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Abstract

The set M, (k) of n x n matrices over a commutative field & is a semigroup with respect to
matrix multiplication. This thesis focuses on subsemigroups of M,(k).

Let 0 be the n x n zero matrix. A collection {S; : i € A} of sets in M, (k) is a 0-meet
collection if S;S; = 0 whenever i # j. Since a 0-meet collection F = {S; : i € A} of com-
pletely simple semigroups is finite, it is unambiguous to define

§F _ {{0} ifl=02
I S ifI#0
for any subset / of A. It turns out that Uch ST (the union of sums of S) is a semigroup,
which is called a Z-semigroup. )

For convenience, the symbol (@ is used to represent certain varieties of normal ortho-
groups. The objective of this thesis is to show that each semigroup in (@ is contained in a
smallest Z-semigroup which is in (@ v &L, where &£ is the variety of semilattices. Con-

sequently, each maximal semigroup in @ v 8.2 is a Z-semigroup.
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Chapter I

Semigroups

This chapter contains background material, most of which can be found in Howie. Sec-
tions 2 to 6 contain definitions and properties of several types of semigroups which we
will encounter in Chapter II. Section 7 describes how these semigroups relate in the con-

text of varieties, while Section 8 discusses properties of matrix semigroups.

1.1 Notation

Throughout this thesis, let N denote the set of positive integers and let N,, denote the set

of the first m positive integers. If 4, B are subsets of a ring R, then:

edA+B={atb:aec A,be B}; ed\B={aeAd:a¢ B},
eAB={ab:ac A, b e B}; e A" ={aiay-an:a;€ 4,1 <i<m};

e {Ay={aa-a,:a,€ A, 1 <i<r,r e N}.

In addition, we abbreviate 4{b} to 4b and {a}B to aB. If {4;: i € I} is a collection of

subsets of R, then we denote their cartesian product by Hie] A, and write a typical ele-
ment as (a;: i € I), where g;isin4;. If I= {1, 2, ..., m}, then we simply write Hie] 4, as

Ay x Ay x -+~ x A, and (a;: i € I) as (a1, az, ... , Qm).



Chapter I Semigroups 2

1.2 Introduction

A semigroup is a non-empty set S with an associative binary operation - , which we often
call multiplication. We abbreviate a-b to ab for any elements a, b of S. Associativity al-
lows products of any finite length in a semigroup to be written unambiguously without
the need for parentheses. Hence if 4, B, C are subsets of a semigroup, then (4B)C =
A(BC).

A semigroup with only one element is called a #rivial semigroup. A semigroup with
an identity element is called a monoid. If a semigroup S has no identity element, an extra
element 1 can be adjoined to S to form the monoid S U {1} with the obvious multiplica-

tion (1a = al = a for all a in S). Hence it is convenient to define

y ]S if S has an identity element
T lsui{n otherwise.

A zero of a semigroup S is an element z of S such that S # {z} and zS = Sz = {z}. The
condition S # {z} is added to the usual definition of a zero so that the only element of a
trivial semigroup is an identity element and not a zero.

Let S be a semigroup. A non-empty subset T of S is called a subsemigroup of S if it is
closed under multiplication, i.e. if 72> < T. A subsemigroup which is also a group is called
a subgroup. An element e of S is an idempotent if e* = e, and the set of idempotents of S
is denoted by E(S). A semigroup consisting entirely of idempotents is called a band, and
a commutative band is called a semilattice. For any idempotents e, f of S, we shall write
ex>fifef=fe=f and write e > f ife > f and e # /. It is straightforward to show that > is
a partial order on E(S). Note that if S contains an identity element 15 and a zero Og, then
152 e > Og for all e in E(S).

Let S, T be any semigroups. A map ¢: S — T is a homomorphism if

¢(ab) = ¢(a)¢(b)

for all a, b in S. A bijective homomorphism is called an isomorphism. If ¢: S — T is an
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isomorphism, then we say S and 7T are isomorphic and write S = T. The direct product of
semigroups S; (i € I) is the semigroup with the cartesian product Hie] S, as its underly-

ing set and componentwise multiplication: (s;: i € I)t;: i € I) = (s;t;: i € I) for all s;, ¢, in

Si.

1.3 Semilattices of Semigroups

2

Recall that a semilattice ¥ is a commutative semigroup of idempotents, i.e. “ = a and

aff= Paforall a, finY.

Lemma L3.1 If ¢ is a homomorphism from a semigroup S onto a semilattice Y, then:
(1) ¢_l(a) is a subsemigroup of S for each ain 'Y,

() {¢ (@) : a € Y} is a partition of S;

(3) ¢ ()¢ (B) < ¢7(ap) forall a, finY.

Proof (1)Ifa, b € ¢ (), then ¢(a) = a = ¢ (b). Hence ¢ (ab) = p(a)¢ (b) = a* = a,
which implies that ab € ¢~ ().

(2) It is trivial that each element of S belongs to some ¢ (). If a € ¢ (@) N ¢7(B),
then @ = ¢(a) = B, and so ¢ '(a) = ¢~'(B). Consequently, {¢ () : a € Y} is a disjoint
collection of subsets of S.

(3) Suppose a € ¢~ () and b € ¢'(B). Then ¢(a) = a and ¢(b) = . Hence ¢(ab) =
#(a)p(b) = af, from which we deduce that ab € ¢ '(af). |

In Lemma 1.3.1, if we denote ¢ ~'(a) by S,, then S is the disjoint union of the sub-
semigroups S, (« € Y) and
SaSp < Sap,

where af is the product of & and f in the semilattice Y. We call S a semilattice of semi-
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groups and write S = (Y; S,). Knowledge that a semigroup S is a semilattice of its sub-
semigroups S, may give us a useful decomposition of S, but it provides no information on
how elements from different S, multiply. We now introduce a construction where multi-
plication is specified by a collection of homomorphisms.

Let Y be a semilattice and let {S,: a € Y} be a collection of disjoint semigroups. For
each pair of elements a, fof Y such that @ > 3, let ¢, 5: Sz — Sp be a homomorphism

and suppose that:

(1) @o.q s the identity map of S, for each in ¥;
(2) #p,°Pap= o, forevery a, B, yin Y such that a > 2> y.

Let S= Uaey S, and define a multiplication on S by the rule that if a, € S, and bg e Sp,

then

Aabp = (Pa,ap aa)(Bp.apbp)-
It is not difficult to show that S is a semigroup. Furthermore, each S, is a subsemigroup

of S such that S,Ss < Sas. Hence S is certainly a semilattice of semigroups. We shall

write S = (Y; Sa; @ap) and call it a strong semilattice of semigroups.

I.4 Green’s Equivalences

Definition 1.4.1 Let a, b be elements of a semigroup S. Then:
(1) a@b if there exist x, y in S' such that xa = b, yb = a;

(2) aRb if there exist x, y in S' such that ax = b, by = a;

(3) a76b if aLb and aRb;

(4) atfb if there exist u, v, x, y in S! such that uav = b, xby = a.

It is straightforward to show that .£, R, 76 and ¢/ are equivalence relations on a semi-

group, which are called Green’s equivalences. Note that 76 = £ " R and £ U R C ¢}.
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Denote the .€-class containing a by L,, and define the sets R,, H, and J, similarly. The

following result is Theorem 2.2.5 of Howie.

Theorem 1.4.2 If H is an J6-class of a semigroup S, then either H*~"H=O,or H*=H
and H is a subgroup of S. |

Consequently, each Z6-class of a semigroup S can contain at most one idempotent,
and if e is an idempotent of S, then H, is a subgroup with identity element e. We shall end

this section with a lemma, the proof of which is routine.

Lemma 1.4.3 Let S be a semigroup. Then:
(1) (Va, b, ¢ € S) alb = ac.lhc,
(2) (Va, b, c € S) aRb = caRcb. [

I.5 Completely Simple Semigroups

An element a of a semigroup S is regular if axa = a for some x in S, and S is regular if all
its elements are regular. Bands and groups are examples of regular semigroups. Note that
if axa = a, then ax and xa are idempotents. Hence a regular semigroup contains at least
one idempotent.

Let e, f be idempotents of a semigroup S. Recall that e > /" if and only ifef=fe =1 A
nonzero idempotent e of § is said to be primitive if it is minimal in the set of nonzero
idempotents of S with respect to the partial order >, i.e. if f is nonzero in E(S) and e > f,
then e =f.

A semigroup S is called simple if (= S x S, or equivalently, if S is the only ¢/class of
itself. A simple semigroup S does not have a zero; for if O is a zero of S, then {0s} is a (/-
class different from S. A simple semigroup is completely simple if it contains a primitive

idempotent. The following result is Theorem 3.3.1 of Howie.
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Theorem L.5.1 Let G be a group, let I, A be non-empty sets and let P = [ps;] be a A x [
matrix with entries in G. Let S = I x G x A, and define a multiplication on S by
(ia a, ’1)(]’ b, ,Ll) = (i’ apljbs ,Ll)

Then S is a completely simple semigroup.
Conversely, each completely simple semigroup is isomorphic to a semigroup con-

structed in this way. [ ]

The semigroup in Theorem 1.5.1 is called the Rees matrix semigroup and is denoted

by MG, I, A; P].

Lemma 1.5.2 If S is a completely simple semigroup with a primitive idempotent e, then:
(1) S'is regular;

(2) L.=Se and R, = eS;

(3) every F6-class of S is a subgroup.

