogroup' by 'left normal orthogroup', '(8)' by 



Chapter I1 CSemigroups 

' (6)' ,  and remove 'w' in the proof of (4). 

(3) Replace '02 ' by 'cie02 ', 'normal orthogroup' by 'right normal orthogroup', '(8)' 

by '(7)', and remove 'x' in the proof of (4). 

Lemma 11.4.3 ( C )  is a completely regular semigroup. 

Proof Let x = nm x, E ( C )  where xi E C. Our objective is to show that x has an inverse 
1=1 

in ( C )  with which it commutes. Note that since S is a normal orthogroup, we may invoke 

Lemma II.4.2(8). Also, x;' , xp exist in C  by Lemma 11.4.1. 

First we use induction on m to prove that x ; ( n l  I = ~  x;')x: E V(X). The case rn = 1 is 

trivial. Suppose m 2 2 and X : ( ~ : = ~ X ; ' ) X , O  E V(x) whenever r < m. So when r = m, 

where (a) indicates repeated use of Lemma II.4.2(8) and (b) holds by induction hypothe- 

sis. To show 

is similar. Therefore we have xp (n' I=. x;')x: E V(x). 

We now use induction ,on m to prove that 
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It suffices to show x[xp(nl  I = ~  x;')x:] = nm 1 = 1  xp because proving the other equality is a 

similar task. The case m = 1 is trivial. Suppose m 2 2 and 

whenever r < m. Then when r = m, 

where (c) holds by Lemma II.4.2(8) and (d) holds by induction hypothesis. 

We may conclude that x;(nbmx;')x: is an inverse of x that commutes with it. 

Hence x is completely regular. 

It is clear from the proof of Lemma 11.4.3 that if x = nm x, is in (C), then 
r=l 

and xO= nm I = I  xp. 

We are now ready to prove the following. 

Theorem 11.4.4 The +closure of a semigroup in @I is a semigroup in @I v U. 
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Proof Let S be a W-semigroup. If S is completely simple, then we are done by Lemma 

11.3.5. So suppose S is non-completely simple. But we only need to prove the theorem for 

(2) = 0 2 0 ,  because the proofs of the other cases are very similar. 

Recall that the +closure of S is S+ = U S+(i), where S+(i) is defined in (11.3.1). 
120 

We use induction to prove that every S+ (i) is a normal orthogroup. The case i = 0 is ob- 

vious. Suppose S+ (m - 1) is a normal orthogroup. Let C = {a + b : a, b E S' (m - I), ab = 

ba = 0). By Lemma 11.4.3, (C) is a completely regular semigroup. Now let x ,  y, z E (C). 

Then x = nm' x,  , y o  = n:, y;, z = n:, I,  for some xi, y, , s E C. Therefore 
, = I  

where the second equality holds by repeated use of Lemma II.4.2(8). Hence S' (m) = (C) 

is a normal orthogroup (Proposition 1.6.14) and induction is completed. Since S'(0) c 

S' (1) E . . . , it follows that S+ = U,,, S' (i) is a normal orthogroup. rn 

11.5 The -Closure of a W-Semigroup 

Recall that a W-semigroup is a strong semilattice of completely simple semigroups. 

Hence by Lemma 1.6.16, the partial order 2 defined on a completely regular semigroup 

can be simplified to 

For the following lemmas, let S be a non-completely simple W-semigroup and let 

D = { a - b : a , b ~ S , a > b ) .  
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Lemma 11.5.1 Let a, b be elements of S. I fa  2 b, then: 

( 1 )  ab" = boa = b; (2)  ab-I = b-'a = bO; 
0 0 -  0 0 -  0 .  (3)  a0 2 bO, i.e. a b - b a - b , (4) a"b = ba" = b; 

(5)  sob-' = b-laO = b-'; (6)  a-'b = ba-' = bO; 
1 (7)  a-' 2 b- , i.e. a-'bo = boa-' = b-'. 

Proof Since a 2 b is equivalent to ( I ) ,  it suffices to show ( 1 )  s (2)  s (3) s (4)  s (5)  

and ( 1 )  s (6)  a (7). Moreover, only one-sided proofs are necessary. 

( 1 )  a (2). ab-' = (abo)b-' = bb-' = bO. 

(2) a (3) .  aObO = (aoa)b-' = ab-' = bO. 

(3) (4). aob = (aobo)b = bob = b. 

(4)  s (5). aob-I = (aob)b-'b-' = bb-'b-' = b-'. 

( I )  s (6). 1 f  abo = boa = b, then we also have (3). Hence a-'b = (a-'a)bo = uObO = bO. 

(6) s (7). a-'b" = (aP'b)b-' = bob-' = b-'. 