Proof (1) For any a € S, we have af/e since S is simple. Hence there exist u, v,x, y € s
such that a = uev and e = xay. Let f= evyexue. Then
% = evyex(ueev)yexue = evye(xay)exue = evyexue = f.
Thus f € E(S), and it is obvious that e > f. Consequently, e = f for e is primitive. Now
a = uev = ufv = (uev)yex(uev) = a( yex)a,

which shows that g is regular.

(2) It suffices to show L, = Se. If x € L, then x = ye for some y € S'. Sox=ye e S'e
=Se U {e} =(S U {e})e = Se.

Conversely, if xe € Se, then effxe because S is simple. Hence there exist u, v € st

such that e = uxev. Now let /= eveuxe. Then
f2 = eve(uxeev)euxe = eveuxe =f and ef=fe=f

Therefore f is an idempotent such that e > f. It follows that e = f* because e is primitive.



Chapter I Semigroups 7

Thus e = (eveu)xe, which implies that xe € L,.

(3) If a € S, then there exist u, v € S' such that a = uev for S is simple. Hence a* =
auev. Since ue, aue € Se, we deduce that ue.Laue by (2). By Lemma 1.4.3(1), we have a
= (ue)vL(aue)v = a*. The proof of a*Ra is similar. It follows that o’ J6a.

Now if H is an 76-class of S, then we have &* € H?> N H for any a € H. Therefore H

is a subgroup (Theorem 1.4.2). |
A consequence of Lemma 1.5.2 is

Corollary 1.5.3 Each completely simple semigroup is a disjoint union of groups. n
We now present some alternate characterizations of completely simple semigroups.

Theorem 1.5.4 The following conditions on a semigroup S without zero are equivalent.
(1) S is completely simple;

(2) S is regular and weakly cancellative, i.e. for all a, b, c,d in S,
(ac=bc & da=db) = a=b;

(3) S is regular and every idempotent of it is primitive.

Proof (1) = (2). Let S be a completely simple semigroup. By Lemma 1.5.2, S is regular.
We may assume that S = M[G; I, A; P] (Theorem 1.5.1). Leta=(,x, A),b=(J,y, ), c =
(k, z, y), d= (I, w, i), and suppose that ac = bc and da = db. Then

(is xplkza }/) = (j’ yp,ukza }a and (la anixs /’{') = (la wpﬂjya /’l)a

from which we deduce that i =j, A = g and x = y. Hence a = b as required.

(2) = (3). Let e, f be idempotents of S such that e > /. Then ef = ff and fe = ff. There-
fore we obtain e =f by the weakly cancellative property of S.

(3) = (1). For any a € S, there exists b € S such that @ = aba because S is regular.
Then ab is an idempotent such that affab. Hence each ¢f-class of S contains an idempo-

tent. Now suppose J, , J; are any ¢f-classes of S, where e, f € E(S). Choose any idempo-
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tent g € J,r. Then g = xefy for some x, y € S'. Let u = efygxe. Then

u’ = efyg(xeefy)gxe = efygxe =u and eu =ue=u.

Hence e > u. But since every idempotent is primitive, it follows that ¢ = . Consequently,

g=xefy and e = efygxe,

which implies gife. Therefore J, = J, . Similarly, if we consider the idempotent v = fygxef,
we can deduce that J, = J;. Hence J, = J; = J;. In conclusion, S contains only one ¢/-class,

and so it is simple. |

The remainder of this section introduces all the completely simple semigroups which
we will encounter in Chapter II.

Recall that a trivial semigroup contains only one element and so is obviously com-
pletely simple. A semigroup S is called leff zero if ab = a for all a, b in S. A right zero
semigroup is analogously defined. Note that a left (right) zero semigroup is a band, there-
fore we may also call it a left (right) zero band. A semigroup S is called a rectangular
band if aba = a for all a, b in S. The following justifies why ‘band’ is being used in

naming rectangular bands.

Proposition 1.5.5 The following conditions on a semigroup S are equivalent.
(1) S is a rectangular band,

(2) (Va, b, c € S) a* = a & abc = ac;

(3) S is a direct product of a left zero band and a right zero band,

(4) S is a completely simple band.

Proof (1) = (2). Suppose aba = a for all a, b € S. Then certainly a@=aforallaes
4 2

Hencea* =d*and so &’ =a* =ad’a=a.
Next, for any a, b, ¢ € S, we have

abc = ab(cac) = (abca)c = ac.

(2) = (3). Choose any element ¢ from S. Let L = Sc and R = ¢S. Then for any x = uc
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andy=vcinL,
- R N
xy = u(cve) = uc” = uc = x,

and so L is a left zero band. Similarly, R is a right zero band. Define amap ¢: S — L xR
by #(x) = (xc, cx). Then ¢ is one-one; for if (xc, cx) = (yc, cy), then

x=x’=xex=yex=ycy=)"=y.

Also, ¢ is onto, since for all (ac, cb) € L x R, we have ¢(ab) = (abc, cab) = (ac, cb). Fi-

nally, ¢ is a homomorphism because for all x, y € S,

¢ (xy) = (xyc, cxy) = (xcye, exey) = (x¢, ex)(ye, ) = pX)P(y).

Hence ¢ is an isomorphism and S = L x R.
(3) = (4). Suppose S = L x R for some left zero band L and right zero band R. Then S
is trivially a band and so is regular. Let ¢, f € S. We may assume e = (x, y) and f= (z, w)

for some x,z € L and y, w € R. If e > £, then

e = (x,y) = (xzx, ywy) = (x, y)z, w)(x, y) = e(fe) = ef = f.
Therefore every idempotent of S is primitive. It follows by Theorem 1.5.4 that S is com-
pletely simple.
(4) = (1). Let S be a completely simple band. If a, b € S, then a, aba are idempotents
such that g > aba. Consequently, a = aba because every idempotent of S is primitive

(Theorem 1.5.4). |

It is not difficult to show that left zero and right zero bands are special cases of rec-
tangular bands, so they must also be completely simple.

A regular semigroup is called orthodox if its set of idempotents is a subsemigroup. A
band is orthodox, but the converse is not generally true. For example, a non-trivial group

is an orthodox semigroup which is not a band.

Definition 1.5.6 Let S be a completely simple semigroup. Then:
(1) S'is a rectangular group if it is orthodox;
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(2) S'is a left group if E(S) is a left zero band,
(3) Sis a right group if E(S) is a right zero band.

Note that a group satisfies all requirements of being a left, right and rectangular group
because it is completely simple and contains only one idempotent. We shall characterize

these orthodox semigroups in the next section.

1.6 Completely Regular Semigroups

Let a, x be elements of a semigroup S. Then x is an inverse of a if axa = a and xax = x,
and the set of inverses of a is denoted by V(a). Note that an element with an inverse must
be regular. On the other hand, every regular element has an inverse; for if axa = a, then
xax is an inverse of a.

Let S be a semigroup. An element a of S is completely regular if there exists x in V(a)
such that ax = xa, and S is completely regular if all its elements are completely regular.
Clearly, a completely regular element is regular. Therefore a completely regular semi-

group is also regular.

Lemma 1.6.1 Let a be an element of a completely regular semigroup. If x is an inverse of
a such that ax = xa, then:

(1) e = ax is an idempotent;

(2) aZbxFbe;

(3) x is unique.

In particular, x is the inverse of a in the group H,.

Proof To verify (1) and (2) is straightforward. To prove (3), suppose y is an inverse of a
such that ay = ya. Then by (1) and (2), ay is an idempotent of H, = H,, and so ay = e be-

cause H, is a group (Theorem 1.4.2). Therefore

y=yay=ye =yax = ex = xax = X. |
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In the light of Lemma 1.6.1, it is reasonable to adopt the following convention: if a is
a completely regular element of a semigroup and x is the inverse of a such that ax = xa,
then we write @ = x and a® = ax. Hence if a is an element of a completely regular semi-

group S, then we have:

oaa'1=a_1a=a0; oaa°=a°a=a;

oa‘1a°=a°a_1=a_1; .(a—l)—1=a;
“1NO0 _ , O\-1 _ 0, 0N _ 0, ON2,

o(@)=() =a,; (@) =a=(@);

cac kS & ad=a.

Since any element a of a completely regular semigroup S is contained in the subgroup
H,, S is a disjoint union of its subgroups. Conversely, any disjoint union of groups form-

ing a semigroup can easily be seen to be completely regular. Therefore we have proved

Theorem 1.6.2 A semigroup is completely regular if and only if it is a disjoint union of
groups. |

It follows from Corollary 1.5.3 that a completely simple semigroup is a disjoint union

of groups, and so must be completely regular. In fact we have

Theorem 1.6.3 A semigroup is completely simple if and only if it is completely regular

and simple.

Proof It suffices to prove the converse of the theorem. Suppose S is a completely regular
and simple semigroup. We shall show that every idempotent of S is primitive. If e, f €
E(S) and e 2 £, then there exist u, v € S' such that e = ufv because S is simple. Therefore

we have
(euf)’ = (euf) 'euf = [(euf) 'euf1f

= (euf)’f= (euf ) e’f = (euf ) eufof
= e(ufv) f= e*f=f.

Hence,



Chapter [ Semigroups 12

f=1E = (euf)’e” = (eufeufy = e(ufv) = & = e.

By Theorem 1.5.4 the proof is complete. |

A semilattice of completely simple semigroups is a disjoint union of groups, and
therefore is a completely regular semigroup. But the converse is also true by Howie

(Theorem 4.1.3).

Theorem 1.6.4 Each completely regular semigroup is a semilattice of completely simple

semigroups. [

Whenever we have a completely regular semigroup (Y; S,), it is understood that S,, is
a completely simple semigroup for each « in the semilattice Y. Furthermore, note that
each S, is a ¢f-class of S.

We shall prove the following lemma before characterizing the rectangular groups in-

troduced in the previous section.

Lemma 1.6.5 Let S, T be completely simple semigroups and let ¢ : S — T be a homo-
morphism. Then ¢(x°) = ¢(x)° for all x in S.

Proof If x € S, then ¢(x0) is an idempotent of 7 because ¢(x0)¢(x0) = ¢(x%0) = ¢ (V).

Next, we have
("))’ =[$)p@IF®) ™ = p(x’0)px) " = pX)p(x) " = p(x)°.

Similarly, we can show ¢ (x)0¢ (xo) =¢ (x)’. Hence we deduce ¢(x0) > ¢ (x)o. But since
every idempotent of the completely simple semigroup 7 is primitive (Theorem 1.5.4), we

also have ¢(x°) = ¢(x)". |

Proposition 1.6.6 The following conditions on a completely regular semigroup S are
equivalent.

(1) S'is a rectangular group;

(2)(VYa, b,c e S) b’ = aoco;
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(3)(Va, b e S) a®%° = d.

Proof (1) = (2). Let a, b, c be elements of a rectangular group S. Since E(S) is regular
and all its elements are primitive, E(S) is completely simple (Theorem 1.5.4). It follows
that E(S) is a rectangular band (Proposition 1.5.5). Hence a®4%° = a°? as required.

(2) = (3). This is trivial.

(3) = (1). Suppose a’ = a’’%° foralla, b € S. Let e, f € E(S). Then
(ef) = (€’ f° =’ = ¢f,
from which we deduce that ef € E(S). Hence S is orthodox. Furthermore, if e > £, then

e=e0=e0foe0=e(fe)=ef=f.

So each idempotent of S is primitive. By Theorem 1.5.4, S is completely simple. n

Corollary 1.6.7 Let S be a completely regular semigroup. Then:
(1) S is a left group if and only ifab’ = a foralla, bins,

(2) S is a right group if and only if a®b = b foralla,binsS,

(3) Sis a group if and only ifa® = b° for all a, b in S.

Proof (1) If S is a left group, then E(S) is a left zero band. Thus

0
ab’=ad’’ =ad® = a.

05040 = g0

Conversely, suppose ab’ = q for all a, b € S. Then we certainly have a
Hence S is a rectangular group (Proposition 1.6.6). Now if e, f € E(S), then ef = ef® = e.
So E(S) is a left zero band, which implies that S is a left group.

(2) This is symmetrical to the proof of (1).

(3) The identity element of a group is the only idempotent. Therefore every group
satisfies the identity a° = 4°.

Conversely, suppose a” =1 for all a, b € S. Then S contains only one idempotent,

say E(S) = {e}. To show that S is group, it suffices to show that the inverse of each ele-

ment a € S is unique. Let x, y € V(a). Then since ax, xa, ay, ya are idempotents, we must
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have ax = gy = e = xa = ya. Hence

X=xax=xay=yay=y. n

Lemma 1.6.8 Define a binary relation > on a semigroup S by
a2b if ae=fa=0>b for somee,f in E(S).

If'S is completely regular, then the binary relation 2 is a partial order on S.

Proof For any a € S, we have ad’ =d’a=a. Thusa > a, which implies that > is reflex-
ive. To show that > is antisymmetric, suppose @ > b and b > a. Then ae = b and a = fb for

some e, f € E(S). It follows that fa =ffb =fb=a and so
a=fb=(fa)e=ae=b.

Finally, to show that > is transitive, suppose @ > b and b > c. Then ae = fa = b and bg =

hb = ¢ for some e, f, g, h € E(S). Note that

¢ = hb = h(hb) = hc = hbg
= hfag = hf( fa)g = hf(bg) = hfc

and that ¢ = bg = aeg. Hence
a'calc =a'hba'c=a 'hf(aa ' a)eg
=a 'hf(aeg) = a \(hfc) = ale,
which implies that a'c e E(S). Now
a(a’'c) = (aa_la)eg =aeg=c.

By a symmetrical argument, we can show that (ca )a = ¢ where ca™ e E(S). Therefore
we may conclude that a > c. [

Note that the partial order in Lemma 1.6.8 generalizes the partial order defined on
E(S), forif a, b, e, f are elements of E(S) such that ae = fa = b (i.e. a 2 b), then

ab=a(ae)=ae=>b and ba=(fa)a=fa=b>.
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In Chapter II, our primary interest lies in completely regular semigroups that are
strong semilattices of completely simple semigroups introduced in the previous section.
Before we introduce these semigroups, first note that a band is completely regular and
hence is a semilattice of its completely simple subsemigroups. But these subsemigroups
are also bands, so by Proposition 1.5.5 they must be rectangular bands. Hence we have

established the following, the converse of which is obviously true.
Theorem 1.6.9 Every band is a semilattice of rectangular bands. |

Consequently, if we say (¥; S,) is a band, then it is understood that S is a rectangular

band for every « in the semilattice Y.

Definition 1.6.10 Let S be a semigroup. Then:
(1) S'is a normal band if it is a strong semilattice of rectangular bands;
(2) Sis a left normal band if it is a strong semilattice of left zero bands;

(3) S is a right normal band if it is a strong semilattice of right zero bands.

There is no special name given to a strong semilattice of trivial semigroups because it
is necessarily a semilattice. If we say (¥; Sy ; @op) is @ normal (left normal, right normal)

band, then each S, is a rectangular (left zero, right zero) band.

Proposition 1.6.11 The following conditions on a band S = (Y; Sa) are equivalent.
(1) S is a normal band,

(2)(Va,b,c € S) a* = a & abca = acha;

(3)(Va, b, c,d € S) a* = a & abcd = achd.

Proof (1) = (2). Let S =(Y; Sa; @ap) be a normal band. For any a, b, c € S, we may as-
sume that g € S,, b € S, ¢ € S, for some «, S, y € Y. Certainly we have a=qforSisa
band. Now let 77 = affy. Note that since ¢, ,a, gz,b and @, ,c are elements of the rectan-

gular band S,,, we have
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abca = (¢a,ﬂa)(¢ﬂ,flb)(¢}’,nc)(¢a,r) a)= (¢a,r; a)
= (Pan AN Dy.n )(Pp.n b)(Pe,na) = acba.

(2) = (3). Assume (2). Then
abcd = a(bcdabc)d = (abca)(dbcd)
= a(cbadcb)d = (acbd)(acbd) = acbd.

(3) = (1). Suppose > fin Y and let a € S,. Then for any x, y € Sp, we have xyx =x

and yxy =y, and so
axa = ax(yx)a = ayxxa = ay(yx)a = a(yxy)a = aya.

Hence the element axa is independent of the choice of x in Sg. It follows that whenever
a2 fin Y, the map @, p: Sq = Spdefined by

aw axa,

where x is any element of Sg, is well-defined. It is straightforward to show that ¢, , is the
identity map on S, and that @g, °@, s = @, Whenever @ > > y. To show @, s is a homo-
morphism, let a, b € S, and choose any x from Sg. Then
@ap(ab) = ab(xa)b = axabb = ax(xab)b
= (axa)(bxb) = ($a,p AN Papb).
Finally, forany a, f € Y, leta € S,, b € Sg. Choose any x from S,5. Then

ab = ab(xa)b = axabb = ax(xab)b
= (axa)(bxb) = ($a.apaXPp.apb),

where the first equality holds because ab, x belong to the same rectangular band S,5. We

may thus conclude that S = (¥; S, ; @op) is a strong semilattice of rectangular bands. W

Corollary 1.6.12 Let S be a band. Then:
(1) S is a left normal band if and only if abc = acb for all a, b, c € S;
(2) S is a right normal band if and only if abc = bac for all a, b, c € S.
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Proof It suffices to prove (1), for (1) and (2) are symmetrical. Let S = (Y; Sa; dop) be a
left normal band. If @, b, c € S, thena € S,, b € Sp,c € S, forsome a, B, ye Y. Let n=

afly. Since @q na, @pnb, @,,,c belong to the same left zero band S, we have

abc = (@a,na)Pp.n bN P10 €) = 0,70 = (Pa,n A By ) (P b) = ach.

Conversely, if abc = ach for all a, b, ¢ € S, then certainly we have abca = acba.
Hence S is a normal band (Proposition 1.6.11). We may thus assume S = (Y; Sq¢; @ap)

where each S, is a rectangular band. Now if a, b € S, then aba = a. Hence
ab = a(ab) = aba = a.

Therefore each Sy, is a left zero band, which implies that S is a left normal band. |

Definition 1.6.13 Let S be a semigroup. Then:

(1) S'is a normal orthogroup if it is a strong semilattice of rectangular groups;
(2) S is a left normal orthogroup if it is a strong semilattice of left groups;

(3) S is a right normal orthogroup if it is a strong semilattice of right groups;

(4) Sis a Clifford semigroup if it is a strong semilattice of groups.