Lemma 11.5.2 I f x  = a - b is an element of D (where a, b E S such that a 2 b), then x is a 

completely regular element of M,(I&) such that: 

( 1 )  x-' = - b-'; 

(2)  x0 = a0 - bO. 
-1 0 Furthermore, the elements x , x belong to D. 

Proof I f  a, b E S such that a r b, then a-', a', b-', b0 E S, and by Lemma 11.5.1, we have 

a-' 2 b-I and a0 2 bO. Therefore a-' - b-', a0 - b0 E D. Also, we have 

and similarly, (ap' - b-')(a - b) = a0 - bO. Thus a-' - b-I and x commute. It remains to 

show that 6' - b-' is an inverse o f  x, which is just a routine application o f  Lemma 11.5.1. 

Hence by Lemma 1.6.1 and the remark following it, we may conclude that x-' = a-' - b-' 
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and x0 = a0 - bO. 

Lemma 11.5.3 For any x, y, z, w in D: 

(1)x2 =xandxy=yx ,  if W = U ;  (2)x2 = X  andxyz=xzy, i f  W = & m ;  

(3) x2 = x and xyz = yxz, if rU = U&?Z; (4)  x2 = x and xynv = xzyw, i f  rU = 02; 

(5)  xyO = yOx i f  W = Ax$; (6 )  xyOz = xzyO i f  (ZI = BOZO; 

(7) xyOz = yOxz i f  w = ciemo; (8) xyOzw = xvOw i f  w = mo. 

Proof This is very similar to the proof of Lemma 11.4.2. For example, to show (9, let 

x , y  E D. T h e n x = a -  b a n d y = c - d f o r  somea, by c, d E Ssuch that a 2  b andc 2 d .  

Using Lemma 11.5.2 and the assumption that S is a Clifford semigroup, we have 

xyO = (a  - b)(cO - d O )  = acO - ado - bcO + bdo 
0 =cOa-d"a-cob +d"b=  (cO -d" ) (a -  b)  = y  x. rn 

Lemma 11.5.4 (D)  is a completely regular semigroup. 

Proof This is almost identical to the proof of Lemma 11.4.3. Just replace 'C' by 'D ' ,  use 

Lemma 11.5.2 instead of Lemma 11.4.1, and use Lemma II.5.3(8) instead of Lemma 

II.4.2(8). rn 

Apply Lemma 11.5.3 and 11.5.4 in the same way as we have applied Lemma 11.4.2 and 

11.4.3 in Theorem 11.4.4, we obtain 

Theorem 11.5.5 The -closure of a semigroup in 0 is a semigroup in (7) v U.  rn 

11.6 The C-Closure of a WSemigroup 

We can now combine the main theorems of the last two sections to prove the main result 

of this thesis. 
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Theorem 11.6.1 The C-closure of a semigroup in 0 is a semigroup in 0 v sB. In par- 

ticular, ifS is a @-semigroup, then S' = (S- )+. 

Proof Let S be a W-semigroup. By Theorem 11.5.5, S- is a semigroup in 0 v sB. We 

may assume S- = (Y; Sa ;4a,p ) and F = {S, : a E A), where A = { a  E Y : a + 0). Since 

S- is closed under -, we have S- U,=,S: by Lemma 11.2.2. On the other hand, 
- 

UICAS: is a Zsemigroup and so it must be closed under + (Theorem 11.2.4). Thus 
- 

(S-)+ E UIG, S: . Note that 

X E U ~ ~ , S :  - x ~ S : f o r s o m e I c A  

= x = x, for some x, E S, c S- 
a el 

3 x E(S-)+. 

Therefore (S-)+ = U,,, s,!, which implies that (S-)+ is a Z-semigroup. To show that 

(S-)+ is the smallest C-semigroup containing S, let T be any C-semigroup containing S. 

Then S- c T because T is closed under -, and (S-)+ c T because T is closed under +. 

Thus S' = (S-)'. Finally, since S- is a semigroup in W v U, it follows by Theorem 

11.4.4 that (S-)+ is a semigroup in (W v U) v sB = W v sB. H 

Note that if S is a W-semigroup which is not completely simple, then 0 2 sB in the 

lattice of Figure 1.5. Hence W v 82 = 0. Consequently, the C-closure of S is in W. We 

may thus conclude that 

Corollary 11.6.2 A maximal, non-completely simple W-semigroup is a C-semigroup. 
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the +closure of S 

the -closure of S 

the semigroup S with adjoined identity element 
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the sum of Si (i E I), where F = {Si : i E A) is a 0-meet 

collection and I c A 

the C-closure of S 

S is isomorphic to T 

the variety of Clifford semigroups 

the variety of semilattices 

the variety of trivial semigroups 

the symbol for any variety in Lists A, B, C or D 

the set of inverses of a 
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groups 

a semilattice of semigroups 

a strong semilattice of semigroups 
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idempotent, 2 
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isomorphic, 2-3 
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normal 
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