Analogous to normal bands, if we say (Y; S, ; @sp) is a normal (left normal, right
normal) orthogroup, then it is understood that each S, is a rectangular (left, right) group.
Similarly, if (¥; S4; @ap) is a Clifford semigroup, then each S, is a group.

Proposition 1.6.14 The following conditions on a completely regular semigroup S are
equivalent.

(1) S is a normal orthogroup;

) (Va,b,ceS) ab’ca = ach’a;

3)(Va,b,c,de S) ab’cd = ach’d;

(4) E(S) is a normal band.

Proof By Theorem IV.2.7 of Petrich and Reilly, (1), (2) and (4) are equivalent. Note that
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in Petrich and Reilly a normal orthogroup S is defined to be a completely regular semi-

group satisfying the condition in (4). Now assume (2), then

ab’cd = (ab’ca)b’c(ab’c) ' d = acb®(ab’c)(ab’c)'d
= ach®(ab’c) (ab’c)d = acb®(ab’c) ' ab’cd(b’cd)’
= ac[b%ab’c)’db°|cd(b°cd)™" = ach®d(ab’c)’ b cd(b’cd)™
= ach’d[(ab’c)’(b°cd)"].
Similarly, we have that ach’d = ab’cd[(ach®)’(cb’d)"]. So ab’cdRach’d. By duality we
deduce ab’cdach’d. It follows that ab’cdFbach’d, which implies (ab’cd)’ = (acb’d)’.

Hence
ab’cd = (ach’d)’(ab’cd)(ach’d)’
= (ach’d) " ach®(dab’cda)ch’d(ach’d)™
= (ach’dy " (ach’dyach’d(ach’d)(acb’d)™' = acb’d.
We thus have (2) = (3). It is trivial that (3) = (2). [

Corollary 1.6.15 Let S be a completely regular semigroup. Then:

(1) S is a left normal orthogroup if and only if ab’c = acb® for all a, b, c in S,
(2) 8 is a right normal orthogroup if and only if ab’c = b’ac for all a, b, ¢ in S;
(3) S is a Clifford semigroup if and only if ab® = b°a for all a, b in S.

Proof (1) Let S = (Y; Sa; @dap) be a left normal orthogroup. If a, b, ¢ € S, then a € S,,
b € Sp, c € S,for some a, B, y € Y. Letting n = affy, we have
(2)
ab’c = (Po,na)( g,y bo)(¢r,n ) = (Pa,na)( P59 b)0(¢r,nc)
(b) (b) 0
= (Pa,n APy, ) = (Pa,n AN Py,n (P54 D)

@ 0 0
= (Pa,n ANy ncXdpnb’) = acb’,

where (a) holds by Lemma 1.6.5 and (b) holds because ¢, ,a, (¢/3,,,b)0, @, nc belong to the

same left group S;,.
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Conversely, if ab’c = ach® for all a, b, ¢ e S, then we also have ab’ca = acb’a. Hence
S is a normal orthogroup (Proposition 1.6.14). Assume S = (Y; S¢; @op). If a, b € S,, then
a’b’a’ = d° for E(S,) is a rectangular band. Therefore
ab’ = ad’(@®b%) = a(a®6’a®) = aa’ = a,

which implies that S, is a left group.
(2) This is symmetrical to the proof of (1).
(3) Suppose S = (¥; Sa; @op) is a Clifford semigroup. Let a, b € S. Then a € S,,

b € Sp forsome a, f € ¥, and

0 _ 0, 0
ab (¢a,a,8a)(¢ﬂ,aﬂb )= (¢a,a,8a)(¢ﬂ,a,8 b)

@ 0 © 0 0

= (#.ap0) (Paapa) = (#p.apb N Paapa) = b'a,
where (c) holds by Lemma 1.6.5 and (d) holds because @, qpa, (@505 b)° belong to the
same group Syg.

Conversely, if ab’ = b%a for all a, b € S, then we also have ab’c = b%ac. Hence Sis a
right normal orthogroup. Assume S = (¥; Sq; dop). If a, b € S,, then since E(S,) is a right
zero band, we have

a®=0%"=ad"p" = p".

Thus S, is a group by Corollary 1.6.7(3). [

Having introduced the required semigroups, we shall end this section by showing that
the binary relation (partial order) > defined on a completely regular semigroup S in
Lemma 1.6.8 has an easier characterization if S is a strong semilattice of completely sim-

ple semigroups.

Lemma 1.6.16 IfS is a strong semilattice of completely simple semigroups, then

(Va,beS)a>be<ab’=b%=b.
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Proof LetS = (Y; Sq; @ap), and suppose a, b € S and a > b. Then there exist e, f € E(S)
such that ae = fa = b. We may assume thata € S,, b € Sg, e € S,, f € S, for some «, £,

v, n € Y. Since b = ae = (§40,a)(Pyar€), Wwe have ay = f(i.e. = ) and that

b(@ype) = (Papa)Prpe)drpe) = (Papa)Pype).

Similarly, we can deduce that (g, 3/)b = (#,5/)(@apa) by considering b = fa. Now ¢, ga,
b, ¢,pe, ¢,5/ belong to the same completely simple semigroup Sg. Therefore b = @, pa

because Sp is weakly cancellative (Theorem 1.5.4). Hence
ab’® = ($apa)gppb”) = bb" = b="10"b = ($3b°N papa) = b'a.

The converse is obvious. [ |

L.7 Varieties of Normal Orthogroups

An algebra is an ordered pair (4, { f; : i € I}), where 4 is a non-empty set and f; is an
n;-ary operation defined on A4 for all i in 1. We may write (4, f1, fo, ..., fm) if I=N,.
When the n;-ary operations f; are understood we shall write 4 rather than (4, {f;: i € I}).
In this section, we are only concerned with the special case when A4 is a (2, 1)-algebra,
i.e. atriplet (4, - ,’ ) where (x, y) = x-y is a binary operation and x +— x' is a unary opera-
tion. The reader is referred to Burris and Sankappanavar for the general case.

If (4, -, )isa(2, 1)-algebra, then a subalgebra of A is a (2, 1)-algebra (B, - ,’ ) such
that:
(1) B is a non-empty subset of 4;
(2) (Vx,ye B)xy € B;
(3)(Vxe B)x' € B.

If(4,-,"),(B,+,")are (2, 1)-algebras, then a map ¢: 4 — B is a homomorphism if
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$(xy)=¢(x)¢(y) and ¢(x')=¢x)"

In addition, if ¢ is onto, then B is said to be a homomorphic image of A.
Let (4, -,') be a (2, 1)-algebra and let X be a set of symbols (an alphabet). Together

with the symbols - and ', we define a word recursively as follows:

(1) every element in X is a word;
(2) if p, q are words, then p-q is a word,;

(3) if p is a word, then p’ is a word.

The expression p = q is called an identity if p, q are words. If the identity p = g holds for
any substitution of elements from 4, then we say A4 satisfies the identity p = g.

For any set of identities R, define [R] to be the class of all (2, 1)-algebras satisfying
the identities in R. A class of (2, 1)-algebras K is an equational class if K = [R] for some

set of identities R.

Definition L.7.1 Let K be a non-empty class of (2, 1)-algebras with the following prop-
erties:

(1)if 4 € K and B is a subalgebra of 4, then B € K

(2)if 4 € K and B is a homomorphic image of 4, then B € K;

3)ifd, e K(ae A),then [[ 4, €K

Then we say K is a variety. If H and K are varieties such that H c K, then we say H is a

subvariety of K.

The following is a specialization of a result (due to Birkoff) which can be found in

Burris and Sankappanavar (Theorem 11.9).

Theorem 1.7.2 A class of (2, 1)-algebras is a variety if and only if it is an equational

class. [ ]

In the light of Theorem 1.7.2, each variety of (2, 1)-algebras is of the form [R], where
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Ris a set of identities. f R={p; =q1, p2=¢>, ..., Pm = gm}, then we may write [R] sim-
ply as [p1=q1, 2= 2, ... Pm = gm].

Recall that the unary operation a > a™ is well-defined in a completely regular semi-
group. Thus together with its multiplication, a completely regular semigroup S is a (2, 1)-
algebra (S, -, ' ). It is a not difficult to see that a (2, 1)-algebra is a completely regular
semigroup if and only if it satisfies the identities a(bc) = (ab)c, a = aa'a, (@"y'=aand

aa™' = a”'a. Hence the variety of completely regular semigroups is
@R = [a(bc) = (ab)c, a=aa'a, (@) "' =a,aa' =a'al.

We often omit the identity a(bc) = (ab)c in varieties of (completely regular) semigroups
for convenience.

The following lists contain varieties of semigroups introduced in Sections 5 and 6.
Since these varieties are subvarieties of @R, we shall assume the identities for @R with-

out further comment. We also write ¢° = aa”".

List A (see Proposition 1.5.5):

e trivial semigroups T =[a=1b];

o left zero bands L%Z = [ab=a];

e right zero bands REZ = [ab = b];

e rectangular bands RB = [a2 =a, abc = ac]
= [aba = a].

List B (see Proposition 1.6.11 and Corollary 1.6.12):

e semilattices 3L = [a2 =a, ab = baj;

e left normal bands LN = [a2 =a, abc = acb];
e right normal bands RI = [a2 =a, abc = bac];

e normal bands Q= [d" = a, abcd = achd)]

= [a2 =a, abca = acbha].
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List C (see Proposition 1.6.6 and Corollary 1.6.7):

e groups g=[a"=b";
e left groups £g = [ab’ = al;
e right groups RG = [a’b = b);
e rectangular groups Req = [a"b'c" = a°¢"]

= [a’°a" = d".

List D (see Proposition 1.6.14 and Corollary 1.6.15):

e Clifford semigroups 3G =[ab’ = bla);

e left normal orthogroups LHO = [ab’c = ach’];

e right normal orthogroups RHO = [ab’c = boac];
¢ normal orthogroups HO = [ab’cd = ach’d)]

= [ab’ca = acboa].

Following the practice of Petrich and Reilly, we denote the variety of Clifford semi-
groups by &G (strong semilattices of groups), where in Howie, it is denoted by €.£. Note
that Lists A and C contain varieties of completely simple semigroups.

The intersection of a non-empty collection {[R;] : i € I} of varieties is a variety; for a

semigroup S belongs to ﬂid[R ;] if and only if the collection UieIR,. of identities is

satisfied by S, i.e. ﬂie] [R;]= [Uie]R ,]. For example, the intersection B M @ of the va-

riety B = [a*> = a] of bands and the variety @ = [ab = ba] of commutative semigroups is
the variety &£ = [@® = a, ab = ba] of semilattices.

Define the join [R;] v [R;] of the varieties [R,], [R;] to be the intersection of the col-
lection of all varieties containing [R;] and [R;]. The join of any arbitrary collection of
varieties is similarly defined. Since every variety is contained in the variety [a = a] of all
semigroups, the join of any collection of varieties exists.

With respect to the operations N and v, the set of varieties of completely regular
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semigroups becomes a lattice with greatest element the variety [a = a] of all completely
regular semigroups and least element the variety [a = b] of trivial semigroups.
The following are lattice diagrams of varieties in Lists A, B, C and D. The justifica-

tion of these diagrams can be found in Chapter 4.6 of Howie and Diagram V.5.6 of Pet-

rich and Reilly.
n o
L ./ L0 RAHO
> >
LEZ RZ L4 RG
4 g
Figure 1.1 Figure 1.2
The lattice of varieties in Lists A and B. The lattice of varieties in Lists C and D.
Reqg HO
£g RG L0 RHO
LZ RZ LA 3G R
g &L
Figure 1.3 Figure 1.4

The lattice of varieties in Lists A and C. The lattice of varieties in Lists B and D.
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Figure 1.5
The lattice of varieties in Lists A, B, C and D.

1.8 Matrix Semigroups

Let &£ be a commutative field. We denote the vector space of n x 1 matrices over & by &"
and denote the ring of » x n matrices over & by M, (k). If a is a matrix of any size, then let
a', Im(a) and rank (a) denote the transpose of a, image of a and rank of a respectively.
The reader is referred to Lancaster and Tismenetsky for other concepts in linear algebra.
In this section, we consider subsemigroups of (M, (&), - ) where - is the usual matrix mul-
tiplication. Our goal is to show that the number of ¢/classes in a completely regular sub-

semigroup of M, (&) is finite.
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Lemma 1.8.1 If a, b are any elements of M,(k), then rank(ab) < rank(a) and rank(ab) <
rank(b).

Proof Since Im(ab) < Im(a), it follows that rank(ab) < rank(a). Similarly, we have
Im(bTaT) c Im(bT), which implies that rank(bTaT) < rank(bT). Therefore
rank(ab) = rank[(ab)"] = rank(s"a") < rank(b") = rank(b). ]

Corollary 1.8.2 If a, b are any elements of a subsemigroup S of M,(k) such that atb,
then rank(a) = rank(b).

Proof If a, b € S and affb, then there exist u, v,x, y € S ! such that a = ubv, b = xay. By
Lemma 1.8.1, we have rank(a) = rank(ubv) < rank(bv) < rank(b). To show rank(b) <
rank(a) is a similar task. |

Corollary 1.8.3 Every element of a simple subsemigroup of M,(k) has the same rank. W

We need the following result from Putcha (Lemma 1.6) to prove the main theorem of

this section (which is actually a special case of Theorem 1.7 of Putcha).

Lemma L1.8.4 If E is an infinite set of idempotents in M,(k) of rank r, then there exist
distinct e, fin E such that rank(ef') = rank( fe) = r. [ |

Theorem 1.8.5 If'S = (Y; Sy) is a completely regular subsemigroup of M,(k), then Y is

finite. Consequently, the number of (J-classes of S is finite.

Proof Seeking a contradiction, suppose that Y is infinite. Then we can choose an idem-

potent from each S, to form the infinite subset £ of E(S). Hence we have

(Ve,fe E)e}f=e=f.

The set E, = {e € E : rank(e) = r} is infinite for some r € N,,. By Lemma 1.8.4, there ex-
ist e, f € E, such that e # fand rank(ef) = rank( fe) = r. Since ef Z6(ef )°, we have rank(ef)
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= rank[(ef)"] by Corollary 1.8.2. Note that (¢f )’&” and ek” are subspaces of &" such that
(ef)’k" = ef (ef ) '&" = ek”. Therefore together with

dim[(ef )" = rank[(ef )°] = rank(ef) = r = rank(e) = dim(ek"),
we have (ef )°&” = ek”. Now for any x € k", there exists y € k" such that ex = (¢f )’y.
Hence (ef )’ex = (ef )°(ef )’y = (ef )’y = ex, from which we deduce that e = (¢f )¢ because
x is arbitrary in &". Thus e = (ef ) 'efe. Similarly, if we consider the dual feZ6( f)°, we
obtain f = (fe) 'fef. It follows then that e(Z f, which implies the contradiction e = f. |

Corollary 1.8.6 Every subsemilattice of M, (k) is finite. |
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2-Semigroups

This chapter introduces the definition and properties of a Z-semigroup. Since we consider
only subsemigroups of M,(k) with respect to matrix multiplication - , every semigroup in
this chapter is a subsemigroup of (M,(k), - ). We reserve the symbol @ to represent any
variety in Lists A, B, C or D, and we reserve the symbol % to represent any variety of
completely regular semigroups in general. For convenience, if we say S is a @@-semigroup
(‘W-semigroup), we mean that S is a semigroup in the variety @ (). Also, let 0 denote

the n x n zero matrix and let 1 denote the » x » identity matrix.

I1.1 Introduction

Let F = {S;: i € A} be a finite collection of sets in M, (&) such that S; # {0} for all i in A.
We say Fis a 0-meet collection if S;S; = {0} whenever i # j. For any finite subset I of A,
define

o | if] =0
B DR 19 £31%]

In this section, we will construct a semigroup using a (-meet collection F of com-
pletely simple semigroups. But first note that if F = {S; : i € A} is such a collection in
M, (&), then A must be finite; for if A is infinite, then choosing an idempotent from each

S; will generate an infinite subsemilattice of M,(&), which contradicts Corollary I.8.6.

28
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Hence whenever we consider a 0-meet collection of completely simple semigroups, it is

understood that it is a finite collection. Next, note that S;S; = {0} whenever i # /. So if

D % D, Y existin S, ST respectively, then

Zielxi eV = Ziel(\inyi - Ziemei Zieanyi'

For the following three lemmas, let F = {S; : i € A} be a 0-meet collection of com-

pletely simple #-semigroups.

Lemma IL.1.1 For any subset I of A, each element of S} is uniquely represented, i.e. if
there exist x;, y; in S; and I, J < A such that Zl_el x, = ZiEJ y,, thenI=Jandx; =y, for
all iin I. Consequently, if e = Zie[ e, is an idempotent of S| , then e, is an idempotent of

S; foralliinl.

Proof Suppose x;, y; € S;and I, J < A such that Zidx, = ZIEJ y,. For any j € I, choose
any element g; from S;. Then

ay, ifjeld
= L L = {01  ityed

Since a;x; # 0, we must have a;x; = a;y; and I c J. By symmetry, we obtain x;a, = y;a; and

J < I Hence x; = y; (for §; is weakly cancellative by Theorem 1.5.4) and /= J. |
Lemma IL.1.2 For each subset I of A, defineamap o, : S, — H[_d S, by

Zielx, = xitiel)

(for example, if 1={1,2,3},then o,(x) +x; +x3) = (x1, X2, X3)).
Then o, is an isomorphism and S| is a completely simple W-semigroup for each sub-

set I of A.
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Proof Let/c Aandletx=) x,,y= ..., ¥: be elements of S, . To show o, is well-

defined, suppose x = y. Then by Lemma II.1.1, x; = y, for all i € 1. Hence
o,(x)=@:ie)=iie=oc,().
It is not difficult to see that o, is a bijection. To show that &, is a homomorphism, first

note that xy = Zid x,y,. Therefore

oc,)=@yitiel=x:iel(y:ie=0,(x)o,(y).
Hence o is an isomorphism, i.e. §; = Hl_el S;. It suffices now to show that Hl_el S, is

a completely simple W-semigroup. But a direct product of completely simple semigroups
is certainly completely simple, and a direct product of #-semigroups is a W-semigroup

(see Definition 1.7.1). Hence Hiel S, is a completely simple #)-semigroup as required. ll

Lemma 11.1.3 For any subsets 1, J of A such that I 2 J, define amap ¢1;: S| — S! by

X, > X,
ie !

jel !

(for example, if 1= {1,2,3} andJ={1,2}, then ¢;;(x1 + x; + x3) = x1 + X2).
Then:

(1) @1 is the identity map of S| ;

(2) ¢14 is a homomorphism;

B)if L, J, K are subsets of A suchthat I 2 J D K, then ¢ x°¢1,= @1k

Proof Let I, J be subsets of A such that / > J. To show that ¢;; is well-defined is a rou-

tine application of Lemma II.1.1. To prove (1) and (3) is straightforward. As for the proof

of (2), note that ¢; ;= o' °z; °0,, where o, o, are isomorphisms defined in Lemma
I1.1.2, and 7;, is the projection homomorphism from Hie[ S, onto HiEJ S,. Hence ¢;,

is a homomorphism. »
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We are now ready for the following semigroup construction.
Theorem IL.1.4 If F = {S;, : i € A} is a 0-meet collection of completely simple W-
semigroups, then S =U1CA S is a strong semilattice of completely simple W-semi-

groups.

Proof We may write S = Uleys ¥, where ¥ = 2" (the set of all subsets of A) is the
semilattice with M as binary operation. Hence for any 1, J € Y,

12 © Io>J © InJ=J

Letx,y € S. We may assume x € S, and y € S| . Then there exist x;, y; € S; such

that x=3)" x, and y=) . Now

xy = Zie] X ZieJy" = Ziamxi ziemJy" = 01100 (%) @u105 (3)-

Hence together with Lemma II.1.3, we deduce that S = (¥; § IF ; ¢1 ). But by Lemma
II.1.2, S/ is a completely simple #)-semigroup for all / € Y. Therefore S is a strong

semilattice of completely simple #)-semigroups. |

Definition II.1.S We call the semigroup S introduced in Theorem II.1.4 the Z-semigroup
with foundation F. More generally, by a Z-semigroup S we mean a semigroup for which
there exists a 0-meet collection F' = {S; : i € A} of completely simple semigroups such

that S is the Z-semigroup with foundation F.

In Definition 1I.1.5, since F is a 0-meet collection and each S; cannot contain 0, we
must have S; N S; = & whenever i # j. Also, we allow F to be empty, which gives the

Z-semigroup S = {0}. In addition, we have

Corollary 11.1.6 FEach Z-semigroup is a strong semilattice of completely simple semi-

groups. Consequently, each Z-semigroup is completely regular. |
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If S is a semigroup, then the smallest Z-semigroup containing S, if it exists, is called
the Z-closure of S and is denoted by S*. Not every semigroup has a Z-closure (Example
I1.3.3), but every @-semigroup has a Z-closure and there is a procedure to obtain it. Sec-
tion 3 introduces the concepts (the +closure and —closure of a semigroup) which are cru-
cial in calculating the Z-closure of a (@-semigroup. Furthermore, we can show that if S'is

a (@-semigroup, then S7 is a semigroup in the variety @ v $€.
group p

I1.2 Characterization of X-Semigroups

Let a, § be elements of a semilattice Y. We say a covers § and write a > f if a > f and
there is no yin Y such that a > y > f.

Let S be a semigroup. We define S to be closed under + if it contains 0 and
(Va,beS) ab=ba=0 = a+tbel.
In addition, we define S to be closed under — if
(Va,belS) a=2b = a-bes,

where > is defined in Lemma 1.6.8 and — is the usual matrix subtraction. Note that a com-
pletely regular semigroup S closed under — necessarily contains 0 because a > a for all a
in S. Hence whenever we say that a completely regular semigroup S = (¥; S,) is closed
under — (or contains 0), we may assume that Y contains 0 and Sy = {0}.

In this section we will show that necessary and sufficient conditions for a completely
regular semigroup to be a X-semigroup are precisely being closed under + and —. We

need the following three lemmas to prove the main theorem of this section.

Lemma IL.2.1 IfS=(Y; S,) is a completely regular semigroup and a > f in Y, then

(Vx € S,)(Vy € Sp) x= (xyx)ox.
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Proof Let e = (xyx)’ and f=x"'(xyx)’%. Then e, f are idempotents of S such that ex =

(xyx)ox and
xf= xx'l(xyx)ox = xoxyx(xyx)_lx = xyx(xyx) x = (oyx)’x.
Hence x > (xyx)’x. [

Lemma I1.2.2 Let S = (Y; Sq) be a completely regular semigroup closed under — and let

F={Sq: ae€ Y, a>0}. Then S is contained in the T-semigroup with foundation F.

Proof First, it is not difficult to see that F is a 0-meet collection. By Theorem 1.8.5, Yis

finite. So if ¥ = {0}, then F = & and we are done. Otherwise we may assume {@ € Y :
a >0} =N,,. Suppose x € S; where a € Y'\{0}. Since i covers 0 for each i € N,,, exactly

one of > i, ai =0 is true. We may therefore assume, without loss of generality, that
a2i if 1<i<r and ai=0 if r+1<i<m.

For each i € N,,, choose a representative y; from S;. By Lemma I1.2.1, x > (xy; x)’
whenever 1 < i < r. By hypothesis and since x > (xylx)ox, we have x — (xyix)’x € S. But

e= (xyzx)o and f=x""(xyx)’ are idempotents of S such that
elx — (oyin)'x) = (02) % = (ep20) (i) x = (0p20)’x = 0= (o)
and
[ = (o) x]f = xx™ Geyax)x = Coyi) ™ 0epan)x = (opa0)’x = 0 = (o).
Therefore x — (xylx)ox > (xyzx)ox, which implies that x — (xylx)ox - (xyzx)ox € S. Con-
tinuing, we have x — Zi’:l (xy,x)°x € S. Assume x - Zi’:l (xy,x)°x € Sp for some f € Y.
For eachi € N,,, define

(xy,x)° if 1<i<r
Z. =
' Y if r+l<i<m.

Note that each z; belongs to §;, and it is not difficult to show z j(x - Z;l(xy,.x)ox) =0
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for all j € N,,. Hence SN, = 0, from which we deduce that # = 0 because N,, contains
all the covers of 0. Consequently, x — Z;l(xy,.x)ox =0,ie x= Z;l (xy,x)’x € Sy . We

may thus conclude that Sc | J,__ S/ ||

/N,

Lemma I1.2.3 Let S be a Z-semigroup with foundation F= {S;:i € A}. Letx = Zzel X,

and y = Zidy,., where x;, y; existinS; andLJC A. If x 2y, then I 2 J and x; = y; for

alliinJ.

Proof If x = y, then there exist idempotents e, f of S such that ex = xf=y. We may as-

sume e=ZA e €S8’ for some K< A. Now
iek ! K

ZieKﬁl eixi = ZieK ei Ziel xi =ex= y = ZieJ yi '

Thus by Lemma II.1.1, KN I=J (I 2 J) and e;x; = y; for all i € J. By the same lemma,

since e = Zl_eK e, is an idempotent of S}, e; is also an idempotent of S; for all i e K.
Hence
eixi = ei(eix;) = e;yi.

Similarly, we may suppose f = ZieL f, for some L ¢ A and deduce that xf; = y,f; for all

i € J. Therefore, by Theorem 1.5.4, x;=y; forall i € J. ]
Having the required lemmas, we are ready to characterize Z-semigroups.

Theorem 11.2.4 A completely regular semigroup is a Z-semigroup if and only if it is

closed under + and —.

Proof LetS=(Y;S,) be a completely regular semigroup.
Suppose S = Uch S, where F = {S;: i € A} is its foundation. Let x, y € S. We may
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assume x = Zlelx, €S and y= Zl_ejyi €S forsome I, J< A. If xy = 0, then 0 = xy
=3 %y €8, whichimplies/nJ=@. Hencex+ye S, + 8/ = S/ S If
x 2y, then by Lemma I1.2.3, I o Jand x,= y, foralli € J. Thus x — y = Ziem x, € S/,
< S. Therefore S is closed under under + and —.

Conversely, suppose S is closed under + and —. Let F = {S,: a € Y, a > 0}, which we

may assume to be {S;:i € N,,}. By Lemma I11.2.2, S ¢ Uch S/ . To show the reverse
containment, let x e Uch S ,F . Then x = Zie] x, for some x; € S;and I = N,,. Note that

x;x; = 0 whenever i # j. Without lost of generality assume /= N,. Now x1x; = 0, so x; + x,

€ §. But (x; + x2)x3 =0, so x; + x + x3 € S. Continuing, we deduce that x = Z,ele e S.

Hence Uch S ,F < §. In conclusion, S is a Z-semigroup with foundation F. [ |

I1.3 The +Closure and —Closure of a Semigroup

The following are some consequences of Theorem 11.2.4.

Theorem I1.3.1 If o is a collection of Z-semigroups, then (A is a Z-semigroup. Fur-

thermore, if each semigroup in oA is a (O-semigroup, then (A is also a (Q-semigroup.

Proof If o# is a collection of Z-semigroups, then [ is non-empty because every S € of
contains 0. Since every S € of is closed under + and — (Theorem I1.2.4), Nc# is also
closed under + and —. Hence (£ is a Z-semigroup. It is obvious that if every S € o is a

(0-semigroup, then (ot is a (@-semigroup. |

Corollary I1.3.2 If a completely regular semigroup S is closed under —, then S* exists.



Chapter II Z-Semigroups 36

Proof If S isacompletely regular semigroup closed under —, then S is contained in some
Y-semigroup (Lemma II.2.2). Hence the collection of of all Z-semigroups containing S is
non-empty. But any intersection of X-semigroups is a X-semigroup (Theorem II.3.1).

Therefore A is a Z-semigroup. It follows that S* = NA. ]

By Corollary I1.1.6, every Z-semigroup is completely regular. But an arbitrarily given
completely regular semigroup may not be contained in any X-semigroup, as we shall see

in the following example.

Example I1.3.3 Consider the subband B = {1, x, y} of M,(k) where

1 0 1 0
x= and y= .
[0 0} [1 Oi|

Then B is a completely regular semigroup that is not contained in any Z-semigroup.

Proof Suppose S = U[CA S/ isa Z-semigroup containing B. Since 1 >x, 1 >y and S is

closed under — (Theorem I1.2.4), we have 1 —x, 1 —y € S. It is straightforward to show
that {x, y} is a left zero band and that {1 — x, 1 — y} is a right zero band. Therefore we
have xy and (1 — x)#(1 - y), which implies thatx,y € S/ and1-x,1-y € S for
some,Jc A.NowO=x(1-x)e §/S7 =8/ ,. Thus S/, ={0}. But(1 —-x)y=y—x

# 0 is a contradiction. [

We now present the main concept of this section.

Let S be a semigroup. We define the +closure of S to be the smallest semigroup
closed under + containing S and denote it by S*. Note that S* is just the intersection of

all semigroups closed under + containing S. We will show how to generate S* by the
following construction.

Fori=0,1,..., define
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e )SV0 =0 1.3.1
5T = (a+b:a,beS*(i-1),ab=ba=0) if i1 3.1

It is straightforward to show that S*(0) < S*(1) < --- is a chain of semigroups, and that
UI_ZOS *(i) is a semigroup closed under +. Indeed, Uz‘zoS *(i) is the smallest semigroup
closed under + containing S; for if T is any semigroup closed under + containing S, then T
must contain every S*(i). Hence S* = UIZOS *(i).

Similarly, for any semigroup S, we define the —closure of S to be the smallest semi-

group closed under — containing S and denote it by S™. We can also show that S~ =

U..,S™ (), where

S™(i) = {SU oo el 1132)
(a—-b:a,b eS (1—1),a2b> if i>1
Hence we have
Theorem 11.3.4 The +closure and —closure of a semigroup S are given by
§* =870 and S~ =] SO,
where S* (i) and S™(i) are defined in (11.3.1) and (11.3.2) respectively. |

Lemma I1.3.5 IfS is a completely simple semigroup, then
S*=8" =Su{0}.

Consequently, if S is a completely simple (O-semigroup, then both S* and S~ belong to
the variety Qv L.

Proof Since a completely simple semigroup S different from {0} does not contain 0, we
can easily deduce that S* = SU {0} because SU {0} =S"(0)=S"(1)=---.Nowifx >y

in S, then xe = fx =y for some idempotents e, f of S. Thus we have xe = ye and fx = fy. It
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follows by Theorem 1.5.4 that x = y. Hence we again have SU {0} =S (0)=S"(I)=---,
which implies that S~ = S {0}. |

For the next two sections, we will prove the analogy of Lemma II.3.5 for non-

completely simple (@-semigroups.

IL.4 The +Closure of a (0-Semigroup

For the following lemmas, let S be a non-completely simple (@-semigroup (i.e. semi-

groups in the varieties of Figure 1.4) and let

C={a+b:abeS ab=ba=0}.

Lemma 11.4.1 Ifx = a + b is an element of C (where a, b € S such that ab = ba = 0),
then x is a completely regular element of M,(k) such that:

Mx'=a'+b7

Q) x*=a"+5°.

Furthermore, the elements x'l, x° belong to C.

Proof LetS=(Y;S,). Thena € S, and b € Spfor some «, f € Y. Since ab = 0, we have
aff=0,1.e. SaSp U SpSa= {0}. Because a'l, a e S, and b'l, B e Sp, we have albl=
bla!' =0=3a"" = b%". Therefore a' + b7, a° + ° € C. It is not difficult to show that
a '+ b7 is an inverse of x that commutes with it, and that (a + bYa '+ b Y =a"+ 8" For
example, to show the latter result:
(@a+b)a'+bY=aa' +ab' +ba + bb™!
=" +0+0+5"=a"+5".
Consequently, we have x'=ag'+b " andx®=a® + B° (see Lemma 1.6.1 and the remark

following it). ||
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Lemma I1.4.2 Foranyx,y,z, win C:

(1) x* =x and xy = yx if (0 =8L; (2) x* =x and xyz = xzy if @© =L,
(3) x* =x and xyz = yxz if @© =R, (4) x* =x and xyzw = xzyw if Q=0
5)x° =y’x if ©=34g; (6) x)°z = xzy0 if O=.LN0;

(7) 0’z = yoxz if @O =RNO, (8) xyozw =xz)’w if © = HO.

Proof (8) Let W =@O and letx,y,z,we C. Thenx=a+b,y=c+d,z=e+fiw=

gt hforsomea,b,c,d,e,f,g heS Foranyu,veS, wehave

(a)
wzv = u(c® + do)(e + £ = uc®ev + uc’f + ud’ev + ud"f

SO 0 0 0. _ 0 0@ 9
=uecv+tufcvtuedv+ufdv=ule+f)c +td)v=uzyv,

where (a) holds by Lemma I1.4.1 and (b) holds by Proposition 1.6.14. Hence

xyozw =(a+ b)yoz(g +h) =ay’zg + ay’zh + byozg + byozh
=az)’g + azy’h + bzy’g + by’h = (a + b)2y°(g + ) = xzp"w.

(5) Replace ‘A0’ by ‘8G°, ‘Proposition 1.6.14° by ‘Corollary 1.6.15(3)’, and remove
x’, ‘w’, ‘u’, ‘v’ in the proof of (8).

(6) Replace ‘9O ° by ‘LAHO’, ‘Proposition 1.6.14° by ‘Corollary 1.6.15(1)’, and re-
move ‘w’, ‘v’ in the proof of (8).

(7) Replace ‘WO’ by ‘RHO°, ‘Proposition 1.6.14° by ‘Corollary 1.6.15(2)’, and re-
move ‘x’, ‘u’ in the proof of (8).

(4) Let @ =@ and let x =a + b € C. Since S is a band, we have, by Lemma 11.4.1,
that x* = a® + 8° = a + b = x. Hence every element of C is an idempotent, and so x* = x for
all x e C. Now S is also a normal orthogroup. Therefore by (8), xyozw = xzy"w for all x, Vs
z, w € C, which is equivalent to xyzw = xzyw because y0 =yin C.

(1) Replace ‘@’ by ‘&L °, ‘normal orthogroup’ by ‘Clifford semigroup’, ‘(8)’ by
‘(5)’, and remove ‘x’, ‘w’ in the proof of (4).

(2) Replace ‘9’ by ‘LAC’, ‘normal orthogroup’ by ‘left normal orthogroup’, ‘(8)’ by
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‘(6)’, and remove ‘w’ in the proof of (4).
(3) Replace ‘@’ by ‘R, ‘normal orthogroup’ by ‘right normal orthogroup’, *(8)°
by ‘(7)’, and remove ‘x’ in the proof of (4). »

Lemma IL4.3 (C) is a completely regular semigroup.

Proof Letx= Hllx,. € (C) where x; € C. Our objective is to show that x has an inverse

in (C) with which it commutes. Note that since S is a normal orthogroup, we may invoke

Lemma I1.4.2(8). Also, x;', x exist in C by Lemma I1.4.1.

i=m

: : . A .
First we use induction on m to prove that x, (H X l)xf,’, € V(x). The case m=11is

.. 1
trivial. Suppose m > 2 and x; (Hi=rx,. l)xf e V(x) whenever r < m. So when r = m,
1 _ m—1 _ 1 _ m—1

x[xf(Hi=mxi l)x,?, ]x =(1_L=1 X, )xmxfxml (Hl:m—lxi l)x,(,),(l_[i=1 X, )xm
(a) m-1 0 -1 1 " m-1 0
= Hi:l X )xl (xmxm )(Hi=m-—1xi Hi:l X )x’"x'”
— m-1 0,00 1 q m-1
- (Hi:] xi )xl xm [xm—l (Hi___m_]xi )](Hi:l xi )xm
(i) m-1 0 1 -1 0 m-1 0
- H,‘=] xi xl Hi:m—l xi xm—l H,‘=] xi xmxm

where (a) indicates repeated use of Lemma I1.4.2(8) and (b) holds by induction hypothe-

sis. To show

is similar. Therefore we have x, (Hl mxi'l)x,(,’, e Mx).

j=

We now use induction on m to prove that
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0 1 -1\ 0] _ m o0 _|._o 1 ~1)_0
fxt(IT..x o] =TT = [T e

It suffices to show x

1 m . . .
X} (Hizm x! )x,?,] = Hi:l x! because proving the other equality is a

similar task. The case m = 1 is trivial. Suppose m > 2 and

r 0 L U Hr 0
(Hi=1xi)x1 (Hi:rxi )x’ i=1xi

whenever r < m. Then when r = m,

0 1 “1\.0 | _ m-1 0_-1 1 -1Y._0
x[x, (IT...x )x] = (T = et (T 2

where (c) holds by Lemma I1.4.2(8) and (d) holds by induction hypothesis.

1 . . . .
We may conclude that x) (H x,'l)x0 is an inverse of x that commutes with it.

i=m m

Hence x is completely regular. »
It is clear from the proof of Lemma I11.4.3 that if x = H:l x, isin (C), then
x'=x? (H:=m x;! )x,?, and x°= Hll x;.
We are now ready to prove the following.

Theorem I1.4.4 The +closure of a semigroup in (0 is a semigroup in @O v S.L.
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Proof Let S be a @-semigroup. If S is completely simple, then we are done by Lemma
I1.3.5. So suppose S is non-completely simple. But we only need to prove the theorem for

(0 = (A0, because the proofs of the other cases are very similar.

Recall that the +closure of Sis S* = U’_ZOS"(i), where S7(i) is defined in (I1.3.1).

We use induction to prove that every S™ (i) is a normal orthogroup. The case i = 0 is ob-
vious. Suppose S*(m—1) is a normal orthogroup. Let C={a+b:a,b € S*(m-1),ab=

ba =0}. By Lemma 11.4.3, (C) is a completely regular semigroup. Now let x, y, z € (C).

m

Then x = Hi:ll X, y° = :":1 y,.°, z= H:":l z, for some x;, y;, z; € C. Therefore
xyozx = (H:m:ll X )(HZ yio )(Hl"':] 2 )(H:ll x")
= (T = (T2 T T ) =

where the second equality holds by repeated use of Lemma 11.4.2(8). Hence S*(m)=(C)

P

is a normal orthogroup (Proposition 1.6.14) and induction is completed. Since S*(0) <

S*(l) ¢ -, it follows that S* = U’_ZOS" (i) is a normal orthogroup. [

ILS The —Closure of a (O-Semigroup

Recall that a @-semigroup is a strong semilattice of completely simple semigroups.
Hence by Lemma 1.6.16, the partial order > defined on a completely regular semigroup

can be simplified to
azb < ab’=ba=b.
For the following lemmas, let S be a non-completely simple @-semigroup and let

D={a-b:a,beS,a=b}.
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Lemma ILS.1 Let a, b be elements of S. If a > b, then:

(1) ab’ = b%a = b, Q) ab ' =bla=5%
(3)a’ 28" ie. a"b° =" =B, (4) a% = ba® = b;
3)ap ' =b"'a"=p7" 6)a'b=ba'=p"

Na'2b"ie.a'd’=p"a"=p".

Proof Since a > b is equivalent to (1), it suffices to show (1) = (2) = 3) = (4) = (5)
and (1) = (6) = (7). Moreover, only one-sided proofs are necessary.

()= 2).ab™' = (@b =bb"=p°.

()= (3). a’" = (@a)b ' =ab' =b°.

(3) = (4). a° = (a*b")b = b% = b.

@ =05).d " =@ =bb7p =7

(1) = (6). If ab® = b%a = b, then we also have (3). Hence a 'b = (a”'a)b” = a°° = °.

6)=().a't’=@'bp ' =p%"=p". »

Lemma I1.5.2 Ifx =a - b is an element of D (where a, b € S such that a > b), then x is a
completely regular element of M,(k) such that:

M x'=a'-p7;

Q) x"=d"-2°.

Furthermore, the elements x~*, x° belong to D.

Proof If a, b € S such that a > b, then a_l, ao, b_l, B e S, and by Lemma I1.5.1, we have

a'>b"'and a® > b°. Thereforea' = b7, a° -8 e D. Also, we have
(@a-b)a'-bY=aa'—ab™ —ba + bb™!
=a0—b0—b0+b0=a0—b0,
and similarly, (a” - 5')(a - b) = @’ — b°. Thus @' — 5™ and x commute. It remains to
show that a™' — 7! is an inverse of x, which is just a routine application of Lemma II.5.1.

Hence by Lemma 1.6.1 and the remark following it, we may conclude thatx™' =4 — 5™
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and x° = a° - »°. n

Lemma I1.5.3 Foranyx,y,z,winD:

(1) x* =x and xy = yx, if O=38.L; (2) x* = x and xyz = xzy, if O = LI,
3)x*=x and xyz = yxz, if @ =R,  (4) x* = x and xyzw = xzyw, if O =D,
®) 0’ =y'xif V=3G; () 0z =xzy" if V=LNO;

(7) x°z = Y%z if O =RNO; (8) x°zw = x23°w if W =NO.

Proof This is very similar to the proof of Lemma I1.4.2. For example, to show (5), let
x,ye D. Thenx=a-bandy=c-dforsomea, b,c,d e Ssuchthata>bandc>d.

Using Lemma I1.5.2 and the assumption that S is a Clifford semigroup, we have

xp°=(a—-b)(c’-d%=ac’ — ad’ - bc® + bd°
zcoa—doa—cob+d0b=(co—do)(a—b)=y0x. m

Lemma I1.5.4 (D) is a completely regular semigroup.

Proof This is almost identical to the proof of Lemma I1.4.3. Just replace ‘C’ by ‘D’, use
Lemma II.5.2 instead of Lemma II.4.1, and use Lemma II.5.3(8) instead of Lemma

I1.4.2(8). |

Apply Lemma I1.5.3 and I1.5.4 in the same way as we have applied Lemma 11.4.2 and
I1.4.3 in Theorem II.4.4, we obtain

Theorem I1.5.5 The —closure of a semigroup in (0 is a semigroup in (O v S.L. |

I1.6 The Z-Closure of a (O-Semigroup

We can now combine the main theorems of the last two sections to prove the main result

of this thesis.
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Theorem 11.6.1 The Z-closure of a semigroup in (O is a semigroup in @O v 8L. In par-
ticular, if S is a @-semigroup, then S* = (S™)".

Proof Let S be a @-semigroup. By Theorem I1.5.5, S~ is a semigroup in @ v $£. We
may assume S~ =(Y; S, ;dap)and F={S,: a € A}, where A= {a € Y: a> 0}. Since
S~ is closed under —, we have S~ ¢ Uch ST by Lemma I1.2.2. On the other hand,

Uch ST is a Z-semigroup and so it must be closed under + (Theorem I1.2.4). Thus

() e, , S/ Note that

F
xelJ,_, S = xeS/ forsome/cA

= x= Zaelxa forsomex,e S, = S~

= xe(S)".
Therefore (S7)" = Ulg/\ S, , which implies that (S7)* is a Z-semigroup. To show that
(S7)* is the smallest Z-semigroup containing S, let 7 be any X-semigroup containing S.
Then S~ < T because T is closed under —, and (S™)" < T because 7 is closed under +.

Thus S* = (S7)*. Finally, since S~ is a semigroup in @ v &£, it follows by Theorem

I11.4.4 that (S7)" is a semigroup in (0 v $L) v &L =0 v SL. [

Note that if S is a @-semigroup which is not completely simple, then @ > $£ in the
lattice of Figure 1.5. Hence @ v &8.£ = @. Consequently, the Z-closure of S is in 0. We

may thus conclude that

Corollary 11.6.2 A maximal, non-completely simple (O-semigroup is a Z-semigroup. W
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the n x n zero matrix
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the variety of left zero bands

the Rees matrix semigroup

the ring of n x n matrices over &

the set of positive integers

the variety of normal bands

the set of the first m positive integers
the variety of normal orthogroups

an identity

Green’s equivalence

the (R-class containing a

an equational class (variety) of (2, 1)-algebras determined

by a set of identities R

the join of varieties [R;], [Rz]
the rank of a matrix a

the variety of rectangular bands
the variety of rectangular groups
the variety of right groups

the variety of right normal bands
the variety of right normal orthogroups
the variety of right zero bands
the +closure of S

the —closure of S

the semigroup S with adjoined identity element
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S=T
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Ma)

(Y; Sa)
(Y; Sa; Bap)

the sum of S; (i € I), where F={S;:i e A} is a 0-meet
collectionand / c A

the 2-closure of S

S'is isomorphic to T’

the variety of Clifford semigroups

the variety of semilattices

the variety of trivial semigroups

the symbol for any variety in Lists A, B, C or D

the set of inverses of a

the symbol for any variety of completely regular semi-
groups

a semilattice of semigroups

a strong semilattice of semigroups
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algebra, 20
(2, 1)-algebra, 20

band, 2

Clifford semigroup, 17

closed under +/—, 32

+closure, 36

—closure, 37

completely regular
element/semigroup, 10

completely simple semigroup, 5

cover, 32
direct product, 3
equational class, 21
foundation, 31
Green’s equivalences, 4
homomorphic image, 21
homomorphism

of semigroups, 2

of (2, 1)-algebras, 20-21
idempotent, 2
identity, 21
inverse of an element, 10
isomorphic, 2-3

isomorphism, 2

join, 23
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group, 9-10
normal band, 15
normal orthogroup, 17
zero band (semigroup), 8
Lists A, B, C, D, 22-23

0-meet collection, 28
monoid, 2
multiplication, 2

normal
band, 15
orthogroup, 17

orthodox semigroup, 9
primitive idempotent, 5

rectangular

band, 8§

group, 9
Rees matrix semigroup, 6
regular element/semigroup, 5
right

group, 9-10

normal band, 15

normal orthogroup, 17

zero band (semigroup), 8

satisfy, 21
semilattice, 2, 3

of semigroups, 3-4
semigroup, 2
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